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I. Definition 

Project Overview 
Face Recognition is the task of identify or verify a person in a digital image or video stream                  
through his face.  

It’s an important task for many areas, since social networks, where it can be used to label users                  
in photos, until security, where it can be part of a program that reads a set of photos and try to                     
identify a criminal. 

The process can be divided in two phases: Detection and Recognition. For face detection most               
commonly used algorithm was proposed by Viola & Jones [1]. For face recognition, common              
algorithms include principal component analysis and eigenfaces.  

With the explosion of cell phones with camera, thousands of photos are taken every day.               
Understand the objects and people in these photos, can play an important role in computer               
vision applications. In a social media application, a user, when upload a photo to his profile, an                 
algorithm can automatically detect, recognize a person and asking for a user to confirm the               
label. With a lot of photos tagged, a search engine can take advantage this to find photos where                  
specific persons appear. 

My personal motivation for this project, is create a model to recognize famous faces in images.                
It can easily be extended to a video stream, where it can be used to label actors in films or tv                     
series automatically. One example of this type of application is the ability of tag actors in video                 
of Pornohub, a famous website for adults.[2]. 

Problem Statement 

 



 

Who is in the photo? This question summarizes the problem I’m proposing to be solved.               
Identify a person in image, can help to solve commons problems that we have today. For                
example, in a airport, is possible to use face recognition to identify criminals wanted by justice.                
In a search engine, is possible to find by images of specific person. 

The task of face recognition can be very challenger. The person who appears in the image may                 
be in different poses, with different light conditions, with eyeglasses. Because this, extract the              
important features of a face can be very difficult. 

For this project, I’m proposing to build a model using a Convolutional Neural Network (CNN) for                
the task of face recognition. A model that uses a CNN, allow us to extract a wide range of                   
unique features from an image and we can use this features to compare a face with others. 

To solve this problem, my proposal is to construct a project that receives as input an image, add                  
labels with the name of the person that appears in the image. 

For this project I’m planning to use Deep Learning with a Convolutional Neural Network to               
recognize people in a image. A CNN model may be more effective to extract important features                
in a given image. The basic idea is:  

● Receive an image as input 
● Detect faces contained in the image 
● Crop this faces and converts to the gray scales 
● Use the cropped image in the gray scale in the CNN model 
● Get the predicted label from the model and draw a box around the identified person 

Metrics 
To compare the models, I'm using accuracy. I think it's a simple and straightforward metric,               
basically it's a fraction of how many labels the model has correctly identified. During the training                
phase, I will use Categorical Cross-Entropy [3] as the Loss Function. A loss function is important                
during training because it makes possible to understand whether or not the model is improving               
during the process. The important point here is to try to minimize the loss. 

 

II. Analysis 

Data Exploration 
The dataset used for this work was the PubFig83[4]. This dataset contains 11,071 face images               
of 83 public figures. The PubFig83[4] is a version of the dataset called PubFig[5], that contains                

 



 

58,797 face images of 200 public figures. The decision of use a subset, was made with the goal                  
to optimize the training time of the algorithm. 
 
This dataset has some important characteristics. These characteristics make it a bit different of              
other face datasets, commonly used for face recognition benchmark. 
 

● The images were taken in large variation in pose, light, expression, camera, etc 
● the dataset classes are not balanced. The amount varies from 80 to 200 per class 
● Duplicate images were removed 

 
All the images in this dataset were resized to 100x100 pixels and are JPG images. 
In this dataset examples, are showed face images for Ashton Kutcher:: 
 

 
 
Note the variations in these images. There are a lot of noise and the face image is not                  
completely isolated. It is a very challenger dataset, because all the noise can influence in the                
recognition task. 
Here another set of image examples, this time, images of Barack Obama: 
 

 
 

This dataset was divided as follows: 
 
80% of data for training set 
10% of data for validation set 
10% of data for test set 

Exploratory Visualization 
As mentioned before, one of the characteristics of PubFig83 dataset, is the images are collected               
in large variation in pose, light, camera, etc. It can make very hard to recognize faces, because                 
the faces can not be isolated.  

