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the parallel hashmap

(or Abseiling from the shoulders of giants)

(c) Gregory Popovitch - 2/28/2019

[tl;dr] built on top of Abseil’s flat_hash_map, the parallel flat_hash_map is more memory friendly, and
can be used from multiple threads with high levels of concurrency

A quick look at the current state of the art

If you haven’t been living under a rock, you know that Google open sourced late last year their Abseil
library, which includes a very efficient flat hash table implementation. The absl::flat_hash_map stores
the values directly in a memory array, which avoids memory indirections (this is referred to as closed
hashing).

closed_hashing

Using parallel SSE2 instructions, the flat hash table is able to look up items by checking 16 slots in
parallel, which allows the implementation to remain fast even when the table is filled to 87.5% capacity.

The graphs below show a comparison of time and memory usage necessary to insert up to 100 million
values (each value is composed of two 8-byte integers), between the default hashmap of Visual Studio
2017 (std::unordered_map), and Abseil’s flat_hast_map:
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On the bottom graph, we can see that, as expected, the Abseil flat_hash_map is significantly faster that
the default stl implementation, typycally about three times faster.

Peak memory usage: the issue

The top graph shown the memory usage for both tables.

I used a separate thread to monitor the memory usage, which allows to track the increased memory
usage when the table resizes. Indeed, both tables have a peak memory usage that is significantly higher
than the memory usage seen between insertions.
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In the case of Abseil’s flat_hash_map, the values are stored directly in a memory array. The memory
usage is constant until the table needs to resize, which is what we see with these horizontal sections of
memory usage.

When the flat_hash_map reaches 87.5% occupancy, a new array of twice the size is allocated, the values
are moved (rehashed) from the smaller to the larger array, and then the smaller array, now empty, is
freed. So we see that during the resize, the occupancy is only one third of 87.5%, or 29.1%, and when
the smaller array is released, occupancy is half of 87.5% or 43.75%.

The default STL implementation is also subject to this higher peak memory usage, since it typically is
implemented with an array of buckets, each bucket having a pointers to a linked list of nodes containing
the values. In order to maintain O(1) lookups, the array of buckets also needs to be resized as the table
size grows, requiring a 3x temporary memory requirement for moving the old bucket array (1x) to the
newly allocated, larger (2x) array. In between the bucket array resizes, the default STL implementation
memory usage grows at a constant rate as new values are added to the linked lists.

This peak memory usage can be the limiting factor for large tables. Suppose you are on a machine with
32 GB of ram, and the flat_hash_map needs to resize when you inserted 10 GB of values in it. 10 GB
of values means the array size is 11.42 GB (resizing at 87.5% occupancy), and we need to allocate a new
array of double size (22.85 GB), which obviously will not be possible on our 32 GB machine.

For my work developing mechanical engineering software, this has kept me from using flat hash maps,
as the high peak memory usage was the limiting factor for the size of FE models which could be loaded
on a given machine. So I used other types of maps, such as sparsepp or Google’s cpp-btree.

When the Abseil library was open sourced, I started pondering the issue again. Compared to Google’s
old dense_hash_map which resized at 50% capacity, the new absl::flat_hash_map resizing at 87.5%
capacity was more memory friendly, but it still had those dreadful peaks of memory usage when resizing.

If only there was a way to eliminate those peaks, the flat_hash_map would be close to perfect. But how?

Peak memory usage: the solution

Suddenly, it hit me. I had a solution. I would create a hash table that internally is made of an array of
16 hash tables (the submaps). When inserting or looking up an item, the index of the target submap
would be decided by the hash of the value to insert. For example, if for a given size_t hashval, the
index for the inner submap would be computed with:

submap_index = (hashval ^ (hashval >> 4)) & 0xF;

providing an index between 0 and 15.

