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Chapter 1

A Gentle Introduction to TESL

1.1 Context

The design of complex systems involves different formalisms for modeling their different parts or
aspects. The global model of a system may therefore consist of a coordination of concurrent sub-
models that use different paradigms such as differential equations, state machines, synchronous
data-flow networks, discrete event models and so on, as illustrated in Figure 1.1. This raises the
interest in architectural composition languages that allow for “bolting the respective sub-models
together”, along their various interfaces, and specifying the various ways of collaboration and
coordination [2].

We are interested in languages that allow for specifying the timed coordination of subsystems by
addressing the following conceptual issues:

e events may occur in different sub-systems at unrelated times, leading to polychronous sys-
tems, which do not necessarily have a common base clock,

e the behavior of the sub-systems is observed only at a series of discrete instants, and time
coordination has to take this discretization into account,

e the instants at which a system is observed may be arbitrary and should not change its
behavior (stuttering invariance),

e coordination between subsystems involves causality, so the occurrence of an event may
enforce the occurrence of other events, possibly after a certain duration has elapsed or an
event has occurred a given number of times,

e the domain of time (discrete, rational, continuous. . . ) may be different in the subsystems,
leading to polytimed systems,

e the time frames of different sub-systems may be related (for instance, time in a GPS satellite
and in a GPS receiver on Earth are related although they are not the same).

In order to tackle the heterogeneous nature of the subsystems, we abstract their behavior as
clocks. Each clock models an event, i.e., something that can occur or not at a given time. This
time is measured in a time frame associated with each clock, and the nature of time (integer,
rational, real, or any type with a linear order) is specific to each clock. When the event associated

5
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Figure 1.1: A Heterogeneous Timed System Model

with a clock occurs, the clock ticks. In order to support any kind of behavior for the subsystems,
we are only interested in specifying what we can observe at a series of discrete instants. There
are two constraints on observations: a clock may tick only at an observation instant, and the
time on any clock cannot decrease from an instant to the next one. However, it is always possible
to add arbitrary observation instants, which allows for stuttering and modular composition of
systems. As a consequence, the key concept of our setting is the notion of a clock-indexed Kripke
model: ¥ = IN — K — (BB x 7T), where K is an enumerable set of clocks, IB is the set of
booleans used to indicate that a clock ticks at a given instant and 7 is a universal metric time
space for which we only assume that it is large enough to contain all individual time spaces of
clocks and that it is ordered by some linear ordering (<7).

The elements of %.°° are called runs. A specification language is a set of operators that constrains
the set of possible monotonic runs. Specifications are composed by intersecting the denoted run
sets of constraint operators. Consequently, such specification languages do not limit the number
of clocks used to model a system (as long as it is finite) and it is always possible to add clocks
to a specification. Moreover, they are compositional by construction since the composition of
specifications consists of the conjunction of their constraints.

This work provides the following contributions:

e defining the non-trivial language TESL* in terms of clock-indexed Kripke models,
e proving that this denotational semantics is stuttering invariant,

e defining an adapted form of symbolic primitives and presenting the set of operational
semantic rules,

e presenting formal proofs for soundness, completeness, and progress of the latter.

1.2 The TESL Language

The TESL language [1] was initially designed to coordinate the execution of heterogeneous com-
ponents during the simulation of a system. We define here a minimal kernel of operators that
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will form the basis of a family of specification languages, including the original TESL language,
which is described at http://wdi.supelec.fr/software/ TESL/.

1.2.1 Instantaneous Causal Operators

TESL has operators to deal with instantaneous causality, i.e., to react to an event occurrence in
the very same observation instant.

e cl implies c2 means that at any instant where c1 ticks, c2 has to tick too.
e cl implies not c2 means that at any instant where c1 ticks, c2 cannot tick.

e cl kills c2 means that at any instant where c1 ticks, and at any future instant, c2
cannot tick.

1.2.2 Temporal Operators

TESL also has chronometric temporal operators that deal with dates and chronometric delays.

e c sporadic t means that clock ¢ must have a tick at time t on its own time scale.

e cl sporadic t on c2 means that clock c1 must have a tick at an instant where the time
on c2is t.

e cl time delayed by d on m implies c2 means that every time clock c1 ticks, c2 must
have a tick at the first instant where the time on m is d later than it was when c1 had ticked.
This means that every tick on c1 is followed by a tick on c2 after a delay d measured on
the time scale of clock m.

e cl time delayed\<bowtie> by d on m implies c2 means that every time clock c1 ticks,
c2 must have a tick at an instant where the time on m is d later than it was when c1 had
ticked. This means that every tick on c1 is followed by at least a tick on c2 after a delay
d measured on the time scale of clock m. Contrary to the strict version of time delayed,
c2 may not tick at the first instant at which the delay expires, and it may tick at several
instants, provided that the time on m is still 4 later than it was when c1 had ticked.

e time relation (cl, c2) in R means that at every instant, the current time on clocks c1
and c2 must be in relation R. By default, the time lines of different clocks are independent.
This operator allows us to link two time lines, for instance to model the fact that time
in a GPS satellite and time in a GPS receiver on Earth are not the same but are related.
Time being polymorphic in TESL, this can also be used to model the fact that the angular
position on the camshaft of an engine moves twice as fast as the angular position on the
crankshaft . We may consider only linear arithmetic relations to restrict the problem to
a domain where the resolution is decidable.

ISee http://wdi.supelec.fr/software/ TESL/GalleryEngine for more details
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1.2.3 Asynchronous Operators

The last category of TESL operators allows the specification of asynchronous relations between
event occurrences. They do not specify the precise instants at which ticks have to occur, they
only put bounds on the set of instants at which they should occur.

e cl weakly precedes c2 means that for each tick on c2, there must be at least one tick
on cl at a previous or at the same instant. This can also be expressed by stating that at
each instant, the number of ticks since the beginning of the run must be lower or equal on
c2 than on c1.

e cl strictly precedes c2 means that for each tick on c2, there must be at least one tick
on cl at a previous instant. This can also be expressed by saying that at each instant, the
number of ticks on c2 from the beginning of the run to this instant, must be lower or equal
to the number of ticks on c1 from the beginning of the run to the previous instant.



Chapter 2

The Core of the TESL Language:
Syntax and Basics

theory TESL
imports Main

begin

2.1 Syntactic Representation

We define here the syntax of TESL specifications.

2.1.1 Basic elements of a specification
The following items appear in specifications:
e Clocks, which are identified by a name.
e An instant on a clock is identified by its index, starting from 0

e Tag constants are just constants of a type which denotes the metric time space.

datatype clock = Clk (string)
type_synonym instant_index = (nat)
datatype ’T tag_const = TConst  (the_tag_const : ’7) UTest))

Tag variables are used to refer to the time on a clock at a given instant index. Tag expressions
are used to build a new tag by adding a constant delay to a tag variable.

datatype tag_var =
TSchematic (clock * instant_index) ((Tyqr))
datatype ’7 tag_expr =
AddDelay (tag_var) (7 tag_comnst) (| _ & _ )
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2.1.2 Operators for the TESL language

The type of atomic TESL constraints, which can be combined to form specifications.

datatype ’7 TESL_atomic =

SporadicOn (clock) (T tag_const) (clock) ({_ sporadic _ on _) 55)
| TagRelation (clock) (clock) ((’T tag_const X ’7 tag_const) = bool)
((time-relation |[_, _| € _) 55)
| Implies (clock) (clock) (infixr (implies) 55)
| ImpliesNot (clock) (clock) (infixr (implies not) 55)
| TimeDelayedBy (clock) (’7 tag_comnst) (clock) (clock)

({_ time-delayed by _ on _ implies _) 55)
RelaxedTimeDelayed (clock) (’7 tag_const) (clock) (clock)
({_ time-delayed by _ on _ implies _) 55)

| WeaklyPrecedes (clock) (clock) (infixr (weakly precedes) 55)
| StrictlyPrecedes <(clock) (clock) (infixr (strictly precedes) 55)
| Kills (clock) (clock) (infixr (kills) 55)

— The following constraints are not part of the TESL language, they are added only for implementing the
operational semantics

| SporadicOnTvar (clock) (°7 tag_expr) (clock) ((_ sporadicff _ on _) 55)

Some constraints were introduced for the implementation of the operational semantics. They are
not allowed in user-level TESL specification and are not public.

fun is_public_atom :: (7 TESL_atomic = bool) where
(is_public_atom (_ sporadicf _ on _) = False)
| (is_public_atom _ = True)

