The pythontex package

Geoffrey M. Poore
gpoore@gmail.com

Version 0.9beta3 from 2012/07/17

Abstract

PythonTEX allows Python code entered within a ITEX document to be
executed, and the output to be included within the original document. This
provides access to the full power of Python from within WTEX, simplifying
Python-KTEX workflow and making possible a range of document customiza-
tion and automation. It also allows macro definitions that mix Python and
KTEX code. In addition, PythonTEX provides syntax highlighting for many
programming languages via the Pygments Python package.

PythonTEX is fast and user-friendly. Python code is only executed when
it has been modified. When code is executed, it automatically attempts
to run in parallel. If Python code produces errors, the error message line
numbers are synchronized with the ETEX document line numbers, so that
it is easy to find the misbehaving code.

Warning

PythonTEX makes possible some pretty amazing things. But that power brings
with it a certain risk and responsibility. Compiling a document that uses
PythonTEX involves executing Python code on your computer. You should only
compile PythonTEX documents from sources you trust. PythonTEX comes with
NO WARRANTY.! The copyright holder and any additional authors will not be
liable for any damages.

Package status

PythonTgX is currently in “beta.” Almost all features intended for version 0.9 are
present, and almost all are fully functional (at least, so far as is known!). Testing is
the main task that remains. PythonTEX has been primarily developed and tested
under Windows with TEX Live and Python 2.7. It has also been tested with
Python 3.2 under Windows, and has been used under OS X (10.7) with MacPort’s
TgX Live and Python 2.7.

LAIl INTEX code is licensed under the I4TEX Project Public License (LPPL) and all Python
code is licensed under the BSD 3-Clause License.

gpoore@gmail.com
http://www.latex-project.org/lppl.txt
http://www.opensource.org/licenses/BSD-3-Clause

Contents

1 Introduction 4
2 Installing and running 7
2.1 Installing PythonTEX 7
2.2 Compiling documents using PythonTgX 9

3 Usage 10
3.1 Packageoptions L 10
3.2 Code commands and environments 13
3.2.1 Inlinecommands 13

3.2.2 Environments o 14

3.2.3 Default families, PythonTEX utilities, and custom code . . 15

3.2.4 Formatting of typeset code 17

3.2.5 Access to printed content (stdout) and error messages (stderr) 18

3.3 Pygments commands and environments 19
3.4 General code typesetting oo 20
3.4.1 Listingsfloat o oL, 20

3.4.2 Background colors oL oL 20

3.4.3 Referencing code by line number 21

3.4.4 Beamer compatibility 00000 21

3.5 Advanced PythonTEX usage 22

4 Questions and answers 23
5 Troubleshooting 23
6 The future of PythonTEX 24
6.1 ToDo e 24
6.1.1 Modifications tomake 24

6.1.2 Modifications to consider L. 24

7 Implementation 26
7.1 Packageopening L Lo 26
7.2 Required packages L oo 26
7.3 Packageoptions Lo Lo 27
7.3.1 Autoprint 27

7.3.2 stderr 27

7.3.3 stderrfilenameo oo 27

7.3.4 Python’s __future__module 28

7.3.5 Upquote e 28

7.3.6 Fix math spacing 28

7.3.7 Keep temporary files L. 29

7.3.8 Pygments Lo 29

7.3.9 Python console environment 31

7.3.10 De-PythonTeX 31

7.4

7.5

7.6

7.7
7.8
7.9
7.10

7.3.11 Processoptions oo 31

Utility macros and input/output setup 32
7.4.1 Automatic counter creation 32
7.4.2 Codecontext 32
7.4.3 Code groupso 32
7.4.4 File input and outputo oL 34
7.4.5 Interface to fancyvrb 39
7.4.6 Access to printed content (stdout) 41
7.4.7 Accesstostderr. 43
Inline commands 44
7.5.1 Inline core macros, 44
7.5.2 Inline command constructors 49
Environments 51
7.6.1 Block and verbatim environment constructors 52
7.6.2 Code environment constructor 57
7.6.3 Console environment constructor 60
Constructors for macro and environment families 61
Default commands and environment families. 65
Listings environmento 65
Pygments for general code typesetting 66
7.10.1 Inline Pygments command 67
7.10.2 Pygments environment oL 68
7.10.3 Special Pygments commands 70
7.10.4 Creating the Pygments commands and environment 72

1 Introduction

BTEX can do a lot,? but the programming required can sometimes be painful.?

Also,

in spite of the many packages available for IXTEX, the libraries and packages

of a general-purpose programming language are lacking. For these reasons, there
have been multiple attempts to allow other languages to be used within ETEX.

PerlTEX allows the bodies of ETEX macros to be written in Perl.

SageTEX allows code for the Sage mathematics software to be executed from
within a BTEX document.

Martin R. Ehmsen’s python. sty provides a very basic method of executing
Python code from within a BTEX document.

SympyTEX allows more sophisticated Python execution, and is largely based
on a subset of SageTRX.

LuaTgX extends the pdfTEX engine to provide Lua as an embedded scripting
language, and as a result yields tight, low-level Lua integration.

PythonTEX attempts to fill a perceived gap in the current integrations of M TEX
with an additional language. It has a number of objectives, only some of which
have been met by previous packages.

Execution speed

In the approaches mentioned above, all the non-IATEX code is executed
at every compilation of the ITEX document (PerlTgX, LuaTgX, and
python.sty), or all the non-IATEX code is executed every time it is modified
(SageTEX and SympyTEX). However, many tasks such as plotting and data
analysis take significant time to execute. We need a way to fine-tune code
execution, so that independent blocks of slow code may be separated into
their own sessions and are only executed when modified. If we are going
to split code into multiple sessions, we might as well run these sessions in
parallel, further increasing speed. A byproduct of this approach is that it
now becomes much more feasible to include slower code, since we can still
have fast compilations whenever the slow code isn’t modified.

Compiling without executing

Even with all of these features to boost execution speed, there will be times
when we have to run slow code. Thus, we need the execution of non-IATEX
code to be separated from compiling the I#TEX document. We need to be
able to edit and compile a document containing unexecuted code. Unexe-
cuted code should be invisible or be replaced by placeholders. SageTEX and
SympyTEX have implemented such a separation of compiling and executing.
In contrast, LuaTEX and PerlTEX execute all the code at each compilation—
but that is appropriate given their goal of simplifying macro programming.

2TEX is a Turing-complete language.
3As I learned in creating this package.

http://www.ctan.org/tex-archive/macros/latex/contrib/perltex/
http://www.ctan.org/tex-archive/macros/latex/contrib/sagetex/
http://web.archive.org/web/20080728170129/www.imada.sdu.dk/~ehmsen/python.sty
http://elec.otago.ac.nz/w/index.php/SympyTeX
http://www.luatex.org/

Error messages

Whenever code is saved from a ITEX document to an external file and then
executed, the line numbers for any error messages will not correspond to the
line numbering of the original INTEX document. At one extreme, python.sty
doesn’t attempt to deal with this issue, while at the other extreme, SageTEX
uses an ingenous system of Try/Except statements on every line of code. We
need a system that translates all error messages so that they correspond to
the line numbering of the original I TEX document, with minimal overhead
when there are no errors.

Syntax highlighting

Once we begin using non-KTEX code, sooner or later we will likely wish
to typeset some of it, which means we need syntax highlighting. A num-
ber of syntax highlighting packages currently exist for I4TEX; perhaps the
most popular are listings and minted. listings uses pure KTEX. It has
not been updated since 2007, which makes it a less ideal solution in some
circumstances. minted uses the Python package Pygments to perform high-
lighting. Pygments can provide superior syntax highlighting, but minted
can be slow because all code must be highlighted at each compilation. We
need syntax highlighting via Pygments that saves all highlighted code, only
re-highlighting when there are modifications. Ideally, we would also like a
solution that overcomes some of minted’s longstanding issues.*

Context awareness
It would be nice for the non-IATEX code to have at least a minimal awareness
of its context in the A TEX document. For example, it would be nice to know
whether code is executing within math mode.

Language-independent implementation
It would be nice to have a system for executing non-IXTEX code that depends
very little on the language of the code. We should not expect to be able
to escape all language dependence. But if the system is designed to be
as general as possible, then it may be expanded in the future to support
additional languages.

Printing

It would be nice for the print statement/function,” or its equivalent, to
automatically return its output within the KTEX document. For example,
using python. sty it is possible to generate some text while in Python, open a
file, save the text to it, close the file, and then \input the file after returning
to ITEX. But it is much simpler to generate the text and print it, since
the printed content is automatically included in the BTEX document. This
was one of the things that python.sty really got right.

4http://code.google.com/p,/minted /issues/ list
5In Python, print was a statement until Python 3.0, when it became a function. The function
form is available via import from __future__ in Python 2.6 and later.

Pure code
KTEX has a number of special characters (# $ % & ~ _ = \ { }), which
complicates the entry of code in a non-IATEX language since these same
characters are common in many languages. SageTEX and SympyTEX de-
limit all inline code with curly braces ({}), but this approach fails in the
(somewhat unlikely) event that code needs to contain an unmatched brace.
More seriously, they do not allow the percent symbol % (modular arithmetic
and string formatting in Sage and Python) to be used within inline code.
Rather, a \percent macro must be used instead. This means that code
must (sometimes) be entered as a hybrid between WTEX and the non-IATEX
language. LuaTgX is somewhat similar: “The main thing about Lua code in
a TeX document is this: the code is expanded by TeX before Lua gets to it.
This means that all the Lua code, even the comments, must be valid TeX!”6

This language hybridization is not terribly difficult to work around in the
SageTEX and SympyTgEX cases, and might even be considered a feature
in LuaTEX in some contexts. But if we are going to create a system for
general-purpose access to a non-IXTEX language, we need all valid code to
work correctly in all contexts, with no hybridization of any sort required.
We should be able to copy and paste valid code into a WTEX document,
without having to worry about hybridizing it. Among other things, this
means that inline code delimiters other than I#TEX’s default curly braces {>
must be available.

Hybrid code
Although we need a system that allows input of pure non-ETEX code, it
would also be convenient to allow hybrid code, or code in which ETEX
macros may be present and are expanded before the code is executed. This
allows IATEX data to be easily passed to the non-XTEX language, facilitat-
ing a tighter integration of the two languages and the use of the non-IATEX
language in macro definitions.

Math and science libraries

The author decided to create PythonTEX after writing a physics disserta-
tion using BTEX and realizing how frustrating it can be to switch back and
forth between a TEX editor and plotting software when fine-tuning figures.
We need access to a non-IXTEX language like Python, MATLAB, or Mathe-
matica that provides strong support for data analysis and visualization. To
maintain broad appeal, this language should primarily involve open-source
tools, should have strong cross-platform support, and should also be suitable
for general-purpose programming.

Python was chosen as the language to fulfill these objectives for several reasons.

e It is open-source and has good cross-platform support.”

Shttp://wiki.contextgarden.net/Programming_in_LuaTeX

7Unfortunately, Sage can only run under Windows within a virtual machine at present; oth-
erwise, an extension of SageTEX might have been tempting. Then again, for general computing,
an approach that utilizes pure Python is probably superior.

http://wiki.contextgarden.net/Programming_in_LuaTeX

e It has a strong set of scientific, numeric, and visualization packages, including
NumPy, SciPy, matplotlib, and SymPy. Much of the initial motivation for
PythonTEX was the ability to create publication-quality plots and perform
complex mathematical calculations without having to leave the TEX editor.

e We need a language that is suitable for scripting. Lua is already available
via LuaTEX, and in any case lacks the math and science tools.® Perl is al-
ready available via PerlTEX, although Perl TEX’s emphasis on Perl for macro
creation makes it rather unsuitable for scientific work using the Perl Data
Language (PDL) or for more general programming. Python is one logical
choice for scripting.

Now at this point there will almost certainly be some reader, sooner or later,
who wants to object, “But what about language X!” Well, yes, in some respects
the choice to use Python did come down to personal preference. But you should
give Python a try, if you haven’t already. You may also wish to consider the
many interfaces that are available between Python and other languages. If you
still aren’t satisfied, keep in mind PythonTEX’s “language-independent” imple-
mentation! Although PythonTEX is written to support Python within KTEX, the
implementation has been specially crafted so that other languages may be sup-
ported in the future. See Section 6 for more details.

2 Imnstalling and running

2.1 Installing PythonTEX

PythonTEX requires a TEX installation. TgX Live or MiKTEX are preferred.
PythonTEX requires the Kpathsea library, which is available in both of these
distributions. The following KTEX packages, with their dependencies, are also
required: fancyvrb, etex, etoolbox, xstring, pgfopts, newfloat, and color or
xcolor. If you are creating and importing graphics using Python, you will also
need graphicx. The mdframed package is recommended for enclosing typeset code
in boxes with fancy borders and/or background colors.

PythonTEX also requires a Python installation. Python 2.7 is recommended for
the greatest compatibility with scientific tools. Python 3.1 and later will work as
well. Earlier versions of Python 2 and 3 are not compatible, at least not without
some modifications to the PythonTEX scripts. The Python package Pygments
must be installed for syntax highlighting to function. PythonTEX has been tested
with Pygments 1.4 and later, but the latest version is recommended. For scientific
work, or to compile or experiment with the PythonTEX gallery file, the following
are also recommended: NumPy, SciPy, matplotlib, and SymPy.

PythonTEX consists of the following files:

e Installer file pythontex. ins

80mne could use Lunatic Python, and some numeric packages for Lua are in development.

http://numpy.scipy.org/
http://www.scipy.org/
http://matplotlib.sourceforge.net/
http://sympy.org
http://pdl.perl.org/
http://pdl.perl.org/
http://www.tug.org/texlive/
http://miktex.org/
http://www.python.org/
http://pygments.org/
http://numpy.scipy.org/
http://www.scipy.org/
http://matplotlib.sourceforge.net/
http://sympy.org
http://labix.org/lunatic-python
http://numlua.luaforge.net/

e Documented IXTEX source file pythontex.dtx, from which pythontex.pdf
and pythontex.sty are generated

e Main Python scripts pythontex2.py and pythontex3.py

e Helper scripts pythontex_utils2.py and pythontex_types2.py, and pythontex_utils3.py
and pythontex_types3.py

e Installation script pythontex_install_texlive (for TEX Live)
e README

e Optional batch file pythontex.bat for use in launching pythontex*.py un-
der Windows

The style file pythontex. sty may be generated by running I#TEX on pythontex. ins.
The documentation you are reading may be generated by running ETEX on
pythontex.dtx. Two versions of all of the Python scipts are supplied, one for
Python 2 and one for Python 3.°

Until PythonTEX is submitted to CTAN, it must be installed manually. The
PythonTgX files should be installed within the TEX directory structure as follows.

o (TEX tree root)/doc/latex/pythontex/

— pythontex.pdf
— README

e (TpX tree root)/scripts/pythontex/

— pythontex2.py and pythontex3.py
— pythontex_types2.py and pythontex_types3.py
— pythontex_utils2.py and pythontex_utils3.py

e (TEX tree root)/source/latex/pythontex/
— pythontex.dtx

e (TEX tree root)/tex/latex/pythontex/
— pythontex.sty

After the files are installed, the system must be made aware of their existence.
Run mktexlsr or texhash to do this. In order for pythontex*.py to be exe-
cutable, a symlink (TgX Live under Linux), launching wrapper (TEX Live under
Windows), or batch file (general Windows) should be created in the bin/ direc-
tory. For TEX Live under Windows, simply copy bin/win32/runscript.exe to

9Unfortunately, it is not possible to provide full Unicode support for both Python 2 and 3
using a single script. Currently, all code is written for Python 2, and then the Python 3 version
is automatically generated via the pythontex_2to3.py script. This script comments out code
that is only for Python 2, and un-comments code that is only for Python 3.

bin/win32/pythontex*.exe to create the wrapper (replace the * with the appro-
priate version).!?

A Python installation script is provided for use with TEX Live. It may need to
be slightly modified based on your system. It performs all steps described above,
except for creating a symlink under Linux.

2.2 Compiling documents using PythonTEX

To compile a document that uses PythonTEX, you should run IXTEX, then run
pythontex*.py (preferably via a symlink, wrapper, or batch file, as described
above), and finally run I4TEX again. pythontex*.py requires a single command-
line argument, which must be passed to it directly or via symlink/wrapper/batch
file: the name of the .tex file. The filename can be passed with or without the
.tex extension, but no extension is preferred.!! The file name should be wrapped
in double quotes " to allow for space characters.'? For example, under Windows
with TEX Live and Python 2.7 we would create the wrapper pythontex2.exe.
Then we could run PythonTEX on a file (file name).tex using the command
pythontex2.exe "(file name)". In practice, you will probably want to config-
ure your TEX editor with a shortcut key for running PythonTgX.

A second argument specifying the file encoding may also be passed to
PythonTEX: pythontex*.py (file) --encoding (encoding). Any encoding sup-
ported by Python’s codecs module may be used. If an encoding is not specified,
PythonTEX uses UTF-8. Note that the encoding must be used consistently; the
.tex source, the PythonTEX output, and any external code files that PythonTEX
highlights should all use the same encoding. If support for characters beyond
ASCII is required, then the ETEX packages fontenc and inputenc should be
used.

PythonTEX currently does not provide means to choose between multiple
Python installations; it will use the default Python installation. Support for mul-
tiple installations is unlikely to be added, since a cross-platform solution would be
required. If you need to work with multiple installations, you may wish to modify
pythontex_types*.py to create additional command and environment families
that invoke different versions of Python, based on your system.

PythonTEX attempts to check for a wide range of errors and return mean-
ingful error messages. But due to the interaction of KTEX and Python code,
some strange errors are possible. If you cannot make sense of errors when
using PythonTgX, the simplest thing to try is deleting all files created by
PythonTEX, then recompiling. By default, these files are stored in a directory

108ee the output of runscript -h under Windows for additional details.

Hpythontex*.py will be happy to work with a file that does not have the .tex extension, so
long as the file cooperates with pythontex.sty. In this case, the file extension should not be
passed to pythontex*.py, because it won’t be expecting it and won’t be able to determine that
it is indeed an extension. pythontex*.py just needs to know \jobname.

12Using spaces in the names of .tex files is apparently frowned upon. But if you configure
things to handle spaces whenever it doesn’t take much extra work, then that’s one less thing
that can go wrong.

http://docs.python.org/library/codecs.html

called pythontex-files-(jobname), in the same directory as your .tex document.
See Section 5 for more details regarding Troubleshooting.

3 Usage
3.1 Package options

Package options may be set in the standard manner when the package is loaded:
\usepackage [{options)]{pythontex}

All options are described as follows. The option is listed, followed by its possible
values. When a value is not required, (none) is listed as a possible value. In this
case, what (none) does is described. Each option lists its default setting, if the
option is not invoked when the package is loaded.

autoprint=(none)/true/false
default:true (none)=true Whenever a print command/statement is used, the printed content will au-
tomatically be included in the document, unless the code doing the printing is
being typeset. In that case, the printed content must be included using the
\printpythontex or \stdoutpythontex commands, or one of their variants.

Printed content is pulled in directly from the external file in which it is saved,
and is interpreted by ITEX as I TEX code. If you wish to avoid this, you should
print appropriate INTEX commands with your content to ensure that it is typeset
as you desire. Alternatively, you may use \printpythontex or \stdoutpythontex
to bring in printed content in verbatim form, using those commands’ optional verb
and inlineverb (v) options.

stderr=(none)/true/false
default:false (none)=true This option determines whether the stderr produced by scripts is available for
input by PythonTgX, via the \stderrpythontex macro. This will not be needed
in most situations. It is intended for typeseting incorrect code next to the errors
that it produces. This option is not true by default, because additional processing
is required to synchronize stderr with the document.
stderrfilename=full/session/genericfile/genericscript
default:full This option governs the file name that appears in stderr. Python errors begin
with a line of the form

File "<file or source>", line <line>

By default (option full), <file or source> is the actual name of the script that
was executed. The name will be in the form (family name)_(session)_(group) . {extension).
For example, an error produced by a py command or environment, in the session
mysession, using the default group (that is, the default \restartpythontexsession
treatment), would be reported in py_mysession_default.py. The session op-
tion replaces the full file name with the name of the session, mysession.py in this
example. The genericfile and genericscript options replace the file name
with <file> and <script>, respectively.

pyfuture=none/all/default

default:default

10

upquote=(none)/true/false
default:true (none)=true

fixlr=(none)/true/false
default:true (none)=true

Under Python 2, this determines what is imported from __future__ for
all code. none imports nothing from __future__; all imports everything
(absolute_import, division, print_function, and unicode_literals); and
default imports everything except unicode_literals, since unicode_literals
can conflict with some packages.

This option has no effect under Python 3.

This option determines whether the upquote package is loaded. In general, the
upquote package should be loaded, because it ensures that quotes within verbatim
contexts are “upquotes,” that is, ' rather than ’.

Using upquote is important beyond mere presentation. It allows code to be
copied directly from the compiled PDF and executed without any errors due to
quotes ’ being copied as acute accents ~

This option fixes extra spacing around \left and \right in math mode. See
the implementation for details.

keeptemps=(none)/all/code/none

default:none (none)=all

pygments=(none)/true/false
default:true (none)=true

pyglexer={(pygments lexzer)}
default:(none)

pygopt={(pygments options)}
default:(none)

When PythonTEX runs, it creates a number of temporary files. By default,
none of these are kept. The none option keeps no temp files, the code option
keeps only code temp files (these can be useful for debugging), and the all option
keeps all temp files (code, stdout and stderr for each code file, etc.). Note that this
option does not apply to any user-generated content, since PythonTEX knows very
little about that; it only applies to files that PythonTgX automatically creates by
itself.

This allows the user to determine at the document level whether code is typeset
using Pygments rather than fancyvrb.

Note that the package-level Pygments option can be overridded for individual
command and environment families, using the \setpythontexformatter macro;
the \setpygmentsformatter provides equivalent functionality for the Pygments
commands and environments. Overriding is never automatic and should generally
be avoided, since using Pygments to highlight only some content results in an
inconsistent style. Keep in mind that Pygment’s text lexer and/or bw style can
be used when content needs little or no syntax highlighting.

This allows a Pygments lexer to be set at the document level. In general, this
option should not be used. It overrides the default lexer for all commands and
environments, for both PythonTEX and Pygments content, and this is usually not
desirable. It should be useful primarily when all content uses the same lexer, and
multiple lexers are compatible with the content.

This allows Pygments options to be set at the document level. The op-
tions must be enclosed in curly braces {}. Currently, three options may
be passed in this manner: style=(style name), which sets the formatting
style; texcomments, which allows KTEX in code comments to be rendered;
and mathescape, which allows WTEX math mode ($...$) in comments. The

11

pyginline=(none)/true/false
default:true (none)=true

fvextfile=(none)/(integer)
default:co (none)=25

texcomments and mathescape options may be used with an argument (for exam-
ple, texcomments=True/False); if an argument is not supplied, True is assumed.
Example: pygopt={style=colorful, texcomments=True, mathescape=False}.

Pygments options for individual command and environment families may
be set with the \setpythontexpygopt macro; for Pygments content, there is
\setpygmentspygopt. These individual settings are always overridden by the
package option.

This option governs whether inline code, not just code in environments, is
highlighted when Pygments highlighting is in use. When Pygments is in use, it
will highlight everything by default.

This option speeds the typesetting of long blocks of code that are created
on the Python side. This includes content highlighted using Pygments and the
console environment. Typesetting speed is increased at the expense of creating
additional external files (in the PythonTEX directory). The (integer) determines
the number of lines of code at which the system starts using multiple external
files, rather than a single external file. See the implementation for the technical
details; basically, an external file is used rather than fancyvrb’s SaveVerbatim,
which becomes increasingly inefficient as the length of the saved verbatim content
grows. In most situations, this option should not be needed, or should be fine with
the default value or similar “small” integers.

pyconbanner=none/standard/default/pyversion

default:none

pyconfilename=stdin/console
default:stdin

This option governs the appearance (or disappearance) of a banner at the be-
ginning of Python console environments. (A banner only appears in the first envi-
ronment within each session.) The options none (no banner), standard (standard
Python banner), default (default banner for Python’s code module, standard
banner plus interactive console class name), and pyversion (banner in the form
Python x.y.z) are accepted.