In the actual implementation, the size of the array of hash tables is configurable to a power
of two, so it can be 2, 4, 8, 16, 32, ... The following illustration shows a parallel_hash_map
with 8 submaps.
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The benefit of this approach would be that the internal tables would each resize on its own when they
reach 87.5% capacity, and since each table contains approximately one sixteenth of the values, the
memory usage peak would be only one sixteenth of the size we saw for the single flat_hash_map.

The rest of this article describes my implementation of this concept that I have done inside the Abseil
library (I have submitted a pull request in the hope it will be merged into the main Abseil codebase).
THe current name for it is parallel_flat_hash_map or parallel_flat_hash_set. It does provide
the same external API as Abseils other hash tables, and internally it uses a std::array of N flat_hash_maps.

I was delighted to find out that not only the parallel_flat_hash_map has significant memory usage ben-
efits compared to the flat_hash_map, but it also has significant advantages for concurrent programming
as I will show later.

I will use the names parallel_hash_map and parallel_flat_hash_map interchangably. They
refer to the same data structure. The name used in my Abseil fork is absl::parallel_flat_hash_map,
as it may be desirable to also provide a absl::parallel_node_hash_map.
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The parallel_hash_map: memory usage

So, without further ado, let’s see the same graphs graphs as above, with the addition of the paral-
lel_flat_hash_map. Let us first look at memory usage (the second graph provides a ”zoomed-in” view
of the location where resizing occurs):

We see that the parallel_hash_map behaves as expected. The memory usage matches exactly the memory
usage of its base flat_hash_map, except that the peaks of memory usage which occur when the table
resizes are drastically reduced, to the point that they are not objectionable anymore. In the ”zoomed-in”
view, we can see the sixteen dots corresponding to each of the individual sub-tables resizing. The fact
that those resizes are occuring at roughly the same x location in the graph shows that we have a good
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hash function distribution, distributing the values evenly between the sixteen individual submaps.

The parallel_hash_map: speed

But what about the speed? After all, for each value inserted into the parallel hashmap, we have to do
some extra work (steps 1 and 2 below):

1. compute the hash for the value to insert
2. compute the index of the target sub-table from the hash)
3. insert the value into the sub-table

The first step (compute the hash) is the most problematic one, as it can potentially be costly. As we
mentioned above, the second step (computing the index from the hash) is very simple and its cost in
minimal (3 processor instruction as shown below in Matt Godbolt’s compiler explorer):

As for the hash value computation, fortunately we can eliminate this cost by providing the computed
hash to the sub-table functions, so that it is computed only once. This is exactly what I have done in my
implementation pof the parallel_hash_map withing the Abseil library, adding a few extra APIs to the
Abseil internal raw_hash_map.h header,= which allow the parallel_hash_map to pass the precomputed
hash value to the underlying hash tables.

So we have all but eliminated the cost of the first step, and seen that the cost of the second step is very
minimal. At this point we expect that the parallel_hash_map performance will be close to the one of
its underlying flat_hash_map, and this is confirmed by the chart below:
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Indeed, because of the scale is somewhat compressed due to the longer times of the std::unordered_map,
we can barely distinguish between the blue curve of the flat_hash_map and the red curve of the paral-
lel_hash_map. So let’s look at a graph without the std::unordered_map:

This last graph that the parallel_hash_map is slightly slower especially for smaller table sizes. For a
reason not obvious to me (maybe better memory locality), the speeds of the parallel_hash_map and
flat_hash_map are essentially undistinguishable for larger map sizes (> 80 million values).

8



Are we done yet?

This is already looking pretty good. For large hash_maps, the parallel_flat_hash_map is a very appeal-
ing solution, as it provides essentially the excellent performance of the flat_hash_map, while virtually
eliminating the peaks of memory usage which occur when the hash table resizes.

But there is another aspect of the inherent parallelism of the parallel_hash_map which is interesting
to explore. As we know, typical hashmaps cannot be modified from multiple threads without explicit
synchronization. And bracketing write accesses to a shared hash_map with synchronization primitives,
such as mutexes, can reduce the concurrency of our program, and even cause deadlocks.

