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Are Training Dynamics Tractable? Infinite networks are GPs Experiments
A longstanding goal in deep learning research has been to precisely As the width approaches infinity, the outputs of randomly initialized e Gaussian process at initialization leads to Gaussian distribution during training with mean
characterize training and generalization. However, the often complex loss network converge to a Gaussian Process [1-3]: and covariance
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a. Parameter space dynamics: wide network training dynamics in E — |
parameter space are equivalent to the training dynamics of a model ' z —
which is affine in the collection of all network parameters. s T et

b. Sufficient conditions for linearization: there exists a threshold learning
rate n_.. ., such that gradient descent training of neural networks with
|earning rate smaller than that threshold are well apprgximated by their | | | | e A wide residual network and its linearization behave similarly when both are trained by
linearization for large width. SGD with momentum on MSE loss on full CIFAR-10

c. Output distribution dynamics: the predictions of a neural network
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This GP is transformed by gradient descent throughout the training S e o T

: . rocess, leading to GP behavior after training. ey -1 e i e vt e W I e | R R
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d. More in the paper: ¢ When the network is sufficiently wide, one can approximate a deep neural : & - ;
m Parameterization independence for linearization network by its first order Taylor expansion (linearization) at initialization (t=0) e Relative Frobenius norm change during training
m Momentum, non-square losses (e.g. cross-entropy) - I |
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e When learning rate is sufficiently small, linearization becomes more accurate N 4 S I i
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e Consider (convex) loss function of neural networks £= Y ((fi(z,0),y). Relation to other approaches
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e For linear models, training dynamics are tractable. Closed form solution Linearization Neural Tangent Kernel
for MSE loss:
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