This governs the form of the filename that appears in error messages in Python
console environments. Python errors messages have a form such as the following:

>>> z =1+ 34 +
File "<name>", line 1
z=1+ 34 +

SyntaxError: invalid syntax

The stdin option replaces <name> with <stdin>, as it appears in a standard
Python interactive session. The console option uses <console> instead, which
is the default setting for the Python code module used by PythonTEX to create
Python console environments.

12

3.2 Code commands and environments

PythonTEX provides four types of commands for use with inline code and three
environments for use with multiple lines of code, plus a console environment. All
commands and environments are named using a base name and a command- or
environment-specific suffix. A complete set of commands and environments with
the same base name constitutes a command and environment family. In what
follows, we describe the different commands and environments, using the py base
name (the py family) as an example.

All commands and environments take a session name as an optional argument.
The session name determines the session in which the code is executed. This allows
code to be executed in multiple independent sessions, increasing speed (sessions
run in parallel) and preventing naming conflicts. If a session is not specified, then
the default session is used. Session names should use the characters a-z, A-Z, 0-9,
the hyphen, and the underscore; all characters used must be valid in file names,
since session names are used to create temporary files. The colon is also allowed,
but it is replaced with a hyphen internally, so the sessions code:1 and code-1 are
identical.

In addition, all environments take fancyvrb settings as a second, optional ar-
gument. See the fancyvrb documentation for an explanation of accepted settings.
This second optional argument must be preceeded by the first optional argument
(session name). If a named session is not desired, the optional argument can be
left empty (default session), but the square brackets [1 must be present so that
the second optional argument may be correctly identified:

\begin{(environment)} [1 [{fancyvrd settings)]

3.2.1 Inline commands

Inline commands are suitable for single lines of code that need to be executed
within the body of a paragraph or within a larger body of text. The commands
use arbitrary code delimiters (like \verb does), which allows the code to contain
arbitrary characters. Note that this only works properly when the inline commands
are not inside other macros. If an inline command is used within another macro,
the code will be read by the external macro before PythonTEX can read the special
code characters (that is, WTEX will try to expand the code). The inline commands
can work properly within other macros, but only when all that they contain is also
valid BTEX code (and you should stick with curly braces for delimiters in this case).
\py[(session)](opening delim){code)(closing delim)

This command is used for including variable values or other content that can
be converted to a string. It is an alternative to including content via the print
statement /function within other commands/environments.

The \py command sends (code) to Python, and Python returns a string repre-
sentation of (code). (opening delim) and (closing delim) must be either a pair of
identical, non-space characters, or a pair of curly braces. Thus, \py{1+1} sends
the code 1+1 to Python, Python evaluates the string representation of this code,
and the result is returned to KTEX and included as 2. The commands \py#1+1#

13

http://www.ctan.org/tex-archive/macros/latex/contrib/fancyvrb

and \py@1+1@ would have the same effect. The command can also be used to
access variable values. For example, if the code a=1 had been executed previously,
then \py{a} simply brings the value of a back into the document as 1.

Assignment is not allowed using \py. For example, \py{a=1} is not valid.
This is because assignment cannot be converted to a string.'?

The text returned by Python must be valid BTEX code. If you need to include
complex text within your document, or if you need to include verbatim text, you
should use the print statement/function within one of the other commands or
environments. The primary reason to use \py rather than print is that print
requires an external file to be created for every command or environment in which
it is used, while \py and equivalents for other families share a single external file.
Thus, use of \py minimizes the creation of external files, which is a key design
goal for PythonTgX.14

\pycl[({session)](opening delim){code){closing delim)

This command is used for executing but not typesetting (code). The suffix ¢
is an abbreviation of code. If the print statement/function is used within (code),
printed content will be included automatically so long as the package autoprint
option is set to true (which is the default setting).

\pyv[(session)](opening delim){code){closing delim)

This command is used for typesetting but not executing (code). The suffix v

is an abbreviation for verbatim.
\pyb[(session)](opening delim)(code){closing delim)

This command both executes and typesets (code). Since it is unlikely that the
user would wish to typeset code and then immediately include any output of
the code, printed content is not automatically included, even when the package
autoprint option is set to true. Rather, any printed content is included at a user-
designated location via the \printpythontex and \stdoutpythontex macros.

3.2.2 Environments

pycode [(session)][{fancyvrb settings)]

This environment encloses code that is executed but not typeset. The second
optional argument (fancyvrb settings) is irrelevant since nothing is typeset, but
it is accepted to maintain parallelism with the verb and block environments. If
the print statement/function is used within the environment, printed content will
be included automatically so long as the package autoprint option is set to true
(which is the default setting).

131t would be simple to allow any code within \py, including assignment, by using a try/except
statement. In this way, the functionality of \py and \pyc could be merged. While that would
be simpler to use, it also has serious drawbacks. If \py is not exclusively used to typeset string
representations of {code), then it is no longer possible on the IXTEX side to determine whether
a command should return a string. Thus, it is harder to determine, from within a TEX editor,
whether pythontex*.py needs to be run; warnings for missing Python content could not be issued,
because the system wouldn’t know (on the IATEX side) whether content was indeed missing.

14For \py, the text returned by Python is stored in macros and thus must be valid IATEX code,
because IATEX interprets the returned content. The use of macros for storing returned content
means that an external file need not be created for each use of \py. Rather, all macros created
by \py and equivalent commands from other families are stored in a single file that is inputted.

14

pyverb [(session)][(fancyvrb settings)]

This environment encloses code that is typeset but not executed. The suffix
verb is an abbreviation for verbatim.

pyblock [(session)][{fancyvrb settings)]

This environment encloses code that is both executed and typeset. Since it is
unlikely that the user would wish to typeset code and then immediately print any
output of the code, printed content is not automatically included, even when the
package autoprint option is set to true. Rather, any printed content is included
at a user-designated location via the \printpythontex or \stdoutpythontex
macros.

pyconsole [(session)] [{fancyvrb settings)]

This environment treats its contents as a series of commands passed to an
interactive Python console. Python’s code module is used to intersperse the com-
mands with their output, to emulate an interactive Python interpreter. Unlike the
other environments, pyconsole has no inline equivalent. Currently, non-ASCII
characters are not supported in console environments under Python 2.

When a multi-line command is entered (for example, a function definition), a
blank line after the last line of the command may be necessary.

3.2.3 Default families, PythonTEX utilities, and custom code
By default, three command and environment families are defined.
e Python
— Base name py: \py, \pyc, \pyv, \pyb, pycode, pyverb, pyblock,
pyconsole
— Imports: None.
e Python + pylab (matplotlib module)
— Base name pylab: \pylab, \pylabc, \pylabv, \pylabb, pylabcode,
pylabverb, pylabblock, pylabconsole

— Imports: matplotlib’s pylab module, which provides access to much of
matplotlib and NumPy within a single namespace. pylab content is
brought in via from pylab import x*.

e Python 4+ SymPy
— Base name sympy: \sympy, \sympyc, \sympyv, \sympyb, sympycode,
sympyverb, sympyblock, sympyconsole
— Imports: SymPy via from sympy import x*.

— Additional notes: By default, content brought in via \sympy is format-
ted using a context-sensitive interface to SymPy’s LatexPrinter class,
described below.

15

Under Python 2.7, all families import absolute_import, division, and
print_function from __future__ by default. This may be changed using the
package option pyfuture. Keep in mind that importing unicode_literals from
__future__ may break compatibility with some packages; this is why it is not
imported by default. Imports from __future__ are also possible without using
the pyfuture option. You may use the \setpythontexcustomcode command (de-
scribed below), or simply enter the import code immediately at the beginning of
a session.

All families import pythontex_utils*.py, and create an instance of the
PythonTEX utilities class called pytex. This provides various utilities for in-
terfacing with ATEX. In particular, it provides an interface for determining
how Python objects are converted into strings in commands such as \py. The
pytex.set_formatter ({formatter)) method determines the conversion. Two for-
matters are provided:

e ’str’ converts Python objects to a string, using the str() function un-
der Python 3 and the unicode() function under Python 2. (The use of
unicode () under Python 2 should not cause problems, even if you have not
imported unicode_literals and are not using unicode strings. All encod-
ing issues should be taken care of automatically by the utilities class.)

e ’sympy_latex’ uses SymPy’s LatexPrinter class to return context-sensitive
IXTEX representations of SymPy objects. Separate LatexPrinter set-
tings may be created for the following contexts: >display’ (displaystyle
math), *text’ (textstyle math), *script’ (superscripts and subscripts),
and ’scriptscript’ (superscripts and subscripts, of superscripts and sub-
scripts). Settings are created via pytex.set_sympy_latex ({context), (settings)).
For example, pytex.set_sympy_latex(’display’, mul_symbol=’times’)
sets multiplication to use a multiplication symbol x, but only when math is
in displaystyle.'® See the SymPy documentation for a list of possible settings
for the LatexPrinter class.

By default, > sympy_latex’ only treats matrices differently based on context.
Matrices in displaystyle are typeset using pmatrix, while those in all other
styles are typeset via smallmatrix with parentheses.

The PythonTEX utilities formatter may also be set to a custom function that
returns strings, simply by reassigning the pytex.formatter () method. For exam-
ple, define a formatter function my_func (), and then pytex.formatter=my_func.

The context-sensitive interface to SymPy’s LatexPrinter is always avail-
able via pytex.sympy_latex(). If you wish to use it outside the sympy com-
mand and environment family, you must initialize it before use via the command
pytex.init_sympy_latex().

\setpythontexcustomcode{(family)}{(quoted list)}

5Tnternally, the ’sympy_latex’ formatter uses the \mathchoice macro to return multiple
representations of a SymPy object, if needed by the current settings. Then \mathchoice typesets
the correct representation, based on context.

16

http://docs.sympy.org/dev/modules/printing.html

This macro allows custom code to be added to all sessions within a com-
mand and environment family. (quoted list) should be a comma-separated list
of lines of code, each line enclosed in quotes (single or double). For example,
\setpythontexcustomcode{py}{’a=1’, ’b=2’} would create the variables a and
b within all sessions of the py family, by invisibly adding the following lines at the
beginning of each session:

a=1
b=2

Note that custom code is executed, but never typeset. Only code that is actually
entered within a block (or verb) command or environment is every typeset. This
means that you should be careful about how you use custom code. For example, if
you are documenting code, you probably want to show absolutely all code that is
executed, and in that case using custom code might not be appropriate. If you are
using PythonTEX to create figures or automate text, are using many sessions, and
require many imports, then custom code could save some typing by centralizing
the imports.

(quoted list) may contain imports from __future__. It is best if these are the
first elements in the list, since future imports are only possible at the very begin-
ning of a Python script. This is not strictly required, however. When PythonTEX
writes the individual scripts that are executed, it checks (quoted list) for future
imports, and automatically moves them to the appropriate location.

(quoted list) may not contain BTEX macros. (quoted list) is interpreted as
verbatim content, since in general the custom code will not be valid ETEX.

3.2.4 Formatting of typeset code

\setpythontexfv[(family)l{({fancyvrb settings)}

This command sets the fancyvrb settings for all command and environment
families. Alternatively, if an optional argument (family) is supplied, the settings
only apply to the family with that base name. The general command will override
family-specific settings.

Each time the command is used, it completely overwrites the previous settings.
If you only need to change the settings for a few pieces of code, you should use
the second optional argument in block and verb environments.

Note that \setpythontexfv and \setpygmentsfv are equivalent when they
are used without an optional argument; in that case, either may be used to deter-
mine the document-wide fancyvrb settings, because both use the same underlying
macro.

\setpythontexformatter{(family)}{(formatter)}

This should generally not be needed. It allows the formatter used by (family)
to be set. Valid options for (formatter) are auto, fancyvrb, and pygments. Using
auto means that the formatter will be determined based on the package pygments
option. Using either of the other two options will force (family) to use that for-

17

matter, regardless of the package-level options. By default, families use the auto
formatter.

\setpythontexpyglexer{(family)}{(pygments lezer)}

This allows the Pygments lexer to be set for (family). (pygments lexer) should
should use a form of the lexer name that does not involve any special charac-
ters. For example, you would want to use the lexer name csharp rather than C#.
This will be a consideration primarily when using the Pygments commands and
environments to typeset code of an arbitrary language.

\setpythontexpygopt{(family)}{(pygments options)}

This allows the Pygments options for (family) to be redefined. Note that any
previous options are overwritten. The same Pygments options may be passed
here as are available via the package pygopt option. Note that for each available
option, individual family settings will be overridden by the package-level pygopt
settings, if any are given.

3.2.5 Access to printed content (stdout) and error messages (stderr)

The macros that allow access to printed content and any additional content written
to stdout are provided in two identical forms: one based off of the word print and
one based off of stdout. Macro choice depends on user preference. The stdout
form provides parallelism with the macros that provide accesss to stderr.

\printpythontex[(verbatim options)] [(fancyvrb options)]

\stdoutpythontex [(verbatim options)] [(fancyvrb options)]

\saveprintpythontex{(name)}
\savestdoutpythontex{(name)}

Unless the package option autoprint is true, printed content from code com-
mands and environments will not be automatically included. Even when the
autoprint option is turned on, block commands and environments do not auto-
matically include printed content, since we will generally not want printed content
immediately after typeset code. This macro brings in any printed content from
the last command or environment. It is reset after each command/environment,
so its scope for accessing particular printed content is very limited. It will return
an error if no printed content exists.

By default, printed content is brought in raw—it is pulled in directly from the
external file in which it is saved and interpreted as KTEX code. If you wish to
avoid this, you should print appropriate I TEX commands with your content to
ensure that it is typeset as you desire. Alternatively, you may consider the verb
and inlineverb (also accesible as v) options, which bring in code verbatim. If
code is brought in verbatim, then (fancyvrb options) are applied to it.

\useprintpythontex[(verbatim options)] [(fancyvrb options)l{(name)}
\usestdoutpythontex [{verbatim options)] [(fancyvrb options)l{(name)}

We may wish to be able to access the printed content from a command or
environment at any point after the code that prints it, not just before any addi-
tional commands or environments are used. In that case, we may save access to
the content under (name), and access it later via \useprintpythontex{(name)}.

18

(verbatim options) must be either verb or inlineverb (also accessible as v), spec-
ifying how content is brought in verbatim. If content is brought in verbatim, then
(fancyvrb options) are applied.

\stderrpythontex[{verbatim options)] [(fancyvrb options)]

This brings in the stderr produced by the last command or environment. It
is intended for typesetting incorrect code next to the errors that it produces. By
default, stderr is brought in verbatim. (verbatim options) may be set to verb
(default), inlineverb (or v), and raw. In general, bringing in stderr raw should
be avoided, since stderr will typically include special characters that will make
TEX unhappy.

The line number given in the stderr message will correctly align with the line
numbering of the typeset code. Note that this only applies to code and block
environments. Inline commands do not have line numbers, and as a result, they
do not produce stderr content.

By default, the file name given in the message will be in the form

(family name)_(session) _{group) . (extension)

For example, an error produced by a \py command or environment, in the session
mysession, using the default group (that is, the default \restartpythontexsession
treatment), would be reported in py_mysession_default.py. The package op-
tion stderrfilename may be used to change the reported name to the following
forms: mysession.py, <file>, <script>.

\savestderrpythontex{(name)}

\usestderrpythontex [(verbatim options)] [(fancyvrd options)]l{(name)}

Content written to stderr may be saved and accessed anywhere later in the
document, just as stdout content may be. These commands should be used with
care. Using Python-generated content at multiple locations within a document
may often be appropriate. But an error message will usually be most meaningful
in its context, next to the code that produced it.

3.3 Pygments commands and environments

Although PythonTgEX’s goal is primarily the execution and typesetting of Python
code from within BTEX, it also provides access to syntax highlighting for any
language supported by Pygments.

\pygment{(lezer)}(opening delim)(code){closing delim)

This command typesets (code) in a suitable form for inline use within a para-
graph, using the specified Pygments (lezer). Internally, it uses the same macros
as the PythonTEX inline commands. (opening delim) and (closing delim) may be
a pair of any characters except for the space character, or a matched set of curly
braces {7}.

As with the inline commands for code typesetting and execution, there is not an
optional argument for fancyvrb settings, since almost all of them are not relevant
for inline usage, and the few that might be should probably be used document-wide
if at all.

pygments [{(fancyvrb settings)l{(lezer)}

19

This environment typesets its contents using the specified Pygments (lezer)
and applying the (fancyvrb settings).
\inputpygments [(fancyvrb settings)l{(lezer)}{(ezternal file)}
This command brings in the contents of (external file), highlights it using
(lezer), and typesets it using (fancyvrb settings).
\setpygmentsfv[(lezer)]{(fancyvrb settings)}
This command sets the (fancyvrb settings) for (lexer). If no (lexer) is supplied,
then it sets document-wide (fancyvrb settings). In that case, it is equivalent to
\setpythontexfv{(fancyvrb settings)}.
\setpygmentspygopt{(lezer)}{(pygments options)}
This sets (lexzer) to use (pygments options). If there is any overlap between
(pygments options) and the package-level pygopt, the package-level options over-
ride the lexer-specific options.
\setpygmentsformatter{(formatter)}
This usually should not be needed. It allows the formatter for Pygments con-
tent to be set. Valid options for (formatter) are auto, fancyvrb, and pygments.
Using auto means that the formatter will be determined based on the package
pygments option. Using either of the other two options will force Pygments con-
tent to use that formatter, regardless of the package-level options. The auto
formatter is used by default.

3.4 General code typesetting
3.4.1 Listings float

listing

PythonTEX will create a float environment listing for code listings, unless
an environment with that name already exists. The 1isting environment is cre-
ated using the newfloat package. Customization is possible through newfloat’s
\SetupFloatingEnvironment command.

\setpythontexlistingenv{(alternate listing environment name)}

In the event that an environment named 1isting already exists for some other
purpose, PythonTEX will not override it. Instead, you may set an alternate name
for PythonTEX’s 1isting environment, via \setpythontexlistingenv.

3.4.2 Background colors

PythonTEX uses fancyvrb internally to typeset all code. Even code that is high-
lighted with Pygments is typeset afterwards with fancyvrb. Using fancyvrb, it
is possible to set background colors for individual lines of code, but not for entire
blocks of code, using \FancyVerbFormatLine (you may also wish to consider the
formatcom option). For example, the following command puts a green background
behind all the characters in each line of code:

\renewcommand{\FancyVerbFormatLine} [1]{\colorbox{green}{#1}}

20

If you need a completely solid colored background for an environment, or
a highly customizable background, you should consider the mdframed package.
Wrapping PythonTEX environments with mdframed frames works quite well. You
can even automatically add a particular style of frame to all instances of an envi-
ronment using the command

\surroundwithmdframed[{frame options)]{(environment)}

Or you could consider using etoolbox to do the same thing with mdframed or an-
other framing package of your choice, via etoolbox’s \BeforeBeginEnvironment
and \AfterEndEnvironment macros.

3.4.3 Referencing code by line number

It is possible to reference individual lines of code, by line number. If code is
typeset using pure fancyvrb, then I4TEX labels can be included within com-
ments. The labels will only operate correctly (that is, be treated as IXTEX rather
than verbatim content) if fancyvrb’s commandchars option is used. For example,
commandchars=\\\{\} makes the backslash and the curly braces function nor-
mally within fancyvrb environments, allowing ETEX macros to work, including
label definitions. Once a label is defined within a code comment, then referencing
it will return the code line number.

The disadvantage of the pure fancyvrb approach is that by making the back-
slash and curly braces command characters, we can produce conflicts if the code
we are typesetting contains these characters for non-IATEX purposes. In such a
case, it might be possible to make alternate characters command characters, but
it would probably be better to use Pygments.

If code is typeset using Pygments (which also ties into fancyvrb), then this
problem is avoided. The Pygments option texcomments=true has Pygments look
for XTEX code only within comments. Possible command character conflicts with
the language being typeset are thus eliminated.

Note that when references are created within comments, the references them-
selves will be invisible within the final document but the comment character(s) and
any other text within comments will still be visible. For example, the following

abc = 123 # An important line of code!\ref{lst:important}
would appear as

abc = 123 # An important line of code!
If a comment only contains the \ref command, then only the comment character
would actually be visible in the typeset code.
3.4.4 Beamer compatibility

PythonTEX is compatible with Beamer. Since PythonTEX typesets code as ver-
batim content, Beamer’s fragile option must be used for any frame that con-
tains typeset code. Beamer’s fragile option involves saving frame contents to

21

http://www.ctan.org/pkg/beamer

an external file and bringing them back in. This use of an external file breaks
PythonTEX’s error line number synchronization. A fix is expected in a future
version of PythonTEX.

3.5 Advanced PythonTEX usage

\restartpythontexsession{(counter value(s))}

This macro determines when or if sessions are restarted (or “subdivided”).
Whenever (counter value(s)) change, the session will be restarted.

By default, each session corresponds to a single code file that is executed.
But sometimes it might be conventient if the code from each chapter or sec-
tion or subsection were to run within its own file, as its own session. For ex-
ample, we might want each chapter to execute separately, so that changing code
within one chapter won’t require that all the code from all the other chapters
be executed. But we might not want to have to go to the bother and ex-
tra typing of defining a new session for every chapter (like \py[ch1]{(code)}).
To do that, we could use \restartpythontexsession{\thechapter}. This
would cause all sessions to restart whenever the chapter counter changes. If
we wanted sessions to restart at each section within a chapter, we would
use \restartpythontexsession{\thechapter(delim)\thesection}. (delim) is
needed to separate the counter values so that they are not ambiguous (for exam-
ple, we need to distinguish chapter 11-1 from chapter 1-11). (delim) should be a
hyphen or an underscore; it must be a character that is valid in file names.

Note that counter values, and not counters themselves, must be supplied as
the argument. Also note that the command applies to all sessions. If it did not,
then we would have to keep track of which sessions restarted when, and the lack
of uniformity could easily result in errors on the part of the user.

Keep in mind that when a session is restarted, all continuity is lost. It is best
not to restart sessions if you need continuity. If you must restart a session, but
also need to keep some data, you could save the data before restarting the session
and then load the saved data after the restart. This approach should be used with
extreme caution, since it can result in unanticipated errors due to sessions not
staying synchronized.!6

This command can only be used in the preamble.

\setpythontexoutputdir{{output directory)’}

By default, PythonTEX saves all automatically generated content in a directory
called pythontex-files-(sanitized jobname), where (sanitized jobname) is just
\jobname with any space characters or asterisks replaced with hyphens. This di-
rectory will be created by pythontex*.py. If we wish to specify another directory

16For example, suppose sessions are restarted based on chapter. session-chl saves a data file,
and session-ch2 loads it and uses it. You write the code, and run PythonTEX. Then you realize
that session-chl needs to be modified and make some changes. The next time PythonTEX
runs, it will only execute session-chl, since it detects no code changes in session-ch2. This
means that session-ch?2 is not updated, at least to the extent that it depends on the data from
session-chl. Again, saving and loading data between restarted sessions, or just between sessions
in general, can produce unexpected behavior and should be avoided.

22

(for example, if \ jobname is long and complex, and there is no danger of two files
trying to use the same directory), then we can use the \setpythontexoutputdir
macro to redefine the output directory.

\setpythontexworkingdir{(working directory)}

The PythonTEX working directory is the current working directory for
PythonTEX scripts. This is the directory in which any open or save operations will
take place, unless a path is explicitly specified. By default, the working directory is
the same as the output directory. For example, if you are writing my_file.tex and
save a matplotlib figure with savefig(’my_figure.pdf’), then my_figure.pdf
will be created in the output directory pythontex-files-my_file. But maybe
you have a directory called plots in your document root directory. In that case,
you could leave the working directory unchanged, and simply specify the rel-
ative path to plots. Or you could set the working directory to plots using
\setpythontexworkingdir{plots}, so that all content would automatically be
saved there.

If you want your working directory to be the document root directory, you
should use a period (.) for (working directory): \setpythontexworkingdir{.}.

4 Questions and answers

Will you add a plot command that automates the saving and inclusion of
plots or other graphics created by matplotlib or similar packages?
There are no plans to add a plot command like \pyplot. A plot command
would add a little convenience, but at the expense of power. Automated
saving would give the plot an automatically generated name, making the
file harder to find. Automated inclusion would involve collecting a lot of
settings and then passing them on to \includegraphics, perhaps within
figure and center environments. It is much simpler for the user to choose
a meaningful name and then include the file in the desired manner.