A TESL formula is just a list of atomic constraints, with implicit conjunction for the semantics.

type_synonym ’7 TESL_formula = (’7 TESL_atomic list)

fun is_public_spec :: (7 TESL_atomic list => bool) where
(is_public_spec [] = True)
| (is_public_spec (p#S) = ((is_public_atom ¢) A (is_public_spec S)))

We call positive atoms the atomic constraints that create ticks from nothing. Only sporadic
constraints are positive in the current version of TESL.

fun positive_atom :: (7 TESL_atomic = bool) where
(positive_atom (_ sporadic _ on _) = True)
| (positive_atom (_ sporadicf _ on _) = True)
| (positive_atom = False)

The NoSporadic function removes sporadic constraints from a TESL formula.

abbreviation NoSporadic :: (’7 TESL_formula = ’7 TESL_formula)
where
(NoSporadic f = (List.filter (Afgtom. case fatom Of
_ sporadic _ on _ = False
| _ = True) £))

2.1.3 Field Structure of the Metric Time Space

In order to handle tag relations and delays, tags must belong to a field. We show here that this
is the case when the type parameter of ’7 tag_const is itself a field.

instantiation tag_const ::(field)field
begin
fun inverse_tag_const
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where (inverse (7.st t) = Tcst (inverse t))

fun divide_tag_const
where (divide (7Tcst t1) (Test t2) = Test (divide t1 t2))

fun uminus_tag_const
where (uminus (7cst t) = Test (uminus t))

fun minus_tag_const
where (minus (7cst t1) (Test t2) = Test (minus tp t2))

definition (one_tag_const = 7T¢s¢ 1)

fun times_tag_const
where (times (7cst t1) (Test t2) = Test (times t1 tg))

definition (zero_tag_const = 7.5t 0)

fun plus_tag_const
where (plus (Tcst t1) (Test t2) = Test (plus ti t2))

instance proof

Multiplication is associative.

fix a::(’7::field tag_const) and b::(’7::field tag_const)
and c::(°7::field tag_const)
obtain u where (a = 7.5+ u using tag_const.exhaust by blast
moreover obtain v where (b = 7.5¢ v) using tag_const.exhaust by blast
moreover obtain w where (c = 7.5; w) using tag_const.exhaust by blast
ultimately show (a * b *x ¢ = a * (b * c))
by (simp add: TESL.times_tag_const.simps)
next

Multiplication is commutative.

fix a::(°>7::field tag_const) and b::(’7::field tag_const)
obtain u where (a = 7.5+ uw using tag_const.exhaust by blast
moreover obtain v where (b = 7.5¢ v) using tag_const.exhaust by blast
ultimately show ( a * b = b * a)
by (simp add: TESL.times_tag_const.simps)
next

One is neutral for multiplication.

fix a::(°>7::field tag_const)
obtain u where (a = 7.5+ w using tag_const.exhaust by blast
thus (1 x a = a)
by (simp add: TESL.times_tag_const.simps one_tag_const_def)
next

Addition is associative.

fix a::(°7::field tag_const) and b::(’7::field tag_const)
and c::(’7::field tag_const)

obtain u where (a = 7.5+ u using tag_const.exhaust by blast
moreover obtain v where (b = 7.5 v) using tag_const.exhaust by blast
moreover obtain w where (c = 7.5¢ w) using tag_const.exhaust by blast
ultimately show (a + b + ¢ = a + (b + c))

by (simp add: TESL.plus_tag_const.simps)

next
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Addition is commutative.

fix a::(’7::field tag_const) and b::(’7::field tag_const)
obtain u where (a = 7.5+ u using tag_const.exhaust by blast
moreover obtain v where (b = 7.5¢ v) using tag_const.exhaust by blast
ultimately show (a + b = b + a)
by (simp add: TESL.plus_tag_const.simps)
next

Zero is neutral for addition.

fix a::(’7::field tag_const)
obtain u where (a = T.5¢ w using tag_const.exhaust by blast
thus (0 + a = a)
by (simp add: TESL.plus_tag_const.simps zero_tag_const_def)
next

The sum of an element and its opposite is zero.

fix a::(’7::field tag_const)
obtain u where (a = 7.5+ u using tag_const.exhaust by blast
thus (-a + a = 0)
by (simp add: TESL.plus_tag_const.simps
TESL.uminus_tag_const.simps
zero_tag_const_def)
next

Subtraction is adding the opposite.

fix a::(’7::field tag_const) and b::(’7::field tag_const)
obtain u where (a = 7.5+ u using tag_const.exhaust by blast
moreover obtain v where (b = 7.5¢ v) using tag_const.exhaust by blast
ultimately show (a - b = a + -b)
by (simp add: TESL.minus_tag_const.simps
TESL.plus_tag_const.simps
TESL.uminus_tag_const.simps)
next

Distributive property of multiplication over addition.

fix a::(’7::field tag_const) and b::(’7::field tag_const)
and c::(’7::field tag_const)
obtain u where (a = 7.5¢ uw using tag_const.exhaust by blast
moreover obtain v where (b = 7.5¢ v) using tag_const.exhaust by blast
moreover obtain w where (c = 7.5 w) using tag_const.exhaust by blast
ultimately show ((a + b) * c = a *x c + b * ¢
by (simp add: TESL.plus_tag_const.simps
TESL.times_tag_const.simps
ring_class.ring_distribs(2))
next

The neutral elements are distinct.

show ((0::(’7::field tag_const)) # 1)
by (simp add: one_tag_const_def zero_tag_const_def)
next

The product of an element and its inverse is 1.

fix a::(’7::field tag_const) assume h:(a # 0)
obtain u where (a = 7.5+ u using tag_const.exhaust by blast
moreover with h have (u # 0) by (simp add: zero_tag_const_def)
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ultimately show (inverse a * a = 1)
by (simp add: TESL.inverse_tag_const.simps
TESL.times_tag_const.simps
one_tag_const_def)
next

Dividing is multiplying by the inverse.

fix a::(’7::field tag_const) and b::(’7::field tag_const)

obtain u where (a = 7.5+ uw using tag_const.exhaust by blast

moreover obtain v where (b = 7.5 v) using tag_const.exhaust by blast

ultimately show (a div b = a * inverse b)

by (simp add: TESL.divide_tag_const.simps
TESL.inverse_tag_const.simps
TESL.times_tag_const.simps
divide_inverse)
next

Zero is its own inverse.

show (inverse (0::(’7::field tag_const)) = 0)
by (simp add: TESL.inverse_tag_const.simps zero_tag_const_def)
qed

end

For comparing dates (which are represented by tags) on clocks, we need an order on tags.

instantiation tag_const :: (order)order
begin
inductive less_eq_tag_const :: (’a tag_const = ’a tag_const = bool)
where
Int_less_eq[simp]: (n < m = (TConst n) < (TConst m))

definition less_tag: ((x::’a tag_const) <y +— (x < y) A (x # y)»

instance proof

show (Ax y :: ’a tag_const. (x<y) = (x<yA-y<x)
using less_eq_tag_const.simps less_tag by auto
next
fix x::(’a tag_const)

from tag_const.exhaust obtain xg::’a where (x = TConst xg) by blast
with Int_less_eq show (x < x) by simp

next
show (Ax y z :: ’a tag_const. x <y =y <z = x < 2
using less_eq_tag_const.simps by auto
next
show (Ax y :: ’atagconst. x <y =y <x=x=7y
using less_eq_tag_const.simps by auto
qed
end

For ensuring that time does never flow backwards, we need a total order on tags.

instantiation tag_const :: (linorder)linorder
begin
instance proof
fix x::(’a tag_const) and y::(’a tag_const)

from tag_const.exhaust obtain xg::’a where (x = TConst xg) by blast
moreover from tag_const.exhaust obtain yo::’a where (y = TConst yg) by blast

13
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ultimately show (x < y V y < x) using less_eq_tag_const.simps by fastforce
qed

end

end

2.2 Defining Runs

theory Run
imports TESL

begin

Runs are sequences of instants, and each instant maps a clock to a pair (h, t) where h indicates
whether the clock ticks or not, and t is the current time on this clock. The first element of the
pair is called the ticks of the clock (to tick or not to tick), the second element is called the time.

fst)
snd)

abbreviation ticks where (ticks
abbreviation time where (time

type_synonym ’7 instant = (clock = (bool X ’7T tag_const))

