The pythontex package

Geoffrey M. Poore
gpoore@gmail.com

Version 0.10beta from 2013/01/09

Abstract

PythonTEX allows Python code entered within a ITEX document to be
executed, and the output to be included within the original document. This
provides access to the full power of Python from within WTEX, simplifying
Python-KTEX workflow and making possible a range of document customiza-
tion and automation. It also allows macro definitions that mix Python and
KTEX code. In addition, PythonTEX provides syntax highlighting for many
programming languages via the Pygments syntax highlighter.

PythonTEX is fast and user-friendly. Python code is only executed when
it has been modified. When code is executed, it automatically attempts
to run in parallel. If Python code produces errors, the error message line
numbers are synchronized with the BTEX document line numbers, so that it
is easy to find the misbehaving code. Code dependencies may be specified
so that code is automatically re-executed whenever they change.

Warning

PythonTEX makes possible some pretty amazing things. But that power brings
with it a certain risk and responsibility. Compiling a document that uses
PythonTEX involves executing Python code on your computer. You should only
compile PythonTEX documents from sources you trust. PythonTEX comes with
NO WARRANTY.! The copyright holder and any additional authors will not be
liable for any damages.

Package status

PythonTEX is currently in “beta,” but a full release and submission to CTAN is
very close. It has been tested under Windows with TEX Live and Python 2.7 and
3.2, under OS X (10.7) with MacPort’s TEX Live and Python 2.7, and under Linux
(Ubuntu) with TeX Live and Python 2.7.

LAIl INTEX code is licensed under the I4TEX Project Public License (LPPL) and all Python
code is licensed under the BSD 3-Clause License.

gpoore@gmail.com
http://www.latex-project.org/lppl.txt
http://www.opensource.org/licenses/BSD-3-Clause

Contents

1 Introduction 4
2 Installing and running 7
2.1 Installing PythonTEX 7
2.2 Compiling documents using PythonTgX 9

3 Usage 11
3.1 Packageoptions L 11
3.2 Code commands and environments 15
3.2.1 Inlinecommands 16

3.2.2 Environmentso oo 17

3.2.3 Default families 0oL 18

324 Customcode 19

3.2.5 PythonTgEX utilities class 20

3.2.6 Formatting of typeset code 22

3.2.7 Access to printed content (stdout) and error messages (stderr) 22

3.3 Pygments commands and environments 24
3.4 General code typesetting oL 25
3.4.1 Listingsfloat 25

3.4.2 Background colors L oL 25

3.4.3 Referencing code by line number 25

3.4.4 Beamer compatibility 000000 26

3.5 Advanced PythonTEX usage 27

4 KETEX programming with PythonTEX 28
4.1 Macro programming with PythonTgX 28
4.2 Package writing with PythonTeX 29

5 Questions and answers 30
6 Troubleshooting 30
7 The future of PythonTEX 30
71 ToDo e 30
7.1.1 Modifications tomake oL 30

7.1.2 Modifications to consider 31
Version History 32
8 Implementation 35
8.1 Package opening Lo 35
8.2 Required packageso o 35
8.3 Packageoptions L 35
83.1 Runall 36

832 Rerun 36

8.4

8.5

8.6

8.7
8.8
8.9
8.10

8.11

8.3.3 Hashdependencies, 36

8.3.4 Autoprint 36
8.3.5 Print/stdout 37
8.3.6 stderr 37
8.3.7 stderrfilename Lo 38
8.3.8 Python’s __future__module 38
8.3.9 Upquote 38
8.3.10 Fix math spacing 38
8.3.11 Keep temporary files oL 39
8.3.12 Pygments 39
8.3.13 Python console environment 41
8.3.14 De-PythonTeX 41
8.3.15 Processoptions L. 42
Utility macros and input/output setup 42
8.4.1 Automatic counter creation 42
8.4.2 Codecontext 42
8.4.3 Code groups e 43
8.4.4 File input and output 44
8.4.5 Interface to fancyvrb 49
8.4.6 Access to printed content (stdout) 51
84.7 Accesstostderr. L. 53
Inline commands L o o 55
8.5.1 Inline core macros, 99
8.5.2 Inline command constructors 60
Environments L L 63
8.6.1 Block and verbatim environment constructors 63
8.6.2 Code environment constructor 69
8.6.3 Console environment constructor 72
Constructors for macro and environment families 73
Default commands and environment families. 76
Listings environment Lo Lo 7
Pygments for general code typesetting 78
8.10.1 Inline Pygments command 78
8.10.2 Pygments environment 79
8.10.3 Special Pygments commands 82
8.10.4 Creating the Pygments commands and environment 83
Final cleanup 85

1 Introduction

BTEX can do a lot,? but the programming required can sometimes be painful.?
Also, in spite of the many packages available for IXTEX, the libraries and packages
of a general-purpose programming language are lacking. For these reasons, there
have been multiple attempts to allow other languages to be used within BTEX.*

e PerlTEX allows the bodies of IMTEX macros to be written in Perl.

o SageTEX allows code for the Sage mathematics software to be executed from
within a BTEX document.

e Martin R. Ehmsen’s python. sty provides a very basic method of executing
Python code from within a BTEX document.

e SympyTEX allows more sophisticated Python execution, and is largely based
on a subset of SageTEX.

o LuaTgX extends the pdfTEX engine to provide Lua as an embedded scripting
language, and as a result yields tight, low-level Lua integration.

PythonTEX attempts to fill a perceived gap in the current integrations of M TEX
with an additional language. It has a number of objectives, only some of which
have been met by previous packages.

Execution speed

In the approaches mentioned above, all the non-IATEX code is executed
at every compilation of the ITEX document (PerlTEX, LuaTgX, and
python.sty), or all the non-I¥TEX code is executed every time it is modified
(SageTEX and SympyTEX). However, many tasks such as plotting and data
analysis take significant time to execute. We need a way to fine-tune code
execution, so that independent blocks of slow code may be separated into
their own sessions and are only executed when modified. If we are going
to split code into multiple sessions, we might as well run these sessions in
parallel, further increasing speed. A byproduct of this approach is that it
now becomes much more feasible to include slower code, since we can still
have fast compilations whenever the slow code isn’t modified.

Compiling without executing
Even with all of these features to boost execution speed, there will be times
when we have to run slow code. Thus, we need the execution of non-ETEX
code to be separated from compiling the IXTEX document. We need to be

2TEX is a Turing-complete language.

3As I learned in creating this package.

4Two additional examples not explicitly discussed here are Sweave and knitr, which combine
IMTEX with the R language for tasks such as dynamic report generation. These are quite so-
phisticated. Since they are inspired by noweb (the .tex source is generated from .Rnw), passing
information from IATEX to R can be non-trivial and thus the TEX integration is weaker in that
sense.

http://www.ctan.org/tex-archive/macros/latex/contrib/perltex/
http://www.ctan.org/tex-archive/macros/latex/contrib/sagetex/
http://web.archive.org/web/20080728170129/www.imada.sdu.dk/~ehmsen/python.sty
http://elec.otago.ac.nz/w/index.php/SympyTeX
http://www.luatex.org/
http://www.stat.uni-muenchen.de/~leisch/Sweave/
http://yihui.name/knitr/

able to edit and compile a document containing unexecuted code. Unexe-
cuted code should be invisible or be replaced by placeholders. SageTEX and
SympyTEX have implemented such a separation of compiling and executing.
In contrast, LuaTEX and PerlTEX execute all the code at each compilation—
but that is appropriate given their goal of simplifying macro programming.

Error messages

Whenever code is saved from a BTEX document to an external file and then
executed, the line numbers for any error messages will not correspond to the
line numbering of the original B TEX document. At one extreme, python.sty
doesn’t attempt to deal with this issue, while at the other extreme, Sage TEX
uses an ingenous system of Try/Except statements on every chunk of code.
We need a system that translates all error messages so that they correspond
to the line numbering of the original KTEX document, with minimal overhead
when there are no errors.

Syntax highlighting

Once we begin using non-I#TEX code, sooner or later we will likely wish to
typeset some of it, which means we need syntax highlighting. A number
of syntax highlighting packages currently exist for I/ TEX; perhaps the most
popular are listings and minted. listings uses pure IETEX. It has not
been updated since 2007, which makes it a less ideal solution in some cir-
cumstances. minted uses the Python-based syntax highlighter Pygments to
perform highlighting. Pygments can provide superior syntax highlighting,
but minted can be very slow because all code must be highlighted at each
compilation and each instance of highlighting involves launching an external
Python process. We need high-speed, user-friendly syntax highlighting via
Pygments.

Printing

It would be nice for the print statement/function,® or its equivalent, to
automatically return its output within the KXTEX document. For example,
using python. sty it is possible to generate some text while in Python, open a
file, save the text to it, close the file, and then \input the file after returning
to ITEX. But it is much simpler to generate the text and print it, since
the printed content is automatically included in the ETEX document. This
was one of the things that python.sty really got right.

Pure code
KTEX has a number of special characters (# $ % & ~ _ ~ \ { }), which
complicates the entry of code in a non-KTEX language since these same
characters are common in many languages. SageTEX and SympyTEX de-
limit all inline code with curly braces ({}), but this approach fails in the
(somewhat unlikely) event that code needs to contain an unmatched brace.
More seriously, they do not allow the percent symbol % (modular arithmetic

5In Python, print was a statement until Python 3.0, when it became a function. The function
form is available via import from __future__ in Python 2.6 and later.

and string formatting in Sage and Python) to be used within inline code.
Rather, a \percent macro must be used instead. This means that code
must (sometimes) be entered as a hybrid between WTEX and the non-IATEX
language. LuaTgX is somewhat similar: “The main thing about Lua code in
a TeX document is this: the code is expanded by TeX before Lua gets to it.
This means that all the Lua code, even the comments, must be valid TeX!”6
In the case of LuaTEX, though, there is the luacode package that allows for
pure Lua.

This language hybridization is not terribly difficult to work around in the
SageTEX and SympyTEX cases, and is actually a LuaTgX feature in many
contexts. But if we are going to create a system for general-purpose access
to a non-KTEX language, we need all valid code to work correctly in all
contexts, with no hybridization of any sort required. We should be able
to copy and paste valid code into a I¥TEX document, without having to
worry about hybridizing it. Among other things, this means that inline code
delimiters other than KTEX’s default curly braces {} must be available.

Hybrid code
Although we need a system that allows input of pure non-I¥TEX code, it
would also be convenient to allow hybrid code, or code in which EKTEX
macros may be present and are expanded before the code is executed. This
allows ITEX data to be easily passed to the non-IATEX language, facilitat-
ing a tighter integration of the two languages and the use of the non-I¢TEX
language in macro definitions.

Math and science libraries

The author decided to create PythonTEX after writing a physics disserta-
tion using TEX and realizing how frustrating it can be to switch back and
forth between a TEX editor and plotting software when fine-tuning figures.
We need access to a non-IXTEX language like Python, MATLAB, or Mathe-
matica that provides strong support for data analysis and visualization. To
maintain broad appeal, this language should primarily involve open-source
tools, should have strong cross-platform support, and should also be suitable
for general-purpose programming,.

Language-independent implementation
It would be nice to have a system for executing non-I4TEX code that depends
very little on the language of the code. We should not expect to be able
to escape all language dependence. But if the system is designed to be
as general as possible, then it may be expanded in the future to support
additional languages.

Python was chosen as the language to fulfill these objectives for several reasons.

e It is open-source and has good cross-platform support.

Shttp://wiki.contextgarden.net/Programming_in_LuaTeX

http://wiki.contextgarden.net/Programming_in_LuaTeX

e It has a strong set of scientific, numeric, and visualization packages, including
NumPy, SciPy, matplotlib, and SymPy. Much of the initial motivation for
PythonTEX was the ability to create publication-quality plots and perform
complex mathematical calculations without having to leave the TEX editor.

e We need a language that is suitable for scripting. Lua is already available
via LuaTEX, and in any case lacks the math and science tools.” Perl is al-
ready available via PerlTEX, although Perl TEX’s emphasis on Perl for macro
creation makes it rather unsuitable for scientific work using the Perl Data
Language (PDL) or for more general programming. Python is one logical
choice for scripting.

Now at this point there will almost certainly be some reader, sooner or later,
who wants to object, “But what about language X!” Well, yes, in some respects
the choice to use Python did come down to personal preference. But you should
give Python a try, if you haven’t already. You may also wish to consider the
many interfaces that are available between Python and other languages. If you
still aren’t satisfied, keep in mind PythonTEX’s “language-independent” imple-
mentation! Although PythonTEX is written to support Python within KTEX, the
implementation has been specially crafted so that other languages may be sup-
ported in the future. See Section 7 for more details.

