@ModelData(value={"isRanking","rankals","userFactors","itemFactors","trainMatrix"}) public class RankALSRecommender extends MatrixFactorizationRecommender
initMean, initStd, itemFactors, learnRate, maxLearnRate, numFactors, numIterations, regItem, regUser, userFactors
conf, context, decay, earlyStop, globalMean, isBoldDriver, isRanking, itemMappingData, lastLoss, LOG, loss, maxRate, minRate, numItems, numRates, numUsers, ratingScale, recommendedList, testMatrix, topN, trainMatrix, userMappingData, validMatrix, verbose
Constructor and Description |
---|
RankALSRecommender() |
Modifier and Type | Method and Description |
---|---|
protected void |
setup()
setup
init member method
|
protected void |
trainModel()
train Model
|
predict, updateLRate
cleanup, evaluate, evaluateMap, getContext, getDataModel, getRecommendedList, isConverged, loadModel, predict, recommend, recommend, recommendRank, recommendRating, saveModel, setContext
protected void setup() throws LibrecException
MatrixFactorizationRecommender
setup
in class MatrixFactorizationRecommender
LibrecException
- if error occurs during setting upprotected void trainModel() throws LibrecException
AbstractRecommender
trainModel
in class AbstractRecommender
LibrecException
- if error occurs during training modelCopyright © 2017. All Rights Reserved.