
Using FAUST with ROS
(version 0.0.09)

GRAME
Centre National de Création Musicale

December 2014

2

Contents

1 Introduction 5

1.1 FAUST . 5

1.1.1 Design Principles . 5

1.1.2 Signal Processor Semantic . 6

1.2 ROS . 6

1.2.1 What is it ? . 6

1.2.2 Concepts . 7

1.3 Using FAUST with ROS . 9

1.4 Audio Server . 10

1.5 Installation . 10

1.5.1 FAUST . 10

1.5.2 ROS . 10

1.5.3 Jack . 10

2 Compiling a FAUST Program for ROS Use 11

2.1 How does it work ? . 11

2.1.1 Different steps . 11

2.1.2 With an example . 12

2.2 Compiling in a FAUST Archive . 13

2.3 Compiling in a Workspace . 14

2.4 Example . 14

3 Using FAUST Nodes 15

3.1 Run the Master . 15

3.2 Run a FAUST Node . 16

3.3 To Which Topics is a FAUST Node Subscribing ? 16

3.4 How to Escape from a Running Node ? . 18

3

4 CONTENTS

4 Metadata 19

4.1 DSP writing . 19

4.2 Compilation . 20

4.3 Run . 20

5 Common Error Messages 21

5.1 The command does not output anything 21

5.2 No such file or directory . 21

5.3 [rosrun] error . 21

6 Cheat Sheet 23

7 Tutorials 25

7.1 DSP File . 25

7.2 Compilation . 26

7.2.1 If you installed FAUST on your machine 26

7.2.2 With FaustLive . 26

7.2.3 With the online compiler . 26

7.3 Run . 27

7.3.1 Use . 27

7.4 ROS tips . 28

7.4.1 How to create a ROS workspace ? 28

7.4.2 How to make your workspace ? . 28

7.4.3 How to source a workspace ? . 28

Chapter 1

Introduction

If you wanted to add some sound to your robot, or if you wanted to use your sound ap-
plications on a robot, it is now possible with FAUST and the faust2ros and faust2rosgtk
commands.
FAUST (Functional Audio Stream) is a functional programming language specifically
designed for real-time signal processing and synthesis. FAUST targets high-performance
signal processing applications and audio plug-ins for a variety of platforms and stan-
dards.
ROS (Robot Operating System) is a flexible framework for robot software writing. It
is a collection of tools, libraries, and conventions that aim to simplify the task of cre-
ating complex and robust robot behavior across a wide variety of robotic platforms.

1.1 FAUST

1.1.1 Design Principles

Various principles have guided the design of FAUST:

• FAUST is a specification language. It aims at providing an adequate notation to
describe signal processors from a mathematical point of view. FAUST is, as much
as possible, free from implementation details.

• FAUST programs are fully compiled, not interpreted. The compiler translates
FAUST programs into equivalent C++ programs taking care of generating the
most efficient code. The result can generally compete with, and sometimes even
outperform, C++ code written by seasoned programmers.

• The generated code works at the sample level. It is therefore suited to imple-
ment low-level DSP functions like recursive filters. Moreover the code can be
easily embedded. It is self-contained and doesn’t depend of any DSP library or
runtime system. It has a very deterministic behavior and a constant memory
footprint.

5

6 CHAPTER 1. INTRODUCTION

• The semantic of FAUST is simple and well defined. This is not just of academic
interest. It allows the FAUST compiler to be semantically driven. Instead of
compiling a program literally, it compiles the mathematical function it denotes.
This feature is useful for example to promote components reuse while preserv-
ing optimal performance.

• FAUST is a textual language but nevertheless block-diagram oriented. It ac-
tually combines two approaches: functional programming and algebraic block-
diagrams. The key idea is to view block-diagram construction as function com-
position. For that purpose, FAUST relies on a block-diagram algebra of five com-
position operations (: , ~ <: :>).

• Thanks to the notion of architecture, FAUST programs can be easily deployed
on a large variety of audio platforms and plugin formats without any change to
the FAUST code.

1.1.2 Signal Processor Semantic

A FAUST program describes a signal processor. The role of a signal processor is to trans-
form a group of (possibly empty) input signals in order to produce a group of (possi-
bly empty) output signals. Most audio equipments can be modeled as signal processors.
They have audio inputs, audio outputs as well as control signals interfaced with slid-
ers, knobs, vu-meters, etc...

