The pythontex package

Geoffrey M. Poore
gpoore@gmail.com
github.com/gpoore/pythontex

Version 0.12beta from 2013/06/24

Abstract

PythonTEX provides access to Python from within BTEX documents. It
allows Python code entered within a BTEX document to be executed, and
the results to be included within the original document. Python code may
be adjacent to the figure or calculation it produces. The package also makes
possible macro definitions that mix Python and KTEX code. In addition,
PythonTEX provides syntax highlighting for many programming languages
via the Pygments syntax highlighter.

PythonTEX is fast and user-friendly. Python code is only executed when
it has been modified, or when user-specified criteria are met. When code
is executed, user-defined sessions automatically run in parallel. If Python
code produces errors, the error message line numbers are synchronized with
the ITEX document line numbering, simplifying debugging. Dependencies
may be specified so that code is automatically re-executed whenever they
are modified.

Because documents that use PythonTEX mix ETEX and Python code,
they are less suitable than plain ITEX documents for journal submis-
sion, sharing, and conversion to other formats. PythonTEX includes
a depythontex utility that creates a copy of a document in which all
PythonTEX content is replaced by its output.

While Python is the focus of PythonTgX, adding basic support for an
additional language is usually as simple as creating a new class instance and
a few templates, usually totaling less than 100 lines of code. The following
languages are already have built-in support: Ruby.

Warning

PythonTEX makes possible some pretty amazing things. But that power brings
with it a certain risk and responsibility. Compiling a document that uses
PythonTEX involves executing Python code, and potentially other programs, on
your computer. You should only compile PythonTEX documents from sources you
trust. PythonTREX comes with NO WARRANTY.! The copyright holder and any
additional authors will not be liable for any damages.

LAll IATREX code is licensed under the IATEX Project Public License (LPPL) and all Python
code is licensed under the BSD 3-Clause License.

gpoore@gmail.com
https://github.com/gpoore/pythontex
http://www.latex-project.org/lppl.txt
http://www.opensource.org/licenses/BSD-3-Clause

Contents

1 Introduction 5
2 Installing and running 8
2.1 Installing PythonTEX 8
2.2 Compiling documents using PythonTgX 11

3 Usage 13
3.1 Packageoptions L 13
3.2 Commands and environments 18
3.2.1 Inlinecommands 19

3.2.2 Environments o 20

3.2.3 Console command and environment families 21

3.2.4 Default families 0o 21

325 Customcode 23

3.2.6 PythonTgX utilities class 24

3.2.7 Formatting of typeset code 27

3.2.8 Access to printed content (stdout) and error messages (stderr) 28

3.3 Pygments commands and environments 30
3.4 General code typesettingo oL 30
3.4.1 Listingsfloat oL, 30

3.4.2 Background colors oL 31

3.4.3 Referencing code by line number 31

3.4.4 Beamer compatibility o000 32

3.5 Advanced PythonTEX usage 32

4 depythontex 34
4.1 Preparing a document that will be converted 34
4.2 Removing PythonTEX dependence 36
4.3 Technical details oL 38

5 KETgX programming with PythonTEX 40
5.1 Macro programming with PythonTpX 40
5.2 Package writing with PythonTEX 41

6 Support for additional languages 41
6.1 Ruby. 42
6.2 Adding support for a new language L. 42
6.2.1 Template 43

6.2.2 Wrapper 44

6.2.3 The CodeEngine class 45

6.2.4 Creating the BTEX interface 47

7 Troubleshooting 47

8 The future of PythonTEX

8.1 To Do
8.1.1
8.1.2

Modifications tomake
Modifications to consider

Version History

9 Implementation

9.1 Packageopening o oo
9.2 Required packages
9.3 Packageoptions L o
9.3.1 Enabling command and environment families
9.3.2 Beta
933 Runall
9.3.4 Rerun
9.3.5 Hashdependencies
9.3.6 Autoprint
9.3.7 Debug e
9.3.8 makestderr
9.3.9 stderrfilename L
9.3.10 Python’s __future__module
9.3.11 Upquote o e
9.3.12 Fix math spacing
9.3.13 Keep temporary files
9.3.14 Pygments
9.3.15 Python console environment
9.3.16 depythontex
9.3.17 Processoptions oo
9.4 Utility macros and input/output setup
9.4.1 Automatic counter creation
9.4.2 Saving verbatim content in macros
9.43 Codecontext
9.4.4 Code groupso
9.4.5 File input and output Lo
9.4.6 Interface to fancyvrb
9.4.7 Access to printed content (stdout)
9.4.8 Accesstostderr.
9.4.9 depythontex
9.5 Inline commands
9.5.1 Inline core macros
9.5.2 Inline command constructors
9.6 Environments
9.6.1 Block and verbatim environment constructors
9.6.2 Code environment constructor
9.6.3 Console environment constructor
9.7 Constructors for command and environment families

47
48
48
48

49

9.8
9.9
9.10
9.11

9.12
9.13

Default commands and environment families. 106

Listings environment L0000 107
Pygments for general code typesetting 108
Pygments utilities macros Lo 108
9.11.1 Inline Pygments command 108
9.11.2 Pygments environment L. 109
9.11.3 Special Pygments commands 112
9.11.4 Creating the Pygments commands and environment 113
Final cleanupo 115
Compatibility with beta releases 115

1 Introduction

This introduction provides background and objectives for the PythonTEX package.
To jump right in and get started, you may wish to consult the pythontex_quickstart
and pythontex_gallery documents, as well as Sections 2 and 3, below. If you
are primarily interested in using PythonTEX with a language other than Python,
see Section 6.

BTEX can do a lot,? but the programming required can sometimes be painful.?
In spite of the many packages available for I4TEX, the libraries and packages of
a general-purpose programming language are lacking. Furthermore, it can be
convenient to include non-I4TEX code in a document to make it more reproducible.
For these reasons, there have been multiple systems that allow other languages to
be used within IXTEX documents.*

e PerlTEX allows the bodies of IXTEX macros to be written in Perl.

e SageTEX allows code for the Sage mathematics software to be executed from
within a BTEX document.

e Martin R. Ehmsen’s python.sty provides a very basic method of executing
Python code from within a BTEX document.

e SympyTEX allows more sophisticated Python execution, and is largely based
on a subset of SageTEX.

o LuaTgX extends the pdfTEX engine to provide Lua as an embedded scripting
language, and as a result yields tight, low-level Lua integration.

PythonTEX attempts to fill a perceived gap in the current integrations of ITEX
with an additional language. It has a number of objectives, only some of which
have been met by previous packages.

Execution speed

In the approaches mentioned above, all the non-TEX code is executed
at every compilation of the ITEX document (PerlTEX, LuaTgX, and
python.sty), or all the non-IATEX code is executed every time it is modified
(SageTEX and SympyTEX). However, many tasks such as plotting and data
analysis take a significant time to execute. We need a way to fine-tune code
execution, so that independent blocks of slow code may be separated into
their own sessions and are only executed when modified. If we are going
to split code into multiple sessions, we might as well run these sessions in
parallel, further increasing speed. A byproduct of this approach is that it
now becomes much more feasible to include slower code, since we can still
have fast compilations whenever the slow code isn’t modified.

2TEX is a Turing-complete language.

3As I learned in creating this package.

41 am not including the various web and weave dialects in my discussion, since they typically
involve a web or weave document from which the .tex source is generated, and thus weaker
integration with IATEX. Two sophisticated examples of this approach are Sweave and knitr, both
of which combine IATEX with the R language for tasks such as dynamic report generation.

http://www.ctan.org/tex-archive/macros/latex/contrib/perltex/
http://www.ctan.org/tex-archive/macros/latex/contrib/sagetex/
http://www.ctan.org/pkg/python
http://elec.otago.ac.nz/w/index.php/SympyTeX
http://www.luatex.org/
http://www.stat.uni-muenchen.de/~leisch/Sweave/
http://yihui.name/knitr/

Compiling without executing
Even with all of these features to boost execution speed, there will be times
when we have to run slow code. Thus, we need the execution of non-ITEX
code to be separated from compiling the BTEX document. We need to be
able to edit and compile a document containing unexecuted code. Unexe-
cuted code should be invisible or be replaced by placeholders. SageTEX and
SympyTEX have implemented such a separation of compiling and executing.
In contrast, LuaTEX and PerlTEX execute all the code at each compilation—
but that is appropriate given their goal of simplifying macro programming.

Error messages

Whenever code is saved from a BTEX document to an external file and then
executed, the line numbers for any error messages will not correspond to the
line numbering of the original I’ TEX document. At one extreme, python.sty
doesn’t attempt to deal with this issue, while at the other extreme, SageTEX
uses an ingenous system of Try/Except statements on every chunk of code.
We need a system that translates all error messages so that they correspond
to the line numbering of the original I¥TEX document, with minimal overhead
when there are no errors.

Syntax highlighting

Once we begin using non-KTEX code, sooner or later we will want to typeset
some of it, which means we need syntax highlighting. A number of syntax
highlighting packages currently exist for IXIEX; perhaps the most popular
are listings and minted. listings uses pure KTEX. It has not been up-
dated since 2007, which makes it a less ideal solution in some circumstances.
minted uses the Python-based syntax highlighter Pygments to perform high-
lighting. Pygments can provide superior syntax highlighting, but minted can
be very slow because all code must be highlighted at each compilation and
each instance of highlighting involves launching an external Python process.
We need high-speed, user-friendly syntax highlighting via Pygments.®

Printing

It would be nice for the print statement/function,® or its equivalent, to
automatically return its output within the ETEX document. For example,
using python. sty it is possible to generate some text while in Python, open a
file, save the text to it, close the file, and then \input the file after returning
to BTEX. But it is much simpler to generate the text and print it, since
the printed content is automatically included in the BTEX document. This
was one of the things that python.sty really got right.