 



 

 
During the exploratory phase of this work, this problem was treated in different ways. I Started                
creating a baseline and benchmark model to compare with an approach using deep learning.              
One of the first things done, was to follow the recommendation of a paper[6] called Face                
Recognition using Eigenfaces. This paper describes an approach to use Eigenfaces[7] as a way              
to reduce dimensionality of face images. 
 
We can think about the idea of Eigenfaces by fact that not all parts of a face are equally                   
important or useful for face recognition[8].  
 
We starting centralizing the faces. To do this, we need to extract the mean face of the dataset. 

 
 

The image above shows the mean face. If we take a look in the histogram, we can verify that                   
the distribution of the mean is not a perfect normal curve. It occurs because the characteristic of                 
the dataset, it does not have all faces isolated. It can be compared with an isolated face                 
histogram. 

 
                  ​not isolated faces histogram                          isolated faces histogram 
 
After extract the mean, we normalize the dataset, it means, extract the mean and centralize the                
faces. The image below shows an example of faces after the normalization. 
 

 



 

 
 
With a normalized dataset, we can start extracting the Eigenfaces. To do this, we used the PCA                 
algorithm[9]. After run PCA using 160 components, we checked how variability are explained in              
by the components. 

 
 

In this case, about the 20 first components account for most of the total variability in the data.                  
The remaining components account for a very small proportion of variability. 

We can finally check for the Eigenfaces. Here we are showing the first 9 faces. 

 



 

 

The image above shows an example of the Eigenfaces extracted after the PCA. Note that the                
important parts of any faces was identified by the technique. It is possible to see eyes, nose and                  
the mouth.  

This data was used to train the classifier to the recognition task in a baseline model.  

Algorithms and Techniques 
For solve the face recognition problem in this work, I used Deep Learning with a Convolutional                
Neural Network [10] (CNN) to recognize a person in a image.  
 
Load data and dataset organization 
 
The idea was to load the data into arrays and feed the CNN models. To load the data, the                   
dataset need be organized as follows: 
 

● The training, test and validation data must be separated into folders with the names:              
Train, Test and Valid. 

● Inside of each folder, all images of a class, must be in the same folder. A class in this                   
case is the name of a person.  

 

 



 

 
Example of the train, test, valid folders                   Example of the train folder 

 
All the classes names was extracted from this folder structure. 
 
I tested 3 possible architecture for my CNN model. VGG16[11], ResNet50[12] and a custom              
model. 
 
VGG16 
The origin of VGG architecture was a paper published in 2014 [11]. This network is               
characterized by its simplicity, using only 3x3 convolutional layers stacked on top of each other,               
in increasing depth. Reducing the volume size is handled by max pooling. Two fully-connected              
layers, each with 4096 nodes are then followed by a softmax classifier. 
I used Transfer Learning[13]. The idea was to starting with ImageNet weights and create a               
custom layers below that. 
 
Exploring in more detail the VGG16 architecture, we can see the importance of network depth               
and the simplicity of the organization. According to the paper [11], the choice of 3x3 filter size                 
was based in the notion of the smallest size to capture the notion of direction: left/right, up/down                 
and center. Another important idea, is that the combination of 3 x 3 convolutional layers has an                 
effective 5 x 5 receptive field. This simulates a larger filter while it taking advantage of the                 
benefits of the smaller filter sizes. Decrease the number of parameters is on of the benefits.                
Dimensionality reduction is handled by five max-pooling layers, using 2 x 2 pixel window, with               
stride 2. 
 
I used transfer learning with ImageNet weights. As the dataset is different from the imagenet, I                
decided to do a fine-tune the ConvNet. My approach was to add more 3 blocks with a 3x3                  
convolutional layers followed by pooling layer. Following the same idea of the original             
architecture, I used a small filter size and added max-pooling layers with 2x2 pixel window. Also,                
I used a Dropout layer to avoid overfitting. It is important because my dataset is no too large,                  
and with this kind of fine-tune, the model can starting overfitting. 
The reasoning behind this fine-tune, is as the dataset is different from the image net, with more                 
conv layers, the network can learn new patterns of my dataset. 
 
 
 
 
 
 

 



 

RestNet50 
ResNet is a short name for Residual Network. As the name indicates, the new terminology that                
this network introduces is residual learning. 
 