2 Imnstalling and running

2.1 Installing PythonTEX

PythonTEX requires a TEX installation. TgX Live or MiKTEX are preferred.
PythonTEX requires the Kpathsea library, which is available in both of these
distributions. The following KTEX packages, with their dependencies, are also
required: fancyvrb, etex, etoolbox, xstring, pgfopts, newfloat, and color or
xcolor. If you are creating and importing graphics using Python, you will also
need graphicx. The mdframed package is recommended for enclosing typeset code
in boxes with fancy borders and/or background colors.

PythonTEX also requires a Python installation. Python 2.7 is recommended
for the greatest compatibility with scientific tools. Python 3.1 and later will work
as well. Earlier versions of Python 2 and 3 are not compatible, at least not
without several modifications to the PythonTEX scripts. The Python package
Pygments must be installed for syntax highlighting to function. PythonTEX has
been tested with Pygments 1.4 and later, but the latest version is recommended.
For scientific work, or to compile orthe PythonTEX gallery file, the following are
also recommended: NumPy, SciPy, matplotlib, and SymPy.

PythonTEX consists of the following files:

e Installer file pythontex. ins

7One could use Lunatic Python, and some numeric packages for Lua are in development.

http://numpy.scipy.org/
http://www.scipy.org/
http://matplotlib.sourceforge.net/
http://sympy.org
http://pdl.perl.org/
http://pdl.perl.org/
http://www.tug.org/texlive/
http://miktex.org/
http://www.python.org/
http://pygments.org/
http://numpy.scipy.org/
http://www.scipy.org/
http://matplotlib.sourceforge.net/
http://sympy.org
http://labix.org/lunatic-python
http://numlua.luaforge.net/

e Documented IXTEX source file pythontex.dtx, from which pythontex.pdf
and pythontex.sty are generated

e Main Python scripts pythontex2.py and pythontex3.py

e Helper scripts pythontex_utils2.py and pythontex_types2.py, and pythontex_utils3.py
and pythontex_types3.py

e Installation script pythontex_install_texlive (for TEX Live)
e README.rst

e Optional batch files pythontex2.bat and pythontex3.bat for use in launch-
ing pythontex*.py under Windows

The style file pythontex. sty may be generated by running I#TEX on pythontex. ins.
The documentation you are reading may be generated by running ETEX on
pythontex.dtx. Two versions of all of the Python scipts are supplied, one for
Python 2 and one for Python 3.8

Until PythonTEX is submitted to CTAN (or if you always want the absolute
latest version), it must be installed manually. A Python installation script is
provided for use with TEX Live. It has been tested with Windows, Linux, and
OS X, but may need manual input or slight modifications depending on your
system. The installation script performs the steps described below. Note that you
may have to run the script with elevated privileges, and may need to run it using
the user’s PATH. For example, under Ubuntu Linux, you may need the following:

sudo env PATH=$PATH python pythontex_install_texlive.py

The PythonTEX files should be installed within the TEX directory structure as
follows.

e (TgX tree root)/doc/latex/pythontex/

— pythontex.pdf
— README

e (TEX tree root)/scripts/pythontex/

— pythontex2.py and pythontex3.py
— pythontex_types2.py and pythontex_types3.py
— pythontex_utils2.py and pythontex_utils3.py

o (TEX tree root)/source/latex/pythontex/

8Unfortunately, it is not possible to provide full Unicode support for both Python 2 and 3
using a single script. Currently, all code is written for Python 2, and then the Python 3 version
is automatically generated via the pythontex_2to3.py script. This script comments out code
that is only for Python 2, and un-comments code that is only for Python 3.

— pythontex.dtx
o (TEX tree root)/tex/latex/pythontex/
— pythontex.sty

After the files are installed, the system must be made aware of their existence.
Run mktexlsr to do this. In order for pythontex*.py to be executable, a sym-
link (TgX Live under Linux), launching wrapper (TgX Live under Windows),
or batch file (general Windows) should be created in the bin/(system) direc-
tory. For TEX Live under Windows, simply copy bin/win32/runscript.exe to
bin/win32/pythontex*.exe to create the wrapper (replace the * with the appro-
priate version).?

2.2 Compiling documents using PythonTEX

Compiling a document with PythonTEX involves three steps: running a KTEX-
compatible TEX engine, running pythontex*.py (preferably via a symlink, wrap-
per, or batch file, as described above), and finally running the TEX engine again.
The first TEX run saves code into an external file where PythonTEX can access it.
The second TEX run pulls the PythonTEX output back into the document.

If you plan to use code that contains Unicode characters (or other characters
beyond ASCII) you should make sure that your document is properly configured:

e Under pdfLaTeX, your documents need \usepackage[T1]{fontenc} and
\usepackage [utf8] {inputenc}, or a similar configuration.

e Under LuaLaTeX, your documents need \usepackage{fontspec}, or a sim-
ilar configuration.

e Under XeLaTeX, your documents need \usepackage{fontspec} as well as
\defaultfontfeatures{Ligatures=TeX}, or a similar configuration.

For an example of a PythonTEX document that will correctly compile under all
three engines, see the pythontex_gallery.tex source.

If you use XeLaTeX, and your source code contains tabs, you must invoke
XeLaTeX with the -8bit option so that tabs will be written to file as actual tab
characters rather than as the character sequence ~~I.10

pythontex*.py requires a single command-line argument: the name of the .tex
file. The filename can be passed with or without the .tex extension, but no exten-
sion is preferred.'' The file name should be wrapped in double quotes " to allow

9See the output of runscript -h under Windows for additional details.
10See http://tex.stackexchange.com/questions/58732/how-to-output-a-tabulation-into-a-file
for more on tabs with XeTeX.
Hpythontex*.py will be happy to work with a file that does not have the .tex extension, so
long as the file cooperates with pythontex.sty. In this case, the file extension should not be
passed to pythontex*.py, because it won’t be expecting it and won’t be able to determine that
it is indeed an extension. pythontex*.py just needs to know \jobname.

http://tex.stackexchange.com/questions/58732/how-to-output-a-tabulation-into-a-file

for space characters.!? For example, under Windows with TEX Live and Python
2.7 we would create the wrapper pythontex2.exe. Then we could run PythonTEX
on a file (file name).tex using the command pythontex2.exe "(file name)". You
will probably want to configure your TEX editor with a shortcut key for running
PythonTEX automatically.

pythontex*.py accepts the following optional command-line arguments. Some
of these options duplicate package-level options, so that settings may be config-
ured either within the document or at the command line. In the event that the
command-line and package options conflict, the package options always override
the command-line options. For variations on these options that are acceptable,
run pythontex*.py -h.

e —-encoding=(encoding) This sets the file encoding. Any encoding supported
by Python’s codecs module may be used. If an encoding is not specified,
PythonTEX uses UTF-8. Note that the encoding must be used consis-
tently; the .tex source, the PythonTEX output, and any external code files
that PythonTEX highlights should all use the same encoding. If support
for characters beyond ASCII is required, then additional IATEX packages are
required; see the discussion of TEX engines above.

e --error-exit-code={true,false} By default, pythontex*.py returns an
exit code of 1 if there were any errors, and an exit code of 0 otherwise.
This may be useful when PythonTEX is used in a scripting or command-line
context, since the presence of errors may be easily detected. It is also useful
with some TEX editors. For example, TeXworks automatically hides the
output of external programs unless there are errors.

But in some contexts, returning a nonzero exit code can be redundant.
For example, with the WinShell editor under Windows with TeX Live, the
complete output of PythonTEX is always available in the “Output” view,
so it is clear if errors have occurred. Having a nonzero exit code causes
runscript.exe to return an additional, redundant error message in the
“Output” view. In such situations, it may be desirable to disable the nonzero
exit code.

e --runall=[{true,false}] This causes all code to be executed, regardless of
whether it has been modified. It is useful when code has not been modified,
but a dependency such as a library or external data has changed. Note that
the PythonTEX utilities class also provides a mechanism for automatically
re-executing code that depends on external files when those external files are
modified.

There is an equivalent runall package option. The command-line option
--rerun=all is also equivalent.

12Using spaces in the names of .tex files is apparently frowned upon. But if you configure
things to handle spaces whenever it doesn’t take much extra work, then that’s one less thing
that can go wrong.

10

http://docs.python.org/library/codecs.html
http://www.tug.org/texworks/
http://winshell.de/

e --rerun={modified,errors,warnings,all} This sets the threshold for re-
executing code. By default, PythonTEX will rerun code that has been modi-
fied or that produced errors on the last run. Sometimes, we may wish to have
a more lenient setting (only rerun if modified) or a more stringent setting
(rerun even for warnings, or just rerun everything). modified only executes
code that has been modified (or that has modified dependencies). errors
executes all modified code as well as all code that produced errors on the
last run; this is the default. warnings executes all modified code, as well
as all code that produced errors or warnings. all executes all code and is
equivalent to --runall.

There is an equivalent rerun package option.

e --hashdependencies=[{true,false}] This determines whether dependen-
cies (external files highlighted by Pygments, code dependencies specified via
pytex.add_dependencies(), etc.) are considered to be modified based on
their hash or modification time. By default, mtime is used, since it is faster.
The package option hashdependencies is equivalent.

PythonTEX currently does not provide means to choose between multiple
Python installations; it will use the default Python installation. Support for mul-
tiple installations is unlikely to be added, since a cross-platform solution would
be required.!® If you need to work with multiple installations, you may wish
to modify pythontex_types*.py to create additional command and environment
families that invoke different versions of Python, based on your system.

PythonTEX attempts to check for a wide range of errors and return mean-
ingful error messages. But due to the interaction of EXTEX and Python code,
some strange errors are possible. If you cannot make sense of errors when
using PythonTEX, the simplest thing to try is deleting all files created by
PythonTEX, then recompiling. By default, these files are stored in a directory
called pythontex-files-{jobname), in the same directory as your .tex document.
See Section 6 for more details regarding Troubleshooting.

3 Usage

3.1 Package options
Package options may be set in the standard manner when the package is loaded:
\usepackage [{options)]{pythontex}

All options are described as follows. The option is listed, followed by its possible
values. When a value is not required, (none) is listed as a possible value. In this
case, the value to which (none) defaults is also given. Each option lists its default
setting, if the option is not invoked when the package is loaded.

13Python 3.3’s py launcher for Windows may make this more feasible.

11

runall=(none)/true/false
default:false (none)=true

Some options have a command-line equivalent. Package options override
command-line options.

This option causes all code to be executed, regardless of whether it has been
modified. This option is primarily useful when code depends on external files,
and needs to be re-executed when those external files are modified, even though
the code itself may not have changed. Note that the PythonTEX utilities class
also provides a mechanism for automatically re-executing code that depends on
external files when those external files are modified.

A command-line equivalent --runall exists for pythontex*.py. The package
option rerun=all is also equivelent.

rerun=modified/errors/warnings/all

default:errors

This option sets the threshold for re-executing code. By default, PythonTEX
will rerun code that has been modified or that produced errors on the last run.
Sometimes, we may wish to have a more lenient setting (only rerun if modified)
or a more stringent setting (rerun even for warnings, or just rerun everything).
modified only executes code that has been modified. errors executes all modified
code as well as all code that produced errors on the last run; this is the default.
warnings executes all modified code, as well as all code that produced errors or
warnings. all executes all code and is equivalent to the package option runall.

A command-line equivalent --rerun exists for pythontex*.py.

hashdependencies=(none)/true/false

default:false (none)=true

autoprint=(none)/true/false
default:true (none)=true

print=(none)/true/false
default:true (none)=true
stdout=(none)/true/false
default:true (none)=true

When external code files are highlighted with Pygments, or external dependen-
cies are specified via the PythonTEX utilities class, they are checked for modifi-
cation via their modification time (Python’s os.path.getmtime()). Usually, this
should be sufficient—and it offers superior performance, which is important if data
sets are large enough that hashing takes a noticeable amount of time. However,
occasionally hashing may be necessary or desirable, so this option is provided.

A command-line equivalent --hashdependencies exists for pythontex*.py.

Whenever a print command/statement is used, the printed content will au-
tomatically be included in the document, unless the code doing the printing is
being typeset. In that case, the printed content must be included using the
\printpythontex or \stdoutpythontex commands.