Pure code
TEX has a number of special characters (# $ % & ~ _ ~ \ { }), which

5The author recently started maintaining the minted package. In the near future, minted will
inherit PythonTEX’s speed enhancements, and the two packages will become more compatible.

6In Python, print was a statement until Python 3, when it became a function. The function
form is available via import from __future__ in Python 2.6 and later.

complicates the entry of non-KTEX code since these same characters are
common in many languages. SageTEX and SympyTEX delimit all inline code
with curly braces ({}), but this approach fails in the (somewhat unlikely)
event that code needs to contain an unmatched brace. More seriously, they
do not allow the percent symbol % (modular arithmetic and string formatting
in Sage and Python) to be used within inline code. Rather, a \percent
macro must be used instead. This means that code must (sometimes) be
entered as a hybrid between IMTEX and the non-KTEX language. LuaTgEX is
somewhat similar: “The main thing about Lua code in a TeX document is
this: the code is expanded by TeX before Lua gets to it. This means that
all the Lua code, even the comments, must be valid TeX!”” In the case of
LuaTgX, though, there is the luacode package that allows for pure Lua.

This language hybridization is not terribly difficult to work around in the
SageTEX and SympyTgX cases, and is actually a LuaTgX feature in many
contexts. But if we are going to create a system for general-purpose access
to a non-KTEX language, we need all valid code to work correctly in all
contexts, with no hybridization of any sort required. We should be able
to copy and paste valid code into a IXTEX document, without having to
worry about hybridizing it. Among other things, this means that inline code
delimiters other than I#TEX’s default curly braces {} must be available.

Hybrid code
Although we need a system that allows input of pure non-IATEX code, it
would also be convenient to allow hybrid code, or code in which ETEX
macros may be present and are expanded before the code is executed. This
allows I TEX data to be easily passed to the non-XTEX language, facilitat-
ing a tighter integration of the two languages and the use of the non-IATEX
language in macro definitions.

Math and science libraries

The author decided to create PythonTEX after writing a physics disserta-
tion using BTEX and realizing how frustrating it can be to switch back and
forth between a TEX editor and plotting software when fine-tuning figures.
We need access to a non-IATEX language like Python, MATLAB, or Mathe-
matica that provides strong support for data analysis and visualization. To
maintain broad appeal, this language should primarily involve open-source
tools, should have strong cross-platform support, and should also be suitable
for general-purpose programming.

Language-independent implementation
It would be nice to have a system for executing non-I4TEX code that depends
very little on the language of the code. We should not expect to escape
all language dependence. But if the system is designed to be as general
as possible, then it may be expanded in the future to support additional
languages.

"http://wiki.contextgarden.net/Programming_in_LuaTeX

http://www.ctan.org/pkg/luacode
http://wiki.contextgarden.net/Programming_in_LuaTeX

Python was chosen as the language to fulfill these objectives for several reasons.
e It is open-source and has good cross-platform support.

e It has a strong set of scientific, numeric, and visualization packages, including
NumPy, SciPy, matplotlib, and SymPy. Much of the initial motivation for
PythonTEX was the ability to create publication-quality plots and perform
complex mathematical calculations without having to leave the TEX editor.

e We need a language that is suitable for scripting. Lua is already available
via LuaTEX, and in any case lacks the math and science tools.® Perl is al-
ready available via PerlTEX, although PerlTEX’s emphasis on Perl for macro
creation makes it rather unsuitable for scientific work using the Perl Data
Language (PDL) or for more general programming. Python is one logical
choice for scripting.

Now at this point there will almost certainly be some reader, sooner or later,
who wants to object, “But what about language X!” Well, yes, in some respects
the choice to use Python did come down to personal preference. But you should
give Python a try, if you haven’t already. You may also wish to consider the many
interfaces that are available between Python and other languages. If you still
aren’t satisfied, keep in mind PythonTEX’s “language-independent” implementa-
tion! In many cases, adding support for additional languages is relatively simple
(see Section 6).

2 Installing and running

2.1 Installing PythonTgX

PythonTEX requires a TEX installation. It has been tested with TEX Live and
MiKTgX, but should work with other distributions. The following IXTEX packages,
with their dependencies, are also required: fancyvrb, etex, etoolbox, xstring,
pgfopts, newfloat, and color or xcolor. If you are creating and including
graphics, you will also need graphicx. The mdframed package is recommended
for enclosing typeset code in boxes with fancy borders and/or background colors;
tcolorbox and framed are alternatives.

PythonTEX also requires a Python installation. Python 2.7 is recommended
for the greatest compatibility with scientific tools, although many scientific pack-
ages are now compatible with Python 3. PythonTEX is compatible with Python
2.7 and 3.24. The Python package Pygments must be installed for syntax
highlighting to function. PythonTEX has been tested with Pygments 1.4 and
later, but the latest version is recommended. For scientific work, or to compile
pythontex_gallery.tex, the following are also recommended: NumPy, SciPy,
matplotlib, and SymPy.

80ne could use Lunatic Python, and some numeric packages for Lua are in development.

http://numpy.scipy.org/
http://www.scipy.org/
http://matplotlib.sourceforge.net/
http://sympy.org
http://pdl.perl.org/
http://pdl.perl.org/
http://www.tug.org/texlive/
http://miktex.org/
http://www.ctan.org/pkg/mdframed
http://www.ctan.org/pkg/tcolorbox
http://www.ctan.org/pkg/framed
http://www.python.org/
http://pygments.org/
http://numpy.scipy.org/
http://www.scipy.org/
http://matplotlib.sourceforge.net/
http://sympy.org
http://labix.org/lunatic-python
http://numlua.luaforge.net/

PythonTEX also provides support for other languages such as Ruby, so you
will need to install any additional languags you plan to use. Typically, the most
recent major version of these languages is supported.

PythonTEX consists of the following files:

o Installer file pythontex. ins

e Documented IXTEX source file pythontex.dtx, from which pythontex.pdf
and pythontex.sty are generated

e Main script pythontex. py, which imports from pythontex2.py or pythontex3. py,

based on the Python version
e Language definitions pythontex_engines.py
e Utilities class pythontex_utils.py

e depythontex.py, which imports from depythontex2.py or depythontex3.py,
based on the Python version; used to remove PythonTEX dependence

e README (in rst style)

e pythontex_gallery.tex and pythontex_gallery.pdf

e pythontex_quickstart.tex and pythontex_quickstart.pdf

e Optional installation script pythontex_install_texlive.py for TEX Live

e Optional batch file pythontex.bat for use in launching pythontex. py under
Windows

e Optional conversion script pythontex_2to3.py for converting PythonTEX
code written for Python 2 into a form compatible with Python 3

The style file pythontex. sty may be generated by running IATEX on pythontex. ins.
The documentation you are reading may be generated by running KTEX on
pythontex.dtx. Some code is provided in two forms, one for Python 2 and one
for Python 3 (names ending in 2 and 3). Whenever this is the case, a version-
independent wrapper is supplied that automatically runs the correct code based
on the Python version. For example, there are two main scripts, pythontex2.py
and pythontex3.py, but you should actually run pythontex.py, which imports
the correct code based on the Python version.”

If you want the absolute latest version of PythonTEX, you should install it man-
ually from github.com/gpoore/pythontex. A Python installation script is provided
for use with TEX Live. It has been tested with Windows, Linux, and OS X, but
may need manual input or slight modifications depending on your system. The

9Unfortunately, it is not possible to provide full Unicode support for both Python 2 and 3
using a single script. Currently, all code is written for Python 2, and then the Python 3 version
is automatically generated via the pythontex_2to3.py script. This script comments out code
that is only for Python 2, and un-comments code that is only for Python 3.

https://github.com/gpoore/pythontex

installation script performs the steps described below. Note that for a typical
TEX setup under Linux, you may need to run the script with elevated
privileges, and may need to run it with the user’s PATH. This can be nec-
essary when you are using a Linux distribution that includes an outdated version
of TEX Live, and have installed a new version manually. If you are installing
PythonTEX on a machine with multiple version of TEX, make sure you
install PythonTEX for the correct version. For example, under Ubuntu
Linux, you will probably need the following command if you have installed the
latest version of TEX Live manually:

sudo env PATH=$PATH python pythontex_install_texlive.py

The installer creates the following files. It will offer to create the paths if they
do not exist. If you are installing in TEXMFLOCAL, the paths will have an
additional local/ at the end.

e (TgX tree root)/doc/latex/pythontex/

— pythontex.pdf

— README

— pythontex_quickstart.tex
— pythontex_quickstart.pdf
— pythontex_gallery.tex

— pythontex_gallery.pdf

e (TEX tree root)/scripts/pythontex/

— pythontex.py, pythontex2.py and pythontex3.py

— pythontex_engines.py

— pythontex_utils.py

— depythontex.py, depythontex2.py and depythontex3.py

e (TEX tree root)/source/latex/pythontex/

— pythontex.dtx
— pythontex.ins

e (TpX tree root)/tex/latex/pythontex/
— pythontex.sty

After the files are installed, the system must be made aware of their exis-
tence. The installer runs mktexlsr to do this. In order for pythontex.py and
depythontex.py to be executable, a symlink (TEX Live under Linux), launch-
ing wrapper (TEX Live under Windows), or batch file (general Windows) should
be created in the bin/(system) directory. The installer attempts to create a

10

symlink or launching wrapper automatically. For TgpX Live under Windows, it
copies bin/win32/runscript.exe to bin/win32/pythontex.exe to create the

wrapper. 1°

2.2 Compiling documents using PythonTEX

Compiling a document with PythonTEX involves three steps: running a KTEX-
compatible TEX engine (binary executable), running pythontex.py (preferably
via a symlink, wrapper, or batch file, as described above), and finally running
the TEX engine again. The first TEX run saves code into an external file where
PythonTEX can access it. The second TEX run pulls the PythonTEX output back
into the document.

