
The pythontex package

Geoffrey M. Poore
gpoore@gmail.com

Version 0.11beta from 2013/02/17

Abstract

PythonTEX allows Python code entered within a LATEX document to be
executed, and the output to be included within the original document. This
provides access to the full power of Python from within LATEX, simplifying
Python-LATEX workflow and making possible a range of document customiza-
tion and automation. It also allows macro definitions that mix Python and
LATEX code. In addition, PythonTEX provides syntax highlighting for many
programming languages via the Pygments syntax highlighter.

PythonTEX is fast and user-friendly. Python code is only executed when
it has been modified. When code is executed, it automatically attempts
to run in parallel. If Python code produces errors, the error message line
numbers are synchronized with the LATEX document line numbers, so that it
is easy to find the misbehaving code. Code dependencies may be specified
so that code is automatically re-executed whenever they change.

Warning
PythonTEX makes possible some pretty amazing things. But that power brings
with it a certain risk and responsibility. Compiling a document that uses
PythonTEX involves executing Python code on your computer. You should only
compile PythonTEX documents from sources you trust. PythonTEX comes with
NO WARRANTY.1 The copyright holder and any additional authors will not be
liable for any damages.

1All LATEX code is licensed under the LATEX Project Public License (LPPL) and all Python
code is licensed under the BSD 3-Clause License.

1

gpoore@gmail.com
http://www.latex-project.org/lppl.txt
http://www.opensource.org/licenses/BSD-3-Clause

Contents
1 Introduction 4

2 Installing and running 7
2.1 Installing PythonTEX . 7
2.2 Compiling documents using PythonTEX 9

3 Usage 11
3.1 Package options . 11
3.2 Code commands and environments 16

3.2.1 Inline commands . 16
3.2.2 Environments . 18
3.2.3 Default families . 18
3.2.4 Custom code . 19
3.2.5 PythonTEX utilities class 21
3.2.6 Formatting of typeset code 22
3.2.7 Access to printed content (stdout) and error messages (stderr) 23

3.3 Pygments commands and environments 25
3.4 General code typesetting . 26

3.4.1 Listings float . 26
3.4.2 Background colors . 26
3.4.3 Referencing code by line number 26
3.4.4 Beamer compatibility . 27

3.5 Advanced PythonTEX usage . 27

4 depythontex 29
4.1 Preparing a document that will be converted 29
4.2 Removing PythonTEX dependence 30
4.3 Technical details . 32

5 LATEX programming with PythonTEX 34
5.1 Macro programming with PythonTEX 34
5.2 Package writing with PythonTEX 35

6 Questions and answers 36

7 Troubleshooting 36

8 The future of PythonTEX 37
8.1 To Do . 37

8.1.1 Modifications to make . 37
8.1.2 Modifications to consider 37

Version History 39

2

9 Implementation 43
9.1 Package opening . 43
9.2 Required packages . 43
9.3 Package options . 43

9.3.1 Runall . 44
9.3.2 Rerun . 44
9.3.3 Hashdependencies . 44
9.3.4 Autoprint . 44
9.3.5 Print/stdout . 45
9.3.6 stderr . 45
9.3.7 stderrfilename . 46
9.3.8 Python’s __future__ module 46
9.3.9 Upquote . 46
9.3.10 Fix math spacing . 46
9.3.11 Keep temporary files . 47
9.3.12 Pygments . 47
9.3.13 Python console environment 49
9.3.14 depythontex . 49
9.3.15 Process options . 50

9.4 Utility macros and input/output setup 50
9.4.1 Automatic counter creation 50
9.4.2 Saving verbatim content in macros 51
9.4.3 Code context . 52
9.4.4 Code groups . 52
9.4.5 File input and output . 54
9.4.6 Interface to fancyvrb . 59
9.4.7 Access to printed content (stdout) 61
9.4.8 Access to stderr . 63
9.4.9 depythontex . 64

9.5 Inline commands . 68
9.5.1 Inline core macros . 68
9.5.2 Inline command constructors 73

9.6 Environments . 76
9.6.1 Block and verbatim environment constructors 77
9.6.2 Code environment constructor 83
9.6.3 Console environment constructor 85

9.7 Constructors for macro and environment families 87
9.8 Default commands and environment families 90
9.9 Listings environment . 91
9.10 Pygments for general code typesetting 92

9.10.1 Inline Pygments command 92
9.10.2 Pygments environment . 93
9.10.3 Special Pygments commands 96
9.10.4 Creating the Pygments commands and environment 97

9.11 Final cleanup . 100

3

1 Introduction
LATEX can do a lot,2 but the programming required can sometimes be painful.3
Also, in spite of the many packages available for LATEX, the libraries and packages
of a general-purpose programming language are lacking. For these reasons, there
have been multiple attempts to allow other languages to be used within LATEX.4

• PerlTEX allows the bodies of LATEX macros to be written in Perl.

• SageTEX allows code for the Sage mathematics software to be executed from
within a LATEX document.

• Martin R. Ehmsen’s python.sty provides a very basic method of executing
Python code from within a LATEX document.

• SympyTEX allows more sophisticated Python execution, and is largely based
on a subset of SageTEX.

• LuaTEX extends the pdfTEX engine to provide Lua as an embedded scripting
language, and as a result yields tight, low-level Lua integration.

PythonTEX attempts to fill a perceived gap in the current integrations of LATEX
with an additional language. It has a number of objectives, only some of which
have been met by previous packages.

Execution speed
In the approaches mentioned above, all the non-LATEX code is executed
at every compilation of the LATEX document (PerlTEX, LuaTEX, and
python.sty), or all the non-LATEX code is executed every time it is modified
(SageTEX and SympyTEX). However, many tasks such as plotting and data
analysis take significant time to execute. We need a way to fine-tune code
execution, so that independent blocks of slow code may be separated into
their own sessions and are only executed when modified. If we are going
to split code into multiple sessions, we might as well run these sessions in
parallel, further increasing speed. A byproduct of this approach is that it
now becomes much more feasible to include slower code, since we can still
have fast compilations whenever the slow code isn’t modified.

Compiling without executing
Even with all of these features to boost execution speed, there will be times
when we have to run slow code. Thus, we need the execution of non-LATEX
code to be separated from compiling the LATEX document. We need to be

2TEX is a Turing-complete language.
3As I learned in creating this package.
4Two additional examples not explicitly discussed here are Sweave and knitr, which combine

LATEX with the R language for tasks such as dynamic report generation. These are quite so-
phisticated. Since they are inspired by noweb (the .tex source is generated from .Rnw), passing
information from LATEX to R can be non-trivial and thus the TEX integration is weaker in that
sense.

4

http://www.ctan.org/tex-archive/macros/latex/contrib/perltex/
http://www.ctan.org/tex-archive/macros/latex/contrib/sagetex/
http://web.archive.org/web/20080728170129/www.imada.sdu.dk/~ehmsen/python.sty
http://elec.otago.ac.nz/w/index.php/SympyTeX
http://www.luatex.org/
http://www.stat.uni-muenchen.de/~leisch/Sweave/
http://yihui.name/knitr/

able to edit and compile a document containing unexecuted code. Unexe-
cuted code should be invisible or be replaced by placeholders. SageTEX and
SympyTEX have implemented such a separation of compiling and executing.
In contrast, LuaTEX and PerlTEX execute all the code at each compilation—
but that is appropriate given their goal of simplifying macro programming.

Error messages
Whenever code is saved from a LATEX document to an external file and then
executed, the line numbers for any error messages will not correspond to the
line numbering of the original LATEX document. At one extreme, python.sty
doesn’t attempt to deal with this issue, while at the other extreme, SageTEX
uses an ingenous system of Try/Except statements on every chunk of code.
We need a system that translates all error messages so that they correspond
to the line numbering of the original LATEX document, with minimal overhead
when there are no errors.

Syntax highlighting
Once we begin using non-LATEX code, sooner or later we will likely wish to
typeset some of it, which means we need syntax highlighting. A number
of syntax highlighting packages currently exist for LATEX; perhaps the most
popular are listings and minted. listings uses pure LATEX. It has not
been updated since 2007, which makes it a less ideal solution in some cir-
cumstances. minted uses the Python-based syntax highlighter Pygments to
perform highlighting. Pygments can provide superior syntax highlighting,
but minted can be very slow because all code must be highlighted at each
compilation and each instance of highlighting involves launching an external
Python process. We need high-speed, user-friendly syntax highlighting via
Pygments.

Printing
It would be nice for the print statement/function,5 or its equivalent, to
automatically return its output within the LATEX document. For example,
using python.sty it is possible to generate some text while in Python, open a
file, save the text to it, close the file, and then \input the file after returning
to LATEX. But it is much simpler to generate the text and print it, since
the printed content is automatically included in the LATEX document. This
was one of the things that python.sty really got right.

Pure code
LATEX has a number of special characters (# $ % & ~ _ ^ \ { }), which
complicates the entry of code in a non-LATEX language since these same
characters are common in many languages. SageTEX and SympyTEX de-
limit all inline code with curly braces ({}), but this approach fails in the
(somewhat unlikely) event that code needs to contain an unmatched brace.
More seriously, they do not allow the percent symbol % (modular arithmetic

5In Python, print was a statement until Python 3.0, when it became a function. The function
form is available via import from __future__ in Python 2.6 and later.

5

and string formatting in Sage and Python) to be used within inline code.
Rather, a \percent macro must be used instead. This means that code
must (sometimes) be entered as a hybrid between LATEX and the non-LATEX
language. LuaTEX is somewhat similar: “The main thing about Lua code in
a TeX document is this: the code is expanded by TeX before Lua gets to it.
This means that all the Lua code, even the comments, must be valid TeX!”6
In the case of LuaTEX, though, there is the luacode package that allows for
pure Lua.

This language hybridization is not terribly difficult to work around in the
SageTEX and SympyTEX cases, and is actually a LuaTEX feature in many
contexts. But if we are going to create a system for general-purpose access
to a non-LATEX language, we need all valid code to work correctly in all
contexts, with no hybridization of any sort required. We should be able
to copy and paste valid code into a LATEX document, without having to
worry about hybridizing it. Among other things, this means that inline code
delimiters other than LATEX’s default curly braces {} must be available.

Hybrid code
Although we need a system that allows input of pure non-LATEX code, it
would also be convenient to allow hybrid code, or code in which LATEX
macros may be present and are expanded before the code is executed. This
allows LATEX data to be easily passed to the non-LATEX language, facilitat-
ing a tighter integration of the two languages and the use of the non-LATEX
language in macro definitions.

Math and science libraries
The author decided to create PythonTEX after writing a physics disserta-
tion using LATEX and realizing how frustrating it can be to switch back and
forth between a TEX editor and plotting software when fine-tuning figures.
We need access to a non-LATEX language like Python, MATLAB, or Mathe-
matica that provides strong support for data analysis and visualization. To
maintain broad appeal, this language should primarily involve open-source
tools, should have strong cross-platform support, and should also be suitable
for general-purpose programming.

Language-independent implementation
It would be nice to have a system for executing non-LATEX code that depends
very little on the language of the code. We should not expect to be able
to escape all language dependence. But if the system is designed to be
as general as possible, then it may be expanded in the future to support
additional languages.

Python was chosen as the language to fulfill these objectives for several reasons.

• It is open-source and has good cross-platform support.
6http://wiki.contextgarden.net/Programming_in_LuaTeX

6

http://wiki.contextgarden.net/Programming_in_LuaTeX

• It has a strong set of scientific, numeric, and visualization packages, including
NumPy, SciPy, matplotlib, and SymPy. Much of the initial motivation for
PythonTEX was the ability to create publication-quality plots and perform
complex mathematical calculations without having to leave the TEX editor.

• We need a language that is suitable for scripting. Lua is already available
via LuaTEX, and in any case lacks the math and science tools.7 Perl is al-
ready available via PerlTEX, although PerlTEX’s emphasis on Perl for macro
creation makes it rather unsuitable for scientific work using the Perl Data
Language (PDL) or for more general programming. Python is one logical
choice for scripting.

Now at this point there will almost certainly be some reader, sooner or later,
who wants to object, “But what about language X !” Well, yes, in some respects
the choice to use Python did come down to personal preference. But you should
give Python a try, if you haven’t already. You may also wish to consider the
many interfaces that are available between Python and other languages. If you
still aren’t satisfied, keep in mind PythonTEX’s “language-independent” imple-
mentation! Although PythonTEX is written to support Python within LATEX, the
implementation has been specially crafted so that other languages may be sup-
ported in the future. See Section 8 for more details.

2 Installing and running

2.1 Installing PythonTEX
PythonTEX requires a TEX installation. TEX Live or MiKTEX are preferred.
PythonTEX requires the Kpathsea library, which is available in both of these
distributions. The following LATEX packages, with their dependencies, are also
required: fancyvrb, etex, etoolbox, xstring, pgfopts, newfloat, and color or
xcolor. If you are creating and importing graphics using Python, you will also
need graphicx. The mdframed package is recommended for enclosing typeset code
in boxes with fancy borders and/or background colors.

PythonTEX also requires a Python installation. Python 2.7 is recommended
for the greatest compatibility with scientific tools. Python 3.2 and later will work
as well. Earlier versions of Python 2 and 3 are not compatible, at least not
without several modifications to the PythonTEX scripts. The Python package
Pygments must be installed for syntax highlighting to function. PythonTEX has
been tested with Pygments 1.4 and later, but the latest version is recommended.
For scientific work, or to compile orthe PythonTEX gallery file, the following are
also recommended: NumPy, SciPy, matplotlib, and SymPy.

PythonTEX consists of the following files:

• Installer file pythontex.ins
7One could use Lunatic Python, and some numeric packages for Lua are in development.

7

http://numpy.scipy.org/
http://www.scipy.org/
http://matplotlib.sourceforge.net/
http://sympy.org
http://pdl.perl.org/
http://pdl.perl.org/
http://www.tug.org/texlive/
http://miktex.org/
http://www.python.org/
http://pygments.org/
http://numpy.scipy.org/
http://www.scipy.org/
http://matplotlib.sourceforge.net/
http://sympy.org
http://labix.org/lunatic-python
http://numlua.luaforge.net/

• Documented LATEX source file pythontex.dtx, from which pythontex.pdf
and pythontex.sty are generated

• Main Python scripts pythontex2.py and pythontex3.py

• Helper scripts pythontex_utils2.py and pythontex_types2.py, and pythontex_utils3.py
and pythontex_types3.py

• Scripts depythontex2.py and depythontex3.py that are used to remove
PythonTEX dependence

• Installation script pythontex_install_texlive (for TEX Live)

• README.rst

• Optional batch files pythontex2.bat and pythontex3.bat for use in launch-
ing pythontex*.py under Windows

The style file pythontex.stymay be generated by running LATEX on pythontex.ins.
The documentation you are reading may be generated by running LATEX on
pythontex.dtx. Two versions of all of the Python scipts are supplied, one for
Python 2 and one for Python 3.8

Until PythonTEX is submitted to CTAN (or if you always want the absolute
latest version), it must be installed manually. A Python installation script is
provided for use with TEX Live. It has been tested with Windows, Linux, and
OS X, but may need manual input or slight modifications depending on your
system. The installation script performs the steps described below. Note that you
may have to run the script with elevated privileges, and may need to run it using
the user’s PATH. For example, under Ubuntu Linux, you may need the following:

sudo env PATH=$PATH python pythontex_install_texlive.py

The PythonTEX files should be installed within the TEX directory structure as
follows.

• 〈TEX tree root〉/doc/latex/pythontex/

– pythontex.pdf

– README

• 〈TEX tree root〉/scripts/pythontex/

– pythontex2.py and pythontex3.py

– pythontex_types2.py and pythontex_types3.py

– pythontex_utils2.py and pythontex_utils3.py
8Unfortunately, it is not possible to provide full Unicode support for both Python 2 and 3

using a single script. Currently, all code is written for Python 2, and then the Python 3 version
is automatically generated via the pythontex_2to3.py script. This script comments out code
that is only for Python 2, and un-comments code that is only for Python 3.

8

• 〈TEX tree root〉/source/latex/pythontex/

– pythontex.dtx

• 〈TEX tree root〉/tex/latex/pythontex/

– pythontex.sty

After the files are installed, the system must be made aware of their existence.
Run mktexlsr to do this. In order for pythontex*.py to be executable, a sym-
link (TEX Live under Linux), launching wrapper (TEX Live under Windows),
or batch file (general Windows) should be created in the bin/〈system〉 direc-
tory. For TEX Live under Windows, simply copy bin/win32/runscript.exe to
bin/win32/pythontex*.exe to create the wrapper (replace the * with the appro-
priate version).9

2.2 Compiling documents using PythonTEX
Compiling a document with PythonTEX involves three steps: running a LATEX-
compatible TEX engine, running pythontex*.py (preferably via a symlink, wrap-
per, or batch file, as described above), and finally running the TEX engine again.
The first TEX run saves code into an external file where PythonTEX can access it.
The second TEX run pulls the PythonTEX output back into the document.

If you plan to use code that contains Unicode characters (or other characters
beyond ASCII) you should make sure that your document is properly configured:

• Under pdfLaTeX, your documents need \usepackage[T1]{fontenc} and
\usepackage[utf8]{inputenc}, or a similar configuration.

• Under LuaLaTeX, your documents need \usepackage{fontspec}, or a sim-
ilar configuration.

• Under XeLaTeX, your documents need \usepackage{fontspec} as well as
\defaultfontfeatures{Ligatures=TeX}, or a similar configuration.

For an example of a PythonTEX document that will correctly compile under all
three engines, see the pythontex_gallery.tex source.

If you use XeLaTeX, and your source code contains tabs, you must invoke
XeLaTeX with the -8bit option so that tabs will be written to file as actual tab
characters rather than as the character sequence ^^I.10

pythontex*.py requires a single command-line argument: the name of the
.tex file to process. The filename can be passed with or without an extension;
the script really only needs the \jobname, so any extension is stripped off.11 The
filename may include the path to the file; you do not have to be in the same
directory as the file to run PythonTEX. If you are configuring your editor to run

9See the output of runscript -h under Windows for additional details.
10See http://tex.stackexchange.com/questions/58732/how-to-output-a-tabulation-into-a-file

for more on tabs with XeTeX.
11Thus, PythonTEX works happily with .tex, .ltx, .dtx, and any other extension.

9

http://tex.stackexchange.com/questions/58732/how-to-output-a-tabulation-into-a-file

PythonTEX automatically via a shortcut, you may want to wrap the filename in
double quotes " to allow for space characters.12 For example, under Windows
with TEX Live and Python 2.7 we would create the wrapper pythontex2.exe.
Then we could run PythonTEX on a file 〈file name〉.tex using the command
pythontex2.exe "〈file name〉".

pythontex*.py accepts the following optional command-line arguments. Some
of these options duplicate package-level options, so that settings may be config-
ured either within the document or at the command line. In the event that the
command-line and package options conflict, the package options always override
the command-line options. For variations on these options that are acceptable,
run pythontex*.py -h.

• --encoding=〈encoding〉 This sets the file encoding. Any encoding supported
by Python’s codecs module may be used. If an encoding is not specified,
PythonTEX uses UTF-8. Note that the encoding must be used consis-
tently; the .tex source, the PythonTEX output, and any external code files
that PythonTEX highlights should all use the same encoding. If support
for characters beyond ASCII is required, then additional LATEX packages are
required; see the discussion of TEX engines above.

• --error-exit-code={true,false} By default, pythontex*.py returns an
exit code of 1 if there were any errors, and an exit code of 0 otherwise.
This may be useful when PythonTEX is used in a scripting or command-line
context, since the presence of errors may be easily detected. It is also useful
with some TEX editors. For example, TeXworks automatically hides the
output of external programs unless there are errors.

But in some contexts, returning a nonzero exit code can be redundant.
For example, with the WinShell editor under Windows with TeX Live, the
complete output of PythonTEX is always available in the “Output” view,
so it is clear if errors have occurred. Having a nonzero exit code causes
runscript.exe to return an additional, redundant error message in the
“Output” view. In such situations, it may be desirable to disable the nonzero
exit code.

• --runall=[{true,false}] This causes all code to be executed, regardless of
whether it has been modified. It is useful when code has not been modified,
but a dependency such as a library or external data has changed. Note that
the PythonTEX utilities class also provides a mechanism for automatically
re-executing code that depends on external files when those external files are
modified.

There is an equivalent runall package option. The command-line option
--rerun=all is also equivalent.

12Using spaces in the names of .tex files is apparently frowned upon. But if you configure
things to handle spaces whenever it doesn’t take much extra work, then that’s one less thing
that can go wrong.

10

http://docs.python.org/library/codecs.html
http://www.tug.org/texworks/
http://winshell.de/

• --rerun={modified,errors,warnings,all} This sets the threshold for re-
executing code. By default, PythonTEX will rerun code that has been modi-
fied or that produced errors on the last run. Sometimes, we may wish to have
a more lenient setting (only rerun if modified) or a more stringent setting
(rerun even for warnings, or just rerun everything). modified only executes
code that has been modified (or that has modified dependencies). errors
executes all modified code as well as all code that produced errors on the
last run; this is the default. warnings executes all modified code, as well
as all code that produced errors or warnings. all executes all code and is
equivalent to --runall.

There is an equivalent rerun package option.

• --hashdependencies=[{true,false}] This determines whether dependen-
cies (external files highlighted by Pygments, code dependencies specified via
pytex.add_dependencies(), etc.) are considered to be modified based on
their hash or modification time. By default, mtime is used, since it is faster.
The package option hashdependencies is equivalent.

• --verbose This gives more verbose output, including a list of all processes
that are launched.

PythonTEX currently does not provide means to choose between multiple
Python installations; it will use the default Python installation. Support for mul-
tiple installations is unlikely to be added, since a cross-platform solution would
be required.13 If you need to work with multiple installations, you may wish
to modify pythontex_types*.py to create additional command and environment
families that invoke different versions of Python, based on your system.

PythonTEX attempts to check for a wide range of errors and return mean-
ingful error messages. But due to the interaction of LATEX and Python code,
some strange errors are possible. If you cannot make sense of errors when
using PythonTEX, the simplest thing to try is deleting all files created by
PythonTEX, then recompiling. By default, these files are stored in a directory
called pythontex-files-〈jobname〉, in the same directory as your .tex document.
See Section 7 for more details regarding Troubleshooting.

3 Usage

3.1 Package options
Package options may be set in the standard manner when the package is loaded:

\usepackage[〈options〉]{pythontex}

All options are described as follows. The option is listed, followed by its possible
values. When a value is not required, 〈none〉 is listed as a possible value. In this

13Python 3.3’s py launcher for Windows may make this more feasible.

11

case, the value to which 〈none〉 defaults is also given. Each option lists its default
setting, if the option is not invoked when the package is loaded.

Some options have a command-line equivalent. Package options override
command-line options.

runall=〈none 〉/true/false
default:false 〈none 〉=true This option causes all code to be executed, regardless of whether it has been

modified. This option is primarily useful when code depends on external files,
and needs to be re-executed when those external files are modified, even though
the code itself may not have changed. Note that the PythonTEX utilities class
also provides a mechanism for automatically re-executing code that depends on
external files when those external files are modified.

A command-line equivalent --runall exists for pythontex*.py. The package
option rerun=all is also equivelent.

rerun=modified/errors/warnings/all
default:errors This option sets the threshold for re-executing code. By default, PythonTEX

will rerun code that has been modified or that produced errors on the last run.
Sometimes, we may wish to have a more lenient setting (only rerun if modified)
or a more stringent setting (rerun even for warnings, or just rerun everything).
modified only executes code that has been modified. errors executes all modified
code as well as all code that produced errors on the last run; this is the default.
warnings executes all modified code, as well as all code that produced errors or
warnings. all executes all code and is equivalent to the package option runall.

A command-line equivalent --rerun exists for pythontex*.py.
hashdependencies=〈none 〉/true/false
default:false 〈none 〉=true When external code files are highlighted with Pygments, or external dependen-

cies are specified via the PythonTEX utilities class, they are checked for modifi-
cation via their modification time (Python’s os.path.getmtime()). Usually, this
should be sufficient—and it offers superior performance, which is important if data
sets are large enough that hashing takes a noticeable amount of time. However,
occasionally hashing may be necessary or desirable, so this option is provided.

A command-line equivalent --hashdependencies exists for pythontex*.py.
autoprint=〈none 〉/true/false

default:true 〈none 〉=true Whenever a print command/statement is used, the printed content will au-
tomatically be included in the document, unless the code doing the printing is
being typeset.14 In that case, the printed content must be included using the
\printpythontex or \stdoutpythontex commands.

14Note that autoprint only works within the body of the document. The code command and
environment can be used in the preamble, but autoprint is disabled there. It is usually a not a
good idea to print in the preamble, because nothing can be typeset; the only thing that could
be validly printed is LATEX commands that do not typeset content, such as macro definitions.
Thus, it is appropriate that printed content is only brought in while in the preamble if it is
explicitly requested via \printpythontex. This approach is also helpful for writing packages
using PythonTEX, since the author does not have to worry about any LATEX commands printed
by the package either not being included (if autoprint is relied upon, but the user turns it off)
or being included twice (if \printpythontex is used and autoprint is enabled). Printing should
only be used in the preamble with great care.

12

Printed content is pulled in directly from the external file in which it is saved,
and is interpreted by LATEX as LATEX code. If you wish to avoid this, you should
print appropriate LATEX commands with your content to ensure that it is typeset
as you desire. Alternatively, you may use \printpythontex or \stdoutpythontex
to bring in printed content in verbatim form, using those commands’ optional verb
and inlineverb (v) options.

The autoprint option sets autoprint behavior for the entire document. This
may be overridden within the document using the \setpythontexautoprint com-
mand.

print=〈none 〉/true/false
default:true 〈none 〉=true
stdout=〈none 〉/true/false
default:true 〈none 〉=true

This option determines whether printed content/content written to stdout is
included in the document. Since printed content should almost always be in-
cluded, a warning is raised when it is not. Not including printed content is useful
when the printed content contains LATEX errors, and would cause document com-
pilation to fail. When the document fails to compile, this can prevent modified
Python code from being written to the code file, resulting in an inescapable loop
unless printed content is disabled.

As is typical for PythonTEX settings dealing with stdout/printing, two equiv-
alent forms are provided based on the names print and stdout.

Note that since commands like \py involve printing, they are also disabled if
print or stdout is set to false.

stderr=〈none 〉/true/false
default:false 〈none 〉=true This option determines whether the stderr produced by scripts is available for

input by PythonTEX, via the \stderrpythontex macro. This will not be needed
in most situations. It is intended for typeseting incorrect code next to the errors
that it produces. This option is not true by default, because additional processing
is required to synchronize stderr with the document.

stderrfilename=full/session/genericfile/genericscript
default:full This option governs the file name that appears in stderr. Python errors begin

with a line of the form

File "<file or source>", line <line>

By default (option full), <file or source> is the actual name of the script that
was executed. The name will be in the form 〈family name〉_〈session〉_〈group〉.〈extension〉.
For example, an error produced by a py command or environment, in the session
mysession, using the default group (that is, the default \restartpythontexsession
treatment), would be reported in py_mysession_default.py. The session op-
tion replaces the full file name with the name of the session, mysession.py in this
example. The genericfile and genericscript options replace the file name
with <file> and <script>, respectively.

pyfuture=none/all/default
default:default Under Python 2, this determines what is automatically imported from

__future__ for all code. none imports nothing from __future__; all imports ev-
erything available in Python 2.7 (absolute_import, division, print_function,

13

and unicode_literals); and default imports everything except unicode_literals,
since unicode_literals can conflict with some packages. Note that imports from
__future__ are also allowed within sessions, so long as they are at the very be-
ginning of the session, as they would have to be in a normal script.

This option has no effect under Python 3.
upquote=〈none 〉/true/false
default:true 〈none 〉=true This option determines whether the upquote package is loaded. In general, the

upquote package should be loaded, because it ensures that quotes within verbatim
contexts are “upquotes,” that is, ' rather than ’.

Using upquote is important beyond mere presentation. It allows code to be
copied directly from the compiled PDF and executed without any errors due to
quotes ’ being copied as acute accents ´.

fixlr=〈none 〉/true/false
default:true 〈none 〉=true This option removes extra spacing around \left and \right in math mode.

This spacing is often undesirable, especially when typesetting functions such as
the trig functions. See the implementation for details.

keeptemps=〈none 〉/all/code/none
default:none 〈none 〉=all When PythonTEX runs, it creates a number of temporary files. By default,

none of these are kept. The none option keeps no temp files, the code option
keeps only code temp files (these can be useful for debugging), and the all option
keeps all temp files (code, stdout and stderr for each code file, etc.). Note that this
option does not apply to any user-generated content, since PythonTEX knows very
little about that; it only applies to files that PythonTEX automatically creates by
itself.

pygments=〈none 〉/true/false
default:true 〈none 〉=true This allows the user to determine at the document level whether code is typeset

using Pygments rather than fancyvrb.
Note that the package-level Pygments option can be overridden for individual

command and environment families, using the \setpythontexformatter com-
mand; the \setpygmentsformatter command provides equivalent functionality
for the Pygments commands and environments. Overriding is never automatic
and should generally be avoided, since using Pygments to highlight only some
content results in an inconsistent style. Keep in mind that Pygment’s text lexer
and/or bw style can be used when content needs little or no syntax highlighting.

pyglexer=〈pygments lexer 〉
default:〈none 〉 This allows a Pygments lexer to be set at the document level. In general, this

option should not be used. It overrides the default lexer for all commands and
environments, for both PythonTEX and Pygments content, and this is usually not
desirable. It should be useful primarily when all content uses the same lexer, and
multiple lexers are compatible with the content.

pygopt={〈pygments options 〉}
default:〈none 〉 This allows Pygments options to be set at the document level. The op-

tions must be enclosed in curly braces {}. Currently, three options may
be passed in this manner: style=〈style name〉, which sets the formatting
style; texcomments, which allows LATEX in code comments to be rendered;
and mathescape, which allows LATEX math mode ($...$) in comments. The

14

texcomments and mathescape options may be used with an argument (for exam-
ple, texcomments=True/False); if an argument is not supplied, True is assumed.
Example: pygopt={style=colorful, texcomments=True, mathescape=False}.

Pygments options for individual command and environment families may
be set with the \setpythontexpygopt macro; for Pygments content, there is
\setpygmentspygopt. These individual settings are always overridden by the
package option.

pyginline=〈none 〉/true/false
default:true 〈none 〉=true This option governs whether inline code, not just code in environments, is

highlighted when Pygments highlighting is in use. When Pygments is in use, it
will highlight everything by default.

fvextfile=〈none 〉/〈integer 〉
default:∞ 〈none 〉=25 This option speeds the typesetting of long blocks of code that are created

on the Python side. This includes content highlighted using Pygments and the
console environment. Typesetting speed is increased at the expense of creating
additional external files (in the PythonTEX directory). The 〈integer〉 determines
the number of lines of code at which the system starts using multiple external
files, rather than a single external file. See the implementation for the technical
details; basically, an external file is used rather than fancyvrb’s SaveVerbatim,
which becomes increasingly inefficient as the length of the saved verbatim content
grows. In most situations, this option should not be needed, or should be fine with
the default value or similar “small” integers.

pyconbanner=none/standard/default/pyversion
default:none This option governs the appearance (or disappearance) of a banner at the be-

ginning of Python console environments. (A banner only appears in the first envi-
ronment within each session.) The options none (no banner), standard (standard
Python banner), default (default banner for Python’s code module, standard
banner plus interactive console class name), and pyversion (banner in the form
Python x.y.z) are accepted.

pyconfilename=stdin/console
default:stdin This governs the form of the filename that appears in error messages in Python

console environments. Python errors messages have a form such as the following:

>>> z = 1 + 34 +
File "<name>", line 1
z = 1 + 34 +

^
SyntaxError: invalid syntax

The stdin option replaces <name> with <stdin>, as it appears in a standard
Python interactive session. The console option uses <console> instead, which
is the default setting for the Python code module used by PythonTEX to create
Python console environments.

depythontex=〈none 〉/true/false
default:false 〈none 〉=true This option is used to create a version of the LATEX document that does not

require the PythonTEX package. When invoked, it creates an auxiliary file called

15

<filename>.depytx. The script depythontex*.py uses the original document
and this auxiliary file to create a new document in which all PythonTEX com-
mands and environments have been replaced by typeset code and code output.
For additional information on depythontex, see Section 4.