5 Troubleshooting

A more extensive troubleshooting section will be added in the future.

If a PythonTEX document will not compile, you may want to delete the direc-
tory in which PythonTEX content is stored and try compiling from scratch. It is
possible for PythonTEX to become stuck in an unrecoverable loop. Suppose you
tell Python to print some BTEX code back to your HTEX document, but make a
fatal I'TEX syntax error in the printed content. This syntax error prevents KTEX
from compiling. Now suppose you realize what happened and correct the syntax
error. The problem is that the corrected code cannot be executed until I#TEX cor-
rectly compiles and saves the code externally, but BXTEX cannot compile until the
corrected code has already been executed. The simplest solution in such cases is
to correct the code, delete all files in the PythonTEX directory, compile the BTEX
document, and then run PythonTgX from scratch.

23

Dollar signs $ may appear as £ in italic code comments typeset by Pygments.
This is a font-related issue. One fix is to \usepackage[T1]{fontenc}.

6 The future of PythonTEX

This section consists of a To Do list for future development. The To Do list is
primarily for the benefit of the author, but also gives users a sense of what changes
are in progress or under consideration.

6.1

To Do

6.1.1 Modifications to make

Fix error line number synchronization with Beamer. The filehook and
currfile packages may be useful in this. One approach may be to patch the
macros associated with \beamer@doframeinput in beamerbaseframe.sty.

User-defined custom commands and environments for general Pygments
typesetting.

Testing under Linux.
Additional documentation for the Python code (Sphinx?).
Establish a testing framework.

Keep track of any Pygments errors for future runs, so we know what to run
again? How easy is it to get Pygments errors? There don’t seem to have
been any in any of the testing so far.

It might nice to include some methods in the PythonTEX utilities for for-
matting numbers (especially with SymPy and Pylab). Also, it would be nice
to have shortcuts for Matplotlib2tikz integration.

6.1.2 Modifications to consider

Allow KTEX in code, and expand XTEX macros before passing code to
pythontex.py. Maybe create an additional set of inline commands with
additional exp suffix for expanded? This can already be done by creating a
macro that contains a PythonTgX macro, though.

Built-in support for background colors for blocks and verbatim, via mdframed?

Consider support for executing other languages. It might be nice to sup-
port a few additional languages at a basic level by version 1.0. Languages
currently under consideration: Perl, MATLAB, Mathematica, Lua, Sage, R.
But note that there are ways to interface with many or perhaps all of these
from within Python. Also, consider general command line-access, similar to
\writel18. The bashful package can do some nice command-line things.

24

https://github.com/nschloe/matplotlib2tikz

But it would probably require some real finesse to get that kind of bash
access cross-platform. Probably could figure out a way to access Cygwin’s
bash or GnuWin32 or MSYS.

e Support for executing external scripts, not just internal code? It would be
nice to be able to typeset an external file, as well as execute it by passing
command-line arguments and then pull in its output.

e Is there any reason that saved printed content should be allowed to be
brought in before the code that caused it has been typeset? Are there
any cases in which the output should be typeset before the code that cre-
ated it? That would require some type of external file for bringing in saved
definitions. Maybe there should be a \typesetpythontex command that
parallels \printpythontex?

e Consider some type of primitive line-breaking algorithm for use with Pyg-
ments. Could break at closest space, indent 8 spaces further than parent
line (assuming 4-space indents; could auto-detect the correct size), and use
IATEX counter commands to keep the line numbering from being incorrectly
incremented. Such an approach might not be hard and might have some real
promise.

e Consider allowing names of files into which scripts are saved to be specified.
This could allow PythonTEX to be used for literate programming, general
code documentation, etc. Also, it could allow writing a document that
describes code and also produces the code files, for user modification (see
the bashful package for the general idea). Doing something like this would
probably require a new, slightly modified interface to preexisting macros.

e Consider methods of taking PythonTEX documents and removing their de-
pendence on pythontex.sty. Something that could convert a PythonTEX
document into a document that would be more readily acceptable by a pub-
lisher. SageTEX has something like this.

Acknowledgements

Thanks to Dystein Bjgrndal for suggestions and for help with OS X compatibility.

Change History

v0.9beta v0.9beta3
General: Initial public beta release. 1 .
General: Added Unicode support,
v0.9beta2 which required the Python code
General: Changed Python output to be split into one set for
extension to .stdout. 1 Python 2 and another set for

Python 3. This will require any
old installation to be completely
removed, and a new installation
created from scratch. Refactor-
ing of Python code. Documents
should automatically re-execute
all code after updating to the
new version. Otherwise, you
should delete the PythonTeX
directory and run PythonTeX.
Improved installation script.
Added package options: py-
future, stderr, upquote, py-
glexer, pyginline. Renamed the

Added custom code and work-
ingdir commands. Added the
console environment and as-
sociated options. Rewrote
pythontex utils*.py, creating a
new, context-aware interface
to SymPy’s LatexPrinter class.
Content brought in via macros
no longer uses labels. Rather,
long defs are used, which al-
lows line breaks. Pygments
highlighting is now default for
PythonTeX commands and en-
vironments

pygextfile option to fvextfile.

7 Implementation

This section describes the technical implementation of the package. Unless you
wish to understand all the fine details or need to use the package in extremely
sophisticated ways, you should not need to read it.

The prefix pytx@ is used for all PythonTEX macros, to prevent conflict with
other packages. Macros that simply store text or a value for later retrieval are
given names completely in lower case. For example, \pytx@packagename stores
the name of the package, PythonTeX. Macros that actually perform some operation
in contrast to simple storage are named using CamelCase, with the first letter after
the prefix being capitalized. For example, \pytx@CheckCounter checks to see if a
counter exists, and if not, creates it. Thus, macros are divided into two categories
based on their function, and named accordingly.

7.1 Package opening

We begin according to custom by specifying the version of IXTEX that we require
and stating the package that we are providing. We also store the name of the
package in a macro for later use in warnings and error messages.

1 \NeedsTeXFormat{LaTeX2e}[1999/12/01]

2 \ProvidesPackage{pythontex}[2012/07/17 v0.9beta3]

3 \newcommand{\pytx@packagename}{PythonTeX}

7.2 Required packages

A number of packages are required. fancyvrb is used to typeset all code that is
not inline, and its internals are used to format inline code as well. etex provides
extra registers, to avoid the (probably unlikely) possibility that the many counters
required by PythonTEX will exhaust the supply. etoolbox is used for string
comparison and boolean flags. xstring provides the \tokenize macro. pgfopts

26

pytxQopt@autoprint

pytxQopt@stderr

\pytx@opt@stderrfilename

is used to process package options, via the pgfkeys package. newfloat allows the
creation of a floating environment for code listings. xcolor or color is needed for
syntax highlighting with Pygments.

4 \RequirePackage{fancyvrb}

5 \RequirePackage{etex}

6 \RequirePackage{etoolbox}

7 \RequirePackage{xstring}

8 \RequirePackage{pgfopts}

9 \RequirePackage{newfloat}

10 \AtBeginDocument{\@ifpackageloaded{color}{}{\RequirePackage{xcolor}}}

7.3 Package options

We now proceed to define package options, using the pgfopts package that pro-
vides a package-level interface to pgfkeys. All keys for package-level options are
placed in the key tree under the path /PYTX/pkgopt/, to prevent conflicts with
any other packages that may be using pgfkeys.

7.3.1 Autoprint

The autoprint option determines whether content printed within a code com-
mand or environment is automatically included at the location of the command or
environment. If the option is not used, autoprint is turned on by default. If the
option is used, but without a setting (\usepackage [autoprint] {pythontex}), it
is true by default. We use the key handler (key)/.is choice to ensure that only
true/false values are allowed. The code for the true branch is redundant, but is
included for symmetry.

11 \newbool{pytx@opt@autoprint}

12 \booltrue{pytx@optQ@autoprint}

13 \pgfkeys{/PYTX/pkgopt/autoprint/.default=true}

14 \pgfkeys{/PYTX/pkgopt/autoprint/.is choice}

15 \pgfkeys{/PYTX/pkgopt/autoprint/true/.code=\booltrue{pytx@optQ@autoprint}}
16 \pgfkeys{/PYTX/pkgopt/autoprint/false/.code=\boolfalse{pytxQopt@autoprint}}

7.3.2 stderr

The stderr option determines whether stderr is saved and may be included in the
document via \stderrpythontex.

17 \newbool{pytx@opt@stderr}

18 \pgfkeys{/PYTX/pkgopt/stderr/.default=true}

19 \pgfkeys{/PYTX/pkgopt/stderr/.is choice}

20 \pgfkeys{/PYTX/pkgopt/stderr/true/.code=\booltrue{pytxQ@opt@stderr}}

21 \pgfkeys{/PYTX/pkgopt/stderr/false/.code=\boolfalse{pytxQopt@stderr}}

7.3.3 stderrfilename

This option determines how the file name appears in stderr.

27

22 \def\pytxQopt@stderrfilename{full}

23 \pgfkeys{/PYTX/pkgopt/stderrfilename/.default=full}

24 \pgfkeys{/PYTX/pkgopt/stderrfilename/.is choice}

25 \pgfkeys{/PYTX/pkgopt/stderrfilename/full/.code=\def\pytx@opt@stderrfilename{full}}

26 \pgfkeys{/PYTX/pkgopt/stderrfilename/session/.code=\def\pytxQopt@stderrfilename{session}}
27 \pgfkeys{/PYTX/pkgopt/stderrfilename/genericfile/.code=},

28 \def\pytx@opt@stderrfilename{genericfile}}
29 \pgfkeys{/PYTX/pkgopt/stderrfilename/genericscript/.code=},
30 \def\pytxQ@opt@stderrfilename{genericscriptl}}

7.3.4 Python’s __future__ module

\pytx@opt@pyfuture The pyfuture option determines what is imported from the __future__ module
under Python 2. It has no effect under Python 3.

31 \def\pytx@opt@pyfuture{default}

32 \pgfkeys{/PYTX/pkgopt/pyfuture/.is choice}

33 \pgfkeys{/PYTX/pkgopt/pyfuture/default/.code=\def\pytxQopt@pyfuture{default}}
34 \pgfkeys{/PYTX/pkgopt/pyfuture/all/.code=\def\pytx@opt@pyfuture{alll}}

35 \pgfkeys{/PYTX/pkgopt/pyfuture/none/.code=\def\pytx@opt@pyfuture{nonel}}

7.3.5 Upquote

pytx@opt@upquote The upquote option determines whether the upquote package is loaded. It makes
quotes within verbatim contexts ' rather than ’. This is important, because it
means that code may be copied directly from the compiled PDF and executed
without any errors due to quotes ’> being copied as acute accents ~

36 \newbool{pytx@opt@upquote}

37 \booltrue{pytx@optQ@upquote}

38 \pgfkeys{/PYTX/pkgopt/upquote/.default=true}

39 \pgfkeys{/PYTX/pkgopt/upquote/.is choice}

40 \pgfkeys{/PYTX/pkgopt/upquote/true/.code=\booltrue{pytxQ@opt@upquotel}}
41 \pgfkeys{/PYTX/pkgopt/upquote/false/.code=\boolfalse{pytx@opt@upquote}}

7.3.6 Fix math spacing

pytx@optefixlr The fixlr option fixes extra, undesirable spacing in mathematical formulae in-
troduced by the commands \1left and \right. For example, compare the results
of $\sin(x)$ and $\sin\left (x\right)$: sin(x) and sin (x). The fixlr option
fixes this, using a solution proposed by Mateus Aratjo, Philipp Stephani, and
Heiko Oberdiek.”

42 \newbool{pytx@opt@fixlr}

43 \booltrue{pytx@opt@fixlr}

44 \pgfkeys{/PYTX/pkgopt/fixlr/.default=true}

45 \pgfkeys{/PYTX/pkgopt/fixlr/.is choice}

46 \pgfkeys{/PYTX/pkgopt/fixlr/true/.code=\booltrue{pytxQ@opt@fixlr}}
47 \pgfkeys{/PYTX/pkgopt/fixlr/false/.code=\boolfalse{pytx@opt@fixlr}}

17 nttp://tex.stackexchange.com/questions/2607/spacing-around-left-and-right

28

http://tex.stackexchange.com/questions/2607/spacing-around-left-and-right

\pytx@opt@keeptemps

pytx@opt@pygments

pytx@pyglexer

\pytx@pygopt

7.3.7 Keep temporary files

By default, PythonTEX tries to be very tidy. It creates many temporary files, but
deletes all that are not required to compile the document, keeping the overall file
count very low. At times, particularly during debugging, it may be useful to keep
these temporary files, so that code, errors, and output may be examined more
directly. The keeptemps option makes this possible.

48 \def\pytxQ@opt@keeptemps{none}

49 \pgfkeys{/PYTX/pkgopt/keeptemps/.default=all}

50 \pgfkeys{/PYTX/pkgopt/keeptemps/.is choice}

51 \pgfkeys{/PYTX/pkgopt/keeptemps/all/.code=\def\pytx@opt@keeptemps{all}}
52 \pgfkeys{/PYTX/pkgopt/keeptemps/code/.code=\def \pytxQ@opt@keeptemps{code}}
53 \pgfkeys{/PYTX/pkgopt/keeptemps/none/.code=\def\pytx@opt@keeptemps{none}}

7.3.8 Pygments

By default, PythonTEX uses fancyvrb to typeset code. This provides nice format-
ting and font options, but no syntax highlighting. The pygments option determines
whether Pygments or fancyvrb is used to typeset code. Pygments is a generic
syntax highlighter written in Python. Since PythonTEX sends code to Python
anyway, having Pygments process the code is only a small additional step and in
many cases takes little if any extra time to execute.'®

Command and environment families obey the pygments option by default, but
they may be set to override it and always use Pygments or always use fancyvrb,
via \setpythontexformatter and \setpygmentsformatter.

Pygments has been used previously to highlight code for IATEX, most notably
in the minted package.
54 \newbool{pytxQ@opt@pygments}
55 \booltrue{pytx@opt@pygments}
56 \pgfkeys{/PYTX/pkgopt/pygments/.default=true}
57 \pgfkeys{/PYTX/pkgopt/pygments/.is choice}
58 \pgfkeys{/PYTX/pkgopt/pygments/true/.code=\booltrue{pytx@opt@pygments}}
59 \pgfkeys{/PYTX/pkgopt/pygments/false/.code=\boolfalse{pytx@opt@pygments}}

For completeness, we need a way to set the Pygments lexer for all content. Note
that in general, resetting the lexers for all content is not desirable.

60 \def\pytx@pyglexer{}

61 \pgfkeys{/PYTX/pkgopt/pyglexer/.code=\def\pytxQpyglexer{#1}}

62

We also need a way to specify Pygments options at the package level. This is
accomplished via the pygopt option: pygopt={(options)}. Note that the options
must be enclosed in curly braces since they contain equals signs and thus must be
distinguishable from package options.

18Pyegments code highlighting is executed as a separate process by pythontex*.py, so it runs
in parallel on a multicore system. Pygments usage is optimized by saving highlighted code and
only reprocessing it when changed.

29

Currently, three options may be passed in this manner: style=(style), which
sets the formatting style; texcomments, which allows XTEX in code comments to
be rendered; and mathescape, which allows ITEX math mode ($...$) in com-
ments. The texcomments and mathescape options may be used with a boolean
argument; if an argument is not supplied, true is assumed. As an example of
pygopt usage, consider the following:

pygopt={style=colorful, texcomments=True, mathescape=False}

The usage of capitalized True and False is more pythonic, but is not strictly
require.

While the package-level pygments option may be overridden by individual com-
mands and environments (though it is not by default), the package-level Pygments
options cannot be overridden by individual commands and environments.

63 \def\pytx@pygopt{}
64 \pgfkeys{/PYTX/pkgopt/pygopt/.code=\def \pytxCpygopt{#1}}

pytxQopt@pyginline This option governs whether, when Pygments is in use, it highlights inline content.
65 \newbool{pytx@opt@pyginline}
66 \booltrue{pytx@opt@pyginline}
67 \pgfkeys{/PYTX/pkgopt/pyginline/.default=true}
68 \pgfkeys{/PYTX/pkgopt/pyginline/.is choice}
69 \pgfkeys{/PYTX/pkgopt/pyginline/true/.code=\booltrue{pytx@opt@pyginline}}
70 \pgfkeys{/PYTX/pkgopt/pyginline/false/.code=\boolfalse{pytx@opt@pyginline}}

\pytx@fvextfile By default, code highlighted by Pygments, the console environment, and some
other content is brought back via fancyvrb’s SaveVerbatim macro, which saves
verbatim content into a macro and then allows it to be restored. This makes it
possible for all Pygments content to be brought back in a single file, keeping the
total file count low (which is a major priority for PythonTEX!). This approach does
have a disadvantage, though, because SaveVerbatim slows down as the length of
saved code increases.'® To deal with this issue, we create the fvextfile option.
This option takes an integer, fvextfile=/(integer). All content that is more than
(integer) lines long will be saved to its own external file and inputted from there,
rather than saved and restored via SaveVerbatim and UseVerbatim. This provides
a workaround should speed ever become a hindrance for large blocks of code.

A default value of 25 is set. There is nothing special about 25; it is just a
relatively reasonably cutoff. If the option is unused, it has a value of —1, which is
converted to the maximum integer on the Python side.

71 \def\pytx@fvextfile{-1}
72 \pgfkeys{/PYTX/pkgopt/fvextfile/.default=25}
73 \pgfkeys{/PYTX/pkgopt/fvextfile/.code=\def\pytxQ@fvextfile{#1}}

19The macro in which code is saved is created by grabbing the code one line at a time, and
for each line redefining the macro to be its old value with the additional line tacked on. This is
rather inefficient, but apparently there isn’t a good alternative.

30

7.3.9 Python console environment

\pytx@optepyconbanner This option governs the appearance (or disappearance) of a banner at the begin-
ning of Python console environments. The options none (no banner), standard
(standard Python banner), default (default banner for Python’s code module,
standard banner plus interactive console class name), and pyversion (banner in
the form Python x.y.z) are accepted.
74 \def\pytxQ@opt@pyconbanner{none}
75 \pgfkeys{/PYTX/pkgopt/pyconbanner/.is choice}
76 \pgfkeys{/PYTX/pkgopt/pyconbanner/none/.code=\def\pytx@opt@pyconbanner{none}}
77 \pgfkeys{/PYTX/pkgopt/pyconbanner/standard/. code=\def \pytx@opt@pyconbanner{standard}}
78 \pgfkeys{/PYTX/pkgopt/pyconbanner/default/.code=\def\pytxQ@opt@pyconbanner{default}}
79 \pgfkeys{/PYTX/pkgopt/pyconbanner/pyversion/.code=\def \pytxQ@opt@pyconbanner{pyversion}}

\pytx@opt@pyconfilename This option governs the file name that appears in error messages in the console.
The file name may be either stdin, as it is in a standard interactive interpreter,
or console, as it would typically be for the Python code module.

Traceback (most recent call last):
File "<file name>", line <line no>, in <module>

80 \def\pytxQ@opt@pyconfilename{stdin}

81 \pgfkeys{/PYTX/pkgopt/pyconfilename/.is choice}

82 \pgfkeys{/PYTX/pkgopt/pyconfilename/stdin/.code=\def\pytx@opt@pyconfilename{stdin}}

83 \pgfkeys{/PYTX/pkgopt/pyconfilename/console/.code=\def \pytxQopt@pyconfilename{console}}

7.3.10 De-PythonTeX

pytxQopt@depythontex This option governs whether PythonTEX creates a version of the .tex file that
does not require PythonTEX to be compiled. This option should be useful for
converting a PythonTEX document into a more standard TEX document when
sharing or publishing documents.
84 \newbool{pytx@opt@depythontex}
85 \pgfkeys{/PYTX/pkgopt/depythontex/.default=true}
86 \pgfkeys{/PYTX/pkgopt/depythontex/.is choice}
87 \pgfkeys{/PYTX/pkgopt/depythontex/true/.code=\booltrue{pytx@opt@depythontex}}
88 \pgfkeys{/PYTX/pkgopt/depythontex/false/.code=\boolfalse{pytxQopt@depythontex}}

7.3.11 Process options
Now we process the package options.
89 \ProcessPgfPackageOptions{/PYTX/pkgopt}

The fixlr option only affects one thing, so we go ahead and take care of that.
90 \ifbool{pytx@opt@fixlr}{

91 \let\originalleft\left

92 \let\originalright\right

93 \renewcommand{\left}{\mathopen{}\mathclose\bgroup\originalleft}
94 \renewcommand{\right}{\aftergroup\egroup\originalright}

31

\pytx@CheckCounter

\pytx@context
\pytx@SetContext
\def inepythontexcontext

95 H}
Likewise, the upquote option.
96 \ifbool{pytx@opt@upquote}{\RequirePackage{upquote}}{}

7.4 Utility macros and input/output setup

Once options are processed, we proceed to define a number of utility macros and
setup the file input/output that is required by PythonTEX.

7.4.1 Automatic counter creation

We will be using counters to give each command/environment a unique identifier,
as well as to manage line numbering of code when desired. We don’t know the
names of the counters ahead of time (this is actually determined by the user’s
naming of code sessions), so we need a macro that checks whether a counter
exists, and if not, creates it.

97 \def \pytx@CheckCounter#1{%

98 \ifcsname c@#1\endcsname\else\newcounter{#1}\fi

99 }

7.4.2 Code context

It would be nice if when our code is executed, we could know something about its
context, such as the style of its surroundings or information about page size.

By default, no contextual information is passed to IXTEX. There is a wide
variety of information that could be passed, but most use cases would only need
a very specific subset. Instead, the user can customize what information is passed
to TEX. The \definepythontexcontext macro defines what is passed. It cre-
ates the \pytx@SetContext macro, which creates \pytx@context, in which the
expanded context information is stored. The context should only be defined in
the preamble, so that it is consistent throughout the document.

If you are interested in typesetting mathematics based on math styles, you
should use the \mathchoice macro rather than attempting to pass contextual
information.

100 \newcommand{\definepythontexcontext}[1]{}

101 \def\pytx@SetContext{%

102 \edef\pytxQcontext{#11}%
103 Yh

104 }

105 \definepythontexcontext{}
106 \@onlypreamble\definepythontexcontext
7.4.3 Code groups

By default, PythonTEX executes code based on sessions. All of the code entered
within a command and environment family is divided based on sessions, and each
session is saved to a single external file and executed. If you have a calculation

32

\restartpythontexsession
\pytx@group
\pytx@SetGroup
\pytx@SetGroupVerb
\pytx@SetGroupCons

that will take a while, you can simply give it its own named session, and then the
code will only be executed when there is a change within that session.

While this approach is appropriate for many scenarios, it is sometimes ineffi-
cient. For example, suppose you are writing a document with multiple chapters,
and each chapter needs its own session. You could manually do this, but that would
involve a lot of commands like \py [chapter x]{(some code)}, which means lots
of extra typing and extra session names. So we need a way to subdivide or restart
sessions, based on context such as chapter, section, or subsection.

“Groups” provide a solution to this problem. Each session is subdivided based
on groups behind the scenes. By default, this changes nothing, because each
session is put into a single default group. But the user can redefine groups based on
chapter, section, and other counters, so that sessions are automatically subdivided
accordingly. Note that there is no continuity between sessions thus subdivided. For
example, if you set groups to change between chapters, there will be no continuity
between the code of those chapters, even if all the code is within the same named
session. If you require continuity, the groups approach is probably not appropriate.
You could consider saving results at the end of one chapter and loading them at
the beginning of the next, but that introduces additional issues in keeping all code
properly synchronized, since code is executed only when it changes, not when any
data it loads may have changed.

We begin by creating the \restartpythontexsession macro. It creates the
\pytx@SetGroup* macros, which create \pytx@group, in which the expanded
context information is stored. The context should only be defined in the
preamble, so that it is consistent throughout the document. Note that groups
should be defined so that they will only contain characters that are valid in
file names, because groups are used in naming temporary files. It is also a
good idea to avoid using periods, since IXTEX input of file names containing
multiple periods can sometimes be tricky. For best results, use A-Z, a-z, 0-9,
and the hyphen and underscore characters to define groups. If groups contain
numbers from multiple sources (for example, chapter and section), the num-
bers should be separated by a non-numeric character to prevent unexpected
collisions (for example, distinguishing chapter 1-11 from 11-1). For example,
\restartpythontexsession{\arabic{chapter}-\arabic{section}} could be a
good approach.