If you plan to use code that contains non-ASCII characters such as Unicode,
you should make sure that your document is properly configured:

e Under pdfLaTeX, your documents need \usepackage[T1]{fontenc} and
\usepackage [utf8] {inputenc}, or a similar configuration.

e Under LuaLaTeX, your documents need \usepackage{fontspec}, or a sim-
ilar configuration.

e Under XeLaTeX, your documents need \usepackage{fontspec} as well as
\defaultfontfeatures{Ligatures=TeX}, or a similar configuration.

For an example of a PythonTEX document that will correctly compile under all
three engines, see the pythontex_gallery.tex source.

If you use XeLaTeX, and your non-I#TEX code contains tabs, you must invoke
XeLaTeX with the -8bit option so that tabs will be written to file as actual tab
characters rather than as the character sequence ~~I.'!

pythontex.py requires a single command-line argument: the name of the .tex
file to process. The filename can be passed with or without an extension; the
script really only needs the \jobname, so any extension is stripped off.'? The
filename may include the path to the file; you do not have to be in the same
directory as the file to run PythonTEX. If you are configuring your editor to run
PythonTEX automatically via a shortcut, you may want to wrap the filename in
double quotes " to allow for space characters.!> For example, under Windows
with TEX Live and Python 2.7 we would create the wrapper pythontex.exe.
Then we could run PythonTgEX on a file (file name).tex using the command
pythontex.exe "(file name)".

pythontex.py accepts the following optional command-line arguments. Some
of these options duplicate package-level options, so that settings may be config-
ured either within the document or at the command line. In the event that the

10See the output of runscript -h under Windows for additional details.
11Seehttp://tex.stackexchange.com/questions/58732/how-to-output-a-tabulation-into-a-file
for more on tabs with XeTeX.
12Thus, PythonTEX works happily with .tex, .ltx, .dtx, and any other extension.
13Using spaces in the names of .tex files is apparently frowned upon. But if you configure
things to handle spaces whenever it doesn’t take much extra work, then that’s one less thing
that can go wrong.

11

http://tex.stackexchange.com/questions/58732/how-to-output-a-tabulation-into-a-file

command-line and package options conflict, the package options always override
the command-line options. For variations on these options that are acceptable,
run pythontex.py -h.

e —-encoding=(encoding) This sets the file encoding. Any encoding supported
by Python’s codecs module may be used. The encoding should match that
of the IMTEX document. If an encoding is not specified, PythonTEX uses
UTF-8. If support for characters beyond ASCII is required, then additional
ITEX packages are required; see the discussion of TEX engines above.

e --error-exit-code={true,false} By default, pythontex.py returns an
exit code of 1 if there were any errors, and an exit code of 0 otherwise.
This may be useful when PythonTEX is used in a scripting or command-line
context, since the presence of errors may be easily detected. It is also useful
with some TEX editors. For example, TeXworks automatically hides the
output of external programs unless there are errors.

In some contexts, returning a nonzero exit code can be redundant. For exam-
ple, with the WinShell editor under Windows with TeX Live, the complete
output of PythonTEX is always available in the “Output” view, so it is clear
if errors have occurred. Having a nonzero exit code causes runscript.exe
to return an additional, redundant error message in the “Output” view. In
such situations, it may be desirable to disable the nonzero exit code.

e --runall=[{true,false}] This causes all code to be executed, regardless
of modification or rerun settings. It is useful when code has not been modi-
fied, but a dependency such as a library or external data has changed. Note
that the PythonTEX utilities class also provides a mechanism for automat-
ically re-executing code that depends on external files when those external
files are modified.

There is an equivalent runall package option. The command-line option
--rerun=always is essentially equivalent.

e --rerun={never,modified,errors,warnings,always} This sets the thresh-
old for re-executing code. By default, PythonTEX will rerun code that has
been modified or that produced errors on the last run. Sometimes, we may
wish to have a more lenient setting (only rerun if modified) or a more strin-
gent setting (rerun even for warnings, or just rerun everything). never never
executes code; a warning is issued if there is modified code. modified only
executes code that has been modified (or that has modified dependencies).
errors executes all modified code as well as all code that produced errors
on the last run; this is the default. warnings executes all modified code, as
well as all code that produced errors or warnings. always executes all code
always and is essentially equivalent to --runall.

There is an equivalent rerun package option.

e --hashdependencies=[{true,false}] This determines whether dependen-
cies (external files highlighted by Pygments, code dependencies specified via

12

http://docs.python.org/library/codecs.html
http://www.tug.org/texworks/
http://winshell.de/

pytex.add_dependencies(), etc.) are checked for changes via their hashes
or modification times. By default, mtime is used, since it is faster. The
package option hashdependencies is equivalent.

e --verbose This gives more verbose output, including a list of all processes
that are launched.

PythonTEX currently does not provide means to choose between multiple
Python installations; it will use the default Python installation. Support for mul-
tiple installations is unlikely to be added, since a cross-platform solution would
be required.'® If you need to work with multiple installations, you may wish to
modify pythontex_engines.py to create additional command and environment
families that invoke different versions of Python, based on your system.

PythonTEX attempts to check for a wide range of errors and return mean-
ingful error messages. But due to the interaction of KTEX and Python code,
some strange errors are possible. If you cannot make sense of errors when
using PythonTgX, the simplest thing to try is deleting all files created by
PythonTEX, then recompiling. By default, these files are stored in a directory
called pythontex-files-(jobname), in the same directory as your .tex document.
See Section 7 for more details regarding troubleshooting.

3 Usage

3.1 Package options
Package options may be set in the standard manner when the package is loaded:
\usepackage [(options)] {pythontex}

All options are described as follows. The option is listed, followed by its possible
values. When a value is not required, (none) is listed as a possible value. In this
case, the value to which (none) defaults is also given. Each option lists its default
setting, if the option is not invoked when the package is loaded.

Some options have a command-line equivalent. Package options override
command-line options.

All options related to printed content are provided in two forms for convenience:
one based on the word print and one based on stdout.

usefamily=(ba,sename)/{(basenamel, basename2, ... >}

beta=(none)/true/false
default:false (none)=true

By default, only the py, sympy, and pylab families of commands and envi-
ronments are defined, to prevent possible package conflicts.!® This option defines
preconfigured families for other available languages. It takes either a single lan-
guage base name, or a list of comma-separated names enclosed in curly braces.
Currently, the Ruby families rb and ruby may be created.

14Python 3.3’s py launcher for Windows may make this more feasible.
15For example, a \ruby command for Ruby code, and the \ruby command defined by the Ruby
package in the CJK package.

13

http://www.ctan.org/pkg/cjk

runall=(none)/true/false
default:false (none)=true

This option provides compatibility with the beta releases from before the full
v0.11 release, which introduced some changes in syntax and command names.
This option should only be used with old PythonTEX documents that require it.

You are encouraged to update old documents, since this compatility option
will only be provided for a few releases.

This option causes all code to be executed, regardless of whether it has been
modified. This option is primarily useful when code depends on external files,
and needs to be re-executed when those external files are modified, even though
the code itself may not have changed. Note that the PythonTEX utilities class
also provides a mechanism for automatically re-executing code that depends on
external files when those external files are modified.

A command-line equivalent --runall exists for pythontex.py. The package
option rerun=always is essentially equivelent.

rerun=never/modified/errors/warnings/always

default:errors

This option sets the threshold for re-executing code. By default, PythonTEX
will rerun code that has been modified or that produced errors on the last run.
Sometimes, we may wish to have a more lenient setting (only rerun if modified)
or a more stringent setting (rerun even for warnings, or always rerun). never
never executes code; a warning is issued if there is modified code. modified only
executes code that has been modified. errors executes all modified code as well
as all code that produced errors on the last run; this is the default. warnings
executes all modified code, as well as all code that produced errors or warnings.
always executes all code regardless of its condition.

A command-line equivalent --rerun exists for pythontex.py.

hashdependencies=(none)/true/false

default:false (nome)=true

autoprint=(none)/true/false
default:true (none)=true

autostdout=(none)/true/false
default:true (none)=true

When external code files are highlighted with Pygments, or external dependen-
cies are specified via the PythonTEX utilities class, they are checked for modifi-
cation via their modification time (Python’s os.path.getmtime()). Usually, this
should be sufficient—and it offers superior performance, which is important if data
sets are large enough that hashing takes a noticeable amount of time. However,
occasionally hashing may be necessary or desirable, so this option is provided.

A command-line equivalent --hashdependencies exists for pythontex.py.