3.2 Code commands and environments
PythonTEX provides four types of commands for use with inline code and three
environments for use with multiple lines of code, plus a console environment. All
commands and environments are named using a base name and a command- or
environment-specific suffix. A complete set of commands and environments with
the same base name constitutes a command and environment family. In what
follows, we describe the different commands and environments, using the py base
name (the py family) as an example.

Most commands and environments cannot be used in the preamble, because
they typeset material and that is not possible in the preamble. The one exception
is the code command and environment. These can be used to enter code, but
need not typeset anything. This allows you to collect your PythonTEX code in
the preamble, if you wish, or even use PythonTEX in package writing. Note that
the package option autoprint is never active in the preamble, so even if a code
command or environment did print in the preamble, printed content would never
be inputted unless \printpythontex or \stdoutpythontex were used.

All commands and environments take a session name as an optional argument.
The session name determines the session in which the code is executed. This allows
code to be executed in multiple independent sessions, increasing speed (sessions
run in parallel) and preventing naming conflicts. If a session is not specified, then
the default session is used. Session names should use the characters a-z, A-Z, 0-9,
the hyphen, and the underscore; all characters used must be valid in file names,
since session names are used to create temporary files. The colon is also allowed,
but it is replaced with a hyphen internally, so the sessions code:1 and code-1 are
identical.

In addition, all environments take fancyvrb settings as a second, optional ar-
gument. See the fancyvrb documentation for an explanation of accepted settings.
This second optional argument must be preceeded by the first optional argument
(session name). If a named session is not desired, the optional argument can be
left empty (default session), but the square brackets [] must be present so that
the second optional argument may be correctly identified:

\begin{〈environment〉}[][〈fancyvrb settings〉]

3.2.1 Inline commands

Inline commands are suitable for single lines of code that need to be executed
within the body of a paragraph or within a larger body of text. The commands
use arbitrary code delimiters (like \verb does), which allows the code to contain
arbitrary characters. Note that this only works properly when the inline commands

16

http://www.ctan.org/tex-archive/macros/latex/contrib/fancyvrb

are not inside other macros. If an inline command is used within another macro,
the code will be read by the external macro before PythonTEX can read the special
code characters (that is, LATEX will tokenize the code). The inline commands can
work properly within other macros, but you should stick with curly braces for
delimiters in this case and you may have trouble with the hash # and percent %
characters.

\py[〈session 〉]〈opening delim 〉〈code 〉〈closing delim 〉
This command is used for including variable values or other content that can

be converted to a string. It is an alternative to including content via the print
statement/function within other commands/environments.

The \py command sends 〈code〉 to Python, and Python returns a string repre-
sentation of 〈code〉. 〈opening delim〉 and 〈closing delim〉 must be either a pair of
identical, non-space characters, or a pair of curly braces. If curly braces are used
as delimiters, then curly braces may only be used within 〈code〉 if they are paired.
Thus, \py{1+1} sends the code 1+1 to Python, Python evaluates the string repre-
sentation of this code, and the result is returned to LATEX and included as 2. The
commands \py#1+1# and \py@1+1@ would have the same effect. The command
can also be used to access variable values. For example, if the code a=1 had been
executed previously, then \py{a} simply brings the string represantation of a back
into the document as 1.

Assignment is not allowed using \py. For example, \py{a=1} is not valid.
This is because assignment cannot be converted to a string.15

The text returned by Python must be valid LATEX code. Verbatim and other
special content is allowed under the pdfTeX and XeTeX engines (a known bug
prevents it from working with LuaTeX). The primary reasons for using \py rather
than print are (1) \py is more compact and (2) print requires an external file
to be created for every command or environment in which it is used, while \py
and equivalents for other families share a single external file. Thus, use of \py
minimizes the creation of external files, which is a key design goal for PythonTEX.16
The main reason for using print rather than \py is if you need to include a very
large amount of material; print’s use of external files won’t use up TEX’s memory,
and may give noticeably better performance once the material is sufficiently long.

\pyc[〈session 〉]〈opening delim 〉〈code 〉〈closing delim 〉
This command is used for executing but not typesetting 〈code〉. The suffix c

is an abbreviation of code. If the print statement/function is used within 〈code〉,
15It would be simple to allow any code within \py, including assignment, by using a try/except

statement. In this way, the functionality of \py and \pyc could be merged. While that would
be simpler to use, it also has serious drawbacks. If \py is not exclusively used to typeset string
representations of 〈code〉, then it is no longer possible on the LATEX side to determine whether
a command should return a string. Thus, it is harder to determine, from within a TEX editor,
whether pythontex*.py needs to be run; warnings for missing Python content could not be issued,
because the system wouldn’t know (on the LATEX side) whether content was indeed missing.

16For \py, the text returned by Python is stored in macros and thus must be valid LATEX code,
because LATEX interprets the returned content. The use of macros for storing returned content
means that an external file need not be created for each use of \py. Rather, all macros created
by \py and equivalent commands from other families are stored in a single file that is inputted.
Note that even though the content is stored in macros, verbatim content is allowed, through the
use of special macro definitions combined with \scantokens.

17

printed content will be included automatically so long as the package autoprint
option is set to true (which is the default setting).

\pyv[〈session 〉]〈opening delim 〉〈code 〉〈closing delim 〉
This command is used for typesetting but not executing 〈code〉. The suffix v

is an abbreviation for verbatim.
\pyb[〈session 〉]〈opening delim 〉〈code 〉〈closing delim 〉

This command both executes and typesets 〈code〉. Since it is unlikely that the
user would wish to typeset code and then immediately include any output of
the code, printed content is not automatically included, even when the package
autoprint option is set to true. Rather, any printed content is included at a user-
designated location via the \printpythontex and \stdoutpythontex macros.

3.2.2 Environments

pycode [〈session 〉][〈fancyvrb settings 〉]
This environment encloses code that is executed but not typeset. The second

optional argument 〈fancyvrb settings〉 is irrelevant since nothing is typeset, but
it is accepted to maintain parallelism with the verb and block environments. If
the print statement/function is used within the environment, printed content will
be included automatically so long as the package autoprint option is set to true
(which is the default setting).

pyverb [〈session 〉][〈fancyvrb settings 〉]
This environment encloses code that is typeset but not executed. The suffix

verb is an abbreviation for verbatim.
pyblock [〈session 〉][〈fancyvrb settings 〉]

This environment encloses code that is both executed and typeset. Since it is
unlikely that the user would wish to typeset code and then immediately print any
output of the code, printed content is not automatically included, even when the
package autoprint option is set to true. Rather, any printed content is included
at a user-designated location via the \printpythontex or \stdoutpythontex
macros.

pyconsole [〈session 〉][〈fancyvrb settings 〉]
This environment treats its contents as a series of commands passed to an

interactive Python console. Python’s code module is used to intersperse the com-
mands with their output, to emulate an interactive Python interpreter. Unlike the
other environments, pyconsole has no inline equivalent. Currently, non-ASCII
characters are not supported in console environments under Python 2.

When a multi-line command is entered (for example, a function definition), a
blank line after the last line of the command may be necessary.

Unlike other commands and environments, the console environment currently
does not bring in any imports by default and does not load custom code. This
functionality will probably be added in the near future.

3.2.3 Default families

By default, three command and environment families are defined.

18

• Python

– Base name py: \py, \pyc, \pyv, \pyb, pycode, pyverb, pyblock,
pyconsole

– Imports: None.

• Python + pylab (matplotlib module)

– Base name pylab: \pylab, \pylabc, \pylabv, \pylabb, pylabcode,
pylabverb, pylabblock, pylabconsole

– Imports: matplotlib’s pylab module, which provides access to much of
matplotlib and NumPy within a single namespace. pylab content is
brought in via from pylab import *.

– Additional notes: matplotlib added a pgf backend in version 1.2. You
will probably want to use this for creating most plots. However, this
is not currently configured automatically because many users will want
to customize font, TEX engine, and other settings. Using TEX to create
plots also introduces a speed penalty.

• Python + SymPy

– Base name sympy: \sympy, \sympyc, \sympyv, \sympyb, sympycode,
sympyverb, sympyblock, sympyconsole

– Imports: SymPy via from sympy import *.

– Additional notes: By default, content brought in via \sympy is format-
ted using a context-sensitive interface to SymPy’s LatexPrinter class,
described below.

Under Python 2.7, all families import absolute_import, division, and
print_function from __future__ by default. This may be changed using the
package option pyfuture. Keep in mind that importing unicode_literals from
__future__ may break compatibility with some packages; this is why it is not
imported by default. Imports from __future__ are also possible without us-
ing the pyfuture option. You may use the \pythontexcustomc command or
pythontexcustomcode environment (described below), or simply enter the im-
port commands immediately at the beginning of a session.

3.2.4 Custom code

You may wish to customize the behavior of one or more families within a document
by adding custom code to the beginning and end of each session. The custom code
command and environment make this possible.

If you wish to share these customizations among several documents, you can
create your own document class or package containing custom code commands
and environments.

19

http://matplotlib.org/users/pgf.html

While custom code can be added anywhere in a document, it is probably best
for organizational reasons to add it in the preamble or near the beginning of the
document.

Note that custom code is executed, but never typeset. Only code that is
actually entered within a block (or verb) command or environment is ever typeset.
This means that you should be careful about how you use custom code. For
example, if you are documenting code, you probably want to show absolutely all
code that is executed, and in that case using custom code might not be appropriate.
If you are using PythonTEX to create figures or automate text, are using many
sessions, and require many imports, then custom code could save some typing by
centralizing the imports.

Any errors or warnings due to custom code will be correctly synchronized with
the document, just like normal errors and warnings. Any errors or warnings will
be specifically identified as originating in custom code.

Custom code is not allowed to print or write to stdout. It would be pointless
for custom code at the beginning of a session to print, because all printed content
would be identical since custom code at the beginning comes before any regular
code that might make the output session-specific. In addition, it is not obvious
where printed content from custom code would be included, especially for custom
code at the end of a session. Furthermore, custom code may be in the preamble,
where nothing can be typeset.

If custom code does attempt to print, a warning is raised and the printed
content is included in the PythonTEX run summary. This gives you access to the
printed content, while not including it in the document. This can be useful in
cases where you cannot control whether content prints (for example, if a library
automatically prints debugging information).

\pythontexcustomc[〈position 〉]{〈family 〉}{〈code 〉}
This macro allows custom code to be added to all sessions within a command

and environment family. 〈position〉 should be either begin or end; it determines
whether the custom code is executed at the beginning or end of each session. By
default, custom code is executed at the beginning. 〈code〉 should be a single
line of code. For example, \pythontexcustomc{py}{a=1; b=2} would create the
variables a and b within all sessions of the py family, by invisibly adding that line
of code at the beginning of each session.

If you need to add more than a single line of custom code, you could
use the command multiple times, but it will be more efficient to use the
pythontexcustomcode environment.
〈code〉may contain imports from __future__. These must be the first elements

in any custom code command or environment, since __future__ imports are only
possible at the very beginning of a Python script and only the very beginning of
custom code is checked for them. If imports from __future__ are present at the
beginning of both custom code and the user’s code, all imports will work correctly;
the presence of the imports in custom code, before user code, does not turn off
checking for __future__ imports at the very beginning of user code. However, it
is probably best to keep all __future__ imports in a single location.

pythontexcustomcode[〈position 〉]{〈family 〉}

20

This is the environment equivalent of \pythontexcustomc. It is used for adding
multi-line custom code to a command and environment family. In general, the en-
vironment should be preferrred to the command unless only a very small amount of
custom code is needed. The environment has the same properties as the command,
including the ability to include imports from __future__.

3.2.5 PythonTEX utilities class

All families import pythontex_utils*.py, and create an instance of the PythonTEX
utilities class called pytex. This provides various utilities for interfacing with
LATEX and PythonTEX.

The utilities class provides an interface for determining how Python objects are
converted into strings in commands such as \py. The pytex.set_formatter(〈formatter〉)
method is used to set the conversion. Two formatters are provided:

• ’str’ converts Python objects to a string, using the str() function un-
der Python 3 and the unicode() function under Python 2. (The use of
unicode() under Python 2 should not cause problems, even if you have not
imported unicode_literals and are not using unicode strings. All encod-
ing issues should be taken care of automatically by the utilities class.)

• ’sympy_latex’ uses SymPy’s LatexPrinter class to return context-sensitive
LATEX representations of SymPy objects. Separate LatexPrinter set-
tings may be created for the following contexts: ’display’ (displaystyle
math), ’text’ (textstyle math), ’script’ (superscripts and subscripts),
and ’scriptscript’ (superscripts and subscripts, of superscripts and sub-
scripts). Settings are created via pytex.set_sympy_latex(〈context〉,〈settings〉).
For example, pytex.set_sympy_latex(’display’, mul_symbol=’times’)
sets multiplication to use a multiplication symbol ×, but only when math is
in displaystyle.17 See the SymPy documentation for a list of possible settings
for the LatexPrinter class.

By default, ’sympy_latex’ only treats matrices differently based on context.
Matrices in displaystyle are typeset using pmatrix, while those in all other
styles are typeset via smallmatrix with parentheses.

The PythonTEX utilities formatter may also be set to a custom function that
returns strings, simply by reassigning the pytex.formatter() method. For exam-
ple, define a formatter function my_func(), and then pytex.formatter=my_func.

The context-sensitive interface to SymPy’s LatexPrinter is always avail-
able via pytex.sympy_latex(). If you wish to use it outside the sympy
command and environment family, you must either change the formatter via
pytex.set_formatter(’sympy_latex’), or initialize the method manually via
via pytex.init_sympy_latex().

17Internally, the ’sympy_latex’ formatter uses the \mathchoice macro to return multiple
representations of a SymPy object, if needed by the current settings. Then \mathchoice typesets
the correct representation, based on context.

21

http://docs.sympy.org/dev/modules/printing.html

The utilities class also provides methods for tracking dependencies and created
files.

• pytex.add_dependencies(〈dependencies〉) This adds 〈dependencies〉 to a
list. If any dependencies in the list change, code is re-executed, even if
the code itself has not changed. (Changed dependencies are determined via
either hash or mtime; see package option hashdependencies for details.)
This method is useful for tracking changes in external data and similar files.

〈dependencies〉 should be one or more strings, separated by commas, that
are the file names of dependencies. Dependencies should be given with
relative paths from the current working directory, with absolute paths,
or with paths based on the user’s home directory (that is, starting with
a tilde ~). Remember that by default, the working directory is the
pythontex-files-〈jobname〉 directory where all PythonTEX temporary
files are stored. This can be adjusted with \setpythontexworkingdir.

• pytex.add_created(〈created files〉) This adds 〈created files〉 to a list of files
created by the current session. Any time the code for the current session is
executed, all of these files will be deleted. Since this method deletes files,
it should be used with care. It is intended for automating cleanup when code
is modified. For example, if a figure’s name is changed, the old figure would
be deleted if its name had been added to the list. By default, PythonTEX
can only clean up the temporary files it creates; it knows nothing about
user-created files. This method allows user-created files to be specified, and
thus added to PythonTEX’s automatic cleanup.

〈created files〉 should be one or more strings, separated by commas, that
are the file names of created files. Paths should be the same as for
pytex.add_dependencies(): relative to the working directory, absolute,
or based on the user’s home directory.

Depending on how you use PythonTEX, this method may not be very ben-
eficial. If all of the output is contained in the default output directory, or
a similar directory of your choosing, then manual cleanup may be simple
enough that this method is not needed.

These two methods may be used manually. However, that is prone to errors, since
you will have to modify both a PythonTEX utilities command and an open or save
command every time you change a file name or add or remove a dependency or
created file. It may be better to redefine your open and save commands, or define
new ones, so that a single command opens (or saves) and adds a dependency (or
adds a created file).

3.2.6 Formatting of typeset code

\setpythontexfv[〈family 〉]{〈fancyvrb settings 〉}
This command sets the fancyvrb settings for all command and environment

families. Alternatively, if an optional argument 〈family〉 is supplied, the settings

22

only apply to the family with that base name. The general command will override
family-specific settings.

Each time the command is used, it completely overwrites the previous settings.
If you only need to change the settings for a few pieces of code, you should use
the second optional argument in block and verb environments.

Note that \setpythontexfv and \setpygmentsfv are equivalent when they
are used without an optional argument; in that case, either may be used to deter-
mine the document-wide fancyvrb settings, because both use the same underlying
macro.

\setpythontexformatter{〈family 〉}{〈formatter 〉}
This should generally not be needed. It allows the formatter used by 〈family〉

to be set. Valid options for 〈formatter〉 are auto, fancyvrb, and pygments. Using
auto means that the formatter will be determined based on the package pygments
option. Using either of the other two options will force 〈family〉 to use that for-
matter, regardless of the package-level options. By default, families use the auto
formatter.

Remember that Pygments has a text lexer and a bw style. These are an
alternative to setting the formatter to use fancyvrb.

\setpythontexpyglexer{〈family 〉}{〈pygments lexer 〉}
This allows the Pygments lexer to be set for 〈family〉. 〈pygments lexer〉 should

use a form of the lexer name that does not involve any special characters. For
example, you would want to use the lexer name csharp rather than C#. This will be
a consideration primarily when using the Pygments commands and environments
to typeset code of an arbitrary language.

\setpythontexpygopt{〈family 〉}{〈pygments options 〉}
This allows the Pygments options for 〈family〉 to be redefined. Note that any

previous options are overwritten. The same Pygments options may be passed
here as are available via the package pygopt option. Note that for each available
option, individual family settings will be overridden by the package-level pygopt
settings, if any are given.

3.2.7 Access to printed content (stdout) and error messages (stderr)

The macros that allow access to printed content and any additional content written
to stdout are provided in two identical forms: one based off of the word print and
one based off of stdout. Macro choice depends on user preference. The stdout
form provides parallelism with the macros that provide accesss to stderr.

\printpythontex[〈verbatim options 〉][〈fancyvrb options 〉]
\stdoutpythontex[〈verbatim options 〉][〈fancyvrb options 〉]

Unless the package option autoprint is true, printed content from code com-
mands and environments will not be automatically included. Even when the
autoprint option is turned on, block commands and environments do not auto-
matically include printed content, since we will generally not want printed content
immediately after typeset code. This macro brings in any printed content from
the last command or environment. It is reset after each command/environment,

23

so its scope for accessing particular printed content is very limited. It will return
an error if no printed content exists.

By default, printed content is brought in raw—it is pulled in directly from
the external file in which it is saved and interpreted as LATEX code. If you wish
to avoid this, you should print appropriate LATEX commands with your content
to ensure that it is typeset as you desire. Alternatively, you may supply an op-
tional argument verb or inlineverb (also accesible as v), which brings in content
verbatim. If code is brought in verbatim, then 〈fancyvrb options〉 are applied to
it.

\saveprintpythontex{〈name 〉}
\savestdoutpythontex{〈name 〉}
\useprintpythontex[〈verbatim options 〉][〈fancyvrb options 〉]{〈name 〉}
\usestdoutpythontex[〈verbatim options 〉][〈fancyvrb options 〉]{〈name 〉}

We may wish to be able to access the printed content from a command or
environment at any point after the code that prints it, not just before any addi-
tional commands or environments are used. In that case, we may save access to
the content under 〈name〉, and access it later via \useprintpythontex{〈name〉}.
〈verbatim options〉 must be either verb or inlineverb (also accessible as v), spec-
ifying how content is brought in verbatim. If content is brought in verbatim, then
〈fancyvrb options〉 are applied.

\stderrpythontex[〈verbatim options 〉][〈fancyvrb options 〉]
This brings in the stderr produced by the last command or environment. It

is intended for typesetting incorrect code next to the errors that it produces. By
default, stderr is brought in verbatim. 〈verbatim options〉 may be set to verb
(default), inlineverb (or v), and raw. In general, bringing in stderr raw should
be avoided, since stderr will typically include special characters that will make
TEX unhappy.

The line number given in the stderr message will correctly align with the line
numbering of the typeset code. Note that this only applies to code and block
environments. Inline commands do not have line numbers, and as a result, they
do not produce stderr content.

By default, the file name given in the message will be in the form

〈family name〉_〈session〉_〈group〉.〈extension〉

For example, an error produced by a \py command or environment, in the session
mysession, using the default group (that is, the default \restartpythontexsession
treatment), would be reported in py_mysession_default.py. The package op-
tion stderrfilename may be used to change the reported name to the following
forms: mysession.py, <file>, <script>.

\savestderrpythontex{〈name 〉}
\usestderrpythontex[〈verbatim options 〉][〈fancyvrb options 〉]{〈name 〉}

Content written to stderr may be saved and accessed anywhere later in the
document, just as stdout content may be. These commands should be used with
care. Using Python-generated content at multiple locations within a document
may often be appropriate. But an error message will usually be most meaningful
in its context, next to the code that produced it.

24

\setpythontexautoprint{〈boolean 〉}
This allows autoprint behavior to be modified at various points within the

document. The package-level autoprint option is also available for setting au-
toprint at the document level, but it is overridden by \setpythontexautoprint.
〈boolean〉 should be true or false.

3.3 Pygments commands and environments
Although PythonTEX’s goal is primarily the execution and typesetting of Python
code from within LATEX, it also provides access to syntax highlighting for any
language supported by Pygments.

\pygment{〈lexer 〉}〈opening delim 〉〈code 〉〈closing delim 〉
This command typesets 〈code〉 in a suitable form for inline use within a para-

graph, using the specified Pygments 〈lexer〉. Internally, it uses the same macros
as the PythonTEX inline commands. 〈opening delim〉 and 〈closing delim〉 may be
a pair of any characters except for the space character, or a matched set of curly
braces {}.

As with the inline commands for code typesetting and execution, there is not an
optional argument for fancyvrb settings, since almost all of them are not relevant
for inline usage, and the few that might be should probably be used document-wide
if at all.

pygments [〈fancyvrb settings 〉]{〈lexer 〉}
This environment typesets its contents using the specified Pygments 〈lexer〉

and applying the 〈fancyvrb settings〉.
\inputpygments[〈fancyvrb settings 〉]{〈lexer 〉}{〈external file 〉}

This command brings in the contents of 〈external file〉, highlights it using
〈lexer〉, and typesets it using 〈fancyvrb settings〉.

\setpygmentsfv[〈lexer 〉]{〈fancyvrb settings 〉}
This command sets the 〈fancyvrb settings〉 for 〈lexer〉. If no 〈lexer〉 is supplied,

then it sets document-wide 〈fancyvrb settings〉. In that case, it is equivalent to
\setpythontexfv{〈fancyvrb settings〉}.

\setpygmentspygopt{〈lexer 〉}{〈pygments options 〉}
This sets 〈lexer〉 to use 〈pygments options〉. If there is any overlap between

〈pygments options〉 and the package-level pygopt, the package-level options over-
ride the lexer-specific options.

\setpygmentsformatter{〈formatter 〉}
This usually should not be needed. It allows the formatter for Pygments con-

tent to be set. Valid options for 〈formatter〉 are auto, fancyvrb, and pygments.
Using auto means that the formatter will be determined based on the package
pygments option. Using either of the other two options will force Pygments con-
tent to use that formatter, regardless of the package-level options. The auto
formatter is used by default.

Remember that Pygments has a text lexer and a bw style. These are an
alternative to setting the formatter to use fancyvrb.

25

3.4 General code typesetting
3.4.1 Listings float

listing
PythonTEX will create a float environment listing for code listings, unless

an environment with that name already exists. The listing environment is cre-
ated using the newfloat package. Customization is possible through newfloat’s
\SetupFloatingEnvironment command.

\setpythontexlistingenv{〈alternate listing environment name 〉}
In the event that an environment named listing already exists for some other

purpose, PythonTEX will not override it. Instead, you may set an alternate name
for PythonTEX’s listing environment, via \setpythontexlistingenv.

3.4.2 Background colors

PythonTEX uses fancyvrb internally to typeset all code. Even code that is high-
lighted with Pygments is typeset afterwards with fancyvrb. Using fancyvrb, it
is possible to set background colors for individual lines of code, but not for entire
blocks of code, using \FancyVerbFormatLine (you may also wish to consider the
formatcom option). For example, the following command puts a green background
behind all the characters in each line of code:

\renewcommand{\FancyVerbFormatLine}[1]{\colorbox{green}{#1}}

If you need a completely solid colored background for an environment, or
a highly customizable background, you should consider the mdframed package.
Wrapping PythonTEX environments with mdframed frames works quite well. You
can even automatically add a particular style of frame to all instances of an envi-
ronment using the command

\surroundwithmdframed[〈frame options〉]{〈environment〉}

Or you could consider using etoolbox to do the same thing with mdframed or an-
other framing package of your choice, via etoolbox’s \BeforeBeginEnvironment
and \AfterEndEnvironment macros.

3.4.3 Referencing code by line number

It is possible to reference individual lines of code, by line number. If code is
typeset using pure fancyvrb, then LATEX labels can be included within com-
ments. The labels will only operate correctly (that is, be treated as LATEX rather
than verbatim content) if fancyvrb’s commandchars option is used. For example,
commandchars=\\\{\} makes the backslash and the curly braces function nor-
mally within fancyvrb environments, allowing LATEX macros to work, including
label definitions. Once a label is defined within a code comment, then referencing
it will return the code line number.

26

The disadvantage of the pure fancyvrb approach is that by making the back-
slash and curly braces command characters, we can produce conflicts if the code
we are typesetting contains these characters for non-LATEX purposes. In such a
case, it might be possible to make alternate characters command characters, but
it would probably be better to use Pygments.

If code is typeset using Pygments (which also ties into fancyvrb), then this
problem is avoided. The Pygments option texcomments=true has Pygments look
for LATEX code only within comments. Possible command character conflicts with
the language being typeset are thus eliminated.

Note that when references are created within comments, the references them-
selves will be invisible within the final document but the comment character(s) and
any other text within comments will still be visible. For example, the following

abc = 123 # An important line of code!\ref{lst:important}

would appear as

abc = 123 # An important line of code!

If a comment only contains the \ref command, then only the comment character
would actually be visible in the typeset code. If you are typesetting code for
instructional purposes, this may be less than ideal. Unfortunately, Pygments
currently does not allow escaping to LATEX outside of comments (though this
feature has been requested). At the same time, by only allowing references within
comments, Pygments does force us to only create code that would actually run.
And in many cases, if a line is important enough to reference, it is also important
enough for a brief comment.

3.4.4 Beamer compatibility

PythonTEX is compatible with Beamer. Since PythonTEX typesets code as verba-
tim content, Beamer’s fragile option must be used for any frame that contains
typeset code. Beamer’s fragile option involves saving frame contents to an ex-
ternal file and bringing it back in. This use of an external file breaks PythonTEX’s
error line number synchronization, since the error line numbers will correspond to
the temporary external file rather than to the actual document.

If you need to typeset code with Beamer, but don’t need to use overlays on the
slides containing code, you should use the fragile=singleslide option. This al-
lows verbatim content to be typeset without using an external file, so PythonTEX’s
error line syncronization will work correctly.

3.5 Advanced PythonTEX usage
\restartpythontexsession{〈counter value(s) 〉}

This macro determines when or if sessions are restarted (or “subdivided”).
Whenever 〈counter value(s)〉 change, the session will be restarted.

By default, each session corresponds to a single code file that is executed.
But sometimes it might be convenient if the code from each chapter or section

27

http://www.ctan.org/pkg/beamer

or subsection were to run within its own file, as its own session. For exam-
ple, we might want each chapter to execute separately, so that changing code
within one chapter won’t require that all the code from all the other chapters
be executed. But we might not want to have to go to the bother and ex-
tra typing of defining a new session for every chapter (like \py[ch1]{〈code〉}).
To do that, we could use \restartpythontexsession{\thechapter}. This
would cause all sessions to restart whenever the chapter counter changes. If
we wanted sessions to restart at each section within a chapter, we would
use \restartpythontexsession{\thechapter〈delim〉\thesection}. 〈delim〉 is
needed to separate the counter values so that they are not ambiguous (for ex-
ample, we need to distinguish chapter 11-1 from chapter 1-11). Usually 〈delim〉
should be a hyphen or an underscore; it must be a character that is valid in file
names.

Note that counter values, and not counters themselves, must be supplied as
the argument. Also note that the command applies to all sessions. If it did not,
then we would have to keep track of which sessions restarted when, and the lack
of uniformity could easily result in errors on the part of the user.

Keep in mind that when a session is restarted, all continuity is lost. It is best
not to restart sessions if you need continuity. If you must restart a session, but
also need to keep some data, you could save the data before restarting the session
and then load the saved data after the restart. This approach should be used with
extreme caution, since it can result in unanticipated errors due to sessions not
staying synchronized.18

This command can only be used in the preamble.
\setpythontexoutputdir{〈output directory 〉}

By default, PythonTEX saves all automatically generated content in a directory
called pythontex-files-〈sanitized jobname〉, where 〈sanitized jobname〉 is just
\jobname with any space characters or asterisks replaced with hyphens. This di-
rectory will be created by pythontex*.py. If we wish to specify another directory
(for example, if \jobname is long and complex, and there is no danger of two files
trying to use the same directory), then we can use the \setpythontexoutputdir
macro to redefine the output directory.19

\setpythontexworkingdir{〈working directory 〉}
The PythonTEX working directory is the current working directory for

PythonTEX scripts. This is the directory in which any open or save operations will
take place, unless a path is explicitly specified. By default, the working directory is

18For example, suppose sessions are restarted based on chapter. session-ch1 saves a data file,
and session-ch2 loads it and uses it. You write the code, and run PythonTEX. Then you realize
that session-ch1 needs to be modified and make some changes. The next time PythonTEX
runs, it will only execute session-ch1, since it detects no code changes in session-ch2. This
means that session-ch2 is not updated, at least to the extent that it depends on the data
from session-ch1. Again, saving and loading data between restarted sessions, or just be-
tween sessions in general, can produce unexpected behavior and should be avoided. (Note:
the pytex.add_dependencies() method does provide a workaround for this scenario.)

19In the rare event that both \setpythontexoutputdir is used and \printpythontex is needed
in the preamble, \setpythontexoutputdir must be used first, so that \printpythontex will know
where to look for output.

28

the same as the output directory. For example, if you are writing my_file.tex and
save a matplotlib figure with savefig(’my_figure.pdf’), then my_figure.pdf
will be created in the output directory pythontex-files-my_file. But maybe
you have a directory called plots in your document root directory. In that
case, you could leave the working directory unchanged, and simply specify the
relative path to plots when saving. Or you could set the working directory
to plots using \setpythontexworkingdir{plots}, so that all content would
automatically be saved there. If you want your working directory to be the
document root directory, you should use a period (.) for 〈working directory〉:
\setpythontexworkingdir{.}.

Note that in typical use scenarios, you should be able to use the output direc-
tory as the working directory. graphicx will automatically look for images and
figures in the output directory (this is set via \graphicspath).

It is also possible to change the working directory from within Python code,
via os.chdir().

4 depythontex

PythonTEX can greatly simplify the creation of documents. At the same time, by
introducing dependence on non-LATEX external tools, it can constrain how these
documents are used. For example, many publishers will not accept LATEX docu-
ments that require special packages or need special macros. To address this issue,
the package includes a feature called depythontex that can convert a PythonTEX
document into a plain LATEX document.

4.1 Preparing a document that will be converted
The conversion process should work flawlessly in most cases, with no special for-
matting required.

For best results, keep the following in mind.

• The PythonTEX package should have its own \usepackage.

• If you need to insert content from Python in inline contexts, it is best to
use \py or an equivalent command. If you use print, either directly (for
example, from within \pyc) or via \printpythontex, make sure that the
spacing following the printed content is correct. You may need to print
an \endinput or % at the end of your content to prevent an extra trailing
space. depythontex will attempt to reproduce the spacing of the original
document, even if it is not ideal. See Section 4.3 for additional details.