Printed content is pulled in directly from the external file in which it is saved,
and is interpreted by ITEX as IATEX code. If you wish to avoid this, you should
print appropriate BTEX commands with your content to ensure that it is typeset
as you desire. Alternatively, you may use \printpythontex or \stdoutpythontex
to bring in printed content in verbatim form, using those commands’ optional verb
and inlineverb (v) options.

The autoprint option sets autoprint behavior for the entire document. This
may be overridden within the document using the \setpythontexautoprint com-
mand.

12

This option determines whether printed content/content written to stdout is
included in the document. Since printed content should almost always be in-
cluded, a warning is raised when it is not. Not including printed content is useful
when the printed content contains IXTEX errors, and would cause document com-
pilation to fail. When the document fails to compile, this can prevent modified
Python code from being written to the code file, resulting in an inescapable loop
unless printed content is disabled.

As is typical for PythonTEX settings dealing with stdout/printing, two equiv-
alent forms are provided based on the names print and stdout.

Note that since commands like \py involve printing, they are also disabled if
print or stdout is set to false.

stderr=(none)/true/false
default:false (nome)=true This option determines whether the stderr produced by scripts is available for
input by PythonTgX, via the \stderrpythontex macro. This will not be needed
in most situations. It is intended for typeseting incorrect code next to the errors
that it produces. This option is not true by default, because additional processing
is required to synchronize stderr with the document.
stderrfilename=full/session/genericfile/genericscript
default:full This option governs the file name that appears in stderr. Python errors begin
with a line of the form

File "<file or source>", line <line>

By default (option full), <file or source> is the actual name of the script that
was executed. The name will be in the form (family name)_(session) _(group) . { extension).
For example, an error produced by a py command or environment, in the session
mysession, using the default group (that is, the default \restartpythontexsession
treatment), would be reported in py_mysession_default.py. The session op-
tion replaces the full file name with the name of the session, mysession.py in this
example. The genericfile and genericscript options replace the file name
with <file> and <script>, respectively.
pyfuture=none/all/default
default:default Under Python 2, this determines what is automatically imported from
__future__ for all code. none imports nothing from __future__; all imports ev-
erything available in Python 2.7 (absolute_import, division, print_function,
and unicode_literals); and default imports everything except unicode_literals,
since unicode_literals can conflict with some packages. Note that imports from
__future__ are also allowed within sessions, so long as they are at the very be-
ginning of the session, as they would have to be in a normal script.
This option has no effect under Python 3.
upquote=(none)/true/false
default:true (none)=true This option determines whether the upquote package is loaded. In general, the
upquote package should be loaded, because it ensures that quotes within verbatim
contexts are “upquotes,” that is, ' rather than ’.
Using upquote is important beyond mere presentation. It allows code to be
copied directly from the compiled PDF and executed without any errors due to
quotes ’ being copied as acute accents ~

13

fixlr=(none)/true/false
default:true (none)=true

This option removes extra spacing around \left and \right in math mode.
This spacing is often undesirable, especially when typesetting functions such as
the trig functions. See the implementation for details.

keeptemps=(none)/all/code/none

default:none (none)=all

pygments=(none)/true/false
default:true (none)=true

pyglexer=(pygments lexzer)
default:(none)

pygopt={(pygments options)}
default:(none)

pyginline=(none)/true/false
default:true (none)=true

fvextfile=(none)/(integer)
default:co (none)=25

When PythonTEX runs, it creates a number of temporary files. By default,
none of these are kept. The none option keeps no temp files, the code option
keeps only code temp files (these can be useful for debugging), and the all option
keeps all temp files (code, stdout and stderr for each code file, etc.). Note that this
option does not apply to any user-generated content, since PythonTEX knows very
little about that; it only applies to files that PythonTEX automatically creates by
itself.

This allows the user to determine at the document level whether code is typeset
using Pygments rather than fancyvrb.

Note that the package-level Pygments option can be overridden for individual
command and environment families, using the \setpythontexformatter com-
mand; the \setpygmentsformatter command provides equivalent functionality
for the Pygments commands and environments. Overriding is never automatic
and should generally be avoided, since using Pygments to highlight only some
content results in an inconsistent style. Keep in mind that Pygment’s text lexer
and/or bw style can be used when content needs little or no syntax highlighting.

This allows a Pygments lexer to be set at the document level. In general, this
option should not be used. It overrides the default lexer for all commands and
environments, for both PythonTEX and Pygments content, and this is usually not
desirable. It should be useful primarily when all content uses the same lexer, and
multiple lexers are compatible with the content.

This allows Pygments options to be set at the document level. The op-
tions must be enclosed in curly braces {}. Currently, three options may
be passed in this manner: style=(style name), which sets the formatting
style; texcomments, which allows KITEX in code comments to be rendered;
and mathescape, which allows HTEX math mode ($...$) in comments. The
texcomments and mathescape options may be used with an argument (for exam-
ple, texcomments=True/False); if an argument is not supplied, True is assumed.
Example: pygopt={style=colorful, texcomments=True, mathescape=False}.

Pygments options for individual command and environment families may
be set with the \setpythontexpygopt macro; for Pygments content, there is
\setpygmentspygopt. These individual settings are always overridden by the
package option.

This option governs whether inline code, not just code in environments, is

highlighted when Pygments highlighting is in use. When Pygments is in use, it
will highlight everything by default.

14

This option speeds the typesetting of long blocks of code that are created
on the Python side. This includes content highlighted using Pygments and the
console environment. Typesetting speed is increased at the expense of creating
additional external files (in the PythonTEX directory). The (integer) determines
the number of lines of code at which the system starts using multiple external
files, rather than a single external file. See the implementation for the technical
details; basically, an external file is used rather than fancyvrb’s SaveVerbatim,
which becomes increasingly inefficient as the length of the saved verbatim content
grows. In most situations, this option should not be needed, or should be fine with
the default value or similar “small” integers.

pyconbanner=none/standard/default/pyversion

default:none

pyconfilename=stdin/console
default:stdin

This option governs the appearance (or disappearance) of a banner at the be-
ginning of Python console environments. (A banner only appears in the first envi-
ronment within each session.) The options none (no banner), standard (standard
Python banner), default (default banner for Python’s code module, standard
banner plus interactive console class name), and pyversion (banner in the form
Python x.y.z) are accepted.

This governs the form of the filename that appears in error messages in Python
console environments. Python errors messages have a form such as the following:

>>> z =1+ 34 +
File "<name>", line 1
z=1+ 34 +

SyntaxError: invalid syntax

The stdin option replaces <name> with <stdin>, as it appears in a standard
Python interactive session. The console option uses <console> instead, which
is the default setting for the Python code module used by PythonTEX to create
Python console environments.

3.2 Code commands and environments

PythonTEX provides four types of commands for use with inline code and three
environments for use with multiple lines of code, plus a console environment. All
commands and environments are named using a base name and a command- or
environment-specific suffix. A complete set of commands and environments with
the same base name constitutes a command and environment family. In what
follows, we describe the different commands and environments, using the py base
name (the py family) as an example.

Most commands and environments cannot be used in the preamble, because
they typeset material and that is allowed in the preamble. The one exception is
the code command and environment. These can be used to enter code, but need
not typeset anything. This allows you to collect your PythonTEX code in the
preamble, if you wish, or even use PythonTEX in package writing.

15

All commands and environments take a session name as an optional argument.
The session name determines the session in which the code is executed. This allows
code to be executed in multiple independent sessions, increasing speed (sessions
run in parallel) and preventing naming conflicts. If a session is not specified, then
the default session is used. Session names should use the characters a-z, A-Z, 0-9,
the hyphen, and the underscore; all characters used must be valid in file names,
since session names are used to create temporary files. The colon is also allowed,
but it is replaced with a hyphen internally, so the sessions code:1 and code-1 are
identical.

In addition, all environments take fancyvrb settings as a second, optional ar-
gument. See the fancyvrb documentation for an explanation of accepted settings.
This second optional argument must be preceeded by the first optional argument
(session name). If a named session is not desired, the optional argument can be
left empty (default session), but the square brackets [] must be present so that
the second optional argument may be correctly identified:

\begin{{environment)} [1 [{fancyvrd settings)]

3.2.1 Inline commands

Inline commands are suitable for single lines of code that need to be executed
within the body of a paragraph or within a larger body of text. The commands
use arbitrary code delimiters (like \verb does), which allows the code to contain
arbitrary characters. Note that this only works properly when the inline commands
are not inside other macros. If an inline command is used within another macro,
the code will be read by the external macro before PythonTEX can read the special
code characters (that is, WIEX will tokenize the code). The inline commands can
work properly within other macros, but you should stick with curly braces for
delimiters in this case and you may have trouble with the hash # and percent %
characters.
\py [(session)](opening delim)(code)(closing delim)

This command is used for including variable values or other content that can
be converted to a string. It is an alternative to including content via the print
statement /function within other commands/environments.

The \py command sends (code) to Python, and Python returns a string repre-
sentation of (code). (opening delim) and (closing delim) must be either a pair of
identical, non-space characters, or a pair of curly braces. Thus, \py{1+1} sends
the code 1+1 to Python, Python evaluates the string representation of this code,
and the result is returned to BTEX and included as 2. The commands \py#1+1#
and \py@1+1@ would have the same effect. The command can also be used to
access variable values. For example, if the code a=1 had been executed previously,
then \py{a} simply brings the string represantation of a back into the document
as 1.

Assignment is not allowed using \py. For example, \py{a=1} is not valid.
This is because assignment cannot be converted to a string.'*

141t would be simple to allow any code within \py, including assignment, by using a try/except

16

http://www.ctan.org/tex-archive/macros/latex/contrib/fancyvrb

The text returned by Python must be valid IETEX code. If you need to include
complex text within your document, or if you need to include verbatim text, you
should use the print statement/function within one of the other commands or
environments. The primary reasons to use \py rather than print are (1) \py
is more compact and (2) print requires an external file to be created for every
command or environment in which it is used, while \py and equivalents for other
families share a single external file. Thus, use of \py minimizes the creation of
external files, which is a key design goal for PythonTEX.!?

\pyc[(session)](opening delim){code){closing delim)

This command is used for executing but not typesetting (code). The suffix ¢
is an abbreviation of code. If the print statement/function is used within (code),
printed content will be included automatically so long as the package autoprint
option is set to true (which is the default setting).

\pyv[(session)](opening delim){code){closing delim)

This command is used for typesetting but not executing (code). The suffix v

is an abbreviation for verbatim.
\pyb[(session)](opening delim)(code){closing delim)

This command both executes and typesets (code). Since it is unlikely that the
user would wish to typeset code and then immediately include any output of
the code, printed content is not automatically included, even when the package
autoprint option is set to true. Rather, any printed content is included at a user-
designated location via the \printpythontex and \stdoutpythontex macros.

3.2.2 Environments

pycode [(session)][{fancyvrb settings)]

This environment encloses code that is executed but not typeset. The second
optional argument (fancyvrb settings) is irrelevant since nothing is typeset, but
it is accepted to maintain parallelism with the verb and block environments. If
the print statement/function is used within the environment, printed content will
be included automatically so long as the package autoprint option is set to true
(which is the default setting).

pyverb [(session)][{fancyvrb settings)]

This environment encloses code that is typeset but not executed. The suffix
verb is an abbreviation for verbatim.

pyblock [(session)][{fancyvrd settings)]

statement. In this way, the functionality of \py and \pyc could be merged. While that would
be simpler to use, it also has serious drawbacks. If \py is not exclusively used to typeset string
representations of (code), then it is no longer possible on the INTEX side to determine whether
a command should return a string. Thus, it is harder to determine, from within a TEX editor,
whether pythontex*.py needs to be run; warnings for missing Python content could not be issued,
because the system wouldn’t know (on the IXTEX side) whether content was indeed missing.
15For \py, the text returned by Python is stored in macros and thus must be valid IATEX code,
because IATEX interprets the returned content. The use of macros for storing returned content
means that an external file need not be created for each use of \py. Rather, all macros created
by \py and equivalent commands from other families are stored in a single file that is inputted.

17

This environment encloses code that is both executed and typeset. Since it is
unlikely that the user would wish to typeset code and then immediately print any
output of the code, printed content is not automatically included, even when the
package autoprint option is set to true. Rather, any printed content is included
at a user-designated location via the \printpythontex or \stdoutpythontex
macros.

pyconsole [(session)][{fancyvrd settings)]

This environment treats its contents as a series of commands passed to an
interactive Python console. Python’s code module is used to intersperse the com-
mands with their output, to emulate an interactive Python interpreter. Unlike the
other environments, pyconsole has no inline equivalent. Currently, non-ASCII
characters are not supported in console environments under Python 2.