Whenever a print command/statement is used, the printed content will au-
tomatically be included in the document, unless the code doing the printing is
being typeset.'® In that case, the printed content must be included using the

16Note that autoprint only works within the body of the document. The code command and
environment can be used in the preamble, but autoprint is disabled there. It is usually a not a
good idea to print in the preamble, because nothing can be typeset; the only thing that could
be validly printed is IATEX commands that do not typeset content, such as macro definitions.
Thus, it is appropriate that printed content is only brought in while in the preamble if it is
explicitly requested via \printpythontex. This approach is also helpful for writing packages
using PythonTEX, since the author does not have to worry about any IATEX commands printed
by the package either not being included (if autoprint is relied upon, but the user turns it off)
or being included twice (if \printpythontex is used and autoprint is enabled). Printing should

14

\printpythontex or \stdoutpythontex commands.

Printed content is pulled in directly from the external file in which it is saved,
and is interpreted by IMTEX as I#TEX code. If you wish to avoid this, you should
print appropriate I TEX commands with your content to ensure that it is typeset
as you desire. Alternatively, you may use \printpythontex or \stdoutpythontex
to bring in printed content in verbatim form, using those commands’ optional verb
and verbatim options.

The autoprint (autostdout) option sets autoprint behavior for the entire doc-
ument. This may be overridden within the document using the \setpythontexautoprint
command.

debug

This option aids in debugging invalid BTEX code that is brought in from
Python. It disables the inclusion of printed content/content written to stdout.
Since printed content should almost always be included, a warning is raised when
this option is used.

Not including printed content is useful when the printed content contains IXTEX
errors, and would cause document compilation to fail. When the document fails
to compile, this can prevent modified Python code from being written to the code
file, resulting in an inescapable loop unless printed content is disabled or the saved
output is deleted.

Note that since commands like \py involve printing, they are also disabled.

makestderr=(none)/true/false
default:false (nome)=true This option determines whether the stderr produced by scripts is available for
input by PythonTgX, via the \stderrpythontex macro. This will not be needed
in most situations. It is intended for typeseting incorrect code next to the errors
that it produces. This option is not true by default, because additional processing
is required to synchronize stderr with the document.
stderrfilename=full/session/genericfile/genericscript
default:full This option governs the file name that appears in stderr. Python errors begin
with a line of the form

File "<file or source>", line <line>

By default (option full), <file or source> is the actual name of the script that
was executed. The name will be in the form (family name)_(session)_(restart) . {extension).
For example, an error produced by a py command or environment, in the session
mysession, using the default restart (that is, the default \restartpythontexsession
treatment), would be reported in py_mysession_default.py. The session op-
tion replaces the full file name with the name of the session, mysession.py in this
example. The genericfile and genericscript options replace the file name
with <file> and <script>, respectively.

pyfuture=none/all/default

default:default Under Python 2, this determines what is automatically imported from
__future__ for all code. It does not apply to console content. none im-
ports nothing from __future__. all imports everything available in Python

only be used in the preamble with great care.

15

pyconfuture=none/all/default
default:none

upquote=(none)/true/false
default:true (none)=true

fixlr=(none)/true/false
default:false (none)=true

2.7 (absolute_import, division, print_function, and unicode_literals).
default imports a default set of features that should be compatible with al-
most all packages. Everything except unicode_literals is imported, since
unicode_literals can occasionally cause conflicts. Note that imports from
__future__ are also allowed within sessions, so long as they are at the very be-
ginning of the session, as they would have to be in a normal script.

This option has no effect under Python 3.

This is the equivalent of pyfuture for Python console content. The two
options are separate, because in the console context it may be desirable to show
explicitly all code that is executed.

This option determines whether the upquote package is loaded. In general, the
upquote package should be loaded, because it ensures that quotes within verbatim
contexts are “upquotes,” that is, ' rather than ’.

Using upquote is important beyond mere presentation. It allows code to be
copied directly from the compiled PDF and executed without any errors due to
quotes ’ being copied as acute accents ~

This option removes “extra” spacing around \left and \right in math mode.
This spacing is sometimes undesirable, especially when typesetting functions such
as the trig functions. See the implementation for details. Similar functionality is
provided by the mleftright package

keeptemps=(none)/all/code/none

default:none (none)=all

When PythonTEX runs, it creates a number of temporary files. By default,
none of these are kept. The none option keeps no temp files, the code option
keeps only code temp files (these can be useful for debugging), and the all option
keeps all temp files (code, stdout and stderr for each code file, etc.). Note that this
option does not apply to any user-generated content, since PythonTEX knows very
little about that; it only applies to files that PythonTEX automatically creates by
itself.

prettyprinter=pygments/fancyvrb

default:pygments

This allows the user to determine at the document level whether code is typeset
using Pygments or fancyvrb.

The package-level option can be overridden for individual command and en-
vironment families, using the \setpythontexprettyprinter command. Overrid-
ing is never automatic and should generally be avoided, since using Pygments to
highlight only some content results in an inconsistent style. Keep in mind that
Pygment’s text lexer and/or bw style can be used when content needs little or no
syntax highlighting.

prettyprintinline=(none)/true/false

default:true (none)=true

pygments=(none)/true/false
default:true (none)=true

This determines whether inline content is pretty printed. If it is turned off,
inline content is typeset with fancyvrb.

This allows the user to determine at the document level whether code is typeset
using Pygments rather than fancyvrb. It is an alias for prettyprinter=pygments.

16

http://www.ctan.org/pkg/mleftright

pyginline=(none)/true/false
default:true (none)=true

pyglexer=(pygments lezer)
default:(none)

pygopt={(pygments options)}
default:(none)

fvextfile=(none)/(integer)
default:co (none)=25

This option governs whether inline code, not just code in environments, is
highlighted when Pygments highlighting is in use. When Pygments is in use, it
will highlight everything by default.

It is an alias for prettyprintinline.

This allows a Pygments lexer to be set at the document level. In general, this
option should not be used. It overrides the default lexer for all commands and
environments, for both PythonTEX and Pygments content, and this is usually not
desirable. It should be useful primarily when all content uses the same lexer, and
multiple lexers are compatible with the content.

This allows Pygments options to be set at the document level. The op-
tions must be enclosed in curly braces {}. Currently, three options may
be passed in this manner: style=(style name), which sets the formatting
style; texcomments, which allows KTEX in code comments to be rendered;
and mathescape, which allows ITEX math mode ($...$) in comments. The
texcomments and mathescape options may be used with an argument (for exam-
ple, texcomments=True/False); if an argument is not supplied, True is assumed.
Example: pygopt={style=colorful, texcomments=True, mathescape=False}.

Pygments options for individual command and environment families may
be set with the \setpythontexpygopt macro; for Pygments content, there is
\setpygmentspygopt. These individual settings are always overridden by the
package option.

This option speeds the typesetting of long blocks of code that are created
on the Python side. This includes content highlighted using Pygments and the
console environment. Typesetting speed is increased at the expense of creating
additional external files (in the PythonTEX directory). The (integer) determines
the number of lines of code at which the system starts using multiple external
files, rather than a single external file. See the implementation for the technical
details; basically, an external file is used rather than fancyvrb’s SaveVerbatim,
which becomes increasingly inefficient as the length of the saved verbatim content
grows. In most situations, this option should not be needed, or should be fine with
the default value or similar “small” integers.

pyconbanner=none/standard/default/pyversion

default:none

pyconfilename=stdin/console
default:stdin

This option governs the appearance (or disappearance) of a banner at the be-
ginning of Python console environments. (A banner only appears in the first envi-
ronment within each session.) The options none (no banner), standard (standard
Python banner), default (default banner for Python’s code module, standard
banner plus interactive console class name), and pyversion (banner in the form
Python x.y.z) are accepted.

This governs the form of the filename that appears in error messages in Python
console environments. Python errors messages have a form such as the following:

17

depythontex=(none)/true/false

default:false (none)=true

>>> z =1+ 34 +
File "<name>", line 1
z=1+ 34 +

SyntaxError: invalid syntax

The stdin option replaces <name> with <stdin>, as it appears in a standard
Python interactive session. The console option uses <console> instead, which
is the default setting for the Python code module used by PythonTEX to create
Python console environments.

This option is used to create a version of the INTEX document that does not
require the PythonTEX package. When invoked, it creates an auxiliary file called
<filename>.depytx. The script depythontex.py uses the original document and
this auxiliary file to create a new document in which all PythonTEX commands and
environments have been replaced by typeset code and code output. For additional
information on depythontex, see Section 4.

3.2 Commands and environments

PythonTEX provides four types of commands for use with inline code and three
environments for use with multiple lines of code, plus special commands and envi-
ronments for console content. All commands and environments are named using
a base name and a command- or environment-specific suffix. A complete set of
commands and environments with the same base name constitutes a command
and environment family. In what follows, the different commands and envi-
ronments are described using the py base name (the py family) as an example.

Most commands and environments cannot be used in the preamble, because
they typeset material and that is not possible in the preamble. The one exception
is the code command and environment. These can be used to enter code, but
need not typeset anything. This allows you to collect your PythonTEX code in
the preamble, if you wish, or even use PythonTEX in package writing. Note that
the package option autoprint is never active in the preamble, so even if a code
command or environment did print in the preamble, printed content would never
be inputted unless \printpythontex or \stdoutpythontex were used.

All commands and environments take a session name as an optional argument.
The session name determines the session in which the code is executed. This allows
code to be executed in multiple independent sessions, increasing speed (sessions
run in parallel) and preventing naming conflicts. If a session is not specified, then
the default session is used. Session names should use the characters a-z, A-Z,
0-9, the hyphen, and the underscore. All characters used must be valid in file
names, since session names are used to create temporary files. The colon is also
allowed, but it is replaced with a hyphen internally, so the sessions code:1 and
code-1 are identical.

In addition, all environments take fancyvrb settings as a second, optional ar-
gument. See the fancyvrb documentation for an explanation of accepted settings.

