
Megalista

User Manual - v1.0

Implementation

Default implementation consists in creating a template
of megalista hosted in a Google Cloud storage bucket,
and configuring a Google Cloud Scheduler responsible
to initialize Dataflow with the hosted template

Please visit the code repository with step-by-step on
how to implement megalista

1. Default implementation [Recommended]

2. Running Apache beam locally

As an alternative, you can also run megalist locally (or
in a VM) -- even in that case Google OAuth setup,
Google APIs and BigQuery are still required. For that,
you will be required to install apache beam, all
megalista dependencies and use a local runner to
execute the workflow

https://www.github.com/google/megalista
https://github.com/google/megalista#creating-required-access-tokens
https://github.com/google/megalista#prerequisites
https://github.com/google/megalista/blob/main/megalist_dataflow/requirements.txt
https://github.com/google/megalista/blob/main/megalist_dataflow/requirements.txt

Updating

1. Redeploy Pipeline

Redeploy megalista pipeline into Google Cloud Storage according
with the documentation

2. Review Cloud Scheduler Parameters

Newer Mega Lista versions might require additional scheduler
parameters to support recently added connectors. Please review
your current setup and latest supported parameters

https://github.com/google/megalista#deploying-pipeline
https://github.com/google/megalista#scheduling-pipeline

Runtime Parameters

1. Concept

A few sensitive parameters (i.e. API tokens) need to be passed to
Megalista at run-time. This can be accomplished in two ways:

- Defining a JSON payload on Google Cloud scheduler, in case
you run megalista in Cloud Dataflow

- Passing them as shell arguments, in case you use apache
beam localrun

2. The parameters

Key Name (Cloud
scheduler)

Shell Argument
(localrun)

Expected value

gcp_project_id --gcp_project_id Google Cloud project Id

client_id --client_id oAuth2 client Id for Google APIs

client_secret --client_secret oAuth2 client secret for Google APIs

refresh_token --refresh_token oAuth2 refresh token for Google APIs, obtained
through generate_megalist_token.sh

access_token --access_token oAuth2 access token for Google APIs, obtained
through generate_megalist_token.sh

setup_sheet_id --setup_sheet_id Id of Google Spreadsheet that will be used as
configuration engine. Copy from here

developer_token --developer_token Google Ads developer token

bq_ops_dataset --bq_ops_dataset Auxiliary bigquery dataset name used for Megalista
operations (dataset needs to exist prior to execution
and be hosted in gcp_project_id project)

appsflyer_dev_key --appsflyer_dev_key Developer key for AppsFlyer server 2 server API

3. Example config - Cloud Scheduler

4. Example config - local runner

python3 -m main \
--runner DirectRunner \
--direct_num_workers 1 \
--project "-----" \
--client_id "----" \
--client_secret "-----" \
--refresh_token "------" \
--access_token "------" \
[…]

Please visit this link for details

Quick tip: if Cloud Scheduler doesn't work with "PERMISSION_DENIED"
and Cloud Scheduler was enabled before March, 2019, it might be
worth to check this link.

https://github.com/google/megalista#scheduling-pipeline
https://cloud.google.com/scheduler/docs/http-target-auth#setting_up_the_service_account

Google Cloud Access Requirements

Minimum Google Cloud
Access Requirements

Those are the minimum roles necessary to
deploy Megalista:

● OAuth Config Editor
● BigQuery User
● BigQuery Job User
● BigQuery Data Viewer
● Cloud Scheduler Admin
● Storage Admin
● Dataflow Admin
● Service Account Admin
● Logs Viewer
● Service Consumer

Enabling APIs in Google Cloud

APIs in Google Cloud

Google Sheets (required for any use case)

● https://console.cloud.google.com/apis/library/sheets.goo
gleapis.com

Google Analytics

● https://console.cloud.google.com/apis/library/analytics.g
oogleapis.com

Google Analytics Reporting

● https://console.cloud.google.com/apis/library/analyticsre
porting.googleapis.com

Google Ads

● https://console.cloud.google.com/apis/library/googleads.
googleapis.com

Campaign Manager

● https://console.cloud.google.com/apis/library/dfareportin
g.googleapis.com

https://console.cloud.google.com/apis/library/sheets.googleapis.com
https://console.cloud.google.com/apis/library/sheets.googleapis.com
https://console.cloud.google.com/apis/library/analytics.googleapis.com
https://console.cloud.google.com/apis/library/analytics.googleapis.com
https://console.cloud.google.com/apis/library/analyticsreporting.googleapis.com
https://console.cloud.google.com/apis/library/analyticsreporting.googleapis.com
https://console.cloud.google.com/apis/library/googleads.googleapis.com
https://console.cloud.google.com/apis/library/googleads.googleapis.com
https://console.cloud.google.com/apis/library/dfareporting.googleapis.com
https://console.cloud.google.com/apis/library/dfareporting.googleapis.com

Basic Configuration

Hold basic information common across upload rules

1. Configuration Spreadsheet

All data upload rules are defined in a single
configuration spreadsheet. Template here.

