
Creating Classifier Ensembles through
Meta-heuristic Algorithms for Aerial Scene

Classification
Álvaro R. Ferreira Jr.∗, Gustavo H. de Rosa‡, João P. Papa‡, Gustavo Carneiro†, Fabio A. Faria∗†
∗Institute of Science and Technology - Universidade Federal de São Paulo, São José dos Campos, Brazil

aalvin10@gmail.com, ffaria@unifesp.br
†Australian Institute for Machine Learning - The University of Adelaide, Adelaide, Australia

gustavo.carneiro@adelaide.edu.au
‡ Department of Computing - São Paulo State University, Bauru, Brazil

{gustavo.rosa,joao.papa}@unesp.br

Abstract—Convolutional Neural Networks (CNN) have been
being widely employed to solve the challenging remote sens-
ing task of aerial scene classification. Nevertheless, it is not
straightforward to find single CNN models that can solve all
aerial scene classification tasks, allowing the development of a
better alternative, which is to fuse CNN-based classifiers into
an ensemble. However, an appropriate choice of the classifiers
that will belong to the ensemble is a critical factor, as it is
unfeasible to employ all the possible classifiers in the literature.
Therefore, this work proposes a novel framework based on
meta-heuristic optimization for creating optimized ensembles
in the context of aerial scene classification. The experimental
results were performed across nine meta-heuristic algorithms
and three aerial scene literature datasets, being compared in
terms of effectiveness (accuracy), efficiency (execution time),
and behavioral performance in different scenarios. Our results
suggest that the Univariate Marginal Distribution Algorithm
shows more effective and efficient results than other commonly
used meta-heuristic algorithms, such as Genetic Programming
and Particle Swarm Optimization.

I. INTRODUCTION

Remote sensing advancements increased the abstraction
level from pixels into objects and scenes [1], becoming
classification tasks more difficult to be learned by a classi-
fication model. Traditional pixel-based approaches commonly
use spectral responses, such as RGB and NDVI channels, to
define their input information. Object-based methods, such
as the Geographic Object-based Image Analysis (GEOBIA),
aim at identifying specific objects of interest, e.g., streets,
lakes, and buildings, instead of assigning labels to every pixel
in the image. Furthermore, scene-based approaches use the
semantics of the entire image, where every pixel of the image
is classified into the same label [2]. A particularly interesting
remote sensing problem is aerial scene classification, which
is challenging due to the high intra-class variability, and
different scales and orientations of objects [1]. Aerial scene
classification has crucial applications in military and civil
fields, such as natural disaster monitoring, traffic supervision,
and weapon guidance [3].

Methods that solve aerial scene classification can be di-
vided into three categories: (i) low-level, (ii) mid-level, and
(iii) deep-level [3]. Low-level methods are local descriptors-
based approaches, such as Scale Invariant Feature Transform
(SIFT) [4], Color Histogram (CH) [5], and Local Binary
Patterns (LBP) [6]. Mid-level methods use local descriptor en-
codings in an attempt to create more semantic representations,
such as Bag-of-Visual-Words (BoVW) [7]. Finally, deep-level
approaches use deep learning architectures, e.g., VGG16 [8]
and GoogLeNet [9]), to extract more discriminative visual-
features and high-level semantic information from the images.

Convolutional Neural Networks (CNNs) have been applied
in computer vision and machine learning tasks throughout the
last years, primarily due to their capacity to extract proper
high-level semantic information. One can observe that they
have been successfully applied in distinct applications, such
as action [10] and biometric recognition [11], as well as
medical image analysis [12], to cite a few. Additionally, several
research competitions (e.g., IARPA and GRSS) fostered the
development of such techniques as they are capable of ro-
bustly classifying image datasets [13], [14]. Despite the recent
success reached by CNN architectures, there are some real-
world applications, such as biometrics, spoofing, noisy and
adversarial scenarios [15], in which they still do not perform
well. In such tasks, one might observe that the use of CNN
ensembles might create more effective models that combine
complementary pieces of information.