18

http://www.ctan.org/tex-archive/macros/latex/contrib/fancyvrb

This second optional argument must be preceeded by the first optional argument
(session name). If a named session is not desired, the optional argument can be
left empty (default session), but the square brackets [1 must be present so that
the second optional argument may be correctly identified:

\begin{{environment)} [1 [{fancyvrb settings)]

3.2.1 Inline commands

Inline commands are suitable for single lines of code that need to be executed
within the body of a paragraph or within a larger body of text. The commands
use arbitrary code delimiters (like \verb does), which allows the code to contain
arbitrary characters. Note that this is only guaranteed to work properly when the
inline commands are not inside other macros. If an inline command is used within
another macro, the code will be read by the external macro before PythonTEX
can read the special code characters (that is, WITEX will tokenize the code). The
inline commands can work properly within other macros, but it is best to stick
with curly braces for delimiters in this case and you may have trouble with the
hash # and percent 7 characters.
\py [(session)](opening delim)(code)(closing delim)

This command is used for including variable values or other content that can
be converted to a string. It is an alternative to including content via the print
statement /function within other commands/environments.

The \py command sends (code) to Python, and Python returns a string repre-
sentation of (code). (opening delim) and (closing delim) must be either a pair of
identical, non-space characters, or a pair of curly braces. If curly braces are used
as delimiters, then curly braces may only be used within (code) if they are paired.
Thus, \py{1+1} sends the code 1+1 to Python, Python evaluates the string repre-
sentation of this code, and the result is returned to BTEX and included as 2. The
commands \py#1+1# and \py@1+1@ would have the same effect. The command
can also be used to access variable values. For example, if the code a=1 had been
executed previously, then \py{a} simply brings the string represantation of a back
into the document as 1.

Assignment is not allowed using \py. For example, \py{a=1} is not valid.
This is because assignment cannot be converted to a string.'”

The text returned by Python must be valid ETEX code. Verbatim and other
special content is allowed under the pdfTeX and XeTeX engines (a known bug
prevents it from working with LuaTeX). The primary reasons for using \py rather
than print are (1) \py is more compact and (2) print requires an external file
to be created for every command or environment in which it is used, while \py

17Tt would be simple to allow any code within \py, including assignment, by using a try/except
statement. In this way, the functionality of \py and \pyc could be merged. While that would
be simpler to use, it also has serious drawbacks. If \py is not exclusively used to typeset string
representations of (code), then it is no longer possible on the IATEX side to determine whether
a command should return a string. Thus, it is harder to determine, from within a TEX editor,
whether pythontex.py needs to be run; warnings for missing Python content could not be issued,
because the system wouldn’t know (on the IATEX side) whether content was indeed missing.

19

and equivalents for other families share a single external file. Thus, use of \py

minimizes the creation of external files, which is a key design goal for PythonTX.!®

The main reason for using print rather than \py is if you need to include a very

large amount of material; print’s use of external files won’t use up TEX’s memory,

and may give noticeably better performance once the material is sufficiently long.
\pycl[(session)](opening delim)(code){closing delim)

This command is used for executing but not typesetting (code). The suffix ¢
is an abbreviation of code. If the print statement/function is used within (code),
printed content will be included automatically so long as the package autoprint
option is set to true (the default setting).

\pyv[(session)](opening delim)(code){closing delim)

This command is used for typesetting but not executing (code). The suffix v

is an abbreviation for verb.
\pyb[(session)](opening delim){code){closing delim)

This command both executes and typesets (code). Since it is unlikely that the
user would wish to typeset code and then immediately include any output of
the code, printed content is not automatically included, even when the package
autoprint option is set to true. Rather, any printed content is included at a
user-designated location via the \printpythontex or \stdoutpythontex macros.

3.2.2 Environments

pycode [(session)][(fancyvrb settings)]

This environment encloses code that is executed but not typeset. The second
optional argument (fancyvrb settings) is irrelevant since nothing is typeset, but it
is accepted to maintain parallelism with the verbatim and block environments.
If the print statement/function is used within the environment, printed content
will be included automatically so long as the package autoprint option is set to
true (the default setting).

pyverbatim [(session)] [(fancyurb settings)]

This environment encloses code that is typeset but not executed.

pyblock [(session)][{fancyvrd settings)]

This environment encloses code that is both executed and typeset. Since it is
unlikely that the user would wish to typeset code and then immediately print any
output of the code, printed content is not automatically included, even when the
package autoprint option is set to true. Rather, any printed content is included
at a user-designated location via the \printpythontex or \stdoutpythontex
macros.

18For \py, the text returned by Python is stored in macros and thus must be valid IATEX code,
because IATEX interprets the returned content. The use of macros for storing returned content
means that an external file need not be created for each use of \py. Rather, all macros created
by \py and equivalent commands from other families are stored in a single file that is inputted.
Note that even though the content is stored in macros, verbatim content is allowed, through the
use of special macro definitions combined with \scantokens.

20

3.2.3 Console command and environment families

So far, we have considered the py command and environment family. PythonTEX
also provides families for console content. These emulate the behavior of a Python
interactive console. In what follows, the pycon family is described

The pycon family includes a \pyconv and pyconverbatim that typeset a con-
sole session pasted from an interpreter. It also includes a \pyconc and pyconcode
that execute code but typeset nothing. These should be used with care, since it
may often be advisable to show all executed code when working with an interactive
console.

The pycon family also includes a special environment and command.

pyconsole [(session)][{fancyvrd settings)]

This environment treats its contents as a series of commands passed to an inter-
active Python console. Python’s code module is used to intersperse the commands
with their output, to emulate an interactive Python interpreter.

When a multi-line command is entered (for example, a function definition), a
blank line after the last line of the command may be necessary.

For example,

a=1
2
a+hb

o’
]

produces

>>>a=1
>>> b
>>>a +b
3

]
N

\pycon[(session)](opening delim)({code)(closing delim)

This command executes {(code) using the emulated interpreter, and brings the
output back into the document, discarding the input. The output is typeset
verbatim (since it will not in general be valid ITEX), with the same font used for
the pyconsole environment.

For example, \pycon{a + b} would create 3.

This command is primarily for use in referencing console variable values.

Notice that there is not a command or environment for console content that
parallels the block command and environment. That is, there is not a command
or environment that both typesets and executes code in the console, but does not
show the output. This is intentional. In most cases, if you are going to use the
console, you should use it consistently, showing input and output together.

3.2.4 Default families

By default, three command and environment families are defined, with three cor-
responding console families.

21

http://docs.python.org/3/library/code.html

e Python

— Base name py: \py, \pyc, \pyv, \pyb, pycode, pyverbatim, pyblock.

— Base name pycon: \pycon, \pyconc, \pyconv, pyconsole, pyconcode,
pyconverbatim.

— Imports: None.
e Python + pylab (matplotlib module)

— Base name pylab: \pylab, \pylabc, \pylabv, \pylabb, pylabcode,
pylabverbatim, pylabblock.

— Base name pylabcon: \pylabcon, \pylabconc, \pylabconv, pylabconsole,
pylabconcode, pylabconverbatim.

— Imports: matplotlib’s pylab module, which provides access to much
of matplotlib and NumPy within a single namespace. pylab content is
brought in via from pylab import *.

— Additional notes: matplotlib added a pgf backend in version 1.2. You
will probably want to use this for creating most plots. However, this
is not currently configured automatically because many users will want
to customize font, TEX engine, and other settings. Using TEX to create
plots also introduces a performance penalty.

e Python + SymPy

— Base name sympy: \sympy, \sympyc, \sympyv, \sympyb, sympycode,
sympyverbatim, sympyblock, sympyconsole.

Base name sympycon: \sympycon, \sympyconc, \sympyconv, sympyconsole,
sympyconcode, sympyconverbatim.

— Imports: SymPy via from sympy import *.

— Additional notes: By default, content brought in via \sympy is format-
ted using a context-sensitive interface to SymPy’s LatexPrinter class,
described below.

Under Python 2.7, all non-console families import absolute_import, division,
and print_function from __future__ by default. This may be changed using
the package option pyfuture. There is an equivalent pyconfuture for console
families. Keep in mind that importing unicode_literals from __future__ may
break compatibility with some packages; this is why it is not imported by default.
Imports from __future__ are also possible without using the pyfuture option.
You may use the \pythontexcustomc command or pythontexcustomcode envi-
ronment (described below), or simply enter the import commands immediately at
the beginning of a session.

22

http://matplotlib.org/users/pgf.html

3.2.5 Custom code

You may wish to customize the behavior of one or more families within a document
by adding custom code to the beginning and end of each session. The custom code
command and environment make this possible. While the custom code command
and environment work with console content, most of the discussion below is
geared toward the non-console case.

If you wish to share these customizations among several documents, you can
create your own document class or package containing custom code commands
and environments.

While custom code can be added anywhere in a document, it is probably best
for organizational reasons to add it in the preamble or near the beginning of the
document.

Note that custom code is executed, but never typeset. Only code that is ac-
tually entered within a block (or verbatim) command or environment is ever
typeset. This means that you should be careful about how you use custom code.
For example, if you are documenting code, you probably want to show absolutely
all code that is executed, and in that case using custom code might not be ap-
propriate. If you are using PythonTEX to create figures or automate text, are
using many sessions, and require many imports, then custom code could save
some typing by centralizing the imports.

Any errors or warnings due to custom code will be correctly synchronized with
the document, just like normal errors and warnings. Any errors or warnings will
be specifically identified as originating in custom code.