The trix is made of four tabs: Intro, Sources,
Destinations, Connector

1.1 Intro Tab

1.2 Sources tab
Holds the bigQuery location of each data source.
Important: The schema of each bigQuery source table
needs to perfectly match the expected schema of the
destination type it will be used with:

● Source Name: A friendly name for that source
● Dataset: BigQuery dataset name
● Table: BigQuery table name

https://docs.google.com/spreadsheets/d/1rP9x93h5CVu2IdUjP6yJ8yYEMcb9J_WPx2sBEEpLMJI/edit#gid=0

Defines where the data should be send to, according
with destination type and expected metadata
information

● Destination Name: Friendly name of each
destination

● Type: the type of upload, limited to supported
upload destinations of the solution

● Metadata[1-6]: Additional required informations
expected by each destination type (details on the
documentation of corresponding destination type)

1. Configuration Spreadsheet

1.3 Destinations Tab

Responsible to map a source to a destination

● Enabled (Yes/No): Disabled lines are ignored at
runtime

● Source: The friendly name of a Megalista source
● Destination: The friendly name of a Megalista

destination

1. Configuration Spreadsheet

1.4 Connect Tab

Destination Types

● Appsflyer dev token configured as a scheduler parameter (appsflyer_dev_key:
XXXXXX)

● Auxiliar bigquery dataset defined as a scheduler parameter (bq_ops_dataset: XXXX)

Appsflyer S2S API (type: APPSFLYER_S2S_EVENTS)

Requirements

Expected Schema

Metadata

Additional information

Column name type Description Requirement
uuid STRING Unique event identifier

used by megalista to
deduplicate events before
sending

required

appsflyer_id STRING

Details on Appsflyer S2S
documentation

required
customer_user_id STRING optional
ip STRING optional
device_ids_idfa STRING optional
device_ids_advertising_id STRING optional
device_ids_amazon_aid STRING optional
device_ids_oaid STRING optional
device_ids_imei STRING optional
event_eventName STRING required
event_eventCurrency STRING optional
event_eventTime DATETIME (UTC) optional
event_eventValue STRING optional

At every request successfully sent, Megalista stores its uuid on a temporary table for 15
days. At every new execution, it consults stored uuids and, in case request has already being
sent, it prevents it to be sent again. As a result, source table should not maintain events for
more than 7 days.

● Metadata 1: app_id (i.e. com.mycompany.myapp)

Send server to server events to appsflyer

https://support.appsflyer.com/hc/pt/articles/207034486-Server-to-server-events-API-for-mobile-S2S-mobile-
https://support.appsflyer.com/hc/pt/articles/207034486-Server-to-server-events-API-for-mobile-S2S-mobile-

● Google Ads API token configured as a scheduler parameter (developer_token:
XXXXXX)

● Google Ads API Enabled in Google Cloud.

Customer Match - Contact info
(type: ADS_CUSTOMER_MATCH_CONTACT_INFO_UPLOAD)

Creates (if needed) and send mobile device ids to a Google Ads customer match audience

Requirements

Expected Schema

Metadata

Additional information

Column name type Description Requirement
email STRING optional
phone STRING Phone number in E.164

format
optional

mailing_address_first_name STRING optional
mailing_address_last_name STRING optional
mailing_address_country STRING Iso two letter format optional
mailing_address_zip STRING optional

Although all columns are optional, it's required that at least email, phone or all name/address
fields are present,

● Metadata 1: audience list name (if it does not exist, it will be automatically created)
● Metadata 2: ADD or REMOVE , if ADD, it will append the entries to the audience, if

REMOVE, it will exclude them from the audience
● Metadata 3: TRUE or FALSE (DEFAULT=TRUE). Define if you would like megalista to

hash the data before sending. Use false if your data is already SHA256 hashed or if
you don't mind sending raw identifiers to Google Ads

● Google Ads API token configured as a scheduler parameter (developer_token:
XXXXXX)

● Google Ads API Enabled in Google Cloud.

Customer Match - Device Id
(type: ADS_CUSTOMER_MATCH_MOBILE_DEVICE_ID_UPLOAD)

Requirements

Expected Schema

Metadata

Additional information

Column name type Description Requirement
mobile_device_id STRING Mobile device Id identifier

(android AdId or IOS IDFA)
required

XXXXXXX

● Metadata 1: audience list name (if it does not exist, it will be automatically created)
● Metadata 2: ADD or REMOVE , if ADD, it will append device ids to the audience, if

REMOVE, it will exclude them from the audience
● Metadata 3: Can be left empty
● Metadata 4: app_id (i.e. com.mycompany.myapp). If empty, it will use the default app

id defined on "Intro" tab

Creates (if needed) and send mobile device ids to a Google Ads customer match audience

● Google Ads API token configured as a scheduler parameter (developer_token:
XXXXXX)

● Google Ads API Enabled in Google Cloud.

Customer Match - User Id
(type: ADS_CUSTOMER_MATCH_USER_ID_UPLOAD)

Requirements

Expected Schema

Metadata

Additional information

Column name type Description Requirement
user_id STRING Google AdsUser Id identifier required

The field user_id must match de user_id received in the remarketing Ads Tag. It's not the
same user_id used in Google Analytics tags.