When a multi-line command is entered (for example, a function definition), a
blank line after the last line of the command may be necessary.

Unlike other commands and environments, the console environment currently
does not bring in any imports by default and does not load custom code. This
functionality will probably be added in the near future.

3.2.3 Default families
By default, three command and environment families are defined.
e Python
— Base name py: \py, \pyc, \pyv, \pyb, pycode, pyverb, pyblock,
pyconsole
— Imports: None.
e Python + pylab (matplotlib module)
— Base name pylab: \pylab, \pylabc, \pylabv, \pylabb, pylabcode,
pylabverb, pylabblock, pylabconsole

— Imports: matplotlib’s pylab module, which provides access to much of
matplotlib and NumPy within a single namespace. pylab content is
brought in via from pylab import x*.

— Additional notes: matplotlib added a pgf backend in version 1.2. You
will probably want to use this for creating most plots. However, this
is not currently configured automatically because many users will want
to customize font, TEX engine, and other settings. Using TEX to create
plots also introduces a speed penalty.

e Python + SymPy

— Base name sympy: \sympy, \sympyc, \sympyv, \sympyb, sympycode,
sympyverb, sympyblock, sympyconsole

— Imports: SymPy via from sympy import *.

18

http://matplotlib.org/users/pgf.html

— Additional notes: By default, content brought in via \sympy is format-
ted using a context-sensitive interface to SymPy’s LatexPrinter class,
described below.

Under Python 2.7, all families import absolute_import, division, and
print_function from __future__ by default. This may be changed using the
package option pyfuture. Keep in mind that importing unicode_literals from
__future__ may break compatibility with some packages; this is why it is not
imported by default. Imports from __future__ are also possible without us-
ing the pyfuture option. You may use the \pythontexcustomc command or
pythontexcustomcode environment (described below), or simply enter the im-
port commands immediately at the beginning of a session.

3.2.4 Custom code

You may wish to customize the behavior of one or more families within a document
by adding custom code to the beginning and end of each session. The custom code
command and environment make this possible.

If you wish to share these customizations among several documents, you can
create your own document class or package containing custom code commands
and environments.

While custom code can be added anywhere in a document, it is probably best
for organizational reasons to add it in the preamble or at least at the very beginning
of the document.

Note that custom code is executed, but never typeset. Only code that is
actually entered within a block (or verb) command or environment is ever typeset.
This means that you should be careful about how you use custom code. For
example, if you are documenting code, you probably want to show absolutely all
code that is executed, and in that case using custom code might not be appropriate.
If you are using PythonTEX to create figures or automate text, are using many
sessions, and require many imports, then custom code could save some typing by
centralizing the imports.

\pythontexcustomc [{position)]{({family)}{(code)}

This macro allows custom code to be added to all sessions within a command
and environment family. (position) should be either begin or end; it determines
whether the custom code is executed at the beginning or end of each session. By
default, custom code is executed at the beginning. (code) should be a single
line of code. For example, \pythontexcustomc{py}{a=1; b=2} would create the
variables a and b within all sessions of the py family, by invisibly adding that line
of code at the beginning of each session.

If you need to add more than a single line of custom code, you could
use the command multiple times, but it will be more efficient to use the
pythontexcustomcode environment.

(code) may contain imports from __future__. These must be the first elements
in any custom code command or environment, since __future__ imports are only
possible at the very beginning of a Python script and only the very beginning of

19

custom code is checked for them. If imports from __future__ are present at the
beginning of both custom code and the user’s code, all imports will work correctly;
the presence of the imports in custom code, before user code, does not turn off
checking for __future__ imports at the very beginning of user code. However, it
is probably best to keep all __future__ imports in a single location.

(code) may not contain TEX macros. (code) is interpreted as verbatim con-
tent, since in general the custom code will not be valid IXTEX.

pythontexcustomcode [(position)]{({family)}

This is the environment equivalent of \pythontexcustomc. It is used for adding
multi-line custom code to a command and environment family. In general, the en-
vironment should be preferrred to the command unless only a very small amount of
custom code is needed. The environment has the same properties as the command,
including the ability to include imports from __future__.

3.2.5 PythonTgX utilities class

All families import pythontex_utils*.py, and create an instance of the PythonTEX
utilities class called pytex. This provides various utilities for interfacing with
ETEX and PythonTEX.

The utilities class provides an interface for determining how Python objects are
converted into strings in commands such as \py. The pytex.set_formatter ({formatter))
method is used to set the conversion. Two formatters are provided:

e ’str’ converts Python objects to a string, using the str() function un-
der Python 3 and the unicode() function under Python 2. (The use of
unicode () under Python 2 should not cause problems, even if you have not
imported unicode_literals and are not using unicode strings. All encod-
ing issues should be taken care of automatically by the utilities class.)

e ’sympy_latex’ uses SymPy’s LatexPrinter class to return context-sensitive
KTEX representations of SymPy objects. Separate LatexPrinter set-
tings may be created for the following contexts: ’display’ (displaystyle
math), ’text’ (textstyle math), ’script’ (superscripts and subscripts),
and ’scriptscript’ (superscripts and subscripts, of superscripts and sub-
scripts). Settings are created via pytex.set_sympy_latex ({context), (settings)).
For example, pytex.set_sympy_latex(’display’, mul_symbol=’times’)
sets multiplication to use a multiplication symbol x, but only when math is
in displaystyle.'® See the SymPy documentation for a list of possible settings
for the LatexPrinter class.

By default, >sympy_latex’ only treats matrices differently based on context.
Matrices in displaystyle are typeset using pmatrix, while those in all other
styles are typeset via smallmatrix with parentheses.

16Tnternally, the ’sympy_latex’ formatter uses the \mathchoice macro to return multiple
representations of a SymPy object, if needed by the current settings. Then \mathchoice typesets
the correct representation, based on context.

20

http://docs.sympy.org/dev/modules/printing.html

The PythonTEX utilities formatter may also be set to a custom function that
returns strings, simply by reassigning the pytex.formatter () method. For exam-
ple, define a formatter function my_func (), and then pytex.formatter=my_func.

The context-sensitive interface to SymPy’s LatexPrinter is always avail-
able via pytex.sympy_latex(). If you wish to use it outside the sympy
command and environment family, you must either change the formatter via
pytex.set_formatter(’sympy_latex’), or initialize the method manually via
via pytex.init_sympy_latex().

The utilities class also provides methods for tracking dependencies and created
files.

e pytex.add_dependencies ({(dependencies)) This adds (dependencies) to a
list. If any dependencies in the list change, code is re-executed, even if
the code itself has not changed. (Changed dependencies are determined via
either hash or mtime; see package option hashdependencies for details.)
This method is useful for tracking changes in external data and similar files.

(dependencies) should be one or more strings, separated by commas, that
are the file names of dependencies. Dependencies should be given with
relative paths from the current working directory, with absolute paths,
or with paths based on the user’s home directory (that is, starting with
a tilde 7). Remember that by default, the working directory is the
pythontex-files-(jobname) directory where all PythonTEX temporary
files are stored. This can be adjusted with \setpythontexworkingdir.

e pytex.add_created({created files)) This adds (created files) to a list of files
created by the current session. Any time the code for the current session is
executed, all of these files will be deleted. Since this method deletes files,
it should be used with care. It is intended for automating cleanup when code
is modified. For example, if a figure’s name is changed, the old figure would
be deleted if its name had been added to the list. By default, PythonTEX
can only clean up the temporary files it creates; it knows nothing about
user-created files. This method allows user-created files to be specified, and
thus added to PythonTEX’s automatic cleanup.

(created files) should be one or more strings, separated by commas, that
are the file names of created files. Paths should be the same as for
pytex.add_dependencies(): relative to the working directory, absolute,
or based on the user’s home directory.

Depending on how you use PythonTEX, this method may not be very ben-
eficial. If all of the output is contained in the default output directory, or
a similar directory of your choosing, then manual cleanup may be simple
enough that this method is not needed.

These two methods may be used manually. However, that is prone to errors, since
you will have to modify both a PythonTEX utilities command and an open or save
command every time you change a file name or add or remove a dependency or
created file. It may be better to redefine your open and save commands, or define

21

new ones, so that a single command opens (or saves) and adds a dependency (or
adds a created file).

3.2.6 Formatting of typeset code

\setpythontexfv[(family)l{({fancyvrb settings)}

This command sets the fancyvrb settings for all command and environment
families. Alternatively, if an optional argument (family) is supplied, the settings
only apply to the family with that base name. The general command will override
family-specific settings.

Each time the command is used, it completely overwrites the previous settings.
If you only need to change the settings for a few pieces of code, you should use
the second optional argument in block and verb environments.

Note that \setpythontexfv and \setpygmentsfv are equivalent when they
are used without an optional argument; in that case, either may be used to deter-
mine the document-wide fancyvrb settings, because both use the same underlying
macro.

\setpythontexformatter{(family)}{(formatter)}

This should generally not be needed. It allows the formatter used by (family)
to be set. Valid options for (formatter) are auto, fancyvrb, and pygments. Using
auto means that the formatter will be determined based on the package pygments
option. Using either of the other two options will force (family) to use that for-
matter, regardless of the package-level options. By default, families use the auto
formatter.

Remember that Pygments has a text lexer and a bw style. These are an
alternative to setting the formatter to use fancyvrb.

\setpythontexpyglexer{(family)}{(pygments lezer)}

This allows the Pygments lexer to be set for (family). (pygments lexer) should
use a form of the lexer name that does not involve any special characters. For
example, you would want to use the lexer name csharp rather than C#. This will be
a consideration primarily when using the Pygments commands and environments
to typeset code of an arbitrary language.

\setpythontexpygopt{(family)}{(pygments options)}

This allows the Pygments options for (family) to be redefined. Note that any
previous options are overwritten. The same Pygments options may be passed
here as are available via the package pygopt option. Note that for each available
option, individual family settings will be overridden by the package-level pygopt
settings, if any are given.

3.2.7 Access to printed content (stdout) and error messages (stderr)

The macros that allow access to printed content and any additional content written

to stdout are provided in two identical forms: one based off of the word print and

one based off of stdout. Macro choice depends on user preference. The stdout

form provides parallelism with the macros that provide accesss to stderr.
\printpythontex [(verbatim options)] [(fancyvrb options)]

22

\stdoutpythontex [(verbatim options)] [(fancyvrb options)]

Unless the package option autoprint is true, printed content from code com-
mands and environments will not be automatically included. Even when the
autoprint option is turned on, block commands and environments do not auto-
matically include printed content, since we will generally not want printed content
immediately after typeset code. This macro brings in any printed content from
the last command or environment. It is reset after each command/environment,
so its scope for accessing particular printed content is very limited. It will return
an error if no printed content exists.

By default, printed content is brought in raw—it is pulled in directly from
the external file in which it is saved and interpreted as BTEX code. If you wish
to avoid this, you should print appropriate ITEX commands with your content
to ensure that it is typeset as you desire. Alternatively, you may supply an op-
tional argument verb or inlineverb (also accesible as v), which brings in content
verbatim. If code is brought in verbatim, then (fancyvrb options) are applied to
it.

\saveprintpythontex{(name)}

\savestdoutpythontex{(name)}

\useprintpythontex[{verbatim options)] [{fancyvrb options)]l{(name)}
\usestdoutpythontex [(verbatim options)] [{fancyvrd options)]l{(name)}

We may wish to be able to access the printed content from a command or
environment at any point after the code that prints it, not just before any addi-
tional commands or environments are used. In that case, we may save access to
the content under (name), and access it later via \useprintpythontex{(name)}.
(verbatim options) must be either verb or inlineverb (also accessible as v), spec-
ifying how content is brought in verbatim. If content is brought in verbatim, then
(fancyvrb options) are applied.

\stderrpythontex [(verbatim options)] [(fancyvrb options)]

This brings in the stderr produced by the last command or environment. It
is intended for typesetting incorrect code next to the errors that it produces. By
default, stderr is brought in verbatim. (verbatim options) may be set to verb
(default), inlineverb (or v), and raw. In general, bringing in stderr raw should
be avoided, since stderr will typically include special characters that will make
TEX unhappy.

The line number given in the stderr message will correctly align with the line
numbering of the typeset code. Note that this only applies to code and block
environments. Inline commands do not have line numbers, and as a result, they
do not produce stderr content.

