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Infinite networks are linearized models
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Summary and Theory

Experiments
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Are Training Dynamics Tractable?
A longstanding goal in deep learning research has been to precisely 
characterize training and generalization. However, the often complex loss 
landscapes of neural networks have made a theory of learning dynamics 
elusive. Nevertheless, in the large width limit, neural networks evolve as 
linear models with solvable dynamics. 

a. Parameter space dynamics: wide network training dynamics in 
parameter space are equivalent to the training dynamics of a model 
which is affine in the collection of all network parameters.

b. Sufficient conditions for linearization:  there exists a threshold learning 
rate ηcritical, such that gradient descent training of neural networks with 
learning rate smaller than that threshold are well approximated by their 
linearization for large width. 

c. Output distribution dynamics: the predictions of a neural network 
throughout gradient descent training converge weakly to a GP as the 
width goes to infinity. We derive time-dependent expressions for the 
evolution of this GP and note the differences from the Bayesian 
posterior GP.  

d. More in the paper:
■ Parameterization independence for linearization
■ Momentum, non-square losses (e.g. cross-entropy)
■ Analytic expressions for NTK for Erf and Relu 
■ Colab tutorial
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● Consider (convex) loss function of neural networks

Motivation: Gradient descent learning dynamics of 
deep neural networks are intractable

● Gradient descent (flow) dynamics of the parameters and outputs (logits)   

● With a time evolving tangent kernel

 Want to automate NNGP/NTK computation for various architectures?
 : see “Neural Tangents” github.com/google/neural-tangents [5]! 

Paper Code

Infinite networks are GPs

● When learning rate is sufficiently small, linearization becomes more accurate 
as the width  increases:

● When the network is sufficiently wide, one can approximate a deep neural 
network by its first order Taylor expansion (linearization) at initialization (t=0)

Relation to other approaches
  

As the width approaches infinity, the outputs of randomly initialized  
network converge to a Gaussian Process [1-3]: 

This GP is transformed by gradient descent throughout the training 
process, leading to GP behavior after training.

Dynamics of linear models are tractable
● For linear models, training dynamics are tractable. Closed form solution 

for MSE loss:

stochastic

deterministic

weight dynamics

function dynamics

● Gaussian process at initialization leads to Gaussian distribution during training with mean 
and covariance

● A wide residual network and its linearization behave similarly when both are trained by 
SGD with momentum on MSE loss on full CIFAR-10

Networks well approximated by linearization

● For some test point x

● Relative Frobenius norm change during training 
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