• Some LATEX environments, such as the verbatim environment from the
verbatim package and the Verbatim environment from fancyvrb, do not al-
low text to follow the \end{〈environment〉}. If you bring Python-generated
content that ends with one of these environments into your document, using
print or \py, make sure that the end-of-environment command is followed

29

by a newline. For example, if you are assembling a Verbatim environment
to bring in, the last line should be the string

’\\end{Verbatim}\n’

Even if you neglect a final newline, depythontex will still function correctly
in most cases. Whenever Python-generated content does not end with a
newline, depythontex usually inserts one and gobbles spaces that follow
the environment. This preserves the correct spacing while avoiding any
issues produced by an end-of-environment command. But in some cases,
depythontex cannot do this. For example, if \py is used to bring in a
Verbatim environment, and there is text immediately after the \py, without
any intervening space, depythontex cannot substitute a newline for spaces,
because there are none. Because of the way that print and \py content is
brought in, everything may still work correctly in the original PythonTEX
document. But it would fail in the depythontex output.

• Do not create PythonTEX commands or environments on the Python side
and print or otherwise bring them in. That is too many levels of complexity!

• depythontex is only designed to replace PythonTEX commands and envi-
ronments that are actually in the main document file. Do not bring in
anything that contains PythonTEX commands or environments via \input,
\include, or \usepackage. The only exception is PythonTEX commands
and environments that do not typeset anything (for example, code environ-
ments that don’t print). If these are brought in via a package or external file,
the command \DepythontexOff must come before them, and they must be
followed by the command \DepythontexOn. Basically, depythontex must
be disabled for commands and environments brought in via external files.
This works so long as the commands and environments only provide code
and settings, rather than any typeset content.

Tools for automatically removing the \usepackage for packages that contain
PythonTEX commands will be added soon; for now, these \usepackage’s
must be removed manually in the depythontex output.

• Keep in mind that the file produced by depythontex will need to include
any graphics that you create with PythonTEX. Make sure any graphics are
saved in a location where they are easily accessible.

4.2 Removing PythonTEX dependence
Converting a document requires three steps.

1. Turn on the package option depythontex. Then compile the document,
run pythontex*.py, and compile the document again. Depending on the
document, additional compiles may be necessary (for example, to resolve

30

references). Any syntax highlighting will be turned off automatically during
this process, to remove dependence on Pygments.
During compilation, an auxiliary file called <filename>.depytx is created.
This file contains information about the location of the PythonTEX com-
mands and environments that need to be replaced, and about the content
with which they are to be replaced.

2. Run the depythontex*.py script. This takes the following arguments.

• --encoding ENCODING This is the encoding of the LATEX file and all
related files. If an encoding is not specified, UTF-8 is assumed.

• --overwrite This turns off the user prompt in the event that a file
already exists with the output name, making overwriting automatic.

• --listing This option specifies the commands and environments that
are used for any typeset code. This can be verbatim, fancyvrb,
listings, minted, or pythontex.20 verbatim is used by default. An
appropriate \usepackage command is automatically added to the out-
put document’s preamble.
When code is typeset with any option other than verbatim, listing
line numbering from the original document will be preserved. When
code is typeset with any option other than verbatim and fancyvrb,
syntax highlighting will also be preserved. The only exception is
when listings is used, and listings’s language name does not cor-
respond to Pygments’ lexer name. In this case, you should use the
--lexer-dict option to specify how the Pygments lexer is to be trans-
lated into a listings language.

• --lexer-dict This option is used to specify how Pygments lexers are
converted to listings languages, when the two do not have the same
name. It takes a comma-separated list of the form

"<Pygments lexer>:<listings language>, ..., ... "

A Python-style dict will also be accepted.
• --preamble This option allows additional commands to be added to
the output document’s preamble. This is useful when you want the
output document to load a package that was automatically loaded by
PythonTEX, such as upquote.

• TEXNAME The name of the LATEX file whose PythonTEX dependence is
to be removed.

• [OUTFILE] By default, the script takes a file <filename>.<ext> and
creates a new file called depythontex_<filename>.<ext>. If a name
is given for the output file, that is used instead.

20The pythontex option is included for completeness. In most cases, you would probably use
depythontex to remove all dependence on PythonTEX. But sometimes it might be useful to
remove all Python code while still using PythonTEX for syntax highlighting.

31

3. Compile the depythontex file, and compare it to the original.

The original and depythontex files should be nearly identical. All Python-
generated content is substituted directly, so it should be unchanged. Usually,
any differences will be due to changes in the way that code is typeset. For ex-
ample, by default all code in the depythontex file is typeset with \verb and
verbatim. But \verb is more fragile than the inline PythonTEX commands
(it isn’t allowed inside other commands), and verbatim does not support
line numbering or syntax highlighting.

Remember that the depythontex file will need to include any graphics
created by PythonTEX. By default, these are saved in the PythonTEX
outputdir, which is pythontex-files-<jobname> unless you have cus-
tomized it. They may be in other locations if you have set a non-default
workingdir or have specified a path when saving graphics. You may want
to copy the graphics into the same directory as the depythontex file, or
provide their location via \graphicspath.

Depending on your needs, you may wish to customize depythontex*.py.
The actual substitutions are performed in a few functions that are defined
at the beginning of the script.

4.3 Technical details
The depythontex process should go smoothly under most circumstances, and the
document produced usually should not need manual tweaking. There are a few
technical details that may be of interest.

• Content that is printed (actually printed, not from a command like \py)
is always followed by a space when included as LATEX code rather than as
verbatim. Usually this is only noticeable when the content is used inline, ad-
jacent to other text. In such cases, you need to make sure that the spacing is
correct in your original document, and need to be aware of how depythontex
handles the conversion.

This spacing behavior is due to LATEX’s \input. When the file of printed
content is brought in via \input, LATEX removes any newline characters (\n,
\r, or \r\n) at the end of each line, and adds a space at the end of each line
(even if there wasn’t a newline character). Thus, when the printed content
is brought in, a space is added to its end. Since this space is within the
\input’s curly braces {}, it is not combined with any following spaces in
the LATEX document to make a single space. Rather, if the printed content
is followed by one or more spaces, two spaces will result; and if it is followed
immediately by text, there will be a single space before the text.

The space added by \input is often invisible, and even when it is not, it
is sometimes desirable.21 But this space can be an issue in some inline

21For example, \printpythontex behaves as a normal command, and gobbles following spaces,
but the space from \input puts a space back. So you often get the space you want in inline
contexts.

32

contexts. The simplest solution is to use a command like \py to bring in
content inline.
If a command like \py is not practical for some reason, there are at least three
ways to deal with the space introduced by \input: by printing \endinput at
the end of the printed content (ending the content before the final space), by
printing % at the end of the printed content (commenting out the final space),
or by using \unskip after the printed content (eating preceding spaces).
depythontex will work with all three approaches, but only under a limited
range of circumstances. In summary, depythontex works with \endinput
and % only if they are the very last thing printed (before a final newline),
and works with a following \unskip.22

– \endinput cannot be left in the printed content that is substituted
into the new document, because it would cause the new document to
end immediately. depythontex checks the very end of printed content
for \endinput, and removes it if it is there before substituting the
content. The terminating \endinput is only removed if it is not a
string, \string\endinput.
If \endinput is anywhere else in the printed content, and it is not
immediately preceded by \string, depythontex issues a warning.

– A terminating % cannot be left in the printed content that is substituted
into the new document, because it would comment out any text in
the remainder of the line into which it is substituted (in \input, its
effect is limited to the print file). depythontex checks the very end of
printed content for %, and removes it if it is there before substituting
the content. depythontex only removes the terminating % if it is not a
literal character \% or \string%.
depythontex checks the last line of printed content for other % char-
acters, and issues a warning if there are any % characters that are not
part of \% or \string%.

– A following \unskip could be left in the new document, since it would
not produce incorrect spacing. But it would be undesirable, since it
was only there in the first place because of the way that PythonTEX
was used. depythontex checks for \unskip, and if it is found, attempts
to correct the spacing and remove the \unskip. This removal process
is only possible if \unskip immediately follows a command (otherwise,
it wouldn’t work anyway) or is on the line immediately after the end of
an environment.
If depythontex finds \unskip following printed content, but cannot
replace it (it doesn’t immediately follow a command, or isn’t on the

22It would be possible to make depythontex work with \endinput and % anywhere, not just
at the very end of printed content. But doing so would require a lot of additional parsing,
especially for \endinput, to be absolutely sure that we found an actual command rather than a
string. Furthermore, there is no reason that there should be any content after an \endinput or
%, since such content would never be included in the document. Indeed, the current approach
prevents any printed content from accidentally being eliminated in this manner.

33

line immediately after the end of an environment), a warning is issued.
It is possible that the \unskip is not correctly positioned, and even if
it produces the correct spacing, the user should know that due to its
location it will survive in the converted document.

If one of the above approaches is not used to eliminate the space introduced
by the final newline in printed content, depythontex still makes sure that the
spacing in the new document matches that of the original document, even if
that means forcing a double space. In the majority of cases, depythontex
can create the correct spacing using actual spaces and newlines. But in a few
instances, it will include a \space{} to ensure a double space that matches
the original document. In those situations, a warning is issued in case the
spacing was not intentional.

• Strings such as \\}, \\{, and \string can occur in PythonTEX content
that is being replaced. It is possible that they might decrease performance
somewhat in larger or more complex documents.

PythonTEX commands for entering verbatim code allow the code to be de-
limited with either matched braces {} or with a repeated character such as #
(as in \verb). Any verbatim code delimited by braces cannot contain any
braces unless they are paired. So it is easy for depythontex*.py to find
the end of the delimited code.

However, depythontex*.py must also replace PythonTEX commands that
take a normal, non-verbatim argument delimited by braces (for exam-
ple, the various \setpythontex* commands). Finding the closing brace
for these commands is usually straightforward, but it can be tricky be-
cause the argument might contain a literal brace such as \} or \string}.
depythontex*.py automatically accounts for \}. If it detects \string, it
also accounts for it, but doing so requires more intense parsing. Similarly,
\\} requires extra parsing, because depending on what comes before it, the
first backslash \ could be literal (for example, if preceded by \string), or
the two backslashes \\ could go together to indicate a new line.

5 LATEX programming with PythonTEX
This section will be expanded in the future. For now, it offers a brief summary.

5.1 Macro programming with PythonTEX
In many situations, you can use PythonTEX commands inside macro definitions
without any special consideration. For example, consider the following macro, for
calculating powers.

\newcommand{\pow}[2]{\py{#1**#2}}

34

Once this is defined, we can calculate 2**8 via \pow{2}{8}: 256. Similarly, we
can reverse a string.

\newcommand{\reverse}[1]{\py{"#1"[::-1]}}

Now we can use \reverse{‘‘This is some text!’’}: ”!txet emos si sihT“.
Such approaches will break down when some special LATEX characters such

as percent % and hash # must be passed as arguments. In such cases, the argu-
ments need to be captured verbatim. The xparse and newverbs packages provide
commands for creating macros that capture verbatim arguments. You could also
consult the PythonTEX implementation, particularly the implementation of the
inline commands. In either case, you may need to learn about TEX’s catcodes and
tokenization, if you aren’t already familiar with them.

Of course, there are many cases where macros don’t need arguments. Here is
code for creating a macro that generates random polynomials.

\begin{sympycode}
from sympy.stats import DiscreteUniform, sample
x = Symbol(’x’)
a = DiscreteUniform(’a’, range(-10, 11))
b = DiscreteUniform(’b’, range(-10, 11))
c = DiscreteUniform(’c’, range(-10, 11))
def randquad():

return Eq(sample(a)*x**2 + sample(b)*x + sample(c))
\end{sympycode}
\newcommand\randquad{\sympy{randquad()}}

If you are considering writing macros that involve PythonTEX, you should keep
a few things in mind.

• Do you really need to use PythonTEX? If another package already provides
the functionality you need, it may be simpler to use an existing tool, partic-
ularly if you are working with special characters and thus need to capture
verbatim arguments.

• A feature called depythontex has recently been added. It creates a copy
of the original LATEX document in which all PythonTEX commands and
environments are replaced by their output, so that the new document does
not depend on PythonTEX at all. This is primarily of interest for publication,
since publishers tend not to like special packages or macros. depythontex
does not yet support custom user commands. So if you decide to create
custom macros now, and expect to need depythontex, you should expect to
have to edit your macros before they will work with depythontex.

5.2 Package writing with PythonTEX
As of v0.10beta, the custom code command and environment, and the regular
code command and environment, work in the preamble. This means that it is now

35

possible to write packages that incorporate PythonTEX! At this point, packages
are probably a good way to keep track of custom code that you use frequently,
and maybe some macros that use PythonTEX.

However, you are encouraged not to develop a huge mathematical or scien-
tific package for LATEX using PythonTEX. At least not yet! As discussed above,
depythontex will bring changes to macro programming involving PythonTEX. So
have fun writing packages if you want—but keep in mind that PythonTEX will
keep changing, and some things that are difficult now may be very simple in the
future.

6 Questions and answers
Will you add a plot command that automates the saving and inclusion of

plots or other graphics created by matplotlib or similar packages?

There are no plans to add a plot command like \pyplot to the package.
A plot command would add a little convenience, but at the expense of
power. Automated saving would give the plot an automatically generated
name, making the file harder to find. In the general case, automated inclu-
sion would involve collecting a lot of settings and then passing them on to
\includegraphics, perhaps within figure and center environments. In
general, it is simpler for the user to choose a meaningful name and then
include the file in the desired manner. If you are working with a series of
relatively simple figures, and want to automate the process, you may wish
to consult the PythonTEX wiki.

7 Troubleshooting
A more extensive troubleshooting section will be added in the future.

• If a PythonTEX document will not compile, you may want to delete the
directory in which PythonTEX content is stored and try compiling from
scratch. It is possible for PythonTEX to become stuck in an unrecoverable
loop. Suppose you tell Python to print some LATEX code back to your LATEX
document, but make a fatal LATEX syntax error in the printed content. This
syntax error prevents LATEX from compiling. Now suppose you realize what
happened and correct the syntax error. The problem is that the corrected
code cannot be executed until LATEX correctly compiles and saves the code
externally, but LATEX cannot compile until the corrected code has already
been executed. The simplest solution in such cases is to correct the code,
delete all files in the PythonTEX directory, compile the LATEX document,
and then run PythonTEX from scratch. You can also disable the inclusion
of printed content using the print and stdout package options.

• Dollar signs $ may appear as £ in italic code comments typeset by Pygments.
This is a font-related issue. One fix is to \usepackage[T1]{fontenc}.

36

https://github.com/gpoore/pythontex/wiki

8 The future of PythonTEX
This section consists of a To Do list for future development. The To Do list is
primarily for the benefit of the author, but also gives users a sense of what changes
are in progress or under consideration.

8.1 To Do
8.1.1 Modifications to make

• Add support for depythontex to remove the \usepackage for a package that
contains PythonTEX commands and environments.

• Add Pygments commands and environments that are compatible with basic
listings and minted syntax. This will make it easier to work with docu-
ments converted to LATEX from another format, for example via Pandoc.

• Console environments currently don’t use default code or custom code—they
start as standard Python consoles. Determine if there’s a need for default
and/or custom code, and if so, determine how to deal with it. Update
documentation either way.

• User-defined custom commands and environments for general Pygments
typesetting.

• Additional documentation for the Python code (Sphinx?).

• Improved testing framework.

• Keep track of any Pygments errors for future runs, so we know what to run
again? How easy is it to get Pygments errors? There don’t seem to have
been any in any of the testing so far.

• It might nice to include some methods in the PythonTEX utilities for for-
matting numbers (especially with SymPy and Pylab).

• Test the behavior of files brought in via \input and \include that contain
PythonTEX content.

8.1.2 Modifications to consider

• Consider fixing error line number synchronization with Beamer (and other
situations involving error lines in externalized files). The filehook and
currfile packages may be useful in this. One approach may be to patch the
macros associated with \beamer@doframeinput in beamerbaseframe.sty.
Note: Beamer’s fragile=singleslide option makes this much less of an
issue. This is low priority.

37

• Consider adding support for implicit multiprocessing within a session.
This would require wrapping all the regular code in a session within an
if __name__ == ’__main__’ statement to maintain Windows compability.
This is probably more trouble than it’s worth, but using multiprocessing
within a session is currently bothersome due to the if statement needed
under Windows.

• Allow LATEX in code, and expand LATEX macros before passing code to
pythontex.py. Maybe create an additional set of inline commands with
additional exp suffix for expanded? This can already be done by creating a
macro that contains a PythonTEX macro, though.

• Built-in support for background colors for blocks and verbatim, via mdframed?

• Consider support for executing other languages. It might be nice to sup-
port a few additional languages at a basic level by version 1.0. Languages
currently under consideration: Perl, MATLAB, Mathematica, Lua, Sage, R.
But note that there are ways to interface with many or perhaps all of these
from within Python. Also, consider general command line-access, similar to
\write18. The bashful package can do some nice command-line things.
But it would probably require some real finesse to get that kind of bash
access cross-platform. Probably could figure out a way to access Cygwin’s
bash or GnuWin32 or MSYS.

• Support for executing external scripts, not just internal code? It would be
nice to be able to typeset an external file, as well as execute it by passing
command-line arguments and then pull in its output.

• Is there any reason that saved printed content should be allowed to be
brought in before the code that caused it has been typeset? Are there
any cases in which the output should be typeset before the code that cre-
ated it? That would require some type of external file for bringing in saved
definitions.

• Consider some type of primitive line-breaking algorithm for use with Pyg-
ments. Could break at closest space, indent 8 spaces further than parent
line (assuming 4-space indents; could auto-detect the correct size), and use
LATEX counter commands to keep the line numbering from being incorrectly
incremented. Such an approach might not be hard and might have some real
promise.

• Consider allowing names of files into which scripts are saved to be specified.
This could allow PythonTEX to be used for literate programming, general
code documentation, etc. Also, it could allow writing a document that
describes code and also produces the code files, for user modification (see
the bashful package for the general idea). Doing something like this would
probably require a new, slightly modified interface to preexisting macros.

38

Acknowledgements
Thanks to Nicholas Lu Chee Seng for help testing the earliest versions.

Thanks to Øystein Bjørndal for many suggestions and for help with OS X
compatibility.

Version History
v0.11beta (2013/02/17)

• Commands like \py can now bring in any valid LaTeX code, including
verbatim content, under the pdfTeX and XeTeX engines. Verbatim
content was not allowed previously. LuaTeX cannot bring in verbatim,
due to a known bug.

• Added package option depythontex and scripts depythontex*.py.
These allow a PythonTeX document to be converted into a pure LaTeX
document, with no Python dependency. The package option creates an
auxiliary file with extension .depytx. The depythontex*.py scripts
take this auxiliary file and the original LaTeX document, and com-
bine the two to produce a new document that does not rely on the
PythonTeX package. All PythonTeX commands and environments are
replaced by their output. All Python-generated content is substituted
directly into the document. By default, all typeset code is wrapped in
\verb and verbatim, but depythontex*.py has a --listing option
that allows fancyvrb, listings, minted, or pythontex to be used
instead.

• The current PythonTeX version is now saved in the .pytxcode. If
this does not match the version of the PythonTeX scripts, a warning
is issued. This makes it easier to determine errors due to version mis-
matches.

• Fixed an incompatibility with the latest release of xstring (version
1.7, 2013/01/13).

• Fixed a bug in the console environment that could cause problems
when switching from Pygments highlighting to fancyvrb when using
the fvextfile option. Fixed a bug introduced in the v0.10beta series
that prevented the console environment from working with fancyvrb.

• Fixed a bug with PythonTeX verbatim commands and environments
that use Pygments. The verbatim commands and environments were
incorrectly treated as if they had the attributes of executed code in the
v0.10beta series.

• Fixed a bug from the v0.10beta series that sometimes prevented imports
from __future__ from working when there were multiple sessions.

• Fixed a bug related to hashing dependencies’ mtime under Python 3.

39

v0.10beta2 (2013/01/23)

• Improved pythontex*.py’s handling of the name of the file being pro-
cessed. A warning is no longer raised if the name is given with an
extension; extensions are now processed (stripped) automatically. The
filename may now contain a path to the file, so you need not run
pythontex*.py from within the document’s directory.

• Added command-line option --verbose for more verbose output. Cur-
rently, this prints a list of all processes that are launched.

• Fixed a bug that could crash pythontex*.py when the package option
pygments=false.

• Added documentation about autoprint behavior in the preamble.
Summary: code commands and environments are allowed in the pream-
ble as of v0.10beta. autoprint only applies to the body of the docu-
ment, because nothing can be typeset in the preamble. Content printed
in the preamble can be brought in by explicitly using \printpythontex,
but this should be used with great care.

• Revised \stdoutpythontex and \printpythontex so that they work
in the preamble. Again, this should be used with great care if at all.

• Revised treatment of any content that custom code attempts to print.
Custom code is not allowed to print to the document (see documenta-
tion). If custom code attempts to print, a warning is raised, and the
printed content is included in the pythontex*.py run summary.

• One-line entries in stderr, such as those produced by Python’s warnings.warn(),
were not previously parsed because they are of the form :<linenumber>:
rather than line <linenumber>. These are now parsed and synchro-
nized with the document. They are also correctly parsed for inclusion
in the document via \stderrpythontex.

• If the package option stderrfilename is changed, all sessions that
produced errors or warnings are now re-executed automatically, so that
their stderr content is properly updated with the new filename.

v0.10beta (2013/01/09)

• Backward-incompatible: Redid treatment of command-line options for
pythontex*.py, using Python’s argparsemodule. Run pythontex*.py
with option -h to see new command line options.

• Deprecated: \setpythontexcustomcode is deprecated in favor of the
\pythontexcustomc command and pythontexcustomcode environ-
ment. These allow entry of pure code, unlike \setpythontexcustomcode.
These also allow custom code to be added to the beginning or end of
a session, via an optional argument. Improved treatment of errors and
warnings associated with custom code.

40

• The summary of errors and warnings now correctly differentiates errors
and warnings produced by user code, rather than treating all of them
as errors. By default, pythontex*.py now returns an exit code of 1 if
there were errors.

• The PythonTeX utilities class now allows external file dependencies to
be specified via pytex.add_dependencies(), so that sessions are auto-
matically re-executed when external dependencies are modified (modi-
fication is determined via either hash or mtime; this is governed by the
new hashdependencies option).

• The PythonTeX utilities class now allows created files to be specified
via pytex.add_created(), so that created files may be automatically
cleaned up (deleted) when the code that created them is modified (for
example, name change for a saved plot).

• Added the following package options.

– stdout (or print): Allows input of stdout to be disabled. Useful
for debugging.

– runall: Executes everything. Useful when code depends on exter-
nal data.

– rerun: Determines when code is re-executed. Code may be set to
always run (same as runall option), or only run when it is modified
or when it produces errors or warnings. By default, code is always
re-executed if there are errors or modifications, but not re-executed
if there are warnings.

– hashdependencies: Determines whether external dependencies
(data, external code files highlighted with Pygments, etc.) are
checked for modification via hashing or modification time. Modifi-
cation time is default for performance reasons.

• Added the following new command line options. The options that are
equivalent to package options are overridden by the package options
when present.

– --error-exit-code: Determines whether an exit code of 1 is re-
turned if there were errors. On by default, but can be turned off
since it is undesirable when working with some editors.

– --runall: Equivalent to new package option.
– --rerun: Equivalent to new package option.
– --hashdependencies: Equivalent to new package option.

• Modified the fixlr option, so that it only patches commands if they
have not already been patched (avoids package conflicts).

• Added \setpythontexautoprint command for toggling autoprint
on/off within the body of the document.

• Installer now attempts to create symlinks under OS X and Linux with
TeX Live, and under OS X with MacPorts Tex Live.

41

• Performed compatibility testing under lualatex and xelatex (previously,
had only tested with pdflatex). Added documentation for using these
TeX engines; at most, slightly different preambles are needed. Modified
the PythonTeX gallery to support all three engines.

• Code commands and environments may now be used in the pream-
ble. This, combined with the new treatment of custom code, allows
PythonTeX to be used in creating LaTeX packages.

• Added documentation for using PythonTeX in LaTeX programming.

• Fixed a bug that sometimes caused incorrect line numbers with stderr
content. Improved processing of stderr.

• Fixed a bug in automatic detection of pre-existing listings environment.

• Improved the detection of imports from __future__. Detection should
now be stricter, faster, and more accurate.

v0.9beta3 (2012/07/17)

• Added Unicode support, which required the Python code to be split into
one set for Python 2 and another set for Python 3. This will require
any old installation to be completely removed, and a new installation
created from scratch.

• Refactoring of Python code. Documents should automatically re-
execute all code after updating to the new version. Otherwise, you
should delete the PythonTeX directory and run PythonTeX.

• Improved installation script.

• Added package options: pyfuture, stderr, upquote, pyglexer, pyginline.
Renamed the pygextfile option to fvextfile.

• Added custom code and workingdir commands.

• Added the console environment and associated options.

• Rewrote pythontex_utils*.py, creating a new, context-aware interface
to SymPy’s LatexPrinter class.

• Content brought in via macros no longer uses labels. Rather, long defs
are used, which allows line breaks.

• Pygments highlighting is now default for PythonTeX commands and
environments

v0.9beta2 (2012/05/09)

• Changed Python output extension to .stdout.

v0.9beta (2012/04/27)

• Initial public beta release.

42

9 Implementation
This section describes the technical implementation of the package. Unless you
wish to understand all the fine details or need to use the package in extremely
sophisticated ways, you should not need to read it.

The prefix pytx@ is used for all PythonTEX macros, to prevent conflict with
other packages. Macros that simply store text or a value for later retrieval are
given names completely in lower case. For example, \pytx@packagename stores
the name of the package, PythonTeX. Macros that actually perform some operation
in contrast to simple storage are named using CamelCase, with the first letter after
the prefix being capitalized. For example, \pytx@CheckCounter checks to see if a
counter exists, and if not, creates it. Thus, macros are divided into two categories
based on their function, and named accordingly.

9.1 Package opening
We store the name of the package in a macro for later use in warnings and error
messages.
1 \newcommand{\pytx@packagename}{PythonTeX}
2 \newcommand{\pytx@packageversion}{v0.11beta}

9.2 Required packages
A number of packages are required. fancyvrb is used to typeset all code that is
not inline, and its internals are used to format inline code as well. etex provides
extra registers, to avoid the (probably unlikely) possibility that the many counters
required by PythonTEX will exhaust the supply. etoolbox is used for string
comparison and boolean flags. xstring provides string manipulation. pgfopts is
used to process package options, via the pgfkeys package. newfloat allows the
creation of a floating environment for code listings. xcolor or color is needed for
syntax highlighting with Pygments.
3 \RequirePackage{fancyvrb}
4 \RequirePackage{etex}
5 \RequirePackage{etoolbox}
6 \RequirePackage{xstring}
7 \RequirePackage{pgfopts}
8 \RequirePackage{newfloat}
9 \AtBeginDocument{\@ifpackageloaded{color}{}{\RequirePackage{xcolor}}}

9.3 Package options
We now proceed to define package options, using the pgfopts package that pro-
vides a package-level interface to pgfkeys. All keys for package-level options are
placed in the key tree under the path /PYTX/pkgopt/, to prevent conflicts with
any other packages that may be using pgfkeys.

43

9.3.1 Runall

pytx@opt@rerun This option causes all code to be executed, regardless of whether it has been
modified. It is primarily useful for re-executing code that has not changed, when
the code depends on external files that have changed. Since it shares functionality
with the rerun option, both options share a single macro. Note that the macro
is initially set to default, rather than the default value of errors, so that the
Python side can distinguish whether a value was actually set by the user on the
TEX side, and thus any potential conflicts between command-line options and
package options can be resolved in favor of package options.
10 \def\pytx@opt@rerun{default}
11 \pgfkeys{/PYTX/pkgopt/runall/.default=true}
12 \pgfkeys{/PYTX/pkgopt/runall/.is choice}
13 \pgfkeys{/PYTX/pkgopt/runall/true/.code=\def\pytx@opt@rerun{all}}
14 \pgfkeys{/PYTX/pkgopt/runall/false/.code=\relax}

9.3.2 Rerun

This option determines the conditions under which code is rerun. It stores its
state in a macro shared with runall.
15 \pgfkeys{/PYTX/pkgopt/rerun/.is choice}
16 \pgfkeys{/PYTX/pkgopt/rerun/modified/.code=\def\pytx@opt@rerun{modified}}
17 \pgfkeys{/PYTX/pkgopt/rerun/errors/.code=\def\pytx@opt@rerun{errors}}
18 \pgfkeys{/PYTX/pkgopt/rerun/warnings/.code=\def\pytx@opt@rerun{warnings}}
19 \pgfkeys{/PYTX/pkgopt/rerun/all/.code=\def\pytx@opt@rerun{all}}

9.3.3 Hashdependencies

pytx@opt@hashdependencies This option determines whether dependencies (either code to be highlighted, or
dependencies such as data that have been specified within a session) are checked
for modification via modification time or via hashing.
20 \def\pytx@opt@hashdependencies{default}
21 \pgfkeys{/PYTX/pkgopt/hashdependencies/.is choice}
22 \pgfkeys{/PYTX/pkgopt/hashdependencies/.default=true}
23 \pgfkeys{/PYTX/pkgopt/hashdependencies/true/.code=\def\pytx@opt@hashdependencies{true}}
24 \pgfkeys{/PYTX/pkgopt/hashdependencies/false/.code=\def\pytx@opt@hashdependencies{false}}

9.3.4 Autoprint

pytx@opt@autoprint The autoprint option determines whether content printed within a code com-
mand or environment is automatically included at the location of the command or
environment. If the option is not used, autoprint is turned on by default. If the
option is used, but without a setting (\usepackage[autoprint]{pythontex}), it
is true by default. We use the key handler 〈key〉/.is choice to ensure that only
true/false values are allowed. The code for the true branch is redundant, but is
included for symmetry.
25 \newbool{pytx@opt@autoprint}

44

26 \booltrue{pytx@opt@autoprint}
27 \pgfkeys{/PYTX/pkgopt/autoprint/.default=true}
28 \pgfkeys{/PYTX/pkgopt/autoprint/.is choice}
29 \pgfkeys{/PYTX/pkgopt/autoprint/true/.code=\booltrue{pytx@opt@autoprint}}
30 \pgfkeys{/PYTX/pkgopt/autoprint/false/.code=\boolfalse{pytx@opt@autoprint}}

\setpythontexautoprint Sometimes it may be useful to switch autoprint on and off within different parts
of a document, rather than setting it to a single setting for the entire document.
So we provide a command for that purpose. Note that the command overrides the
package-level option.
31 \newcommand{\setpythontexautoprint}[1]{%
32 \Depythontex{cmd:setpythontexautoprint:m:n}%
33 \ifstrequal{#1}{true}{\booltrue{pytx@opt@autoprint}}{}%
34 \ifstrequal{#1}{false}{\boolfalse{pytx@opt@autoprint}}{}%
35 }

9.3.5 Print/stdout

pytx@opt@stdout This option determines whether printed content/content written to stdout is in-
cluded in the document. Disabling the inclusion of printed content is useful when
the printed content contains LATEX errors that would prevent successful compila-
tion.
36 \newbool{pytx@opt@stdout}
37 \booltrue{pytx@opt@stdout}
38 \pgfkeys{/PYTX/pkgopt/stdout/.default=true}
39 \pgfkeys{/PYTX/pkgopt/stdout/.is choice}
40 \pgfkeys{/PYTX/pkgopt/stdout/true/.code=\booltrue{pytx@opt@stdout}}
41 \pgfkeys{/PYTX/pkgopt/stdout/false/.code=\boolfalse{pytx@opt@stdout}}
42 \pgfkeys{/PYTX/pkgopt/print/.default=true}
43 \pgfkeys{/PYTX/pkgopt/print/.is choice}
44 \pgfkeys{/PYTX/pkgopt/print/true/.code=\booltrue{pytx@opt@stdout}}
45 \pgfkeys{/PYTX/pkgopt/print/false/.code=\boolfalse{pytx@opt@stdout}}
46 \AtBeginDocument{%
47 \ifbool{pytx@opt@stdout}{}{%
48 \PackageWarning{\pytx@packagename}{Option stdout/print is set to false}%
49 }%
50 }

9.3.6 stderr

pytx@opt@stderr The stderr option determines whether stderr is saved and may be included in the
document via \stderrpythontex.
51 \newbool{pytx@opt@stderr}
52 \pgfkeys{/PYTX/pkgopt/stderr/.default=true}
53 \pgfkeys{/PYTX/pkgopt/stderr/.is choice}
54 \pgfkeys{/PYTX/pkgopt/stderr/true/.code=\booltrue{pytx@opt@stderr}}
55 \pgfkeys{/PYTX/pkgopt/stderr/false/.code=\boolfalse{pytx@opt@stderr}}