For more informations about FAUST, please see faust-quick-reference.pdf and the tuto-
rials in FAUST documentation.

1.2 ROS

1.2.1 What is it ?

Creating truly robust, general-purpose robot software is hard. From the robot’s per-
This section’s content (1.2

ROS) is taken from ROS
documentation. It can be

found on ROS official
website and ROS wiki.

spective, problems that seem trivial to humans often vary wildly between instances
of tasks and environments. Dealing with these variations is so hard that no single
individual, laboratory, or institution can hope to do it on their own.

ROS is an open-source, meta-operating system for your robot. It provides the ser-
vices you would expect from an operating system, including hardware abstraction,
low-level device control, implementation of commonly-used functionality, message-
passing between processes, and package management. It also provides tools and li-
braries for obtaining, building, writing, and running code across multiple computers.

As a result, ROS was built from the ground up to encourage collaborative robotics
software development. For example, one laboratory might have experts in mapping
indoor environments, and could contribute a world-class system for producing maps.
Another group might have experts at using maps to navigate, and yet another group
might have discovered a computer vision approach that works well for recognizing

http://www.ros.org
http://www.ros.org
http://www.wiki.ros.org

1.2. ROS 7

small objects in clutter. ROS was designed specifically for groups like these to collab-
orate and build upon each other’s work, as is described throughout this site.

1.2.2 Concepts

Filesystem level

The filesystem level concepts mainly cover ROS resources that you encounter on disk,
such as:

• Packages are the main unit for organizing software in ROS. A package may con-
tain ROS runtime processes (nodes), a ROS-dependent library, datasets, config-
uration files, or anything else that is usefully organized together. Packages are
the most atomic build item and release item in ROS. Meaning that the most
granular thing you can build and release is a package.

• Metapackages are specialized Packages which only serve to represent a group
of related other packages.

• Services : Service descriptions, stored in my_package/srv/MyServiceType.srv,
define the request and response data structures for services in ROS.

• Messages : Message descriptions, stored in my_package/msg/MyMessageType.msg,
define the data structures for messages sent in ROS.

Computation Graph level

The Computation Graph is the peer-to-peer network of ROS processes that are pro-
cessing data together. The basic Computation Graph concepts of ROS are nodes,
Master, Parameter Server, messages, services, topics, and bags, all of which provide
data to the Graph in different ways.

• Master : The ROS Master provides name registration and lookup to the rest
of the Computation Graph. Without the Master, nodes would not be able to
find each other, exchange messages, or invoke services.

• Nodes : Nodes are processes that perform computation. ROS is designed to be
modular at a fine-grained scale; a robot control system usually comprises many
nodes. For example, one node controls a laser range-finder, one node controls
the wheel motors, one node performs localization, one node performs path
planning, one Node provides a graphical view of the system, and so on. A ROS
node is written with the use of a ROS client library, such as roscpp or rospy.

• Topics : Messages are routed via a transport system with publish / subscribe
semantics. A node sends out a message by publishing it to a given topic. The
topic is a name that is used to identify the content of the message. A node that
is interested in a certain kind of data will subscribe to the appropriate topic.
There may be multiple concurrent publishers and subscribers for a single topic,
and a single node may publish and/or subscribe to multiple topics. In general,

http://wiki.ros.org/Services
http://wiki.ros.org/Messages
http://wiki.ros.org/Client%20Libraries
http://wiki.ros.org/roscpp
http://wiki.ros.org/rospy
http://wiki.ros.org/Topics

8 CHAPTER 1. INTRODUCTION

publishers and subscribers are not aware of each others’ existence. The idea is
to decouple the production of information from its consumption. Logically,
one can think of a topic as a strongly typed message bus. Each bus has a name,
and anyone can connect to the bus to send or receive messages as long as they
are the right type.

• The Parameter Server : The Parameter Server allows data to be stored by key
in a central location. It is currently part of the Master.

• Messages : Nodes communicate with each other by passing messages. A mes-
sage is simply a data structure, comprising typed fields. Standard primitive
types (integer, floating point, boolean, etc.) are supported, as are arrays of prim-
itive types. Messages can include arbitrarily nested structures and arrays (much
like C structures).