In the FMOW2018 (Functional Map of the World 2018)
challenge1 organized by IARPA, all of the top three meth-
ods used CNN ensembles as solutions [13]. The first-place
proposed a composition of twelve CNN classifiers based on
generic Dual-Path Networks (DPNs) [16], which were pre-
trained with a variety of hyperparameters, scaling methods,
and augmentations. The second-place created an ensemble
of ResNet [17] and ResNeXt [18] models, along with a
weights’ initialization derived from fine-tuning previous chal-

1https://www.iarpa.gov/challenges/fmow.html



lenge data. Finally, the third-place proposed the Hydra frame-
work, which creates CNN ensembles based on ResNet and
DenseNet [19] architectures. Essentially, Hydra is initialized
with naïve optimized CNNs, serving as its body. Moreover, its
weights are fine-tuned with augmentation strategies multiple
times, building a CNN ensemble that represents the Hydra’s
heads [20]. Similar to the FMOW2018 challenge, the IEEE
GRSS Data Fusion Contest [14] also had two of its best
works as CNN-based ensembles. The best work proposed a
data fusion methodology based on multiple fully-convoluted
networks and a post-classification procedure [21]. Regarding
the second-place, the authors combined deep and shallow
neural networks with ad-hoc spectral detectors [22].

Notwithstanding, it is possible to observe that the literature
lacks strategies to select the best classifiers to compose the
ensemble. Usually, those solutions adopt ad-hoc classifier
selection based on their performance in the target application.
In this context, this work proposes a novel framework based on
meta-heuristic optimization for creating optimized ensembles
in the context of aerial scene classification. The experimental
results were performed across ten meta-heuristic algorithms
and three aerial scene literature datasets, being compared in
terms of effectiveness (accuracy), efficiency (execution time),
and behavioral performance in an adverse scenario.

The remainder of this paper is organized as follows. Sec-
tions II and III present the theoretical background related
to meta-heuristic optimization and ensemble learning, respec-
tively. Section IV discusses the methodology adopted in this
work, while Section V presents the experimental results.
Finally, Section VI states conclusions and future works2.

II. META-HEURISTIC OPTIMIZATION

Optimization aims at selecting a solution among a set of
possible candidates that best fits an objective function. It is
possible to find in the literature several optimization meth-
ods, e.g., grid-search and gradient-based methods. Nonethe-
less, these methods are burdened with massive computational
loads as they exhaustively search throughout the space or
use derivative-based properties, not being feasible in more
complex problems, such as exponential and NP-complete ones.

A recent attempt to overcome such problems is to employ
a meta-heuristic-based optimization. Meta-heuristic algorithms
are biologically-inspired techniques that attempt to mimic an
intelligence behavior, often observed in nature or groups of an-
imals and humans. Their main goal is to combine exploration
and exploitation mechanisms to achieve sub-optimal solutions
with a low computational burden.

In this work, we employ a vast number of state-of-
the-art meta-heuristic techniques, ranging from evolutionary-
to swarm-based algorithms, such as Artificial Bee Colony
(ABC) [23], Bat Algorithm (BA) [24], Black Hole Algorithm
(BHA) [25], Cuckoo Search (CS) [26], Firefly Algorithm
(FA) [27], Flower Pollination Algorithm (FPA) [28], Ge-
netic Programming (GP) [29], Particle Swarm Optimization

2The source code is available online at https://github.com/gugarosa/
evolutionary_ensembles

(PSO) [30], and Univariate Marginal Distribution Algorithm
(UDMA) [31]. Additionally, for the sake of space, we only
describe one algorithm per taxonomy in the next subsections,
i.e., GP (evolutionary), PSO (swarm), and UDMA (evolution-
ary, but with a slightly distinct approach).

A. Genetic Programming

Genetic Programming is an evolutionary-based algorithm
introduced by Koza [29] and based upon Darwin’s Theory of
Evolution, where its main idea is to use bio-inspired operators
to create promising solutions and achieve an objective. Even
though GP resembles the standard Genetic Algorithm (GA),
there are fundamental differences between them. A typical so-
lution of GP uses a tree-based structure composed of terminal
and function nodes, such as the one illustrated in Figure 1.
Necessarily, the terminal nodes represent constants or decision
variables, while the function nodes are mathematical operators
applied over the terminal nodes. During the evolution process,
several procedures, such as selection, reproduction, mutation,
and crossover, are employed in an attempt to produce better-
fitted individuals.
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Fig. 1: A typical GP solution that represents the mathematical
expression 1.7log(x)− 3.9cos(y).

