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Motivation
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● Need to publish app using Oboe for Marmot identification

● Simultaneous input/output is a common difficult use case 
of low latency mode of Oboe

● Crash reports from devices using Oboe in the field



Design Goals
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● Effects which are..

○ Portable - minimum contract/overhead

○ Versatile - formats, sample rates

○ Integrable - add new effects easily

○ Performant - mem/cpu

● Oboe processing engine is extensible/re-usable



UI/UX Goals
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● Intuitive/Interactive controls

● Implements best design practices (Material)



How to Use
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UI
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Effects Framework
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Big Ideas
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● How do we describe effects to the UI?

● Heterogeneous collections of effects

● Allow effects to operate on anything*

● Warning -- lots of code screenshots



Kotlin side
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Descriptions
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● Compile-time knowledge

● Easy to add

● _ef =             
std::function<void(iter_type, iter_type)>



Adding an Effect
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One Source for Effects
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Some Effects (class)
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Some Effects (function)
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FunctionList -- putting it all together 
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std::function and type erasure
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● The benefits of polymorphism (collections, flexible 
functions) without

○ Virtual Lookup

○ Inheritance contracts

○ Classes

○ Runtime danger



Flexibility of iterators -- <class iter_type>
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● Operate on arbitrary type

○ Float/double, int16/32?

● Operate on arbitrary data source

○ Arbitrary range (single sample, buffers of [size])

○ Containers (not raw pointers)

○ File iterators 



Duplex Engine
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Future Work
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● Fixed point overflow

● Recording and other UI extras

● Many more effects!

● Publishing/Open-sourcing



Live Demo
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