Node 1

Node 2

Topic 1

Topic 2

Node 3

Node 4

publication

publica
tio

n

publica
tio

n

subscription

subscription subscription

MASTER

Figure 1.1: ROS Concepts in a Diagram

Names

Names are really important in ROS. Valid names have these characteristics :

• first chararacter is an alpha character : [a-z][A-Z]

• subsequent characters can be alphanumeric : [a-z][A-Z][0-9], underscores : _
or forward slash : /

• there is at most one forward slash : /

For more informations on ROS and tutorials, please have a look to the website :
www.wiki.ros.org.

http://wiki.ros.org/Messages
www.wiki.ros.org

1.3. USING FAUST WITH ROS 9

1.3 Using FAUST with ROS

The idea of using FAUST modules with ROS could be summed up in the following
diagrams.

.dsp file
FAUST

compiler

architecture file

FAUST part

.cpp file catkin
ROS

executable

ROS part

Figure 1.2: Compilation process

As shown on figure 1.2, the dsp file is compiled into a C++ file thanks to the FAUST
compiler. Then, the C++ file can be compiled with catkin in a ROS package to create
a ROS executable, that you can run with rosrun.

Robot Node
(sends sensor data) A Topic

An other Topic
FAUST Node

(sets audio
parameters with

messages contents)

publishes messages

publishes
other messages

is subscribed

is subscribed

Figure 1.3: Robot using FAUST

Once the executables coming from DSP files compiled, you can run and combine
them with robotic applications (figure 1.3).

10 CHAPTER 1. INTRODUCTION

1.4 Audio Server

FAUST applications use the jack audio server. Make sure it is installed on your ma-
chine.

ROS: processing
and interface

jack : audio server

Node 1

ROS: processing
and interface

jack : audio server

Node 2nodes parameters
through topics

audio datas

Figure 1.4: APIs used by FAUST nodes

1.5 Installation

1.5.1 FAUST

You can get FAUST on the FAUST website : faust.grame.fr. Either get it on the Source
Forge Project, or browse the FAUST’s git repository. You also can download the
ubuntu package directly by typing : sudo apt-get install faust (probably an
outdated version).

1.5.2 ROS

A ROS installation guide can be found on the ROS website.

1.5.3 Jack

A Jack installation layout can be found on Jack’s github’s page. You can download it
as an Ubuntu package by typing : sudo apt-get install jackd2.

http://faust.grame.fr/index.php/downloads
https://sourceforge.net/projects/faudiostream/files/
https://sourceforge.net/projects/faudiostream/files/
https://sourceforge.net/p/faudiostream/_list/git
http://wiki.ros.org/indigo/Installation/Ubuntu
https://github.com/jackaudio/jackaudio.github.com/wiki/InstallationLayout

Chapter 2

Compiling a FAUST
Program for ROS Use

To compile a FAUST program for a ROS use, you can use either the faust2ros com-
mand, or the faust2rosgtk one, which adds a gtk graphic user interface to the simple
faust2ros command. Note that all the FAUST compilation options remain.

Comment : The compilation can last between 10 and 20 seconds. This is com-
pletely normal ! The bash script includes some ROS compilation with catkin_make.

BE CAREFUL ! To run these commands, you need to have ROS installed on your
machine. They are indeed using catkin_make and rosrun, which are ROS com-
mands.

2.1 How does it work ?

faust2ros (or faust2rosgtk) is a small command, which hides a lot of things. This
section aims for a clarification.

2.1.1 Different steps

Step 1. Workspace Creation : if asked, a workspace can be created if it does not al-
ready exist. A workspace is considered as a ROS workspace if it contains a
non-writable CMakeLists.txt in its src folder. If the user wants to get a .zip
file, a temporary workspace is created.

Step 2. First compilation : the .dsp file is compiled a first time thanks to the FAUST
compiler and the ros-callbacks.cpp architecture file. This step is dedicated to
the ROS metadata. The C++ file is then compiled into an executable thanks
to catkin, which uses CMake.

11

12 CHAPTER 2. COMPILING A FAUST PROGRAM FOR ROS USE

Step 3. Second compilation : the .dsp file is compiled again, thanks to the FAUST
compiler and the jack-ros.cpp architecture file (respectively jack-gtk-ros.cpp).
This step creates the ROS code, with a missing class. This class is then included
with the execution of the previous executable, and the C++file can be compiled
with catkin.

Step 4. Cleaning : the package is compressed into a .zip archive and the temporary
folder deleted.