During each iteration, the current best individuals are se-
lected and reproduced, creating a possible better individual and
keeping the most-fitted ones along with the future generations.
Afterward, mutation and crossover operators are applied over
the population to provide a variability factor. In other words,
the mutation operator randomly modifies an allele (node or
branch) from a specific tree, while the crossover operator
swaps nodes or branches between two trees. Finally, the pro-
cedure is conducted until a convergence criterion is satisfied
or the number of maximum iterations is reached, and the best
individual (best decision variables) is harvested from the trees.

Let T = (t1, t2, . . . , tM ) be a set of trees that compose
the population. Additionally, let ti = h(ei) be an individual
tree, where h : E → <N is the function that evaluates the
mathematical expression ei that belongs to the expression
space E and returns an N -positional vector which contains the
value of the decision variables from individual i. Furthermore,
ei is a mathematical expression obtained after traversing the
tree i in a post-order course. During the evolution process,
the population is evaluated and sorted in an ascending way,
where the best individuals are the ones with the lowest fitness
function value. As mentioned before, the first operator selects
and reproduces individuals with a probability of pr, while the
probability pm and pc stands for the rate of mutation and

https://github.com/gugarosa/evolutionary_ensembles
https://github.com/gugarosa/evolutionary_ensembles


crossover, respectively. After employing the genetic operators,
the population is again evaluated and sorted.

B. Particle Swarm Optimization

Particle Swarm Optimization is a swarm-based optimization
algorithm inspired by social behavior stimulus [30]. Social
behavior-based learning allows particles (solutions) to com-
bine details from previous and current positions with other
particles’ positions, yielding in a better search space explo-
ration. Analogously, one can observe this process as the social
interaction of birds looking for food or humans looking for a
common objective.

Let S = (s1, s2, . . . , sM ) be the particles that constitute
the swarm, such that si = (ψi,ρi), where ψi ∈ <N

and ρi ∈ <N are the position and velocity of particle i,
respectively. Additionally, let ψ̂i be particle’s i best local
position, and g be the best overall solution (global). The
algorithm starts by initializing the position and velocity of each
particle with random values. During each iteration t, every
particle has its position evaluated concerning a fitness function.
After evaluating all particles, the global minimum is updated
with the particle that achieved the best position (minimum
fitness value) in the swarm. This process is conducted until a
convergence criterion is satisfied or the number of maximum
iterations is reached. Finally, one can observe Equations 1
and 2 as the velocity and position update of particle i at time
step t, respectively:

ρt+1
i = wρti + c1r1(ψ̂i −ψt

i) + c2r2(g −ψt
i) (1)

and

ψt+1
i = ψt

i + ρ
t+1
i , (2)

where w is the inertia weight that handles interaction between
particles, while r1, r2 ∈ [0, 1] give stochastic traits to the
PSO algorithm. Furthermore, variables c1 and c2 are cognitive
and social constants that conduct the particles onto the search
space.

C. Univariate Marginal Distribution Algorithm

Univariate Marginal Distribution Algorithm has been in-
troduced by Mühlenbein et al. [31] and is considered one
of the most straightforward Estimation of Distribution Algo-
rithms [32] (EDAs) that is capable of assuming independence
between decision variables. Let f : {0, 1}n → R be a pseudo-
boolean function, where an individual is a bit-string (0 or 1).
In order to optimize f , the algorithm undergoes an iterative
process, as follows:
• Independently and identically sampling a population of
λ individuals (solutions) from the current probabilistic
model;

• Evaluating solutions;
• Updating the model from the best-fitted solutions µ.
Each sampling and update cycle is called a generation

