


The Graph team asked us to review some incremental improvements to their protocol. We looked at the
code and now publish our results. 

Scope
We audited two pull requests in the core contracts repository:

Pull Request 485 up to commit 94b84643.

Pull Request 486 up to commit 3ae5d6c9.

The scope includes all modifications to Solidity files within these pull requests. We also reviewed related
parts of the existing code base to the extent that additional context was necessary to understand the
modifications under audit. All other code and contract dependencies were assumed to work as
documented.

System Overview
The Graph Name System (GNS) provides a mechanism for translating subgraph names into subgraph
versions, so the details of a subgraph can change while the human-readable name remains stable. It
also incentivizes a curation mechanism where users can signal their belief in the importance of a
subgraph by exchanging Graph Tokens for subgraph-specific credits.

The modifications we reviewed included adding multicall functionality to the GNS contract so that
multiple operations can be executed atomically. A motivating example is to allow subgraph owners to
signal their subgraph on deployment, without the possibility of their signal transaction being front-run.
We also reviewed a refactoring operation that simplifies the internal accounting.

Privileged Roles and Trust Assumptions
The GNS contract has an administrator role that can upgrade the functionality arbitrarily. Therefore,
users must rely on the governance structure to use this power fairly and wisely.

Here we present our findings.

Critical Severity
None.

• 

• 



High Severity
None.

Medium Severity

[M01] GNS update edge cases

Pull Request 486 is intended to replace complex bonding curve calculations with a simple expression for
the particular case that is actually used. This should be a pure refactor, where the functionality remains
the same. However, there are some discrepancies that should be noted:

In the vSignalToNSignal function

the original code would revert if the supply is zero, while the new code returns zero.

In the nSignalToVSignal function

the original code would revert with "invalid parameters" if the supply is zero, while the
new code attempts to divide by zero, which would produce a generic SafeMath revert.

the original code would revert if the reserve balance is zero, while the new code returns
zero.

the original code would revert if the amount to sell exceeds the supply, while the new
code simply returns more than the vSignal.

the original code returns the entire reserve balance if the sell amount matches the supply.
The new code should calculate the same value, unless the initial multiplication overflows.

Consider validating that the new behavior is acceptable. Additionally, consider expanding the coverage
of unit tests to ensure they cover all edge cases.

Low Severity
None.

• 

◦ 

• 

◦ 

◦ 

◦ 

◦ 



Notes & Additional Information

[N01] Bypassing zero-transfer events

Pull request 485 is intended to support multi-call transactions. It should be noted that it also introduces
a side-effect in the GNS contract. Instead of executing direct ERC20 transfers, the contract now uses the
functions in the TokenUtils library. This library bypasses zero-value transfers, and therefore does not
emit the associated Transfer events. We simply note this because it's an unexpected side-effect and it
introduces the possibility that some GNS events are no longer matched with a corresponding Transfer
event.

[N02] Inconsistent Filenames

The Multicall contract and its interface are defined in the MultiCall.sol and IMultiCall.sol files
respectively. Consider ensuring the file names match the contract and interface names, including
matching capitalization.

Conclusions
No critical or high severity issues have been found. Recommendations and fixes have been proposed to
increase code quality, improve readability, and minimize errors.