2.1.2 With an example

Let’s imagine that I want to compile the harpe.dsp file. There are three parameters
that can be changed : attenuation, hand and level. I want hand to be controlled
through a topic called /my/robot/topic. This topic is going to deliver messages of
type std_msgs/Int64.
My metadata declaration line will look like [ros:/my/robot/topic std_msgs Int64
data]. The second compilation (step 3 below in subsection 2.1.1) will add a class

called RosCallbacks in which are :

• a ranging function, that re-scales values from the topic to fit with the FAUST
sliders scale.

• a specific callback, called callback0, which sets the audio parameter value to the
message value :

void callback0(const std_msgs :: Int64ConstPtr& msg ,
FAUSTFLOAT* zone)

• a subscribing function, which calls callback0 in the ROS way :

void Subscribe(std::vector <FAUSTFLOAT*> zones)
{
ros:: Subscriber* my_sub0 = new ros:: Subscriber ();
*my_sub0 = nh_.subscribe <std_msgs ::Int64 >("my/robot/

topic", 1, boost ::bind(& RosCallbacks ::callback0 ,
this , _1, zones [0]));

}

2.2. COMPILING IN A FAUST ARCHIVE 13

2.2 Compiling in a FAUST Archive

In order to compile a DSP file into a FAUST archive, just type the command followed
by your file :

faust2ros file.dsp

It should output :

file.zip;

and the resulting file.zip folder should contain a package called file, which con-
tains a .cpp file corresponding to the DSP file.

If the DSP file is not in the current directory, make sure to type the right path. For
instance :

faust2ros ~/faust/examples/myfile.dsp

Comments:

• If you want to use the faust2rosgtk command, the output will have a _gtk
extension. For instance :

faust2rosgtk file.dsp

should output :

file_gtk.zip;

• The zip file is located in the current directory.

14 CHAPTER 2. COMPILING A FAUST PROGRAM FOR ROS USE

2.3 Compiling in a Workspace

Thanks to the option -install, you have the possibility to create a package from
your DSP file directly in a workspace you choose. Just type :

faust2ros -install faust_ws file.dsp

It should output :

file.cpp;

and you should have a faust_ws repository looking like this :

faust_ws
build
devel
src

file : File Package
include
src

file.cpp : File generated with the Faust compiler
CMakeLists.txt
package.xml

2.4 Example

Here is an example of a three files compilation.

Input :

faust2rosgtk -install foo_ws -o foo1 file1.dsp
-install foo_ws -o foo2 file2.dsp
-install bar_ws -o bar file3.dsp

Output :

˜
foo_ws

foo1
foo2

bar_ws
bar

Chapter 3

Using FAUST Nodes

Once your DSP files are compiled into ROS executables, you can run them into a
ROS master.

3.1 Run the Master

A FAUST node needs a master to run. You can check if a master is already running
by typing :

rostopic list

Then, there are two possibilities :

• either you get the following message :

ERROR: Unable to communicate with master!

which means there is no master running

• or you get :

/rosout
/rosout_agg

which means a master is already running.

To run a master, you have to type the following command :

roscore

15

16 CHAPTER 3. USING FAUST NODES

3.2 Run a FAUST Node

Now that your master is running, you can run your FAUST node. It is quite simple.
Type :

rosrun mynodepackage mynode

For instance, if your node name is foo, then type :

rosrun foo foo

If you get an error message looking like this :

[rosrun] Couldn ’t find executable named foo below /path/
to/myworkspace/src/foo

then refer to section 5.3

3.3 To Which Topics is a FAUST Node Subscribing ?

Once your FAUST node is running, it automatically subscribes to topics correspond-
ing to the parameters you can modify, and to the widgets the gtk graphic interface has.
For instance, if you use a FAUST node generated from the noise.dsp file (in the exam-
ples directory), the noise_gtk node will subscribe to the topic noise_gtk/Volume
and the graphic interface will look like this :

Figure 3.1: noise_gtk graphic interface

3.3. TO WHICH TOPICS IS A FAUST NODE SUBSCRIBING ? 17

A more complex example like the harpe.dsp file, which contains three widgets, can
generate several topics to subscribe to :

/harpe_gtk/attenuation
/harpe_gtk/hand
/harpe_gtk/level

and the graphic interface can look like this :

Figure 3.2: harpe_gtk graphic interface

If you want to change the topic name, just remap them while running your node :

rosrun myfaustpackage myfaustnode /topicname :=/
newtopicname

For instance, to remap the /harpe/hand topic to /play, then run the harpe node like
this :

rosrun harpe harpe /harpe/hand :=/ play

Comment: The FAUST nodes subscribe to topics using std_msgs message types.
Depending on the widgets you use, you can subscribe to default topics using either
Float32 or Bool messages.