Runs have the additional constraint that time cannot go backwards on any clock in the sequence
of instants. Therefore, for any clock, the time projection of a run is monotonous.

typedef (overloaded) ’7::linordered_field run =
({ p::nat = ’7 instant. Vc. mono (An. time (¢ n c)) }

proof
show ((A_ _. (True, 7¢st 0)) € {p. Vc. mono (An. time (o n c))})
unfolding mono_def by blast
qed

lemma Abs_run_inverse_rewrite:
(Vc. mono (An. time (p n ¢)) = Rep_run (Abs_run g) = @)
by (simp add: Abs_run_inverse)

A dense run is a run in which something happens (at least one clock ticks) at every instant.

definition (dense_run ¢ = (Vn. Jc. ticks ((Rep_run p) n ¢)))

run_tick_count ¢ K n counts the number of ticks on clock K in the interval [0, n] of run p.

fun run_tick_count :: ((’7::linordered_field) run = clock = nat = nat)
(He _ _ N
where
((#< 0 K 0) = (if ticks ((Rep_run g) 0 K)
- then 1
else 0))

| <(#S o K (Suc n)) (if ticks ((Rep_run p) (Suc n) K)
then 1 + (#< 0 K n)

else (#< 0 K n)))

run_tick_count_strictly o K n counts the number of ticks on clock K in the interval [0, n[
of run p.

fun run_tick_count_strictly :: ((’7::linordered_field) run = clock = nat = nat)
(He _ _ )
where
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((#< 0 K 0) =0
| ((#< 0 K (Suc n)) #< 0K

first_time o K n 7 tells whether instant n in run g is the first one where the time on clock K
reaches 7.

definition first_time :: (’a::linordered_field run = clock = nat = ’a tag_const
= bool)
where
(first_time ¢ K n 7 = (time ((Rep_run @) n K) = 7)
A (Fn’. n’ < n A time ((Rep_run ) n’ K) = 7))

The time on a clock is necessarily less than 7 before the first instant at which it reaches 7.

lemma before_first_time:
assumes (first_time o K n 7
and m < n)
shows (time ((Rep_run o) m K) < 7)
proof -
have (mono (An. time (Rep_run p n K))) using Rep_run by blast
moreover from assms(2) have m < n) using less_imp_le by simp
moreover have (mono (An. time (Rep_run p n K))) using Rep_run by blast
ultimately have <(time ((Rep_run p) m K) < time ((Rep_run p) n K))
by (simp add:mono_def)
moreover from assms(1) have (time ((Rep_run g) n K) = 7)
using first_time_def by blast
moreover from assms have (time ((Rep_run o) m K) # 7)
using first_time_def by blast
ultimately show ?thesis by simp
qed

This leads to an alternate definition of first_time:

lemma alt_first_time_def:
assumes (Vm < n. time ((Rep_run p) m K) < 7)
and (time ((Rep_run g) n K) = 7)
shows (first_time ¢ K n 7)
proof -
from assms(1) have (Vm < n. time ((Rep_run o) m K) # 7)
by (simp add: less_le)
with assms(2) show 7thesis by (simp add: first_time_def)
qed

end
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Chapter 3

Denotational Semantics

theory Denotational
imports

TESL

Run

begin

The denotational semantics maps TESL formulae to sets of satisfying runs. Firstly, we define
the semantics of atomic formulae (basic constructs of the TESL language), then we define the
semantics of compound formulae as the intersection of the semantics of their components: a run
must satisfy all the individual formulae of a compound formula.

3.1 Denotational interpretation for atomic TESL formulae

fun TESL_interpretation_atomic
((>7::1linordered_field) TESL_atomic = ’7 run set) ([ _ Jresr))
where
— Cy sporadic 7 on C2 means that C; should tick at an instant where the time on Cg is 7.

([ ¢1 sporadic T on C2 JrEsL =
{o. In::nat. ticks ((Rep_run p) n C;) A time ((Rep_run g) n C2) = 7}
— time-relation |[C1, C2| € R means that at each instant, the time on C; and the time on Cs are in relation R.

| ([ time-relation |Ci, C2| € R |resr =
{¢. Vn::nat. R (time ((Rep_run p) n C;), time ((Rep_run p) n C2))}
—master implies slave means that at each instant at which master ticks, slave also ticks.

| ([ master implies slave |rpsr =
{o. Vn::nat. ticks ((Rep_run p) n master) — ticks ((Rep_run p) n slave)})
—master implies not slave means that at each instant at which master ticks, slave does not tick.

| ([ master implies not slave |rgpsrp =
{0. Vn::nat. ticks ((Rep_run p) n master) — —ticks ((Rep_run p) n slave)l})
— master time-delayed by J7 on measuring implies slave means that at each instant at which master ticks,
slave will tick after a delay d7 measured on the time scale of measuring.
| ([ master time-delayed by §7 on measuring implies slave [rpsr =
— When master ticks, let’s call tg the current date on measuring. Then, at the first instant when the date on
measuring is tg + Jt, slave has to tick.
{0. Vn. ticks ((Rep_run p) n master) —>
(let measured_time = time ((Rep_run ©) n measuring) in
Vm > n. first_time p measuring m (measured_time + 07)

17
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— ticks ((Rep_run p) m slave)

b
| ([ master time-delayedr<! by 67 on measuring implies slave |rpsp =
— When master ticks, let’s call to the current date on measuring. Then, slave will be ticking at some instant(s)
when the time on measuring is tg + Jt.

{ 0. Vn. ticks ((Rep_run p) n master) —
(let measured_time = time ((Rep_run o) n measuring) in
dm > n. ticks ((Rep_run p) m slave)

A time ((Rep_run p) m measuring) = measured_time + 0T

B
— C1 weakly precedes Cz means that each tick on C2 must be preceded by or coincide with at least one tick
on Ci. Therefore, at each instant n, the number of ticks on C2 must be less or equal to the number of ticks
on Cy.
| ([ C1 weakly precedes C2 [|rpsr =
{o. Vn::nat. (run_tick_count g C2 n) < (run_tick_count p C; n)})
—Cy strictly precedes Co means that each tick on Co must be preceded by at least one tick on C; at a
previous instant. Therefore, at each instant n, the number of ticks on C2 must be less or equal to the number
of ticks on Cq at instant n - 1.
| ([ C1 strictly precedes C2 |rEsr =
{0. Vn::nat. (run_tick_count p Cz n) < (run_tick_count_strictly p C; n)})
—C1 kills Co means that when Cp ticks, Co cannot tick and is not allowed to tick at any further instant.

| ([ C1 kills C2 JrEsr =
{0. Vn::nat. ticks ((Rep_run p) n C1)
— (Vm>n. — ticks ((Rep_run g9) m C2))}
— Additional constraints for the operational semantics
—C1 sporadicf (| Twar (Cpasts Dpast) @ 0T ) on Co means that Cq should tick at an instant where the time
on Co iS(l Tvar (Cpasty npast) @ o1 D
| ([[ C1 sporadict (‘Tvar(cpast: npast) D 57'[) on Ca ﬂTESL =
{0. In::nat. ticks ((Rep_run p) n C;) A time ((Rep_run 0) n C2) = time ((Rep_run @) npast Cpast)
+ 61 P

3.2 Denotational interpretation for TESL formulae

To satisfy a formula, a run has to satisfy the conjunction of its atomic formulae. Therefore, the
interpretation of a formula is the intersection of the interpretations of its components.

fun TESL_interpretation :: ((’7::linordered_field) TESL_formula = ’7 run set)
Il - NrESL”
where

(I 00 Nlresc = {_. Trueh
| Lo # @ lrese =1 ¢ lrese NI @ llresw)

lemma TESL_interpretation_homo:

[ o lrese NIl @ llrese =1l ¢ # @ llresL’
by simp

3.2.1 Image interpretation lemma

theorem TESL_interpretation_image:

[l ® Mlrese =N (Qe. [ ¢ lrest) ¢ set )
by (induction ®, simp+)
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3.2.2 Expansion law

Similar to the expansion laws of lattices.

theorem TESL_interp_homo_append:

I @1 @ @2 Jlrese = [[ @1 llrese N [[ ®2 llresw)
by (induction ®;, simp, auto)

3.3 Equational laws for the denotation of TESL formulae

lemma TESL_interp_assoc:
ql (@1 @ @2) @ @3 [[rrsr = [[ 1 @ (P2 @ ®3) [[rEsL)
by auto

lemma TESL_interp_commute:

shows ([[[[ d, @ O MTESL = [[[[ Dy @ O MTESL)
by (simp add: TESL_interp_homo_append inf_sup_aci(1))

lemma TESL_interp_left_commute:

([“I P 0 (P @ @3) MTESL = [“I Py @ (P @ <I>3) MTESL)
unfolding TESL_interp_homo_append by auto

lemma TESL_interp_idem:

[Mee®Jrese =0 Nresw
using TESL_interp_homo_append by auto

lemma TESL_interp_left_idem:
([ @1 @ (@1 €@ ®2) Jlresr = [[ P21 ¢ P2 JJresp
using TESL_interp_homo_append by auto

lemma TESL_interp_right_idem:
([ (@1 @ 2) @ @2 Jlrpse = [[ 1 @ P2 [lrese)
unfolding TESL_interp_homo_append by auto

lemmas TESL_interp_aci = TESL_interp_commute
TESL_interp_assoc
TESL_interp_left_commute
TESL_interp_left_idem

The empty formula is the identity element.

lemma TESL_interp_neutrall:

Ar e rese = ¢ Nresw
by simp

lemma TESL_interp_neutral2:

M ®e 0 Jlrese =[[ ® llresw)
by simp

3.4 Decreasing interpretation of TESL formulae

Adding constraints to a TESL formula reduces the number of satisfying runs.

lemma TESL_sem_decreases_head:

I @ Nlrese 20l ¢ # @ llrEsL)
by simp

lemma TESL_sem_decreases_tail:
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(Il @ Jlrese 2 [[ @ @ [¥] Nlresw)
by (simp add: TESL_interp_homo_append)

Repeating a formula in a specification does not change the specification.

lemma TESL_interp_formula_stuttering:
assumes (p € set )
shows ([[ ¢ # @ Jlresrt = [[ @ llresL’
proof -
have (p # & = [p] @ ) by simp
hence ([[ ¢ # @ Jlresr = [[ [¥] llrese NI @ llrese
using TESL_interp_homo_append by simp
thus 7thesis using assms TESL_interpretation_image by fastforce
qed

Removing duplicate formulae in a specification does not change the specification.

lemma TESL_interp_remdups_absorb:
(Il @ llresr = [[ remdups ® [JrEsr)
proof (induction &)
case Cons
thus 7case using TESL_interp_formula_stuttering by auto
qed simp

Specifications that contain the same formulae have the same semantics.

lemma TESL_interp_set_lifting:
assumes (set ® = set )
shows ([“I [0 MTESL [[[[ (o ]]]]TESL>
proof -
have (set (remdups ®) = set (remdups ’))
by (simp add: assms)
moreover have fxpnt®: () (p. [ ¢ [resL) ¢ set ®) =[[ @ Jlresr’
by (simp add: TESL_interpretation_image)
moreover have fxpnt®’: (| (\p. [ ¢ lresr) ¢ set @) = [[ ® lresr’
by (simp add: TESL_interpretation_image)
moreover have (| (p. [ ¢ Jresr) < set ®) = (Np. [ ¢ lTrEsL) ¢ set &)
by (simp add: assms)
ultimately show ?thesis using TESL_interp_remdups_absorb by auto
qed

The semantics of specifications is contravariant with respect to their inclusion.

theorem TESL_interp_decreases_setinc:
assumes (set & C set P°)
shows ([[ @ [lrest 2 [[ ® llrEesr)
proof -
obtain ®, where decompose: (set (® @ ®,) = set ®’) using assms by auto
hence (set (® @ ®,) = set ®’) using assms by blast
moreover have ((set &) U (set ®,) = set P’)
using assms decompose by auto
moreover have ([[ ®’ [lrese = [[ © @ @ [lrest’
using TESL_interp_set_lifting decompose by blast
moreover have ([[ ® @ &, [lresr = [[ @ llrese N [[ & llrEsr)
by (simp add: TESL_interp_homo_append)
moreover have ([[ © [lresr 2 [[ ® llresc N [[ ®r llTEsr by simp
ultimately show ?thesis by simp
qed

lemma TESL_interp_decreases_add_head:
assumes (set ® C set &)
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shows (M o # P ]]]]TESL B) [“I © # P ]]]]TESL>
using assms TESL_interp_decreases_setinc by auto

lemma TESL_interp_decreases_add_tail:
assumes (set & C set $7)
shows ([[ @ @ [¢] Jlrese 2 [[ ®’ @ [¢] Jlrest)
using TESL_interp_decreases_setinc[0F assms]
by (simp add: TESL_interpretation_image dual_order.trans)

lemma TESL_interp_absorbl:
assumes (set &; C set Po)
shows ([[ @1 @ @2 Jlrese = [[ @2 [lresw)
by (simp add: Int_absorbl TESL_interp_decreases_setinc
TESL_interp_homo_append assms)

lemma TESL_interp_absorb2:
assumes (set P C set dyp)

shows (M P @ Py MTESL = [[[[ Dy ]]]]TESL>
using TESL_interp_absorbl TESL_interp_commute assms by blast

3.5 Some special cases

lemma NoSporadic_stable [simp]:
I @ llresz < [[ NoSporadic ® JJresr’
proof -
from filter_is_subset have (set (NoSporadic ®) C set &) .
from TESL_interp_decreases_setinc[0OF this] show ?thesis .
qged

lemma NoSporadic_idem [simp]:

(Il @ Ilresc N [[ NoSporadic @ Jlresr = [[ ® llresc)
using NoSporadic_stable by blast

lemma NoSporadic_setinc:
(set (NoSporadic ®) C set P)
by (rule filter_is_subset)

end
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Chapter 4

Symbolic Primitives for Building
Runs

theory SymbolicPrimitive
imports Run

keywords
"reflect_ML_exports" :: thy_decl

begin

We define here the primitive constraints on runs, towards which we translate TESL specifications
in the operational semantics. These constraints refer to a specific symbolic run and can therefore
access properties of the run at particular instants (for instance, the fact that a clock ticks at
instant n of the run, or the time on a given clock at that instant).

In the previous chapters, we had no reference to particular instants of a run because the TESL
language should be invariant by stuttering in order to allow the composition of specifications:
adding an instant where no clock ticks to a run that satisfies a formula should yield another run
that satisfies the same formula. However, when constructing runs that satisfy a formula, we need
to be able to refer to the time or ticking predicate of a clock at a given instant.

Counter expressions are used to get the number of ticks of a clock up to (strictly or not) a given
instant index.
datatype cnt_expr =

TickCountLess (clock) (instant_index) ((#<))
| TickCountLeq (clock) (instant_index) ((#=))

4.0.1 Symbolic Primitives for Runs

datatype ’7 constr =
— ¢ || n @ 7 constrains clock ¢ to have time 7 at instant n of the run.

Timestamp (clock) (instant_index) (’T tag_const) « 4 _e.)

—c | n @ Texpr constrains clock ¢ to have time Tegpr at instant n of the run. Tezpr refers to the time at
some previous instant on a clock

| TimestampTvar (clock)  (instant_index) (°T tag_expr) 4 et D)

—m @ n @ it = s constrains clock s to tick at the first instant at which the time on m has increased by Jt
from the value it had at instant n of the run.

| TimeDelay (clock) (instant_index) (’T tag_comnst) (clock) ((_ @ _ @ _ = _))

23
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— ¢ { n constrains clock c to tick at instant n of the run.

| Ticks (clock) (instant_index) [CERE 1))
— ¢ —{} n constrains clock ¢ not to tick at instant n of the run.

| NotTicks (clock) (instant_index) [ D))
— ¢ —ff < n constrains clock ¢ not to tick before instant n of the run.

| NotTicksUntil (clock) (instant_index) = <)
— ¢ —{} > n constrains clock ¢ not to tick at and after instant n of the run.

| NotTicksFrom (clock) (instant_index) = >N
— |71, 72| € R constrains tag variables 71 and 72 to be in relation R.

| TagArith (tag_var) (tag_var) ((’7 tag_const X ’7 tag_const) = bool) ((|_, _| € _))
— (k] R kg] € R constrains counter expressions k1 and ks to be in relation R.

| TickCntArith (cnt_expr) (cnt_expr) ((nat X nat) = bool) o, 1 €20
— k1 = kg constrains counter expression ki to be less or equal to counter expression ka.

| TickCntLeq (cnt_expr) (cnt_expr) (€T )]
type_synonym ’7 system = (7 constr list)