Three forms of \pytx@SetGroup* are provided. \pytx@SetGroup is for general
code use. \pytx@SetGroupVerb is for use in verbatim contexts. It splits verbatim
content off into its own group. That way, verbatim content does not affect the in-
stance numbers of code that is actually executed. This prevents code from needing
to be run every time verbatim content is added or removed; code is only executed
when it is actually changed. pytx@SetGroupCons is for console environments. It
separate console content from executed code and from verbatim content, again for
efficiency reasons.

107 \newcommand{\restartpythontexsession} [1]{%
108 \def\pytx@SetGroup{’
109 \edef\pytxQ@group{#11}%

33

110 Y
111 \def\pytx@SetGroupVerb{’

112 \edef \pytxQgroup{#1verbl}’

113 Yh

114 \def \pytx@SetGroupCons{’

115 \edef \pytxQgroup{#1consl}’

116 Yh

117 \AtBeginDocument{’

118 \pytx@SetGroup

119 \IfSubStr{\pytx@group}{verb}{/

120 \PackageError{\pytx@packagenamel}/,

121 {String "verb" is not allowed in \string\restartpythontexsessionl}
122 {Use \string\restartpythontexsession with a valid argument}}{}%
123 \IfSubStr{\pytx@group}{cons}{/

124 \PackageError{\pytx@packagenamel},

125 {String "cons" is not allowed in \string\restartpythontexsession},
126 {Use \string\restartpythontexsession with a valid argument}}{}/
127 Yh

128 }

For the sake of consistency, we only allow group behaviour to be set in the
preamble. And if the group is not set by the user, then we use a single default
group for each session.

129 \@onlypreamble\restartpythontexsession
130 \restartpythontexsession{default}

7.4.4 File input and output

\pytx@jobname We will need to create directories and files for PythonTgX output, and some of
these will need to be named using \jobname. This presents a problem. Ideally,
the user will choose a job name that does not contain spaces. But if the job
name does contain spaces, then we may have problems bringing in content from a
directory or file that is named based on the job, due to the space characters. So
we need a “sanitized” version of \jobname. We replace spaces with hyphens. We
replace double quotes " with nothing. Double quotes are placed around job names
containing spaces by TEX Live, and thus may be the first and last characters of
\jobname. Since we are replacing any spaces with hyphens, quote delimiting is
no longer needed, and in any case, some operating systems (Windows) balk at
creating directories or files with names containing double quotes. We also replace
asterisks with hyphens, since MiKTEX (at least v. 2.9) apparently replaces spaces
with asterisks in \ jobname,?’ and some operating systems may not be happy with
names containing asterisks.

This approach to “sanitizing” \jobname is not foolproof. If there are ever two
files in a directory that both use PythonTEX, and if their names only differ by these
substitutions for spaces, quotes, and asterisks, then the output of the two files will

20hth//texstackexchangexxnn/quesﬁons/14949/“ﬁuﬂdoesjobnanu%ghwr&inﬂead—oﬂspace&
and-how-do-i-fix-this

34

http://tex.stackexchange.com/questions/14949/why-does-jobname-give-s-instead-of-spaces-and-how-do-i-fix-this
http://tex.stackexchange.com/questions/14949/why-does-jobname-give-s-instead-of-spaces-and-how-do-i-fix-this

collide. We believe that it is better to graciously handle the possibility of space
characters at the expense of nearly identical file names, since nearly identical file
names are arguably a much worse practice than file names containing spaces, and
since such nearly identical file names should be much rarer. At the same time, in
rare cases a collision might occur, and in even rarer cases it might go unnoticed.?!
To prevent such issues, pythontex*.py checks for collisions and issues a warning
if a potential collision is detected.

131 \StrSubstitute{\jobname}{ }{-}[\pytx@jobnamel]

132 \StrSubstitute{\pytx@jobname}{"}{} [\pytx@jobname]

133 \StrSubstitute{\pytx@jobname}{*}{-} [\pytx@jobname]

\pytx@outputdir To keep things tidy, all PythonTEX files are stored in a directory that is
\setpythontexoutputdir created in the document root directory. By default, this directory is called
pythontex-files-(sanitized jobname), but we want to provide the user with the
option to customize this. For example, when (sanitized jobname) is very long, it

might be convenient to use pythontex-(abbreviated name).

The command \setpythontexoutputdir stores the name of PythonTEX’s out-
put directory in \pytx@outputdir. If the graphicx package is loaded, the output
directory is also added to the graphics path, so that files in the output directory
may be included within the main document without the necessity of specifying
path information. The command \setpythontexoutputdir is only allowed in the
preamble, because the location of PythonTEX content must be specified before the
body of the document is typeset. If \setpythontexoutputdir is not invoked by
the user, then we automatically invoke it at the beginning of the document to set
the default directory name.

134 \newcommand{\setpythontexoutputdir}[1]{/

135 \def\pytxQoutputdir{#1}%

136 \AtBeginDocument{\@ifpackageloaded{graphicx}{\graphicspath{{#1/}}}{}}%
137 }

138 \@onlypreamble\setpythontexoutputdir

139 \AtBeginDocument{%

140 \ifcsname pytxQ@outputdir\endcsname\else
141 \setpythontexoutputdir{pythontex-files-\pytxQ@jobname}\fi
142 }

pytx@workingdir We need to be able to set the current working directory for the scripts executed by
\setpythontexworkingdir PythonTEX. By default, the working directory should be the same as the output
directory. That way, any files saved in the current working directory will be in the
PythonTEX output directory, and will thus be kept separate. But in some cases
the user may wish to specify a different working directory, such as the document

root.

143 \newcommand{\setpythontexworkingdir} [1]{%
144 \def\pytx@workingdir{#1}%

21In general, a collision would produce errors, and the user would thereby become aware of
the collision. The dangerous case is when the two files with similar names use exactly the same
PythonTEX commands, the same number of times, so that the naming of the output is identical.
In that case, no errors would be issued.

35

145 }
146 \@onlypreamble\setpythontexworkingdir
147 \AtBeginDocument{%

148 \ifcsname pytx@workingdir\endcsname\else
149 \setpythontexworkingdir{\pytx@outputdir}\fi
150 }

pytx@usedpygments Once we have specified the output directory, we are free to pull in content from
it. Most content from the output directory will be pulled in manually by the user
(for example, via \includegraphics) or automatically by PythonTEX as it goes
along. But content “printed” by code commands and environments (via macros)
as well as code typeset by Pygments needs to be included conditionally, based on
whether it exists and on user preferences.

This gets a little tricky. We only want to pull in the Pygments content if it
is actually used, since Pygments content will typically use fancyvrb’s SaveVerb
environment, and this can slow down compilation when very large chunks of code
are saved. It doesn’t matter if the code is actually used; saving it in a macro is
what potentially slows things down. So we create a bool to keep track of whether
Pygments is ever actually used, and only bring in Pygments content if it is.??
This bool must be set to true whenever a command or environment is created
that makes use of Pygments (in practice, we will simply set it to true when a
family is created). Note that we cannot use the pytx@opt@pygments bool for this
purpose, because it only tells us if the package option for Pygments usage is true
or false. Typically, this will determine if any Pygments content is used. But it is
possible for the user to create a command and environment family that overrides
the package option (indeed, this may sometimes be desirable, for example, if the
user wishes code in a particular language never to be highlighted). Thus, a new
bool is needed to allow detection in such nonstandard cases.

151 \newbool{pytxQusedpygments}

Now we can conditionally bring in the Pygments content. Note that we must
use the etoolbox macro \AfterEndPreamble. This is because commands and
environments are created using \AtBeginDocument, so that the user can change
their properties in the preamble before they are created. And since the com-
mands and environments must be created before we know the final state of
pytx@usedpygments, we must bring in Pygments content after that.

152 \AfterEndPreamble{7,

153 \ifbool{pytx@usedpygments}’

154 {\InputIfFileExists{\pytxQ@outputdir/\pytx@jobname.pytxpygt{I{}}{}%
155 }

22The same effect could be achieved by having pythontex*.py delete the Pygments content
whenever it is run and Pygments is not used. But that approach is faulty in two regards. First,
it requires that pythontex*.py be run, which is not necessarily the case if the user simply sets
the package option pygments to false and the recompiles. Second, even if it could be guaranteed
that the content would be deleted, such an approach would not be optimal. It is quite possible
that the user wishes to temporarily turn off Pygments usage to speed compilation while working
on other parts of the document. In this case, deleting the Pygments content is simply deleting
data that must be recreated when Pygments is turned back on.

36

While we are pulling in content, we also pull in the file of macros that stores
some inline “printed” content, if the file exists. Since we need this file in general,
and since it will not typically invole a noticeable speed penalty, we bring it in at
the beginning of the document without any special conditions.

156 \AtBeginDocument{%
157 \InputIfFileExists{\pytx@outputdir/\pytx@jobname.pytxmcr}{}{1}/
158 }

\pytx@codefile We create a new write, named \pytx@codefile, to which we will save code. All
the code from the document will be written to this single file, interspersed with
information specifying where in the document it came from. PythonTEX parses
this file to separate the code into individual sessions and groups. These are then
executed, and the identifying information is used to tie code output back to the
original code in the document.??

159 \newwrite\pytx@codefile

In the code file, information from PythonTEX must be interspersed with
the code. Some type of delimiting is needed for PythonTEX information. All
PythonTEX content is written to the file in the form =>PYTHONTEX#(content)#.
When this content involves package options, the delimiter is modified to the form
=>PYTHONTEX : SETTINGS#(content)#. The # symbol is also used as a subdelimiter
within (content). The # symbol is convenient as a delimiter since it has a special
meaning in TEX and is very unlikely to be accidentally entered by the user in unex-
pected locations without producing errors. Note that the usage of “=>PYTHONTEX#”
as a beginning delimiter for PythonTEX data means that this string should never
be written by the user at the beginning of a line, because pythontex*.py will try
to intepret it as data and will fail.

\pytx@delimchar We create a macro to store the delimiting character.
160 \edef\pytx@delimchar{\string#}

\pytx@delim We create a macro to store the starting delimiter.
161 \edef\pytx@delim{=\string>PYTHONTEX\string#}

\pytx@delimsettings And we create a second macro to store the starting delimiter for settings that are
passed to Python.

162 \edef\pytx@delimsettings{=\string>PYTHONTEX: SETTINGS\string#}

23The choice to write all code to a single file is the result of two factors. First, TEX has a limited
number of output registers available (16), so having a separate output stream for each group or
session is not possible. The morewrites package from Bruno Le Floch potentially removes this
obstacle, but since this package is very recent (README from 2011/7/10), we will not consider
using additional writes in the immediate future. Second, one of the design goals of PythonTEX
is to minimize the number of persistent files created by a run. This keeps directories cleaner
and makes file synchronization/transfer somewhat simpler. Using one write per session or group
could result in numerous code files, and these could only be cleaned up by pythontex*.py since
IATEX cannot delete files itself (well, without unrestricted write18). Using a single output file
for code does introduce a speed penalty since the code does not come pre-sorted by session or
group, but in typical usage this should be minimal. Adding an option for single or multiple code
files may be something to reconsider at a later date.

37

Settings need to be written to the code file. Some of these settings are not final
until the beginning of the document, since they may be modified by the user
within the preamble. Thus, all settings should be written at the beginning of the
document. The order in which the settings are written is not significant, but for
symmetry it should mirror the order in which they were defined.

163 \AtBeginDocument{

164 \immediate\openout\pytx@codefile=\jobname.pytxcode

165 \immediate\write\pytx@codefile{},

166 \pytx@delimsettings outputdir=\pytxQoutputdir\pytx@delimchar}y,

167 \immediate\write\pytxQcodefile{J,

168 \pytx@delimsettings workingdir=\pytx@workingdir\pytx@delimcharl}y,

169 \immediate\write\pytxQcodefile{’,

170 \pytx@delimsettings stderr=y,

171 \ifbool{pytx@opt@stderr}{true}{false}\pytx@delimchar}y

172 \immediate\write\pytxQcodefile{’,

173 \pytx@delimsettings stderrfilename=\pytxQopt@stderrfilename\pytx@delimcharl}y,
174 \immediate\write\pytx@codefile{’

175 \pytx@delimsettings keeptemps=\pytx@opt@keeptemps\pytx@delimchar}y,

176 \immediate\write\pytxQcodefile{,

177 \pytx@delimsettings pyfuture=\pytx@opt@pyfuture\pytx@delimcharl}y,

178 \immediate\write\pytxQcodefile{’,

179 \pytx@delimsettings pygments=j,

180 \ifbool{pytx@opt@pygments}{true}{false}\pytx@delimchar}y

181 \immediate\write\pytxQcodefile{’,

182 \pytx@delimsettings pyglexer=\pytx@pyglexer\pytxQ@delimchar},

183 \immediate\write\pytx@codefile{’

184 \pytx@delimsettings pygmentsglobal:\string{\pytx@pygopt\string}\pytx@delimcharl}y
185 \immediate\write\pytxQcodefile{,

186 \pytx@delimsettings fvextfile=\pytxQ@fvextfile \pytx@delimchar}j,

187 \immediate\write\pytxQcodefile{,

188 \pytx@delimsettings pyconbanner=\pytxQopt@pyconbanner \pytx@delimcharl}y
189 \immediate\write\pytx@codefile{’

190 \pytx@delimsettings pyconfilename=\pytx@opt@pyconfilename \pytx@delimchar},
191 \immediate\write\pytx@codefile{},

192 \pytx@delimsettings depythontex=/

193 \ifbool{pytx@opt@depythontex}{true}{false}\pytx@delimchar}y,

194 }

\pytx@WriteCodefileInfo Later, we will frequently need to write PythonTEX information to the code file in
\pytx@WriteCodefileInfoExt standardized form. We create a macro to simplify that process. We also create
an alternate form, for use with external files that must be inputted or read in by
PythonTEX and processed. While the standard form employs a counter that is
incremented elsewhere, the version for external files substitutes a zero (0) for the
counter, because each external file must be unique in name and thus numbering

via a counter is redundant.?*

24The external-file form also takes an optional argument. This corresponds to a command-line
argument that is passed to an external file during the file’s execution. Currently, executing exter-
nal files, with or without arguments, is not implemented. But this feature is under consideration,
and the macro retains the optional argument for the potential future compatibility.

38

\pytx@fvsettings
\setpythontexfv

195 \def\pytx@WriteCodefileInfod{/,

196 \immediate\write\pytx@codefile{\pytx@delim\pytx@type\pytx@delimchar
197 \pytx@session\pytx@delimchar\pytxQgroup\pytx@delimchary,

198 \arabic{\pytx@counter}\pytx@delimchar\pytx@cmd\pytx@delimchar,
199 \pytx@context\pytx@delimchar\the\inputlineno\pytx@delimchar}
200 }

201 \newcommand{\pytx@WriteCodefileInfoExt} [1] [1{%

202 \immediate\write\pytx@codefile{\pytx@delim\pytx@type\pytx@delimchary
203 \pytx@session\pytx@delimchar\pytxQgroup\pytx@delimchary,

204 0\pytx@delimchar\pytx@cmd\pytx@delimchar?,

205 \pytx@context\pytx@delimchar\the\inputlineno\pytx@delimchar#1}
206 }

At the end of the document, we need to close the code file, so we go ahead and
issue the commands for that. From now on, we may simply write to the code file
when necessary, and need not otherwise concern ourselves with the file.

207 \AtEndDocument{/,
208 \immediate\closeout\pytx@codefile
209 }

7.4.5 Interface to fancyvrb

The fancyvrb package is used to typeset lines of code, and its internals are also
used to format inline code snippets. We need a way for each family of PythonTEX
commands and environments to have its own independent fancyvrb settings.

The macro \setpythontexfv[(family)]{(settings)} takes (settings) and stores
them in a macro that is run through fancyvrb’s \fvset at the beginning
of PythonTEX code. If a (family) is specified, the settings are stored in
\pytx@fvsettings@(family), and the settings only apply to typeset code belong-
ing to that family. If no optional argument is given, then the settings are stored
in \pytx@fvsettings, and the settings apply to all typeset code.

In the current implementation, \setpythontexfv and \fvset differ because
the former is not persistent in the same sense as the latter. If we use \fvset
to set one property, and then use it later to set another property, the setting for
the original property is persistent. It remains until another \fvset command is
issued to change it. In contrast, every time \setpythontexfv is used, it clears
all prior settings and only the current settings actually apply. This is because
\fvset stores the state of each setting in its own macro, while \setpythontexfv
simply stores a string of settings that is passed to \fvset at the appropriate times.
For typical use scenarios, this distinction shouldn’t be important—usually, we will
want to set the behavior of fancyvrb for all PythonTEX content, or for a family of
PythonTEX content, and leave those settings constant throughout the document.
Furthermore, environments that typeset code take fancyvrb commands as their
second optional argument, so there is already a mechanism in place for changing
the settings for a single environment. However, if we ever want to change the
typesetting of code for only a small portion of a document (larger than a single

39

environment), this persistence distinction does become important.?’

210 \newcommand{\setpythontexfv}[2] [1{%

211 \ifstrempty{#1}%

212 {\gdef\pytx@fvsettings{#2}}%

213 {\expandafter\gdef\csname pytxQ@fvsettings@#1\endcsname{#2}}%
214 Y

Now that we have a mechanism for applying global settings to typeset
PythonTEX code, we go ahead and set a default tab size for all environments.
If \setpythontexfv is ever invoked, this setting will be overwritten, so that must
be kept in mind.

215 \setpythontexfv{tabsize=4}

\pytx@FVSet Once the fancyvrb settings for PythonTEX are stored in macros, we need a way
to actually invoke them. \pytx@FVSet applies family-specific settings first, then
PythonTEX-wide settings second, so that PythonTgEX-wide settings have prece-
dence and will override family-specific settings. Note that by using \fvset, we are
overwriting fancyvrb’s settings. Thus, to keep the settings local to the PythonTEX

code, \pytx@FVSet must always be used within a \begingroup ... \endgroup
block.

216 \def\pytxQFVSet{%

217 \expandafter\let\expandafter\pytx@fvsettings@y,

218 \csname pytx@fvsettings@\pytxQ@type\endcsname

219 \ifdefstring{\pytx@fvsettings@@}{1}/

220 {3%

221 {\expandafter\fvset\expandafter{\pytx@fvsettings0Q}}%
222 \ifdefstring{\pytx@fvsettings}{}%

223 {3%

224 {\expandafter\fvset\expandafter{\pytxQ@fvsettings}}%
225 }

\pytxQ@FVB@SaveVerbatim fancyvrb’s SaveVerbatim environment will be used extensively to include code
pytx@FancyVerbLineTemp highlighted by Pygments and other processed content. Unfortunately, when the
saved content is included in a document with the corresponding UseVerbatim,
line numbering does not work correctly. Based on a web search, this ap-
pears to be a known bug in fancyvrb. We begin by fixing this, which re-
quires patching fancyvrb’s \FVB@SaveVerbatim and \FVE@SaveVerbatim. We
create a patched \pytx@FVB@SaveVerbatim by inserting \FV@StepLineNo and
\FV@CodeLineNo=1 at appropriate locations. We also delete an unnecessary
\gdef\SaveVerbatim@Name{#1}. Then we create a \pytx@FVE@SaveVerbatim,
and add code so that the two macros work together to prevent FancyVerbLine
from incorrectly being incremented within the SaveVerbatim environment. This

25An argument could be made for having \setpythontexfv behave exactly like \fvset.
Properly implementing this behavior would be tricky, because of inheritance issues between
PythonTEX-wide and family-specific settings (this is probably a job for pgfkeys). Full persis-
tence would likely require a large number of macros and conditionals. At least from the per-
spective of keeping the code clean and concise, the current approach is superior, and probably
introduces minor annoyances at worst.

40

\pytx@stdfile

involves using the counter pytx@FancyVerbLineTemp to temporarily store the
value of FancyVerbLine, so that it may be restored to its original value after
verbatim content has been saved.

Typically, we \1let our own custom macros to the corresponding macros within
fancyvrb, but only within a command or environment. In this case, however, we
are fixing behavior that should be considered a bug even for normal fancyvrb
usage. So we let the buggy macros to the patched macros immediately after
defining the patched versions.

226 \newcounter{pytx@FancyVerbLineTemp}

227 \def \pytx@FVB@SaveVerbatim#1{}

228 \setcounter{pytx@FancyVerbLineTemp}{\value{FancyVerbLinel}}%

229 \@bsphack

230 \begingroup

231 \FV@UseKeyValues

232 \def\SaveVerbatim@Name{#1}%

233 \def\FV@ProcessLine##1{/,

234 \expandafter\gdef\expandafter\FV@TheVerbatim\expandafter{}
235 \FV@TheVerbatim\FV@StepLineNo\FV@ProcessLine{##1}}}/,

236 \gdef\FV@TheVerbatim{\FV@CodeLineNo=1}}
237 \FV@Scan}
238 \def\pytxQFVEQ@SaveVerbatim{/,

239 \expandafter\global\expandafter\let

240 \csname FV@SV@\SaveVerbatim@Name\endcsname\FV@TheVerbatim
241 \endgroup\@esphack

242 \setcounter{FancyVerbLine}{\value{pytx@FancyVerbLineTemp}}}

243 \let\FVB@SaveVerbatim\pytx@FVB@SaveVerbatim
244 \let\FVE@SaveVerbatim\pytxQFVE@SaveVerbatim

7.4.6 Access to printed content (stdout)

The autoprint package option automatically pulls in printed content from code
commands and environments. But this does not cover all possible use cases, be-
cause we could have print statements/functions in block commands and environ-
ments as well. Furthermore, sometimes we may print content, but then desire
to bring it back into the document multiple times, without duplicating the code
that creates the content. Here, we create a number of macros that allow access to
printed content. All macros are created in two identical forms, one based on the
name print and one based on the name stdout. Which macros are used depends
on user preference. The macros based on stdout provide symmetry with stderr
access.

We begin by defining a macro to hold the base name for stdout and stderr content.
The name of this file is updated by most commands and environments so that it
stays current.?® It is important, however, to initially set the name empty for

261t is only updated by those commands and environments that interact with pythontex#.py
and thus increment a type-session-group counter so that they can be distinguished. verb com-
mands and environments that use fancyvrb for typesetting do not interact with pythontexx*.py,
do not increment a counter, and thus do not update the stdout file.

41

\pytx@FetchStdoutfile

\printpythontex
\stdoutpythontex

\saveprintpythontex
\savestdoutpythontex

error-checking purposes.
245 \def\pytx@stdfile{}

Now we create a generic macro for bringing in the stdout file. This macro can
input the content in verbatim form, applying fancyvrb options if present. Usage:
\pytx@FetchStdoutfile [{verbatim options)] [{fancyvrb options)1{(file path)}.

246 \def\pytx@FetchStdoutfile [#1] [#2]#3{/
247 \IfFileExists{\pytx@outputdir/#3.stdout}{%

248 \ifstrequal{#1}{}{\input{\pytxQoutputdir/#3.stdout}}{}%

249 \ifstrequal{#1}{raw}{\input{\pytx@outputdir/#3.stdout}}{1}%

250 \ifstrequal{#1}{verb}{\VerbatimInput [#2]{\pytx@outputdir/#3.stdout}}{}%

251 \ifstrequal{#1}{inlineverb}{\BVerbatimInput [#2] {\pytx@outputdir/#3.stdout}}{}%
252 \ifstrequal{#1}{v}{\BVerbatimInput [#2] {\pytx@outputdir/#3.stdout}}{}/

253 Yh

254 {\textbf{?7"\pytx@packagename~ 771}/,

255 \PackageWarning{\pytx@packagename}{Non-existent printed content}}},

256 }

We define a macro that pulls in the content of the most recent stdout file, accepting
verbatim settings and also fancyvrb settings if they are given.