Widget Message type
Button std_msgs/Bool

Check Button std_msgs/Bool
Slider std_msgs/Float32

Num. Entry std_msgs/Float32

18 CHAPTER 3. USING FAUST NODES

3.4 How to Escape from a Running Node ?

To close a node running in ROS, you have two possibilities, depending on the graphic
interface :

• If your node has a graphic interface, then quit by clicking on the red cross in
the corner of the window.

• If your node does not have any graphic interface, then quit by typing Ctrl+C
in the node’s terminal window.

Chapter 4

Metadata

You might not want to use the float or bool standard messages for your topic, and
compile the dsp file directly with the right topic name. In order to accomplish this,
you can use ROS metadata.

4.1 DSP writing

It all starts in the widgets definition. Until now, maybe that you only wrote :

param = hslider("level", etc);

To use ROS metadata, you simply have to add square brackets with your topic param-
eters :

param = hslider("level [ros:/my/topic/name msg_type
msg_name field_name]", etc);

As an example, if you intend to use integers in a foo/bar/baz topic, you can type :

param = hslider("level [foo/bar/baz std_msgs Int32 data]
", etc);

And if you intend to use the y field of a Point32 geometry_msg, then type :

param = hslider("level [foo/bar/baz geometry_msgs
Point32 y]", etc);

You can also add the minimal and maximal values of the signal (4.1 and 9.3 for in-
stance) by adding in the metadata declaration :

param = hslider("level [foo/bar/baz std_msgs Int32 data
4.1 9.3]", etc);

BE CAREFUL ! The minimal and maximal values must be floats ! Otherwise,
compilation fails.

19

20 CHAPTER 4. METADATA

4.2 Compilation

To compile your dsp file, just do like you used to do before to find out this wonderful
chapter about metadata : faust2ros or faust2rosgtk. It will add a RosCallbacks
class in your C++ file, containing specific callbacks.

Comment : Even without any declared ROS metadata, a rosCallbacks class is cre-
ated, but it does not contain any callback implementation. It is just an empty class.

You can then build your executable using catkin_make.

4.3 Run

To run your node, just do as usual, using rosrun or a launch file you wrote. The
FAUST node creates two kinds of topics :

• Default topics, using Float32 and Bool standard messages

• Customized topics, created from ROS metadata.

Chapter 5

Common Error Messages

Compiling can fail. Here are some common mistakes and how to solve them.

5.1 The command does not output anything

If, after typing your command followed by a file name, your terminal does not output
anything like myfile.zip; or myfile.cpp; and returns only a blank line, make sure
you are in the correct directory or you entered the correct path to reach the DSP
file.

5.2 No such file or directory

If you used the -install option, make sure you typed the complete workspace path.
For instance, instead of typing this :

faust2ros -install myworkspace ~/path/to/myfile.dsp

you should type :

faust2ros -install path/to/myworkspace ~/path/to/myfile.
dsp

5.3 [rosrun] error

If, while trying to run a FAUST node (called myname), an error message showed up
saying :

[rosrun] Couldn ’t find executable named myname below /
path/to/myworkspace/src/myname

Then you have to source your workspace :

21

22 CHAPTER 5. COMMON ERROR MESSAGES

• If your workspace is only a test workspace, then type :

source path/to/myworkspace/devel/setup.bash

in your terminal.

• If your workspace is going to be your current ROS workspace, you can add it to
the source directories :

echo "source path/to/myworkspace/devel/setup.bash" >>
~/. bashrc

Chapter 6

Cheat Sheet

Compilation

faust2ros compile a .dsp file
faust2rosgtk compile a .dsp file with a GTK graphic interface

Options
-install installation in a specified workspace
-o rename the executable

Example
faust2ros -install ~/catkin_ws -o harpe4ros ~/dsp/harpe.dsp

Run

rosrun harpe4ros harpe4ros run the executable harpe4ros

Metadata

[ros:/my/topic msg_type msg_name msg_field]
[ros:/my/topic msg_type msg_name msg_field min_value max_value]

23

24 CHAPTER 6. CHEAT SHEET

Chapter 7

Tutorials

This tutorial will teach you how to use FAUST with ROS through the turtlesim pack-
age.