The abstract machine has configurations composed of:

the past I', which captures choices that have already be made as a list of symbolic primitive
constraints on the run;

the current index n, which is the index of the present instant;

the present W, which captures the formulae that must be satisfied in the current instant;

the future ®, which captures the constraints on the future of the run.

type_synonym ’7 config =
(’7 system * instant_index * ’7 TESL_formula * ’7 TESL_formula)

4.1 Semantics of Primitive Constraints

The semantics of the primitive constraints is defined in a way similar to the semantics of TESL
formulae.

fun counter_expr_eval :: ((’7::linordered_field) run = cnt_expr = nat)
(<|I - = - ]]cntea:pr>)
where

([ o - #< clk indx Jentexpr = run_tick_count_strictly ¢ clk indx)
| ([ ot #< clk indx lentexpr = run_tick_count p clk indx)

fun symbolic_run_interpretation_primitive
::((’7::linordered_field) constr = ’7 run set) ([ _ Jprim))
where
(KMo Jprim = {o. ticks ((Rep_run p) n K) })
| ([Keny & 6t = K’ Jprim =
{0. Vn > np. first_time p K n (time ((Rep_run p) np K) + d0t)
— ticks ((Rep_run g) n K’)})

I [ X o Jprim = {o. —ticks ((Rep_run g) n K) })

I I X - <n Jprim = 9{o. Vi < n. - ticks ((Rep_run g) i K)}

I IX - > n Jprim = {o. Vi > n. = ticks ((Rep_run p) i K) }
|

(K4 ner]prim = {o. time ((Rep_run @) n K) =7 }
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I ({ K nof (toar(K’, n’) ® 67) Jprim = {0. time ((Rep_run p) n K) = time ((Rep_run p) n’ K’) + 47
b
| <|I \_Tvar(cl, ni), Tvar(C2, n2)J €R ]]p'rim =
{ 0. R (time ((Rep_run @) nj C1), time ((Rep_run @) ny C2)) }
| <|I ’791, 921 € R ]]prim ={po. R (II ot el ]]cntezp'r: II o e ]]cntea:pr) b
| <[[ cnt_e; =< cnt_eg ]]p'rim ={ o. [[ ok cnt_ey chtezpr < [[ o - cnt_e2 ]]cntezp'r B

The composition of primitive constraints is their conjunction, and we get the set of satisfying
runs by intersection.

fun symbolic_run_interpretation
::((’7::1linordered_field) constr list = (’7::linordered_field) run set)
I - Tlprim?)

where
I 0 Iprim = {o- True b

LAl Y # T Jlprim = [ 7 Jprim O 0L T Jlprim

lemma symbolic_run_interp_cons_morph:

[ lprim O I T Jprim = [[v # T Jlprim)
by auto

definition consistent_context :: ((’7::linordered_field) constr list = bool)
where
(consistent_context I' = ( [[ T [lprim # {})

4.1.1 Defining a method for witness construction

In order to build a run, we can start from an initial run in which no clock ticks and the time is
always 0 on any clock.

abbreviation initial_run :: ((’7::linordered_field) run) ({pp)) where
(0o = Abs_run ((\ (False, Tc¢st 0)) ::nat = clock = (bool X ’T tag_const)))

To help avoiding that time flows backward, setting the time on a clock at a given instant sets it
for the future instants too.

fun time_update
: (nat = clock = (’7::linordered_field) tag_const = (nat = ’7 instant)
= (nat = ’7 instant))
where
(time_update n K 7 o = (An’ K’. if K=K’ A n < n’
then (ticks (o n K), 7)
else o n’ K’))

4.2 Rules and properties of consistence

lemma context_consistency_preservationI:
(consistent_context ((v::(’7::linordered_field) constr)#I') — consistent_context I")
unfolding consistent_context_def by auto

— This is very restrictive

inductive context_independency

::((C’7::linordered_field) constr = ’7 constr list = bool) ({_ X _))
where

NotTicks_independency:

(Kt n) ¢ set ' = (K ffn)xD
| Ticks_independency:

(K - n) ¢ set ' = K fn) xD
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| Timestamp_independency:
(Br.m=7A®Uner) e€set ) = K{ner) xD

4.3 Major Theorems

4.3.1 Interpretation of a context

The interpretation of a context is the intersection of the interpretation of its components.

theorem symrun_interp_fixpoint:
N Q. [y prim) < set T = [[ T Jlprim
by (induction I', simp+)

4.3.2 Expansion law

Similar to the expansion laws of lattices

theorem symrun_interp_expansion:

I T1 @ T2 [lprim = [[ T1 Mlprim O [ T2 Jlprim)
by (induction I';, simp, auto)

4.4 Equations for the interpretation of symbolic primitives

4.4.1 General laws

lemma symrun_interp_assoc:
([ 'y @T2) @ T3 Jlprim = [[ T1 @ (T2 @ I'3) [lprim’
by auto

lemma symrun_interp_commute:
(MM Ty @2 Jlprim = [[ T2 @ Ty Jlprim’

by (simp add: symrun_interp_expansion inf_sup_aci(1))

lemma symrun_interp_left_commute:
(I T1 @ (T2 @ T3) Jlprim = [[ T2 @ (T't @ T3) [lprim’
unfolding symrun_interp_expansion by auto

lemma symrun_interp_idem:

[T el Jlprim = [[ T Ilprim)
using symrun_interp_expansion by auto

lemma symrun_interp_left_idem:
<|I|I I'n e (I'y @ F2) ]H]p'rim = IIII Iy e F2 ]]]]PT’Lm>
using symrun_interp_expansion by auto

lemma symrun_interp_right_idem:
([ 1 @T2) @ T2 [lprim = [[ T1 @ T2 [Jprim)
unfolding symrun_interp_expansion by auto

lemmas symrun_interp_aci = symrun_interp_commute
symrun_interp_assoc
symrun_interp_left_commute
symrun_interp_left_idem

— Identity element

lemma symrun_interp_neutrall:
I 0 eT Mprim = [[ T Mprim’
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by simp

lemma symrun_interp_neutral2:
qrr e llprim = [[ T lprim>
by simp

4.4.2 Decreasing interpretation of symbolic primitives

Adding constraints to a context reduces the number of satisfying runs.

lemma TESL_sem_decreases_head:

T Mprim 2 [~ # T Jlprim)
by simp

lemma TESL_sem_decreases_tail:

M T Mprim 2 M T e [ [lprim)

by (simp add: symrun_interp_expansion)

Adding a constraint that is already in the context does not change the interpretation of the
context.

lemma symrun_interp_formula_stuttering:
assumes (y € set IV
shows ([[ v # I' [lprim = [[ T Jlprim)
proof -
have (y # I = [y] @ I) by simp
hence ([ v # T [lprim = [[ [¥] Ilprim O [[ T Jprim’
using symrun_interp_expansion by simp
thus 7thesis using assms symrun_interp_fixpoint by fastforce
qged

Removing duplicate constraints from a context does not change the interpretation of the context.

lemma symrun_interp_remdups_absorb:
([ T Mprém = [I remdups T JJprim)
proof (induction I')
case Cons
thus 7case using symrun_interp_formula_stuttering by auto
qged simp

Two identical sets of constraints have the same interpretation, the order in the context does not
matter.

lemma symrun_interp_set_lifting:
assumes (set I' = set I'?)
shows ([[ T Jlprim = [[ T Tprim)
proof -
have (set (remdups I') = set (remdups I'’))
by (simp add: assms)
moreover have fxpntI': () (A\y. [ 7 Jprim) € set I) = [[ T llprim’
by (simp add: symrun_interp_fixpoint)
moreover have fxpntl'’: (| (Oy. [ v lprim) < set T?) = [[ T [lprim)
by (simp add: symrun_interp_fixpoint)
moreover have (| ((A\v. [ 7 lprim) < set I) = (. [ v lprim) ¢ set I’)
by (simp add: assms)
ultimately show ?thesis using symrun_interp_remdups_absorb by auto
qged

The interpretation of contexts is contravariant with regard to set inclusion.

theorem symrun_interp_decreases_setinc:



28

CHAPTER 4. SYMBOLIC PRIMITIVES FOR BUILDING RUNS

assumes (set I' C set I'?)
shows ([ T Jlprim 2 [[ T7 Ilprim’

proof -

obtain I', where decompose: (set (I' @ ') = set I'’) using assms by auto

hence (set (I' @ I';.)