257 \def\stdoutpythontex{/

258 \@ifnextchar [{\pytx@Stdout}{\pytx@Stdout []11}%

259 }

260 \def\pytx@Stdout [#1]{Y%

261 \@ifnextchar [{\pytx@Stdout@i [#1]}{\pytx@Stdout@i [#1] [1}%

262 }

263 \def\pytx@Stdout@i [#1] [#2]{%

264 \pytx@FetchStdoutfile [#1] [#2]{\pytx@stdfile}%
265 }

266 \let\printpythontex\stdoutpythontex

Sometimes, we may wish to use printed content at multiple locations in a docu-
ment. Because \pytx@stdfile is changed by every command and environment
that could print, the printed content that \printpythontex tries to access is
constantly changing. Thus, \printpythontex is of use only immediately after
content has actually been printed, before any additional PythonTEX commands
or environments change the definition of \pytx@stdfile. To get around this, we
create \saveprintpythontex{(name)}. This macro saves the current name of
\pytx@stdfile so that it is associated with (name) and thus can be retrieved
later, after \pytx@stdfile has been redefined.

267 \def \savestdoutpythontex#1{J,

268 \ifcsname pytx@SVout@#1\endcsname

269 \PackageError{\pytx@packagenamel,

270 {Attempt to save content using an already-defined namelj,

271 {Use a name that is not already defined}},

272 \else

273 \expandafter\edef\csname pytx@SVout@#1\endcsname{\pytx@stdfile},
274 \fi

42

\useprintpythontex
\usestdoutpythontex

\pytx@FetchStderrfile

\stderrpythontex

275 }
276 \let\saveprintpythontex\savestdoutpythontex

Now that we have saved the current \pytx@stdoutfile under a new, user-chosen
name, we need a way to retrieve the content of that file later, using the name.

277 \def\usestdoutpythontex{/

278 \@ifnextchar [{\pytx@UseStdout}{\pytx@UseStdout []}%

279 }

280 \def\pytxQ@UseStdout [#1]{%

281 \@ifnextchar [{\pytx@UseStdout@i [#1]}{\pytx@UseStdout@i [#1] [1}/
282 }

283 \def\pytxQUseStdout@i [#1] [#2]#3{%

284 \ifcsname pytx@SVout@#3\endcsname

285 \pytx@FetchStdoutfile[#1] [#2]{\csname pytx@SVout@#3\endcsnamely,

286 \else

287 \textbf{?7~\pytx@packagename~ 771}/,

288 \PackageWarning{\pytx@packagename}{Non-existent saved printed content}j
289 \fi

290 }

291 \let\useprintpythontex\usestdoutpythontex

7.4.7 Access to stderr

We need access to stderr, if it is enabled via the package stderr option.

Both stdout and stderr share the same base file name, stored in \pytx@stdfile.
Only the file extensions, .stdout and .stderr, differ.

stderr and stdout are treated identically, except that stderr is brought in ver-
batim by default, while stdout is brought in raw by default.

Create a generic macro for bringing in the stderr file.
292 \def \pytx@FetchStderrfile [#1] [#2]1#3{/,

293 \IfFileExists{\pytxQoutputdir/#3.stderr}{%

294 \ifstrequal{#1}{}{\VerbatimInput [#2]{\pytxQ@outputdir/#3.stderr}}{}/,

295 \ifstrequal{#1}{raw}{\input{\pytx@outputdir/#3.stderr}}{1}/

296 \ifstrequal{#1}{verb}{\VerbatimInput [#2] {\pytxQoutputdir/#3.stderr}}{}%

297 \ifstrequal{#1}{inlineverb}{\BVerbatimInput [#2] {\pytxQoutputdir/#3.stderr}}{}%
298 \ifstrequal{#1}{v}{\BVerbatimInput [#2] {\pytx@outputdir/#3.stderr}}{}/

299 Yh

300 {\textbf{?7"\pytx@packagename~771}},

301 \PackageWarning{\pytx@packagename}{Non-existent stderr contentl}}/,

302 }

We define a macro that pulls in the content of the most recent error file, accepting
verbatim settings and also fancyvrb settings if they are given.

303 \def\stderrpythontex{%

304 \@ifnextchar [{\pytx@Stderr}{\pytx@Stderr[]1}%

305 ¥

306 \def\pytx@Stderr [#1]{/,

307 \@ifnextchar [{\pytx@Stderr@i [#1]}{\pytx@Stderr@i [#1] [1}%

43

\savestderrpythontex

\usestderrpythontex

308 }

309 \def\pytx@Stderr@i [#1] [#2]{%

310 \pytx@FetchStderrfile[#1] [#2]{\pytx@stdfilel}Y
311 }

A mechanism is provided for saving and later using stderr. This should be
used with care, since stderr content may lose some of its meaning if isolated from
the larger code context that produced it.

312 \def\savestderrpythontex#1{/

313 \ifcsname pytx@SVerr@#1\endcsname

314 \PackageError{\pytx@packagenamel/,

315 {Attempt to save content using an already-defined namel/,

316 {Use a name that is not already defined}},

317 \else

318 \expandafter\edef\csname pytx@SVerr@#1\endcsname{\pytx@stdfile},
319 \fi

320 }

321 \def\usestderrpythontex{’

322 \@ifnextchar [{\pytx@UseStderr}{\pytx@UseStderr[1}%

323 }

324 \def\pytxQ@UseStderr [#1]{%

325 \@ifnextchar [{\pytxQ@UseStderr@i [#1]}{\pytxQ@UseStderr@i [#1] [1}/

326 }

327 \def\pytx@UseStderr@i [#1] [#2]#3{%

328 \ifcsname pytx@SVerr@#3\endcsname

329 \pytx@FetchStderrfile [#1] [#2] {\csname pytx@SVerr@#3\endcsnamel},
330 \else

331 \textbf{??~\pytx@packagename~ 77}/

332 \PackageWarning{\pytx@packagename}{Non-existent saved stderr contentl},
333 \fi

334 }

7.5 Inline commands
7.5.1 Inline core macros

All inline commands use the same core of inline macros. Inline commands in-
voke the \pytx@Inline macro, and this then branches through a number of ad-
ditional macros depending on the details of the command and the usage context.
\@ifnextchar and \let are used extensively to control branching.

\pytx@Inline, and the macros it calls, perform the following series of opera-
tions.

e If there is an optional argument, capture it. The optional argument is the
session name of the command. If there is no session name, use the “default”
session.

44

e Determine the delimiting character(s) used for the code encompassed by the
command. Any character except for the space character and the opening
curly brace { may be used as a delimiting character, just as for \verb. The
opening curly brace { may be used, but in this case the closing delimiting
character is the closing curly brace }. If paired curly braces are used as
delimiters, then the code enclosed may only contain paired curly braces.

e Using the delimiting character(s), capture the code. Perform some combi-
nation of the following tasks: typeset the code, save it to the code file, and
bring in content created by the code.

\pytx@Inline This is the gateway to all inline core macros. It is called by all inline commands.
Because the delimiting characters could be almost anything, we need to turn off
all special category codes before we peek ahead with \@ifnextchar to see if an
optional argument is present, since \@ifnextchar sets the category code of the
character it examines. But we set the opening curly brace { back to its standard
catcode, so that matched braces can be used to capture an argument as usual.
The catcode changes are enclosed withing \begingroup ... \endgroup so that
they may be contained.

The macro \pytx@InlineOarg which is called at the end of \pytx@Inline
takes an argument enclosed by square brackets. If an optional argument is
not present, then we supply an empty one, which invokes default treatment in

\pytx@InlineQOarg.
335 \def\pytx@Inline{’
336 \begingroup
337 \let\do\@makeother\dospecials
338 \catcode‘\{=1
339 \@ifnextchar [{\endgroup\pytx@InlineOarg}{\endgroup\pytx@InlineOarg[1}%
340 Y%

\pytx@InlineOarg This macro captures the optional argument (or the empty default substitute),
which corresponds to the code session. Then it determines whether the delimiters
of the actual code are a matched pair of curly braces or a pair of other, identical
characters, and calls the next macro accordingly.

We begin by testing for an empty argument (either from the user or from the
default empty substitute), and setting the default value if this is indeed the case.
It is also possible that the user chose a session name containing a colon. If so,
we substitute a hyphen for the colon. This is because temporary files are named
based on session, and file names often cannot contain colons.

Then we turn off all special catcodes and set the catcodes of the curly braces
back to their default values. This is necessary because we are about to capture
the actual code, and we need all special catcodes turned off so that the code can
contain any characters. But curly braces still need to be active just in case they are
being used as delimiters. We also make the space and tab characters active, since
fancyvrb needs them that way.?” Using \@ifnextchar we determine whether

27Part of this may be redundant, since we detokenize later and then retokenize during type-

45

the delimiters are curly braces. If so, we proceed to \pytx@InlineMargBgroup to
capture the code using curly braces as delimiters. If not, we reset the catcodes of
the braces and proceed to \pytx@InlineMargOther, which uses characters other
than the opening curly brace as delimiters.

341 \def\pytx@InlineOarg [#1]{%
342 \ifstrempty{#1}{\edef\pytx@session{default}}{\StrSubstitute{#1}{:}{-}[\pytx@session]}%

343 \begingroup

344 \let\do\@makeother\dospecials
345 \catcode‘\{=1

346 \catcode‘\}=2

347 \catcode‘\ =\active

348 \catcode‘\~"I=\active

349 \@ifnextchar\bgroup

350 {\pytx@InlineMargBgroup}%
351 {\catcode‘\{=12

352 \catcode‘\}=12

353 \pytx@InlineMargOther}y
354 }

\pytx@InlineMargOther This macro captures code delimited by a pair of identical non-brace characters.
\pytx@InlineMargOtherGet Then it passes the code on to \pytx@InlineMargBgroup for processing. This
approach means that the macro definition may be kept concise, and that the

processing code must only be defined once.

The macro captures only the next character. This will be the delimiting charac-
ter. We must begin by ending the group that was left open by \pytx@InlineQarg,
so that catcodes return to normal. Next we check to see if the delimiting charac-
ter is a space character. If so, we issue an error, because that is not allowed.
If the delimiter is valid, we define a macro \pytx@InlineMargOtherGet that
will capture all content up to the next delimiting character and pass it to the
\pytx@InlineMargBgroup macro for processing. That macro does exactly what
is needed, except that part of the retokenization is redundant since curly braces
were not active when the code was captured.

Once the custom capturing macro has been created, we turn off special catcodes
and call the capturing macro.

355 \def\pytx@InlineMargOther#1{/,

356 \endgroup

357 \ifstrequal{#1}{ }{%

358 \PackageError{\pytx@packagenamel,

359 {The space character cannot be used as a delimiting characterl}y,
360 {Choose another delimiting character}}{1}

361 \def\pytx@InlineMargOtherGet##1#1{\pytx@InlineMargBgroup{##1}1}/

362 \begingroup

363 \let\do\@makeother\dospecials

364 \pytx@InlineMargOtherGet

365 }

setting if Pygments isn’t used. But the detokenizing and saving eliminates tab characters if they
aren’t active here.

46

\pytx@InlineMargBgroup We are now ready to capture code using matched curly braces as delimiters, or to
\pytx@InlineShow process previously captured code that used another delimiting character.

\pytx@InlineSave At the very beginning, we must end the group that was left open from
\pytx@InlinePrint \pytx@InlineOarg (or by \pytx@InlineMargOther), so that catcodes return to
normal.

We save a detokenized version of the argument in \pytx@argdetok. Even
though the argument was captured under special catcode conditions, this is still
necessary. If the argument was delimited by curly braces, then any internal curly
braces were active when the argument was captured, and these need their catcodes
corrected. If the code contains any unicode characters, detokenization is needed
so that they may be correctly saved to file.

The name of the counter corresponding to this code is assembled. It is needed
for keeping track of the instance, and is used for bringing in content created by
the code and for bringing in highlighting created by Pygments.

Next we call a series of macros that determine whether the code is shown
(typeset), whether it is saved to the code file, and whether content created by
the code (“printed”) should be brought in. These macros are \let to appropriate
values when an inline command is called; they are not defined independently.

Finally, the counter for the code is incremented.

366 \def\pytx@InlineMargBgroup#1{%

367 \endgroup

368 \def\pytxQ@argdetok{\detokenize{#1}}}

369 \edef\pytxQ@counter{pytx@\pytx@type @\pytx@session Q@\pytxQgroupl’

370 \pytx@CheckCounter{\pytx@counter}y,

371 \xdef\pytx@stdfile{\pytx@type_\pytx@session_\pytx@group_\arabic{\pytx@counterl}}/,
372 \pytx@InlineShow

373 \pytx@InlineSave

374 \pytx@InlinePrint

375 \stepcounter{\pytxQcounter}y,

376 1%

The three macros \pytx@InlineShow, \pytx@InlineSave, and \pytx@InlinePrint
will be \1et to appropriate values when commands are called. We must now define
the macros to which they may be \let.

\pytx@InlineShowFV Code may be typeset with fancyvrb. In this case, the code must be retok-
enized so that space characters are active, since fancyvrb allows space char-
acters to be visible or invisible by making them active. fancyvrb settings are
invoked via pytx@FVSet, but this must be done within a group so that the set-
tings remain local. Most of the remainder of the commands are from fancyvrb’s
\FV@FormattingPrep, and take care of various formatting matters, including spac-
ing, font, whether space characters are shown, and any user-defined formatting.
Finally, we create an \hbox and invoke \FancyVerbFormatLine to maintain paral-
lelism with BVerbatim, which is used for inline content highlighted with Pygments.
\FancyVerbFormatLine may be redefined to alter the typeset code, for example,
by putting it in a colorbox via the following command:?®

28Currently, \FancyVerbFormatLine is global, as in fancyvrb. Allowing a family-specific vari-

47

\pytx@InlineShowPyg

\pytx@InlineSaveCode

\renewcommand{\FancyVerbFormatLine} [1]{\colorbox{green}{#1}}
377 \def\pytx@InlineShowFV{%

378 \begingroup

379 \let\do\@makeother\dospecials

380 \catcode‘\ =\active

381 \catcode‘\""I=\active

382 \tokenize{\pytxQargretok}{\pytx@argdetokl}
383 \endgroup

384 \begingroup

385 \pytxQ@FVSet

386 \FV@BeginVBox

387 \frenchspacing

388 \FV@SetupFont

389 \FV@DefineWhiteSpace

390 \FancyVerbDefineActive

391 \FancyVerbFormatCom

392 \FV@0ObeyTabsInit

393 \hbox{\FancyVerbFormatLine{\pytx@argretokl}}/
394 \FV@EndVBox

395 \endgroup

396 }

Code may be typeset with Pygments. Processed Pygments content is saved in
the .pytxmecr file, wrapped in fancyvrb’s SaveVerbatim environment. The con-
tent is then restored, in a form suitable for inline use, via BUseVerbatim. Un-
like non-inline content, which may be brought in either via macro or via sep-
arate external file, inline content is always brought in via macro. The counter
pytx@FancyVerbLineTemp is used to prevent fancyvrb’s line count from being
affected by PythonTEX content. A group is necessary to confine the fancyvrb
settings created by \pytx@FVSet.

397 \def\pytx@InlineShowPyg{%

398 \begingroup

399 \pytx@FVSet

400 \ifcsname FV@SV@\pytxQ@counter Q\arabic{\pytx@counter}\endcsname
401 \setcounter{pytx@FancyVerbLineTemp}{\value{FancyVerbLine}}J,
402 \BUseVerbatim{\pytx@counter @\arabic{\pytx@counterl}}’

403 \setcounter{FancyVerbLine}{\value{pytx@FancyVerbLineTempl}}%
404 \else

405 \textbf{??}%

406 \PackageWarning{\pytx@packagename}{Non-existent Pygments content}
407 \fi

408 \endgroup

409 }

This macro writes PythonTEX information to the code file and then writes the
actual code.

ant may be considered in the future. In most cases, the fancyvrb option formatcom, combined
with external formatting from packages like mdframed, should provide all formatting desired. But
something family-specific might occasionally prove useful.

48

410 \def\pytx@InlineSaveCode{’

411 \pytx@WriteCodefileInfo
412 \immediate\write\pytxQcodefile{\pytx@argdetokl}/,
413 }

\pytx@InlineAutoprint This macro brings in printed content automatically, if the package autoprint
option is true. Otherwise, it does nothing.
414 \ifbool{pytx@opt@autoprintl}y,
415 {\def\pytx@InlineAutoprint{}%
416 \InputIfFileExists{\pytx@outputdir/\pytx@stdfile.stdout}{}{}}}%
417 {\let\pytx@InlineAutoprint\Q@empty}

\pytx@InlineMacroprint This macro brings in “printed” content that is brought in via macros in the
.pytxmer file.

418 \def\pytx@InlineMacroprint{}
419 \edef \pytx@mcr{pytx@MCRA\pytx@type @\pytx@session @\pytx@group @\arabic{\pytx@counter}}/,

420 \ifcsname\pytx@mcr\endcsname

421 \csname\pytx@mcr\endcsname

422 \else

423 \textbf{?7}J

424 \PackageWarning{\pytx@packagename}{Missing autoprint contentl},
425 \fi

426 }

7.5.2 Inline command constructors

With the core inline macros complete, we are ready to create constructors for
different kinds of inline commands. All of these consctructors take a string and
define an inline command named using that string as a base name. Two forms of
each constructor are created, one that uses Pygments and one that does not. The
Pygments variants have names ending in “Pyg”.

\pytx@MakeInlinebFV These macros creates inline block commands, which both typeset code and save
\pytx@MakeInlinebPyg it so that it may be executed. The base name of the command is stored in
\pytx@type. A string representing the kind of command is stored in \pytx@cmd.

Then \pytx@SetContext is used to set \pytx@context and \pytx@SetGroup is

used to set \pytx@group. Macros for showing, saving, and printing are set to ap-

propriate values. Then the core inline macros are invoked through \pytx@Inline.

427 \newcommand{\pytx@MakeInlinebFV} [1]1{%

428 \expandafter\newcommand\expandafter{\csname #1b\endcsnamel}{/,
429 \xdef\pytx@type{#1}/,

430 \edef\pytx@cmd{inlinebl}/

431 \pytx@SetContext

432 \pytx@SetGroup

433 \let\pytx@InlineShow\pytx@InlineShowFV

434 \let\pytx@InlineSave\pytx@InlineSaveCode

435 \let\pytx@InlinePrint\Q@empty

436 \pytx@Inline

49

437 Y

438 Y%

439 \newcommand{\pytx@MakeInlinebPyg}[1]{%

440 \expandafter\newcommand\expandafter{\csname #1b\endcsname}{J,
441 \xdef\pytx@type{#1}/,

442 \edef\pytx@cmd{inlineb}},

443 \pytx@SetContext

444 \pytx@SetGroup

445 \let\pytx@InlineShow\pytx@InlineShowPyg
446 \let\pytx@InlineSave\pytx@InlineSaveCode
447 \let\pytx@InlinePrint\@empty

448 \pytx@Inline

449 Y

450 }%

\pytx@MakeInlinevFV This macro creates inline verbatim commands, which only typeset code. \pytx@type,
\pytx@MakeInlinevPyg \pytx@cmd, \pytx@context, and \pytx@group are still set, for symmetry with
other commands. They are not needed for fancyvrb typesetting, though. We
use \pytx@SetGroupVerb to split verbatim content (v and verb) off into its own
group. That way, verbatim content doesn’t affect the instance numbers of exe-
cuted code, and thus executed code is not affected by the addition or removal of
verbatim content.

451 \newcommand{\pytx@MakeInlinevFV}[1]{%

452 \expandafter\newcommand\expandafter{\csname #1v\endcsname}{J
453 \xdef\pytxQtype{#1}/,

454 \edef\pytx@cmd{inlinev}/

455 \pytx@SetContext

456 \pytx@SetGroupVerb

457 \let\pytx@InlineShow\pytx@InlineShowFV
458 \let\pytx@InlineSave\Q@empty

459 \let\pytx@InlinePrint\@empty

460 \pytx@Inline

461 Y

462 Y

463 \newcommand{\pytx@MakeInlinevPyg}[1]1{%

464 \expandafter\newcommand\expandafter{\csname #1v\endcsnamel}{},
465 \xdef\pytxQtype{#1}/,

466 \edef\pytx@cmd{inlinev}/

467 \pytx@SetContext

468 \pytx@SetGroupVerb

469 \let\pytx@InlineShow\pytx@InlineShowPyg
470 \let\pytx@InlineSave\pytx@InlineSaveCode
471 \let\pytx@InlinePrint\@empty

472 \pytx@Inline

473 Yh

474 Y

\pytx@MakeInlinecFV This macro creates inline code commands, which save code for execution but do
\pytx@MakeInlinecPyg not typeset it. If the code prints content, this content is inputted automatically if

a0

\pytx@MakeInlineFV
\pytx@MakeInlinePyg

the package option autoprint is on. Since no code is typeset, there is no difference
between the fancyvrb and Pygments forms.

475 \newcommand{\pytx@MakeInlinecFV}[1]{%

476 \expandafter\newcommand\expandafter{\csname #1c\endcsname}{/
477 \xdef\pytxQtype{#1}/,

478 \edef\pytx@cmd{inlinec}y,

479 \pytx@SetContext

480 \pytx@SetGroup

481 \let\pytx@InlineShow\@empty

482 \let\pytx@InlineSave\pytx@InlineSaveCode
483 \let\pytx@InlinePrint\pytx@InlineAutoprint
484 \pytx@Inline

485 Yh

486 Y

487 \let\pytx@MakeInlinecPyg\pytx@MakeInlinecFV

This macro creates plain inline commands, which save code and then bring in
the output of pytex.formatter({code)) (pytex.formatter() is the formatter
function in Python sessions that is provided by pythontex_utilsx.py). The
Python output is saved in a TEX macro, and the macro is written to a file shared
by all PythonTEX sessions. This greatly reduces the number of external files
needed. Since no code is typeset, there is no difference between the fancyvrb and
Pygments forms.

488 \newcommand{\pytx@MakeInlineFV}[1]{}

489 \expandafter\newcommand\expandafter{\csname #1\endcsname}{’%
490 \xdef\pytxQtype{#1}/,

491 \edef\pytxQ@cmd{inlinel}

492 \pytx@SetContext

493 \pytx@SetGroup

494 \let\pytx@InlineShow\Q@empty

495 \let\pytx@InlineSave\pytx@InlineSaveCode
496 \let\pytx@InlinePrint\pytx@InlineMacroprint
497 \pytx@Inline

498 Yh

499 Y%

500 \let\pytx@MakeInlinePyg\pytx@MakeInlineFV

7.6 Environments

The inline commands were all created using a common core set of macros, com-
bined with short, command-specific constructors. In the case of environments,
we do not have a common core set of macros. Each environment is coded sepa-
rately, though there are similarities among environments. In the future, it may be
worthwhile to attempt to consolidate the environment code base.

One of the differences between inline commands and environments is that envi-
ronments may need to typeset code with line numbers. Each family of code needs
to have its own line numbering (actually, its own numbering for code, verbatim,

o1

\pytx@FancyVerbGetLine

\pytx@MakeBlockFV

and console groups), and this line numbering should not overwrite any line num-
bering that may separately be in use by fancyvrb. To make this possible, we use
a temporary counter extensively. When line numbers are used, fancyvrb’s line
counter is copied into pytx@FancyVerbLineTemp, lines are numbered, and then
fancyvrb’s line counter is restored from pytx@FancyVerbLineTemp. This keeps
fancyvrb and PythonTEX’s line numbering separate, even though PythonTEX is
using fancyvrb and its macros internally.

7.6.1 Block and verbatim environment constructors

We begin by creating block and verb environment constuctors that use fancyvrb.
Then we create Pygments versions.

The block environment needs to both typeset code and save it so it can be ex-
ecuted. fancyvrb supports typesetting, but doesn’t support saving at the same
time. So we create a modified version of fancyvrb’s \FancyVerbGetLine macro
which does. This is identical to the fancyvrb version, except that we add a line
that writes to the code file. The material that is written is detokenized to avoid
catcode issues and make unicode work correctly.