Custom code is not allowed to print or write to stdout. It would be pointless
for custom code at the beginning of a session to print, because all printed content
would be identical since custom code at the beginning comes before any regular
code that might make the output session-specific. In addition, it is not obvious
where printed content from custom code would be included, especially for custom
code at the end of a session. Furthermore, custom code may be in the preamble,
where nothing can be typeset.

If custom code does attempt to print, a warning is raised and the printed
content is included in the PythonTEX run summary. This gives you access to the
printed content, while not including it in the document. This can be useful in
cases where you cannot control whether content prints (for example, if a library
automatically prints debugging information).

\pythontexcustomc [{position)]{(family)}{(code)}

This macro allows custom code to be added to all sessions within a command
and environment family. (position) should be either begin or end; it determines
whether the custom code is executed at the beginning or end of each session. By
default, custom code is executed at the beginning. (code) should be a single
line of code. For example, \pythontexcustomc{py}{a=1; b=2} would create the
variables a and b within all sessions of the py family, by adding that line of code
at the beginning of each session.

If you need to add more than a single line of custom code, you could
use the command multiple times, but it will be more efficient to use the

23

pythontexcustomcode environment.

(code) may contain imports from __future__. These must be the first elements
in any custom code command or environment, since __future__ imports are only
possible at the very beginning of a Python script and only the very beginning of
custom code is checked for them. If imports from __future__ are present at the
beginning of both custom code and the user’s code, all imports will work correctly;
the presence of the imports in custom code, before user code, does not turn off
checking for __future__ imports at the very beginning of user code. However, it
is probably best to keep all __future__ imports in a single location.

pythontexcustomcode [(position)]{(family)}

This is the environment equivalent of \pythontexcustomc. It is used for adding
multi-line custom code to a command and environment family. In general, the en-
vironment should be preferrred to the command unless only a very small amount of
custom code is needed. The environment has the same properties as the command,
including the ability to contain imports from __future__.

3.2.6 PythonTgX utilities class

All non-console families import pythontex_utils.py, and create an instance
of the PythonTEX utilities class called pytex. This provides various utilities for
interfacing with M TEX and PythonTgX.

The utilities class provides an interface for determining how Python objects are
converted into strings in commands such as \py. The pytex.set_formatter ({formatter))
method is used to set the conversion. Two formatters are provided:

e ’str’ converts Python objects to a string, using the str() function un-
der Python 3 and the unicode() function under Python 2. (The use of
unicode () under Python 2 should not cause problems, even if you have not
imported unicode_literals and are not using unicode strings. All encod-
ing issues should be taken care of automatically by the utilities class.)

e ’sympy_latex’ uses SymPy’s LatexPrinter class to return context-sensitive
KTEX representations of SymPy objects. Separate LatexPrinter set-
tings may be created for the following contexts: ’display’ (displaystyle
math), ’text’ (textstyle math), ’script’ (superscripts and subscripts),
and ’scriptscript’ (superscripts and subscripts, of superscripts and sub-
scripts). Settings are created via pytex.set_sympy_latex ({context), (settings)).
For example, pytex.set_sympy_latex(’display’, mul_symbol=’times’)
sets multiplication to use a multiplication symbol x, but only when math is
in displaystyle.'® See the SymPy documentation for a list of possible settings
for the LatexPrinter class.

By default, ’sympy_latex’ only treats matrices differently based on context.
Matrices in displaystyle are typeset using pmatrix, while those in all other
styles are typeset via smallmatrix with parentheses.

Internally, the ’sympy_latex’ formatter uses the \mathchoice macro to return multiple
representations of a SymPy object, if needed by the current settings. Then \mathchoice typesets
the correct representation, based on context.

24

http://docs.sympy.org/dev/modules/printing.html

The context-sensitive interface to SymPy’s LatexPrinter is always available
via pytex.sympy_latex().

The PythonTEX utilities formatter may be set to a custom function that re-
turns strings, simply by reassigning the pytex.formatter () method. For exam-
ple, define a formatter function my_func(), and then pytex.formatter=my_func.

The utilities class also provides methods for tracking dependencies and created
files.

e pytex.add_dependencies({(dependencies)) This adds (dependencies) to a
list. If any dependencies in the list change, code is re-executed, even if the
code itself has not changed (unless rerun=never). Modified dependencies are
determined via either modification time (default) or hash; see the package
option hashdependencies for details. This method is useful for tracking
changes in external data and similar files.

(dependencies) should be one or more strings, separated by commas, that
are the file names of dependencies. Dependencies should be given with rela-
tive paths from the current working directory, with absolute paths, or with
paths based on the user’s home directory (that is, starting with a tilde 7).
Paths can use a forward slash “/” even under Windows. Remember that by
default, the working directory is the pythontex-files-(jobname) directory
where all PythonTEX temporary files are stored. This can be adjusted with
\setpythontexworkingdir.

It is possible that a dependency of one session might be modified by another
session while PythonTEX runs. The first session might not be executed
during the PythonTEX run because its dependency was unmodified at the
beginning. A more serious case occurs when the first session does run, but
we don’t know whether it accessed the dependency before or after the de-
pendency was updated (remember, sessions run in parallel). PythonTEX
keeps track of the time at which it started. Any sessions with dependencies
that were modified after that time are set to re-execute on the next run. A
warning is also issued to indicated that this is the case.

e pytex.add_created({created files)) This adds (created files) to a list of files
created by the current session. Any time the code for the current session is
executed, all of these files will be deleted. Since this method deletes files,
it should be used with care. It is intended for automating cleanup when code
is modified. For example, if a figure’s name is changed, the old figure would
be deleted if its name had been added to the list. By default, PythonTEX
can only clean up the temporary files it creates; it knows nothing about
user-created files. This method allows user-created files to be specified, and
thus added to PythonTEX’s automatic cleanup.

(created files) should be one or more strings, separated by commas, that
are the file names of created files. Paths should be the same as for
pytex.add_dependencies(): relative to the working directory, absolute,

25

or based on the user’s home directory. Again, paths can use a forward slash
“/” even under Windows.

Depending on how you use PythonTEX, this method may not be very ben-
eficial. If all of the output is contained in the default output directory, or
a similar directory of your choosing, then manual cleanup may be simple
enough that this method is not needed.

These two methods for tracking files may be used manually. However, that is
prone to errors, since you will have to modify both a PythonTEX utilities command
and an open or save command every time you change a file name or add or remove
a dependency or created file. It may be better to redefine your open and save
commands, or define new ones, so that a single command opens (or saves) and
adds a dependency (or adds a created file). For example, the following would
create a version of the standard open() that automatically tracks dependencies
and created files.

def track_open(file, mode=’r’, *args, *xkwargs):
if mode in (°r’, ’rb?):
pytex.add_dependencies(file)
elif mode in (°w’, ’wb’):
pytex.add_created(file)
return open(file, mode, *args, **kwargs)
pytex.open = track_open

Notice that this approach does not deal with files opened for appending or updat-
ing; such cases require more complex logic.

The utilities class provides a pair of methods, before() and after(), that
are called immediately before and after each chunk of user code. These may be
redefined to customize the output of user code. For example, ITEX commands
could be printed at the beginning and end of each command or environment,
wrapping any content printed by the user. Or any matplotlib figures that were
created in the chunk of code could be detected and saved, and IATEX commands
to include them in the document could be printed. Or stdout could be redirected
to a StringlO stream in before(), then processed in after() before being sent
to the original stdout.

You may redefine before() and after() at the class level. For example,

def open(self):
<body>
PythontexUtils.open = open

Or you may redefine these methods as instance attributes that happen to be
functions (rather than bound methods). Notice that in this case self is not
allowed.

def open():
<body>

26

pytex.open = open

Finally, you may redefine these methods as bound methods for the pytex instance.

def open(self):
<body>
import types
pytex.open = types.MethodType(open, pytex)

The first and third approaches are necessary if you want to be able to use self
(for example, to access instance attributes). Notice that before() and after ()
take no arguments (except self where applicable).

An example of using the after() method to automatically save and in-
clude all matplotlib figures created in a command or environment is shown be-
low. This example is designed for the pylab family of commands, or when
from pylab import * is used. If pyplot is imported as plt instead, then
plt.get_fignums(), plt.figure(), plt.savefig(), plt.close(), etc., would
be needed.

Basename for figures that will be created
pytex.basename = ’_’.join([pytex.input_type, pytex.input_session,
pytex.input_restart])

Need to keep track of total number of figures in each session
pytex.fignum = 0

The figure could be included in more sophisticated ways
For example, a ‘‘figure‘‘ environment could be used
def after():
for num in get_fignums():
fname = pytex.basename + ’_fig’ + str(pytex.fignum) + ’.pdf’
pytex.fignum += 1
figure (num)
savefig(fname)
pytex.add_created(fname)
close (num)
print (r’\includegraphics{’ + fname + ’}’)

In this case, I’m taking the easy approach to redefine ‘‘open() ‘¢
pytex.after = after

3.2.7 Formatting of typeset code

\setpythontexfv[(family)l{({fancyvrb settings)}
This command sets the fancyvrb settings for all command and environment
families. Alternatively, if an optional argument (family) is supplied, the settings

27

only apply to the family with that base name. The general command will override
family-specific settings.

Each time the command is used, it completely overwrites the previous settings.
If you only need to change the settings for a few pieces of code, you should use
the second optional argument in block and verb environments.

Note that \setpythontexfv and \setpygmentsfv are equivalent when they
are used without an optional argument; in that case, either may be used to deter-
mine the document-wide fancyvrb settings, because both use the same underlying
macro.