45

9.3.7 stderrfilename

\pytx@opt@stderrfilename This option determines how the file name appears in stderr.
56 \def\pytx@opt@stderrfilename{full}
57 \pgfkeys{/PYTX/pkgopt/stderrfilename/.default=full}
58 \pgfkeys{/PYTX/pkgopt/stderrfilename/.is choice}
59 \pgfkeys{/PYTX/pkgopt/stderrfilename/full/.code=\def\pytx@opt@stderrfilename{full}}
60 \pgfkeys{/PYTX/pkgopt/stderrfilename/session/.code=\def\pytx@opt@stderrfilename{session}}
61 \pgfkeys{/PYTX/pkgopt/stderrfilename/genericfile/.code=%
62 \def\pytx@opt@stderrfilename{genericfile}}
63 \pgfkeys{/PYTX/pkgopt/stderrfilename/genericscript/.code=%
64 \def\pytx@opt@stderrfilename{genericscript}}

9.3.8 Python’s __future__ module

\pytx@opt@pyfuture The pyfuture option determines what is imported from the __future__ module
under Python 2. It has no effect under Python 3.
65 \def\pytx@opt@pyfuture{default}
66 \pgfkeys{/PYTX/pkgopt/pyfuture/.is choice}
67 \pgfkeys{/PYTX/pkgopt/pyfuture/default/.code=\def\pytx@opt@pyfuture{default}}
68 \pgfkeys{/PYTX/pkgopt/pyfuture/all/.code=\def\pytx@opt@pyfuture{all}}
69 \pgfkeys{/PYTX/pkgopt/pyfuture/none/.code=\def\pytx@opt@pyfuture{none}}

9.3.9 Upquote

pytx@opt@upquote The upquote option determines whether the upquote package is loaded. It makes
quotes within verbatim contexts ' rather than ’. This is important, because it
means that code may be copied directly from the compiled PDF and executed
without any errors due to quotes ’ being copied as acute accents ´.
70 \newbool{pytx@opt@upquote}
71 \booltrue{pytx@opt@upquote}
72 \pgfkeys{/PYTX/pkgopt/upquote/.default=true}
73 \pgfkeys{/PYTX/pkgopt/upquote/.is choice}
74 \pgfkeys{/PYTX/pkgopt/upquote/true/.code=\booltrue{pytx@opt@upquote}}
75 \pgfkeys{/PYTX/pkgopt/upquote/false/.code=\boolfalse{pytx@opt@upquote}}

9.3.10 Fix math spacing

pytx@opt@fixlr The fixlr option fixes extra, undesirable spacing in mathematical formulae in-
troduced by the commands \left and \right. For example, compare the results
of $\sin(x)$ and $\sin\left(x\right)$: sin(x) and sin (x). The fixlr option
fixes this, using a solution proposed by Mateus Araújo, Philipp Stephani, and
Heiko Oberdiek.23

76 \newbool{pytx@opt@fixlr}
77 \booltrue{pytx@opt@fixlr}
78 \pgfkeys{/PYTX/pkgopt/fixlr/.default=true}

23 http://tex.stackexchange.com/questions/2607/spacing-around-left-and-right

46

http://tex.stackexchange.com/questions/2607/spacing-around-left-and-right

79 \pgfkeys{/PYTX/pkgopt/fixlr/.is choice}
80 \pgfkeys{/PYTX/pkgopt/fixlr/true/.code=\booltrue{pytx@opt@fixlr}}
81 \pgfkeys{/PYTX/pkgopt/fixlr/false/.code=\boolfalse{pytx@opt@fixlr}}

9.3.11 Keep temporary files

\pytx@opt@keeptemps By default, PythonTEX tries to be very tidy. It creates many temporary files, but
deletes all that are not required to compile the document, keeping the overall file
count very low. At times, particularly during debugging, it may be useful to keep
these temporary files, so that code, errors, and output may be examined more
directly. The keeptemps option makes this possible.
82 \def\pytx@opt@keeptemps{none}
83 \pgfkeys{/PYTX/pkgopt/keeptemps/.default=all}
84 \pgfkeys{/PYTX/pkgopt/keeptemps/.is choice}
85 \pgfkeys{/PYTX/pkgopt/keeptemps/all/.code=\def\pytx@opt@keeptemps{all}}
86 \pgfkeys{/PYTX/pkgopt/keeptemps/code/.code=\def\pytx@opt@keeptemps{code}}
87 \pgfkeys{/PYTX/pkgopt/keeptemps/none/.code=\def\pytx@opt@keeptemps{none}}

9.3.12 Pygments

pytx@opt@pygments By default, PythonTEX uses fancyvrb to typeset code. This provides nice format-
ting and font options, but no syntax highlighting. The pygments option determines
whether Pygments or fancyvrb is used to typeset code. Pygments is a generic
syntax highlighter written in Python. Since PythonTEX sends code to Python
anyway, having Pygments process the code is only a small additional step and in
many cases takes little if any extra time to execute.24

Command and environment families obey the pygments option by default, but
they may be set to override it and always use Pygments or always use fancyvrb,
via \setpythontexformatter and \setpygmentsformatter.

Pygments has been used previously to highlight code for LATEX, most notably
in the minted package.
88 \newbool{pytx@opt@pygments}
89 \booltrue{pytx@opt@pygments}
90 \pgfkeys{/PYTX/pkgopt/pygments/.default=true}
91 \pgfkeys{/PYTX/pkgopt/pygments/.is choice}
92 \pgfkeys{/PYTX/pkgopt/pygments/true/.code=\booltrue{pytx@opt@pygments}}
93 \pgfkeys{/PYTX/pkgopt/pygments/false/.code=\boolfalse{pytx@opt@pygments}}

pytx@pyglexer For completeness, we need a way to set the Pygments lexer for all content. Note
that in general, resetting the lexers for all content is not desirable.
94 \def\pytx@pyglexer{}
95 \pgfkeys{/PYTX/pkgopt/pyglexer/.code=\def\pytx@pyglexer{#1}}

24Pygments code highlighting is executed as a separate process by pythontex*.py, so it runs
in parallel on a multicore system. Pygments usage is optimized by saving highlighted code and
only reprocessing it when changed.

47

\pytx@pygopt We also need a way to specify Pygments options at the package level. This is
accomplished via the pygopt option: pygopt={〈options〉}. Note that the options
must be enclosed in curly braces since they contain equals signs and thus must be
distinguishable from package options.

Currently, three options may be passed in this manner: style=〈style〉, which
sets the formatting style; texcomments, which allows LATEX in code comments to
be rendered; and mathescape, which allows LATEX math mode ($...$) in com-
ments. The texcomments and mathescape options may be used with a boolean
argument; if an argument is not supplied, true is assumed. As an example of
pygopt usage, consider the following:

pygopt={style=colorful, texcomments=True, mathescape=False}

The usage of capitalized True and False is more pythonic, but is not strictly
require.

While the package-level pygments option may be overridden by individual com-
mands and environments (though it is not by default), the package-level Pygments
options cannot be overridden by individual commands and environments.
96 \def\pytx@pygopt{}
97 \pgfkeys{/PYTX/pkgopt/pygopt/.code=\def\pytx@pygopt{#1}}

pytx@opt@pyginline This option governs whether, when Pygments is in use, it highlights inline content.
98 \newbool{pytx@opt@pyginline}
99 \booltrue{pytx@opt@pyginline}

100 \pgfkeys{/PYTX/pkgopt/pyginline/.default=true}
101 \pgfkeys{/PYTX/pkgopt/pyginline/.is choice}
102 \pgfkeys{/PYTX/pkgopt/pyginline/true/.code=\booltrue{pytx@opt@pyginline}}
103 \pgfkeys{/PYTX/pkgopt/pyginline/false/.code=\boolfalse{pytx@opt@pyginline}}

\pytx@fvextfile By default, code highlighted by Pygments, the console environment, and some
other content is brought back via fancyvrb’s SaveVerbatim macro, which saves
verbatim content into a macro and then allows it to be restored. This makes it
possible for all Pygments content to be brought back in a single file, keeping the
total file count low (which is a major priority for PythonTEX!). This approach does
have a disadvantage, though, because SaveVerbatim slows down as the length of
saved code increases.25 To deal with this issue, we create the fvextfile option.
This option takes an integer, fvextfile=〈integer〉. All content that is more than
〈integer〉 lines long will be saved to its own external file and inputted from there,
rather than saved and restored via SaveVerbatim and UseVerbatim. This provides
a workaround should speed ever become a hindrance for large blocks of code.

A default value of 25 is set. There is nothing special about 25; it is just a
relatively reasonably cutoff. If the option is unused, it has a value of −1, which is
converted to the maximum integer on the Python side.

25The macro in which code is saved is created by grabbing the code one line at a time, and
for each line redefining the macro to be its old value with the additional line tacked on. This is
rather inefficient, but apparently there isn’t a good alternative.

48

104 \def\pytx@fvextfile{-1}
105 \pgfkeys{/PYTX/pkgopt/fvextfile/.default=25}
106 \pgfkeys{/PYTX/pkgopt/fvextfile/.code=\IfInteger{#1}{%
107 \ifnum#1>0\relax
108 \def\pytx@fvextfile{#1}%
109 \else
110 \PackageError{\pytx@packagename}{option fvextfile must be an integer > 0}{}%
111 \fi}%
112 {\PackageError{\pytx@packagename}{option fvextfile must be an integer > 0}{}}%
113 }

9.3.13 Python console environment

\pytx@opt@pyconbanner This option governs the appearance (or disappearance) of a banner at the begin-
ning of Python console environments. The options none (no banner), standard
(standard Python banner), default (default banner for Python’s code module,
standard banner plus interactive console class name), and pyversion (banner in
the form Python x.y.z) are accepted.

114 \def\pytx@opt@pyconbanner{none}
115 \pgfkeys{/PYTX/pkgopt/pyconbanner/.is choice}
116 \pgfkeys{/PYTX/pkgopt/pyconbanner/none/.code=\def\pytx@opt@pyconbanner{none}}
117 \pgfkeys{/PYTX/pkgopt/pyconbanner/standard/.code=\def\pytx@opt@pyconbanner{standard}}
118 \pgfkeys{/PYTX/pkgopt/pyconbanner/default/.code=\def\pytx@opt@pyconbanner{default}}
119 \pgfkeys{/PYTX/pkgopt/pyconbanner/pyversion/.code=\def\pytx@opt@pyconbanner{pyversion}}

\pytx@opt@pyconfilename This option governs the file name that appears in error messages in the console.
The file name may be either stdin, as it is in a standard interactive interpreter,
or console, as it would typically be for the Python code module.

Traceback (most recent call last):
File "<file name>", line <line no>, in <module>

120 \def\pytx@opt@pyconfilename{stdin}
121 \pgfkeys{/PYTX/pkgopt/pyconfilename/.is choice}
122 \pgfkeys{/PYTX/pkgopt/pyconfilename/stdin/.code=\def\pytx@opt@pyconfilename{stdin}}
123 \pgfkeys{/PYTX/pkgopt/pyconfilename/console/.code=\def\pytx@opt@pyconfilename{console}}

9.3.14 depythontex

pytx@opt@depythontex This option governs whether PythonTEX saved data that can be used to create a
version of the .tex file that does not require PythonTEX to be compiled. This op-
tion should be useful for converting a PythonTEX document into a more standard
TEX document when sharing or publishing documents.

While we’re at it, we go ahead and define dummy versions of the depythontex
macros, so that they can be used in defining commands that are used within the
package, not just outside of it.

124 \newbool{pytx@opt@depythontex}
125 \pgfkeys{/PYTX/pkgopt/depythontex/.default=true}

49

126 \pgfkeys{/PYTX/pkgopt/depythontex/.is choice}
127 \pgfkeys{/PYTX/pkgopt/depythontex/true/.code=\booltrue{pytx@opt@depythontex}}
128 \pgfkeys{/PYTX/pkgopt/depythontex/false/.code=\boolfalse{pytx@opt@depythontex}}
129 \let\Depythontex\@gobble
130 \let\DepyFile\@gobble
131 \let\DepyMacro\@gobble
132 \let\DepyListing\@empty

9.3.15 Process options

Now we process the package options.
133 \ProcessPgfPackageOptions{/PYTX/pkgopt}

The fixlr option only affects one thing, so we go ahead and take care of that.
Notice that before we patch \left and \right, we make sure that they have not
already been patched by checking how \left is expanded. This is important if
the user has manually patched these commands, is using the mleftright package,
or accidentally loads PythonTEX twice.

134 \ifbool{pytx@opt@fixlr}{
135 \IfStrEq{\detokenize\expandafter{\left}}{\detokenize{\left}}{
136 \let\originalleft\left
137 \let\originalright\right
138 \renewcommand{\left}{\mathopen{}\mathclose\bgroup\originalleft}
139 \renewcommand{\right}{\aftergroup\egroup\originalright}
140 }{}
141 }{}

Likewise, the upquote option.
142 \ifbool{pytx@opt@upquote}{\RequirePackage{upquote}}{}

If the depythontex option is used, we also need to disable Pygments highlight-
ing. This is necessary because some content, such as console environments, is
needed in a non-highlighted form, so that it will not contain any special macros.

143 \ifbool{pytx@opt@depythontex}{\boolfalse{pytx@opt@pygments}}{}

9.4 Utility macros and input/output setup
Once options are processed, we proceed to define a number of utility macros and
setup the file input/output that is required by PythonTEX. We also create macros
and perform setup needed by depythontex, since these are closely related to in-
put/output.

9.4.1 Automatic counter creation

\pytx@CheckCounter We will be using counters to give each command/environment a unique identifier,
as well as to manage line numbering of code when desired. We don’t know the
names of the counters ahead of time (this is actually determined by the user’s
naming of code sessions), so we need a macro that checks whether a counter
exists, and if not, creates it.

50

144 \def\pytx@CheckCounter#1{%
145 \ifcsname c@#1\endcsname\else\newcounter{#1}\fi
146 }

9.4.2 Saving verbatim content in macros

\pytx@SVMCR Commands like \py bring in string representations of objects. Printed content is
saved to external files, but commands like \py bring in content by saving it in
macros. A single large file of macro definitions is brought in, rather than many
external files.

This prevents the creation of unnecessary files, but it also has a significant
drawback: only some content can be saved in a standard macro. In particular,
verbatim content using \verb and verbatim will not work. So we need a way
to save anything in a macro. The solution is to create a special macro that
captures its argument verbatim. The argument is then tokenized when it is used
via \scantokens. All of this requires a certain amount of catcode trickery.

While this approach works with the XeTeX and pdfTeX engines, it does not
work with the LuaTeX engine, which has a known bug in its implementation
of \scantokens.26 So we provide a separate version for LuaTEX that does not
support verbatim. The space after the #1 is intentional, so that the newline at
the beginning of the macro definition is gobbled, and the macro content will start
with text rather than leading whitespace.

147 \def\pytx@SVMCR#1{%
148 \edef\pytx@tmp{\csname #1\endcsname}%
149 \begingroup
150 \endlinechar‘\^^J
151 \let\do\@makeother\dospecials
152 \pytx@SVMCR@i}
153 \begingroup
154 \catcode‘!=0
155 !catcode‘!\=12
156 !long!gdef!pytx@SVMCR@i#1\endpytx@SVMCR^^J{%
157 !endgroup
158 !expandafter!gdef!pytx@tmp{%
159 !expandafter!scantokens!expandafter{#1!empty}}%
160 }%
161 !endgroup
162 \expandafter\ifx\csname directlua\endcsname\relax\else
163 \def\pytx@SVMCR#1 {%
164 \edef\pytx@tmp{\csname #1\endcsname}%
165 \pytx@SVMCR@i}
166 \long\def\pytx@SVMCR@i#1\endpytx@SVMCR{%
167 \expandafter\gdef\pytx@tmp{#1}%
168 }
169 \fi

26http://tracker.luatex.org/view.php?id=733

51

http://tracker.luatex.org/view.php?id=733

9.4.3 Code context

\pytx@context
\pytx@SetContext

\definepythontexcontext

It would be nice if when our code is executed, we could know something about its
context, such as the style of its surroundings or information about page size.

By default, no contextual information is passed to LATEX. There is a wide
variety of information that could be passed, but most use cases would only need
a very specific subset. Instead, the user can customize what information is passed
to LATEX. The \definepythontexcontext macro defines what is passed. It cre-
ates the \pytx@SetContext macro, which creates \pytx@context, in which the
expanded context information is stored. The context should only be defined in
the preamble, so that it is consistent throughout the document.

If you are interested in typesetting mathematics based on math styles, you
should use the \mathchoice macro rather than attempting to pass contextual
information.

170 \newcommand{\definepythontexcontext}[1]{%
171 \def\pytx@SetContext{%
172 \edef\pytx@context{#1}%
173 }%
174 }
175 \definepythontexcontext{}
176 \@onlypreamble\definepythontexcontext

9.4.4 Code groups

By default, PythonTEX executes code based on sessions. All of the code entered
within a command and environment family is divided based on sessions, and each
session is saved to a single external file and executed. If you have a calculation
that will take a while, you can simply give it its own named session, and then the
code will only be executed when there is a change within that session.

While this approach is appropriate for many scenarios, it is sometimes ineffi-
cient. For example, suppose you are writing a document with multiple chapters,
and each chapter needs its own session. You could manually do this, but that would
involve a lot of commands like \py[chapter x]{〈some code〉}, which means lots
of extra typing and extra session names. So we need a way to subdivide or restart
sessions, based on context such as chapter, section, or subsection.

“Groups” provide a solution to this problem. Each session is subdivided based
on groups behind the scenes. By default, this changes nothing, because each
session is put into a single default group. But the user can redefine groups based on
chapter, section, and other counters, so that sessions are automatically subdivided
accordingly. Note that there is no continuity between sessions thus subdivided. For
example, if you set groups to change between chapters, there will be no continuity
between the code of those chapters, even if all the code is within the same named
session. If you require continuity, the groups approach is probably not appropriate.
You could consider saving results at the end of one chapter and loading them at
the beginning of the next, but that introduces additional issues in keeping all code
properly synchronized, since code is executed only when it changes, not when any
data it loads may have changed.

52

\restartpythontexsession
\pytx@group

\pytx@SetGroup
\pytx@SetGroupVerb
\pytx@SetGroupCons

We begin by creating the \restartpythontexsession macro. It creates the
\pytx@SetGroup* macros, which create \pytx@group, in which the expanded
context information is stored. The context should only be defined in the
preamble, so that it is consistent throughout the document. Note that groups
should be defined so that they will only contain characters that are valid in
file names, because groups are used in naming temporary files. It is also a
good idea to avoid using periods, since LATEX input of file names containing
multiple periods can sometimes be tricky. For best results, use A-Z, a-z, 0-9,
and the hyphen and underscore characters to define groups. If groups contain
numbers from multiple sources (for example, chapter and section), the num-
bers should be separated by a non-numeric character to prevent unexpected
collisions (for example, distinguishing chapter 1-11 from 11-1). For example,
\restartpythontexsession{\arabic{chapter}-\arabic{section}} could be a
good approach.

Three forms of \pytx@SetGroup* are provided. \pytx@SetGroup is for general
code use. \pytx@SetGroupVerb is for use in verbatim contexts. It splits verbatim
content off into its own group. That way, verbatim content does not affect the in-
stance numbers of code that is actually executed. This prevents code from needing
to be run every time verbatim content is added or removed; code is only executed
when it is actually changed. pytx@SetGroupCons is for console environments. It
separate console content from executed code and from verbatim content, again for
efficiency reasons.

177 \newcommand{\restartpythontexsession}[1]{%
178 \Depythontex{cmd:restartpythontexsession:m:n}%
179 \def\pytx@SetGroup{%
180 \edef\pytx@group{#1}%
181 }%
182 \def\pytx@SetGroupVerb{%
183 \edef\pytx@group{#1verb}%
184 }%
185 \def\pytx@SetGroupCons{%
186 \edef\pytx@group{#1cons}%
187 }%
188 \AtBeginDocument{%
189 \pytx@SetGroup
190 \IfSubStr{\pytx@group}{verb}{%
191 \PackageError{\pytx@packagename}%
192 {String "verb" is not allowed in \string\restartpythontexsession}%
193 {Use \string\restartpythontexsession with a valid argument}}{}%
194 \IfSubStr{\pytx@group}{cons}{%
195 \PackageError{\pytx@packagename}%
196 {String "cons" is not allowed in \string\restartpythontexsession}%
197 {Use \string\restartpythontexsession with a valid argument}}{}%
198 }%
199 }

For the sake of consistency, we only allow group behaviour to be set in the
preamble. And if the group is not set by the user, then we use a single default

53

group for each session.
200 \@onlypreamble\restartpythontexsession
201 \restartpythontexsession{default}

9.4.5 File input and output

\pytx@jobname We will need to create directories and files for PythonTEX output, and some of
these will need to be named using \jobname. This presents a problem. Ideally,
the user will choose a job name that does not contain spaces. But if the job
name does contain spaces, then we may have problems bringing in content from a
directory or file that is named based on the job, due to the space characters. So
we need a “sanitized” version of \jobname. We replace spaces with hyphens. We
replace double quotes " with nothing. Double quotes are placed around job names
containing spaces by TEX Live, and thus may be the first and last characters of
\jobname. Since we are replacing any spaces with hyphens, quote delimiting is
no longer needed, and in any case, some operating systems (Windows) balk at
creating directories or files with names containing double quotes. We also replace
asterisks with hyphens, since MiKTEX (at least v. 2.9) apparently replaces spaces
with asterisks in \jobname,27 and some operating systems may not be happy with
names containing asterisks.

This approach to “sanitizing” \jobname is not foolproof. If there are ever two
files in a directory that both use PythonTEX, and if their names only differ by these
substitutions for spaces, quotes, and asterisks, then the output of the two files will
collide. We believe that it is better to graciously handle the possibility of space
characters at the expense of nearly identical file names, since nearly identical file
names are arguably a much worse practice than file names containing spaces, and
since such nearly identical file names should be much rarer. At the same time, in
rare cases a collision might occur, and in even rarer cases it might go unnoticed.28
To prevent such issues, pythontex*.py checks for collisions and issues a warning
if a potential collision is detected.

202 \StrSubstitute{\jobname}{ }{-}[\pytx@jobname]
203 \StrSubstitute{\pytx@jobname}{"}{}[\pytx@jobname]
204 \StrSubstitute{\pytx@jobname}{*}{-}[\pytx@jobname]

\pytx@outputdir
\setpythontexoutputdir

To keep things tidy, all PythonTEX files are stored in a directory that is
created in the document root directory. By default, this directory is called
pythontex-files-〈sanitized jobname〉, but we want to provide the user with the
option to customize this. For example, when 〈sanitized jobname〉 is very long, it
might be convenient to use pythontex-〈abbreviated name〉.

The command \setpythontexoutputdir stores the name of PythonTEX’s out-
put directory in \pytx@outputdir. If the graphicx package is loaded, the out-

27http://tex.stackexchange.com/questions/14949/why-does-jobname-give-s-instead-of-spaces-
and-how-do-i-fix-this

28In general, a collision would produce errors, and the user would thereby become aware of
the collision. The dangerous case is when the two files with similar names use exactly the same
PythonTEX commands, the same number of times, so that the naming of the output is identical.
In that case, no errors would be issued.

54

http://tex.stackexchange.com/questions/14949/why-does-jobname-give-s-instead-of-spaces-and-how-do-i-fix-this
http://tex.stackexchange.com/questions/14949/why-does-jobname-give-s-instead-of-spaces-and-how-do-i-fix-this

put directory is also added to the graphics path at the beginning of the doc-
ument, so that files in the output directory may be included within the main
document without the necessity of specifying path information. The command
\setpythontexoutputdir is only allowed in the preamble, because the location
of PythonTEX content should be specified before the body of the document is
typeset.

205 \newcommand{\setpythontexoutputdir}[1]{%
206 \Depythontex{cmd:setpythontexoutputdir:m:n}%
207 \def\pytx@outputdir{#1}}
208 \setpythontexoutputdir{pythontex-files-\pytx@jobname}
209 \AtBeginDocument{\@ifpackageloaded{graphicx}{\graphicspath{{\pytx@outputdir/}}}{}}
210 \@onlypreamble\setpythontexoutputdir

pytx@workingdir
\setpythontexworkingdir

We need to be able to set the current working directory for the scripts executed by
PythonTEX. By default, the working directory should be the same as the output
directory. That way, any files saved in the current working directory will be in the
PythonTEX output directory, and will thus be kept separate. But in some cases
the user may wish to specify a different working directory, such as the document
root.

211 \newcommand{\setpythontexworkingdir}[1]{%
212 \Depythontex{cmd:setpythontexworkingdir:m:n}%
213 \def\pytx@workingdir{#1}%
214 }
215 \@onlypreamble\setpythontexworkingdir
216 \AtBeginDocument{%
217 \ifcsname pytx@workingdir\endcsname\else
218 %\setpythontexworkingdir{\pytx@outputdir}\fi Depythontex
219 \let\pytx@workingdir\pytx@outputdir\fi
220 }

pytx@usedpygments Once we have specified the output directory, we are free to pull in content from
it. Most content from the output directory will be pulled in manually by the user
(for example, via \includegraphics) or automatically by PythonTEX as it goes
along. But content “printed” by code commands and environments (via macros)
as well as code typeset by Pygments needs to be included conditionally, based on
whether it exists and on user preferences.

This gets a little tricky. We only want to pull in the Pygments content if it
is actually used, since Pygments content will typically use fancyvrb’s SaveVerb
environment, and this can slow down compilation when very large chunks of code
are saved. It doesn’t matter if the code is actually used; saving it in a macro is
what potentially slows things down. So we create a bool to keep track of whether
Pygments is ever actually used, and only bring in Pygments content if it is.29

29The same effect could be achieved by having pythontex*.py delete the Pygments content
whenever it is run and Pygments is not used. But that approach is faulty in two regards. First,
it requires that pythontex*.py be run, which is not necessarily the case if the user simply sets
the package option pygments to false and the recompiles. Second, even if it could be guaranteed
that the content would be deleted, such an approach would not be optimal. It is quite possible

55

This bool must be set to true whenever a command or environment is created
that makes use of Pygments (in practice, we will simply set it to true when a
family is created). Note that we cannot use the pytx@opt@pygments bool for this
purpose, because it only tells us if the package option for Pygments usage is true
or false. Typically, this will determine if any Pygments content is used. But it is
possible for the user to create a command and environment family that overrides
the package option (indeed, this may sometimes be desirable, for example, if the
user wishes code in a particular language never to be highlighted). Thus, a new
bool is needed to allow detection in such nonstandard cases.

221 \newbool{pytx@usedpygments}

Now we can conditionally bring in the Pygments content. Note that we must
use the etoolbox macro \AfterEndPreamble. This is because commands and
environments are created using \AtBeginDocument, so that the user can change
their properties in the preamble before they are created. And since the com-
mands and environments must be created before we know the final state of
pytx@usedpygments, we must bring in Pygments content after that.

222 \AfterEndPreamble{%
223 \ifbool{pytx@usedpygments}%
224 {\InputIfFileExists{\pytx@outputdir/\pytx@jobname.pytxpyg}{}{}}{}%
225 }

While we are pulling in content, we also pull in the file of macros that stores
some inline “printed” content, if the file exists. Since we need this file in general,
and since it will not typically invole a noticeable speed penalty, we bring it in at
the beginning of the document without any special conditions.

226 \AtBeginDocument{%
227 \makeatletter
228 \InputIfFileExists{\pytx@outputdir/\pytx@jobname.pytxmcr}{}{}%
229 \makeatother
230 }

\pytx@codefile We create a new write, named \pytx@codefile, to which we will save code. All
the code from the document will be written to this single file, interspersed with
information specifying where in the document it came from. PythonTEX parses
this file to separate the code into individual sessions and groups. These are then
executed, and the identifying information is used to tie code output back to the
original code in the document.30

that the user wishes to temporarily turn off Pygments usage to speed compilation while working
on other parts of the document. In this case, deleting the Pygments content is simply deleting
data that must be recreated when Pygments is turned back on.

30The choice to write all code to a single file is the result of two factors. First, TEX has a limited
number of output registers available (16), so having a separate output stream for each group or
session is not possible. The morewrites package from Bruno Le Floch potentially removes this
obstacle, but since this package is very recent (README from 2011/7/10), we will not consider
using additional writes in the immediate future. Second, one of the design goals of PythonTEX
is to minimize the number of persistent files created by a run. This keeps directories cleaner
and makes file synchronization/transfer somewhat simpler. Using one write per session or group

56

231 \newwrite\pytx@codefile
232 \immediate\openout\pytx@codefile=\jobname.pytxcode

In the code file, information from PythonTEX must be interspersed with
the code. Some type of delimiting is needed for PythonTEX information. All
PythonTEX content is written to the file in the form =>PYTHONTEX#〈content〉#.
When this content involves package options, the delimiter is modified to the form
=>PYTHONTEX:SETTINGS#〈content〉#. The # symbol is also used as a subdelimiter
within 〈content〉. The # symbol is convenient as a delimiter since it has a special
meaning in TEX and is very unlikely to be accidentally entered by the user in unex-
pected locations without producing errors. Note that the usage of “=>PYTHONTEX#”
as a beginning delimiter for PythonTEX data means that this string should never
be written by the user at the beginning of a line, because pythontex*.py will try
to intepret it as data and will fail.

\pytx@delimchar We create a macro to store the delimiting character.
233 \edef\pytx@delimchar{\string#}

\pytx@delim We create a macro to store the starting delimiter.
234 \edef\pytx@delim{=\string>PYTHONTEX\string#}

\pytx@delimsettings And we create a second macro to store the starting delimiter for settings that are
passed to Python.

235 \edef\pytx@delimsettings{=\string>PYTHONTEX:SETTINGS\string#}

Settings need to be written to the code file. Some of these settings are not final
until the beginning of the document, since they may be modified by the user within
the preamble. Thus, all settings should be written at the end of the document,
so that they will all be together and will not be interspersed with any code that
was entered in the preamble. The order in which the settings are written is not
significant, but for symmetry it should mirror the order in which they were defined.

236 \AtEndDocument{
237 \immediate\write\pytx@codefile{%
238 \pytx@delimsettings version=\pytx@packageversion\pytx@delimchar}%
239 \immediate\write\pytx@codefile{%
240 \pytx@delimsettings outputdir=\pytx@outputdir\pytx@delimchar}%
241 \immediate\write\pytx@codefile{%
242 \pytx@delimsettings workingdir=\pytx@workingdir\pytx@delimchar}%
243 \immediate\write\pytx@codefile{%
244 \pytx@delimsettings rerun=\pytx@opt@rerun\pytx@delimchar}%
245 \immediate\write\pytx@codefile{%
246 \pytx@delimsettings hashdependencies=\pytx@opt@hashdependencies\pytx@delimchar}%
247 \immediate\write\pytx@codefile{%

could result in numerous code files, and these could only be cleaned up by pythontex*.py since
LATEX cannot delete files itself (well, without unrestricted write18). Using a single output file
for code does introduce a speed penalty since the code does not come pre-sorted by session or
group, but in typical usage this should be minimal. Adding an option for single or multiple code
files may be something to reconsider at a later date.