501 \begingroup

502 \catcode‘\~"M=\active

503 \gdef\pytxQ@FancyVerbGetLine#1~"M{/

504 \@nil%

505 \FV@CheckEnd{#1}%

506 \ifx\@tempa\FV@EnvironName}

507 \ifx\@tempb\FV@Q@@CheckEnd\else\FVOBadEndError\fij},
508 \let\next\FV@EndScanning

509 \elsel

510 \def\FV@Line{#1}}

511 \def\next{\FV@PreProcessLine\FV@GetLine}},

512 \immediate\write\pytxQ@codefile{\detokenize{#1}}%
513 \£fiY%

514 \next}/,

515 \endgroup

Now we are ready to actually create block environments. This macro takes an
environment base name (name) and creates a block environment (name)block,
using fancyvrb.

The block environment is a Verbatim environment, so we declare that with
the \VerbatimEnvironment macro, which lets fancyvrb find the end of the envi-
ronment correctly. We define the type, define the command, and set the context
and group.

We need to check for optional arguments, so we begin a group and use
\obeylines to make line breaks active. Then we check to see if the next char
is an opening square bracket. If so, there is an optional argument, so we end
our group and call the \pytx@BeginBlockEnvFV macro, which will capture the
argument and finish preparing for the block content. If not, we end the group and
call the same \pytx@BeginBlockEnvFV macro with an empty argument. The line

92

breaks need to be active during this process because we don’t care about content
on the next line, including opening square brackets on the next line; we only care
about content in the line on which the environment is declared, because only on
that line should there be an optional argument. The problem is that since we are
dealing with code, it is quite possible for there to be an opening square bracket at
the beginning of the next line, so we must prevent that from being misinterpreted
as an optional argument.

After the environment, we need to clean up several things. Much of this relates
to what is done in the \pytx@BeginBlockEnvFV macro. The body of the environ-
ment is wrapped in a Verbatim environment, so we must end that. It is also
wrapped in a group, so that fancyvrb settings remain local; we end the group.
Then we define the name of the outfile for any printed content, so that it may
be accessed by \printpythontex and company. Finally, we rearrange counters.
The current code line number needs to be stored in \pytx@linecount, which was
defined to be specific to the current type-session-group set. The fancyvrb line
number needs to be set back to its original value from before the environment be-
gan, so that PythonTEX content does not affect the line numbering of fancyvrb
content. Finally, the \pytx@counter, which keeps track of commands and envi-
ronments within the current type-session-group set, needs to be incremented.

516 \newcommand{\pytx@MakeBlockFV}[1]{%

517 \expandafter\newenvironment{#1iblock}{/

518 \VerbatimEnvironment

519 \xdef\pytxQtype{#1}/,

520 \edef\pytx@cmd{block}’%

521 \pytx@SetContext

522 \pytx@SetGroup

523 \begingroup

524 \obeylines

525 \@ifnextchar [{\endgroup\pytx@BeginBlockEnvFV}{\endgroup\pytx@BeginBlockEnvFV[]}%
526 Yh

527 {\end{Verbatim}y
528 \xdef\pytx@stdfile{\pytxOtype_\pytx@session_\pytx@group_\arabic{\pytx@counterl}}’

529 \setcounter{\pytx@linecount}{\value{FancyVerbLine}}J,

530 \setcounter{FancyVerbLine}{\value{pytx@FancyVerbLineTemp}}
531 \stepcounter{\pytx@counterl}y,

532 Yh

533 }

\pytx@BeginBlockEnvFV This macro finishes preparations to actually begin the block environment. It
captures the optional argument (or the empty argument supplied by default). If
this argument is empty, then it sets the value of the argument to the default
value. If not, then colons in the optional argument are replaced with underscores,
and the modified argument is stored in \pytx@session. Colons are replaced with
underscores because session names must be suitable for file names, and colons are
generally not allowed in file names. However, we want to be able to enter session
names containing colons, since colons provide a conventient method of indicating
relationships, and are commonly used in ITEX labels. For example, we could have

33

a session named plots:specialplot.

Once the session is established, we are free to define the counter for the current
type-session-group, and make sure it exists. We also define the counter that will
keep track of line numbers for the current type-session-group, and make sure it
exists. Then we do some counter trickery. We don’t want fancyvrb line counting
to be affected by PythonTEX content, so we store the current line number held
by FancyVerbLine in pytx@FancyVerbLineTemp; we will restore FancyVerbLine
to this original value at the end of the environment. Then we set FancyVerbLine
to the appropriate line number for the current type-session-group. This provides
proper numbering continuity between different environments within the same type-
session-group.

Next, we write environment information to the code file, now that all the
necessary information is assembled. We begin a group, to keep some things local.
We \let a fancyvrb macro to our custom macro. We set fancyvrb settings to
those of the current type using \pytx@FVSet. Once this is done, we are finally
ready to start the Verbatim environment. Note that the Verbatim environment
will capture a second optional argument delimited by square brackets, if present,
and apply this argument as fancyvrb formatting. Thus, the environment actually
takes up to two optional arguments, but if you want to use fancyvrb formatting,
you must supply an empty (default session) or named (custom session) optional
argument for the PythonTEX code.

534 \def \pytx@BeginBlockEnvFV [#1]{/
535 \ifstrempty{#1}{\edef\pytx@session{default}}{\StrSubstitute{#1}{:}{-}[\pytx@session]}%
536 \edef\pytx@counter{pytx@\pytxQ@type @\pytx@session @\pytx@groupl’

537 \pytx@CheckCounter{\pytx@counterly,

538 \edef\pytx@linecount{\pytx@counter @linel}%

539 \pytx@CheckCounter{\pytx@linecount}’

540 \setcounter{pytx@FancyVerbLineTemp}{\value{FancyVerbLine}}/,
541 \setcounter{FancyVerbLine}{\value{\pytx@linecount}}/

542 \pytx@WriteCodefileInfo

543 \let\FancyVerbGetLine\pytxQ@FancyVerbGetLine

544 \pytx@FVSet

545 \begin{Verbatim}},

546 }

\pytx@MakeVerbFV The verb environments only typeset code; they do not save it for execution. Thus,
we just use a standard fancyvrb environment with a few enhancements.

As in the block environment, we declare that we are using a Verbatim envi-
ronment, define type and command, set context and group (note the use of the
Verb group), and take care of optional arguments before calling a macro to wrap
things up (in this case, \pytx@BeginVerbEnvFV). Currently, much of the saved
information is unused, but it is provided to maintain parallelism with the block
environment.

Ending the environment involves ending the Verbatim environment begun by
\pytx@BeginVerbEnvFV, ending the group that kept fancyvrb settings local, and
resetting counters. We define a stdfile and step the counter, even though there
will never actually be any output to pull in, to force \printpythontex and com-

o4

pany to be used immediately after the code they refer to and to maintain paral-

lelism.

547 \newcommand{\pytx@MakeVerbFV}[1]{/

548 \expandafter\newenvironment{#1iverb}{/

549 \VerbatimEnvironment

550 \xdef\pytx@type{#1}/,

551 \edef\pytx@cmd{verbl}’

552 \pytx@SetContext

553 \pytx@SetGroupVerb

554 \begingroup

555 \obeylines

556 \@ifnextchar [{\endgroup\pytx@BeginVerbEnvFV}{\endgroup\pytx@BeginVerbEnvFV []}%
557 Yh

558 {\end{Verbatim}

559 \xdef\pytx@stdfile{\pytx@type_\pytx@session_\pytxQgroup_\arabic{\pytx@counter}}’
560 \setcounter{\pytx@linecount}{\value{FancyVerbLine}}J,

561 \setcounter{FancyVerbLine}{\value{pytx@FancyVerbLineTemp}1}’

562 \stepcounter{\pytxQcounter}y

563 Yh

564 }

\pytx@BeginVerbEnvFV This macro captures the optional argument of the environment (or the default
empty argument that is otherwise supplied). If the argument is empty, it assignes
a default value; otherwise, it substitutes underscores for colons in the argument.
The argument is assigned to \pytx@session. A line counter is created, and its
existence is checked. We do the standard line counter trickery. Then we begin a
group to keep fancyvrb settings local, invoke the settings via \pytx@FVSet, and
begin the Verbatim environment.
565 \def \pytx@BeginVerbEnvFV [#1]{/
566 \ifstrempty{#1}{\edef\pytx@session{default}}{\StrSubstitute{#1}{:}{-}[\pytx@session]}/
567 \edef\pytx@counter{pytx@\pytx@type @\pytx@session @\pytx@groupl}’,

568 \pytx@CheckCounter{\pytx@counterly,

569 \edef\pytx@linecount{\pytx@counter @linel}%

570 \pytx@CheckCounter{\pytx@linecount}’

571 \setcounter{pytx@FancyVerbLineTemp}{\value{FancyVerbLine}}/,
572 \setcounter{FancyVerbLine}{\value{\pytx@linecount}}/

573 \pytxQ@FVSet

574 \begin{Verbatim}y,

575 }

Now for the Pygments forms of block and verb. Since all code must be saved
now (either to be executed or processed by Pygments, or both), the environment
code may be simplified compared to the non-Pygments case.

\pytx@MakePygEnv The block and verb environments are created via the same macro. The
\pytx@MakePygEnv macro takes two arguments: first, the code type, and sec-
ond, the environment (block or verb). The reason for using the same macro is
that both must now save their code externally, and bring back the result typeset

95

by Pygments. Thus, on the IXTEX side, their behavior is identical. The only dif-
ference is on the Python side, where the block code is executed and thus there
may be output available via \printpythontex and company.

The actual workings of the macro are a combination of those of the non-
Pygments macros, so please refer to those for details. The only exception is the
code for bringing in Pygments output, but this is done using almost the same
approach as that used for the inline Pygments commands. There are two dif-
ferences: first, the block and verb environments use \UseVerbatim rather than
\BUseVerbatim, since they are not typesetting code inline; and second, they ac-
cept a second, optional argument containing fancyvrb commands and this is
used in typesetting the saved content. Any fancyvrb commands are saved in
\pytx@fvopttmp by \pytx@BeginEnvPyg@i, and then used when the code is type-
set.

Note that the positioning of all the FancyVerbLine trickery in what follows is
significant. Saving the FancyVerbLine counter to a temporary counter before the
beginning of VerbatimOut is important, because otherwise the fancyvrb number-
ing can be affected.

576 \newcommand{\pytx@MakePygEnv}[2]{%

577 \expandafter\newenvironment{#1#2}{/,

578 \VerbatimEnvironment

579 \xdef\pytxQtype{#1}/,

580 \edef\pytxQcmd{#2}/,

581 \pytx@SetContext

582 \ifstrequal{#2}{block}{\pytx@SetGroup}{}

583 \ifstrequal{#2}{verb}{\pytx@SetGroupVerb}{}

584 \begingroup

585 \obeylines

586 \@ifnextchar [{\endgroup\pytx@BeginEnvPyg}{\endgroup\pytx0@BeginEnvPyg[]}/,
587 Yh

588 {\end{VerbatimOut}/,

589 \xdef\pytx@stdfile{\pytxQ@type_\pytx@session_\pytx@group_\arabic{\pytx@counterl}}y,
590 \setcounter{FancyVerbLine}{\value{\pytx@linecount}1}/,

591 \pytx@FVSet

592 \ifdefstring{\pytx@fvopttmp}{}{}{\expandafter\fvset\expandafter{\pytx@fvopttmp}l}’
593 \ifcsname FV@SV@\pytx@counter @\arabic{\pytx@counter}\endcsname

594 \UseVerbatim{\pytxQcounter @\arabic{\pytx@counterl}}y,

595 \else

596 \InputIfFileExists{\pytx@outputdir/\pytx@stdfile.pygtex}{}%

597 {\textbf{?7"\pytx@packagename~ 77},

598 \PackageWarning{\pytx@packagename}{Non-existent Pygments content}}/,
599 \fi

600 \setcounter{\pytx@linecount}{\value{FancyVerbLine}}/,

601 \setcounter{FancyVerbLine}{\value{pytx@FancyVerbLineTemp}}%

602 \stepcounter{\pytx@counterl}y,

603 Yh

604 Y

\pytx@BeginEnvPyg This macro finishes preparing for the content of a verb or block environment with

96

\pytx@BeginEnvPyg@i

\pytx@MakeBlockPyg

\pytx@MakeVerbPyg

Pygments content. It captures an optional argument corresponding to the session
name and sets up instance and line counters. Finally, it calls an additional macro
that handles the possibility of a second optional argument.

605 \def\pytx@BeginEnvPyg [#1]{%

606 \ifstrempty{#1}{\edef\pytxOsession{default}}{\StrSubstitute{#1}{:}{-}[\pytx@sessionll}’
607 \edef\pytxQ@counter{pytx@\pytx@type Q@\pytx@session Q@\pytxQgroupl’

608 \pytx@CheckCounter{\pytx@counter}y,

609 \edef\pytx@linecount{\pytx@counter @line}%

610 \pytx@CheckCounter{\pytx@linecountl}y

611 \pytx@WriteCodefileInfo

612 \begingroup

613 \obeylines

614 \@ifnextchar [{\endgroup\pytx@BeginEnvPyg@i}{\endgroup\pytx@BeginEnvPygQ@i [1}/
615 }%

This macro captures a second optional argument, corresponding to fancyvrb op-
tions. Note that not all fancyvrb options may be passed to saved content when it
is actually used, particularly those corresponding to how the content was read in
the first place (for example, command characters). But at least most formatting
options such as line numbering work fine. As with the non-Pygments environ-
ments, \begin{VerbatimOut} doesn’t take a second mandatory argument, since
we are using a custom version and don’t need to specify the file in which Verbatim
content is saved. It is important that the FancyVerbLine saving be done here; if
it is done later, after the end of VerbatimQut, then numbering can be off in some
circumstances (for example, a single pyverb between two Verbatim’s).

616 \def\pytx@BeginEnvPyg@i [#1]{%

617 \def\pytx@fvopttmp{#1}/,

618 \setcounter{pytx@FancyVerbLineTemp}{\value{FancyVerbLine}}/
619 \let\FVB@VerbatimOut\pytx@FVB@VerbatimQut

620 \1let\FVE@VerbatimOut\pytx@FVEQVerbatimOut

621 \begin{VerbatimQut}’

622 }%

Since we are using the same code to create both block and verb environments,
we now create a specific macro for creating each case, to make usage equivalent
to that for the non-Pygments case.

The block environment is constructed via the \pytx@MakePygEnv macro.
623 \newcommand{\pytx@MakeBlockPyg}[1]{\pytx@MakePygEnv{#1}{block}}

The verb environment is constructed likewise.
624 \newcommand{\pytx@MakeVerbPyg} [1]{\pytx@MakePygEnv{#1}{verb}}

7.6.2 Code environment constructor

The code environment merely saves code to the code file; nothing is typeset. To
accomplish this, we use a slightly modified version of fancyvrb’s VerbatimOut.

57

\pytx@WriteDetok

\pytx@FVB@VerbatimQOut

\pytxQ@FVE@VerbatimQut

\pytx@MakeCodeFV

We can use fancyvrb to capture the code, but we will need a way to write the
code in detokenized form. This is necessary so that TEX doesn’t try to process
the code as it is written, which would generally be disastrous.

625 \def\pytx@WriteDetok#1{},
626 \immediate\write\pytxQcodefile{\detokenize{#1}}1}/

We need a custom version of the macro that begins VerbatimOut. We don’t need
fancyvrb’s key values, and due to our use of \detokenize to write content, we
don’t need its space and tab treatment either. We do need fancyvrb to write to
our code file, not the file to which it would write by default. And we don’t need
to open any files, because the code file is already open. These last two are the
only important differences between our version and the original fancyvrb version.
Since we don’t need to write to a user-specified file, we don’t require the mandatory
argument of the original macro.

627 \def \pytx@FVB@VerbatimOut{’

628 \@bsphack

629 \begingroup

630 \let\FV@ProcessLine\pytx@WriteDetok
631 \let\FV@FontScanPrep\relax

632 \let\@noligs\relax

633 \FV@Scan}/,

Similarly, we need a custom version of the macro that ends VerbatimOut. We
don’t want to close the file to which we are saving content.

634 \def\pytxQ@FVE@VerbatimOut{\endgroup\@esphack}’

Now that the helper macros for the code environment have been defined, we are
ready to create the macro that makes code environments. Everything at the
beginning of the environment is similar to the block and verb environments.

After the environment, we need to close the VerbatimQut environment begun
by \pytx@BeginCodeEnv@i and end the group it began. We define the outfile,
and bring in any printed content if the autoprint setting is on. We must still
perform some FancyVerbLine trickery to prevent the fancyvrb line counter from
being affected by writing content! Finally, we step the counter.

635 \newcommand{\pytx@MakeCodeFV} [1]{/

636 \expandafter\newenvironment{#1code}{’
637 \VerbatimEnvironment

638 \xdef\pytxQtype{#1}

639 \edef\pytx@cmd{codel}’

640 \pytx@SetContext

641 \pytx@SetGroup

642 \begingroup

643 \obeylines

644 \@ifnextchar [{\endgroup\pytx@BeginCodeEnv}{\endgroup\pytx@BeginCodeEnv []}/
645 Yh

646 {\end{VerbatimOut}’

647 \xdef\pytx@stdfile{\pytx@type_\pytx@session_\pytx@group_\arabic{\pytx@counterl}}’

648 \ifbool{pytx@opt@autoprintl}y,

a8

649 {\InputIfFileExists{\pytx@outputdir/\pytx@stdfile.stdoutH{}{}}{}%

650 \setcounter{FancyVerbLine}{\value{pytx@FancyVerbLineTempl}}%
651 \stepcounter{\pytx@counter}y,

652 Y

653 %

\pytx@BeginCodeEnv This macro finishes setting things up before the code environment contents. It
processes the optional argument, defines a counter and checks its existence, writes
info to the code file, and then calls the \pytx@BeginCodeEnv@i macro. This macro
is necessary so that the environment can accept two optional arguments. Since the
block and verb environments can accept two optional arguments (the first is the
name of the session, the second is fancyvrb options), the code environment also
should be able to, to maintain parallelism (for example, pyblock should be able
to be swapped with pycode without changing environment arguments—it should
just work). However, VerbatimOut doesn’t take an optional argument. So we
need to capture and discard any optional argument, before starting VerbatimOut.

654 \def\pytx@BeginCodeEnv [#1]{/
655 \ifstrempty{#1}{\edef\pytxQ@session{default}}{\StrSubstitute{#1}{:}{-}[\pytx@session]l}/
656 \edef\pytx@counter{pytx@\pytxQ@type @\pytx@session @\pytx@groupl’

657 \pytx@CheckCounter{\pytx@counterly,

658 \pytx@WriteCodefileInfo

659 \begingroup

660 \obeylines

661 \@ifnextchar [{\endgroup\pytx@BeginCodeEnv@i}{\endgroup\pytx@BeginCodeEnvei [11}%
662 }%

\pytx@BeginCodeEnv@i As described above, this macro captures a second optional argument, if present,
and then starts the VerbatimOut environment. Note that VerbatimOut does not
have a mandatory argument, because we are invoking our custom \pytx@FVB@VerbatimQut
macro. The default fancyvrb macro needs an argument to tell it the name of the
file to which to save the verbatim content. But in our case, we are always writing
to the same file, and the custom macro accounts for this by not having a manda-
tory file name argument. We must perform the typical FancyVerbLine trickery,
to prevent the fancyvrb line counter from being affected by writing content!

663 \def\pytx@BeginCodeEnve@i [#1]{/

664 \setcounter{pytx@FancyVerbLineTemp}{\value{FancyVerbLine}}
665 \let\FVB@VerbatimOut\pytx@FVB@VerbatimOut

666 \let\FVE@VerbatimOut\pytx@FVEQVerbatimQut

667 \begin{VerbatimQut}’

668 }%

\pytx@MakeCodePyg Since the code environment simply saves code for execution and typesets nothing,
the Pygments version is identical to the non-Pygments version, so we simply let
the former to the latter.

669 \let\pytx@MakeCodePyg\pytx@MakeCodeFV

99

7.6.3 Console environment constructor

The console environment needs to write all code contained in the environment
to the code file, and then bring in the console output.

\pytx@MakeConsoleFV
670 \newcommand{\pytx@MakeConsFV} [1]{/
671 \expandafter\newenvironment{#1console}{/
672 \VerbatimEnvironment
673 \xdef\pytx@type{#1}/,
674 \edef\pytx@cmd{consolel}/
675 \pytx@SetContext
676 \pytx@SetGroupCons
677 \begingroup
678 \obeylines
679 \@ifnextchar [{\endgroup\pytx@BeginConsEnvFV}{\endgroup\pytx@BeginConsEnvFV[]}}
680 Yh
681 {\end{VerbatimOut}}
682 \xdef\pytx@stdfile{\pytx@type_\pytx@session_\pytxQgroup_\arabic{\pytx@counter}}’
683 \setcounter{FancyVerbLine}{\value{\pytx@linecount}}/
684 \pytx@FVSet
685 \ifdefstring{\pytx@fvopttmp}{}{}{\expandafter\fvset\expandafter{\pytx@fvopttmp}l}/
686 \ifcsname FV@SV@\pytxQ@counter Q\arabic{\pytx@counter}\endcsname
687 \UseVerbatim{\pytxQcounter @\arabic{\pytx@counterl}}y,
688 \else
689 \InputIfFileExists{\pytx@outputdir/\pytx@stdfile.pygtex}{}%
690 {\textbf{?7?"\pytx@packagename~ 77},
691 \PackageWarning{\pytx@packagename}{Non-existent console content}}’
692 \fi
693 \setcounter{\pytx@linecount}{\value{FancyVerbLine}}/,
694 \setcounter{FancyVerbLine}{\value{pytx@FancyVerbLineTempl}}%
695 \stepcounter{\pytx@counterl}y,
696 Yh
697 }
\pytx@BeginConsEnvFV

698 \def \pytx@BeginConsEnvFV [#1]{/
699 \ifstrempty{#1}{\edef\pytx@session{default}}{\StrSubstitute{#1}{:}{-}[\pytx@session]}%
700 \edef\pytx@counter{pytx@\pytxQ@type @\pytx@session @\pytx@groupl’

701 \pytx@CheckCounter{\pytx@counterly,

702 \edef\pytx@linecount{\pytx@counter @linel}%

703 \pytx@CheckCounter{\pytx@linecount}’

704 \pytx@WriteCodefileInfo

705 \begingroup

706 \obeylines

707 \@ifnextchar [{\endgroup\pytx@BeginConsEnvFV@il}{\endgroup\pytx@BeginConsEnvFVei []1}7
708 Y

\pytx@BeginConsEnvFV@i
709 \def\pytx@BeginConsEnvFV@i [#1]{%

60

\pytx@MakeConsPyg

\makepythontexfamilyfv

710 \def\pytx@fvopttmp{#1}%

711 \setcounter{pytx@FancyVerbLineTemp}{\value{FancyVerbLine}}%
712 \let\FVB@VerbatimOut\pytx@FVB@VerbatimQut

713 \1let\FVEQVerbatimOut\pytx@FVEQVerbatimQut

714 \begin{VerbatimOut}y,

715 Yh

The console environment saves code and then brings back the result of console-
style evaluation. Whether Pygments is used to highlight the code depends on the
family settings, so the Pygments and non-Pygments forms of the environment are
identical.

716 \let\pytx@MakeConsPyg\pytx@MakeConsFV

7.7 Constructors for macro and environment families

Everything is now in place to create inline commands and environments, with and
without Pygments usage. To make all of this more readily usable, we need macros
that will create a whole family of commands and environments at once, based
on a base name. For example, we need a way to easily create all commands and
environments based off of the py base name.

This is a mass constructor for all commands and environments. It takes a single
mandatory argument: a base name. It creates almost all commands and envi-
ronments using the base name; the console environment is created conditionally,
based on an optional argument. The console environment is only created con-
ditionally because support for it will probably be very limited if languages other
than Python are added in the future. The macro also creates fancyvrb settings
corresponding to the family, and sets them to a null default.

The macro checks for the base name PYG, which is not allowed. This is for
two reasons. First, given that the family py is already defined by default, another
family with such a similar name would not be a good idea. Second, and more
importantly, the prefix PYG is used for other purposes. Although PythonTEX is
primarily intended for executing and typesetting Python code, provision has also
been made for typesetting code in any language supported by Pygments. The PYG
prefix is used by the macros that perfom that function.

The constructor macro should only be allowed in the preamble, since commands
and environments must be defined before the document begins.