\setpythontexprettyprinter[(family)l{(printer)}

This should generally not be needed. It sets the pretty printing used by the
document, or by (family) if given. Valid options for (printer) are fancyvrb and
pygments. The option auto may be given for (family), in which case the formatter
is inherited from the document-level settings. Using either of the other two options
will force {family) to use that printer, regardless of the document-level settings.
By default, families use auto.

Remember that Pygments has a text lexer and a bw style. These are an
alternative to setting the formatter to fancyvrb.

\setpythontexpyglexer [(family)l{(pygments lezer)}

This allows the Pygments lexer to be set for (family). (pygments lexer) should
use a form of the lexer name that does not involve any special characters. For
example, you would want to use the lexer name csharp rather than C#. This will be
a consideration primarily when using the Pygments commands and environments
to typeset code of an arbitrary language.

If a (family) is not specified, the lexer is set for the entire document.

\setpythontexpygopt [{family)]l{(pygments options)}

This allows the Pygments options for (family) to be redefined. Note that any
previous options are overwritten. The same Pygments options may be passed
here as are available via the package pygopt option. Note that for each available
option, individual family settings will be overridden by the package-level pygopt
settings, if any are given.

If a (family) is not specified, the options are set for the entire document.

3.2.8 Access to printed content (stdout) and error messages (stderr)

The macros that allow access to printed content and any additional content written
to stdout are provided in two identical forms: one based off of the word print and
one based off of stdout. Macro choice depends on user preference. The stdout
form provides parallelism with the macros that provide accesss to stderr.
\printpythontex[(mode)] [{options)]
\stdoutpythontex [(mode)] [{options)]

Unless the package option autoprint is true, printed content from code com-
mands and environments will not be automatically included. Even when the
autoprint option is turned on, block commands and environments do not auto-
matically include printed content, since we will generally not want printed content
immediately after typeset code. This macro brings in any printed content from

28

\saveprintpythontex{(name)}
\savestdoutpythontex{(name)}

the last command or environment. It is reset after each command/environment,
so its scope for accessing particular printed content is very limited. It will return
an error if no printed content exists.

(mode) determines how printed content is handled. It may be raw (interpreted
as I¥TEX), verb (inline verbatim), or verbatim; raw is the default. Verbatim
content is brought in via fancyvrb. (options) consists of fancyvrb settings.

\useprintpythontex[{verbatim options)] [{fancyvrb options)]l{(name)?}

\usestdoutpythontex [(verbatim options)] [(fancyvrd options)]l{(name)}

We may wish to be able to access the printed content from a command or
environment at any point after the code that prints it, not just before any addi-
tional commands or environments are used. In that case, we may save access to
the content under (name), and access it later via \useprintpythontex{(name)}.
(mode) must be raw, verb, or verbatim. If content is brought in verbatim, then
(fancyvrb options) are applied.

\stderrpythontex [(mode)] [{fancyvrb options)]

\savestderrpythontex{(name)}

This brings in the stderr produced by the last command or environment. It
is intended for typesetting incorrect code next to the errors that it produces.
By default, stderr is brought in verbatim. (mode) may be set to raw, verb, or
verbatim. In general, bringing in stderr raw should be avoided, since stderr will
typically include special characters that will make TEX unhappy.

The line number given in the stderr message will correctly align with the line
numbering of the typeset code. Note that this only applies to code and block
environments. Inline commands do not have line numbers, and as a result, they
do not produce stderr content.

By default, the file name given in the message will be in the form

(family name) _(session)_{group) . (extension)

For example, an error produced by a pycode environment, in the session
mysession, using the default group (that is, the default \restartpythontexsession
treatment), would be reported in py_mysession_default.py. The package op-
tion stderrfilename may be used to change the reported name to the following
forms: mysession.py, <file>, <script>.

\usestderrpythontex [(mode)] [{fancyvrb options)l{(name)}

Content written to stderr may be saved and accessed anywhere later in the
document, just as stdout content may be. These commands should be used with
care. Using Python-generated content at multiple locations within a document
may often be appropriate. But an error message will usually be most meaningful
in its context, next to the code that produced it.

\setpythontexautoprint{(boolean)}
\setpythontexautostdout{(boolean)}

This allows autoprint behavior to be modified at various points within the
document. The package-level autoprint option is also available for setting au-

29

toprint at the document level, but it is overridden by \setpythontexautoprint.
(boolean) should be true or false.

3.3 Pygments commands and environments

Although PythonTEX’s goal is primarily the execution and typesetting of Python
code from within I#TEX, it also provides access to syntax highlighting for any
language supported by Pygments.

\pygment{(lezer)}(opening delim)(code)(closing delim)

This command typesets (code) in a suitable form for inline use within a para-
graph, using the specified Pygments (lezer). Internally, it uses the same macros
as the PythonTEX inline commands. {(opening delim) and (closing delim) may be
a pair of any characters except for the space character, or a matched set of curly
braces {}.

As with the inline commands for code typesetting and execution, there is not an
optional argument for fancyvrb settings, since almost all of them are not relevant
for inline usage, and the few that might be should probably be used document-wide
if at all.

pygments [(fancyvrb settings)]l{(lezer)}

This environment typesets its contents using the specified Pygments (lezer)

and applying the (fancyvrb settings).
\inputpygments [(fancyvrb settings)l{(lezer)}{(ezternal file)}

This command brings in the contents of (external file), highlights it using

(lezer), and typesets it using (fancyvrb settings).
\setpygmentsfv[(lezer)]{(fancyvrb settings)}

This command sets the (fancyvrb settings) for (lexer). If no (lexer) is supplied,
then it sets document-wide (fancyvrb settings). In that case, it is equivalent to
\setpythontexfv{(fancyvrb settings)}.

\setpygmentspygopt [(lezer)]{(pygments options)}

This sets (lexzer) to use (pygments options). If there is any overlap between
(pygments options) and the package-level pygopt, the package-level options over-
ride the lexer-specific options.

If (lexer) is not given, options are set for the entire document.

\setpygmentsprettyprinter{(printer)}

This usually should not be needed. It allows the pretty printer for the document
to be set; it is equivalent to using \setpythontexprettyprinter without an
optional argument. Valid options for (printer) are fancyvrb and pygments.

Remember that Pygments has a text lexer and a bw style. These are an
alternative to setting the formatter to use fancyvrb.

3.4 General code typesetting
3.4.1 Listings float

listing

30

PythonTEX will create a float environment listing for code listings, unless
an environment with that name already exists. The 1isting environment is cre-
ated using the newfloat package. Customization is possible through newfloat’s
\SetupFloatingEnvironment command.

\setpythontexlistingenv{(alternate listing environment name)}

In the event that an environment named 1isting already exists for some other
purpose, PythonTEX will not override it. Instead, you may set an alternate name
for PythonTEX’s 1isting environment, via \setpythontexlistingenv.

3.4.2 Background colors

PythonTEX uses fancyvrb internally to typeset all code. Even code that is high-
lighted with Pygments is typeset afterwards with fancyvrb. Using fancyvrb, it
is possible to set background colors for individual lines of code, but not for entire
blocks of code, using \FancyVerbFormatLine (you may also wish to consider the
formatcom option). For example, the following command puts a green background
behind all the characters in each line of code:

\renewcommand{\FancyVerbFormatLine} [1]{\colorbox{green}{#1}}

If you need a completely solid colored background for an environment, or
a highly customizable background, you should consider the mdframed package.
Wrapping PythonTEX environments with mdframed frames works quite well. You
can even automatically add a particular style of frame to all instances of an envi-
ronment using the command

\surroundwithmdframed[{frame options)]{(environment)}

Or you could consider using etoolbox to do the same thing with mdframed or an-
other framing package of your choice, via etoolbox’s \BeforeBeginEnvironment
and \AfterEndEnvironment macros.

3.4.3 Referencing code by line number

It is possible to reference individual lines of code, by line number. If code is
typeset using pure fancyvrb, then I#TEX labels can be included within com-
ments. The labels will only operate correctly (that is, be treated as WTEX rather
than verbatim content) if fancyvrb’s commandchars option is used. For example,
commandchars=\\\{\} makes the backslash and the curly braces function nor-
mally within fancyvrb environments, allowing KTEX macros to work, including
label definitions. Once a label is defined within a code comment, then referencing
it will return the code line number.

The disadvantage of the pure fancyvrb approach is that by making the back-
slash and curly braces command characters, we can produce conflicts if the code
we are typesetting contains these characters for non-IXTEX purposes. In such a
case, it might be possible to make alternate characters command characters, but
it would probably be better to use Pygments.

31

If code is typeset using Pygments (which also ties into fancyvrb), then this
problem is avoided. The Pygments option texcomments=true has Pygments look
for XTEX code only within comments. Possible command character conflicts with
the language being typeset are thus eliminated.

Note that when labels are created within comments, the labes themselves will
be invisible within the final document but the comment character(s) and any other
text within comments will still be visible. For example, the following

abc = 123 # An important line of code!\label{lst:important}
would appear as
abc = 123 # An important line of code!

If a comment only contains the \label command, then only the comment char-
acter # would actually be visible in the typeset code. If you are typesetting code
for instructional purposes, this may be less than ideal. Unfortunately, Pygments
currently does not allow escaping to I¥TEX outside of comments (though this fea-
ture has been requested). At the same time, by only allowing references within
comments, Pygments does force us to create code that would actually run. And
in many cases, if a line is important enough to label, it is also important enough
for a brief comment.