= set I'’) using assms by blast

moreover have ((set I') U (set I';) = set I'’) using assms decompose by auto
moreover have ([[ T’ Jlprim = [[ T @ T'r [lprim)

using symrun_interp_set_lifting decompose by blast
moreover have ([[ T @ Ty [lprim = [[ T llprim 0O [[ Tr lprim’

by (simp add: symrun_interp_expansion)
moreover have ([[ T Jlprim 2 [[ T llprim N [[ Tr llprim> by simp
ultimately show ?thesis by simp

qed

lemma symrun_interp_decreases_add_head:
assumes (set I' C set I'?)

shows ([ v # I' llprim 2 [[ v # I Qlprim
using symrun_interp_decreases_setinc assms by auto

lemma symrun_interp_decreases_add_tail:
assumes (set I' C set I'?)

shows ([[ T @ [v]
proof -

Mprim ) M e [v] ]]]]prz’m>

from symrun_interp_decreases_setinc[OF assms] have ([[ I’ [lprim C [[ T Ilprim’ -
thus ?thesis by (simp add: symrun_interp_expansion dual_order.trans)

qed

lemma symrun_interp_absorbl:
assumes (set ['; C set I'9)

shows ([[ I'1 @ I'y

Hprim = [I T2 Mprim’

by (simp add: Int_absorbl symrun_interp_decreases_setinc

symrun_interp_expansion assms)

lemma symrun_interp_absorb2:
assumes (set ['9 C set I'p)

shows ([[ I'1 @ I'y

Hprim = [[ T1 Mprim’

using symrun_interp_absorbl symrun_interp_commute assms by blast

4.5 Code-Generation

export_code TickCountLess TickCountLeq
TSchematic

Timestamp

TimeDelay

Ticks NotTicks

NotTicksUntil NotTicksFrom TagArith
TickCntArith TickCntLeq

in SML

module_name HyggePrimitives

4.5.1 Infrastructure for Reflecting exported SML code

ML«

fun reflect_local_ML_exports args trans = let
fun eval_ML_context ctxt = let

fun is_sml_file

f = String.isSuffix ".ML" (Path.implode (#path f))

val files = (map (Generated_Files.check_files_in (Context.proof_of ctxt)) args)
val ml_files = filter is_sml_file (map #1 (maps Generated_Files.get_files_in files))
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val ml_content = map (fn f => Syntax.read_input (#content f)) ml_files
fun eval ml_content = fold (fn sml => (ML_Context.exec
(fn () => ML_Context.eval_source ML_Compiler.flags sml)))

ml_content

in
(eval ml_content #> Local_Theory.propagate_ml_env) ctxt
end
in
Toplevel.generic_theory eval_ML_context trans
end

val files_in_theory =

(Parse.underscore >> K [] || Scan.repeatl Parse.path_binding) --
Scan.option (keyword(() |-- Parse.!!! (keyword (in)
|-- Parse.theory_name --| keyword())));
val _ =

Outer_Syntax.command command_keyword (reflect_ML_exports)
"evaluate generated Standard ML files"
(Parse.and_listl files_in_theory >> (fn args => reflect_local_ML_exports args));

reflect_ML _exports _

ML(open HyggePrimitives)

end
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Chapter 5

Operational Semantics

theory Operational
imports
SymbolicPrimitive

begin

The operational semantics defines rules to build symbolic runs from a TESL specification (a set
of TESL formulae). Symbolic runs are described using the symbolic primitives presented in the
previous chapter. Therefore, the operational semantics compiles a set of constraints on runs, as
defined by the denotational semantics, into a set of symbolic constraints on the instants of the
runs. Concrete runs can then be obtained by solving the constraints at each instant.

5.1 Operational steps

We introduce a notation to describe configurations:

e [ is the context, the set of symbolic constraints on past instants of the run;
e n is the index of the current instant, the present;
e U is the TESL formula that must be satisfied at the current instant (present);

e @ is the TESL formula that must be satisfied for the following instants (the future).

abbreviation uncurry_conf
::((’7::1linordered_field) system = instant_index = ’7 TESL_formula = ’7 TESL_formula
= ’7 config) o, - F > 2 80)
where
T, nEY>®= (T, n ¥, &N

The only introduction rule allows us to progress to the next instant when there are no more
constraints to satisfy for the present instant.

inductive operational_semantics_intro

::(C7::linordered_field) config => ’7 config = bool) (2 =y ) T0)
where
instant_i:

31
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(T, nE=NOp>P) —; (I, Sucn = [IN

The elimination rules describe how TESL formulae for the present are transformed into con-
straints on the past and on the future.

inductive operational_semantics_elim

::((°7::1linordered_field) config = ’7 config = bool) (_ —=re ) T0)
where

sporadic_on_el:
— A sporadic constraint can be ignored in the present and rejected into the future.

(T, n |= ((C; sporadic 7 on C2) # U) > P)
¢ (', n E ¥ > ((C1 sporadic 7 on C2) # P)))

| sporadic_on_e2:

— It can also be handled in the present by making the clock tick and have the expected time. Once it has been
handled, it is no longer a constraint to satisfy, so it disappears from the future.
(', n = ((C; sporadic 7 on C2) # W) > ®)

e ((C1 ) #(C2ynem) #D),nETY>IN
| sporadic_on_tvar_el:
(T, n = ((Cy sporadicf Tezpr on C2) # ¥) > D)
—e (I, n = ¥ > ((C; sporadicf Tezpr on C2) # ®)))
| sporadic_on_tvar_e2:
((I', n = ((C; sporadicf Tezpr on C2) # U) > P)
e (((C1 1 n) # (C2 nef Texpr) # ), n = U > D))
| tagrel_e:
— A relation between time scales has to be obeyed at every instant.

(T, n = ((time-relation [Ci, C2] € R) # ¥) > ®)
e (((LT’L)GT(Clj n), Tyar(C2, n)J ER) #I), n
E U > ((time-relation [Ci, C2] € R) # ®))
| implies_el:
— An implication can be handled in the present by forbidding a tick of the master clock. The implication is
copied back into the future because it holds for the whole run.
(', n = ((C; implies C2) # U) > P)
e (((C1 7 n) # ), n | ¥ > ((C; implies C2) # P))
| implies_e2:
— It can also be handled in the present by making both the master and the slave clocks tick.

(T, n = ((C; implies C2) # W) > ®)
e (((C1 ftn) # (C2 ) #1), n E ¥ > ((C1 implies C2) # PIN
| implies_not_el:
— A negative implication can be handled in the present by forbidding a tick of the master clock. The implication
is copied back into the future because it holds for the whole run.
(', n = ((C1 implies not C2) # ¥) > P)
e (((C1 =t n) # 1), n E ¥ > ((C; implies not C2) # P)))
| implies_not_e2:
— It can also be handled in the present by making the master clock ticks and forbidding a tick on the slave
clock.
(', n = ((C; implies not C2) # ¥) > P)
e (((C1 ftn) # (C2 =t n) #I), n E ¥ > ((C; implies not C2) # P)))
| timedelayed_el:
— A timed delayed implication can be handled by forbidding a tick on the master clock.

(', n = ((C; time-delayed by 47 on Cz implies C3) # ¥) »> P)
—e (((C1 7 n) # ), n | ¥ > ((C; time-delayed by 67 on C2 implies C3) # ®)))
| timedelayed_e2:
— It can also be handled by making the master clock tick and adding a constraint that makes the slave clock
tick when the delay has elapsed on the measuring clock.
(', n | ((C1 time-delayed by 47 on C2 implies C3) # ¥) > P)
e (((C1 1 n) #(C2@n@®Jr = C3) #I), n
= U > ((C; time-delayed by 67 on Cp implies C3) # ®)))
| timedelayed_tvar_el:
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(', n = ((C; time-delayed:<i by 67 on C2 implies C3) # U) > P)
e (((C1 =t n) # 1), n E ¥ > ((C; time-delayed<! by §7 on C2 implies C3) # P))
| timedelayed_tvar_e2:
(', n = ((C1 time-delayedr by 47 on C2 implies C3) # ¥) > P)
—e (((C1 1 n) # 1), n | ((C3 sporadict (Tvar(C2, n) @ 7)) on C2) # V)
> ((C; time-delayedr< by 47 on Cz implies C3) # P)))
| weakly_precedes_e:
— A weak precedence relation has to hold at every instant.