57

248 \pytx@delimsettings stderr=%
249 \ifbool{pytx@opt@stderr}{true}{false}\pytx@delimchar}%
250 \immediate\write\pytx@codefile{%
251 \pytx@delimsettings stderrfilename=\pytx@opt@stderrfilename\pytx@delimchar}%
252 \immediate\write\pytx@codefile{%
253 \pytx@delimsettings keeptemps=\pytx@opt@keeptemps\pytx@delimchar}%
254 \immediate\write\pytx@codefile{%
255 \pytx@delimsettings pyfuture=\pytx@opt@pyfuture\pytx@delimchar}%
256 \immediate\write\pytx@codefile{%
257 \pytx@delimsettings pygments=%
258 \ifbool{pytx@opt@pygments}{true}{false}\pytx@delimchar}%
259 \immediate\write\pytx@codefile{%
260 \pytx@delimsettings pyglexer=\pytx@pyglexer\pytx@delimchar}%
261 \immediate\write\pytx@codefile{%
262 \pytx@delimsettings pygopt=\string{\pytx@pygopt\string}\pytx@delimchar}%
263 \immediate\write\pytx@codefile{%
264 \pytx@delimsettings fvextfile=\pytx@fvextfile \pytx@delimchar}%
265 \immediate\write\pytx@codefile{%
266 \pytx@delimsettings pyconbanner=\pytx@opt@pyconbanner \pytx@delimchar}%
267 \immediate\write\pytx@codefile{%
268 \pytx@delimsettings pyconfilename=\pytx@opt@pyconfilename \pytx@delimchar}%
269 \immediate\write\pytx@codefile{%
270 \pytx@delimsettings depythontex=%
271 \ifbool{pytx@opt@depythontex}{true}{false}\pytx@delimchar}%
272 }

\pytx@WriteCodefileInfo
\pytx@WriteCodefileInfoExt

Later, we will frequently need to write PythonTEX information to the code file in
standardized form. We create a macro to simplify that process. We also create
an alternate form, for use with external files that must be inputted or read in by
PythonTEX and processed. While the standard form employs a counter that is
incremented elsewhere, the version for external files substitutes a zero (0) for the
counter, because each external file must be unique in name and thus numbering
via a counter is redundant.31

273 \def\pytx@WriteCodefileInfo{%
274 \immediate\write\pytx@codefile{\pytx@delim\pytx@type\pytx@delimchar%
275 \pytx@session\pytx@delimchar\pytx@group\pytx@delimchar%
276 \arabic{\pytx@counter}\pytx@delimchar\pytx@cmd\pytx@delimchar%
277 \pytx@context\pytx@delimchar\the\inputlineno\pytx@delimchar}%
278 }
279 \newcommand{\pytx@WriteCodefileInfoExt}[1][]{%
280 \immediate\write\pytx@codefile{\pytx@delim\pytx@type\pytx@delimchar%
281 \pytx@session\pytx@delimchar\pytx@group\pytx@delimchar%
282 0\pytx@delimchar\pytx@cmd\pytx@delimchar%
283 \pytx@context\pytx@delimchar\the\inputlineno\pytx@delimchar#1}%
284 }

31The external-file form also takes an optional argument. This corresponds to a command-line
argument that is passed to an external file during the file’s execution. Currently, executing exter-
nal files, with or without arguments, is not implemented. But this feature is under consideration,
and the macro retains the optional argument for the potential future compatibility.

58

9.4.6 Interface to fancyvrb

The fancyvrb package is used to typeset lines of code, and its internals are also
used to format inline code snippets. We need a way for each family of PythonTEX
commands and environments to have its own independent fancyvrb settings.

\pytx@fvsettings
\setpythontexfv

The macro \setpythontexfv[〈family〉]{〈settings〉} takes 〈settings〉 and stores
them in a macro that is run through fancyvrb’s \fvset at the beginning
of PythonTEX code. If a 〈family〉 is specified, the settings are stored in
\pytx@fvsettings@〈family〉, and the settings only apply to typeset code belong-
ing to that family. If no optional argument is given, then the settings are stored
in \pytx@fvsettings, and the settings apply to all typeset code.

In the current implementation, \setpythontexfv and \fvset differ because
the former is not persistent in the same sense as the latter. If we use \fvset
to set one property, and then use it later to set another property, the setting for
the original property is persistent. It remains until another \fvset command is
issued to change it. In contrast, every time \setpythontexfv is used, it clears
all prior settings and only the current settings actually apply. This is because
\fvset stores the state of each setting in its own macro, while \setpythontexfv
simply stores a string of settings that is passed to \fvset at the appropriate times.
For typical use scenarios, this distinction shouldn’t be important—usually, we will
want to set the behavior of fancyvrb for all PythonTEX content, or for a family of
PythonTEX content, and leave those settings constant throughout the document.
Furthermore, environments that typeset code take fancyvrb commands as their
second optional argument, so there is already a mechanism in place for changing
the settings for a single environment. However, if we ever want to change the
typesetting of code for only a small portion of a document (larger than a single
environment), this persistence distinction does become important.32

285 \newcommand{\setpythontexfv}[2][]{%
286 \Depythontex{cmd:setpythontexfv:om:n}%
287 \ifstrempty{#1}%
288 {\gdef\pytx@fvsettings{#2}}%
289 {\expandafter\gdef\csname pytx@fvsettings@#1\endcsname{#2}}%
290 }%

Now that we have a mechanism for applying global settings to typeset
PythonTEX code, we go ahead and set a default tab size for all environments.
If \setpythontexfv is ever invoked, this setting will be overwritten, so that must
be kept in mind.

291 \setpythontexfv{tabsize=4}

\pytx@FVSet Once the fancyvrb settings for PythonTEX are stored in macros, we need a way
to actually invoke them. \pytx@FVSet applies family-specific settings first, then

32An argument could be made for having \setpythontexfv behave exactly like \fvset.
Properly implementing this behavior would be tricky, because of inheritance issues between
PythonTEX-wide and family-specific settings (this is probably a job for pgfkeys). Full persis-
tence would likely require a large number of macros and conditionals. At least from the per-
spective of keeping the code clean and concise, the current approach is superior, and probably
introduces minor annoyances at worst.

59

PythonTEX-wide settings second, so that PythonTEX-wide settings have prece-
dence and will override family-specific settings. Note that by using \fvset, we are
overwriting fancyvrb’s settings. Thus, to keep the settings local to the PythonTEX
code, \pytx@FVSet must always be used within a \begingroup ... \endgroup
block.

292 \def\pytx@FVSet{%
293 \expandafter\let\expandafter\pytx@fvsettings@@%
294 \csname pytx@fvsettings@\pytx@type\endcsname
295 \ifdefstring{\pytx@fvsettings@@}{}%
296 {}%
297 {\expandafter\fvset\expandafter{\pytx@fvsettings@@}}%
298 \ifdefstring{\pytx@fvsettings}{}%
299 {}%
300 {\expandafter\fvset\expandafter{\pytx@fvsettings}}%
301 }

\pytx@FVB@SaveVerbatim
pytx@FancyVerbLineTemp

fancyvrb’s SaveVerbatim environment will be used extensively to include code
highlighted by Pygments and other processed content. Unfortunately, when the
saved content is included in a document with the corresponding UseVerbatim,
line numbering does not work correctly. Based on a web search, this ap-
pears to be a known bug in fancyvrb. We begin by fixing this, which re-
quires patching fancyvrb’s \FVB@SaveVerbatim and \FVE@SaveVerbatim. We
create a patched \pytx@FVB@SaveVerbatim by inserting \FV@StepLineNo and
\FV@CodeLineNo=1 at appropriate locations. We also delete an unnecessary
\gdef\SaveVerbatim@Name{#1}. Then we create a \pytx@FVE@SaveVerbatim,
and add code so that the two macros work together to prevent FancyVerbLine
from incorrectly being incremented within the SaveVerbatim environment. This
involves using the counter pytx@FancyVerbLineTemp to temporarily store the
value of FancyVerbLine, so that it may be restored to its original value after
verbatim content has been saved.

Typically, we \let our own custom macros to the corresponding macros within
fancyvrb, but only within a command or environment. In this case, however, we
are fixing behavior that should be considered a bug even for normal fancyvrb
usage. So we let the buggy macros to the patched macros immediately after
defining the patched versions.

302 \newcounter{pytx@FancyVerbLineTemp}

303 \def\pytx@FVB@SaveVerbatim#1{%
304 \setcounter{pytx@FancyVerbLineTemp}{\value{FancyVerbLine}}%
305 \@bsphack
306 \begingroup
307 \FV@UseKeyValues
308 \def\SaveVerbatim@Name{#1}%
309 \def\FV@ProcessLine##1{%
310 \expandafter\gdef\expandafter\FV@TheVerbatim\expandafter{%
311 \FV@TheVerbatim\FV@StepLineNo\FV@ProcessLine{##1}}}%
312 \gdef\FV@TheVerbatim{\FV@CodeLineNo=1}%
313 \FV@Scan}

60

314 \def\pytx@FVE@SaveVerbatim{%
315 \expandafter\global\expandafter\let
316 \csname FV@SV@\SaveVerbatim@Name\endcsname\FV@TheVerbatim
317 \endgroup\@esphack
318 \setcounter{FancyVerbLine}{\value{pytx@FancyVerbLineTemp}}}
319 \let\FVB@SaveVerbatim\pytx@FVB@SaveVerbatim
320 \let\FVE@SaveVerbatim\pytx@FVE@SaveVerbatim

9.4.7 Access to printed content (stdout)

The autoprint package option automatically pulls in printed content from code
commands and environments. But this does not cover all possible use cases, be-
cause we could have print statements/functions in block commands and environ-
ments as well. Furthermore, sometimes we may print content, but then desire
to bring it back into the document multiple times, without duplicating the code
that creates the content. Here, we create a number of macros that allow access to
printed content. All macros are created in two identical forms, one based on the
name print and one based on the name stdout. Which macros are used depends
on user preference. The macros based on stdout provide symmetry with stderr
access.

\pytx@stdfile We begin by defining a macro to hold the base name for stdout and stderr content.
The name of this file is updated by most commands and environments so that it
stays current.33 It is important, however, to initially set the name empty for
error-checking purposes.

321 \def\pytx@stdfile{}

\pytx@FetchStdoutfile Now we create a generic macro for bringing in the stdout file. This macro can
input the content in verbatim form, applying fancyvrb options if present. Usage:
\pytx@FetchStdoutfile[〈verbatim options〉][〈fancyvrb options〉]{〈file path〉}.
We must disable the macro in the event that the stdout option is false. Also,
the warning text should not be included if we are in the preamble.

322 \def\pytx@stdout@warntext{}
323 \def\pytx@FetchStdoutfile[#1][#2]#3{%
324 \IfFileExists{\pytx@outputdir/#3.stdout}{%
325 \ifstrempty{#1}{\input{\pytx@outputdir/#3.stdout}}{}%
326 \ifstrequal{#1}{raw}{\input{\pytx@outputdir/#3.stdout}}{}%
327 \ifstrequal{#1}{verb}{\VerbatimInput[#2]{\pytx@outputdir/#3.stdout}}{}%
328 \ifstrequal{#1}{inlineverb}{\BVerbatimInput[#2]{\pytx@outputdir/#3.stdout}}{}%
329 \ifstrequal{#1}{v}{\BVerbatimInput[#2]{\pytx@outputdir/#3.stdout}}{}%
330 \DepyFile{p:\pytx@outputdir/#3.stdout:mode=#1}%
331 }%
332 {\pytx@stdout@warntext
333 \PackageWarning{\pytx@packagename}{Non-existent printed content}}%

33It is only updated by those commands and environments that interact with pythontex*.py
and thus increment a type-session-group counter so that they can be distinguished. verb com-
mands and environments that use fancyvrb for typesetting do not interact with pythontex*.py,
do not increment a counter, and thus do not update the stdout file.

61

334 }
335 \ifbool{pytx@opt@stdout}{}{\def\pytx@FetchStdoutfile[#1][#2]#3{}}
336 \AtBeginDocument{\def\pytx@stdout@warntext{\textbf{??~\pytx@packagename~??}}}

\printpythontex
\stdoutpythontex

We define a macro that pulls in the content of the most recent stdout file, accepting
verbatim settings and also fancyvrb settings if they are given.

337 \def\stdoutpythontex{%
338 \Depythontex{cmd:stdoutpythontex:oo:p}%
339 \@ifnextchar[{\pytx@Stdout}{\pytx@Stdout[raw]}%
340 }
341 \def\pytx@Stdout[#1]{%
342 \@ifnextchar[{\pytx@Stdout@i[#1]}{\pytx@Stdout@i[#1][]}%
343 }
344 \def\pytx@Stdout@i[#1][#2]{%
345 \pytx@FetchStdoutfile[#1][#2]{\pytx@stdfile}%
346 }
347 \def\printpythontex{%
348 \Depythontex{cmd:printpythontex:oo:p}%
349 \@ifnextchar[{\pytx@Stdout}{\pytx@Stdout[raw]}%
350 }

\saveprintpythontex
\savestdoutpythontex

Sometimes, we may wish to use printed content at multiple locations in a docu-
ment. Because \pytx@stdfile is changed by every command and environment
that could print, the printed content that \printpythontex tries to access is
constantly changing. Thus, \printpythontex is of use only immediately after
content has actually been printed, before any additional PythonTEX commands
or environments change the definition of \pytx@stdfile. To get around this, we
create \saveprintpythontex{〈name〉}. This macro saves the current name of
\pytx@stdfile so that it is associated with 〈name〉 and thus can be retrieved
later, after \pytx@stdfile has been redefined.

351 \def\savestdoutpythontex{%
352 \Depythontex{cmd:savestdoutpythontex:m:n}%
353 \savestdoutpythontex@i
354 }
355 \def\savestdoutpythontex@i#1{%
356 \ifcsname pytx@SVout@#1\endcsname
357 \PackageError{\pytx@packagename}%
358 {Attempt to save content using an already-defined name}%
359 {Use a name that is not already defined}%
360 \else
361 \expandafter\edef\csname pytx@SVout@#1\endcsname{\pytx@stdfile}%
362 \fi
363 }
364 \def\saveprintpythontex{%
365 \Depythontex{cmd:saveprintpythontex:m:n}%
366 \savestdoutpythontex@i
367 }

\useprintpythontex
\usestdoutpythontex

Now that we have saved the current \pytx@stdoutfile under a new, user-chosen

62

name, we need a way to retrieve the content of that file later, using the name.
368 \def\usestdoutpythontex{%
369 \Depythontex{cmd:usestdoutpythontex:oom:p}%
370 \@ifnextchar[{\pytx@UseStdout}{\pytx@UseStdout[]}%
371 }
372 \def\pytx@UseStdout[#1]{%
373 \@ifnextchar[{\pytx@UseStdout@i[#1]}{\pytx@UseStdout@i[#1][]}%
374 }
375 \def\pytx@UseStdout@i[#1][#2]#3{%
376 \ifcsname pytx@SVout@#3\endcsname
377 \pytx@FetchStdoutfile[#1][#2]{\csname pytx@SVout@#3\endcsname}%
378 \else
379 \textbf{??~\pytx@packagename~??}%
380 \PackageWarning{\pytx@packagename}{Non-existent saved printed content}%
381 \fi
382 }
383 \def\useprintpythontex{%
384 \Depythontex{cmd:useprintpythontex:oom:p}%
385 \@ifnextchar[{\pytx@UseStdout}{\pytx@UseStdout[]}%
386 }

9.4.8 Access to stderr

We need access to stderr, if it is enabled via the package stderr option.
Both stdout and stderr share the same base file name, stored in \pytx@stdfile.

Only the file extensions, .stdout and .stderr, differ.
stderr and stdout are treated identically, except that stderr is brought in ver-

batim by default, while stdout is brought in raw by default.

\pytx@FetchStderrfile Create a generic macro for bringing in the stderr file.
387 \def\pytx@FetchStderrfile[#1][#2]#3{%
388 \IfFileExists{\pytx@outputdir/#3.stderr}{%
389 \ifstrequal{#1}{raw}{\input{\pytx@outputdir/#3.stderr}}{}%
390 \ifstrempty{#1}{\VerbatimInput[#2]{\pytx@outputdir/#3.stderr}}{}%
391 \ifstrequal{#1}{verb}{\VerbatimInput[#2]{\pytx@outputdir/#3.stderr}}{}%
392 \ifstrequal{#1}{inlineverb}{\BVerbatimInput[#2]{\pytx@outputdir/#3.stderr}}{}%
393 \ifstrequal{#1}{v}{\BVerbatimInput[#2]{\pytx@outputdir/#3.stderr}}{}%
394 \DepyFile{p:\pytx@outputdir/#3.stderr:mode=#1}%
395 }%
396 {\textbf{??~\pytx@packagename~??}%
397 \PackageWarning{\pytx@packagename}{Non-existent stderr content}}%
398 }

\stderrpythontex We define a macro that pulls in the content of the most recent error file, accepting
verbatim settings and also fancyvrb settings if they are given.

399 \def\stderrpythontex{%
400 \Depythontex{cmd:stderrpythontex:oo:p}%
401 \@ifnextchar[{\pytx@Stderr}{\pytx@Stderr[verb]}%
402 }

63

403 \def\pytx@Stderr[#1]{%
404 \@ifnextchar[{\pytx@Stderr@i[#1]}{\pytx@Stderr@i[#1][]}%
405 }
406 \def\pytx@Stderr@i[#1][#2]{%
407 \pytx@FetchStderrfile[#1][#2]{\pytx@stdfile}%
408 }

A mechanism is provided for saving and later using stderr. This should be
used with care, since stderr content may lose some of its meaning if isolated from
the larger code context that produced it.

\savestderrpythontex

409 \def\savestderrpythontex#1{%
410 \Depythontex{cmd:savestderrpythontex:m:n}%
411 \ifcsname pytx@SVerr@#1\endcsname
412 \PackageError{\pytx@packagename}%
413 {Attempt to save content using an already-defined name}%
414 {Use a name that is not already defined}%
415 \else
416 \expandafter\edef\csname pytx@SVerr@#1\endcsname{\pytx@stdfile}%
417 \fi
418 }

\usestderrpythontex

419 \def\usestderrpythontex{%
420 \Depythontex{cmd:usestderrpythontex:oom:p}%
421 \@ifnextchar[{\pytx@UseStderr}{\pytx@UseStderr[verb]}%
422 }
423 \def\pytx@UseStderr[#1]{%
424 \@ifnextchar[{\pytx@UseStderr@i[#1]}{\pytx@UseStderr@i[#1][]}%
425 }
426 \def\pytx@UseStderr@i[#1][#2]#3{%
427 \ifcsname pytx@SVerr@#3\endcsname
428 \pytx@FetchStderrfile[#1][#2]{\csname pytx@SVerr@#3\endcsname}%
429 \else
430 \textbf{??~\pytx@packagename~??}%
431 \PackageWarning{\pytx@packagename}{Non-existent saved stderr content}%
432 \fi
433 }

9.4.9 depythontex

The purpose of depythontex is to create a version of the original LATEX docu-
ment that does not rely on the PythonTEX package. All uses of PythonTEX are
replaced by their output. This is particularly useful when submitting a paper to
a journal, because PythonTEX can simplify the writing process, but many jour-
nals frown upon “special” packages or custom macros. Note that if you just need
to share a PythonTEX document with someone, you can always include a copy
of pythontex.sty and the PythonTEX output directory with the document, and

64

then non-Python parts of the document can be edited just like a normal LATEX
document, without running any Python code.

The general strategy for depythontex is to write an auxiliary file that contains
information about all environments and macros that need to be replaced, includ-
ing location, format, and the content with which they are to be replaced. This
auxiliary file is then used to performed substitutions on a copy of the original doc-
ument. It would be possible to simply create a list of all PythonTEX macros and
environments, and use that to perform substitutions. But that approach would
have to track the state of PythonTEX more carefully than the auxiliary file ap-
proach. For example, in the auxiliary file approach, it is easy to track whether
autoprint is on or off, because commands and environments will write to the
auxiliary file if they do indeed use autoprint. But without an auxiliary file, you
would have to search for \setpythontexautoprint and devise an algorithm for
determining where it is on or off. Furthermore, once there is a large set of macros,
a general search-and-replace could be quite expensive computationally.

These commands need to be defined after all the other settings commands,
because some of the other settings commands are used within this package after
being defined, and thus don’t need replacement because they’re in the package. At
the same time, the depythontex commands have to exist so that other commands
can be defined with them. So dummy versions are created earlier. During the
next refactoring, the order will be cleaned up and clarified.

\pytx@depyfile If the depythontex package option is on, we need to open an auxiliary file for
writing depythontex information.

434 \ifbool{pytx@opt@depythontex}{%
435 \newwrite\pytx@depyfile
436 \immediate\openout\pytx@depyfile=\jobname.depytx
437 }{}

\Depythontex Each command or environment that is to work with depythontex will write the
following information to the auxiliary file:

=>DEPYTHONTEX#<type>:<name>:<args>:<typeset>:<line>:[<Pygments lexer>]#

where <type> is cmd or env; <name> is the complete name of the com-
mand or environment; <args> is a string representing the arguments taken
(o=optional, m=mandatory, v=mandatory verbatim, n=none); <typeset> is a
string representing what is typeset (c=code, p=printed, n=null), and <line> is
\the\inputlineno. The last one can be determined automatically without user
input, but the first four must be entered when a macro is created. Optionally, the
Pygments lexer is written to file if it is available (if \pytx@lexer is not \relax).
These pieces of information are needed for the following reasons.

• <type> We need to know whether we are dealing with a command or envi-
ronment, so we know how to deal with it. There is no way to detect this
automatically, since a command could always be inside some environment.

65

• <name> We need to know the name of what is to be replaced. There’s no
way to automatically get this.

• <args> We need to know the form of the arguments, so we can assemble an
appropriate regular expression. In some cases, a command might be created
in such a way that this could be detected or easily passed on to PythonTEX
(for example, if the command was defined using the xparse package), but
in general there isn’t a simple way to detect it.

• <typeset> Technically, this could be determined from \pytx@cmd in many
instances. But it couldn’t be determined for cases like \printpythontex and
\stderrpythontex. Furthermore, we want a very general interface suitable
for users writing custom commands and environments.

• <line> This can be determined automatically.

• <Pygments lexer> This is needed if so that the language can be specified
in the output. In general, \pytx@lexer can be defined automatically by a
command and environment generator.

We need a command that writes this information to the auxiliary file. Since
this command may be employed by users writing custom macros, we choose a
capitalized name not containing any ampersands @. Since we need to be able to
easily disable the macro, we create the real macro with name ending in @orig,
and then \let the intended name to it.

438 \let\pytx@lexer\relax
439 \def\Depythontex@orig#1{%
440 \immediate\write\pytx@depyfile{=>DEPYTHONTEX\pytx@delimchar#1:%
441 \the\inputlineno:\ifx\pytx@lexer\relax\else\pytx@lexer\fi\pytx@delimchar}%
442 \let\pytx@lexer\relax}
443 \ifbool{pytx@opt@depythontex}%
444 {\let\Depythontex\Depythontex@orig}%
445 {\let\Depythontex\@gobble}
446 \ifbool{pytx@opt@depythontex}{%
447 \AtEndDocument{%
448 \immediate\write\pytx@depyfile{=>DEPYTHONTEX:SETTINGS\pytx@delimchar version=%
449 \pytx@packageversion\pytx@delimchar}%
450 \immediate\write\pytx@depyfile{=>DEPYTHONTEX:SETTINGS\pytx@delimchar macrofile=%
451 \pytx@outputdir/\pytx@jobname.pytxmcr\pytx@delimchar}%
452 }%
453 }{}

\DepyMacro We need a macro that will write the appropriate information to the auxiliary file
if substitution with the contents of a macro is needed. The argument is of the
form <typeset>:<macro name>, where <typeset> is the type of content (p=print,
c=code).

454 \def\DepyMacro@orig#1{%
455 \immediate\write\pytx@depyfile{MACRO:#1}%
456 }

66

457 \ifbool{pytx@opt@depythontex}%
458 {\let\DepyMacro\DepyMacro@orig}%
459 {\let\DepyMacro\@gobble}

\DepyFile We also need a macro that will write the appropriate information to the auxiliary
file if substitution with the contents of a file is needed. As an argument, this
command takes <typeset>:<filename>[:mode=<format>], where <typeset> is
the type of content (p=print, c=code), <filename> is the full filename, and the
optional mode is the format in which the file is brought in (raw, verb, inlineverb
or v). If mode is not specified, it defaults to reasonable defaults. In general, mode
is only needed for p content; c content is verbatim of one form or another.

460 \def\DepyFile@orig#1{%
461 \immediate\write\pytx@depyfile{FILE:#1}%
462 }%
463 \ifbool{pytx@opt@depythontex}%
464 {\let\DepyFile\DepyFile@orig}%
465 {\let\DepyFile\@gobble}

\DepyListing We need a macro that will write information to the auxiliary file for code listings,
specifically whether line numbers were used, and if so, what the starting number
was. This is non-trivial, because it is possible to change both of these via an
environment’s second optional argument. One approach would be to capture all
optional arguments, pass the second to fancyvrb, and then attempt to evaluate the
status of line numbers via an examination of fancyvrb’s internals. That approach
would require a good deal of work and would likely involve a patch for fancyvrb.
Instead, we redefine \theFancyVerbLine, so that it saves the line number to file
the first time it is used, and then redefines itself to its original form.

Since we are redefining \theFancyVerbLine, \DepyListing can only be used
with commands (such as \inputpygments) if it is in a group (\begingroup ...
\endgroup). This prevents the redefinition from “escaping,” if line numbering is
not used. (Environments are wrapped in groups automatically, so this doesn’t
apply to them.)

466 \newcommand{\pytx@DepyListing@write}{%
467 \immediate\write\pytx@depyfile{LISTING:firstnumber=\arabic{FancyVerbLine}}%
468 }
469 \def\DepyListing@orig{%
470 \let\oldFancyVerbLine\theFancyVerbLine
471 \def\theFancyVerbLine{%
472 \pytx@DepyListing@write
473 \expandafter\gdef\expandafter\theFancyVerbLine\expandafter{\oldFancyVerbLine}%
474 \theFancyVerbLine
475 }%
476 }
477 \ifbool{pytx@opt@depythontex}%
478 {\let\DepyListing\DepyListing@orig}%
479 {\let\DepyListing\@empty}

\DepythontexOn
\DepythontexOff

We need a way to switch depythontex on and off. When depythontex is being
used, it needs to be on throughout the entire main document. But it must be

67

switched off for any commands or environments that are brought in via external
files (for example, in a package). Since anything that is brought in isn’t actually in
the text of the main document, substitution is both impossible and unnecessary.

480 \newcommand{\DepythontexOn}{%
481 \let\Depythontex\Depythontex@orig
482 \let\DepyMacro\DepyMacro@orig
483 \let\DepyFile\DepyFile@orig
484 \let\DepyListing\DepyListing@orig
485 }
486 \newcommand{\DepythontexOff}{%
487 \let\Depythontex\@gobble
488 \let\DepyMacro\@gobble
489 \let\DepyFile\@gobble
490 \let\DepyListing\@empty
491 }

9.5 Inline commands
9.5.1 Inline core macros

All inline commands use the same core of inline macros. Inline commands in-
voke the \pytx@Inline macro, and this then branches through a number of ad-
ditional macros depending on the details of the command and the usage context.
\@ifnextchar and \let are used extensively to control branching.

\pytx@Inline, and the macros it calls, perform the following series of opera-
tions.

• If there is an optional argument, capture it. The optional argument is the
session name of the command. If there is no session name, use the “default”
session.

• Determine the delimiting character(s) used for the code encompassed by the
command. Any character except for the space character and the opening
curly brace { may be used as a delimiting character, just as for \verb. The
opening curly brace { may be used, but in this case the closing delimiting
character is the closing curly brace }. If paired curly braces are used as
delimiters, then the code enclosed may only contain paired curly braces.

• Using the delimiting character(s), capture the code. Perform some combi-
nation of the following tasks: typeset the code, save it to the code file, and
bring in content created by the code.

\pytx@Inline This is the gateway to all inline core macros. It is called by all inline commands.
Because the delimiting characters could be almost anything, we need to turn off
all special category codes before we peek ahead with \@ifnextchar to see if an
optional argument is present, since \@ifnextchar sets the category code of the
character it examines. But we set the opening curly brace { back to its standard
catcode, so that matched braces can be used to capture an argument as usual.

68

The catcode changes are enclosed withing \begingroup ... \endgroup so that
they may be contained.

The macro \pytx@InlineOarg which is called at the end of \pytx@Inline
takes an argument enclosed by square brackets. If an optional argument is
not present, then we supply an empty one, which invokes default treatment in
\pytx@InlineOarg.

492 \def\pytx@Inline{%
493 \begingroup
494 \let\do\@makeother\dospecials
495 \catcode‘\{=1
496 \@ifnextchar[{\endgroup\pytx@InlineOarg}{\endgroup\pytx@InlineOarg[]}%
497 }%

\pytx@InlineOarg This macro captures the optional argument (or the empty default substitute),
which corresponds to the code session. Then it determines whether the delimiters
of the actual code are a matched pair of curly braces or a pair of other, identical
characters, and calls the next macro accordingly.

We begin by testing for an empty argument (either from the user or from the
default empty substitute), and setting the default value if this is indeed the case.
It is also possible that the user chose a session name containing a colon. If so,
we substitute a hyphen for the colon. This is because temporary files are named
based on session, and file names often cannot contain colons.

Then we turn off all special catcodes and set the catcodes of the curly braces
back to their default values. This is necessary because we are about to capture
the actual code, and we need all special catcodes turned off so that the code can
contain any characters. But curly braces still need to be active just in case they are
being used as delimiters. We also make the space and tab characters active, since
fancyvrb needs them that way.34 Using \@ifnextchar we determine whether
the delimiters are curly braces. If so, we proceed to \pytx@InlineMargBgroup to
capture the code using curly braces as delimiters. If not, we reset the catcodes of
the braces and proceed to \pytx@InlineMargOther, which uses characters other
than the opening curly brace as delimiters.

498 \def\pytx@InlineOarg[#1]{%
499 \ifstrempty{#1}{\edef\pytx@session{default}}{\StrSubstitute{#1}{:}{-}[\pytx@session]}%
500 \begingroup
501 \let\do\@makeother\dospecials
502 \catcode‘\{=1
503 \catcode‘\}=2
504 \catcode‘\ =\active
505 \catcode‘\^^I=\active
506 \@ifnextchar\bgroup
507 {\pytx@InlineMargBgroup}%
508 {\catcode‘\{=12
509 \catcode‘\}=12

34Part of this may be redundant, since we detokenize later and then retokenize during type-
setting if Pygments isn’t used. But the detokenizing and saving eliminates tab characters if they
aren’t active here.

69

510 \pytx@InlineMargOther}%
511 }

\pytx@InlineMargOther
\pytx@InlineMargOtherGet

This macro captures code delimited by a pair of identical non-brace characters.
Then it passes the code on to \pytx@InlineMargBgroup for processing. This
approach means that the macro definition may be kept concise, and that the
processing code must only be defined once.

The macro captures only the next character. This will be the delimiting charac-
ter. We must begin by ending the group that was left open by \pytx@InlineOarg,
so that catcodes return to normal. Next we check to see if the delimiting charac-
ter is a space character. If so, we issue an error, because that is not allowed.
If the delimiter is valid, we define a macro \pytx@InlineMargOtherGet that
will capture all content up to the next delimiting character and pass it to the
\pytx@InlineMargBgroup macro for processing. That macro does exactly what
is needed, except that part of the retokenization is redundant since curly braces
were not active when the code was captured.

Once the custom capturing macro has been created, we turn off special catcodes
and call the capturing macro.

512 \def\pytx@InlineMargOther#1{%
513 \endgroup
514 \ifstrequal{#1}{ }{%
515 \PackageError{\pytx@packagename}%
516 {The space character cannot be used as a delimiting character}%
517 {Choose another delimiting character}}{}%
518 \def\pytx@InlineMargOtherGet##1#1{\pytx@InlineMargBgroup{##1}}%
519 \begingroup
520 \let\do\@makeother\dospecials
521 \pytx@InlineMargOtherGet
522 }

\pytx@InlineMargBgroup We are now ready to capture code using matched curly braces as delimiters, or to
process previously captured code that used another delimiting character.

At the very beginning, we must end the group that was left open from
\pytx@InlineOarg (or by \pytx@InlineMargOther), so that catcodes return to
normal.

We save a detokenized version of the argument in \pytx@argdetok. Even
though the argument was captured under special catcode conditions, this is still
necessary. If the argument was delimited by curly braces, then any internal curly
braces were active when the argument was captured, and these need their catcodes
corrected. If the code contains any unicode characters, detokenization is needed
so that they may be correctly saved to file.

We save a retokenized version of the argument in \pytx@argretok. This is
needed for typesetting with fancyvrb. The code must be retokenized so that
space characters are active, since fancyvrb allows space characters to be visible
or invisible by making them active.

The name of the counter corresponding to this code is assembled. It is needed
for keeping track of the instance, and is used for bringing in content created by

70

the code and for bringing in highlighting created by Pygments.
Next we call a series of macros that determine whether the code is shown

(typeset), whether it is saved to the code file, and whether content created by
the code (“printed”) should be brought in. These macros are \let to appropriate
values when an inline command is called; they are not defined independently.

