
Effects App
5

Motivation

6

● Need to publish app using Oboe for Marmot identification

● Simultaneous input/output is a common difficult use case
of low latency mode of Oboe

● Crash reports from devices using Oboe in the field

Design Goals

7

● Effects which are..

○ Portable - minimum contract/overhead

○ Versatile - formats, sample rates

○ Integrable - add new effects easily

○ Performant - mem/cpu

● Oboe processing engine is extensible/re-usable

UI/UX Goals

8

● Intuitive/Interactive controls

● Implements best design practices (Material)

How to Use

9

f(x)

Architecture

10

UI

Descriptions

DuplexEngine

Function List

Populates

Mutates

Runs

Audio Out

JNI

Audio In

UI
11

Layout

Adding an Effect

Reordering and
Removing

Modifying
Parameters

Effects Framework
16

Big Ideas

17

● How do we describe effects to the UI?

● Heterogeneous collections of effects

● Allow effects to operate on anything*

● Warning -- lots of code screenshots

Kotlin side

18

Descriptions

19

● Compile-time knowledge

● Easy to add

● _ef =
std::function<void(iter_type, iter_type)>

Adding an Effect

20

One Source for Effects

21

Some Effects (class)

22

Some Effects (function)

23

FunctionList -- putting it all together

24

std::function and type erasure

25

● The benefits of polymorphism (collections, flexible
functions) without

○ Virtual Lookup

○ Inheritance contracts

○ Classes

○ Runtime danger

Flexibility of iterators -- <class iter_type>

26

● Operate on arbitrary type

○ Float/double, int16/32?

● Operate on arbitrary data source

○ Arbitrary range (single sample, buffers of [size])

○ Containers (not raw pointers)

○ File iterators

Duplex Engine

27

Future Work

28

● Fixed point overflow

● Recording and other UI extras

● Many more effects!

● Publishing/Open-sourcing

Live Demo
29