What is Residual Learning? 
In general, in a deep convolutional neural network, several layers are stacked and are trained to                
the task at hand. The network learns several low/mid/high level features at the end of its layers.                 
In residual learning, instead of trying to learn some features, we try to learn some residual.                
Residual can be simply understood as subtraction of feature learned from input of that layer.[14] 
For this model, I used Transfer Learning too, starting with ImageNet weights. 
 
One of the most important motivation to create this architecture was that, the training phase of                
deeper neural network is more difficult. Deep neural networks have led good performance on              
image classification problems and some evidences [12] reveals that the network depth is very              
important to do this job. One problem occur when the network depth increase: the accuracy               
starts saturating and degradates. 
 

 
ResNet architecture introduces an idea called “identity shortcut connection”. The idea is skip             
one or more layers. The argument to do this, is that, we can go deeper without degrade the                  
network performance. It occurs because we could simple stack identity mappings (it is, a layer               
that doesn’t do anything) upon the current network, and the resulting architecture would perform              
the same. This indicates that the deeper model should not produce a training error higher than                
the shallower counterparts.[21] 
 

 

 



 

Formally, we can have to be the desired underlying mapping. We try to make the stacked    (x)H             
non-linear layers fit another mapping . Then the original mapping can be recast     (x) = H(x) F :  − x         
as  .[22](x) xF +    
 
The authors of this architecture have demonstrated that an extremely deep residual networks             
are easier to optimise than plain network. 
 
Again, I used transfer learning with ImageNet weights and I decided fine-tune the network. Due               
the ResNet implementation characteristic in Keras, what is the minimal size of images are              
197px [23], I had to resize my images to 224x224. After that my approach was add 4 blocks with                   
4x4 Conv layers, all followed by 1 2x2 max pooling layers for dimensionality reduction. I also                
added a Dropout layer removing 50% of the data to prevent overfitting.  
 
Custom CNN model 
 
One of the experiments I did was to start from scratch. Creating my own CNN architecture.  
My idea was to test a set of configurations and try to keep things simpler the other architectures                  
and take advantage this on training time. 
The custom model is a combination of a series of Convolutional Layers and Max Pooling layers.                
it increases the size of the filter as the layers get deeper. 
 
The guideline used to build this architecture was: keep the things simple This model has 4                
blocks with 3x3 Conv layers followed by a 2x2 max pooling layer. The number of filters in the                  
convolutional layer blocks increases in the deeper blocks, starting with 32 and finish with 256.               
The idea is that in the deeper layers, it should try to look into as much details as possible, and                    
extract more detailed features, because this the number of filters increase.  
 
I added a pooling layer between the convolutional layers using a MaxPooling. It is important               
because this function reduce the spatial size of the representation and with this helps to reduce                
the amount of parameters and computation.[24] 
 
A dropout layer was added to control the overfitting. This layer randomly select neurons that will                
be ignored during the training. I chose a the 50% probability of a dropout in that layer, because I                   
want to minimize the overfitting. 
 
In the last block, I added fully connected layer with a 100 neurons activated by ReLU. I chose                  
100 neurons because it is the number of pixels of the images used in the training. Another                 
dropout layer was added with 50% probability. The final layer is a fully connected layer with 83                 
neurons, that represents the number of possible categories to classification, it is activated by a               
Softmax function. The Softmax function, converts the weights in probabilities and we can use              
this to get the best category predicted. 
 

 



 

 
 
Parameters tuning 
 
For all the models I used the Categorical Cross Entropy as loss function. As optimizers I used                 
SGD,RMSPROP, ADADELTA.  
The process to chose the optimizers was a lot of trial and error and checked the performance of                  
the model. For SGD the best results I achieved was using learning rate about 0.005. 

Benchmark 
I decide to compare my Deep Learning approach with a very know approach to recognize faces:                
the OpenCV Eigenfaces Recognizer[15]. In addition, I included, just for a baseline comparison,             
a simpler model using PCA and SVM approach to face recognition. I’m calling baseline model               
the PCA + SVM approach. The benchmark model is the OpenCV Eigenfaces Recognizer             
approach.  
 