717 \newcommand{\makepythontexfamilyfv}[2] [1{%
718 \IfBeginWith{#2}{PYG}/,

719 {\PackageError{\pytx@packagename},

720 {Attempt to create macros with reserved prefix PYG{}}{}%
721 \pytx@MakeInlinebFV{#2}/,

722 \pytx@MakeInlinevFV{#2}/

723 \pytx@MakeInlinecFV{#2}/,

724 \pytx@MakeInlineFV{#2}%

725 \pytx@MakeBlockFV{#2}%
726 \pytx@MakeVerbFV{#23}7,

61

727 \pytx@MakeCodeFV{#2}%

728 \ifstrequal{#1}{console}{\pytx@MakeConsFV{#2}}{1}/
729 \ifstrequal{#1}{all}{\pytx@MakeConsFV{#2}}{}%

730 \setpythontexfv [#2]{}%

731 }

732 \@onlypreamble\makepythontexfamilyfv

\makepythontexfamilypyg Creating a family of Pygments commands and environments is a little more in-
volved. This macro takes three mandatory arguments: the base name, the Pyg-
ments lexer to be used, and Pygments options for typesetting. Currently, three
options may be passed to Pygments in this manner: style=(style name), which
sets the formatting style; texcomments, which allows ITEX in code comments to
be rendered; and mathescape, which allows IATEX math mode ($...$) in com-
ments. The texcomments and mathescape options may be used with an argument
(for example, texcomments=(True/False)); if an argument is not supplied, True
is assumed. Note that these settings may be overridden by the package option
pygments. Again, the console environment is created conditionally, based on an
optional argument.

After checking for the disallowed prefix PYG, we begin by creating all commands
and environments, and creating a macro in which to store default fancyvrb setting.
We save the Pygments settings in a macro of the form \pytx@pygopt@(base name).
We also set the bool pytx@usedpygments to true, so that Pygments content will be
inputted at the beginning of the document. Then we request that the base name,
lexer, and any Pygments settings be written to the code file at the beginning of the
document, so that Pygments can access them. The options are saved in a macro,
and then the macro is saved to file only at the beginning of the document, so that
the user can modify default options for default code and environment families.

This macro should only be allowed in the preamble.

733 \newcommand{\makepythontexfamilypygl} [4] [1{%
734 \IfBeginWith{#2}{PYG}

735 {\PackageError{\pytx@packagename},

736 {Attempt to create macros with reserved prefix PYG}{}}{}%
737 \ifbool{pytx@opt@pyginlinel}’,

738 {\pytx@MakeInlinebPyg{#21}

739 \pytx@MakeInlinevPyg{#2}1}/

740 {\pytx@MakeInlinebFV{#2}%

741 \pytx@MakeInlinevFV{#2}}%

742 \pytx@MakeInlinecPyg{#2}%

743 \pytx@MakeInlinePyg{#2}/

744 \pytx@MakeBlockPyg{#2}/

745 \pytx@MakeVerbPyg{#2}%

746 \pytx@MakeCodePyg{#21}/,

747 \ifstrequal{#1}{console}{\pytx@MakeConsPyg{#2}}{}%
748 \ifstrequal{#1}{all}{\pytx@MakeConsPyg{#2}}{}%

749 \setpythontexfv [#2]{}/,

750 \booltrue{pytxQ@usedpygmentsl}/,

751 \expandafter\xdef\csname pytx@pygopt@#2\endcsname{#4}},
752 \AtBeginDocument{\immediate\write\pytxQcodefile{},

62

\setpythontexpyglexer

\setpythontexpygopt

\makepythontexfamily

753 \pytx@delimsettings pygmentsfamily:#2,#3,%
754 \string{\csname pytx@pygopt@#2\endcsname\string}\pytx@delimcharl}y,

755 Yh
756 }
757 \@onlypreamble\makepythontexfamilypyg

We need to be able to reset the lexer associated with a family after the family has
already been created.

758 \def\setpythontexpyglexer#1#2{J

759 \ifcsname pytx@pyglexer@#1\endcsname

760 \expandafter\xdef\csname pytx@pyglexer@#l\endcsname{#2}%
761 \else

762 \PackageError{\pytx@packagenamel}y,

763 {Cannot modify a non-existent family}{}%

764 \fi

765 }h

766 \Qonlypreamble\setpythontexpyglexer

The user may wish to modify the Pygments options associated with a family. This
macro takes two arguments: first, the family base name; and second, the Pygments
options to associate with the family. This macro is particularly useful in changing
the Pygments style of default command and environment families.

Due to the implementation (and also in the interest of keeping typesetting
consistent), the Pygments style for a family must remain constant throughout the
document. Thus, we only allow changes to the style in the preamble.

767 \newcommand{\setpythontexpygopt} [2]{%

768 \ifcsname pytx@pygopt@#1\endcsname

769 \expandafter\xdef\csname pytx@pygopt@#1\endcsname{#23}/,

770 \else

771 \PackageError{\pytx@packagenamel,

772 {Cannot modify Pygments options for a non-existent family}{}/
773 \fi

774 }

775 \@onlypreamble\setpythontexpygopt

While the \makepythontexfamilyfv and \makepythontexfamilypyg macros al-
low the creation of families that use fancyvrb and Pygments, respectively, we
want to be able to create families that can switch between the two possibilities,
based on the package option pygments. In some cases, we may want to force
a family to use either fancyvrb or Pygments, but generally we will want to be
able to control the method of typesetting of all families at the package level. We
create a new macro for this purpose. This macro takes the same arguments that
\makepythontexfamilypyg does: the family base name, the lexer to be used by
Pygments, and Pygments options for typesetting, plus an optional argument gov-
erning the console environment. The actual creation of macros is delayed using
\AtBeginDocument, so that the user has the option to choose whether fancyvrb
or Pygments usage should be forced for the family.

63

\setpythontexformatter

\setpythontexcustomcode

This macro should always be used for defining new families, unless there is a
particular reason to always force fancyvrb or Pygments usage.

776 \newcommand{\makepythontexfamily} [4] [1{%

77 \expandafter\xdef\csname pytx@macroformatter@#2\endcsname{auto}

778 \expandafter\xdef\csname pytx@pyglexer@#2\endcsname{#3}

779 \expandafter\xdef\csname pytx@pygopt@#2\endcsname{#4}

780 \AtBeginDocument{%

781 \ifcsstring{pytx@macroformatter@#2}{auto}{’%

782 \ifbool{pytx@opt@pygments}’

783 {\makepythontexfamilypyg [#1]{#2}{\csname pytx@pyglexer@#2\endcsnamely,
784 {\csname pytx@pygopt@#2\endcsnamel}}/

785 {\makepythontexfamilyfv [#1]{#2}}}{}V%

786 \ifcsstring{pytx@macroformatter@#2}{fancyvrbl}y

787 {\makepythontexfamilyfv [#1]{#2}}{}%

788 \ifcsstring{pytx@macroformatter@#2}{pygments}y

789 {\makepythontexfamilypyg [#1]{#2}{\csname pytx@pyglexer@#2\endcsnamely,
790 {\csname pytx@pygopt@#2\endcsname}}{}%

791 Yh

792 }

793 \@onlypreamble\makepythontexfamily

We need to be able to reset the formatter used by a family among the options
auto, fancyvrb, and pygments.

794 \def\setpythontexformatter#1#2{J,

795 \ifcsname pytx@macroformatter@#l\endcsname

796 \expandafter\xdef\csname pytx@macroformatter@#1\endcsname{#2}

797 \else

798 \PackageError{\pytx@packagenamel}’

799 {Cannot modify a family that does not exist or does not allow
800 {Create the family with \string\makepythontexfamily}’

801 \fi

802 }

803 \@onlypreamble\setpythontexformatter

One additional customization macro is needed. This macro allows custom code to
be added to the start of all code for a specified family. It applies to all commands
and environments within a family, including the console environment. Custom
code is included as a comma-delimited list of quoted code strings. Some catcode
trickery is required to allow the code to contain arbitrary characters. Currently,
the code may contain anything except unmatched curly braces.

There are multiple ways that a custom code macro could be implemented.
The current approach is based on several factors. Usually, only a few lines of
custom code should need to be specified (if you have a lot of code, you should
create a separate file and import it). For this use case, an inline macro taking
quoted strings should be adequate. Also, such a macro is typical of the type of
macros that appear in the preamble. An environment in which verbatim code is
written (say, pythontexcustomcode) could be created. This would require that
an environment be used in the preamble, which is possible but uncommon.

64

formatter choices}

804 \def\setpythontexcustomcode#1{%

805 \begingroup

806 \let\do\@makeother\dospecials

807 \catcode‘\{=1

808 \catcode‘\}=2

809 \catcode‘\~"M=10\relax

810 \pytx@SetCustomCode{#1}/,

811 }

812 \long\def \pytx@SetCustomCode#1#2{},

813 \endgroup

814 \AtBeginDocument{’

815 \immediate\write\pytx@codefile{,

816 \pytx@delimsettings customcode:#1,%
817 [\detokenize{#2}]\pytx@delimcharl}y,
818 Yh

819 }

820 \Qonlypreamble\setpythontexcustomcode

7.8 Default commands and environment families

We are finally prepared to create the default command and environment families.
We create a basic Python family with the base name py. We also create customized
Python families for the SymPy package, using the base name sympy, and for the
pylab module, using the base name pylab. All of these are created with a console
environment.

All of these command and environment families are created conditionally, de-
pending on whether the package option pygments is used, via \makepythontexfamily.
We recommend that any custom families created by the user be constructed in
the same manner.

821 \makepythontexfamily[all]{py}{python}{}
822 \makepythontexfamily [all]{sympy}{python}{}
823 \makepythontexfamily[all]{pylab}{python}{}

7.9 Listings environment

fancyvrb, especially when combined with Pygments, provides most of the format-
ting options we could want. However, it simply typesets code within the flow of
the document and does not provide a floating environment. So we create a floating
environment for code listings via the newfloat package.

It is most logical to name this environment 1isting, but that is already defined
by the minted package (although PythonTEX and minted are probably not likely
to be used together, due to overlapping features). Furthermore, the listings
package specifically avoided using the name listing for an environment due to
the use of this name by other packages.

We have chosen to make a compromise. We create a macro that creates a float
environment with a custom name for listings. If this macro is invoked, then a float
environment for listings is created and nothing else is done. If it is not invoked,

65

the package attempts to create an environment called listing at the beginning
of the document, and issues a warning if another macro with that name already
exists. This approach makes the logical 1isting name available in most cases,
and provides the user with a simple fallback in the event that another package
defining listing must be used alongside PythonTEX.

\setpythontexlistingenv We define a bool pytx@listingenv that keeps track of whether a listings environ-
ment has been created. Then we define a macro that creates a floating environment
with a custom name, with appropriate settings for a listing environment. We only
allow this macro to be used in the preamble, since later use would wreak havok.

824 \newbool{pytx@listingenv}
825 \def\setpythontexlistingenv#1{

826 \DeclareFloatingEnvironment [fileext=1lopytx,listname={List of Listings},name=Listing]{#1}
827 \booltrue{pytx@listingenv}
828 }

829 \@onlypreamble\setpythontexlistingenv

At the beginning of the document, we issue a warning if the listing envi-
ronment needs to be created but cannot be due to a pre-existing macro (and no
version with a custom name has been created). Otherwise, we create the listing
environment.

830 \AtBeginDocument{

831 \ifcsname listing\endcsname

832 \ifbool{pytx@listingenv}{}/,

833 {\PackageWarning{\pytx@packagename}

834 {A conflicting "listing" environment already existsl}

835 {Use \string\setpythontexlistingenv to create a custom environment}l}’
836 \else

837 \ifbool{pytx@listingenv}{}{\DeclareFloatingEnvironment [fileext=1lopytx]{listing}}
838 \fi

839 }

7.10 Pygments for general code typesetting

After all the work that has gone into PythonTEX thus far, it would be a pity
not to slightly expand the system to allow Pygments typesetting of any language
Pygments supports. While PythonTEX currently can only execute Python code,
it is relatively easy to add support for highlighting any language supported by
Pygments. We proceed to create a \pygment command, a pygments environment,
and an \inputpygments command that do just this. The functionality of these is
very similar to that provided by the minted package.

Both the commands and the environment are created in two forms: one that
actually uses Pygments, which is the whole point in the first place; and one
that uses fancyvrb, which may speed compilation or make editing faster since
pythontex.py need not be invoked. By default, the two forms are switched be-
tween based on the package pygments option, but this may be easily modified as
described below.

66

The Pygments commands and environment operate under the code type
PYG(lexer name). This allows Pygments typesetting of general code to proceed
with very few additions to pythontex.py; in most situations, the Pygments code
types behave just like standard PythonTEX types that don’t execute any code.
Due to the use of the PYG prefix for all Pygments content, the use of this prefix is
not allowed at the beginning of a base name for standard PythonTEX command
and environment families.

We have previously used the suffix Pyg to denote macro variants that use
Pygments rather than fancyvrb. We continue that practice here. To distinguish
the special Pygments typesetting macros from the regular PythonTEX macros, we
use Pygments in the macro names, in addition to any Pyg suffix

7.10.1 Inline Pygments command

\pytx@MakePygmentsInlineFV These macros create an inline command. They reuse the \pytx@Inline macro
\pytx@MakePygmentsInlinePyg sequence. The approach is very similar to the constructors for inline commands,
\pygment except for the way in which the type is defined and for the fact that we have to
check to see if a macro for fancyvrb settings exists. Just as for the PythonTEX
inline commands, we do not currently support fancyvrb options in Pygments
inline commands, since almost all options are impractical for inline usage, and the
few that might conceivably be practical, such as showing spaces, should probably
be used throughout an entire document rather than just for a tiny code snippet
within a paragraph.

We supply an empty optional argument to \pytx@Inline, so that the \pygment
command can only take two mandatory arguments, and no optional argument

(since sessions don’t make sense for code that is merely typeset):

\pygment{(lexer)}{(code)}

840 \def\pytx@MakePygmentsInlineFV{},
841 \newcommand{\pygment} [1]{%

842 \edef\pytxQtype{PYG##11}%

843 \edef\pytx@cmd{inlinev}y,

844 \pytx@SetContext

845 \pytx@SetGroupVerb

846 \let\pytx@InlineShow\pytx@InlineShowFV

847 \let\pytx@InlineSave\Qempty

848 \let\pytx@InlinePrint\@empty

849 \ifcsname pytx@fvsettings@\pytx@type\endcsname
850 \else

851 \expandafter\gdef\csname pytxQ@fvsettings@\pytx@type\endcsname{}/,
852 \fi

853 \pytx@Inline[]%

854 Yh

855 }

856 \def\pytx@MakePygmentsInlinePyg{/
857 \newcommand{\pygment}[1]1{%
858 \edef\pytxQtype{PYG##11}Y

67

\pytx@MakePygmentsEnvFV
pygments

\pytx@BEPygmentsFV

\pytx@BEPygmentsFV@i

859 \edef\pytx@cmd{inlinev}y,

860 \pytx@SetContext

861 \pytx@SetGroupVerb

862 \let\pytx@InlineShow\pytx@InlineShowPyg

863 \let\pytx@InlineSave\pytx@InlineSaveCode

864 \let\pytx@InlinePrint\@empty

865 \ifcsname pytx@fvsettings@\pytx@type\endcsname
866 \else

867 \expandafter\gdef\csname pytx@fvsettings@\pytxQtype\endcsname{}/,
868 \fi

869 \pytx@Inline[]

870 Yh

871 }

7.10.2 Pygments environment

The pygments environment is created to take an optional argument, which corre-
sponds to fancyvrb settings, and one mandatory argument, which corresponds to
the Pygments lexer to be used in highlighting the code.

The pygments environment begins by declaring that it is a Verbatim envi-
ronment and setting variables. Again, some variables are unnecessary, but they
are created to maintain uniformity with other PythonTEX environments. The
environment code is very similar to that of PythonTEX verb environments.

872 \def \pytx@MakePygmentsEnvFV{},

873 \newenvironment{pygments}{%

874 \VerbatimEnvironment

875 \pytx@SetContext

876 \pytx@SetGroupVerb

877 \begingroup

878 \obeylines

879 \@ifnextchar [{\endgroup\pytxO@BEPygmentsFV}{\endgroup\pytx@BEPygmentsFV[]}/,
880 Yh

881 {\end{Verbatim}y,

882 \setcounter{\pytx@linecount}{\value{FancyVerbLine}}},

883 \setcounter{FancyVerbLine}{\value{pytx@FancyVerbLineTempl}}%
884 Yh

885 }

This macro captures the optional argument containing fancyvrb commands.

886 \def\pytx@BEPygmentsFV[#1]{}%
887 \def\pytxQfvopttmp{#1}%

888 \begingroup

889 \obeylines

890 \pytx@BEPygmentsFV@i
891 }

This macro captures the mandatory argument, containing the lexer name, and
proceeds.

68

892 \def \pytx@BEPygmentsFVQi#1{Y
893 \endgroup

894 \edef\pytxQ@type{PYG#1}Y
895 \edef\pytx@cmd{verb}’

896 \edef\pytx@session{default}’

897 \edef\pytx@linecount{pytx@\pytx@type @\pytx@session @\pytx@group @linel}},
898 \pytx@CheckCounter{\pytx@linecount}

899 \ifcsname pytx@fvsettings@\pytx@type\endcsname

900 \else

901 \expandafter\gdef\csname pytx@fvsettings@\pytx@type\endcsname{}/

902 \fi

903 \setcounter{pytx@FancyVerbLineTemp}{\value{FancyVerbLine}}/

904 \setcounter{FancyVerbLine}{\value{\pytx@linecount}}/,

905 \pytxQ@FVSet

906 \ifdefstring{\pytx@fvopttmp}{}{}{\expandafter\fvset\expandafter{\pytx@fvopttmp}}’
907 \begin{Verbatim}},

908 }

\pytx@MakePygmentsEnvPyg The Pygments version is very similar, except that it must bring in external Pyg-
pygments ments content.

909 \def \pytx@MakePygmentsEnvPyg{/

910 \newenvironment{pygments}{/,

911 \VerbatimEnvironment

912 \pytx@SetContext

913 \pytx@SetGroupVerb

914 \begingroup

915 \obeylines

916 \@ifnextchar [{\endgroup\pytxO@BEPygmentsPyg}{\endgroup\pytxO@BEPygmentsPyg[]1}/
917 Yh

918 {\end{VerbatimOut}’,

919 \setcounter{FancyVerbLine}{\value{\pytx@linecount}}/,

920 \pytx@FVSet

921 \ifdefstring{\pytx@fvopttmp}{}{}{\expandafter\fvset\expandafter{\pytx@fvopttmp}l}J
922 \ifcsname FV@SV@\pytx@counter @\arabic{\pytx@counterl}\endcsname

923 \UseVerbatim{\pytx@counter @\arabic{\pytx@counter}}/,

924 \else

925 \InputIfFileExists{\pytx@outputdir/%

926 \pytx@type_\pytx@session_\pytx@group_\arabic{\pytx@counter}.pygtex}{}%
927 {\textbf{7?"\pytxQpackagename~?7}},

928 \PackageWarning{\pytx@packagename}{Non-existent Pygments contentl}}/,
929 \fi

930 \setcounter{\pytx@linecount}{\value{FancyVerbLine}}/

931 \setcounter{FancyVerbLine}{\value{pytx@FancyVerbLineTemp}}/,

932 \stepcounter{\pytx@counter}y,

933 Yh

934 }

\pytx@BEPygmentsPyg This macro captures the optional argument, which corresponds to fancyvrb set-
tings.

69

\pytx@BEPygmentsPyg@i

\pytx@MakePygmentsInputFV
\pytx@MakePygmentsInputPyg

935 \def \pytxO@BEPygmentsPyg [#1]{%
936 \def\pytx@fvopttmp{#1}Y

937 \begingroup

938 \obeylines

939 \pytx@BEPygmentsPyg@i
940 }

This macro captures the mandatory argument, containing the lexer name, and
proceeds.

941 \def \pytx@BEPygmentsPyg@i#1{},

942 \endgroup

943 \edef\pytx@type{PYG#1}Y,

944 \edef\pytx@cmd{verb}’

945 \edef\pytx@session{default}y,

946 \edef\pytx@counter{pytx@\pytxQ@type @\pytx@session @\pytx@groupl’
947 \pytx@CheckCounter{\pytx@counterly,

948 \edef\pytx@linecount{\pytxQcounter Q@linel}j,

949 \pytx@CheckCounter{\pytx@linecount}’

950 \pytx@WriteCodefileInfo

951 \ifcsname pytxQ@fvsettings@\pytxQtype\endcsname

952 \else

953 \expandafter\gdef\csname pytx@fvsettings@\pytx@type\endcsname{}/,
954 \fi

955 \setcounter{pytx@FancyVerbLineTemp}{\value{FancyVerbLine}}%

956 \let\FVB@VerbatimOut\pytx@FVB@VerbatimQut

957 \1let\FVEQ@VerbatimOut\pytx@FVEQVerbatimQut

958 \begin{VerbatimOut}y,

959 }

7.10.3 Special Pygments commands

Code highlighting may be used for some tasks that would never appear in a code
execution context, which is what the PythonTEX part of this package focuses on.
We create some special Pygments macros to handle these highlighting cases.

For completeness, we need to be able to read in a file and highlight it. This
is done through some trickery with the current system. We define the type as
PYG(lexer), and the command as verb. We set the context for consistency. We
set the session as EXT: (file name).?? Next we define a fancyvrb settings macro
for the type if it does not already exist. We write info to the code file using
\pytx@WriteCodefileInfoExt, which writes the standard info to the code file
but uses zero for the instance, since external files that are not executed can only
have one instance.

Then we check to see if the file actually exists, and issue a warning if not. This
saves the user from running pythontex*.py to get the same error. We perform

29There is no possibility of this session being confused with a user-defined session, because
colons are substituted for hyphens in all user-defined sessions, before they are written to the
code file.

70

our typical FancyVerbLine trickery. Next we make use of the saved content in the
same way as the pygments environment. Note that we do not create a counter
for the line numbers. This is because under typical usage an external file should
have its lines numbered beginning with 1. We also encourage this by setting
firstnumber=auto before bringing in the content.

The current naming of the macro in which the Pygments content is saved is
probably excessive. In almost every situation, a unique name could be formed with
less information. The current approach has been taken to maintain parallelism,
thus simplifying pythontex.py, and to avoid any rare potential conflicts.

960 \def\pytx@MakePygmentsInputFV{

961 \newcommand{\inputpygments} [3] [1{%

962 \edef\pytxQ@type{PYG##2}V,

963 \edef\pytx@cmd{verbl}/

964 \pytx@SetContext

965 \pytx@SetGroupVerb

966 \edef\pytx@session{EXT:##3}/

967 \ifcsname pytx@fvsettings@\pytx@type\endcsname

968 \else

969 \expandafter\gdef\csname pytxQ@fvsettings@\pytx@type\endcsname{}/,
970 \fi

971 \setcounter{pytx@FancyVerbLineTemp}{\value{FancyVerbLine}}J,
972 \begingroup

973 \pytx@FVSet

974 \fvset{firstnumber=auto}

975 \IfFileExists{##3}%

976 {\VerbatimInput [##1]{##3}},

977 {\PackageWarning{\pytx@packagename}{Input file <##3> doesn’t exist}}%
978 \endgroup

979 \setcounter{FancyVerbLine}{\value{pytx@FancyVerbLineTemp}}/,
980 Yh

981 }

982 \def \pytx@MakePygmentsInputPyg{

983 \newcommand{\inputpygmentsl} [3] [1{%

984 \edef\pytxQtype{PYG##2}%

985 \edef\pytxQ@cmd{verbl}y,

986 \pytx@SetContext

987 \pytx@SetGroupVerb

988 \edef\pytx@session{EXT: ##3}}

989 \ifcsname pytx@fvsettings@\pytx@type\endcsname

990 \else

991 \expandafter\gdef\csname pytx@fvsettings@\pytxQtype\endcsname{l}/,
992 \fi

993 \pytx@WriteCodefileInfoExt

994 \IfFileExists{##3}{}{\PackageWarning{\pytx@packagenamel}y,
995 {Input file <##3> does not exist}{}}

996 \setcounter{pytx@FancyVerbLineTemp}{\value{FancyVerbLine}}/
997 \begingroup

998 \pytx@FVSet

999 \fvset{firstnumber=autol}

71

\setpygmentsfv

\setpygmentspygopt

\setpygmentsformatter

1000 \ifcsname FV@SVOpytx@\pytx@type Q@\pytx@session @\pytxQgroup Q@0\endcsname

1001 \UseVerbatim[##1]{pytx@\pytx@type @\pytx@session @\pytxQ@group ©0}J

1002 \else

1003 \InputIfFileExists{\pytxQoutputdir/##3_##2.pygtex}{}/

1004 {\textbf{??"\pytxQpackagename~?7}},

1005 \PackageWarning{\pytx@packagename}{Non-existent Pygments contentl}}/,
1006 \fi

1007 \endgroup

1008 \setcounter{FancyVerbLine}{\value{pytx@FancyVerbLineTemp}}/,

1009 Y

1010 }

7.10.4 Creating the Pygments commands and environment

We are almost ready to actually create the Pygments commands and environments.
First, though, we create some macros that allow the user to set fancyvrb settings,
Pygments options, and formatting of Pygments content.

