The Graph — Governance Upgrade
Audit

APRIL 2

RITY AUDITS | BY

/7

The Graph

Governance upgrade

Z Openzeppelin | securit:

Introduction

The Graph team asked us to audit a new set of contracts that should enhance the existing governance
system by enabling the storage of proposal outcomes and votes to better address traceability and
provide a trustful source of information regarding protocol proposals.

The pull request that we have audited is the PR#362
d51553b3d70c61108852f0F feled249254c91e9a and the audited files are the following:

at commit

contracts/governance/GraphGovernance . sol
contracts/governance/GraphGovernanceStorage . sol

contracts/governance/IGraphGovernance. sol

Overview

The introduced changes are modular and consist of one main GraphGovernance contract.

‘This contract will be governed by The Graph muli-sig and will be upgradeable using the protocol
upgradeability pattern. It exposes two functions, the createProposal. function that gives the possibility

tostorea Proposal inamapping, and an updateProposal. function that also gives the chance to

update an existing proposal.

Each proposal is stored as a struct and can be looked up by the IPFS hash of its contentina bytes32

mapping. The struct data is composed of the Proposal's votes and resolution,

Summary

We are happy to see that the proposed code is clear and modular to enhance the protocol functionalities.
We must note that the PR in question s still not merged; we assume that The Graph team will merge the
code as itis and that no other bugs are introduced in later changes. Two auditors have audited the code
over three days, with the findings presented below.

Update: All of the following issues have been either fixed or acknowledged by the Graph team. Our

analysis of the mitigations s limited to the specific changes made to cover the issues, and disregards all
other unrelated changes in the codebase.

Critical Severity
None
High Severity

None.
Medium Severity

[M01] Lack of event emission after sensitive action

The _initialize function of the Governed contract does not emit the NewOwnership event after
setting the value of the governor to be the _initGovernor

Consider emitting events after sensitive changes occur to facilitate tracking and notify off-chain clients
following the contracts’ activity.

Update: Fixed in PRA62 at commit 17

78d12430824£36106539348a79ebf

[M02] Proposal’s update can assume prior states

The up
or the resolution of a proposal,

steProposal function of the GraphGovernance contract is designed to update either the votes

‘The function is not checking whether the new parameters for the proposal, passed as input values, are

different from those stored in the proposal's mapping, or even if they have been used previously.

Specifically, the _votes parameter can be reused multiple times. Even if _votes is an IPFS hash of a
collection of signatures for each vote for the _proposal1d , this doesn't amount to a replay vulnerabiliy.
However, the fact that the updateProposal function call is revisiting prior data may lead to confusion.

Even worse, a proposal's resolution can be changed from Accepted to Rejected and vice versa as
many times as this function is called.

Whether this is a design choice or an unexpected outcome, consider either properly documenting this
design choice or avoiding having a non-permanent or repetitive resolution on a specific proposal.

Moreover, consider adding some checks to verify that the values passed as input parameters are
different from the stored or previously referenced data

Update: Fixed in PRA63 at commit 84 fbbeSacaf 777879258ef 3ae30d7

describing the consequences of this design choice were added.
Low Severity

[LO1] Lack of input validation

The initialize function of the GraphGovernance contract s not validating the input parameter passed

in.

Consider adding proper checks to determine if the zero address is passed as an input parameter to avoid
mistakenly setting the governor to a null address.

Update: Fixed in PRA63 at commit £01518d1b669ae

[L02] Lack of docstrings

The IraphGovernance interface, as well as the ProposalCreated and ProposalUpdated events, are

lacking documentation in the form of docstrings or comments.

Inthe GraphGovernance contract, there is no documentation specifying which encoding or
representation the parameters taking on IPFS hash values realize.

Consider thoroughly documenting all events and files in the codebase. When writing docstrings, consider
following the Ethereum Natural Specification Format (NatSpec)

Update: Fixed in PRAG3 at commit e3cdSe3589:

cabbbc794b87498c4¢

Notes & Additional Information

[NO1] Lack of indexed parameters in events

The ProposalCreated and ProposalUpdated events of the GraphGovernance contract are lacking

indexed parameters.

Consider indexing event parameters to avoid hindering the task of off-chain services searching and
filtering for specific events.

Update: Fixed in PRA63 at commit

[NO02] Useless event parameter

ed and Propo:

Updated events of the GraphGovernance contract are emitting the

address of the msg.sender as the first parameter.

The functions emitting those events are only callable by the governor due to the onlyGovernor
modifier. For this reason, there is no way that the msg. sender can be different at some point.

Since it can be known beforehand who the msg. sender is when emitting such events, consider removing

this parameter from the event definitions and emissions.

3 at commit b1439

080623

af8cf753c358

Update: Fixed in PR

Conclusions

2 Medium and other lower severity issues were found with changes recommended to improve the
codebase.