Problems with Eigenfaces Recognizer 
 
During the exploratory analysis for the benchmark model, I noted some problems with             
Eigenfaces Recognizer: 
 

1) The training takes a lot of time 
2) With this dataset, I got a very low accuracy 

 
I tried reduce the training time and improve the accuracy changing the number of components               
parameter of the algorithm, but it does not work. 
 
Using other Recognizer model 
 
Because the problems related above, I decide to try the other two options of OpenCV:               
FisherRecognizer and LBPHRecognizer [16]. 
After the tests, the best accuracy was achieved with LBPHRecognizer. Because this, different             
from the proposal, I will use the LBPHRecognizer as Benchmark model for this work. 
 
For both baseline model and benchmark model, I used 11071 training, 1388 test images and I                
used accuracy as metric to compare the results.  
 
Baseline Model 
 
For the baseline model, I used a data normalization process explained before. In summary, the               
data was load from dataset and: 

 



 

 
● Extracted the face of each image using OpenCV Haarcascades Classifier[17] 
● Converted all images to vector 
● Calculated the mean of the image vector 
● Centralized the images 

 
After the data normalization process, the PCA was executed and extracted the Eigenfaces of              
this dataset. With the Eigenfaces, I plugged this in the SVM algorithm. 
For this baseline model, I checked the the confusion matrix of the results. Here is a part of the                   
matrix: 
 

 
 

 
The final accuracy stayed around ​50%​. 
 
Benchmark Model 
 
For this model I starting loading the images from disk and start the training process using                
OpenCV LBPH Recognizer. To load the images from disk I used the OpenCV and applied a                
small set of normalization: 
 

● Load the image from the disk with OpenCV 
● Convert the image to gray scale 
● Execute the Histogram Equalization 
● Extract Face 

 
An important part of this normalization process is the use of Histogram Equalization [18]. This               
technique adjusts the contrast of an image, it allows to enhance the image and get more                
detailed information. 

 



 

 
The right image had a histogram equalization. In it is possible to see areas with more contrast. 
 
The maximum accuracy achieved with this model was around ​44%​. 
 
The idea is to create a deep learning model to be compared with this model and the reference                  
accuracy used is 44%. 

III. Methodology 

In this section I will describe the methodology used to create a deep learning model. Basically I                 
tested 3 types of CNN architectures and choose the architecture with better accuracy. 

Data Preprocessing 
For the deep learning model, I used the same dataset organization for baseline and benchmark               
model.  The dataset is organized with 2 levels:  
 

[Train, Test and Validation] / [person-name] 
 

 



 

 
The figure shows the train folder with person names separated by folders 

 
For each person folder, there are a set of images related with the person. 
The data processing begins reading and extracting all image paths for the train, test and               
validation folders. It means loads an array with all the image paths for each person. For                
example, for the Adam Sandler, the preprocessing extract something like: 
 

/faces/train/Adam Sandler/1.jpg 
/faces/train/Adam Sandler/11.jpg 
/faces/train/Adam Sandler/14.jpg 

 
In the same process, besides load the images path, it creates a categorical representation for               
the training set. This categorical representation, is a list of arrays with values 0 and 1. The size                  
of these arrays is 83, representing each person in the dataset. Each array has the value 1 in the                   
position that represents the person and 0 for all other positions. Example: 
 

 



 

 
 

In the image above, Angelina Jolie is highlighted. In this case, the position in the array that                 
represents Angelina Jolie is 2. It because python array is zero based, then 0 is Adam Sandler, 1                  
is Alec Baldwin and 2 Angelina Jolie. It means that all images of Angelina will be represented by                  
the same way in the categorical array:  
 

 
Note that the array have only one value 1, all other values are zero and the position of value 1 in                     
the array is 2. 
 
The second part of the data processing is to load the images from disk and prepare the images                  
to the feed the deep learning models. For each image path, this process can be summarized by: 

 
● Load the image from disk with 100x100px size. 
● Transform the image in a array 
● Extract the face of the image. in train dataset, has just one face per image 
● Expand the dimensions of the image array 

 
One important thing is that I does not discard images that does not have face extracted. For this                  
case, I add the original image in the array. In Tensorflow, these multidimensional image arrays               
are called tensors. 

 



 

 
At the end of this preprocessing stage, the images are loaded into arrays and the categorical                
data is loaded in another array. With the training data loaded, is possible to start training the                 
models. 