● Metadata 1: audience list name (if it does not exist, it will be automatically created)
● Metadata 2: ADD or REMOVE , if ADD, it will append device ids to the audience, if

REMOVE, it will exclude them from the audience
● Metadata 3: Can be left empty

Creates (if needed) and sends user ids to a Google Ads customer match audience

● Google Analytics account id configured in the "Intro" tab.

GA Measurement Protocol
(type: GA_MEASUREMENT_PROTOCOL)

Requirements

Expected Schema

Metadata

Additional information

Column name type Description Requirement
uuid STRING Unique event identifier

used by megalista to
deduplicate events before
sending

required

client_id STRING required
event_category STRING required
event_action STRING required
event_label STRING optional
event_value INTEGER optional
cd1, cd2, cdn... STRING Any column starting with

"cd" with be sent as a
custom dimension. The
column represents the CD
number.

optional

At every request successfully sent, Megalista stores its uuid on a temporary table for 15
days. At every new execution, it consults stored uuids and, in case request has already being
sent, it prevents it to be sent again. As a result, source table should not maintain events for
more than 15 days.

● Metadata 1: GA Property Id
● Metadata 2: "1" if the hit should be non-interactive, "0" otherwise

Sends hits to a GA Property through Measurement Protocol

● Google Analytics account id configured in the "Intro" tab.
● Both Google Analytics and Google Analytics Reporting API enabled in Google Cloud.

GA Data Import (type: GA_DATA_IMPORT)

Requirements

Expected Schema

Metadata

Additional information

Column name type Description Requirement
dimension1 STRING Custom dimension (1-250)

which will be used as
match key for the upload

required

dimension2 STRING Custom dimensions to be
uploaded

optional
dimension3 STRING optional

● When creating the CSV file for Data Import upload, megalista appends 'ga:' to every
bigquery column name so it matches csv expected by GA

● At every execution, the pipeline deletes all previous imported data associated with
that data import Name, and then uploads it again to Google Analytics. As a result, we
suggest you to use a dedicated data import instance for megalista

● To create a data import instance, follow these steps:

● Metadata 1: GA Property Id
● Metadata 2: Data Import name

Uploads Google Analytics Data import to a GA property

● Google Ads configured in intro tab
● Store Sales Conversion created in Google Ads
● Google Ads API Enabled in Google Cloud

Google Ads Store Sales Direct
(type: ADS_SSD_UPLOAD)

Requirements

Expected Schema

Metadata

Additional information

Column name type Description Requirement
email STRING User email required
time STRING 2020-04-16T12:00:00.000 required
amount STRING Value in micros required

More information on Store Sales direct in the support link

● Conversion Name: Name of the conversion created on Google Ads
● External Upload ID: Customer provided identifier for this particular conversion

Uploads store sales direct conversions to Google Ads

https://support.google.com/google-ads/answer/7620302?hl=en#:~:text=Store%20sales%20(direct%20upload)%20lets,ads%20translate%20into%20offline%20purchases.

● Google Ads configured in intro tab
● Offline Clicks Conversion created in Google Ads
● Google Ads API Enabled in Google Cloud.

Google Ads off. conversions
(type: ADS_OFFLINE_CONVERSION)

Requirements

Expected Schema

Metadata

Additional information
Documentation for setting up offline conversions tracking

● Conversion name: Name of the created conversion on google ads

Column name type Description Requirement
gclid STRING Gclid of the conversion required
time STRING 2020-04-16T12:00:00.000 required
amount STRING Value in micros required

Uploads gclid based offline conversions to Google Ads

https://support.google.com/google-ads/answer/7012522?hl=en

● Campaign Manager ID configured in intro
● Floodlight configuration created in CM
● Floodlight activity created in CM
● Campaign Manager API enabled in Google Cloud

CM offline conversions
(type: CM_OFFLINE_CONVERSION)

Requirements

Expected Schema

Metadata

Additional information

Column name type Description Requirement
uuid STRING Unique event identifier

used by megalista to
deduplicate events before
sending

required

gclid STRING Click id required*
mobileDeviceId STRING Advertising ID required*
encryptedUserId STRING Extracted from CM reports required*
matchId STRING Sent to floodlight tag required*

Documentation for offline conversions in Campaign Manager.

At every request successfully sent, Megalista stores its uuid on a temporary table for 15
days. At every new execution, it consults stored uuids and, in case request has already being
sent, it prevents it to be sent again. As a result, source table should not maintain events for
more than 15 days.

● Floodlight Activity ID: Can be obtained in the URL for the activity
● Floodlight Configuration Id: Can be obtained in the URL for the activity

required*: Send at least one of these per row

Uploads Campaign Manager offline conversions to Campaign Manager floodlights (compatible
with CM, SA360 and DV360 conversion optimization and CM + DV360 audience creation)

https://support.google.com/searchads/answer/7384231?hl=en

TIPS: Sending data to BigQuery