Finally, the counter for the code is incremented.
523 \def\pytx@InlineMargBgroup#1{%
524 \endgroup
525 \def\pytx@argdetok{\detokenize{#1}}%
526 \def\pytx@arg{#1}%
527 \edef\pytx@counter{pytx@\pytx@type @\pytx@session @\pytx@group}%
528 \pytx@CheckCounter{\pytx@counter}%
529 \xdef\pytx@stdfile{\pytx@type_\pytx@session_\pytx@group_\arabic{\pytx@counter}}%
530 \pytx@InlineShow
531 \pytx@InlineSave
532 \pytx@InlinePrint
533 \stepcounter{\pytx@counter}%
534 }%

\pytx@InlineShow
\pytx@InlineSave
\pytx@InlinePrint

The three macros \pytx@InlineShow, \pytx@InlineSave, and \pytx@InlinePrint
will be \let to appropriate values when commands are called. We must now define
the macros to which they may be \let.

\pytx@InlineShowFV Code may be typeset with fancyvrb. fancyvrb settings are invoked via
pytx@FVSet, but this must be done within a group so that the settings re-
main local. Most of the remainder of the commands are from fancyvrb’s
\FV@FormattingPrep, and take care of various formatting matters, including spac-
ing, font, whether space characters are shown, and any user-defined formatting.
Finally, we create an \hbox and invoke \FancyVerbFormatLine to maintain paral-
lelism with BVerbatim, which is used for inline content highlighted with Pygments.
\FancyVerbFormatLine may be redefined to alter the typeset code, for example,
by putting it in a colorbox via the following command:35

\renewcommand{\FancyVerbFormatLine}[1]{\colorbox{green}{#1}}

535 \def\pytx@InlineShowFV{%
536 \def\pytx@argretok{%
537 \begingroup
538 \everyeof{\noexpand}%
539 \endlinechar-1\relax
540 \let\do\@makeother\dospecials
541 \catcode‘\ =\active
542 \catcode‘\^^I=\active
543 \expandafter\scantokens\expandafter{\pytx@arg}%
544 \endgroup}%

35Currently, \FancyVerbFormatLine is global, as in fancyvrb. Allowing a family-specific vari-
ant may be considered in the future. In most cases, the fancyvrb option formatcom, combined
with external formatting from packages like mdframed, should provide all formatting desired. But
something family-specific might occasionally prove useful.

71

545 \begingroup
546 \pytx@FVSet
547 \FV@BeginVBox
548 \frenchspacing
549 \FV@SetupFont
550 \FV@DefineWhiteSpace
551 \FancyVerbDefineActive
552 \FancyVerbFormatCom
553 \FV@ObeyTabsInit
554 \hbox{\FancyVerbFormatLine{\pytx@argretok}}%
555 \FV@EndVBox
556 \endgroup
557 }

\pytx@InlineShowPyg Code may be typeset with Pygments. Processed Pygments content is saved in
the .pytxmcr file, wrapped in fancyvrb’s SaveVerbatim environment. The con-
tent is then restored, in a form suitable for inline use, via BUseVerbatim. Un-
like non-inline content, which may be brought in either via macro or via sep-
arate external file, inline content is always brought in via macro. The counter
pytx@FancyVerbLineTemp is used to prevent fancyvrb’s line count from being
affected by PythonTEX content. A group is necessary to confine the fancyvrb
settings created by \pytx@FVSet.

558 \def\pytx@InlineShowPyg{%
559 \begingroup
560 \pytx@FVSet
561 \ifcsname FV@SV@\pytx@counter @\arabic{\pytx@counter}\endcsname
562 \setcounter{pytx@FancyVerbLineTemp}{\value{FancyVerbLine}}%
563 \BUseVerbatim{\pytx@counter @\arabic{\pytx@counter}}%
564 \setcounter{FancyVerbLine}{\value{pytx@FancyVerbLineTemp}}%
565 \else
566 \textbf{??}%
567 \PackageWarning{\pytx@packagename}{Non-existent Pygments content}%
568 \fi
569 \endgroup
570 }

\pytx@InlineSaveCode This macro writes PythonTEX information to the code file and then writes the
actual code.

571 \def\pytx@InlineSaveCode{%
572 \pytx@WriteCodefileInfo
573 \immediate\write\pytx@codefile{\pytx@argdetok}%
574 }

\pytx@InlineAutoprint This macro brings in printed content automatically, if the package autoprint
option is true. Otherwise, it does nothing. We must disable the macro in the event
that the stdout option is false. We wait until the beginning of the document to
create the real macro, since any code commands and environments in the preamble
shouldn’t be printing and in any case we can’t know what the outputdir is until
the beginning of the document.

72

575 \let\pytx@InlineAutoprint\@empty
576 \AtBeginDocument{
577 \def\pytx@InlineAutoprint{%
578 \ifbool{pytx@opt@autoprint}{%
579 \InputIfFileExists{\pytx@outputdir/\pytx@stdfile.stdout}%
580 {\DepyFile{p:\pytx@outputdir/\pytx@stdfile.stdout}}{}}{}%
581 }
582 \ifbool{pytx@opt@stdout}{}{\let\pytx@InlineAutoprint\@empty}
583 }

\pytx@InlineMacroprint This macro brings in “printed” content that is brought in via macros in the
.pytxmcr file. We must disable the macro in the event that the stdout option
is false.

584 \def\pytx@InlineMacroprint{%
585 \edef\pytx@mcr{pytx@MCR@\pytx@type @\pytx@session @\pytx@group @\arabic{\pytx@counter}}%
586 \ifcsname\pytx@mcr\endcsname
587 \csname\pytx@mcr\endcsname
588 \DepyMacro{p:\pytx@mcr}%
589 \else
590 \textbf{??}%
591 \PackageWarning{\pytx@packagename}{Missing autoprint content}%
592 \fi
593 }
594 \ifbool{pytx@opt@stdout}{}{\let\pytx@InlineMacroprint\@empty}

9.5.2 Inline command constructors

With the core inline macros complete, we are ready to create constructors for
different kinds of inline commands. All of these consctructors take a string and
define an inline command named using that string as a base name. Two forms of
each constructor are created, one that uses Pygments and one that does not. The
Pygments variants have names ending in “Pyg”.

\pytx@MakeInlinebFV
\pytx@MakeInlinebPyg

These macros creates inline block commands, which both typeset code and save
it so that it may be executed. The base name of the command is stored in
\pytx@type. A string representing the kind of command is stored in \pytx@cmd.
Then \pytx@SetContext is used to set \pytx@context and \pytx@SetGroup is
used to set \pytx@group. Macros for showing, saving, and printing are set to ap-
propriate values. Then the core inline macros are invoked through \pytx@Inline.

595 \newcommand{\pytx@MakeInlinebFV}[1]{%
596 \expandafter\newcommand\expandafter{\csname #1b\endcsname}{%
597 \expandafter\let\expandafter\pytx@lexer\csname pytx@pyglexer@#1\endcsname
598 \Depythontex{cmd:#1b:ov:c}%
599 \xdef\pytx@type{#1}%
600 \edef\pytx@cmd{inlineb}%
601 \pytx@SetContext
602 \pytx@SetGroup
603 \let\pytx@InlineShow\pytx@InlineShowFV

73

604 \let\pytx@InlineSave\pytx@InlineSaveCode
605 \let\pytx@InlinePrint\@empty
606 \pytx@Inline
607 }%
608 }%
609 \newcommand{\pytx@MakeInlinebPyg}[1]{%
610 \expandafter\newcommand\expandafter{\csname #1b\endcsname}{%
611 \xdef\pytx@type{#1}%
612 \edef\pytx@cmd{inlineb}%
613 \pytx@SetContext
614 \pytx@SetGroup
615 \let\pytx@InlineShow\pytx@InlineShowPyg
616 \let\pytx@InlineSave\pytx@InlineSaveCode
617 \let\pytx@InlinePrint\@empty
618 \pytx@Inline
619 }%
620 }%

\pytx@MakeInlinevFV
\pytx@MakeInlinevPyg

This macro creates inline verbatim commands, which only typeset code. \pytx@type,
\pytx@cmd, \pytx@context, and \pytx@group are still set, for symmetry with
other commands. They are not needed for fancyvrb typesetting, though. We
use \pytx@SetGroupVerb to split verbatim content (v and verb) off into its own
group. That way, verbatim content doesn’t affect the instance numbers of exe-
cuted code, and thus executed code is not affected by the addition or removal of
verbatim content.

621 \newcommand{\pytx@MakeInlinevFV}[1]{%
622 \expandafter\newcommand\expandafter{\csname #1v\endcsname}{%
623 \expandafter\let\expandafter\pytx@lexer\csname pytx@pyglexer@#1\endcsname
624 \Depythontex{cmd:#1v:ov:c}%
625 \xdef\pytx@type{#1}%
626 \edef\pytx@cmd{inlinev}%
627 \pytx@SetContext
628 \pytx@SetGroupVerb
629 \let\pytx@InlineShow\pytx@InlineShowFV
630 \let\pytx@InlineSave\@empty
631 \let\pytx@InlinePrint\@empty
632 \pytx@Inline
633 }%
634 }%
635 \newcommand{\pytx@MakeInlinevPyg}[1]{%
636 \expandafter\newcommand\expandafter{\csname #1v\endcsname}{%
637 \xdef\pytx@type{#1}%
638 \edef\pytx@cmd{inlinev}%
639 \pytx@SetContext
640 \pytx@SetGroupVerb
641 \let\pytx@InlineShow\pytx@InlineShowPyg
642 \let\pytx@InlineSave\pytx@InlineSaveCode
643 \let\pytx@InlinePrint\@empty
644 \pytx@Inline

74

645 }%
646 }%

\pytx@MakeInlinecFV
\pytx@MakeInlinecPyg

This macro creates inline code commands, which save code for execution but do
not typeset it. If the code prints content, this content is inputted automatically if
the package option autoprint is on. Since no code is typeset, there is no difference
between the fancyvrb and Pygments forms.

647 \newcommand{\pytx@MakeInlinecFV}[1]{%
648 \expandafter\newcommand\expandafter{\csname #1c\endcsname}{%
649 \Depythontex{cmd:#1c:ov:p}%
650 \xdef\pytx@type{#1}%
651 \edef\pytx@cmd{inlinec}%
652 \pytx@SetContext
653 \pytx@SetGroup
654 \let\pytx@InlineShow\@empty
655 \let\pytx@InlineSave\pytx@InlineSaveCode
656 \let\pytx@InlinePrint\pytx@InlineAutoprint
657 \pytx@Inline
658 }%
659 }%
660 \let\pytx@MakeInlinecPyg\pytx@MakeInlinecFV

\pytx@MakeInlineFV
\pytx@MakeInlinePyg

This macro creates plain inline commands, which save code and then bring in
the output of pytex.formatter(〈code〉) (pytex.formatter() is the formatter
function in Python sessions that is provided by pythontex_utils*.py). The
Python output is saved in a TEX macro, and the macro is written to a file shared
by all PythonTEX sessions. This greatly reduces the number of external files
needed. Since no code is typeset, there is no difference between the fancyvrb and
Pygments forms.

661 \newcommand{\pytx@MakeInlineFV}[1]{%
662 \expandafter\newcommand\expandafter{\csname #1\endcsname}{%
663 \Depythontex{cmd:#1:ov:p}%
664 \xdef\pytx@type{#1}%
665 \edef\pytx@cmd{inline}%
666 \pytx@SetContext
667 \pytx@SetGroup
668 \let\pytx@InlineShow\@empty
669 \let\pytx@InlineSave\pytx@InlineSaveCode
670 \let\pytx@InlinePrint\pytx@InlineMacroprint
671 \pytx@Inline
672 }%
673 }%
674 \let\pytx@MakeInlinePyg\pytx@MakeInlineFV

\pythontexcustomc This macro takes a single line of code and adds it to all sessions within a family.
It is the inline version of the pythontexcustomcode environment.

675 \newcommand{\pythontexcustomc}[2][begin]{%
676 \Depythontex{cmd:pythontexcustomc:omv:p}%
677 \ifstrequal{#1}{begin}{}{%

75

678 \ifstrequal{#1}{end}{}{\PackageError{\pytx@packagename}%
679 {Invalid optional argument for \string\pythontexcustomc}{}
680 }%
681 }%
682 \xdef\pytx@type{CC:#2:#1}%
683 \edef\pytx@cmd{inlinec}%
684 \def\pytx@context{}%
685 \def\pytx@group{none}%
686 \let\pytx@InlineShow\@empty
687 \let\pytx@InlineSave\pytx@InlineSaveCode
688 \let\pytx@InlinePrint\@empty
689 \pytx@Inline[none]%
690 }%

\setpythontexcustomcode This macro is a holdover from 0.9beta3. It has been deprecated in favor of
\pythontexcustomc and pythontexcustomcode.

691 \def\setpythontexcustomcode#1{%
692 \Depythontex{cmd:setpythontexcustomcode:mv:p}%
693 \PackageWarning{\pytx@packagename}{The command
694 \string\setpythontexcustomcode\space has been deprecated;
695 use \string\pythontexcustomc\space or pythontexcustomcode instead}%
696 \begingroup
697 \let\do\@makeother\dospecials
698 \catcode‘\{=1
699 \catcode‘\}=2
700 \catcode‘\^^M=10\relax
701 \pytx@SetCustomCode{#1}%
702 }
703 \long\def\pytx@SetCustomCode#1#2{%
704 \endgroup
705 \pythontexcustomc{#1}{pythontexcustomcode=[#2];
706 exec(’for expr in pythontexcustomcode: exec(expr)’);
707 del(pythontexcustomcode)}
708 }
709 \@onlypreamble\setpythontexcustomcode

9.6 Environments
The inline commands were all created using a common core set of macros, com-
bined with short, command-specific constructors. In the case of environments,
we do not have a common core set of macros. Each environment is coded sepa-
rately, though there are similarities among environments. In the future, it may be
worthwhile to attempt to consolidate the environment code base.

One of the differences between inline commands and environments is that envi-
ronments may need to typeset code with line numbers. Each family of code needs
to have its own line numbering (actually, its own numbering for code, verbatim,
and console groups), and this line numbering should not overwrite any line num-
bering that may separately be in use by fancyvrb. To make this possible, we use

76

a temporary counter extensively. When line numbers are used, fancyvrb’s line
counter is copied into pytx@FancyVerbLineTemp, lines are numbered, and then
fancyvrb’s line counter is restored from pytx@FancyVerbLineTemp. This keeps
fancyvrb and PythonTEX’s line numbering separate, even though PythonTEX is
using fancyvrb and its macros internally.

9.6.1 Block and verbatim environment constructors

We begin by creating block and verb environment constuctors that use fancyvrb.
Then we create Pygments versions.

\pytx@FancyVerbGetLine The block environment needs to both typeset code and save it so it can be ex-
ecuted. fancyvrb supports typesetting, but doesn’t support saving at the same
time. So we create a modified version of fancyvrb’s \FancyVerbGetLine macro
which does. This is identical to the fancyvrb version, except that we add a line
that writes to the code file. The material that is written is detokenized to avoid
catcode issues and make unicode work correctly.

710 \begingroup
711 \catcode‘\^^M=\active
712 \gdef\pytx@FancyVerbGetLine#1^^M{%
713 \@nil%
714 \FV@CheckEnd{#1}%
715 \ifx\@tempa\FV@EnvironName%
716 \ifx\@tempb\FV@@@CheckEnd\else\FV@BadEndError\fi%
717 \let\next\FV@EndScanning%
718 \else%
719 \def\FV@Line{#1}%
720 \def\next{\FV@PreProcessLine\FV@GetLine}%
721 \immediate\write\pytx@codefile{\detokenize{#1}}%
722 \fi%
723 \next}%
724 \endgroup

\pytx@MakeBlockFV Now we are ready to actually create block environments. This macro takes an
environment base name 〈name〉 and creates a block environment 〈name〉block,
using fancyvrb.

The block environment is a Verbatim environment, so we declare that with
the \VerbatimEnvironment macro, which lets fancyvrb find the end of the envi-
ronment correctly. We define the type, define the command, and set the context
and group.

We need to check for optional arguments, so we begin a group and use
\obeylines to make line breaks active. Then we check to see if the next char
is an opening square bracket. If so, there is an optional argument, so we end
our group and call the \pytx@BeginBlockEnvFV macro, which will capture the
argument and finish preparing for the block content. If not, we end the group and
call the same \pytx@BeginBlockEnvFV macro with an empty argument. The line
breaks need to be active during this process because we don’t care about content
on the next line, including opening square brackets on the next line; we only care

77

about content in the line on which the environment is declared, because only on
that line should there be an optional argument. The problem is that since we are
dealing with code, it is quite possible for there to be an opening square bracket at
the beginning of the next line, so we must prevent that from being misinterpreted
as an optional argument.

After the environment, we need to clean up several things. Much of this relates
to what is done in the \pytx@BeginBlockEnvFV macro. The body of the environ-
ment is wrapped in a Verbatim environment, so we must end that. It is also
wrapped in a group, so that fancyvrb settings remain local; we end the group.
Then we define the name of the outfile for any printed content, so that it may
be accessed by \printpythontex and company. Finally, we rearrange counters.
The current code line number needs to be stored in \pytx@linecount, which was
defined to be specific to the current type-session-group set. The fancyvrb line
number needs to be set back to its original value from before the environment be-
gan, so that PythonTEX content does not affect the line numbering of fancyvrb
content. Finally, the \pytx@counter, which keeps track of commands and envi-
ronments within the current type-session-group set, needs to be incremented.

725 \newcommand{\pytx@MakeBlockFV}[1]{%
726 \expandafter\newenvironment{#1block}{%
727 \VerbatimEnvironment
728 \expandafter\let\expandafter\pytx@lexer\csname pytx@pyglexer@#1\endcsname
729 \Depythontex{env:#1block:oo|:c}%
730 \DepyListing
731 \xdef\pytx@type{#1}%
732 \edef\pytx@cmd{block}%
733 \pytx@SetContext
734 \pytx@SetGroup
735 \begingroup
736 \obeylines
737 \@ifnextchar[{\endgroup\pytx@BeginBlockEnvFV}{\endgroup\pytx@BeginBlockEnvFV[]}%
738 }%
739 {\end{Verbatim}%
740 \xdef\pytx@stdfile{\pytx@type_\pytx@session_\pytx@group_\arabic{\pytx@counter}}%
741 \setcounter{\pytx@linecount}{\value{FancyVerbLine}}%
742 \setcounter{FancyVerbLine}{\value{pytx@FancyVerbLineTemp}}%
743 \stepcounter{\pytx@counter}%
744 }%
745 }

\pytx@BeginBlockEnvFV This macro finishes preparations to actually begin the block environment. It
captures the optional argument (or the empty argument supplied by default). If
this argument is empty, then it sets the value of the argument to the default
value. If not, then colons in the optional argument are replaced with underscores,
and the modified argument is stored in \pytx@session. Colons are replaced with
underscores because session names must be suitable for file names, and colons are
generally not allowed in file names. However, we want to be able to enter session
names containing colons, since colons provide a conventient method of indicating

78

relationships, and are commonly used in LATEX labels. For example, we could have
a session named plots:specialplot.

Once the session is established, we are free to define the counter for the current
type-session-group, and make sure it exists. We also define the counter that will
keep track of line numbers for the current type-session-group, and make sure it
exists. Then we do some counter trickery. We don’t want fancyvrb line counting
to be affected by PythonTEX content, so we store the current line number held
by FancyVerbLine in pytx@FancyVerbLineTemp; we will restore FancyVerbLine
to this original value at the end of the environment. Then we set FancyVerbLine
to the appropriate line number for the current type-session-group. This provides
proper numbering continuity between different environments within the same type-
session-group.

Next, we write environment information to the code file, now that all the
necessary information is assembled. We begin a group, to keep some things local.
We \let a fancyvrb macro to our custom macro. We set fancyvrb settings to
those of the current type using \pytx@FVSet. Once this is done, we are finally
ready to start the Verbatim environment. Note that the Verbatim environment
will capture a second optional argument delimited by square brackets, if present,
and apply this argument as fancyvrb formatting. Thus, the environment actually
takes up to two optional arguments, but if you want to use fancyvrb formatting,
you must supply an empty (default session) or named (custom session) optional
argument for the PythonTEX code.

746 \def\pytx@BeginBlockEnvFV[#1]{%
747 \ifstrempty{#1}{\edef\pytx@session{default}}{\StrSubstitute{#1}{:}{-}[\pytx@session]}%
748 \edef\pytx@counter{pytx@\pytx@type @\pytx@session @\pytx@group}%
749 \pytx@CheckCounter{\pytx@counter}%
750 \edef\pytx@linecount{\pytx@counter @line}%
751 \pytx@CheckCounter{\pytx@linecount}%
752 \setcounter{pytx@FancyVerbLineTemp}{\value{FancyVerbLine}}%
753 \setcounter{FancyVerbLine}{\value{\pytx@linecount}}%
754 \pytx@WriteCodefileInfo
755 \let\FancyVerbGetLine\pytx@FancyVerbGetLine
756 \pytx@FVSet
757 \begin{Verbatim}%
758 }

\pytx@MakeVerbFV The verb environments only typeset code; they do not save it for execution. Thus,
we just use a standard fancyvrb environment with a few enhancements.

As in the block environment, we declare that we are using a Verbatim envi-
ronment, define type and command, set context and group (note the use of the
Verb group), and take care of optional arguments before calling a macro to wrap
things up (in this case, \pytx@BeginVerbEnvFV). Currently, much of the saved
information is unused, but it is provided to maintain parallelism with the block
environment.

Ending the environment involves ending the Verbatim environment begun by
\pytx@BeginVerbEnvFV, ending the group that kept fancyvrb settings local, and
resetting counters. We define a stdfile and step the counter, even though there

79

will never actually be any output to pull in, to force \printpythontex and com-
pany to be used immediately after the code they refer to and to maintain paral-
lelism.

759 \newcommand{\pytx@MakeVerbFV}[1]{%
760 \expandafter\newenvironment{#1verb}{%
761 \VerbatimEnvironment
762 \expandafter\let\expandafter\pytx@lexer\csname pytx@pyglexer@#1\endcsname
763 \Depythontex{env:#1verb:oo|:c}%
764 \DepyListing
765 \xdef\pytx@type{#1}%
766 \edef\pytx@cmd{verb}%
767 \pytx@SetContext
768 \pytx@SetGroupVerb
769 \begingroup
770 \obeylines
771 \@ifnextchar[{\endgroup\pytx@BeginVerbEnvFV}{\endgroup\pytx@BeginVerbEnvFV[]}%
772 }%
773 {\end{Verbatim}%
774 \xdef\pytx@stdfile{\pytx@type_\pytx@session_\pytx@group_\arabic{\pytx@counter}}%
775 \setcounter{\pytx@linecount}{\value{FancyVerbLine}}%
776 \setcounter{FancyVerbLine}{\value{pytx@FancyVerbLineTemp}}%
777 \stepcounter{\pytx@counter}%
778 }%
779 }

\pytx@BeginVerbEnvFV This macro captures the optional argument of the environment (or the default
empty argument that is otherwise supplied). If the argument is empty, it assignes
a default value; otherwise, it substitutes underscores for colons in the argument.
The argument is assigned to \pytx@session. A line counter is created, and its
existence is checked. We do the standard line counter trickery. Then we begin a
group to keep fancyvrb settings local, invoke the settings via \pytx@FVSet, and
begin the Verbatim environment.

780 \def\pytx@BeginVerbEnvFV[#1]{%
781 \ifstrempty{#1}{\edef\pytx@session{default}}{\StrSubstitute{#1}{:}{-}[\pytx@session]}%
782 \edef\pytx@counter{pytx@\pytx@type @\pytx@session @\pytx@group}%
783 \pytx@CheckCounter{\pytx@counter}%
784 \edef\pytx@linecount{\pytx@counter @line}%
785 \pytx@CheckCounter{\pytx@linecount}%
786 \setcounter{pytx@FancyVerbLineTemp}{\value{FancyVerbLine}}%
787 \setcounter{FancyVerbLine}{\value{\pytx@linecount}}%
788 \pytx@FVSet
789 \begin{Verbatim}%
790 }

Now for the Pygments forms of block and verb. Since all code must be saved
now (either to be executed or processed by Pygments, or both), the environment
code may be simplified compared to the non-Pygments case.

\pytx@MakePygEnv The block and verb environments are created via the same macro. The

80

\pytx@MakePygEnv macro takes two arguments: first, the code type, and sec-
ond, the environment (block or verb). The reason for using the same macro is
that both must now save their code externally, and bring back the result typeset
by Pygments. Thus, on the LATEX side, their behavior is identical. The only dif-
ference is on the Python side, where the block code is executed and thus there
may be output available via \printpythontex and company.

The actual workings of the macro are a combination of those of the non-
Pygments macros, so please refer to those for details. The only exception is the
code for bringing in Pygments output, but this is done using almost the same
approach as that used for the inline Pygments commands. There are two dif-
ferences: first, the block and verb environments use \UseVerbatim rather than
\BUseVerbatim, since they are not typesetting code inline; and second, they ac-
cept a second, optional argument containing fancyvrb commands and this is
used in typesetting the saved content. Any fancyvrb commands are saved in
\pytx@fvopttmp by \pytx@BeginEnvPyg@i, and then used when the code is type-
set.

Note that the positioning of all the FancyVerbLine trickery in what follows is
significant. Saving the FancyVerbLine counter to a temporary counter before the
beginning of VerbatimOut is important, because otherwise the fancyvrb number-
ing can be affected.

791 \newcommand{\pytx@MakePygEnv}[2]{%
792 \expandafter\newenvironment{#1#2}{%
793 \VerbatimEnvironment
794 \xdef\pytx@type{#1}%
795 \edef\pytx@cmd{#2}%
796 \pytx@SetContext
797 \ifstrequal{#2}{block}{\pytx@SetGroup}{}
798 \ifstrequal{#2}{verb}{\pytx@SetGroupVerb}{}
799 \begingroup
800 \obeylines
801 \@ifnextchar[{\endgroup\pytx@BeginEnvPyg}{\endgroup\pytx@BeginEnvPyg[]}%
802 }%
803 {\end{VerbatimOut}%
804 \xdef\pytx@stdfile{\pytx@type_\pytx@session_\pytx@group_\arabic{\pytx@counter}}%
805 \setcounter{FancyVerbLine}{\value{\pytx@linecount}}%
806 \pytx@FVSet
807 \ifdefstring{\pytx@fvopttmp}{}{}{\expandafter\fvset\expandafter{\pytx@fvopttmp}}%
808 \ifcsname FV@SV@\pytx@counter @\arabic{\pytx@counter}\endcsname
809 \UseVerbatim{\pytx@counter @\arabic{\pytx@counter}}%
810 \else
811 \InputIfFileExists{\pytx@outputdir/\pytx@stdfile.pygtex}{}%
812 {\textbf{??~\pytx@packagename~??}%
813 \PackageWarning{\pytx@packagename}{Non-existent Pygments content}}%
814 \fi
815 \setcounter{\pytx@linecount}{\value{FancyVerbLine}}%
816 \setcounter{FancyVerbLine}{\value{pytx@FancyVerbLineTemp}}%
817 \stepcounter{\pytx@counter}%
818 }%

81

819 }%

\pytx@BeginEnvPyg This macro finishes preparing for the content of a verb or block environment with
Pygments content. It captures an optional argument corresponding to the session
name and sets up instance and line counters. Finally, it calls an additional macro
that handles the possibility of a second optional argument.

820 \def\pytx@BeginEnvPyg[#1]{%
821 \ifstrempty{#1}{\edef\pytx@session{default}}{\StrSubstitute{#1}{:}{-}[\pytx@session]}%
822 \edef\pytx@counter{pytx@\pytx@type @\pytx@session @\pytx@group}%
823 \pytx@CheckCounter{\pytx@counter}%
824 \edef\pytx@linecount{\pytx@counter @line}%
825 \pytx@CheckCounter{\pytx@linecount}%
826 \pytx@WriteCodefileInfo
827 \begingroup
828 \obeylines
829 \@ifnextchar[{\endgroup\pytx@BeginEnvPyg@i}{\endgroup\pytx@BeginEnvPyg@i[]}%
830 }%

\pytx@BeginEnvPyg@i This macro captures a second optional argument, corresponding to fancyvrb op-
tions. Note that not all fancyvrb options may be passed to saved content when it
is actually used, particularly those corresponding to how the content was read in
the first place (for example, command characters). But at least most formatting
options such as line numbering work fine. As with the non-Pygments environ-
ments, \begin{VerbatimOut} doesn’t take a second mandatory argument, since
we are using a custom version and don’t need to specify the file in which Verbatim
content is saved. It is important that the FancyVerbLine saving be done here; if
it is done later, after the end of VerbatimOut, then numbering can be off in some
circumstances (for example, a single pyverb between two Verbatim’s).

831 \def\pytx@BeginEnvPyg@i[#1]{%
832 \def\pytx@fvopttmp{#1}%
833 \setcounter{pytx@FancyVerbLineTemp}{\value{FancyVerbLine}}%
834 \let\FVB@VerbatimOut\pytx@FVB@VerbatimOut
835 \let\FVE@VerbatimOut\pytx@FVE@VerbatimOut
836 \begin{VerbatimOut}%
837 }%

Since we are using the same code to create both block and verb environments,
we now create a specific macro for creating each case, to make usage equivalent
to that for the non-Pygments case.

\pytx@MakeBlockPyg The block environment is constructed via the \pytx@MakePygEnv macro.
838 \newcommand{\pytx@MakeBlockPyg}[1]{\pytx@MakePygEnv{#1}{block}}

\pytx@MakeVerbPyg The verb environment is constructed likewise.
839 \newcommand{\pytx@MakeVerbPyg}[1]{\pytx@MakePygEnv{#1}{verb}}

82

9.6.2 Code environment constructor

The code environment merely saves code to the code file; nothing is typeset. To
accomplish this, we use a slightly modified version of fancyvrb’s VerbatimOut.

\pytx@WriteDetok We can use fancyvrb to capture the code, but we will need a way to write the
code in detokenized form. This is necessary so that TEX doesn’t try to process
the code as it is written, which would generally be disastrous.

840 \def\pytx@WriteDetok#1{%
841 \immediate\write\pytx@codefile{\detokenize{#1}}}%

\pytx@FVB@VerbatimOut We need a custom version of the macro that begins VerbatimOut. We don’t need
fancyvrb’s key values, and due to our use of \detokenize to write content, we
don’t need its space and tab treatment either. We do need fancyvrb to write to
our code file, not the file to which it would write by default. And we don’t need
to open any files, because the code file is already open. These last two are the
only important differences between our version and the original fancyvrb version.
Since we don’t need to write to a user-specified file, we don’t require the mandatory
argument of the original macro.

842 \def\pytx@FVB@VerbatimOut{%
843 \@bsphack
844 \begingroup
845 \let\FV@ProcessLine\pytx@WriteDetok
846 \let\FV@FontScanPrep\relax
847 \let\@noligs\relax
848 \FV@Scan}%

\pytx@FVE@VerbatimOut Similarly, we need a custom version of the macro that ends VerbatimOut. We
don’t want to close the file to which we are saving content.

849 \def\pytx@FVE@VerbatimOut{\endgroup\@esphack}%

\pytx@EnvAutoprint We also need a macro for bringing in autoprint content. This is a separate macro
so that it can be easily disabled by the package option stdout. We wait until the
beginning of the document to create the real macro, since any code commands
and environments in the preamble shouldn’t be printing and in any case we can’t
know what the outputdir is until the beginning of the document.

850 \let\pytx@EnvAutoprint\@empty
851 \AtBeginDocument{
852 \def\pytx@EnvAutoprint{%
853 \ifbool{pytx@opt@autoprint}{%
854 \InputIfFileExists{\pytx@outputdir/\pytx@stdfile.stdout}%
855 {\DepyFile{p:\pytx@outputdir/\pytx@stdfile.stdout}}{}}{}%
856 }
857 \ifbool{pytx@opt@stdout}{}{\let\pytx@EnvAutoprint\@empty}
858 }

\pytx@MakeCodeFV Now that the helper macros for the code environment have been defined, we are
ready to create the macro that makes code environments. Everything at the
beginning of the environment is similar to the block and verb environments.