Implementation 
In this section I will describe the approach to select the best model for the project. I divided the                   
project in two parts: exploratory analysis / model selection and the build of a web project.In the                 
first part I tested, did a parameter tuning, performed the training and selected the best model                
for the project. In the second part, I built a web application to demonstrate the model in “real                  
world conditions”. 
 
Exploratory data analysis 
 
During the exploratory data analysis, I tested 3 architectures of CNN: VGG16 and RestNet50              
using Transfer Learning, and a custom model from scratch. 
 
The hypothesis to test VGG16 and RestNet50 using transfer learning from ImageNet weights,             
was based on a idea that the patterns learned from ImageNet dataset are basic enough to be                 
availed in the task of face recognition. It did not work as I thought.  
For VGG16 I got a accuracy around 57%. It was better than the benchmark model, but it is not                   
good enough to be used in production project.  
 
For the ResNet50, an important step before the training was to resize the images to 224x224px.                
It because keras implementation uses this size to feed the model.  
It can be complicated, if your machine does not have enough memory, because is necessary               
store in the memory all original data, convert to 224x224px and extract faces. 
With this model, the achieved accuracy was around 42%. 
 
I think the problem with the transfer learning approach is the dataset used for this project. It’s                 
very different from the imagenet and the weights does not generalizes well. 
All these steps can be visualized with the jupyter notebook in the exploratory-analysis folder. 
 
The custom model outperform these other two architectures. In this section I will describe how               
the custom model works. 
 
Model Selected: Custom 
 
The creation of the customized model, had as a general guide, the premise of having a simpler                 
architecture than the other two models. It can be explained by the type of task that must be                  
performed by this model: Recognize Faces.  

 



 

Faces generally has a set of standard characteristics and it does not have complicated pattern,               
because this, it does not need a very complicated transformations to learning this patterns. 
 
The proposed model is a combination of 4 blocks of 3x3 kernel Convolutional Layers stacked on                
a max pooling layer to reduce the volume size, and being activated by a ReLu activation                
function. At each block the Convolutional Layer increases the number of filters, starting with 32               
and end up with 256. 
To avoid overfitting, I use a Dropout layer with p=0.5 to dropping 50% of the connections. 
Finally, a Fully Connected Layer with a Dropout and Dense layers. The image below shows the                
network architecture. 
 
 

 

 
In the figure is possible to see the Convolutional layers with filter size increasing 

 
 
Initially, to train this model, I used color images with size 100x100px. The decision to use color                 
images, was based in the fact, that using color, this model can learning more combinations of                
patterns, achieving better accuracy. It was a different decision used in baseline and benchmark              
model.  
 
The metric used to evaluate this model was the accuracy. 
 
I started training this model with 20 epochs using the Categorical Cross Entropy loss function               
and RMSprop optimizer.  

 



 

I chose the Categorical Cross Entropy as loss function, was because my problem is a               
classification with more than 2 categories. For the other parameters, I used an experimental              
approach, looking at the performance of the model during training and check the final accuracy. 
 
In the first attempt, I noted that with 20 epochs my model started underfitting. The figure below                 
shows the model performance visualization for this configuration. 
 
 

 
The first image shows the accuracy of model in train and validation. The other figure shows the 

behavior of the train loss and validation loss. 
 

This model achieved 63% accuracy, but looking at the images above,, the model does not               
generalize very well. The train loss decrease more than the validation loss. It indicates an               
Underfitting.  

Refinement 
In the refinement process ,again, I used a very experimental approach. First I just add more                
epochs. In the initial model, I used 20 epochs. The images above shows, the model was                
undefitting, but I decide to give a try and add more epochs. Setting to 70 epochs, the things got                   
worse. 
 

 



 

 
The images shows a very bumpy validation line. Both loss and accuracy was bumpy 

With this model, the accuracy decrease to 0.06%. Very bad. 

After this attempt, I started experimenting tuning parameters. The first adjust was try to use gray                
scale images. The Idea behind this was that, with gray scale images, a lot of noise can be                  
reduced. To do this, I load the data in gray scale and set the epochs to 70 again and checked                    
the results. 