3.4.4 Beamer compatibility

PythonTEX is compatible with Beamer. Since PythonTEX typesets code as verba-
tim content, Beamer’s fragile option must be used for any frame that contains
typeset code. Beamer’s fragile option involves saving frame contents to an ex-
ternal file and bringing it back in. This use of an external file breaks PythonTEX’s
error line number synchronization, since the error line numbers will correspond to
the temporary external file rather than to the actual document.

If you need to typeset code with Beamer, but don’t need to use overlays on the
slides containing code, you should use the fragile=singleslide option. This al-
lows verbatim content to be typeset without using an external file, so PythonTX’s
error line syncronization will work correctly.

3.5 Advanced PythonTEX usage

\restartpythontexsession{(counter value(s))}

This macro determines when or if sessions are restarted (or “subdivided”).
Whenever (counter value(s)) change, the session will be restarted.

By default, each session corresponds to a single code file that is executed.
But sometimes it might be convenient if the code from each chapter or section
or subsection were to run within its own file, as its own session. For exam-
ple, we might want each chapter to execute separately, so that changing code
within one chapter won’t require that all the code from all the other chapters
be executed. But we might not want to have to go to the bother and ex-
tra typing of defining a new session for every chapter (like \py[ch1]{{code)}).

32

http://www.ctan.org/pkg/beamer

To do that, we could use \restartpythontexsession{\thechapter}. This
would cause all sessions to restart whenever the chapter counter changes. If
we wanted sessions to restart at each section within a chapter, we would
use \restartpythontexsession{\thechapter(delim)\thesection}. (delim) is
needed to separate the counter values so that they are not ambiguous (for ex-
ample, we need to distinguish chapter 11-1 from chapter 1-11). Usually (delim)
should be a hyphen or an underscore; it must be a character that is valid in file
names.

Note that counter values, and not counters themselves, must be supplied as
the argument. Also note that the command applies to all sessions. If it did not,
then we would have to keep track of which sessions restarted when, and the lack
of uniformity could easily result in errors on the part of the user.

Keep in mind that when a session is restarted, all continuity is lost. It is best
not to restart sessions if you need continuity. If you must restart a session, but
also need to keep some data, you could save the data before restarting the session
and then load the saved data after the restart. This approach should be used with
extreme caution, since it can result in unanticipated errors due to sessions not
staying synchronized.?’

This command can only be used in the preamble.

\setpythontexoutputdir{{output directory)’}

By default, PythonTEX saves all temporary files and automatically gener-
ated content in a directory called pythontex-files-(sanitized jobname), where
(sanitized jobname) is just \jobname with any space characters or asterisks re-
placed with hyphens. This directory will be created by pythontex.py. If we wish
to specify another directory (for example, if \jobname is long and complex, and
there is no danger of two files trying to use the same directory), then we can use
the \setpythontexoutputdir macro to redefine the output directory.?!

Any slashes in (output directory) should be forward slashes “/” (even under
Windows).

\setpythontexworkingdir{(working directory)}

The PythonTEX working directory is the current working directory for
PythonTEX scripts. This is the directory in which any open or save operations will
take place, unless a path is explicitly specified. By default, the working directory is
the same as the output directory. For example, if you are writing my_file.tex and
save a matplotlib figure with savefig(’my_figure.pdf’), then my_figure.pdf

20For example, suppose sessions are restarted based on chapter. session-chi saves a data file,
and session-ch2 loads it and uses it. You write the code, and run PythonTEX. Then you realize
that session-chl needs to be modified and make some changes. The next time PythonTEX
runs, it will only execute session-chl, since it detects no code changes in session-ch2. This
means that session-ch2 is not updated, at least to the extent that it depends on the data
from session-chl. Again, saving and loading data between restarted sessions, or just be-
tween sessions in general, can produce unexpected behavior. This can be avoided by using the
pytex.add_dependencies() method for all data that is loaded. It will ensure that all sessions
stay in sync.

211n the rare event that both \setpythontexoutputdir is used and \printpythontex is needed
in the preamble, \setpythontexoutputdir must be used first, so that \printpythontex will know
where to look for output.

33

will be created in the output directory pythontex-files-my_file. But maybe
you have a directory called plots in your document root directory. In that
case, you could leave the working directory unchanged, and simply specify the
relative path to plots when saving. Or you could set the working directory
to plots using \setpythontexworkingdir{plots}, so that all content would
automatically be saved there. If you want your working directory to be the
document root directory, you should use a period (.) for (working directory):
\setpythontexworkingdir{.}.

Any slashes in (working directory) should be forward slashes “/” (even under
Windows).

The working directory is automatically added to Python’s sys.path, so that
code in the working directory there may be imported without a path being speci-
fied.

Note that in typical use scenarios, you should be able to use the output di-
rectory as the working directory. The graphicx package will automatically look
for images and figures in the output directory, so long as you do not use the
\graphicspath command outside the preamble.??

It is also possible to change the working directory from within Python code,
via os.chdir ().

4 depythontex

PythonTEX can greatly simplify the creation of documents. At the same time, by
introducing dependence on non-I#TEX external tools, it can constrain how these
documents are used. For example, many publishers will not accept I TEX docu-
ments that require special packages or need special macros. To address this issue,
the package includes a feature called depythontex that can convert a PythonTEX
document into a plain B TEX document.

4.1 Preparing a document that will be converted

The conversion process should work flawlessly in most cases, with no special for-
matting required.
For best results, keep the following in mind.

e The PythonTEX package should have its own \usepackage.

e Currently, depythontex only supports the standard PythonTEX commands
and environments. Support for user-defined commands and environments
that incorporate PythonTEX is planned for a future release.

22graphicx looks for graphics in the document root directory and in the most recent graph-
ics path defined by \graphicspath. \graphicspath stores the graphics path in \Ginput@path,
overwriting any previous value. At the end of the preamble, PythonTEX appends the output
directory to \Ginput@path. Thus, that directory will always be checked for graphics, so long
as \Ginput@path is not overwritten by a subsequent use of \graphicspath. If you need to use
\graphicspath within the document, you could consider creating a custom version that redefines
\Ginput@path with the PythonTEX output directory automatically appended.

34

e If you need to insert content from Python in inline contexts, it is best to
use \py or an equivalent command. If you use print, either directly (for
example, from within \pyc) or via \printpythontex, make sure that the
spacing following the printed content is correct. You may need to print
an \endinput or % at the end of your content to prevent an extra trailing
space. depythontex will attempt to reproduce the spacing of the original
document, even if it is not ideal. See Section 4.3 for additional details.

e Some HTEX environments, such as the verbatim environment from the
verbatim package and the Verbatim environment from fancyvrb, do not al-
low text to follow the \end{(environment)}. If you bring Python-generated
content that ends with one of these environments into your document, using
print or \py, make sure that the end-of-environment command is followed
by a newline. For example, if you are assembling a Verbatim environment
to bring in, the last line should be the string

’\\end{Verbatim}\n’

Even if you neglect a final newline, depythontex will still function correctly
in most cases. Whenever Python-generated content does not end with a
newline, depythontex usually inserts one and gobbles spaces that follow
the environment. This preserves the correct spacing while avoiding any
issues produced by an end-of-environment command. But in some cases,
depythontex cannot do this. For example, if \py is used to bring in a
Verbatim environment, and there is text immediately after the \py, without
any intervening space, depythontex cannot substitute a newline for spaces,
because there are none. Because of the way that print and \py content is
brought in, everything may still work correctly in the original PythonTEX
document. But it would fail in the depythontex output.

e Do not create PythonTEX commands or environments on the Python side
and print or otherwise bring them in. That is too many levels of complexity!

e depythontex is only designed to replace PythonTEX commands and envi-
ronments that are actually in the main document file. Do not bring in
anything that contains PythonTEX commands or environments via \input,
\include, or \usepackage. The only exception is PythonTEX commands
and environments that do not typeset anything (for example, code environ-
ments that don’t print). If these are brought in via a package or external file,
the command \Depythontex0ff must come before them, and they must be
followed by the command \DepythontexOn. Basically, depythontex must
be disabled for commands and environments brought in via external files.
This works so long as the commands and environments only provide code
and settings, rather than any typeset content.

Tools for automatically removing the \usepackage for packages that contain
PythonTEX commands will be added soon; for now, these \usepackage’s
must be removed manually in the depythontex output.

35

e Keep in mind that the file produced by depythontex will need to include
any graphics that you create with PythonTEX. Make sure any graphics are
saved in a location where they are easily accessible.

4.2 Removing PythonTEX dependence

Converting a document requires three steps.

1. Turn on the package option depythontex. Then compile the document,
run pythontex.py, and compile the document again. Depending on the
document, additional compiles may be necessary (for example, to resolve
references). Any syntax highlighting will be turned off automatically during
this process, to remove dependence on Pygments.

During compilation, an auxiliary file called (jobname).depytx is created.
This file contains information about the location of the PythonTEX com-
mands and environments that need to be replaced, and about the content
with which they are to be replaced.

2. Run the depythontex.py script. This takes the following arguments.

e --encoding ENCODING This is the encoding of the ITEX file and all
related files. If an encoding is not specified, UTF-8 is assumed.

e —-overwrite This turns off the user prompt in the event that a file
already exists with the output name, making overwriting automatic.

e --listing This option specifies the commands and environments that
are used for any typeset code. This can be verbatim, fancyvrb,
listings, minted, or pythontex.?® verbatim is used by default. An
appropriate \usepackage command is automatically added to the out-
put document’s preamble.

When code is typeset with any option other than verba