83

After the environment, we need to close the VerbatimOut environment begun
by \pytx@BeginCodeEnv@i and end the group it began. We define the outfile,
and bring in any printed content if the autoprint setting is on. We must still
perform some FancyVerbLine trickery to prevent the fancyvrb line counter from
being affected by writing content! Finally, we step the counter.

859 \newcommand{\pytx@MakeCodeFV}[1]{%
860 \expandafter\newenvironment{#1code}{%
861 \VerbatimEnvironment
862 \Depythontex{env:#1code:oo|:p}%
863 \xdef\pytx@type{#1}%
864 \edef\pytx@cmd{code}%
865 \pytx@SetContext
866 \pytx@SetGroup
867 \begingroup
868 \obeylines
869 \@ifnextchar[{\endgroup\pytx@BeginCodeEnv}{\endgroup\pytx@BeginCodeEnv[]}%
870 }%
871 {\end{VerbatimOut}%
872 \xdef\pytx@stdfile{\pytx@type_\pytx@session_\pytx@group_\arabic{\pytx@counter}}%
873 \pytx@EnvAutoprint
874 \setcounter{FancyVerbLine}{\value{pytx@FancyVerbLineTemp}}%
875 \stepcounter{\pytx@counter}%
876 }%
877 }%

\pytx@BeginCodeEnv This macro finishes setting things up before the code environment contents. It
processes the optional argument, defines a counter and checks its existence, writes
info to the code file, and then calls the \pytx@BeginCodeEnv@imacro. This macro
is necessary so that the environment can accept two optional arguments. Since the
block and verb environments can accept two optional arguments (the first is the
name of the session, the second is fancyvrb options), the code environment also
should be able to, to maintain parallelism (for example, pyblock should be able
to be swapped with pycode without changing environment arguments—it should
just work). However, VerbatimOut doesn’t take an optional argument. So we
need to capture and discard any optional argument, before starting VerbatimOut.

878 \def\pytx@BeginCodeEnv[#1]{%
879 \ifstrempty{#1}{\edef\pytx@session{default}}{\StrSubstitute{#1}{:}{-}[\pytx@session]}%
880 \edef\pytx@counter{pytx@\pytx@type @\pytx@session @\pytx@group}%
881 \pytx@CheckCounter{\pytx@counter}%
882 \pytx@WriteCodefileInfo
883 \begingroup
884 \obeylines
885 \@ifnextchar[{\endgroup\pytx@BeginCodeEnv@i}{\endgroup\pytx@BeginCodeEnv@i[]}%
886 }%

\pytx@BeginCodeEnv@i As described above, this macro captures a second optional argument, if present,
and then starts the VerbatimOut environment. Note that VerbatimOut does not
have a mandatory argument, because we are invoking our custom \pytx@FVB@VerbatimOut

84

macro. The default fancyvrb macro needs an argument to tell it the name of the
file to which to save the verbatim content. But in our case, we are always writing
to the same file, and the custom macro accounts for this by not having a manda-
tory file name argument. We must perform the typical FancyVerbLine trickery,
to prevent the fancyvrb line counter from being affected by writing content!

887 \def\pytx@BeginCodeEnv@i[#1]{%
888 \setcounter{pytx@FancyVerbLineTemp}{\value{FancyVerbLine}}%
889 \let\FVB@VerbatimOut\pytx@FVB@VerbatimOut
890 \let\FVE@VerbatimOut\pytx@FVE@VerbatimOut
891 \begin{VerbatimOut}%
892 }%

\pytx@MakeCodePyg Since the code environment simply saves code for execution and typesets nothing,
the Pygments version is identical to the non-Pygments version, so we simply let
the former to the latter.

893 \let\pytx@MakeCodePyg\pytx@MakeCodeFV

pythontexcustomcode This environment is used for adding custom code to all sessions within a command
and environment family. It is the environment equivalent of the inline command
\pythontexcustomc.

894 \newenvironment{pythontexcustomcode}[2][begin]{%
895 \VerbatimEnvironment
896 \Depythontex{env:pythontexcustomcode:om:n}%
897 \ifstrequal{#1}{begin}{}{%
898 \ifstrequal{#1}{end}{}{\PackageError{\pytx@packagename}%
899 {Invalid optional argument for pythontexcustomcode}{}
900 }%
901 }%
902 \xdef\pytx@type{CC:#2:#1}%
903 \edef\pytx@cmd{code}%
904 \def\pytx@context{}%
905 \def\pytx@group{none}%
906 \pytx@BeginCodeEnv[none]}%
907 {\end{VerbatimOut}%
908 \setcounter{FancyVerbLine}{\value{pytx@FancyVerbLineTemp}}%
909 \stepcounter{\pytx@counter}%
910 }%

9.6.3 Console environment constructor

The console environment needs to write all code contained in the environment
to the code file, and then bring in the console output.

\pytx@MakeConsoleFV

911 \newcommand{\pytx@MakeConsFV}[1]{%
912 \expandafter\newenvironment{#1console}{%
913 \VerbatimEnvironment
914 \expandafter\let\expandafter\pytx@lexer\csname pytx@pyglexer@#1\endcsname

85

915 \Depythontex{env:#1console:oo|:c}%
916 \DepyListing
917 \xdef\pytx@type{#1}%
918 \edef\pytx@cmd{console}%
919 \pytx@SetContext
920 \pytx@SetGroupCons
921 \begingroup
922 \obeylines
923 \@ifnextchar[{\endgroup\pytx@BeginConsEnvFV}{\endgroup\pytx@BeginConsEnvFV[]}%
924 }%
925 {\end{VerbatimOut}%
926 \xdef\pytx@stdfile{\pytx@type_\pytx@session_\pytx@group_\arabic{\pytx@counter}}%
927 \setcounter{FancyVerbLine}{\value{\pytx@linecount}}%
928 \pytx@FVSet
929 \ifdefstring{\pytx@fvopttmp}{}{}{\expandafter\fvset\expandafter{\pytx@fvopttmp}}%
930 \ifcsname FV@SV@\pytx@counter @\arabic{\pytx@counter}\endcsname
931 \UseVerbatim{\pytx@counter @\arabic{\pytx@counter}}%
932 \DepyMacro{c:\pytx@counter @\arabic{\pytx@counter}}%
933 \else
934 \InputIfFileExists{\pytx@outputdir/\pytx@stdfile.tex}%
935 {\DepyFile{c:\pytx@outputdir/\pytx@stdfile.tex}}%
936 {\InputIfFileExists{\pytx@outputdir/\pytx@stdfile.pygtex}%
937 {\DepyFile{c:\pytx@outputdir/\pytx@stdfile.pygtex}}%
938 {\textbf{??~\pytx@packagename~??}%
939 \PackageWarning{\pytx@packagename}{Non-existent console content}}}%
940 \fi
941 \setcounter{\pytx@linecount}{\value{FancyVerbLine}}%
942 \setcounter{FancyVerbLine}{\value{pytx@FancyVerbLineTemp}}%
943 \stepcounter{\pytx@counter}%
944 }%
945 }

\pytx@BeginConsEnvFV

946 \def\pytx@BeginConsEnvFV[#1]{%
947 \ifstrempty{#1}{\edef\pytx@session{default}}{\StrSubstitute{#1}{:}{-}[\pytx@session]}%
948 \edef\pytx@counter{pytx@\pytx@type @\pytx@session @\pytx@group}%
949 \pytx@CheckCounter{\pytx@counter}%
950 \edef\pytx@linecount{\pytx@counter @line}%
951 \pytx@CheckCounter{\pytx@linecount}%
952 \pytx@WriteCodefileInfo
953 \begingroup
954 \obeylines
955 \@ifnextchar[{\endgroup\pytx@BeginConsEnvFV@i}{\endgroup\pytx@BeginConsEnvFV@i[]}%
956 }%

\pytx@BeginConsEnvFV@i

957 \def\pytx@BeginConsEnvFV@i[#1]{%
958 \def\pytx@fvopttmp{#1}%
959 \setcounter{pytx@FancyVerbLineTemp}{\value{FancyVerbLine}}%
960 \let\FVB@VerbatimOut\pytx@FVB@VerbatimOut

86

961 \let\FVE@VerbatimOut\pytx@FVE@VerbatimOut
962 \begin{VerbatimOut}%
963 }%

\pytx@MakeConsPyg The console environment saves code and then brings back the result of console-
style evaluation. Whether Pygments is used to highlight the code depends on the
family settings, so the Pygments and non-Pygments forms of the environment are
identical.

964 \let\pytx@MakeConsPyg\pytx@MakeConsFV

9.7 Constructors for macro and environment families
Everything is now in place to create inline commands and environments, with and
without Pygments usage. To make all of this more readily usable, we need macros
that will create a whole family of commands and environments at once, based
on a base name. For example, we need a way to easily create all commands and
environments based off of the py base name.

\makepythontexfamilyfv This is a mass constructor for all commands and environments. It takes a single
mandatory argument: a base name. It creates almost all commands and envi-
ronments using the base name; the console environment is created conditionally,
based on an optional argument. The console environment is only created con-
ditionally because support for it will probably be very limited if languages other
than Python are added in the future. The macro also creates fancyvrb settings
corresponding to the family, and sets them to a null default.

The macro checks for the base name PYG, which is not allowed. This is for
two reasons. First, given that the family py is already defined by default, another
family with such a similar name would not be a good idea. Second, and more
importantly, the prefix PYG is used for other purposes. Although PythonTEX is
primarily intended for executing and typesetting Python code, provision has also
been made for typesetting code in any language supported by Pygments. The PYG
prefix is used by the macros that perfom that function.

The constructor macro should only be allowed in the preamble, since commands
and environments must be defined before the document begins.

965 \newcommand{\makepythontexfamilyfv}[2][]{%
966 \IfBeginWith{#2}{PYG}%
967 {\PackageError{\pytx@packagename}%
968 {Attempt to create macros with reserved prefix PYG}{}}{}%
969 \pytx@MakeInlinebFV{#2}%
970 \pytx@MakeInlinevFV{#2}%
971 %\pytx@MakeInlinecFV{#2}%
972 \pytx@MakeInlineFV{#2}%
973 \pytx@MakeBlockFV{#2}%
974 \pytx@MakeVerbFV{#2}%
975 %\pytx@MakeCodeFV{#2}%
976 \ifstrequal{#1}{console}{\pytx@MakeConsFV{#2}}{}%
977 \ifstrequal{#1}{all}{\pytx@MakeConsFV{#2}}{}%

87

978 %\setpythontexfv[#2]{}% Uncomment after Depythontex ordering
979 \expandafter\gdef\csname pytx@fvsettings@#2\endcsname{}%
980 }
981 \@onlypreamble\makepythontexfamilyfv

\makepythontexfamilypyg Creating a family of Pygments commands and environments is a little more in-
volved. This macro takes three mandatory arguments: the base name, the Pyg-
ments lexer to be used, and Pygments options for typesetting. Currently, three
options may be passed to Pygments in this manner: style=〈style name〉, which
sets the formatting style; texcomments, which allows LATEX in code comments to
be rendered; and mathescape, which allows LATEX math mode ($...$) in com-
ments. The texcomments and mathescape options may be used with an argument
(for example, texcomments=〈True/False〉); if an argument is not supplied, True
is assumed. Note that these settings may be overridden by the package option
pygments. Again, the console environment is created conditionally, based on an
optional argument.

After checking for the disallowed prefix PYG, we begin by creating all commands
and environments, and creating a macro in which to store default fancyvrb setting.
We save the Pygments settings in a macro of the form \pytx@pygopt@〈base name〉.
We also set the bool pytx@usedpygments to true, so that Pygments content will be
inputted at the beginning of the document. Then we request that the base name,
lexer, and any Pygments settings be written to the code file at the beginning of the
document, so that Pygments can access them. The options are saved in a macro,
and then the macro is saved to file only at the beginning of the document, so that
the user can modify default options for default code and environment families.

This macro should only be allowed in the preamble.
982 \newcommand{\makepythontexfamilypyg}[4][]{%
983 \IfBeginWith{#2}{PYG}%
984 {\PackageError{\pytx@packagename}%
985 {Attempt to create macros with reserved prefix PYG}{}}{}%
986 \ifbool{pytx@opt@pyginline}%
987 {\pytx@MakeInlinebPyg{#2}%
988 \pytx@MakeInlinevPyg{#2}}%
989 {\pytx@MakeInlinebFV{#2}%
990 \pytx@MakeInlinevFV{#2}}%
991 %\pytx@MakeInlinecPyg{#2}%
992 \pytx@MakeInlinePyg{#2}%
993 \pytx@MakeBlockPyg{#2}%
994 \pytx@MakeVerbPyg{#2}%
995 %\pytx@MakeCodePyg{#2}%
996 \ifstrequal{#1}{console}{\pytx@MakeConsPyg{#2}}{}%
997 \ifstrequal{#1}{all}{\pytx@MakeConsPyg{#2}}{}%
998 \setpythontexfv[#2]{}%
999 \booltrue{pytx@usedpygments}%

1000 \expandafter\xdef\csname pytx@pygopt@#2\endcsname{#4}%
1001 \AtEndDocument{\immediate\write\pytx@codefile{%
1002 \pytx@delimsettings pygfamily=#2,#3,%
1003 \string{\csname pytx@pygopt@#2\endcsname\string}\pytx@delimchar}%

88

1004 }%
1005 }
1006 \@onlypreamble\makepythontexfamilypyg

\setpythontexpyglexer We need to be able to reset the lexer associated with a family after the family has
already been created.

1007 \def\setpythontexpyglexer#1#2{%
1008 \Depythontex{cmd:setpythontexpyglexer:mm:n}%
1009 \ifcsname pytx@pyglexer@#1\endcsname
1010 \expandafter\xdef\csname pytx@pyglexer@#1\endcsname{#2}%
1011 \else
1012 \PackageError{\pytx@packagename}%
1013 {Cannot modify a non-existent family}{}%
1014 \fi
1015 }%
1016 \@onlypreamble\setpythontexpyglexer

\setpythontexpygopt The user may wish to modify the Pygments options associated with a family. This
macro takes two arguments: first, the family base name; and second, the Pygments
options to associate with the family. This macro is particularly useful in changing
the Pygments style of default command and environment families.

Due to the implementation (and also in the interest of keeping typesetting
consistent), the Pygments style for a family must remain constant throughout the
document. Thus, we only allow changes to the style in the preamble.

1017 \newcommand{\setpythontexpygopt}[2]{%
1018 \Depythontex{cmd:setpythontexpygopt:mm:n}%
1019 \ifcsname pytx@pygopt@#1\endcsname
1020 \expandafter\xdef\csname pytx@pygopt@#1\endcsname{#2}%
1021 \else
1022 \PackageError{\pytx@packagename}%
1023 {Cannot modify Pygments options for a non-existent family}{}%
1024 \fi
1025 }
1026 \@onlypreamble\setpythontexpygopt

\makepythontexfamily While the \makepythontexfamilyfv and \makepythontexfamilypyg macros al-
low the creation of families that use fancyvrb and Pygments, respectively, we
want to be able to create families that can switch between the two possibilities,
based on the package option pygments. In some cases, we may want to force
a family to use either fancyvrb or Pygments, but generally we will want to be
able to control the method of typesetting of all families at the package level. We
create a new macro for this purpose. This macro takes the same arguments that
\makepythontexfamilypyg does: the family base name, the lexer to be used by
Pygments, and Pygments options for typesetting, plus an optional argument gov-
erning the console environment. The actual creation of macros is delayed using
\AtBeginDocument, so that the user has the option to choose whether fancyvrb
or Pygments usage should be forced for the family.

89

This macro should always be used for defining new families, unless there is a
particular reason to always force fancyvrb or Pygments usage.

1027 \newcommand{\makepythontexfamily}[4][]{%
1028 \expandafter\xdef\csname pytx@macroformatter@#2\endcsname{auto}
1029 \expandafter\xdef\csname pytx@pyglexer@#2\endcsname{#3}
1030 \expandafter\xdef\csname pytx@pygopt@#2\endcsname{#4}
1031 \pytx@MakeInlinecFV{#2}
1032 \pytx@MakeCodeFV{#2}
1033 \AtBeginDocument{%
1034 \ifcsstring{pytx@macroformatter@#2}{auto}{%
1035 \ifbool{pytx@opt@pygments}%
1036 {\makepythontexfamilypyg[#1]{#2}{\csname pytx@pyglexer@#2\endcsname}%
1037 {\csname pytx@pygopt@#2\endcsname}}%
1038 {\makepythontexfamilyfv[#1]{#2}}}{}%
1039 \ifcsstring{pytx@macroformatter@#2}{fancyvrb}%
1040 {\makepythontexfamilyfv[#1]{#2}}{}%
1041 \ifcsstring{pytx@macroformatter@#2}{pygments}%
1042 {\makepythontexfamilypyg[#1]{#2}{\csname pytx@pyglexer@#2\endcsname}%
1043 {\csname pytx@pygopt@#2\endcsname}}{}%
1044 }%
1045 }
1046 \@onlypreamble\makepythontexfamily

\setpythontexformatter We need to be able to reset the formatter used by a family among the options
auto, fancyvrb, and pygments.

1047 \def\setpythontexformatter#1#2{%
1048 \Depythontex{cmd:setpythontexformatter:mm:n}%
1049 \ifcsname pytx@macroformatter@#1\endcsname
1050 \ifbool{pytx@opt@depythontex}{}{%
1051 \expandafter\xdef\csname pytx@macroformatter@#1\endcsname{#2}}
1052 \else
1053 \PackageError{\pytx@packagename}%
1054 {Cannot modify a family that does not exist or does not allow formatter choices}%
1055 {Create the family with \string\makepythontexfamily}%
1056 \fi
1057 }
1058 \@onlypreamble\setpythontexformatter

9.8 Default commands and environment families
We are finally prepared to create the default command and environment families.
We create a basic Python family with the base name py. We also create customized
Python families for the SymPy package, using the base name sympy, and for the
pylab module, using the base name pylab. All of these are created with a console
environment.

All of these command and environment families are created conditionally, de-
pending on whether the package option pygments is used, via \makepythontexfamily.

90

We recommend that any custom families created by the user be constructed in
the same manner.

1059 \makepythontexfamily[all]{py}{python}{}
1060 \makepythontexfamily[all]{sympy}{python}{}
1061 \makepythontexfamily[all]{pylab}{python}{}

9.9 Listings environment
fancyvrb, especially when combined with Pygments, provides most of the format-
ting options we could want. However, it simply typesets code within the flow of
the document and does not provide a floating environment. So we create a floating
environment for code listings via the newfloat package.

It is most logical to name this environment listing, but that is already defined
by the minted package (although PythonTEX and minted are probably not likely
to be used together, due to overlapping features). Furthermore, the listings
package specifically avoided using the name listing for an environment due to
the use of this name by other packages.

We have chosen to make a compromise. We create a macro that creates a float
environment with a custom name for listings. If this macro is invoked, then a float
environment for listings is created and nothing else is done. If it is not invoked,
the package attempts to create an environment called listing at the beginning
of the document, and issues a warning if another macro with that name already
exists. This approach makes the logical listing name available in most cases,
and provides the user with a simple fallback in the event that another package
defining listing must be used alongside PythonTEX.

\setpythontexlistingenv We define a bool pytx@listingenv that keeps track of whether a listings environ-
ment has been created. Then we define a macro that creates a floating environment
with a custom name, with appropriate settings for a listing environment. We only
allow this macro to be used in the preamble, since later use would wreak havok.

1062 \newbool{pytx@listingenv}
1063 \def\setpythontexlistingenv#1{%
1064 \Depythontex{cmd:setpythontexlistingenv:m:n}%
1065 \DeclareFloatingEnvironment[fileext=lopytx,listname={List of Listings},name=Listing]{#1}
1066 \booltrue{pytx@listingenv}
1067 }
1068 \@onlypreamble\setpythontexlistingenv

At the beginning of the document, we issue a warning if the listing envi-
ronment needs to be created but cannot be due to a pre-existing macro (and no
version with a custom name has been created). Otherwise, we create the listing
environment.

1069 \AtBeginDocument{
1070 \ifcsname listing\endcsname
1071 \ifbool{pytx@listingenv}{}%
1072 {\PackageWarning{\pytx@packagename}%
1073 {A "listing" environment already exists \MessageBreak

91

1074 \pytx@packagename\space will not create one \MessageBreak
1075 Use \string\setpythontexlistingenv to create a custom listing environment}}%
1076 \else
1077 \ifbool{pytx@listingenv}{}{\DeclareFloatingEnvironment[fileext=lopytx]{listing}}
1078 \fi
1079 }

9.10 Pygments for general code typesetting
After all the work that has gone into PythonTEX thus far, it would be a pity
not to slightly expand the system to allow Pygments typesetting of any language
Pygments supports. While PythonTEX currently can only execute Python code,
it is relatively easy to add support for highlighting any language supported by
Pygments. We proceed to create a \pygment command, a pygments environment,
and an \inputpygments command that do just this. The functionality of these is
very similar to that provided by the minted package.

Both the commands and the environment are created in two forms: one that
actually uses Pygments, which is the whole point in the first place; and one
that uses fancyvrb, which may speed compilation or make editing faster since
pythontex.py need not be invoked. By default, the two forms are switched be-
tween based on the package pygments option, but this may be easily modified as
described below.

The Pygments commands and environment operate under the code type
PYG〈lexer name〉. This allows Pygments typesetting of general code to proceed
with very few additions to pythontex.py; in most situations, the Pygments code
types behave just like standard PythonTEX types that don’t execute any code.
Due to the use of the PYG prefix for all Pygments content, the use of this prefix is
not allowed at the beginning of a base name for standard PythonTEX command
and environment families.

We have previously used the suffix Pyg to denote macro variants that use
Pygments rather than fancyvrb. We continue that practice here. To distinguish
the special Pygments typesetting macros from the regular PythonTEX macros, we
use Pygments in the macro names, in addition to any Pyg suffix

9.10.1 Inline Pygments command

\pytx@MakePygmentsInlineFV
\pytx@MakePygmentsInlinePyg

\pygment

These macros create an inline command. They reuse the \pytx@Inline macro
sequence. The approach is very similar to the constructors for inline commands,
except for the way in which the type is defined and for the fact that we have to
check to see if a macro for fancyvrb settings exists. Just as for the PythonTEX
inline commands, we do not currently support fancyvrb options in Pygments
inline commands, since almost all options are impractical for inline usage, and the
few that might conceivably be practical, such as showing spaces, should probably
be used throughout an entire document rather than just for a tiny code snippet
within a paragraph.

We supply an empty optional argument to \pytx@Inline, so that the \pygment

92

command can only take two mandatory arguments, and no optional argument
(since sessions don’t make sense for code that is merely typeset):

\pygment{〈lexer〉}{〈code〉}

1080 \def\pytx@MakePygmentsInlineFV{%
1081 \newcommand{\pygment}[1]{%
1082 \edef\pytx@lexer{##1}%
1083 \Depythontex{cmd:pygment:mv:c}%
1084 \edef\pytx@type{PYG##1}%
1085 \edef\pytx@cmd{inlinev}%
1086 \pytx@SetContext
1087 \pytx@SetGroupVerb
1088 \let\pytx@InlineShow\pytx@InlineShowFV
1089 \let\pytx@InlineSave\@empty
1090 \let\pytx@InlinePrint\@empty
1091 \ifcsname pytx@fvsettings@\pytx@type\endcsname
1092 \else
1093 \expandafter\gdef\csname pytx@fvsettings@\pytx@type\endcsname{}%
1094 \fi
1095 \pytx@Inline[]%
1096 }%
1097 }
1098 \def\pytx@MakePygmentsInlinePyg{%
1099 \newcommand{\pygment}[1]{%
1100 \edef\pytx@type{PYG##1}%
1101 \edef\pytx@cmd{inlinev}%
1102 \pytx@SetContext
1103 \pytx@SetGroupVerb
1104 \let\pytx@InlineShow\pytx@InlineShowPyg
1105 \let\pytx@InlineSave\pytx@InlineSaveCode
1106 \let\pytx@InlinePrint\@empty
1107 \ifcsname pytx@fvsettings@\pytx@type\endcsname
1108 \else
1109 \expandafter\gdef\csname pytx@fvsettings@\pytx@type\endcsname{}%
1110 \fi
1111 \pytx@Inline[]
1112 }%
1113 }

9.10.2 Pygments environment

\pytx@MakePygmentsEnvFV
pygments

The pygments environment is created to take an optional argument, which corre-
sponds to fancyvrb settings, and one mandatory argument, which corresponds to
the Pygments lexer to be used in highlighting the code.

The pygments environment begins by declaring that it is a Verbatim envi-
ronment and setting variables. Again, some variables are unnecessary, but they
are created to maintain uniformity with other PythonTEX environments. The
environment code is very similar to that of PythonTEX verb environments.

93

1114 \def\pytx@MakePygmentsEnvFV{%
1115 \newenvironment{pygments}{%
1116 \VerbatimEnvironment
1117 \pytx@SetContext
1118 \pytx@SetGroupVerb
1119 \begingroup
1120 \obeylines
1121 \@ifnextchar[{\endgroup\pytx@BEPygmentsFV}{\endgroup\pytx@BEPygmentsFV[]}%
1122 }%
1123 {\end{Verbatim}%
1124 \setcounter{\pytx@linecount}{\value{FancyVerbLine}}%
1125 \setcounter{FancyVerbLine}{\value{pytx@FancyVerbLineTemp}}%
1126 }%
1127 }

\pytx@BEPygmentsFV This macro captures the optional argument containing fancyvrb commands.
1128 \def\pytx@BEPygmentsFV[#1]{%
1129 \def\pytx@fvopttmp{#1}%
1130 \begingroup
1131 \obeylines
1132 \pytx@BEPygmentsFV@i
1133 }

\pytx@BEPygmentsFV@i This macro captures the mandatory argument, containing the lexer name, and
proceeds.

1134 \def\pytx@BEPygmentsFV@i#1{%
1135 \endgroup
1136 \edef\pytx@type{PYG#1}%
1137 \edef\pytx@lexer{#1}%
1138 \Depythontex{env:pygments:om:c}%
1139 \DepyListing
1140 \edef\pytx@cmd{verb}%
1141 \edef\pytx@session{default}%
1142 \edef\pytx@linecount{pytx@\pytx@type @\pytx@session @\pytx@group @line}%
1143 \pytx@CheckCounter{\pytx@linecount}%
1144 \ifcsname pytx@fvsettings@\pytx@type\endcsname
1145 \else
1146 \expandafter\gdef\csname pytx@fvsettings@\pytx@type\endcsname{}%
1147 \fi
1148 \setcounter{pytx@FancyVerbLineTemp}{\value{FancyVerbLine}}%
1149 \setcounter{FancyVerbLine}{\value{\pytx@linecount}}%
1150 \pytx@FVSet
1151 \ifdefstring{\pytx@fvopttmp}{}{}{\expandafter\fvset\expandafter{\pytx@fvopttmp}}%
1152 \begin{Verbatim}%
1153 }

\pytx@MakePygmentsEnvPyg
pygments

The Pygments version is very similar, except that it must bring in external Pyg-
ments content.

1154 \def\pytx@MakePygmentsEnvPyg{%

94

1155 \newenvironment{pygments}{%
1156 \VerbatimEnvironment
1157 \pytx@SetContext
1158 \pytx@SetGroupVerb
1159 \begingroup
1160 \obeylines
1161 \@ifnextchar[{\endgroup\pytx@BEPygmentsPyg}{\endgroup\pytx@BEPygmentsPyg[]}%
1162 }%
1163 {\end{VerbatimOut}%
1164 \setcounter{FancyVerbLine}{\value{\pytx@linecount}}%
1165 \pytx@FVSet
1166 \ifdefstring{\pytx@fvopttmp}{}{}{\expandafter\fvset\expandafter{\pytx@fvopttmp}}%
1167 \ifcsname FV@SV@\pytx@counter @\arabic{\pytx@counter}\endcsname
1168 \UseVerbatim{\pytx@counter @\arabic{\pytx@counter}}%
1169 \else
1170 \InputIfFileExists{\pytx@outputdir/%
1171 \pytx@type_\pytx@session_\pytx@group_\arabic{\pytx@counter}.pygtex}{}%
1172 {\textbf{??~\pytx@packagename~??}%
1173 \PackageWarning{\pytx@packagename}{Non-existent Pygments content}}%
1174 \fi
1175 \setcounter{\pytx@linecount}{\value{FancyVerbLine}}%
1176 \setcounter{FancyVerbLine}{\value{pytx@FancyVerbLineTemp}}%
1177 \stepcounter{\pytx@counter}%
1178 }%
1179 }

\pytx@BEPygmentsPyg This macro captures the optional argument, which corresponds to fancyvrb set-
tings.

1180 \def\pytx@BEPygmentsPyg[#1]{%
1181 \def\pytx@fvopttmp{#1}%
1182 \begingroup
1183 \obeylines
1184 \pytx@BEPygmentsPyg@i
1185 }

\pytx@BEPygmentsPyg@i This macro captures the mandatory argument, containing the lexer name, and
proceeds.

1186 \def\pytx@BEPygmentsPyg@i#1{%
1187 \endgroup
1188 \edef\pytx@type{PYG#1}%
1189 \edef\pytx@cmd{verb}%
1190 \edef\pytx@session{default}%
1191 \edef\pytx@counter{pytx@\pytx@type @\pytx@session @\pytx@group}%
1192 \pytx@CheckCounter{\pytx@counter}%
1193 \edef\pytx@linecount{\pytx@counter @line}%
1194 \pytx@CheckCounter{\pytx@linecount}%
1195 \pytx@WriteCodefileInfo
1196 \ifcsname pytx@fvsettings@\pytx@type\endcsname
1197 \else

95

1198 \expandafter\gdef\csname pytx@fvsettings@\pytx@type\endcsname{}%
1199 \fi
1200 \setcounter{pytx@FancyVerbLineTemp}{\value{FancyVerbLine}}%
1201 \let\FVB@VerbatimOut\pytx@FVB@VerbatimOut
1202 \let\FVE@VerbatimOut\pytx@FVE@VerbatimOut
1203 \begin{VerbatimOut}%
1204 }

9.10.3 Special Pygments commands

Code highlighting may be used for some tasks that would never appear in a code
execution context, which is what the PythonTEX part of this package focuses on.
We create some special Pygments macros to handle these highlighting cases.

\pytx@MakePygmentsInputFV
\pytx@MakePygmentsInputPyg

For completeness, we need to be able to read in a file and highlight it. This
is done through some trickery with the current system. We define the type as
PYG〈lexer〉, and the command as verb. We set the context for consistency. We
set the session as EXT:〈file name〉.36 Next we define a fancyvrb settings macro
for the type if it does not already exist. We write info to the code file using
\pytx@WriteCodefileInfoExt, which writes the standard info to the code file
but uses zero for the instance, since external files that are not executed can only
have one instance.

Then we check to see if the file actually exists, and issue a warning if not. This
saves the user from running pythontex*.py to get the same error. We perform
our typical FancyVerbLine trickery. Next we make use of the saved content in the
same way as the pygments environment. Note that we do not create a counter
for the line numbers. This is because under typical usage an external file should
have its lines numbered beginning with 1. We also encourage this by setting
firstnumber=auto before bringing in the content.

The current naming of the macro in which the Pygments content is saved is
probably excessive. In almost every situation, a unique name could be formed with
less information. The current approach has been taken to maintain parallelism,
thus simplifying pythontex.py, and to avoid any rare potential conflicts.

1205 \def\pytx@MakePygmentsInputFV{
1206 \newcommand{\inputpygments}[3][]{%
1207 \edef\pytx@lexer{##2}%
1208 \Depythontex{cmd:inputpygments:omm:c}%
1209 \edef\pytx@type{PYG##2}%
1210 \edef\pytx@cmd{verb}%
1211 \pytx@SetContext
1212 \pytx@SetGroupVerb
1213 \edef\pytx@session{EXT:##3}%
1214 \ifcsname pytx@fvsettings@\pytx@type\endcsname
1215 \else

36There is no possibility of this session being confused with a user-defined session, because
colons are substituted for hyphens in all user-defined sessions, before they are written to the
code file.