By default, the file name given in the message will be in the form

(family name)_(session)_{group) . (extension)

For example, an error produced by a \py command or environment, in the session
mysession, using the default group (that is, the default \restartpythontexsession
treatment), would be reported in py_mysession_default.py. The package op-
tion stderrfilename may be used to change the reported name to the following
forms: mysession.py, <file>, <script>.

23

\savestderrpythontex{(name)}
\usestderrpythontex[(verbatim options)] [(fancyvrb options)l{(name)}

Content written to stderr may be saved and accessed anywhere later in the
document, just as stdout content may be. These commands should be used with
care. Using Python-generated content at multiple locations within a document
may often be appropriate. But an error message will usually be most meaningful
in its context, next to the code that produced it.

\setpythontexautoprint{({boolean)}

This allows autoprint behavior to be modified at various points within the
document. The package-level autoprint option is also available for setting au-
toprint at the document level, but it is overridden by \setpythontexautoprint.
(boolean) should be true or false.

3.3 Pygments commands and environments

Although PythonTEX’s goal is primarily the execution and typesetting of Python
code from within ITEX, it also provides access to syntax highlighting for any
language supported by Pygments.

\pygment{(lezer)}(opening delim)(code)(closing delim)

This command typesets (code) in a suitable form for inline use within a para-
graph, using the specified Pygments (lezer). Internally, it uses the same macros
as the PythonTEX inline commands. {(opening delim) and (closing delim) may be
a pair of any characters except for the space character, or a matched set of curly
braces {}.

As with the inline commands for code typesetting and execution, there is not an
optional argument for fancyvrb settings, since almost all of them are not relevant
for inline usage, and the few that might be should probably be used document-wide
if at all.

pygments [(fancyvrb settings)]{(lezer)}

This environment typesets its contents using the specified Pygments (lexer)

and applying the (fancyvrb settings).
\inputpygments [(fancyvrb settings)l{(lezer)}{(ezternal file)}

This command brings in the contents of (external file), highlights it using

(lezer), and typesets it using (fancyvrb settings).
\setpygmentsfv[(lezer)]{(fancyvrb settings)}

This command sets the (fancyvrb settings) for (lexer). If no (lexer) is supplied,
then it sets document-wide (fancyvrb settings). In that case, it is equivalent to
\setpythontexfv{(fancyvrb settings)}.

\setpygmentspygopt{(lezer)}{(pygments options)}

This sets (lexzer) to use (pygments options). If there is any overlap between
(pygments options) and the package-level pygopt, the package-level options over-
ride the lexer-specific options.

\setpygmentsformatter{(formatter)}

This usually should not be needed. It allows the formatter for Pygments con-
tent to be set. Valid options for (formatter) are auto, fancyvrb, and pygments.
Using auto means that the formatter will be determined based on the package

24

pygments option. Using either of the other two options will force Pygments con-
tent to use that formatter, regardless of the package-level options. The auto
formatter is used by default.

Remember that Pygments has a text lexer and a bw style. These are an
alternative to setting the formatter to use fancyvrb.

3.4 General code typesetting
3.4.1 Listings float

listing

PythonTEX will create a float environment listing for code listings, unless
an environment with that name already exists. The 1isting environment is cre-
ated using the newfloat package. Customization is possible through newfloat’s
\SetupFloatingEnvironment command.

\setpythontexlistingenv{(alternate listing environment name)}

In the event that an environment named listing already exists for some other
purpose, PythonTEX will not override it. Instead, you may set an alternate name
for PythonTEX’s 1isting environment, via \setpythontexlistingenv.

3.4.2 Background colors

PythonTEX uses fancyvrb internally to typeset all code. Even code that is high-
lighted with Pygments is typeset afterwards with fancyvrb. Using fancyvrb, it
is possible to set background colors for individual lines of code, but not for entire
blocks of code, using \FancyVerbFormatLine (you may also wish to consider the
formatcom option). For example, the following command puts a green background
behind all the characters in each line of code:

\renewcommand{\FancyVerbFormatLine} [1] {\colorbox{green}{#1}}

If you need a completely solid colored background for an environment, or
a highly customizable background, you should consider the mdframed package.
Wrapping PythonTEX environments with mdframed frames works quite well. You
can even automatically add a particular style of frame to all instances of an envi-
ronment using the command

\surroundwithmdframed [{frame options)]{{environment)}

Or you could consider using etoolbox to do the same thing with mdframed or an-
other framing package of your choice, via etoolbox’s \BeforeBeginEnvironment
and \AfterEndEnvironment macros.

3.4.3 Referencing code by line number

It is possible to reference individual lines of code, by line number. If code is
typeset using pure fancyvrb, then ITEX labels can be included within com-
ments. The labels will only operate correctly (that is, be treated as IWTEX rather

25

than verbatim content) if fancyvrb’s commandchars option is used. For example,
commandchars=\\\{\} makes the backslash and the curly braces function nor-
mally within fancyvrb environments, allowing ETEX macros to work, including
label definitions. Once a label is defined within a code comment, then referencing
it will return the code line number.

The disadvantage of the pure fancyvrb approach is that by making the back-
slash and curly braces command characters, we can produce conflicts if the code
we are typesetting contains these characters for non-IATEX purposes. In such a
case, it might be possible to make alternate characters command characters, but
it would probably be better to use Pygments.

If code is typeset using Pygments (which also ties into fancyvrb), then this
problem is avoided. The Pygments option texcomments=true has Pygments look
for XTEX code only within comments. Possible command character conflicts with
the language being typeset are thus eliminated.

Note that when references are created within comments, the references them-
selves will be invisible within the final document but the comment character(s) and
any other text within comments will still be visible. For example, the following

abc = 123 # An important line of code!\ref{lst:important}
would appear as
abc = 123 # An important line of code!

If a comment only contains the \ref command, then only the comment character
would actually be visible in the typeset code. If you are typesetting code for
instructional purposes, this may be less than ideal. Unfortunately, Pygments
currently does not allow escaping to BTEX outside of comments (though this
feature has been requested). At the same time, by only allowing references within
comments, Pygments does force us to only create code that would actually run.
And in many cases, if a line is important enough to reference, it is also important
enough for a brief comment.

3.4.4 Beamer compatibility

PythonTEX is compatible with Beamer. Since PythonTEX typesets code as verba-
tim content, Beamer’s fragile option must be used for any frame that contains
typeset code. Beamer’s fragile option involves saving frame contents to an ex-
ternal file and bringing it back in. This use of an external file breaks PythonTEX’s
error line number synchronization, since the error line numbers will correspond to
the temporary external file rather than to the actual document.

If you need to typeset code with Beamer, but don’t need to use overlays on the
slides containing code, you should use the fragile=singleslide option. This al-
lows verbatim content to be typeset without using an external file, so PythonTEX’s
error line syncronization will work correctly.

26

http://www.ctan.org/pkg/beamer

3.5 Advanced PythonTEX usage

\restartpythontexsession{(counter value(s))}

This macro determines when or if sessions are restarted (or “subdivided”).
Whenever (counter value(s)) change, the session will be restarted.

By default, each session corresponds to a single code file that is executed.
But sometimes it might be convenient if the code from each chapter or section
or subsection were to run within its own file, as its own session. For exam-
ple, we might want each chapter to execute separately, so that changing code
within one chapter won’t require that all the code from all the other chapters
be executed. But we might not want to have to go to the bother and ex-
tra typing of defining a new session for every chapter (like \py[ch1]{(code)}).
To do that, we could use \restartpythontexsession{\thechapter}. This
would cause all sessions to restart whenever the chapter counter changes. If
we wanted sessions to restart at each section within a chapter, we would
use \restartpythontexsession{\thechapter(delim)\thesection}. (delim) is
needed to separate the counter values so that they are not ambiguous (for ex-
ample, we need to distinguish chapter 11-1 from chapter 1-11). Usually (delim)
should be a hyphen or an underscore; it must be a character that is valid in file
names.

Note that counter values, and not counters themselves, must be supplied as
the argument. Also note that the command applies to all sessions. If it did not,
then we would have to keep track of which sessions restarted when, and the lack
of uniformity could easily result in errors on the part of the user.

Keep in mind that when a session is restarted, all continuity is lost. It is best
not to restart sessions if you need continuity. If you must restart a session, but
also need to keep some data, you could save the data before restarting the session
and then load the saved data after the restart. This approach should be used with
extreme caution, since it can result in unanticipated errors due to sessions not
staying synchronized.'”

This command can only be used in the preamble.

\setpythontexoutputdir{{output directory)’}

By default, PythonTEX saves all automatically generated content in a directory
called pythontex-files-(sanitized jobname), where (sanitized jobname) is just
\jobname with any space characters or asterisks replaced with hyphens. This di-
rectory will be created by pythontex*.py. If we wish to specify another directory
(for example, if \jobname is long and complex, and there is no danger of two files
trying to use the same directory), then we can use the \setpythontexoutputdir
macro to redefine the output directory.

17For example, suppose sessions are restarted based on chapter. session-chi saves a data file,
and session-ch2 loads it and uses it. You write the code, and run PythonTEX. Then you realize
that session-chl needs to be modified and make some changes. The next time PythonTEX
runs, it will only execute session-chl, since it detects no code changes in session-ch2. This
means that session-ch2 is not updated, at least to the extent that it depends on the data
from session-chl. Again, saving and loading data between restarted sessions, or just be-
tween sessions in general, can produce unexpected behavior and should be avoided. (Note:
the pytex.add_dependencies() method does provide a workaround for this scenario.)

27

\setpythontexworkingdir{(working directory)}

The PythonTEX working directory is the current working directory for
PythonTEX scripts. This is the directory in which any open or save operations will
take place, unless a path is explicitly specified. By default, the working directory is
the same as the output directory. For example, if you are writing my_file.tex and
save a matplotlib figure with savefig(’my_figure.pdf’), then my_figure.pdf
will be created in the output directory pythontex-files-my_file. But maybe
you have a directory called plots in your document root directory. In that
case, you could leave the working directory unchanged, and simply specify the
relative path to plots when saving. Or you could set the working directory
to plots using \setpythontexworkingdir{plots}, so that all content would
automatically be saved there. If you want your working directory to be the
document root directory, you should use a period (.) for (working directory):
\setpythontexworkingdir{.}.

Note that in typical use scenarios, you should be able to use the output direc-
tory as the working directory. graphicx will automatically look for images and
figures in the output directory (this is set via \graphicspath).

It is also possible to change the working directory from within Python code,
via os.chdir ().

4 KETEX programming with PythonTEX

This section will be expanded in the future. For now, it offers a brief summary.

4.1 Macro programming with PythonTgX

In many situations, you can use PythonTEX commands inside macro definitions
without any special consideration. For example, consider the following macro, for
calculating powers.

\newcommand{\pow} [2] {\py{#1**#2}}

Once this is defined, we can calculate 2**8 via \pow{2}{8}: 256. Similarly, we
can reverse a string.

\newcommand{\reverse}[1]{\py{"#1"[::-1]}}

Now we can use \reverse{‘‘This is some text!’’}: "ltxet emos si sihT*.

Such approaches will break down when some special IATEX characters such
as percent % and hash # must be passed as arguments. In such cases, the argu-
ments need to be captured verbatim. The xparse and newverbs packages provide
commands for creating macros that capture verbatim arguments. You could also
consult the PythonTEX implementation, particularly the implementation of the
inline commands. In either case, you may need to learn about TEX’s catcodes and
tokenization, if you aren’t already familiar with them.

28

Of course, there are many cases where macros don’t need arguments. Here is
code for creating a macro that generates random polynomials.

\begin{sympycode}
from sympy.stats import DiscreteUniform, sample
x = Symbol(’x’)
a = DiscreteUniform(’a’, range(-10, 11))
b = DiscreteUniform(’b’, range(-10, 11))
¢ = DiscreteUniform(’c’, range(-10, 11))
def randquad():
return Eq(sample(a)*x**2 + sample(b)*x + sample(c))
\end{sympycode}
\newcommand\randquad{\sympy{randquad O }}

If you are considering writing macros that involve PythonTEX, you should keep
a few things in mind.

e Do you really need to use PythonTEX? If another package already provides
the functionality you need, it may be simpler to use an existing tool, partic-
ularly if you are working with special characters and thus need to capture
verbatim arguments.

e A feature called depythontex is currently under development. Its goal is
to create a copy of the original .tex document, and replace all PythonTEX
commands in the copy with their output, so that the new document does not
depend on PythonTEX at all. This is primarily of interest for publication,
since publishers tend not to like special packages or macros. It is possible that
depythontex will support custom user commands beyond those supplied by
the PythonTEX package. If that happens, though, user commands would
likely need to be rewritten with new tools supplied by PythonTgX. So if
you decide to create custom macros now, and expect to need depythontex
when it is released, you should expect to have to edit your macros before
they will work with depythontex (assuming that custum user macros will
work at all).

