Package | Description |
---|---|
net.librec.eval | |
net.librec.eval.ranking | |
net.librec.eval.rating | |
net.librec.recommender | |
net.librec.recommender.item |
Modifier and Type | Method and Description |
---|---|
double |
RecommenderEvaluator.evaluate(RecommenderContext context,
RecommendedList recommendedList)
Evaluate on the recommender context with the recommended list.
|
double |
AbstractRecommenderEvaluator.evaluate(RecommenderContext context,
RecommendedList recommendedList)
Evaluate on the recommender context with the recommended list.
|
abstract double |
AbstractRecommenderEvaluator.evaluate(SparseMatrix testMatrix,
RecommendedList recommendedList)
Evaluate on the test set with the the list of recommended items.
|
Modifier and Type | Method and Description |
---|---|
double |
ReciprocalRankEvaluator.evaluate(SparseMatrix testMatrix,
RecommendedList recommendedList)
Evaluate on the test set with the the list of recommended items.
|
double |
RecallEvaluator.evaluate(SparseMatrix testMatrix,
RecommendedList recommendedList)
Evaluate on the test set with the the list of recommended items.
|
double |
PrecisionEvaluator.evaluate(SparseMatrix testMatrix,
RecommendedList recommendedList)
Evaluate on the test set with the the list of recommended items.
|
double |
NormalizedDCGEvaluator.evaluate(SparseMatrix testMatrix,
RecommendedList recommendedList)
Evaluate on the test set with the the list of recommended items.
|
double |
IdealDCGEvaluator.evaluate(SparseMatrix testMatrix,
RecommendedList recommendedList)
Evaluate on the test set with the the list of recommended items.
|
double |
HitRateEvaluator.evaluate(SparseMatrix testMatrix,
RecommendedList recommendedList)
Evaluate on the test set with the the list of recommended items.
|
double |
DiversityEvaluator.evaluate(SparseMatrix testMatrix,
RecommendedList recommendedList)
Evaluate on the test set with the the list of recommended items.
|
double |
AverageReciprocalHitRankEvaluator.evaluate(SparseMatrix testMatrix,
RecommendedList recommendedList)
Evaluate on the test set with the the list of recommended items.
|
double |
AveragePrecisionEvaluator.evaluate(SparseMatrix testMatrix,
RecommendedList recommendedList)
Evaluate on the test set with the the list of recommended items.
|
double |
AUCEvaluator.evaluate(SparseMatrix testMatrix,
RecommendedList recommendedList)
Evaluate on the test set with the the list of recommended items.
|
Modifier and Type | Method and Description |
---|---|
double |
RMSEEvaluator.evaluate(SparseMatrix testMatrix,
RecommendedList recommendedList) |
double |
MSEEvaluator.evaluate(SparseMatrix testMatrix,
RecommendedList recommendedList) |
double |
MPEEvaluator.evaluate(SparseMatrix testMatrix,
RecommendedList recommendedList) |
double |
MAEEvaluator.evaluate(SparseMatrix testMatrix,
RecommendedList recommendedList) |
Modifier and Type | Field and Description |
---|---|
protected RecommendedList |
TensorRecommender.recommendedList
Recommended Item List
|
protected RecommendedList |
AbstractRecommender.recommendedList
Recommended Item List
|
Modifier and Type | Method and Description |
---|---|
protected RecommendedList |
TensorRecommender.recommend()
recommend
* predict the ranking scores or ratings in the test data
|
protected RecommendedList |
AbstractRecommender.recommend()
recommend
* predict the ranking scores or ratings in the test data
|
protected RecommendedList |
TensorRecommender.recommendRank()
recommend
* predict the ranking scores in the test data
|
protected RecommendedList |
AbstractRecommender.recommendRank()
recommend
* predict the ranking scores in the test data
|
protected RecommendedList |
TensorRecommender.recommendRating()
recommend
* predict the ratings in the test data
|
protected RecommendedList |
FactorizationMachineRecommender.recommendRating()
recommend
* predict the ratings in the test data
|
protected RecommendedList |
AbstractRecommender.recommendRating()
recommend
* predict the ratings in the test data
|
Modifier and Type | Class and Description |
---|---|
class |
RecommendedItemList
Recommended Item List
|
Copyright © 2017. All Rights Reserved.