(iteration). In each iteration, the current probabilistic model
is represented as a vector pt = (pt(1), ..., pt(n)) ∈ [0, 1]n,

where each component (marginal) is depicted by pt(i) ∈ [0, 1].
Additionally, pt ∈ N is the probability of sampling the number
one (1) in the i− th bit position of an individual at iteration t.
Finally, each individual x = (x1, ..., xn) ∈ {0, 1}n is sampled
from the joint probability, as follows:

Pr(x|pt) =
n∏

i=1

pt(i)
xi(1− pt(i))(1−xi). (3)

One must observe that extreme probabilities, i.e., zero and
one, should be avoided for each marginal point, as this impacts
in preventing the i − th bit from having its value changed
and, consequently, ignoring some regions of the search space.
To overcome such problem, all pt+1(i) margins are restricted
within the closed range [1/n, 1−1/n], whereas the values 1/n
and 1− 1/n are called lower and upper bounds, respectively.
Such an approach is denoted as margin-based UMDA (M-
UMDA).

Furthermore, one can observe that the search procedure is
conducted by sampling models of the variables and not by
randomly crossing and mutating them. This approach leads
to a better optimization process as it reduces the generation
of poor-quality solutions, thus improving the possibility of
generating a better-quality solution.

III. ENSEMBLE LEARNING

Ensemble learning consists of a combination of classifiers
which focus on solving a unique problem. Their primary
difference from single classifiers is the use of several com-
bined classifiers, allowing them to accomplish more effective
learning [33]. An ensemble of classifiers is composed of
several base classifiers, such as decision trees, support vector
machines, and neural networks, among others. Furthermore,
when base classifiers are combined, they create a unique and
stronger model. It is known that the generalization ability of
an ensemble is usually higher than base classifiers, due to the
increase in the diversity of features extracted and decisions
made [34].

A critical distinction between ensembles concerns their
classification, which is divided into two categories: (i) homo-
geneous, if the same base classifiers compose the ensemble,
and (ii) heterogeneous, if different base classifiers compose
the ensemble. In this work, we will use a homogeneous
ensemble composed of several descriptors and CNNs. Addi-
tionally, we will use a boolean-based strategy, as described by
Section III-A.

A. Boolean Voting-based Ensemble

Despite our present work focusing on CNNs, it is important
to highlight that such a procedure applies to any neural
network-based classifier, for instance, traditional Multilayer
Perceptron (MLP) or even Recurrent Neural Networks (RNN).

Broadly speaking, given a collection of K classifiers, let
Ti ∈ NC×K denote the target of a given sample xi belonging
to each of the C possible classes according to each of the k
models. More specifically, this matrix is the concatenation of



the outputs of each classifier. Finally, the boolean voting-based
ensemble combines all classifiers as follows:

F (Ti, b) =

K∑
k=1

bk · Ti, (4)

where b, a binary vector of K positions (b ∈ [0, 1]K),
contains the importance degree (weight) of each base classifier
in the ensemble. Further, let qi = F (Ti, b) ∈ RC be the
unnormalized score of xi belonging to each of the possible
classes (C) according to the ensemble, then the the predicted
label ŷi is computed as:

ŷi = argmax
C

qi. (5)

IV. EXPERIMENTAL METHODOLOGY

This section presents the methodology employed in this
work. Essentially, it describes how to construct the base
classifiers, how to define the evolutionary framework for the
classifier-based ensembles, as well as the employed datasets
and the experimental setup.

A. Constructing Base Classifiers

Initially, in order to better describe the employed datasets,
we opted to use two feature extraction procedures: (i) global
image descriptors and (ii) deep learning architectures. Re-
garding the global image descriptors, we used color- and
text-based visual properties representations3, such as Bor-
der/Interior Pixel Classification (BIC) [37], Color Coherence
Vector (CCV) [38], Global Color Histogram (GCH) [5],
Quantized Compound Change Histogram (QCCH) [39], and
Local Activity Spectrum (LAS) [40]. Regarding the deep
learning architectures, we used five Convolutional Neural
Networks architectures with an ImageNet [41] pre-trained
transfer learning approach, such as VGG [8] (VGG16 and
VGG19), GoogLeNet (Inception-V3 [42], Xception [43]), and
ResNet (ResNet-50 [17]).