Because the parallel_hash_map is built of sixteen separate submaps, it posesses some intrinsic parallelism.
Indeed, suppose you can make sure that different threads will use different submaps, you would be able
to insert into the same parallel_hash_map at the same time from the different threads without any
locking.

Using the intrinsic parallelism of the parallel_hash_map to insert values from multiple threads,
lock free.

So, if you can iterate over the values you want to insert into the hash table, the idea is that each thread
will iterate over all values, and then for each value:

1. compute the hash for that value
2. compute the submap index for that hash
3. if the submap index is one assigned to this thread, then insert the value, otherwise do nothing

and continue to the next value

Here is the code for the single-threaded insert:

template <class HT>
void _fill_random_inner(int64_t cnt, HT &hash, RSU &rsu)
{

for (int64_t i=0; i<cnt; ++i)
{

hash.insert(typename HT::value_type(rsu.next(), 0));
++num_keys[0];

}
}

and here is the code for the multi-threaded insert:

template <class HT>
void _fill_random_inner_mt(int64_t cnt, HT &hash, RSU &rsu)
{

constexpr int64_t num_threads = 8; // has to be a power of two
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std::unique_ptr<std::thread> threads[num_threads];

auto thread_fn = [&hash, cnt, num_threads](int64_t thread_idx, RSU rsu) {
typename HT::hasher hasher; // get hasher object from the hash table
size_t modulo = hash.subcnt() / num_threads; // subcnt() returns the number of submaps

for (int64_t i=0; i<cnt; ++i) // iterate over all values
{

unsigned int key = rsu.next(); // get next key to insert
size_t hashval = hasher(key); // compute its hash
size_t idx = hash.subidx(hashval); // compute the submap index for this hash
if (idx / modulo == thread_idx) // if the submap is suitable for this thread
{

hash.insert(typename HT::value_type(key, 0)); // insert the value
++(num_keys[thread_idx]); // increment count of inserted values

}
}

};

// create and start 8 threads - each will insert in their own submaps
// thread 0 will insert the keys whose hash direct them to submap0 or submap1
// thread 1 will insert the keys whose hash direct them to submap2 or submap3
// --------------------------------------------------------------------------
for (int64_t i=0; i<num_threads; ++i)

threads[i].reset(new std::thread(thread_fn, i, rsu));

// rsu passed by value to threads... we need to increment the reference object
for (int64_t i=0; i<cnt; ++i)

rsu.next();

// wait for the threads to finish their work and exit
for (int64_t i=0; i<num_threads; ++i)

threads[i]->join();
}

Using multiple threads, we are able to populate the parallel_flat_hash_map (inserting 100 million val-
ues) three times faster than the standard flat_hash_map (which we could not have populated from
multiple threads without explicit locks, which would have prevented performance improvements).

And the graphical visualization of the results:
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We notice in this last graph that the memory usage peaks, while still smaller than those of the
flat_hast_map, are larger that those we saw when populating the parallel_hash_map using a single
thread. The obvious reason is that, when using a single thread, only one of the submaps would resize
at a time, ensuring that the peak would only be 1/16th of the one for the flat_hash_map (provided of
course that the hash function distributes the values somewhat evenly between the submaps).

When running in multi-threaded mode (in this case eight threads), potentially as many as eight submaps
can resize simultaneaously, so for a parallel_hash_map with sixteen submaps the memory peak size can
be half as large as the one for the flat_hash_map.

Still, this is a pretty good result, we are now inserting values into our parallel_hash_map three times
faster than we were able to do using the flat_hash_map, while using a lower memory ceiling.
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In Conclusion

We have seen that the novel parallel hashmap approach, used withing a single thread, provides significant
space advantages, with a very minimal time penalty. When used in a multi-thread context, the parallel
hashmap still provides a significant space benefit, in addition to a time benefit by drastically reducing
(or even eliminating) lock contention when accessing the parallel hashmap.
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