4.2 Package writing with PythonTEX

As of v0.10beta, the custom code command and environment, and the regular
code command and environment, work in the preamble. This means that it is now
possible to write packages that incorporate PythonTEX! At this point, packages
are probably a good way to keep track of custom code that you use frequently,
and maybe some macros that use PythonTEX.

However, you are encouraged not to develop a huge mathematical or sci-
entific package for I¥TEX using PythonTEX. At least not yet! As discussed
above, depythontex may bring many changes to macro programming involving
PythonTEX. So have fun writing packages if you want—Dbut keep in mind that
PythonTEX will keep changing, and some things that are difficult now may be
very simple in the future.

29

5 Questions and answers

Will you add a plot command that automates the saving and inclusion of
plots or other graphics created by matplotlib or similar packages?
There are no plans to add a plot command like \pyplot. A plot command
would add a little convenience, but at the expense of power. Automated
saving would give the plot an automatically generated name, making the
file harder to find. Automated inclusion would involve collecting a lot of
settings and then passing them on to \includegraphics, perhaps within
figure and center environments. It is much simpler for the user to choose
a meaningful name and then include the file in the desired manner.

6 Troubleshooting

A more extensive troubleshooting section will be added in the future.

If a PythonTEX document will not compile, you may want to delete the direc-
tory in which PythonTEX content is stored and try compiling from scratch. It is
possible for PythonTEX to become stuck in an unrecoverable loop. Suppose you
tell Python to print some BTEX code back to your HTEX document, but make a
fatal INTEX syntax error in the printed content. This syntax error prevents KTEX
from compiling. Now suppose you realize what happened and correct the syntax
error. The problem is that the corrected code cannot be executed until ETEX
correctly compiles and saves the code externally, but IXTEX cannot compile until
the corrected code has already been executed. The simplest solution in such cases
is to correct the code, delete all files in the PythonTEX directory, compile the
ETEX document, and then run PythonTEX from scratch. You can also disable the
inclusion of printed content using the print and stderr package options.

Dollar signs $ may appear as £ in italic code comments typeset by Pygments.
This is a font-related issue. One fix is to \usepackage[T1]{fontenc}.

7 The future of PythonTEX

This section consists of a To Do list for future development. The To Do list is
primarily for the benefit of the author, but also gives users a sense of what changes
are in progress or under consideration.

7.1 To Do
7.1.1 Modifications to make

e depythontex — convert PythonTEX documents into pure, standard ITEX
that doesn’t depend on Python or pythontex.sty. This is primarily for
publishing and similar situations.

e Console environments currently don’t use default code or custom code—they
start as standard Python consoles. Determine if there’s a need for default

30

and/or custom code, and if so, determine how to deal with it. Update
documentation either way.

User-defined custom commands and environments for general Pygments
typesetting.

Additional documentation for the Python code (Sphinx?).
Establish a testing framework.

Keep track of any Pygments errors for future runs, so we know what to run
again? How easy is it to get Pygments errors? There don’t seem to have
been any in any of the testing so far.

It might nice to include some methods in the PythonTEX utilities for for-
matting numbers (especially with SymPy and Pylab).

Test the behavior of files brought in via \input and \include that contain
PythonTEX content.

7.1.2 Modifications to consider

Consider fixing error line number synchronization with Beamer (and other
situations involving error lines in externalized files). The filehook and
currfile packages may be useful in this. One approach may be to patch the
macros associated with \beamer@doframeinput in beamerbaseframe.sty.
Note: Beamer’s fragile=singleslide option makes this much less of an
issue. This is low priority.

Consider adding support for implicit multiprocessing within a session.
This would require wrapping all the regular code in a session within an
if __name__ == ’__main__’ statement to maintain Windows compability.
This is probably more trouble than it’s worth, but using multiprocessing
within a session is currently bothersome due to the if statement needed

under Windows.

Allow ¥TEX in code, and expand IXTEX macros before passing code to
pythontex.py. Maybe create an additional set of inline commands with
additional exp suffix for expanded? This can already be done by creating a
macro that contains a PythonTgX macro, though.

Built-in support for background colors for blocks and verbatim, via mdframed?

Consider support for executing other languages. It might be nice to sup-
port a few additional languages at a basic level by version 1.0. Languages
currently under consideration: Perl, MATLAB, Mathematica, Lua, Sage, R.
But note that there are ways to interface with many or perhaps all of these
from within Python. Also, consider general command line-access, similar to
\writel8. The bashful package can do some nice command-line things.

31

But it would probably require some real finesse to get that kind of bash
access cross-platform. Probably could figure out a way to access Cygwin’s
bash or GnuWin32 or MSYS.

Support for executing external scripts, not just internal code? It would be
nice to be able to typeset an external file, as well as execute it by passing
command-line arguments and then pull in its output.

Is there any reason that saved printed content should be allowed to be
brought in before the code that caused it has been typeset? Are there
any cases in which the output should be typeset before the code that cre-
ated it? That would require some type of external file for bringing in saved
definitions.

Consider some type of primitive line-breaking algorithm for use with Pyg-
ments. Could break at closest space, indent 8 spaces further than parent
line (assuming 4-space indents; could auto-detect the correct size), and use
KETEX counter commands to keep the line numbering from being incorrectly
incremented. Such an approach might not be hard and might have some real
promise.

Consider allowing names of files into which scripts are saved to be specified.
This could allow PythonTEX to be used for literate programming, general
code documentation, etc. Also, it could allow writing a document that
describes code and also produces the code files, for user modification (see
the bashful package for the general idea). Doing something like this would
probably require a new, slightly modified interface to preexisting macros.

Acknowledgements

Thanks to @ystein Bjgrndal for suggestions and for help with OS X compatibility.

Version History

v0.10beta (2013/01/09)

e Backward-incompatible: Redid treatment of command-line options for
pythontex*.py, using Python’s argparse module. Run pythontex*.py
with option -h to see new command line options.

e Deprecated: \setpythontexcustomcode is deprecated in favor of the
\pythontexcustomc command and pythontexcustomcode environ-
ment. These allow entry of pure code, unlike \setpythontexcustomcode.
These also allow custom code to be added to the beginning or end of
a session, via an optional argument. Improved treatment of errors and
warnings associated with custom code.

32

The summary of errors and warnings now correctly differentiates errors
and warnings produced by user code, rather than treating all of them
as errors. By default, pythontex*.py now returns an exit code of 1 if
there were errors.

The PythonTeX utilities class now allows external file dependencies to
be specified via pytex.add_dependencies(), so that sessions are auto-
matically re-executed when external dependencies are modified (modi-
fication is determined via either hash or mtime; this is governed by the
new hashdependencies option).

The PythonTeX utilities class now allows created files to be specified
via pytex.add_created(), so that created files may be automatically
cleaned up (deleted) when the code that created them is modified (for
example, name change for a saved plot).

Added the following package options.

— stdout (or print): Allows input of stdout to be disabled. Useful
for debugging.

— runall: Executes everything. Useful when code depends on exter-
nal data.

— rerun: Determines when code is re-executed. Code may be set to
always run (same as runall option), or only run when it is modified
or when it produces errors or warnings. By default, code is always
re-executed if there are errors or modifications, but not re-executed
if there are warnings.

— hashdependencies: Determines whether external dependencies
(data, external code files highlighted with Pygments, etc.) are
checked for modification via hashing or modification time. Modifi-
cation time is default for performance reasons.

Added the following new command line options. The options that are
equivalent to package options are overridden by the package options
when present.

— --error-exit-code: Determines whether an exit code of 1 is re-
turned if there were errors. On by default, but can be turned off
since it is undesirable when working with some editors.

— --runall: Equivalent to new package option.
— --rerun: Equivalent to new package option.
— --hashdependencies: Equivalent to new package option.

Modified the fixlr option, so that it only patches commands if they
have not already been patched (avoids package conflicts).

Added \setpythontexautoprint command for toggling autoprint
on/off within the body of the document.

Installer now attempts to create symlinks under OS X and Linux with
TeX Live, and under OS X with MacPorts Tex Live.

33

Performed compatibility testing under lualatex and xelatex (previously,
had only tested with pdfiatex). Added documentation for using these
TeX engines; at most, slightly different preambles are needed. Modified
the PythonTeX gallery to support all three engines.

Code commands and environments may now be used in the pream-
ble. This, combined with the new treatment of custom code, allows
PythonTeX to be used in creating LaTeX packages.

Added documentation for using PythonTeX in LaTeX programming.

Fixed a bug that sometimes caused incorrect line numbers with stderr
content. Improved processing of stderr.

Fixed a bug in automatic detection of pre-existing listings environment.

Improved the detection of imports from __future__. Detection should
now be stricter, faster, and more accurate.

v0.9beta3 (2012/07/17)

Added Unicode support, which required the Python code to be split into
one set for Python 2 and another set for Python 3. This will require
any old installation to be completely removed, and a new installation
created from scratch.

Refactoring of Python code. Documents should automatically re-
execute all code after updating to the new version. Otherwise, you
should delete the PythonTeX directory and run PythonTeX.

Improved installation script.

Added package options: pyfuture, stderr, upquote, pyglexer, pyginline.
Renamed the pygextfile option to fvextfile.

Added custom code and workingdir commands.
Added the console environment and associated options.

Rewrote pythontex utils*.py, creating a new, context-aware interface
to SymPy’s LatexPrinter class.

Content brought in via macros no longer uses labels. Rather, long defs
are used, which allows line breaks.

Pygments highlighting is now default for PythonTeX commands and
environments

v0.9beta2 (2012/05/09)

Changed Python output extension to .stdout.

v0.9beta (2012/04,/27)

Initial public beta release.

34

8 Implementation

This section describes the technical implementation of the package. Unless you
wish to understand all the fine details or need to use the package in extremely
sophisticated ways, you should not need to read it.

The prefix pytx@ is used for all PythonTEX macros, to prevent conflict with
other packages. Macros that simply store text or a value for later retrieval are
given names completely in lower case. For example, \pytx@packagename stores
the name of the package, PythonTeX. Macros that actually perform some operation
in contrast to simple storage are named using CamelCase, with the first letter after
the prefix being capitalized. For example, \pytx@CheckCounter checks to see if a
counter exists, and if not, creates it. Thus, macros are divided into two categories
based on their function, and named accordingly.

8.1 Package opening

We begin according to custom by specifying the version of KTEX that we require
and stating the package that we are providing. We also store the name of the
package in a macro for later use in warnings and error messages.

1 \NeedsTeXFormat{LaTeX2e}[1999/12/01]

2 \ProvidesPackage{pythontex}[2013/01/09 vO0.10betal

3 \newcommand{\pytx@packagename}{PythonTeX}

8.2 Required packages

A number of packages are required. fancyvrb is used to typeset all code that is
not inline, and its internals are used to format inline code as well. etex provides
extra registers, to avoid the (probably unlikely) possibility that the many counters
required by PythonTEX will exhaust the supply. etoolbox is used for string
comparison and boolean flags. xstring provides the \tokenize macro. pgfopts
is used to process package options, via the pgfkeys package. newfloat allows the
creation of a floating environment for code listings. xcolor or color is needed for
syntax highlighting with Pygments.

4 \RequirePackage{fancyvrb}

5 \RequirePackage{etex}

6 \RequirePackage{etoolbox}

7 \RequirePackage{xstring}

8 \RequirePackage{pgfopts}

9 \RequirePackage{newfloat}

10 \AtBeginDocument{\@ifpackageloaded{color}{}{\RequirePackage{xcolor}}}

8.3 Package options

We now proceed to define package options, using the pgfopts package that pro-
vides a package-level interface to pgfkeys. All keys for package-level options are
placed in the key tree under the path /PYTX/pkgopt/, to prevent conflicts with
any other packages that may be using pgfkeys.