 

 

It seems, the result was not much different from the previous model. I kept trying to understand                 
what I was doing wrong. This model achieved around 12% accuracy, better than previous.              
Because  the result was better, I decided to keep gray scales images. 

Another important parameter that I adjusted was the optimizer. I tested SGD with a small               
learning rate values and RMSprop. The figure below summarizes the evolution of these models              
in the tensorboard. 

 



 

 

 

The figure shows a set of attempts to achieve the best model 

In the image, one of the models achieved around 80% of accuracy. This model used a                
combination of tuning optimizer and number of epochs. 

After a lot of attempts, the final model used: 

● Gray scale images with isolated faces 
● Uses ​adadelta​ as optimizer 
● Set the number of epochs to 90 

With this model, I achieved 83% of accuracy and the model visualization was better than the                
before models. 

 



 

 

Best model result visualization 

The image shows the behavior of the validation loss and accuracy very closed to the test.  

IV. Results 

Model Evaluation and Validation 
To validate and evaluate the model, I created web project that can be used to see the results. It                   
can be accessed by the url: ​https://who-is-in-the-photo.herokuapp.com/​ . 
The final model described above, has a good performance with a different types of images.               
Images with isolated faces, works better, but it works with more than 1 face for image too. 
Here a set of examples of faces recognized by the model. 
 

 
 
In this cases, all faces are isolated, and, the system had a very good performance. All 3 faces                  
was recognized. This images was obtained by the internet, using google images. 
Another important test is verify the accuracy of the model with different face conditions. This set                
of images does not have a clean face. 
 

 

https://who-is-in-the-photo.herokuapp.com/


 

 
 
These two images Will Smith appears in different ways. Both the model identify correctly. 
For multi face detections, the performance can be improved. Take a look at these examples: 
 

 
 
In the first image, the faces are corrected identified. Besides Brad Pitt hair is different from                
training images, the model recognize him correctly. The second and third images, the model              
only recognized Angelina Jolie. It can be happen because the face detection component does              
not work or because the model needs more examples of Jennifer Aniston and Brad Pitt. 

Justification 
The deep learning model did a good job compared with the benchmark and baseline model. It                
generalizes better and besides the dataset nature, it works very well. To summarize the results               
we can see: 
 
 
 
 

 



 

 Baseline model  
(PCA+SVM) 

Benchmark model 
(OpenCV+LBPHRec

ognizer 

Deep Learning 
Model (Custom 

Model) 

Accuracy 50% 44% 83% 

 
 
Compared with Baseline and Benchmark model, the deep learning has the better performance. 

V. Conclusion 

Reflection 
It was a very challenging project. First understand how the Face Recognition works. I had never                
implemented a face detection and recognition project before. After, I tried to understand how I               
can do face recognition using just traditional machine learning techniques. 

During the exploratory data analysis, I had the opportunity to apply in practice several of the                
knowledge acquired in the classes. The most difficult part for me, was to create a CNN model                 
from scratch. It takes a lot of time experimenting, tuning parameters to achieve a good               
performance. Another important part of this process was to see in practice the challenges of               
training a deep learning model. I had to learn how to set up a GPU in my personal computer to                    
train the models. It was very important. 

During the project phase, I had a chance to get out from jupyter notebook and write a production                  
like code in python and deploy the application. It was very important for me, because I see in                  
practice how to use the trained model in the production. During the classes, we don’t have                
contact with production like projects, and it was very challenge to create one. 

The good performance of the final model was a surprise for me. Initially I thought that this model                  
would not be better than the current approaches like OpenCV or SVM. But the model proved                
itself better.  

Improvement 
The final model has a good performance, but it needs some improvements to work better. The 
first point to improve would be the process of detecting faces with OpenCV. It does not working 
correctly when there are multiples faces and when the image conditions are no good. One of the 
improvement can be make is to use Dlib [19] to get landmarks points from the face.  
Another improvement is to try another CNN architecture described in the paper Deep Face 
Recognition [20]. The architecture proposed, was prepared to handle set of variations in the 
images. 

 



 

 
I think, there are some improvements to do in the web project to. It can show the last images 
uploaded to the server in the home. The error messages can be improved and the images can 
be uploaded to an external storage like Amazon S3. 
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