Finally, we have used seven learning techniques with their
default hyper-parameters to create the base classifiers4: Deci-
sion Tree (DT) [44], Naïve Bayes (NB) [45], k-Nearest Neigh-
bors (kNN) [46] using k = {1, 3, 5, 7}, and Support Vector
Machine [47] with a polynomial kernel. It is important to recall
that a base classifier is composed of a tuple (feature extraction
and learning techniques). Thus, 70 base classifiers (7 × 10
different tuples) are available for further experimentation.

B. Evolutionary Framework for Classifier Ensembles

Figure 2 illustrates the experimental pipeline used in this
work. The idea is to select the most suitable base classifiers
using a meta-heuristic optimization algorithm and further
compose a boolean-based ensemble.

Initially, given a specific dataset, the feature extraction
techniques are applied to encode visual properties into (e.g.,

3The image descriptors used in this work are based on extensive experi-
ments performed in [35], [36].

4The implementations are available on WEKA: http://www.cs.waikato.ac.
nz/~ml/weka.

color, texture, shape) feature vectors. Furthermore, the dataset
is split into three sets (training, validation, and testing) using
a 5-fold cross-validation procedure. The training set is used
as input by the machine learning techniques to create base
classifiers, while the validation sets are used to conduct the
meta-heuristic optimization. Finally, the proposed approach is
validated with the testing sets.

Concerning the meta-heuristic optimization, an initial pop-
ulation of classifier ensembles (individuals) is randomly built.
During each iteration, the population of individuals are eval-
uated through a fitness function (accuracy over the validation
set) and then, each particular meta-heuristic strategy is used to
update the individuals for the next generation. The evolution
process is conducted until a stopping criterion is satisfied or
the maximum number of iterations is reached. Finally, the best
individual, which represents the best ensemble, is selected and
evaluated on the testing set.

C. Datasets

The proposed approach is validated on three literature
remote sensing scene classification datasets: WHU-RS19 [48],
RSSCN7 [49], and UC Merced Land Use [50]. Table I
describes with more details each dataset.

TABLE I: Description of each dataset used in this work.

Dataset Classes Images per Class (Total) Dimension Spatial Resolution

RSSCN7 7 400 (2,800) 400×400 –
UCMerced 21 100 (2,100) 256×256 0.3m
WHU-RS19 19 50–61 (1,005) 600×600 up to 0.5m

All datasets have been evaluated within a 5-fold cross-
validation procedure, being split into three distinct sets (train-
ing, validation, and testing). Figure 3 depicts some aerial
scenes’ examples extracted from the WHU-RS19 dataset.

D. Experimental Setup

Table II presents the meta-heuristic algorithms hyper-
parameters used in this paper, except for the BHA, which is
a parameterless approach. Regarding the UMDA algorithm,
stagnation means the stopping criteria in case of non-evolution,
i.e., the amount of generation with no progress of the best
individual in the population.

V. EXPERIMENTS AND DISCUSSION

This section presents three sets of experiments to validate
the proposed framework on three well-known aerial scene
datasets (WHU-RS19, RSSCN7, and UCMerced). First, a
classification analysis in three different scenarios has been
conducted with three different experiments: (1) ensembles
built with only classifiers based on global image descriptors
(Global); (2) ensembles built with only classifiers based on
deep learning features (CNN); and (3) ensembles built with
any type of classifiers (Global+CNN = ALL). The last one
is called adverse scenario since the worst classifiers (Global)
are brought together with the most accurate classifiers (CNN)
in order to fool the optimization algorithms. Second, we con-
ducted an analysis of the number of base classifiers present in

http://www.cs.waikato.ac.nz/~ml/weka
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Fig. 2: The proposed framework based on meta-heuristic algorithms for creating classifier ensembles.