35

8.3.1 Runall

pytx@opt@rerun This option causes all code to be executed, regardless of whether it has been
modified. It is primarily useful for re-executing code that has not changed, when
the code depends on external files that have changed. Since it shares functionality
with the rerun option, both options share a single macro. Note that the macro
is initially set to default, rather than the default value of errors, so that the
Python side can distinguish whether a value was actually set by the user on the
TEX side, and thus any potential conflicts between command-line options and
package options can be resolved in favor of package options.
11 \def\pytxQ@opt@rerun{default}
12 \pgfkeys{/PYTX/pkgopt/runall/.default=true}
13 \pgfkeys{/PYTX/pkgopt/runall/.is choice}
14 \pgfkeys{/PYTX/pkgopt/runall/true/.code=\def \pytxQopt@rerun{all}}
15 \pgfkeys{/PYTX/pkgopt/runall/false/.code=\relax}

8.3.2 Rerun

This option determines the conditions under which code is rerun. It stores its
state in a macro shared with runall.

16 \pgfkeys{/PYTX/pkgopt/rerun/.is choice}

17 \pgfkeys{/PYTX/pkgopt/rerun/modified/.code=\def\pytx@optO@rerun{modified}}
18 \pgfkeys{/PYTX/pkgopt/rerun/errors/.code=\def\pytxQopt@rerun{errors}}

19 \pgfkeys{/PYTX/pkgopt/rerun/warnings/.code=\def \pytx@opt@rerun{warnings}}
20 \pgfkeys{/PYTX/pkgopt/rerun/all/.code=\def\pytxQ@opt@rerun{alll}}

8.3.3 Hashdependencies

pytx@opt@hashdependencies This option determines whether dependencies (either code to be highlighted, or
dependencies such as data that have been specified within a session) are checked
for modification via modification time or via hashing.
21 \def \pytx@opt@hashdependencies{default}
22 \pgfkeys{/PYTX/pkgopt/hashdependencies/.is choice}
23 \pgfkeys{/PYTX/pkgopt/hashdependencies/.default=true}
24 \pgfkeys{/PYTX/pkgopt/hashdependencies/true/.code=\def\pytx@opt@hashdependencies{true}}
25 \pgfkeys{/PYTX/pkgopt/hashdependencies/false/.code=\def\pytxQopt@hashdependencies{falsel}}

8.3.4 Autoprint

pytx@opt@autoprint The autoprint option determines whether content printed within a code com-
mand or environment is automatically included at the location of the command or
environment. If the option is not used, autoprint is turned on by default. If the
option is used, but without a setting (\usepackage [autoprint] {pythontex}), it
is true by default. We use the key handler (key)/.is choice to ensure that only
true/false values are allowed. The code for the true branch is redundant, but is
included for symmetry.

26 \newbool{pytx@opt@autoprint}

36

27 \booltrue{pytx@opt@autoprint}

28 \pgfkeys{/PYTX/pkgopt/autoprint/.default=true}

29 \pgfkeys{/PYTX/pkgopt/autoprint/.is choice}

30 \pgfkeys{/PYTX/pkgopt/autoprint/true/.code=\booltrue{pytx@opt@autoprint}}
31 \pgfkeys{/PYTX/pkgopt/autoprint/false/.code=\boolfalse{pytx@opt@autoprint}}

\setpythontexautoprint Sometimes it may be useful to switch autoprint on and off within different parts
of a document, rather than setting it to a single setting for the entire document.
So we provide a command for that purpose. Note that the command overrides the
package-level option.

32 \newcommand{\setpythontexautoprint}[1]{%

33 \ifstrequal{#1}{true}{\booltrue{pytxQopt@autoprint}}{}/%
34 \ifstrequal{#1}{false}{\boolfalse{pytx@opt@autoprint}}{}%
35 %

8.3.5 Print/stdout

pytx@opt@stdout This option determines whether printed content/content written to stdout is in-
cluded in the document. Disabling the inclusion of printed content is useful when
the printed content contains XTEX errors that would prevent successful compila-
tion.

36 \newbool{pytx@opt@stdout}

37 \booltrue{pytx@opt@stdout}

38 \pgfkeys{/PYTX/pkgopt/stdout/.default=true}

39 \pgfkeys{/PYTX/pkgopt/stdout/.is choice}

40 \pgfkeys{/PYTX/pkgopt/stdout/true/.code=\booltrue{pytxQ@opt@stdout}}
41 \pgfkeys{/PYTX/pkgopt/stdout/false/.code=\boolfalse{pytx@opt@stdout}}
42 \pgfkeys{/PYTX/pkgopt/print/.default=true}

43 \pgfkeys{/PYTX/pkgopt/print/.is choice}

44 \pgfkeys{/PYTX/pkgopt/print/true/.code=\booltrue{pytx@opt@stdout}}
45 \pgfkeys{/PYTX/pkgopt/print/false/.code=\boolfalse{pytx@opt@stdout}}
46 \AtBeginDocument{%

a7 \ifbool{pytxQopt@stdout}{}{%

48 \PackageWarning{\pytx@packagename}{Option stdout/print is set to falsel,
49 Yh

50 }

8.3.6 stderr

pytx@opt@stderr The stderr option determines whether stderr is saved and may be included in the
document via \stderrpythontex.
51 \newbool{pytxQ@opt@stderr}
52 \pgfkeys{/PYTX/pkgopt/stderr/.default=true}
53 \pgfkeys{/PYTX/pkgopt/stderr/.is choice}
54 \pgfkeys{/PYTX/pkgopt/stderr/true/.code=\booltrue{pytxQopt@stderr}}
55 \pgfkeys{/PYTX/pkgopt/stderr/false/.code=\boolfalse{pytx@opt@stderr}}

37

8.3.7 stderrfilename

\pytxQopt@stderrfilename This option determines how the file name appears in stderr.

56 \def\pytx@opt@stderrfilename{full}

57 \pgftkeys{/PYTX/pkgopt/stderrfilename/.default=full}

58 \pgfkeys{/PYTX/pkgopt/stderrfilename/.is choice}

59 \pgfkeys{/PYTX/pkgopt/stderrfilename/full/.code=\def\pytxQopt@stderrfilename{full}}

60 \pgfkeys{/PYTX/pkgopt/stderrfilename/session/.code=\def\pytxQ@opt@stderrfilename{session}}
61 \pgfkeys{/PYTX/pkgopt/stderrfilename/genericfile/.code=},

62 \def\pytxQopt@stderrfilename{genericfile}}
63 \pgfkeys{/PYTX/pkgopt/stderrfilename/genericscript/.code=%
64 \def\pytxQ@opt@stderrfilename{genericscriptl}}

8.3.8 Python’s __future__ module

\pytx@opt@pyfuture The pyfuture option determines what is imported from the __future__ module
under Python 2. It has no effect under Python 3.
65 \def\pytxQ@opt@pyfuture{default}
66 \pgfkeys{/PYTX/pkgopt/pyfuture/.is choice}
67 \pgfkeys{/PYTX/pkgopt/pyfuture/default/.code=\def\pytxQopt@pyfuture{default}}
68 \pgfkeys{/PYTX/pkgopt/pyfuture/all/.code=\def\pytxQopt@pyfuture{alll}}
69 \pgfkeys{/PYTX/pkgopt/pyfuture/none/.code=\def\pytxQopt@pyfuture{nonel}}

8.3.9 Upquote

pytx@opt@upquote The upquote option determines whether the upquote package is loaded. It makes
quotes within verbatim contexts ' rather than ’. This is important, because it
means that code may be copied directly from the compiled PDF and executed
without any errors due to quotes ’> being copied as acute accents ~
70 \newbool{pytxQ@optQupquote}
71 \booltrue{pytx@opt@upquote}
72 \pgfkeys{/PYTX/pkgopt/upquote/.default=true}
73 \pgfkeys{/PYTX/pkgopt/upquote/.is choice}
74 \pgfkeys{/PYTX/pkgopt/upquote/true/.code=\booltrue{pytx@opt@upquote}}
75 \pgfkeys{/PYTX/pkgopt/upquote/false/.code=\boolfalse{pytx@opt@upquote}}

8.3.10 Fix math spacing

pytx@optefixlr The fixlr option fixes extra, undesirable spacing in mathematical formulae in-
troduced by the commands \left and \right. For example, compare the results
of $\sin(x)$ and $\sin\left (x\right)$: sin(x) and sin (x). The fixlr option
fixes this, using a solution proposed by Mateus Aratjo, Philipp Stephani, and
Heiko Oberdiek.'®
76 \newbool{pytx@opt@fixlr}

77 \booltrue{pytx@opt@fixlr}
78 \pgfkeys{/PYTX/pkgopt/fixlr/.default=true}

18 nttp://tex.stackexchange.com/questions/2607/spacing-around-left-and-right

38

http://tex.stackexchange.com/questions/2607/spacing-around-left-and-right

\pytxQopt@keeptemps

pytxQopt@pygments

pytx@pyglexer

79 \pgfkeys{/PYTX/pkgopt/fixlr/.is choice}
80 \pgfkeys{/PYTX/pkgopt/fixlr/true/.code=\booltrue{pytx@opt@fixlr}}
81 \pgfkeys{/PYTX/pkgopt/fixlr/false/.code=\boolfalse{pytxQopt@fixlr}}

8.3.11 Keep temporary files

By default, PythonTEX tries to be very tidy. It creates many temporary files, but
deletes all that are not required to compile the document, keeping the overall file
count very low. At times, particularly during debugging, it may be useful to keep
these temporary files, so that code, errors, and output may be examined more
directly. The keeptemps option makes this possible.

82 \def\pytxQ@opt@keeptemps{none}

83 \pgfkeys{/PYTX/pkgopt/keeptemps/.default=all}

84 \pgfkeys{/PYTX/pkgopt/keeptemps/.is choice}

85 \pgfkeys{/PYTX/pkgopt/keeptemps/all/.code=\def\pytxQoptQ@keeptemps{alll}}
86 \pgfkeys{/PYTX/pkgopt/keeptemps/code/.code=\def\pytx@opt@keeptemps{code}}
87 \pgfkeys{/PYTX/pkgopt/keeptemps/none/.code=\def \pytxQ@opt@keeptemps{none}}

8.3.12 Pygments

By default, PythonTEX uses fancyvrb to typeset code. This provides nice format-
ting and font options, but no syntax highlighting. The pygments option determines
whether Pygments or fancyvrb is used to typeset code. Pygments is a generic
syntax highlighter written in Python. Since PythonTEX sends code to Python
anyway, having Pygments process the code is only a small additional step and in
many cases takes little if any extra time to execute.'®

Command and environment families obey the pygments option by default, but
they may be set to override it and always use Pygments or always use fancyvrb,
via \setpythontexformatter and \setpygmentsformatter.

Pygments has been used previously to highlight code for X TEX, most notably
in the minted package.
88 \newbool{pytxQ@opt@pygments}
89 \booltrue{pytx@opt@pygments}
90 \pgfkeys{/PYTX/pkgopt/pygments/.default=true}
91 \pgfkeys{/PYTX/pkgopt/pygments/.is choice}
92 \pgfkeys{/PYTX/pkgopt/pygments/true/.code=\booltrue{pytx@opt@pygments}}
93 \pgfkeys{/PYTX/pkgopt/pygments/false/.code=\boolfalse{pytx@opt@pygments}}

For completeness, we need a way to set the Pygments lexer for all content. Note
that in general, resetting the lexers for all content is not desirable.

94 \def\pytx@pyglexer{}

95 \pgfkeys{/PYTX/pkgopt/pyglexer/.code=\def\pytx@pyglexer{#1}}

96

19Pygments code highlighting is executed as a separate process by pythontex*.py, so it runs
in parallel on a multicore system. Pygments usage is optimized by saving highlighted code and
only reprocessing it when changed.

39

\pytx@pygopt We also need a way to specify Pygments options at the package level. This is
accomplished via the pygopt option: pygopt={(options)}. Note that the options
must be enclosed in curly braces since they contain equals signs and thus must be
distinguishable from package options.

Currently, three options may be passed in this manner: style=(style), which
sets the formatting style; texcomments, which allows IXTEX in code comments to
be rendered; and mathescape, which allows IXTEX math mode ($...$) in com-
ments. The texcomments and mathescape options may be used with a boolean
argument; if an argument is not supplied, true is assumed. As an example of
pygopt usage, consider the following:

pygopt={style=colorful, texcomments=True, mathescape=False}

The usage of capitalized True and False is more pythonic, but is not strictly
require.

While the package-level pygments option may be overridden by individual com-
mands and environments (though it is not by default), the package-level Pygments
options cannot be overridden by individual commands and environments.