96

1216 \expandafter\gdef\csname pytx@fvsettings@\pytx@type\endcsname{}%
1217 \fi
1218 \setcounter{pytx@FancyVerbLineTemp}{\value{FancyVerbLine}}%
1219 \begingroup
1220 \DepyListing %Always must be in a group
1221 \pytx@FVSet
1222 \fvset{firstnumber=auto}%
1223 \IfFileExists{##3}%
1224 {\DepyFile{c:##3:mode=verb}\VerbatimInput[##1]{##3}}%
1225 {\PackageWarning{\pytx@packagename}{Input file <##3> doesn’t exist}}%
1226 \endgroup
1227 \setcounter{FancyVerbLine}{\value{pytx@FancyVerbLineTemp}}%
1228 }%
1229 }
1230 \def\pytx@MakePygmentsInputPyg{
1231 \newcommand{\inputpygments}[3][]{%
1232 \edef\pytx@type{PYG##2}%
1233 \edef\pytx@cmd{verb}%
1234 \pytx@SetContext
1235 \pytx@SetGroupVerb
1236 \edef\pytx@session{EXT:##3}%
1237 \ifcsname pytx@fvsettings@\pytx@type\endcsname
1238 \else
1239 \expandafter\gdef\csname pytx@fvsettings@\pytx@type\endcsname{}%
1240 \fi
1241 \pytx@WriteCodefileInfoExt
1242 \IfFileExists{##3}{}{\PackageWarning{\pytx@packagename}%
1243 {Input file <##3> does not exist}}
1244 \setcounter{pytx@FancyVerbLineTemp}{\value{FancyVerbLine}}%
1245 \begingroup
1246 \pytx@FVSet
1247 \fvset{firstnumber=auto}%
1248 \ifcsname FV@SV@pytx@\pytx@type @\pytx@session @\pytx@group @0\endcsname
1249 \UseVerbatim[##1]{pytx@\pytx@type @\pytx@session @\pytx@group @0}%
1250 \else
1251 \InputIfFileExists{\pytx@outputdir/##3_##2.pygtex}{}%
1252 {\textbf{??~\pytx@packagename~??}%
1253 \PackageWarning{\pytx@packagename}{Non-existent Pygments content}}%
1254 \fi
1255 \endgroup
1256 \setcounter{FancyVerbLine}{\value{pytx@FancyVerbLineTemp}}%
1257 }%
1258 }

9.10.4 Creating the Pygments commands and environment

We are almost ready to actually create the Pygments commands and environments.
First, though, we create some macros that allow the user to set fancyvrb settings,
Pygments options, and formatting of Pygments content.

97

\setpygmentsfv This macro allows fancyvrb settings to be specified for a Pygments lexer. It
takes the lexer name as the optional argument and the settings as the mandatory
argument. If no optional argument (lexer) is supplied, then it sets the document-
wide fancyvrb settings, and is in that case equivalent to \setpythontexfv.

1259 \newcommand{\setpygmentsfv}[2][]{%
1260 \Depythontex{cmd:setpygmentsfv:om:n}%
1261 \ifstrempty{#1}%
1262 {\gdef\pytx@fvsettings{#2}}%
1263 {\expandafter\gdef\csname pytx@fvsettings@PYG#1\endcsname{#2}}%
1264 }%

\setpygmentspygopt This macro allows the Pygments option to be set for a lexer. It takes the lexer
name as the first argument and the options as the second argument. If this macro
is used multiple times for a lexer, it will write the settings to the code file multiple
times. But pythontex*.py will simply process all settings, and each subsequent
set of settings will overwrite any prior settings, so this is not a problem.

1265 \def\setpygmentspygopt#1#2{%
1266 \Depythontex{cmd:setpygmentspygopt:mm:n}%
1267 \AtEndDocument{\immediate\write\pytx@codefile{%
1268 \pytx@delimsettings pygfamily=PYG#1,#1,%
1269 \string{#2\string}\pytx@delimchar}%
1270 }%
1271 }
1272 \@onlypreamble\setpygmentspygopt

\setpygmentsformatter This macro sets the formatter (Pygments or fancyvrb) that is used by the Pyg-
ments commands and environment. There are three options: auto, which depends
on the package pygments option; and pygments and fancyvrb, which override the
package option. By default, auto is used. Since the package Pygments option
is true by default, this means that Pygments content will automatically be high-
lighted by Pygments, and that the behavior of Pygments content will follow the
package option.

The parallel PythonTEX command allows for setting the formatting for indi-
vidual families. The rationale is that the user might use a PythonTEX family for
executing and typesetting code, but not wish to use Pygments to highlight the
code. The Pygments command does not allow for setting the formatter for indi-
vidual lexers, which would be the closest parallel to that behavior. The primary
reason that the user might use the Pygments commands and environments is for
highlighting purposes. Otherwise, there is little reason not to use fancyvrb or an
equivalent directly.37

1273 \def\setpygmentsformatter#1{%
1274 \Depythontex{cmd:setpygmentsformatter:m:n}%

37The user might want to use Pygments commands for the fancyvrb style and line num-
bering continuity they provide. In that case, a custom Pygments lexer, with formatter set to
fancyvrb should be considered. The verbatim part of a PythonTEX family could also be used.
Alternatively, the Pygments TextLexer (aka text) may be used; it is a null lexer, so nothing is
highlighted.

98

1275 \ifbool{pytx@opt@depythontex}{}{\xdef\pytx@macroformatter@PYG{#1}}}
1276 \@onlypreamble\setpygmentsformatter
1277 %\setpygmentsformatter{auto} Uncomment once fix ordering of Depythontex
1278 \xdef\pytx@macroformatter@PYG{auto}

\makepygmentsfv This macro creates the Pygments commands and environment using fancyvrb, as
a fallback when Pygments is unavailable or when the user desires maximum speed.

1279 \def\makepygmentsfv{%
1280 \pytx@MakePygmentsInlineFV
1281 \pytx@MakePygmentsEnvFV
1282 \pytx@MakePygmentsInputFV
1283 }%
1284 \@onlypreamble\makepygmentsfv

\makepygmentspyg This macro creates the Pygments commands and environment using Pygments.
We must set the bool pytx@usedpygments true so that pythontex.py knows that
Pygments content is present and must be highlighted.

1285 \def\makepygmentspyg{%
1286 \ifbool{pytx@opt@pyginline}%
1287 {\pytx@MakePygmentsInlinePyg}%
1288 {\pytx@MakePygmentsInlineFV}%
1289 \pytx@MakePygmentsEnvPyg
1290 \pytx@MakePygmentsInputPyg
1291 \booltrue{pytx@usedpygments}
1292 }%
1293 \@onlypreamble\makepygmentspyg

\makepygments This macro uses the two preceding macros to conditionally define the Pygments
commands and environments, based on the package Pygments settings as well as
the \setpygmentsformatter command that may be used to override the package
settings.

1294 \def\makepygments{%
1295 \AtBeginDocument{%
1296 \ifdefstring{\pytx@macroformatter@PYG}{auto}%
1297 {\ifbool{pytx@opt@pygments}%
1298 {\makepygmentspyg}{\makepygmentsfv}}{}
1299 \ifdefstring{\pytx@macroformatter@PYG}{pygments}%
1300 {\makepygmentspyg}{}
1301 \ifdefstring{\pytx@macroformatter@PYG}{fancyvrb}%
1302 {\makepygmentsfv}{}
1303 }%
1304 }%
1305 \@onlypreamble\makepygments

We conclude by actually creating the Pygments commands and environments.
1306 \makepygments

99

9.11 Final cleanup
At the end of the document, we need to close files.

1307 \AfterEndDocument{%
1308 \immediate\closeout\pytx@codefile
1309 \ifbool{pytx@opt@depythontex}{\immediate\closeout\pytx@depyfile}{}%
1310 }

Index
Numbers written in italic refer to the page where the corresponding entry is de-
scribed; numbers underlined refer to the code line of the definition; numbers in
roman refer to the code lines where the entry is used.

Symbols
\= 155
\@bsphack 305, 843
\@empty . . . 132, 479,

490, 575, 582,
594, 605, 617,
630, 631, 643,
654, 668, 686,
688, 850, 857,
1089, 1090, 1106

\@esphack 317, 849
\@gobble 129–131, 445,

459, 465, 487–489
\@ifnextchar

. 339, 342, 349,
370, 373, 385,
401, 404, 421,
424, 496, 506,
737, 771, 801,
829, 869, 885,
923, 955, 1121, 1161

\@ifpackageloaded 9, 209
\@makeother 151, 494,

501, 520, 540, 697
\@nil 713
\@noligs 847
\@onlypreamble

. . . . 176, 200,
210, 215, 709,
981, 1006, 1016,
1026, 1046,
1058, 1068,
1272, 1276,
1284, 1293, 1305

\@tempa 715
\@tempb 716
\{ . . . 495, 502, 508, 698
\} 503, 509, 699
\^ 150, 505, 542, 700, 711

\␣ 504, 541

A
\active 504,

505, 541, 542, 711
\AfterEndDocument 1307
\AfterEndPreamble . 222
\aftergroup 139
\arabic 276, 467, 529,

561, 563, 585,
740, 774, 804,
808, 809, 872,
926, 930–932,
1167, 1168, 1171

\AtBeginDocument . .
. . . 9, 46, 188,
209, 216, 226,
336, 576, 851,
1033, 1069, 1295

\AtEndDocument
236, 447, 1001, 1267

B
\boolfalse . . 30, 34,

41, 45, 55, 75,
81, 93, 103, 128, 143

\booltrue 26, 29, 33,
37, 40, 44, 54,

71, 74, 77, 80,
89, 92, 99, 102,
127, 999, 1066, 1291

\BUseVerbatim 563
\BVerbatimInput . . .

. 328, 329, 392, 393

C
\csname 148, 162, 164,

289, 294, 316,
361, 377, 416,
428, 587, 596,
597, 610, 622,
623, 636, 648,
662, 728, 762,
914, 979, 1000,
1003, 1010,
1020, 1028–
1030, 1036,
1037, 1042,
1043, 1051,
1093, 1109,
1146, 1198,
1216, 1239, 1263

D
\DeclareFloatingEnvironment

. 1065, 1077
\definepythontexcontext

. 170
\DepyFile 130,

330, 394, 460,
483, 489, 580,
855, 935, 937, 1224

100

\DepyFile@orig
. . . . 460, 464, 483

\DepyListing 132, 466,
484, 490, 730,
764, 916, 1139, 1220

\DepyListing@orig .
. . . . 469, 478, 484

\DepyMacro 131, 454,
482, 488, 588, 932

\DepyMacro@orig . . .
. . . . 454, 458, 482

\Depythontex
. . 32, 129, 178,
206, 212, 286,
338, 348, 352,
365, 369, 384,
400, 410, 420,
438, 481, 487,
598, 624, 649,
663, 676, 692,
729, 763, 862,
896, 915, 1008,
1018, 1048,
1064, 1083,
1138, 1208,
1260, 1266, 1274

\Depythontex@orig .
. . . . 439, 444, 481

\DepythontexOff . . . 480
\DepythontexOn 480
\detokenize

. 135, 525, 721, 841
\do 151, 494,

501, 520, 540, 697
\dospecials 151, 494,

501, 520, 540, 697

E
\endcsname . . . 145,

148, 162, 164,
217, 289, 294,
316, 356, 361,
376, 377, 411,
416, 427, 428,
561, 586, 587,
596, 597, 610,
622, 623, 636,
648, 662, 728,
762, 808, 914,
930, 979, 1000,

1003, 1009,
1010, 1019,
1020, 1028–
1030, 1036,
1037, 1042,
1043, 1049,
1051, 1070,
1091, 1093,
1107, 1109,
1144, 1146,
1167, 1196,
1198, 1214,
1216, 1237,
1239, 1248, 1263

\endlinechar . . 150, 539
\endpytx@SVMCR 156, 166
\everyeof 538
\expandafter . . 135,

162, 167, 289,
293, 297, 300,
310, 315, 361,
416, 473, 543,
596, 597, 610,
622, 623, 636,
648, 662, 726,
728, 760, 762,
792, 807, 860,
912, 914, 929,
979, 1000, 1010,
1020, 1028–
1030, 1051,
1093, 1109,
1146, 1151,
1166, 1198,
1216, 1239, 1263

F
\FancyVerbDefineActive

. 551
\FancyVerbFormatCom 552
\FancyVerbFormatLine

. 554
\FancyVerbGetLine . 755
\fi 111, 145,

169, 218, 219,
362, 381, 417,
432, 441, 568,
592, 716, 722,
814, 940, 1014,
1024, 1056,

1078, 1094,
1110, 1147,
1174, 1199,
1217, 1240, 1254

\frenchspacing 548
\FV@@@CheckEnd 716
\FV@BadEndError . . . 716
\FV@BeginVBox 547
\FV@CheckEnd 714
\FV@CodeLineNo 312
\FV@DefineWhiteSpace

. 550
\FV@EndScanning . . . 717
\FV@EndVBox 555
\FV@EnvironName . . . 715
\FV@FontScanPrep . . 846
\FV@GetLine 720
\FV@Line 719
\FV@ObeyTabsInit . . 553
\FV@PreProcessLine . 720
\FV@ProcessLine . . .

. . . . 309, 311, 845
\FV@Scan 313, 848
\FV@SetupFont 549
\FV@StepLineNo 311
\FV@TheVerbatim . . .

. . . . 310–312, 316
\FV@UseKeyValues . . 307
\FVB@SaveVerbatim . 319
\FVB@VerbatimOut . .

834, 889, 960, 1201
\FVE@SaveVerbatim . 320
\FVE@VerbatimOut . .

835, 890, 961, 1202
\fvset 297, 300,

807, 929, 1151,
1166, 1222, 1247

G
\gdef . 167, 288, 289,

310, 312, 473,
712, 979, 1093,
1109, 1146,
1198, 1216,
1239, 1262, 1263

\global 315
\graphicspath 209

H
\hbox 554

101

I
\IfBeginWith . . 966, 983
\ifbool 47,

134, 142, 143,
223, 249, 258,
271, 335, 434,
443, 446, 457,
463, 477, 578,
582, 594, 853,
857, 986, 1035,
1050, 1071,
1077, 1275,
1286, 1297, 1309

\ifcsname . 145, 217,
356, 376, 411,
427, 561, 586,
808, 930, 1009,
1019, 1049,
1070, 1091,
1107, 1144,
1167, 1196,
1214, 1237, 1248

\ifcsstring
. . 1034, 1039, 1041

\ifdefstring
. 295, 298, 807,
929, 1151, 1166,
1296, 1299, 1301

\IfFileExists
324, 388, 1223, 1242

\IfInteger 106
\ifnum 107
\ifstrempty

. 287, 325, 390,
499, 747, 781,
821, 879, 947, 1261

\IfStrEq 135
\ifstrequal . . 33, 34,

326–329, 389,
391–393, 514,
677, 678, 797,
798, 897, 898,
976, 977, 996, 997

\IfSubStr 190, 194
\ifx . . 162, 441, 715, 716
\immediate

. 232, 237, 239,
241, 243, 245,
247, 250, 252,
254, 256, 259,

261, 263, 265,
267, 269, 274,
280, 436, 440,
448, 450, 455,
461, 467, 573,
721, 841, 1001,
1267, 1308, 1309

\input 325, 326, 389
\InputIfFileExists .

. . . . 224, 228,
579, 811, 854,
934, 936, 1170, 1251

\inputlineno
. . . . 277, 283, 441

\inputpygments
. 1206, 1231

J
\jobname . . 202, 232, 436

L
\left 135, 136, 138
\let . . . 129–132, 136,

137, 151, 219,
293, 315, 319,
320, 438, 442,
444, 445, 458,
459, 464, 465,
470, 478, 479,
481–484, 487–
490, 494, 501,
520, 540, 575,
582, 594, 597,
603–605, 615–
617, 623, 629–
631, 641–643,
654–656, 660,
668–670, 674,
686–688, 697,
717, 728, 755,
762, 834, 835,
845–847, 850,
857, 889, 890,
893, 914, 960,
961, 964, 1088–
1090, 1104–
1106, 1201, 1202

\long 166, 703

M
\makeatletter 227

\makeatother 229
\makepygments 1294, 1306
\makepygmentsfv . . .

. . 1279, 1298, 1302
\makepygmentspyg . .

. . 1285, 1298, 1300
\makepythontexfamily

. 1027,
1055, 1059–1061

\makepythontexfamilyfv
. . 965, 1038, 1040

\makepythontexfamilypyg
. . 982, 1036, 1042

\mathclose 138
\mathopen 138
\MessageBreak 1073, 1074

N
\newbool 25, 36,

51, 70, 76, 88,
98, 124, 221, 1062

\newcounter . . . 145, 302
\newwrite 231, 435
\next 717, 720, 723
\noexpand 538

O
\obeylines

. 736, 770, 800,
828, 868, 884,
922, 954, 1120,
1131, 1160, 1183

\oldFancyVerbLine .
. 470, 473

\openout 232, 436
\originalleft . 136, 138
\originalright 137, 139

P
\PackageError

. . . . 110, 112,
191, 195, 357,
412, 515, 678,
898, 967, 984,
1012, 1022, 1053

\PackageWarning . . .
. . 48, 333, 380,
397, 431, 567,
591, 693, 813,
939, 1072, 1173,
1225, 1242, 1253

102

\pgfkeys 11–
19, 21–24, 27–
30, 38–45, 52–
55, 57–61, 63,
66–69, 72–75,
78–81, 83–87,
90–93, 95, 97,
100–103, 105,
106, 115–119,
121–123, 125–128

\printpythontex . . . 337
\ProcessPgfPackageOptions

. 133
\pygment 1080
\pygments . . 1114, 1154
\pythontexcustomc .

. . . . 675, 695, 705
\pythontexcustomcode

. 894
\pytx@arg 526, 543
\pytx@argdetok 525, 573
\pytx@argretok 536, 554
\pytx@BeginBlockEnvFV

. 737, 746
\pytx@BeginCodeEnv .

. . . . 869, 878, 906
\pytx@BeginCodeEnv@i

. 885, 887
\pytx@BeginConsEnvFV

. 923, 946
\pytx@BeginConsEnvFV@i

. 955, 957
\pytx@BeginEnvPyg .

. 801, 820
\pytx@BeginEnvPyg@i

. 829, 831
\pytx@BeginVerbEnvFV

. 771, 780
\pytx@BEPygmentsFV .

. 1121, 1128
\pytx@BEPygmentsFV@i

. 1132, 1134
\pytx@BEPygmentsPyg

. 1161, 1180
\pytx@BEPygmentsPyg@i

. 1184, 1186
\pytx@CheckCounter .

. . . . 144, 528,
749, 751, 783,
785, 823, 825,

881, 949, 951,
1143, 1192, 1194

\pytx@cmd 276,
282, 600, 612,
626, 638, 651,
665, 683, 732,
766, 795, 864,
903, 918, 1085,
1101, 1140,
1189, 1210, 1233

\pytx@codefile 231,
237, 239, 241,
243, 245, 247,
250, 252, 254,
256, 259, 261,
263, 265, 267,
269, 274, 280,
573, 721, 841,
1001, 1267, 1308

\pytx@context . 170,
277, 283, 684, 904

\pytx@counter
. 276, 527–529,
533, 561, 563,
585, 740, 743,
748–750, 774,
777, 782–784,
804, 808, 809,
817, 822–824,
872, 875, 880,
881, 909, 926,
930–932, 943,
948–950, 1167,
1168, 1171,
1177, 1191–1193

\pytx@delim 234, 274, 280
\pytx@delimchar . . .

. . . . 233, 238,
240, 242, 244,
246, 249, 251,
253, 255, 258,
260, 262, 264,
266, 268, 271,
274–277, 280–
283, 440, 441,
448–451, 1003, 1269

\pytx@delimsettings
. 235, 238, 240,
242, 244, 246,
248, 251, 253,

255, 257, 260,
262, 264, 266,
268, 270, 1002, 1268

\pytx@depyfile 434,
440, 448, 450,
455, 461, 467, 1309

\pytx@DepyListing@write
. 466, 472

\pytx@EnvAutoprint .
. 850, 873

\pytx@FancyVerbGetLine
. 710, 755

\pytx@FancyVerbLineTemp
. 302

\pytx@FetchStderrfile
. . . . 387, 407, 428

\pytx@FetchStdoutfile
. . . . 322, 345, 377

\pytx@FVB@SaveVerbatim
. 302

\pytx@FVB@VerbatimOut
. 834,
842, 889, 960, 1201

\pytx@FVE@SaveVerbatim
. 314, 320

\pytx@FVE@VerbatimOut
. 835,
849, 890, 961, 1202

\pytx@fvextfile 104, 264
\pytx@fvopttmp

. . . . 807, 832,
929, 958, 1129,
1151, 1166, 1181

\pytx@FVSet 292, 546,
560, 756, 788,
806, 928, 1150,
1165, 1221, 1246

\pytx@fvsettings . .
285, 298, 300, 1262

\pytx@fvsettings@@ .
. . . . 293, 295, 297

\pytx@group 177, 275,
281, 527, 529,
585, 685, 740,
748, 774, 782,
804, 822, 872,
880, 905, 926,
948, 1142, 1171,
1191, 1248, 1249

103

\pytx@Inline
. 492, 606, 618,
632, 644, 657,
671, 689, 1095, 1111

\pytx@InlineAutoprint
. 575, 656

\pytx@InlineMacroprint
. 584, 670

\pytx@InlineMargBgroup
. . . . 507, 518, 523

\pytx@InlineMargOther
. 510, 512

\pytx@InlineMargOtherGet
. 512

\pytx@InlineOarg . .
. 496, 498

\pytx@InlinePrint .
. 532,
535, 605, 617,
631, 643, 656,
670, 688, 1090, 1106

\pytx@InlineSave 531,
535, 604, 616,
630, 642, 655,
669, 687, 1089, 1105

\pytx@InlineSaveCode
. 571,
604, 616, 642,
655, 669, 687, 1105

\pytx@InlineShow 530,
535, 603, 615,
629, 641, 654,
668, 686, 1088, 1104

\pytx@InlineShowFV .
535, 603, 629, 1088

\pytx@InlineShowPyg
558, 615, 641, 1104

\pytx@jobname . 202,
208, 224, 228, 451

\pytx@lexer 438, 441,
442, 597, 623,
728, 762, 914,
1082, 1137, 1207

\pytx@linecount . . .
. . . . 741, 750,
751, 753, 775,
784, 785, 787,
805, 815, 824,
825, 927, 941,
950, 951, 1124,

1142, 1143,
1149, 1164,
1175, 1193, 1194

\pytx@macroformatter@PYG
. . . 1275, 1278,
1296, 1299, 1301

\pytx@MakeBlockFV .
. 725, 973

\pytx@MakeBlockPyg .
. 838, 993

\pytx@MakeCodeFV . .
859, 893, 975, 1032

\pytx@MakeCodePyg .
. 893, 995

\pytx@MakeConsFV . .
. 911, 964, 976, 977

\pytx@MakeConsoleFV 911
\pytx@MakeConsPyg .

. . . . 964, 996, 997
\pytx@MakeInlinebFV

. . . . 595, 969, 989
\pytx@MakeInlinebPyg

. 595, 987
\pytx@MakeInlinecFV

. . . 647, 971, 1031
\pytx@MakeInlinecPyg

. 647, 991
\pytx@MakeInlineFV .

. 661, 972
\pytx@MakeInlinePyg

. 661, 992
\pytx@MakeInlinevFV

. . . . 621, 970, 990
\pytx@MakeInlinevPyg

. 621, 988
\pytx@MakePygEnv . .

. . . . 791, 838, 839
\pytx@MakePygmentsEnvFV

. 1114, 1281
\pytx@MakePygmentsEnvPyg

. 1154, 1289
\pytx@MakePygmentsInlineFV

. . 1080, 1280, 1288
\pytx@MakePygmentsInlinePyg

. 1080, 1287
\pytx@MakePygmentsInputFV

. 1205, 1282
\pytx@MakePygmentsInputPyg

. 1205, 1290

\pytx@MakeVerbFV . .
. 759, 974

\pytx@MakeVerbPyg .
. 839, 994

\pytx@mcr 585–588
\pytx@opt@autoprint 25
\pytx@opt@depythontex

. 124
\pytx@opt@fixlr . . . 76
\pytx@opt@hashdependencies

20, 20, 23, 24, 246
\pytx@opt@keeptemps

. 82, 253
\pytx@opt@pyconbanner

. 114, 266
\pytx@opt@pyconfilename

. 120, 268
\pytx@opt@pyfuture .

. 65, 255
\pytx@opt@pyginline 98
\pytx@opt@pygments . 88
\pytx@opt@rerun 10,

10, 13, 16–19, 244
\pytx@opt@stderr . . 51
\pytx@opt@stderrfilename

. 56, 251
\pytx@opt@stdout . . 36
\pytx@opt@upquote . 70
\pytx@outputdir 205,

240, 324–330,
388–394, 451,
579, 580, 811,
854, 855, 934–
937, 1170, 1251

\pytx@packagename 1,
48, 110, 112,
191, 195, 333,
336, 357, 379,
380, 396, 397,
412, 430, 431,
515, 567, 591,
678, 693, 812,
813, 898, 938,
939, 967, 984,
1012, 1022,
1053, 1072,
1074, 1172,
1173, 1225,
1242, 1252, 1253

104

\pytx@packageversion
. 2, 238, 449

\pytx@pyglexer
. . . 94, 94, 95, 260

\pytx@pygopt . . . 96, 262
\pytx@session

. . . . 275, 281,
499, 527, 529,
585, 740, 747,
748, 774, 781,
782, 804, 821,
822, 872, 879,
880, 926, 947,
948, 1141, 1142,
1171, 1190,
1191, 1213,
1236, 1248, 1249

\pytx@SetContext 170,
601, 613, 627,
639, 652, 666,
733, 767, 796,
865, 919, 1086,
1102, 1117,
1157, 1211, 1234

\pytx@SetCustomCode
. 701, 703

\pytx@SetGroup 177,
602, 614, 653,
667, 734, 797, 866

\pytx@SetGroupCons .
. 177, 920

\pytx@SetGroupVerb .
. 177, 628, 640,
768, 798, 1087,
1103, 1118,
1158, 1212, 1235

\pytx@Stderr . . 401, 403
\pytx@Stderr@i 404, 406
\pytx@stdfile

. . . . 321, 345,
361, 407, 416,
529, 579, 580,
740, 774, 804,
811, 854, 855,
872, 926, 934–937

\pytx@Stdout
. . . . 339, 341, 349

\pytx@Stdout@i 342, 344
\pytx@stdout@warntext

. . . . 322, 332, 336

\pytx@SVMCR 147
\pytx@SVMCR@i

. . . . 152, 165, 166
\pytx@tmp . 148, 164, 167
\pytx@type . . . 274,

280, 294, 527,
529, 585, 599,
611, 625, 637,
650, 664, 682,
731, 740, 748,
765, 774, 782,
794, 804, 822,
863, 872, 880,
902, 917, 926,
948, 1084, 1091,
1093, 1100,
1107, 1109,
1136, 1142,
1144, 1146,
1171, 1188,
1191, 1196,
1198, 1209,
1214, 1216,
1232, 1237,
1239, 1248, 1249

\pytx@usedpygments . 221
\pytx@UseStderr 421, 423
\pytx@UseStderr@i .

. 424, 426
\pytx@UseStdout . . .

. . . . 370, 372, 385
\pytx@UseStdout@i .

. 373, 375
\pytx@workingdir . .

. 211, 213, 219, 242
\pytx@WriteCodefileInfo

. 273, 572, 754,
826, 882, 952, 1195

\pytx@WriteCodefileInfoExt
. 273, 1241

\pytx@WriteDetok . .
. 840, 845

R
\relax . 14, 107, 162,

438, 441, 442,
539, 700, 846, 847

\renewcommand . 138, 139
\RequirePackage 3–9, 142

\restartpythontexsession
. . . . 177, 200, 201

\right 137, 139

S
\saveprintpythontex 351
\savestderrpythontex

. 409
\savestdoutpythontex

. 351
\savestdoutpythontex@i

. . . . 353, 355, 366
\SaveVerbatim@Name .

. 308, 316
\scantokens 543
\setcounter

. 304, 318, 562,
564, 741, 742,
752, 753, 775,
776, 786, 787,
805, 815, 816,
833, 874, 888,
908, 927, 941,
942, 959, 1124,
1125, 1148,
1149, 1164,
1175, 1176,
1200, 1218,
1227, 1244, 1256

\setpygmentsformatter
. 1273

\setpygmentsfv . . . 1259
\setpygmentspygopt 1265
\setpythontexautoprint

. 31
\setpythontexcustomcode

. 691
\setpythontexformatter

. 1047
\setpythontexfv . . .

. . . . 285, 978, 998
\setpythontexlistingenv

. 1062, 1075
\setpythontexoutputdir

. 205
\setpythontexpyglexer

. 1007
\setpythontexpygopt

. 1017

105

\setpythontexworkingdir
. 211

\space . . . 694, 695, 1074
\stderrpythontex . . 399
\stdoutpythontex . . 337
\stepcounter . . 533,

743, 777, 817,
875, 909, 943, 1177

\string . . . 192, 193,
196, 197, 233–
235, 262, 679,
694, 695, 1003,
1055, 1075, 1269

\StrSubstitute 202–
204, 499, 747,
781, 821, 879, 947

T
\textbf 336, 379, 396,

430, 566, 590,
812, 938, 1172, 1252

\the 277, 283, 441
\theFancyVerbLine .

. 470, 471, 473, 474

U
\useprintpythontex . 368
\usestderrpythontex 419
\usestdoutpythontex 368
\UseVerbatim

809, 931, 1168, 1249

V
\value 304, 318, 562,

564, 741, 742,
752, 753, 775,
776, 786, 787,
805, 815, 816,
833, 874, 888,
908, 927, 941,
942, 959, 1124,
1125, 1148,
1149, 1164,
1175, 1176,
1200, 1218,
1227, 1244, 1256

\VerbatimEnvironment
. 727,
761, 793, 861,
895, 913, 1116, 1156

\VerbatimInput
327, 390, 391, 1224

W
\write 237,

239, 241, 243,
245, 247, 250,
252, 254, 256,
259, 261, 263,
265, 267, 269,
274, 280, 440,
448, 450, 455,
461, 467, 573,
721, 841, 1001, 1267

X
\xdef 529, 599,

611, 625, 637,
650, 664, 682,
731, 740, 765,
774, 794, 804,
863, 872, 902,
917, 926, 1000,
1010, 1020,
1028–1030,
1051, 1275, 1278

106

	Introduction
	Installing and running
	Installing PythonTeX
	Compiling documents using PythonTeX

	Usage
	Package options
	Code commands and environments
	Inline commands
	Environments
	Default families
	Custom code
	PythonTeX utilities class
	Formatting of typeset code
	Access to printed content (stdout) and error messages (stderr)

	Pygments commands and environments
	General code typesetting
	Listings float
	Background colors
	Referencing code by line number
	Beamer compatibility

	Advanced PythonTeX usage

	depythontex
	Preparing a document that will be converted
	Removing PythonTeX dependence
	Technical details

	LaTeX programming with PythonTeX
	Macro programming with PythonTeX
	Package writing with PythonTeX

	Questions and answers
	Troubleshooting
	The future of PythonTeX
	To Do
	Modifications to make
	Modifications to consider

	Version History
	Implementation
	Package opening
	Required packages
	Package options
	Runall
	Rerun
	Hashdependencies
	Autoprint
	Print/stdout
	stderr
	stderrfilename
	Python's __future__ module
	Upquote
	Fix math spacing
	Keep temporary files
	Pygments
	Python console environment
	depythontex
	Process options

	Utility macros and input/output setup
	Automatic counter creation
	Saving verbatim content in macros
	Code context
	Code groups
	File input and output
	Interface to fancyvrb
	Access to printed content (stdout)
	Access to stderr
	depythontex

	Inline commands
	Inline core macros
	Inline command constructors

	Environments
	Block and verbatim environment constructors
	Code environment constructor
	Console environment constructor

	Constructors for macro and environment families
	Default commands and environment families
	Listings environment
	Pygments for general code typesetting
	Inline Pygments command
	Pygments environment
	Special Pygments commands
	Creating the Pygments commands and environment

	Final cleanup