Airport Beach Bridge Commercial Desert Farmland Football Field

Forest Industrial Meadow Mountain Park Parking Pond

Port Railway Station Residential River Viaduct

Fig. 3: Examples of aerial scenes from the WHU-RS19 dataset, which are similar to the RSSCN7 and the UCMerced datasets.

each final ensemble built by optimization algorithms. Finally,
the third analysis, an efficiency experiment has been performed
to verify which algorithm is faster throughout optimization
process in the proposed framework.

A. Classification Analysis

Table III shows the classification performance for nine
optimization algorithms and the well-known baseline majority
voting (MV), which does not use any optimization algorithm
to build the final ensemble. In gray are the best optimization
algorithm results per experiment. In blue are average of the
accuracies to all optimization algorithms. In red are the gain
of the best algorithms against the baseline (MV).

In general, all optimization algorithms have achieved better
classification results than the baseline (MV) with an exception
to RSSCN7 dataset using only Global classifiers that MV

achieved 81.8% of mean accuracy against 81.6 from average
of algorithms. Furthermore, the number of classifiers used in
ensembles built by optimization algorithms is at least 49%
(17 out of 35 available classifiers) and up to 65% (25 out of
70 available classifiers) lower than MV approach.

Considering the best algorithms for each performed ex-
periment using Global classifiers, it is possible to observe
that BHA algorithm achieved good results on the RSSCN7
dataset with mean accuracy of 81.9% and CS algorithm has
achieved better classification results on two datasets (WHU-
RS19 and UC Merced) with mean accuracy of 78.2% and
79.9%, respectively.

The minimum gain of the best optimization algorithms
in relation to the baseline (MV) is 0.1% of mean accuracy
(BHA using Global classifiers in RSSCN7 dataset) and 17
less classifiers in the ensemble (ABC using Global classifiers



TABLE II: Parameter values for each meta-heuristic algorithm.

Algorithm Parameter Value

ABC Number of trials 10

BA
Frequency range (fmin, fmax) [0, 2]

Loudness (A) 0.5
Pulse rate (r) 0.5

CS
Step size (α) 1.0

Lévy flight controller (β) 1.5
Nests replacement probability (p) 0.2

FA
Randomization (α) 0.5
Attractiveness (β) 0.2

Light absorption coefficient (γ) 1.0

FPA
Lévy flight controller (β) 1.5

Lévy flight scaler (η) 0.2
Local pollination probability (p) 0.8

GP
Reproduction probability (pr) 0.25

Mutation probability (pm) 0.1
Crossover probability (pc) 0.1

PSO
Inertia weight (w) 0.7

Cognitive constant (c1) 1.7
Social constant (c2) 1.7

UMDA

Population size (µ) 500
Number of generations (t) 250

Generation stagnation 0.2
Initial probabilities (pt) 0.5

Upper-bound margin (1− 1
n

) 0.95
Lower-bound margin ( 1

n
) 0.05

in UCMerced dataset) than baseline (MV). The maximum gain
of the optimization algorithms, considering the mean accuracy,
is 2.8% (CS using Global classifiers in WHU-RS19 dataset)
and 45 less classifiers in final ensemble (UDMA using ALL
classifiers in WHU-RS19 dataset).

In adverse scenarios, it is possible to observe that the
optimization algorithms are rarely affected. Notice that the best
optimization algorithm (UDMA) with only CNN classifiers
in the WHU-RS19 dataset still achieved better results with
ALL classifiers, but it has dropped the mean accuracy from
96.9 to 96.0 when exposed to such adverse scenario. The
same behavior has been observed by other algorithms in
the UCMerced dataset as well. Furthermore, in experiments
using RSSCN7 dataset, some optimization algorithms have
maintained and even increased their mean accuracy, such as
ABC, CS, FPA, GP, PSO, and UDMA.

B. Efficiency Analysis

Table IV shows an efficiency analysis among the nine
algorithms to build their final ensembles considering the opti-
mization process applied to ALL classifiers, i.e., 70 available
classifiers on the validation set. As the baseline (MV) does
not have optimization process, it has not been included in this
experiment. In this experiment it is possible to observe that
UDMA algorithm was the fastest approach among the nine
algorithms in all datasets. UDMA is 1.4×, 3.17× and 3.18×
faster than the most efficient optimization algorithm using
WHU-RS19, RSSCN7, and UCMerced datasets, respectively.

