A B C D E G H I L M N O P R S T U V W 

G

get(int, int) - Method in class librec.data.DenseMatrix
Get the value at entry [row, column]
get(int) - Method in class librec.data.DenseVector
Get a value at entry [index]
get() - Method in interface librec.data.MatrixEntry
Returns the value at the current index
get(int, int) - Method in class librec.data.SparseMatrix
Retrieve value at entry [row, column]
get(int) - Method in class librec.data.SparseVector
Retrieve a value at entry [idx]
get(int, int) - Method in class librec.data.SymmMatrix
Get a value at entry (row, col)
get() - Method in interface librec.data.VectorEntry
Returns the value at the current index
getColumnIndices() - Method in class librec.data.SparseMatrix
 
getCount() - Method in class librec.data.SparseVector
Number of entries in the sparse structure
getData() - Method in class librec.data.DenseVector
 
getData() - Method in class librec.data.SparseMatrix
 
getData() - Method in class librec.data.SparseVector
Returns the internal data
getDataPath() - Method in class librec.data.DataDAO
 
getDataView(String) - Method in class librec.data.DataSplitter
 
getEvalInfo(Map<Recommender.Measure, Double>) - Static method in class librec.intf.Recommender
 
getGiven(int) - Method in class librec.data.DataSplitter
Split ratings into two parts: the training set consisting of user-item ratings where numGiven ratings are preserved for each user, and the rest are used as the testing data
getGiven(double) - Method in class librec.data.DataSplitter
Split ratings into two parts: the training set consisting of user-item ratings where numGiven ratings are preserved for each user, and the rest are used as the testing data
getIndex() - Method in class librec.data.SparseVector
Returns the indices
getItemId(String) - Method in class librec.data.DataDAO
 
getItemId(int) - Method in class librec.data.DataDAO
 
getItemIds() - Method in class librec.data.DataDAO
 
getKthFold(int) - Method in class librec.data.DataSplitter
Return the k-th fold as test set (testMatrix), making all the others as train set in rateMatrix.
getRateMatrix() - Method in class librec.data.DataDAO
 
getRatio(double) - Method in class librec.data.DataSplitter
Split ratings into two parts: (1-ratio) training, (ratio) testing data
getRowPointers() - Method in class librec.data.SparseMatrix
 
getSample(int, int) - Method in class librec.data.DataSplitter
generate a random sample of rate matrix with specified number of users and items
getScales() - Method in class librec.data.DataDAO
 
getUserId(String) - Method in class librec.data.DataDAO
 
getUserId(int) - Method in class librec.data.DataDAO
 
getUserIds() - Method in class librec.data.DataDAO
 
GlobalAverage - Class in librec.baseline
Baseline: predict by average rating of all users
GlobalAverage(SparseMatrix, SparseMatrix, int) - Constructor for class librec.baseline.GlobalAverage
 
A B C D E G H I L M N O P R S T U V W