This macro allows fancyvrb settings to be specified for a Pygments lexer. It
takes the lexer name as the optional argument and the settings as the mandatory
argument. If no optional argument (lexer) is supplied, then it sets the document-
wide fancyvrb settings, and is in that case equivalent to \setpythontexfv.

1011 \newcommand{\setpygmentsfv}[2] [1{%

1012 \ifstrempty{#1}%

1013 {\gdef\pytx@fvsettings{#2}}%

1014 {\expandafter\gdef\csname pytxQ@fvsettings@PYG#1\endcsname{#2}}%
1015 }%

This macro allows the Pygments option to be set for a lexer. It takes the lexer
name as the first argument and the options as the second argument. If this macro
is used multiple times for a lexer, it will write the settings to the code file multiple
times. But pythontex*.py will simply process all settings, and each subsequent
set of settings will overwrite any prior settings, so this is not a problem.

1016 \def\setpygmentspygopt#1#2{/,

1017 \AtBeginDocument{\immediate\write\pytx@codefile{},
1018 \pytx@delimsettings pygmentsfamily:PYG#1,#1,%
1019 \string{#2\string}\pytx@delimchar},

1020 Yh

1021 }

1022 \@onlypreamble\setpygmentspygopt

This macro sets the formatter (Pygments or fancyvrb) that is used by the Pyg-
ments commands and environment. There are three options: auto, which depends
on the package pygments option; and pygments and fancyvrb, which override the
package option. By default, auto is used. Since the package Pygments option
is true by default, this means that Pygments content will automatically be high-
lighted by Pygments, and that the behavior of Pygments content will follow the
package option.

72

\makepygmentsfv

The parallel PythonTEX command allows for setting the formatting for indi-
vidual families. The rationale is that the user might use a PythonTEX family for
executing and typesetting code, but not wish to use Pygments to highlight the
code. The Pygments command does not allow for setting the formatter for indi-
vidual lexers, which would be the closest parallel to that behavior. The primary
reason that the user might use the Pygments commands and environments is for
highlighting purposes. Otherwise, there is little reason not to use fancyvrb or an
equivalent directly.>°

1023 \def \setpygmentsformatter#1i{\xdef\pytx@macroformatter@PYG{#1}}
1024 \@onlypreamble\setpygmentsformatter
1025 \setpygmentsformatter{auto}

This macro creates the Pygments commands and environment using fancyvrb, as
a fallback when Pygments is unavailable or when the user desires maximum speed.

1026 \def\makepygmentsfv{y,
1027 \pytx@MakePygmentsInlineFV

1028 \pytx@MakePygmentsEnvFV
1029 \pytx@MakePygmentsInputFV
1030 }%

1031 \@onlypreamble\makepygmentsfv

\makepygmentspyg This macro creates the Pygments commands and environment using Pygments.

\makepygments

We must set the bool pytx@usedpygments true so that pythontex.py knows that
Pygments content is present and must be highlighted.

1032 \def\makepygmentspyg{%

1033 \ifbool{pytx@opt@pyginlinel}’,

1034 {\pytx@MakePygmentsInlinePygl}/
1035 {\pytx@MakePygmentsInlineFV}}
1036 \pytx@MakePygmentsEnvPyg

1037 \pytx@MakePygmentsInputPyg

1038 \booltrue{pytx@usedpygments}

1039 }%

1040 \@onlypreamble\makepygmentspyg

This macro uses the two preceding macros to conditionally define the Pygments
commands and environments, based on the package Pygments settings as well as
the \setpygmentsformatter command that may be used to override the package
settings.

1041 \def \makepygments{/,

1042 \AtBeginDocument{%

1043 \ifdefstring{\pytx@macroformatter@PYG}{autol}/,
1044 {\ifbool{pytx@opt@pygmentsl}y,

1045 {\makepygmentspyg}{\makepygmentsfv}}{}

30The user might want to use Pygments commands for the fancyvrb style and line num-
bering continuity they provide. In that case, a custom Pygments lexer, with formatter set to
fancyvrb should be considered. The verbatim part of a PythonTEX family could also be used.
Alternatively, the Pygments TextLexer (aka text) may be used; it is a null lexer, so nothing is
highlighted.

73

1046 \ifdefstring{\pytx@macroformatter@PYG}{pygments}’
1047 {\makepygmentspygt{}

1048 \ifdefstring{\pytxOmacroformatter@PYG}{fancyvrb}y,
1049 {\makepygmentsfv}{}

1050 Yh

1051 Y

1052 \@onlypreamble\makepygments

We conclude by actually creating the Pygments commands and environments.

1053 \makepygments

Index

Numbers written in italic refer to the page where the corresponding entry is de-
scribed; numbers underlined refer to the code line of the definition; numbers in

roman refer to the code lines where the entry is used.

Symbols
\@bsphack 229, 628
\@empty 417,

435, 447, 458,
459, 471, 481,
494, 847, 848, 864
\@esphack 241, 634
\@ifnextchar .. 258,
261, 278, 281,
304, 307, 322,
325, 339, 349,
525, 556, 586,
614, 644, 661,
679, 707, 879, 916
\@ifpackageloaded
........ 10, 136
\@makeother ... 337
344, 363, 379, 806
\@nil 504
\@noligs 632
\@onlypreamble
106, 129,
138, 146, 732,
757, 766, 775,
793, 803, 820,
829, 1022, 1024,
1031, 1040, 1052
\@tempa 506
\@tempb 507
\{ ... 338, 345, 351, 807
\} .o 346, 352, 808

\~ ... 348, 381, 502, 809
L e 347, 380
A

\active 347,
348, 380, 381, 502
\AfterEndPreamble . 152
\aftergroup 94
\arabic 198,
371, 400, 402,
419, 528, 559,
589, 593, 594,
647, 682, 686,
687, 922, 923, 926
\AtBeginDocument
. 10, 117, 136,
139, 147, 156,
163, 752, 780,
814, 830, 1017, 1042
\AtEndDocument . 207
B
\boolfalse . 16, 21,
41, 47, 59, 70, 88
\booltrue 12, 15, 20,
37, 40, 43, 46,
55, 58, 66, 69,
87, 750, 827, 1038
\BUseVerbatim 402

74

\BVerbatimInput
. 251, 252, 297, 298

\csname
218,
285,
421,
452,
489,
760,
779,
789,
851,
953,

213,
273,
329,
440,
476,
754,
e
784,

751,
769,
783,
790, 796,
867, 901,
969, 991, 1014

D

\DeclareFloatingEnvironment

826, 837
\definepythontexcontext
100

\detokenize
. 368, 512, 626, 817

\do 337, 344, 363, 379, 806

\dospecials ... 337
344, 363, 379, 806

E

\endcsname
140,

218,

273,

.98,
148, 213,
240, 268,
284, 285,

313,
329,
421,
452,
489,

318,
400,
428,
464,
593,
751, 754,
760, 768,
777779,
784, 789,
795, 796,
849, 851,
867, 899,
922, 951,
967, 969, 989,
991, 1000, 1014
\expandafter 213, 217
221, 224, 234,
239, 273, 318,
428, 440, 452,
464, 476, 489
517, 548, 577,
592, 636, 671,
685, 751, 760,
769, TT7-T79,
796, 851, 867,
901, 906, 921,
953, 969, 991, 1014

328,
420,
440,
476,
636,
759,
769,
783,
790,
831,
865,
901,
953,

F
\FancyVerbDefineActive
390
\FancyVerbFormatCom 391
\FancyVerbFormatLine

\FancyVerbGetLine . 543
\fi 98, 141, 149,
289, 319,
407, 425,
513, 599,
764, 773,
801, 838, 852,
868, 902, 929,
954, 970, 992, 1006
\frenchspacing . 387
\FV@@@CheckEnd . 507
\FV@BadEndError . 507
\FV@BeginVBox 386
\FV@CheckEnd 505
\FV@CodeLineNo . 236

274,
333,
507,
692,

\FV@DefineWhiteSpace

........... 389
\FV@EndScanning 508
\FV@EndVBox 394
\FV@EnvironName 506
\FV@FontScanPrep .. 631
\FV@GetLine 511
\FV@Line 510
\FV@0ObeyTabsInit 392
\FV@PreProcessLine . 511
\FV@ProcessLine

233, 235, 630
\FV@Scan 237, 633
\FV@SetupFont 388
\FV@StepLineNo . 235
\FV@TheVerbatim
234-236, 240

\FV@UseKeyValues .. 231
\FVB@SaveVerbatim . 243
\FVB@VerbatimOut

. 619, 665, 712, 956
\FVE@SaveVerbatim . 244
\FVE@VerbatimOut

. 620, 666, 713, 957
\fvset 221,

224, 592, 685,
906, 921, 974, 999

G
\gdef . 212,213, 234,
236, 503, 851,
867, 901, 953,
969, 991, 1013, 1014
\global 239
\graphicspath

\IfBeginWith ..
\ifbool

718, 734

90, 96, 153, 171,
180, 193, 414,
648, 737, 782,
832, 837, 1033, 1044

\ifcsname 98,
140, 268,
284, 328,
400, 593,

636,
795,

759, 768,
831, 849,
865, 899, 922,
951, 967, 989, 1000
\ifcsstring 781, 786, 788
\ifdefstring
219, 222, 592,
685, 906, 921,
1043, 1046, 1048
\IfFileExists
. 247, 293, 975, 994
\ifstrempty ... 211,
342, 535, 566,
606, 655, 699, 1012
\ifstrequal ... 248-
252, 294-298,
357, 582, 583,
728, 729, 747, 748
\IfSubStr 119, 123
\ifx 506, 507
\immediate 164,
165, 169,
172, 176,
178, 183,
185, 189,
191, 196, 202,
208, 412, 512,
626, 752, 815, 1017
\input 248, 249, 295
\InputIfFileExists .
...... 154,
157, 416, 596,
649, 689, 925, 1003
\inputlineno .. 199, 205
\inputpygments 961, 983

167,
174,

181,
187,

131, 164

\left
\let .

.......... 91, 93
91, 92, 217, 239,
243, 244, 266
276, 291, 337
344, 363, 379,
417, 433-435,
445-447, 457
459, 469-471,
481-483, 487,
494-496, 500,

508,
620,
665,

543, 619,
630-632,
666, 669,
712, 713, 716,
806, 846-848,
862-864, 956, 957
812

\makepygments 1041, 1053
\makepygmentsfv
. 1026, 1045, 1049
\makepygmentspyg . .
. 1032, 1045, 1047
\makepythontexfamily
. 776, 800, 821-823
\makepythontexfamilyfv
717, 785, 787
\makepythontexfamilypyg
733, 783, 789
\mathclose 93
\mathopen

\NeedsTeXFormat 1
\newbool 11, 17, 36, 42,
54, 65, 84, 151, 824
\newcounter 98, 226
\newwrite 159
\next 508, 511, 514

(0)

\obeylines

585,

660,

878,
\openout
\originalleft
\originalright

524, 555,
613, 643,
678, 706,
889, 915, 938
164
. 91,93
. 92,94

P
\PackageError
120, 124, 269,
314, 358, 719,
735, 762, 771, 798
\PackageWarning
255, 288, 301,
332, 406, 424,
598, 691, 833,
928, 977, 994, 1005

\pgfkeys 13-16, 18-21,
23-27, 29, 32—
35, 38-41, 44—
47, 49-53, 56—
59, 61, 64, 67—
70, 72, 73, 75—
79, 81-83, 85-88
\printpythontex . 257
\ProcessPgfPackageOptions
89
\ProvidesPackage ... 2
\pygment 840
\pygments 872, 909
\pytx@argdetok
368, 382, 412
\pytx@argretok 382, 393
\pytx@BeginBlockEnvFV
525, 534
\pytx@BeginCodeEnv .
644, 654
\pytx@BeginCodeEnvQi
661, 663
\pytx@BeginConsEnvFV
679, 698
\pytx@BeginConsEnvFVQi
707, 709
\pytx@BeginEnvPyg
586, 605
\pytx@BeginEnvPygQ@i
614, 616
\pytx@BeginVerbEnvFV
556, 565
\pytxOBEPygmentsFV .
879, 886
\pytx@BEPygmentsFVei
890, 892
\pytxOBEPygmentsPyg
916, 935
\pytxOBEPygmentsPygQi
939, 941
\pytx@CheckCounter .
ﬂ7
537, 539,
570, 608,
657, 701,
898, 947, 949

370,

568,

610,

703,
\pytx@cmd
198, 204, 430,

442, 454, 466

478, 491, 520,

76

551, 580, 639,
674, 843, 859
895, 944, 963, 985
\pytx@codefile
159, 164,
167, 169,
174, 176,
181, 183,
187, 189,
196, 202,
208, 412, 512,
626, 752, 815, 1017
\pytxQcontext
100, 199, 205
\pytx@counter
198, 369-371,
375, 400, 402,
419, 528, 531,
536-5638, 559,
562, 567-569,
589, 593, 594,
602, 607-609,
647, 651, 656,
657, 682, 686,
687, 695, T00-
702, 922, 923,
926, 932, 946-948
\pytx@delim 161, 196, 202
\pytx@delimchar
160, 166,
171, 173,
177, 180,
182, 184, 186,
188, 190, 193,
196-199, 202-
205, 754, 817, 1019
\pytx@delimsettings
@7
170,
177,
182, 184,
188, 190,
192, 753, 816, 1018
\pytx@FancyVerbGetLine
501, 543
\pytx@FancyVerbLineTemp
226
\pytxQ@FetchStderrfile
292, 310, 329

165,
172,
178,
185,
191,

168,
175,

\pytxQ@FetchStdoutfile
246, 264, 285
\pytx@FVB@SaveVerbatim
226
\pytxQ@FVB@VerbatimOut
619,
627, 665, 712, 956
\pytx@FVE@SaveVerbatim
238, 244
\pytxOFVE@VerbatimOut
620,
634, 666, 713, 957
\pytx@fvextfile 71, 186
\pytx@fvopttmp 592
617, 685, 710,
887, 906, 921, 936
\pytx@FVSet ... 216,
385, 399, 544,
573, 591, 684,
905, 920, 973, 998
\pytx@fvsettings
210, 222, 224, 1013
\pytx@fvsettings@Q@ .
217, 219, 221
\pytx@group 107, 197,
203, 369, 371,
419, 528, 536,
559, 567, 589,
607, 647, 656,
682, 700, 897,
926, 946, 1000, 1001
\pytx@Inline 335, 436,
448, 460, 472,
484, 497, 853, 869
\pytx@InlineAutoprint
414, 483
\pytx@InlineMacroprint
418, 496
\pytx@InlineMargBgroup
350, 361, 366
\pytx@InlineMargOther
353, 355
\pytx@InlineMargOtherGet
355

\pytx@InlineOarg
339, 341
\pytx@InlinePrint
366, 435,
447, 459, 471,
483, 496, 848, 864

\pytx@InlineSave
366, 434,
446, 458, 470,
482, 495, 847, 863
\pytx@InlineSaveCode
410, 434, 446,
470, 482, 495, 863
\pytx@InlineShow
366, 433,
445, 457, 469
481, 494, 846, 862
\pytx@InlineShowFV .
. 377, 433, 457, 846
\pytx@InlineShowPyg
. 397, 445, 469, 862
\pytx@jobname
. 131, 141, 154, 157
\pytx@linecount
529, 538,
541, 560,
570, 572,
600, 609,
683, 693,
703, 882,
897, 898, 904,
919, 930, 948, 949
\pytx@macroformatter@PYG
....... 1023,
1043, 1046, 1048
\pytx@MakeBlockFV
516, 725
\pytx@MakeBlockPyg .
623, 744

539,
569,
590,
610,
702,

\pytx@MakeCodeFV
635, 669, 727
\pytx@MakeCodePyg
........ 669, 746
\pytx@MakeConsFV
. 670, 716, 728, 729
\pytx@MakeConsoleFV 670
\pytx@MakeConsPyg
716, 747, 748
\pytx@MakeInlinebFV
427, 721, 740
\pytx@MakeInlinebPyg
427, 738
\pytx@MakeInlinecFV
475, 723
\pytx@MakeInlinecPyg
475, 742

\pytxO@MakeInlineFV .
488, 724
\pytx@MakeInlinePyg
488, 743
\pytx@MakeInlinevFV

451, 722, 741
\pytx@MakeInlinevPyg
451, 739

\pytx@MakePygEnv
576, 623, 624
\pytx@MakePygmentsEnvFV
872, 1028
\pytx@MakePygmentsEnvPyg
909, 1036

\pytx@MakePygmentsInlineFV
840, 1027, 1035

\pytx@MakePygmentsInlinePyg

840, 1034
\pytx@MakePygmentsInputFV
960, 1029
\pytx@MakePygmentsInputPyg
960, 1037
\pytx@MakeVerbFV

547, 726
\pytx@MakeVerbPyg

624, 745
419-421
11

\pytx@mcr
\pytxQopt@autoprint
\pytxQopt@depythontex
............ 84
\pytx@opt@fixlr ... 42
\pytxQopt@keeptemps
48, 175
\pytx@opt@pyconbanner
74, 188
\pytxQopt@pyconfilename
80, 190
\pytxQopt@pyfuture .
31, 177
\pytxQopt@pyginline 65
\pytxQopt@pygments . 5H4
\pytxQopt@stderr 17
\pytxQopt@stderrfilename
22,173
\pytxQoptQ@upquote . 36
\pytxQoutputdir
134, 166,
247-252, 293-
298, 416, 596,
649, 689, 925, 1003

\pytx@packagename
3, 120, 124, 254,
255, 269, 287
288, 300, 301,
314, 331, 332,
358, 406, 424,
597, 598, 690,
691, 719, 735,
762, 771, 798,
833, 927, 928,
977, 994, 1004, 1005
\pytx@pyglexer .
60, 60, 61, 182
\pytx@pygopt ... 63, 184
\pytx@session
197, 203,
369,
528,
559,
589,
647,
682,
700, 896, 897,
926, 945, 946,
966, 988, 1000, 1001
\pytx@SetContext
100, 431,
455, 467
492, 521,
581, 640,
675, 844, 860,
875, 912, 964, 986
\pytx@SetCustomCode
810, 812
\pytx@SetGroup 107
432, 444, 480
493, 522, 582, 641
\pytx@SetGroupCons .
107, 676
\pytx@SetGroupVerb .
M7
456, 468, 553,
583, 845, 861,
876, 913, 965, 987
\pytx@Stderr .. 304, 306
\pytx@Stderr@i 307, 309
\pytx@stdfile
245, 264,
273, 310, 318,
371, 416, 528,

342,
419,
536,
567,
607,
656,

655,
699,

443,
479,
552,

559, 589, 596,
647, 649, 682, 689
\pytx@Stdout .. 258, 260
\pytx@Stdout@i 261, 263
\pytx@type 196,
202, 369,
371, 429,
441, 465,
477, 519,
528, 550,
559, 579,
589, 638,
647, 673,
682, 842,
849, 858,
865, 894,
897, 901,
926, 946,
951, 953, 962,
967, 969, 984,
989, 991, 1000, 1001
\pytx@usedpygments . 151
\pytxQ@UseStderr 322, 324
\pytxQ@UseStderr@i
325, 327
\pytx@UseStdout 278, 280
\pytx@UseStdout@i
281, 283

218,
419,
453,
490,
536,
567,
607,
656,
700,
851,
867,
899,
943,

\pytx@workingdir

143, 144, 168

\pytx@WriteCodefileInfo
195, 411, 542,

611, 658, 704, 950

\savestdoutpythontex
\SaveVerbatim@Name .
........ 232, 240
\setcounter
228, 242, 401,
403, 529, 530,
540, 541, 560,
561, 571, 572,
590, 600, 601,
618, 650, 664,
683, 693, 694,
711, 882, 883,
903, 904, 919,
930, 931, 955,
971, 979, 996, 1008
\setpygmentsformatter
1023
\setpygmentsfv . 1011
\setpygmentspygopt 1016
\setpythontexcustomcode
804
\setpythontexformatter
794

\setpythontexfv
210, 730, 749
\setpythontexlistingenv
824, 835
\setpythontexoutputdir
134
\setpythontexpyglexer
758
\setpythontexpygopt 767

\pytx@WriteCodefileInfoExt\setpythontexworkingdir

195, 993

\pytx@WriteDetok

625, 630

\relax 631, 632, 809
\renewcommand ... 93, 94
\RequirePackage 4-10, 96
\restartpythontexsession

107, 129, 130
92, 94

\saveprintpythontex 267
\savestderrpythontex

143
- 303

\stderrpythontex
\stdoutpythontex

\stepcounter
375, 531, 562,

602, 651, 695, 932
\string 121,
122, 125, 126,
160-162, 184,

754, 800, 835, 1019
\StrSubstitute 131-
133, 342, 535,

566, 606, 655, 699

T
\textbf 254, 287, 300,

331, 405, 423, 561, 571, 572, 169, 172, 174,

597, 690, 927, 1004 590, 600, 601, 176, 178, 181,
\the 199, 205 618, 650, 664, 183, 185, 187,
\tokenize 382 683, 693, 694, 189, 191, 196,
711, 882, 883, 202, 412, 512,
U 903, 904, 919, 626, 752, 815, 1017
\useprintpythontex . 277 930, 931, 955,
\usestderrpythontex 321 971, 979, 996, 1008 X
\usestdoutpythontex 277 \VerbatimEnvironment \xdef 371, 429,
\UseVerbatim 518, 549, 578, 441, 453, 465,
594, 687, 923, 1001 637, 672, 874, 911 477, 490, 519,
\VerbatimInput 528, 550, 559,
\4 . 250, 294, 296, 976 579, 589, 638,
\value 228, 242, 401, 647, 673, 682,
403, 529, 530, W 751, 760, 769,
540, 541, 560, \write 165, 167, 777779, 796, 1023

79

	Introduction
	Installing and running
	Installing PythonTeX
	Compiling documents using PythonTeX

	Usage
	Package options
	Code commands and environments
	Inline commands
	Environments
	Default families, PythonTeX utilities, and custom code
	Formatting of typeset code
	Access to printed content (stdout) and error messages (stderr)

	Pygments commands and environments
	General code typesetting
	Listings float
	Background colors
	Referencing code by line number
	Beamer compatibility

	Advanced PythonTeX usage

	Questions and answers
	Troubleshooting
	The future of PythonTeX
	To Do
	Modifications to make
	Modifications to consider

	Implementation
	Package opening
	Required packages
	Package options
	Autoprint
	stderr
	stderrfilename
	Python's __future__ module
	Upquote
	Fix math spacing
	Keep temporary files
	Pygments
	Python console environment
	De-PythonTeX
	Process options

	Utility macros and input/output setup
	Automatic counter creation
	Code context
	Code groups
	File input and output
	Interface to fancyvrb
	Access to printed content (stdout)
	Access to stderr

	Inline commands
	Inline core macros
	Inline command constructors

	Environments
	Block and verbatim environment constructors
	Code environment constructor
	Console environment constructor

	Constructors for macro and environment families
	Default commands and environment families
	Listings environment
	Pygments for general code typesetting
	Inline Pygments command
	Pygments environment
	Special Pygments commands
	Creating the Pygments commands and environment