TABLE III: Classification results and confidence interval (±)
computed over a 5-fold cross validation protocol. The number of
classifiers present in each final ensemble approach is represented by
#.

Algs. WHU-RS19
Global (35) # CNN (35) # ALL (70) #

ABC 76.5 (±3.0) 16 95.8 (±1.0) 17 94.5 (±1.8) 32
BA 76.8 (±3.0) 18 95.6 (±1.0) 17 93.9 (±1.5) 30

BHA 76.5 (±3.0) 16 95.8 (±1.0) 15 94.4 (±1.3) 33
CS 78.2 (±3.0) 17 95.7 (±1.0) 16 95.6 (±1.4) 25
FA 76.5 (±3.0) 18 95.2 (±2.0) 17 94.6 (±1.7) 35

FPA 77.6 (±3.0) 15 96.6 (±1.0) 14 95.3 (±1.0) 33
GP 77.2 (±3.0) 26 95.1 (±2.0) 12 93.6 (±1.6) 25

PSO 75.9 (±3.0) 18 95.7 (±1.0) 14 94.1 (±2.0) 31
UDMA 76.8 (±2.8) 19 96.9 (±1.0) 14 96.0 (±1.5) 30
Average 76.7 20 95.7 17 94.5 34

Baseline (MV) 75.4 (±3.0) 35 94.2 (±1.0) 35 93.4 (±1.5) 70
Gain (Best × MV) 2.8 -20 2.7 -23 2.6 -45

Algs. RSSCN7
Global (35) # CNN (35) # ALL (70) #

ABC 81.8 (±1.0) 18 90.3 (±0.0) 17 90.7 (±0.6) 35
BA 81.5 (±1.0) 20 90.4 (±1.0) 18 90.3 (±0.7) 36

BHA 81.9 (±1.0) 19 90.4 (±1.0) 16 90.2 (±0.6) 32
CS 81.5 (±2.0) 21 90.6 (±1.0) 14 90.9 (±0.9) 32
FA 81.3 (±2.0) 19 90.1 (±1.0) 18 90.0 (±0.8) 38

FPA 81.3 (±2.0) 18 90.7 (±1.0) 16 90.7 (±1.2) 35
GP 81.0 (±2.0) 27 89.6 (±1.0) 17 90.3 (±0.9) 44

PSO 81.5 (±1.0) 18 90.4 (±1.0) 18 90.4 (±0.8) 35
UDMA 81.9 (±1.1) 21 90.9 (±1.0) 16 91.1 (±0.4) 32
Average 81.6 22 90.3 19 90.4 39

Baseline (MV) 81.8 (±1.0) 35 89.5 (±1.0) 35 89.8 (±0.9) 70
Gain (Best × MV) 0.1 -17 1.4 -21 1.3 -38

Algs. UCMerced
Global (35) # CNN (35) # ALL (70) #

ABC 79.0 (±1.0) 18 94.2 (±1.0) 16 94.1 (±1.5) 34
BA 78.9 (±1.0) 20 94.0 (±1.0) 17 93.6 (±0.9) 36

BHA 78.9 (±1.0) 19 94.9 (±0.0) 16 93.6 (±1.3) 38
CS 79.9 (±1.0) 20 94.8 (±1.0) 13 94.1 (±1.2) 30
FA 79.0 (±1.0) 21 93.9 (±1.0) 16 92.9 (±1.5) 37

FPA 79.7 (±2.0) 19 94.3 (±1.0) 16 94.1 (±1.1) 31
GP 78.9 (±1.0) 25 94.0 (±2.0) 15 93.6 (±1.6) 41

PSO 79.6 (±1.0) 20 94.0 (±1.0) 16 93.3 (±0.8) 36
UDMA 79.9 (±0.7) 20 94.7 (±1.0) 15 94.4 (±1.4) 29
Average 79.3 22 94.2 18 93.6 38

Baseline (MV) 78.9 (±1.0) 35 93.5 (±1.0) 35 92.6 (±1.7) 70
Gain (Best × MV) 1.0 -17 1.2 -22 1.8 -41

TABLE IV: Efficiency results computed in seconds (s) for the
optimization process on the validation set in a 5-fold cross validation
protocol. @R means the ranking position of each algorithm in the
three different datasets used in this paper.