7.1 DSP File

Copy the following code into a text file and save it as roscillator.dsp.

declare name "roscillator";
declare version "1.0";
declare author "Grame";
declare license "BSD";
declare copyright "(c)GRAME 2009";

// ---
// Sinusoidal Oscillator
// ---

import("music.lib");

smooth(c) = *(1-c) : +~*(c);
vol = hslider("volume [unit:dB][ros:/ turtle1/pose

turtlesim Pose x 0.0 11.0]", 0, -96, -96, 0.1) :
db2linear : smooth (0.999) ;

freq = hslider("freq [unit:Hz][ros:/ turtle1/pose
turtlesim Pose y 0.0 11.0]", 1000, 20, 24000, 1);

process = vgroup("Oscillator", osc(freq) * vol);

25

26 CHAPTER 7. TUTORIALS

7.2 Compilation

7.2.1 If you installed FAUST on your machine

In a terminal, type :

faust2rosgtk -install ~/ catkin_ws ~/path/to/roscillator.
dsp

The compilation can take between 10 and 15 seconds. Then, go in your workspace’s
root and source the setup file (see section 7.4)

7.2.2 With FaustLive

FaustLive is available on Source Forge. Once FaustLive installed, launch it.
Choose Open your File.dsp and select roscillator.dsp. The file will be com-
piled and executed. To export it, clic on Window/Export As... or press Ctrl+P.
The Export Manager window should be opened.

Figure 7.1: FaustLive Export Manager

Select ros as platform, ros-jack-gtk as architecture, and binary.zip as binary.
Then click on Export, and Save.
Unzip your package in your current ROS workspace, and make your workspace with
catkin_make, and source it (see the ROS tips in section 7.4).

7.2.3 With the online compiler

The online compiler is available on the FAUST Website. In Faust Code tab, drop
your roscillator.dsp file. In the Exec File tab, choose Ros ros-jack-gtk as archi-
tecture, and click on Download the executable file.
Unzip your package in your current ROS workspace, make your workspace with
catkin_make, and source it (see the ROS tips in section 7.4).

https://sourceforge.net/projects/faudiostream/files/
http://faust.grame.fr/index.php/online-examples

7.3. RUN 27

7.3 Run

In a terminal, run the master :

roscore

In two new terminals, run the turtlesim node and the teleop_key node :

rosrun turtlesim turtlesim_node

rosrun turtlesim turtle_teleop_key

In a fourth (and last) terminal, run your FAUST node :

rosrun roscillator_gtk roscillator_gtk

You should have four open terminals, a turtle window, and a FAUST window.

Figure 7.2: Screenshot with the four open terminals

7.3.1 Use

To move your turtle, go back on the teleop_key terminal and use your arrow keys.

28 CHAPTER 7. TUTORIALS

7.4 ROS tips

7.4.1 How to create a ROS workspace ?

mkdir -p ~/ catkin_ws/src
cd ~/ catkin_ws/src
catkin_init_workspace

7.4.2 How to make your workspace ?

cd ~/ catkin_ws
catkin_make

7.4.3 How to source a workspace ?

cd ~/ catkin_ws
source devel/setup.bash

	Introduction
	FAUST
	Design Principles
	Signal Processor Semantic

	ROS
	What is it ?
	Concepts

	Using FAUST with ROS
	Audio Server
	Installation
	FAUST
	ROS
	Jack

	Compiling a FAUST Program for ROS Use
	How does it work ?
	Different steps
	With an example

	Compiling in a FAUST Archive
	Compiling in a Workspace
	Example

	Using FAUST Nodes
	Run the Master
	Run a FAUST Node
	To Which Topics is a FAUST Node Subscribing ?
	How to Escape from a Running Node ?

	Metadata
	DSP writing
	Compilation
	Run

	Common Error Messages
	The command does not output anything
	No such file or directory
	[rosrun] error

	Cheat Sheet
	Tutorials
	DSP File
	Compilation
	If you installed FAUST on your machine
	With FaustLive
	With the online compiler

	Run
	Use

	ROS tips
	How to create a ROS workspace ?
	How to make your workspace ?
	How to source a workspace ?