97 \def \pytx@pygopt{}
98 \pgfkeys{/PYTX/pkgopt/pygopt/.code=\def \pytx@pygopt{#1}}

pytx@opt@pyginline This option governs whether, when Pygments is in use, it highlights inline content.
99 \newbool{pytx@opt@pyginline}
100 \booltrue{pytxQopt@pyginline}
101 \pgfkeys{/PYTX/pkgopt/pyginline/.default=true}
102 \pgfkeys{/PYTX/pkgopt/pyginline/.is choice}
103 \pgfkeys{/PYTX/pkgopt/pyginline/true/.code=\booltrue{pytx@opt@pyginlinel}}
104 \pgfkeys{/PYTX/pkgopt/pyginline/false/.code=\boolfalse{pytxQ@opt@pyginline}}

\pytx@fvextfile By default, code highlighted by Pygments, the console environment, and some
other content is brought back via fancyvrb’s SaveVerbatim macro, which saves
verbatim content into a macro and then allows it to be restored. This makes it
possible for all Pygments content to be brought back in a single file, keeping the
total file count low (which is a major priority for PythonTgX!). This approach does
have a disadvantage, though, because SaveVerbatim slows down as the length of
saved code increases.?’ To deal with this issue, we create the fvextfile option.
This option takes an integer, fvextfile=(integer). All content that is more than
(integer) lines long will be saved to its own external file and inputted from there,
rather than saved and restored via SaveVerbatim and UseVerbatim. This provides
a workaround should speed ever become a hindrance for large blocks of code.

A default value of 25 is set. There is nothing special about 25; it is just a
relatively reasonably cutoff. If the option is unused, it has a value of —1, which is
converted to the maximum integer on the Python side.

20The macro in which code is saved is created by grabbing the code one line at a time, and
for each line redefining the macro to be its old value with the additional line tacked on. This is
rather inefficient, but apparently there isn’t a good alternative.

40

\pytx@opt@pyconbanner

\pytx@opt@pyconfilename

pytxQopt@depythontex

105 \def\pytx@fvextfile{-1}
106 \pgfkeys{/PYTX/pkgopt/fvextfile/.default=25%}
107 \pgfkeys{/PYTX/pkgopt/fvextfile/.code=\IfInteger{#1}{}

108 \ifnum#1>0\relax

109 \def\pytxQ@fvextfile{#11}/

110 \else

111 \PackageError{\pytx@packagename}{option fvextfile must be an integer > 0}{}%
112 \fi}¥%

113 {\PackageError{\pytx@packagename}{option fvextfile must be an integer > O0}{}}/
114 }

8.3.13 Python console environment

This option governs the appearance (or disappearance) of a banner at the begin-

ning of Python console environments. The options none (no banner), standard

(standard Python banner), default (default banner for Python’s code module,

standard banner plus interactive console class name), and pyversion (banner in

the form Python x.y.z) are accepted.

115 \def \pytx@opt@pyconbanner{none}

116 \pgfkeys{/PYTX/pkgopt/pyconbanner/.is choice}

117 \pgfkeys{/PYTX/pkgopt/pyconbanner/none/.code=\def\pytxQoptO@pyconbanner{none}}

118 \pgfkeys{/PYTX/pkgopt/pyconbanner/standard/.code=\def\pytx@opt@pyconbanner{standard}}
119 \pgfkeys{/PYTX/pkgopt/pyconbanner/default/.code=\def\pytx@opt@pyconbanner{default}}
120 \pgfkeys{/PYTX/pkgopt/pyconbanner/pyversion/.code=\def\pytxQ@optO@pyconbanner{pyversionl}}

This option governs the file name that appears in error messages in the console.
The file name may be either stdin, as it is in a standard interactive interpreter,
or console, as it would typically be for the Python code module.

Traceback (most recent call last):
File "<file name>", line <line no>, in <module>

121 \def\pytxQ@opt@pyconfilename{stdin}

122 \pgfkeys{/PYTX/pkgopt/pyconfilename/.is choice}

123 \pgfkeys{/PYTX/pkgopt/pyconfilename/stdin/.code=\def\pytx@opt@pyconfilename{stdin}}

124 \pgfkeys{/PYTX/pkgopt/pyconfilename/console/.code=\def\pytx@opt@pyconfilename{console}}

8.3.14 De-PythonTeX

This option governs whether PythonTEX creates a version of the .tex file that

does not require PythonTEX to be compiled. This option should be useful for
converting a PythonTEX document into a more standard TEX document when
sharing or publishing documents.

125 \newbool{pytx@opt@depythontex}

126 \pgfkeys{/PYTX/pkgopt/depythontex/.default=true}

127 \pgfkeys{/PYTX/pkgopt/depythontex/.is choice}

128 \pgfkeys{/PYTX/pkgopt/depythontex/true/.code=\booltrue{pytx@opt@depythontex}}
129 \pgfkeys{/PYTX/pkgopt/depythontex/false/.code=\boolfalse{pytxQ@opt@depythontex}}

41

\pytx@CheckCounter

\pytx@context
\pytx@SetContext
\def inepythontexcontext

8.3.15 Process options

Now we process the package options.
130 \ProcessPgfPackageOptions{/PYTX/pkgopt}

The fixlr option only affects one thing, so we go ahead and take care of that.
Notice that before we patch \left and \right, we make sure that they have not
already been patched by checking how \left is expanded. This is important if
the user has manually patched these commands, is using the mleftright package,
or accidentally loads PythonTEX twice.

131 \ifbool{pytx@opt@fixlr}{
132 \IfStrEq{\detokenize\expandafter{\left}}{\detokenize{\left}}{

133 \let\originalleft\left

134 \let\originalright\right

135 \renewcommand{\left}{\mathopen{}\mathclose\bgroup\originalleft}
136 \renewcommand{\right}{\aftergroup\egroup\originalright}

137 H3

138 H3}

Likewise, the upquote option.
139 \ifbool{pytx@opt@upquote}{\RequirePackage{upquote}}{}

8.4 Utility macros and input/output setup

Once options are processed, we proceed to define a number of utility macros and
setup the file input/output that is required by PythonTEX.

8.4.1 Automatic counter creation

We will be using counters to give each command/environment a unique identifier,
as well as to manage line numbering of code when desired. We don’t know the
names of the counters ahead of time (this is actually determined by the user’s
naming of code sessions), so we need a macro that checks whether a counter
exists, and if not, creates it.

140 \def\pytx@CheckCounter#1{/,

141 \ifcsname c@#1\endcsname\else\newcounter{#1}\fi
142 }

8.4.2 Code context

It would be nice if when our code is executed, we could know something about its
context, such as the style of its surroundings or information about page size.

By default, no contextual information is passed to IXTEX. There is a wide
variety of information that could be passed, but most use cases would only need
a very specific subset. Instead, the user can customize what information is passed
to IATEX. The \definepythontexcontext macro defines what is passed. It cre-
ates the \pytx@SetContext macro, which creates \pytx@context, in which the
expanded context information is stored. The context should only be defined in
the preamble, so that it is consistent throughout the document.

42

\restartpythontexsession
\pytx@group
\pytx@SetGroup
\pytx@SetGroupVerb
\pytx@SetGroupCons

If you are interested in typesetting mathematics based on math styles, you
should use the \mathchoice macro rather than attempting to pass contextual
information.

143 \newcommand{\definepythontexcontext} [1]{%

144 \def\pytx@SetContext{/,

145 \edef\pytxQcontext{#11}}
146 Yh

147 }

148 \definepythontexcontext{}
149 \@onlypreamble\definepythontexcontext

8.4.3 Code groups

By default, PythonTEX executes code based on sessions. All of the code entered
within a command and environment family is divided based on sessions, and each
session is saved to a single external file and executed. If you have a calculation
that will take a while, you can simply give it its own named session, and then the
code will only be executed when there is a change within that session.

While this approach is appropriate for many scenarios, it is sometimes ineffi-
cient. For example, suppose you are writing a document with multiple chapters,
and each chapter needs its own session. You could manually do this, but that would
involve a lot of commands like \py [chapter x]{(some code)}, which means lots
of extra typing and extra session names. So we need a way to subdivide or restart
sessions, based on context such as chapter, section, or subsection.

“Groups” provide a solution to this problem. Each session is subdivided based
on groups behind the scenes. By default, this changes nothing, because each
session is put into a single default group. But the user can redefine groups based on
chapter, section, and other counters, so that sessions are automatically subdivided
accordingly. Note that there is no continuity between sessions thus subdivided. For
example, if you set groups to change between chapters, there will be no continuity
between the code of those chapters, even if all the code is within the same named
session. If you require continuity, the groups approach is probably not appropriate.
You could consider saving results at the end of one chapter and loading them at
the beginning of the next, but that introduces additional issues in keeping all code
properly synchronized, since code is executed only when it changes, not when any
data it loads may have changed.

We begin by creating the \restartpythontexsession macro. It creates the
\pytx@SetGroup* macros, which create \pytx@group, in which the expanded
context information is stored. The context should only be defined in the
preamble, so that it is consistent throughout the document. Note that groups
should be defined so that they will only contain characters that are valid in
file names, because groups are used in naming temporary files. It is also a
good idea to avoid using periods, since IATEX input of file names containing
multiple periods can sometimes be tricky. For best results, use A-Z, a-z, 0-9,
and the hyphen and underscore characters to define groups. If groups contain

43

numbers from multiple sources (for example, chapter and section), the num-
bers should be separated by a non-numeric character to prevent unexpected
collisions (for example, distinguishing chapter 1-11 from 11-1). For example,
\restartpythontexsession{\arabic{chapter}-\arabic{section}} could be a
good approach.

Three forms of \pytx@SetGroup* are provided. \pytx@SetGroup is for general
code use. \pytx@SetGroupVerb is for use in verbatim contexts. It splits verbatim
content off into its own group. That way, verbatim content does not affect the in-
stance numbers of code that is actually executed. This prevents code from needing
to be run every time verbatim content is added or removed; code is only executed
when it is actually changed. pytx@SetGroupCons is for console environments. It
separate console content from executed code and from verbatim content, again for
efficiency reasons.

150 \newcommand{\restartpythontexsession}[1]{/

151 \def \pytx@SetGroup{’

152 \edef \pytxQ@group{#11}%

153 Yh

154 \def \pytx@SetGroupVerb{’

155 \edef\pytxQgroup{#1verbl}y

156 Yh

157 \def \pytx@SetGroupCons{/

158 \edef\pytxQgroup{#1lconsl}

159 Yh

160 \AtBeginDocument{’

161 \pytx@SetGroup

162 \IfSubStr{\pytx@group}{verb}{%

163 \PackageError{\pytx@packagenamel}y,

164 {String "verb" is not allowed in \string\restartpythontexsessionl}
165 {Use \string\restartpythontexsession with a valid argument}}{}/
166 \IfSubStr{\pytx@group}{cons}{/

167 \PackageError{\pytx@packagenamel},

168 {String "cons" is not allowed in \string\restartpythontexsession}’
169 {Use \string\restartpythontexsession with a valid argument}}{}%
170 Yh

171 }

For the sake of consistency, we only allow group behaviour to be set in the
preamble. And if the group is not set by the user, then we use a single default
group for each session.

172 \@onlypreamble\restartpythontexsession
173 \restartpythontexsession{default}

8.4.4 File input and output

\pytx@jobname We will need to create directories and files for PythonTEX output, and some of
these will need to be named using \jobname. This presents a problem. Ideally,
the user will choose a job name that does not contain spaces. But if the job
name does contain spaces, then we may have problems bringing in content from a

44

\pytxQoutputdir
\setpythontexoutputdir

directory or file that is named based on the job, due to the space characters. So
we need a “sanitized” version of \jobname. We replace spaces with hyphens. We
replace double quotes " with nothing. Double quotes are placed around job names
containing spaces by TEX Live, and thus may be the first and last characters of
\jobname. Since we are replacing any spaces with hyphens, quote delimiting is
no longer needed, and in any case, some operating systems (Windows) balk at
creating directories or files with names containing double quotes. We also replace
asterisks with hyphens, since MiKTEX (at least v. 2.9) apparently replaces spaces
with asterisks in \ jobname,?! and some operating systems may not be happy with
names containing asterisks.

This approach to “sanitizing” \jobname is not foolproof. If there are ever two
files in a directory that both use PythonTEX, and if their names only differ by these
substitutions for spaces, quotes, and asterisks, then the output of the two files will
collide. We believe that it is better to graciously handle the possibility of space
characters at the expense of nearly identical file names, since nearly identical file
names are arguably a much worse practice than file names containing spaces, and
since such nearly identical file names should be much rarer. At the same time, in
rare cases a collision might occur, and in even