Algorithms Time(s)
WHU-RS19 @R RSSCN7 @R UCMerced @R

ABC 532 (±16) 9◦ 2946 (±95) 9◦ 2150 ±70) 9◦

BA 371 (±5) 7◦ 1944 (±102) 7◦ 1580 ±107) 7◦

BHA 366 (±11) 6◦ 1908 (±88) 5◦ 1494 ±53) 5◦

CS 520 (±12) 8◦ 2865 (±84) 8◦ 2264 ±87) 8◦

FA 181 (±10) 2◦ 924 (±51) 2◦ 655 ±53) 2◦

FPA 347 (±12) 5◦ 1924 (±65) 6◦ 1525 ±22) 6◦

GP 182 (±9) 3◦ 1041 (±52) 4◦ 660 ±47) 3◦

PSO 182 (±9) 4◦ 939 (±73) 3◦ 661 ±54) 4◦

UDMA 132 (±29) 1◦ 292 (±31) 1◦ 208 ±51) 1◦

VI. CONCLUSION

Deep learning architectures, in particular the convolutional
neural networks (CNNs), have been applied to several knowl-
edge areas (e.g. medicine, biology, agriculture, security, and
remote sensing) due to the excellent classification accuracy
results. Among the challenging tasks in remote sensing area
is classification task, which can be performed in three levels
of abstraction (pixel, object and scenes).

Currently, aerial scene classification task has been inten-
sively studied in the literature due to the availability of datasets
and its applicability in military and civilians affairs. However,



the high intra-class variability of the objects with different
scales and orientations in images make the challenge for
learning techniques even greater.

Even though the CNN architectures achieve surprisingly
accurate results in the literature, there are still real applications
that a single architecture is not enough to solve them. Thus, an
alternative to overcome that problem might be the ensemble
of CNN architectures. Many papers in the literature have
adopted ensemble of CNN-based classifiers to improve the
effectiveness of the results of their proposed approaches.
However, most of the developed solutions adopt an ad-hoc
strategy or without criteria for choosing the classifiers that
compose the ensemble of classifiers. In this sense, we propose
a novel framework for creating ensembles based on optimiza-
tion algorithms in the context of aerial scene classification.

In this work, we have performed three different experiments:
(1) is a comparative study among nine different optimization
algorithm using three different scenarios (Global, CNN, and
ALL) and three well-known aerial scene datasets (WHU-
RS19, RSSCN7, and UCMerced); (2) is a comparative analysis
of the number of base classifiers present in the final ensembles
built by optimization algorithms; and (3) an efficiency analysis
among the nine algorithms used in the optimization process.

In the first experiment, we observed that all optimization al-
gorithms achieved better classification results than the baseline
(MV) in almost all experiments with an exception to RSSCN7
dataset using only Global classifiers. Also, it was possible to
note that the UDMA algorithm achieved the best results in
the CNN and ALL scenarios. CS and BHA achieved the best
results in the Global scenario.

In the second experiment, we showed that the best op-
timization algorithms reduced the number of classifiers in
the final ensembles by at least 49% (ABC using 18 of 35
Global classifiers in the UCMerced dataset) and might reach
a reduction of 65% (25 of 70 classifiers used by UDMA in the
WHU-RS19 dataset). Finally, in the last experiment, we could
show that UDMA algorithm is at least 1.4× faster than the
most efficient optimization algorithm compared in this paper.

As a future work, we intend to perform experiments with
other real applications (e.g., pest identification and splicing
detection), level of abstraction (e.g., pixel and region), deep
neural networks (e.g., Restricted Boltzmann Machines and
Long Short-term Memory Networks), and learning tasks (e.g.,
adaptation domain and one-class). Furthermore, we plan to
combine diversity measures and accuracy to improve the
classification results of the optimization algorithms.
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