((I', n = ((C; weakly precedes C2) # U) > @)
e ((([#= Cam, #5 C1 n] € (A (x,y). x<y)) # ), n
= U > ((C; weakly precedes C2) # ®))
| strictly_precedes_e:
— A strict precedence relation has to hold at every instant.

((I', n = ((C1 strictly precedes C2) # ¥) > D)
e ((([#= Camn, #< C1 n] € A\ (x,y). x<y)) # ), n
= U > ((C; strictly precedes C2) # ®)))
| kills_el:
— A kill can be handled by forbidding a tick of the triggering clock.

(', n E ((C1 kills C2) # ¥) > P)
e (((C1 =t n) # ), n = ¥ > ((C; kills C2) # P)))
| kills_e2:
— It can also be handled by making the triggering clock tick and by forbidding any further tick of the killed
clock.
(', n = ((C1 kills Co) # U) b ®)
e (((C1 1 m) # (Co > n) #1), n E ¥ > ((C; kills Cp) # P)))

A step of the operational semantics is either the application of the introduction rule or the
application of an elimination rule.

inductive operational_semantics_step
::((C’7::linordered_field) config = ’7 config = bool) (= ) 70)
where
intro_part:
((T'1, n1 |: Uy > $1) <, (T2, n2 |: Uy > Po)
= (I'1, n1 F U1 > &) < (T2, ng E Vo > P3))
| elims_part:
((I'1, n1 '= U, > ®1) . ([2, n2 )= Uy > Po)
— (I'1, n ): Uy p &) — (T2, no |: Uy > Py))

We introduce notations for the reflexive transitive closure of the operational semantic step, its
transitive closure and its reflexive closure.

abbreviation operational_semantics_step_rtranclp

::((’7::1linordered_field) config = ’7 config = bool) (_ —=** ) 70)
where
(C1 <»** Cy = operational_semantics_step** C; C2)

abbreviation operational_semantics_step_tranclp

::((C’7::linordered_field) config => ’7 config = bool) [COE S Y (1))
where

(C1 =1 Cy = operational_semantics_steptt Ci C2)

abbreviation operational_semantics_step_reflclp

::((°7::linordered_field) config = ’7 config = bool) (. === ) 70)
where
(C1 <=~ Co = operational_semantics_step~ C; C2)

abbreviation operational_semantics_step_relpowp
::((°7::linordered_field) config = nat = ’7 config = bool) (_ == ) 70)
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where
(C1 —" C2 = (operational_semantics_step "~ n) C; C2)

definition operational_semantics_elim_inv

::((°7::linordered_field) config = ’7 config = bool) (L = D) T0)
where

(C1 = Co = Co —e C1)

5.2 Basic Lemmas

If a configuration can be reached in m steps from a configuration that can be reached in n
steps from an original configuration, then it can be reached in n + m steps from the original
configuration.

lemma operational_semantics_trans_generalized:
assumes (C1 —® Ca)
assumes (Co —" C3)
shows (C; —®* ™ C3)
using relcompp.relcompI[of (operational_semantics_step ~
(operational_semantics_step ~

n)

m), OF assms]

by (simp add: relpowp_add)

We consider the set of configurations that can be reached in one operational step from a given
configuration.

abbreviation Cnext_solve
::((’7::1linordered_field) config = ’7 config set) ((Cnext _))
where

Cnezt S=1{8". 8§ =8 »

Advancing to the next instant is possible when there are no more constraints on the current
instant.

lemma Cnext_solve_instant:
((Cnezt Ty, n E O>®) D2{T, Sucn =& [P
by (simp add: operational_semantics_step.simps operational_semantics_intro.instant_i)

The following lemmas state that the configurations produced by the elimination rules of the
operational semantics belong to the configurations that can be reached in one step.

lemma Cnext_solve_sporadicon:
((Cnezt (I', n = ((Cy sporadic 7 on C2) # ¥) > P))
OD{TI, nE ¥ ((C; sporadic 7 on C2) # ),
(Ciftn) #(C2Yyne7) #D,nE=Tvp>d)
by (simp add: operational_semantics_step.simps
operational_semantics_elim.sporadic_on_el
operational_semantics_elim.sporadic_on_e2)

lemma Cnext_solve_sporadicon_tvar:
((Cnezt (I', n = ((Cy sporadicf Texpr on C2) # U) > P))
OD{TI, nkE ¥ ((C; sporadicf Tegpr on C2) # D),
(€1 1 n) # (Co ynof Teapr) #ID, n T >P D
by (simp add: operational_semantics_step.simps
operational_semantics_elim.sporadic_on_tvar_el
operational_semantics_elim.sporadic_on_tvar_e2)

lemma Cnext_solve_tagrel:
((Cnezt (I', n | ((time-relation |Ci, C2] € R) # U) > P))
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O { ((l_Tva,'r(Cl, n), Tyar(C2, n)J €ER) #I),n
E U > ((time-relation [Ci;, C2] € R) # &) b
by (simp add: operational_semantics_step.simps operational_semantics_elim.tagrel_e)

lemma Cnext_solve_implies:
((Cnezt (I', n E ((C1 implies C2) # ¥) > P))
OD{ (i = n) #T), n = ¥ > ((C; implies C2) # P),
((C1 fn) # (C2tn) #I), n E ¥ > ((C; implies C2) # ®) b
by (simp add: operational_semantics_step.simps operational_semantics_elim.implies_el
operational_semantics_elim.implies_e2)

lemma Cnext_solve_implies_not:
((Cnezt (I', n = ((C1 implies not C2) # ¥) > P))
D{((C; fn) #), n = ¥ > ((C; implies not C2) # P),
((Ci ' n) # (C2 ~ffn) #ID, n = ¥ > ((C; implies not C2) # @) B
by (simp add: operational_semantics_step.simps
operational_semantics_elim.implies_not_el
operational_semantics_elim. implies_not_eQ)

lemma Cnext_solve_timedelayed:
((Cnezt (I, n = ((C1 time-delayed by 47 on Cp implies C3) # ) > ®))
D{((C; fn) #T), n = ¥ > ((C; time-delayed by 47 on C2 implies C3) # ®),
((Ci n) # (C2 @n @ 67 = C3) # ), n
= ¥ > ((C; time-delayed by 67 on C2 implies C3) # &) 1)

by (simp add: operational_semantics_step.simps
operational_semantics_elim.timedelayed_el
operational_semantics_elim.timedelayed_e2)

lemma Cnext_solve_timedelayed_tvar:
((Cpezt (I', n | ((C; time-delayed<i by d7 on Cz implies C3) # ¥) > ®))
OD{(C; ' n) #), n = ¥ > ((C; time-delayed<i by 67 on Cy implies C3) # P),
((C1 ) #I), n
E (C3 sporadicf (Tvaer(C2, n) @ 67| on C2) # WU
> ((C; time-delayed< by &7 on Cz implies C3) # ®) })
by (simp add: operational_semantics_step.simps
operational_semantics_elim.timedelayed_tvar_el
operational_semantics_elim.timedelayed_tvar_e2)

lemma Cnext_solve_weakly_precedes:
((Crext (I', n | ((C; weakly precedes C3) # V) > ®))
O { (([#= Can, #= C1 n] € A\(x,y). x<y)) # ), n
E ¥ > ((C; weakly precedes C2) # ®) }
by (simp add: operational_semantics_step.simps
operational_semantics_elim.weakly_precedes_e)

lemma Cnext_solve_strictly_precedes:
((Cnezt (I', n = ((C1 strictly precedes C2) # U) > P))
D { (([#5 Can, #5 C1 n] € A,y . x<y)) # 1), n
= ¥ > ((C; strictly precedes C2) # @) })
by (simp add: operational_semantics_step.simps
operational_semantics_elim.strictly_precedes_e)

lemma Cnext_solve_kills:
((Cnezt (T', n = ((C1 kills C2) # ¥) > ®))
OD{ C; ftn) #ID, n = ¥ > ((C; kills C2) # D),
((Cy tm) # (Co =t >mn) #T), n = ¥ > ((C; kills C2) # @) b
by (simp add: operational_semantics_step.simps operational_semantics_elim.kills_el
operational_semantics_elim.kills_e2)
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An empty specification can be reduced to an empty specification for an arbitrary number of
steps.

lemma empty_spec_reductions:

(,o0E=O0> <* W, xE 0> 0O
proof (induct k)

case 0 thus ?case by simp
next

case Suc thus 7case

using instant_i operational_semantics_step.simps by fastforce

qed

end



Chapter 6

Equivalence of the Operational
and Denotational Semantics

theory Coinductive_Prop
imports
SymbolicPrimitive
Operational
Denotational

begin

6.1 Stepwise denotational interpretation of TESL atoms

In order to prove the equivalence of the denotational and operational semantics, we need to be
able to ignore the past (for which the constraints are encoded in the context) and consider only
the satisfaction of the constraints from a given instant index. For this purpose, we define an
interpretation of TESL formulae for a suffix of a run. That interpretation is closely related to
the denotational semantics as defined in the preceding chapters.

fun TESL_interpretation_atomic_stepwise
: ((°7::linordered_field) TESL_atomic = nat = ’7 run set) ([ _ Jrpsr2 -))
where
([ €1 sporadic 7 on C2 |rpsr> * =
{o. In>i. ticks ((Rep_run p) n C1) A time ((Rep_run p) n C2) = 7}
| <[[ Cy Sporadicﬁ (‘Tvar(cpast’ npast) S2) 57") on C2 }]TESLZ i=
{o. In>i. ticks ((Rep_run p) n C1)
A time ((Rep_run ) n C2) = time ((Rep_run 9) npast Cpast) + 07 1}
| [ time-relation |C1, C2] € R Jrpsr2 * =
{o0. Vn>i. R (time ((Rep_run p) n Ci), time ((Rep_run p) n C2))}
| ([ master implies slave |rgpsr= ' =
{0. Vn>i. ticks ((Rep_run p) n master) — ticks ((Rep_run p) n slave)})
| ([ master implies not slave |rgpsr= ' =
{0. Vn>i. ticks ((Rep_run p) n master) — — ticks ((Rep_run p) n slave)})
| <[[ master time-delayed by 67 on measuring implies slave ]]TESLZ is=
{0. Vn>i. ticks ((Rep_run p) n master) —
(let measured_time = time ((Rep_run ) n measuring) in
Vm > n. first_time p measuring m (measured_time + J7)
— ticks ((Rep_run p) m slave)

37
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b
| ([ master time-delayedr<! by 67 on measuring implies slave ]]TESLZ i=
{o. Vn>i. ticks ((Rep_run p) n master) —
(let measured_time = time ((Rep_run p) n measuring) in
Jdm > n. ticks ((Rep_run p) m slave)
A time ((Rep_run ) m measuring) = measured_time + 67
)
1)
| ([ C1 weakly precedes C2 |rpsr> ' =
{o. Vn>i. (run_tick_count p C2 n) < (run_tick_count ¢ C; n)}
| <[ C1 strictly precedes Ca Jrpsr> ' =
{o0. Vn>i. (run_tick_count g C2 n) < (run_tick_count_strictly o C; n)}
| ([[ C1 kills Co HTESLZ i=
{0. Vn>i. ticks ((Rep_run @) n C;) — (Vm>n. — ticks ((Rep_run @) m C2))}

The denotational interpretation of TESL formulae can be unfolded into the stepwise interpreta-
tion.

lemma TESL_interp_unfold_stepwise_sporadicon:
([ €1 sporadic 7 on C2 Jresr = U {Y. In::nat. Y = [ C; sporadic 7 on C2 Jrpsr> P
by auto

lemma TESL_interp_unfold_stepwise_sporadicon_tvar:
([ ¢1 sporadict Tezpr on C2 Jrpsr = U {Y. In::nat. Y = [ C; sporadicf Tezpr on Co ]]TESLZ n})
proof (induction Tegpr)
case (AddDelay xla T)
then show 7?case
proof (induction xla)
case (TSchematic xa)
then show 7case
proof (induction xa)
case (Pair K n’)
then show ?case by auto
qed
qged
qed

lemma TESL_interp_unfold_stepwise_tagrelgen:
([ time-relation |Ci1, C2| € R JrESL
=) {Y. 3n::nat. Y = [ time-relation |[C1, C2| € R Jrpsr2 ™}
by auto

lemma TESL_interp_unfold_stepwise_implies:
([ master implies slave |rgpsr
=) {Y. 3n::nat. Y = [ master implies slave |rpsr= "}
by auto

lemma TESL_interp_unfold_stepwise_implies_not:
([ master implies not slave [rpsr
=) {Y. 3n::nat. Y = [ master implies not slave |rpsr= *}
by auto

lemma TESL_interp_unfold_stepwise_timedelayed:
<[[ master time-delayed by 67 on measuring implies slave HTESL
=) {Y. In::nat.
Y = [[ master time-delayed by 67 on measuring implies slave ]]TESLZ n})
by auto

lemma TESL_interp_unfold_stepwise_timedelayed_tvar:
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([ master time-delayedi<! by 67 on measuring implies slave |rpsr
=) {Y. In::nat.
Y = [ master time-delayed< by d7 on measuring implies slave HTESLZ n})
by auto

lemma TESL_interp_unfold_stepwise_weakly_precedes:
([ ¢1 weakly precedes C2 |resr
=) {Y. 3n::nat. Y = [ C; weakly precedes C2 |rEpsr= °}
by auto

lemma TESL_interp_unfold_stepwise_strictly_precedes:
([ €1 strictly precedes C2 [resrL
= () {Y. 3n::nat. Y = [ C; strictly precedes C2 |rpsr= ™}
by auto

lemma TESL_interp_unfold_stepwise_kills:
([ master kills slave Jrpsr = () {Y. In::nat. Y = [ master kills slave ]]TESLZ n})
by auto

Positive atomic formulae (the ones that create ticks from nothing) are unfolded as the union of
the stepwise interpretations.

theorem TESL_interp_unfold_stepwise_positive_atoms:

assumes (positive_atom )

shows ([ ¢p::’7::1linordered_field TESL_atomic |rgsr
= U {Y. 3n::nat. Y= ¢ Jresc2 b

proof (cases ¢)

case SporadicOn thus ?7thesis using TESL_interp_unfold_stepwise_sporadicon by simp
next

case SporadicOnTvar thus ?7thesis using TESL_interp_unfold_stepwise_sporadicon_tvar by simp
next

case TagRelation thus 7thesis using assms by simp

next

case Implies thus 7thesis using assms by simp
next

case ImpliesNot thus ?7thesis using assms by simp
next

case TimeDelayedBy thus 7thesis using assms by simp
next

case RelaxedTimeDelayed thus 7thesis using assms by simp
next

case WeaklyPrecedes thus 7thesis using assms by simp
next

case StrictlyPrecedes thus 7thesis using assms by simp
next

case Kills thus ?7thesis using assms by simp

qed

Negative atomic formulae are unfolded as the intersection of the stepwise interpretations.

theorem TESL_interp_unfold_stepwise_negative_atoms:
assumes (- positive_atom )
shows ([ ¢ Jresr =) {Y. In:inat. Y = [ ¢ Jresc= P
proof (cases ¢)
case SporadicOn thus ?7thesis using assms by simp
next
case SporadicOnTvar thus ?7thesis using assms by simp
next
case TagRelation
thus 7thesis using TESL_interp_unfold_stepwise_tagrelgen by simp
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next
case Implies
thus 7thesis using TESL_interp_unfold_stepwise_implies by simp
next
case ImpliesNot
thus 7thesis using TESL_interp_unfold_stepwise_implies_not by simp
next
case TimeDelayedBy
thus 7thesis using TESL_interp_unfold_stepwise_timedelayed by simp
next
case RelaxedTimeDelayed
thus 7thesis using TESL_interp_unfold_stepwise_timedelayed_tvar by simp
next
case WeaklyPrecedes
thus 7thesis
using TESL_interp_unfold_stepwise_weakly_precedes by simp
next
case StrictlyPrecedes
thus 7thesis
using TESL_interp_unfold_stepwise_strictly_precedes by simp
next
case Kills
thus 7thesis
using TESL_interp_unfold_stepwise_kills by simp
qed

Some useful lemmas for reasoning on properties of sequences.

lemma forall_nat_expansion:
((Vn > (ng::nat). Pn) = (P ng A (Vn > Suc ng. P n)))
proof -
have ((Vn > (np::nat). Pn) = (Vn. (m =np Vn > ng) — P n))
using le_less by blast

also have (... = (P ngp A (Vn > ng. P n))) by blast
finally show ?thesis using Suc_le_eq by simp
qed

lemma exists_nat_expansion:
((3n > (ng::nat). Pn) = (P ng V (dn > Suc ng. P n)))
proof -
have ((3n > (ng::nat). Pn) = (3n. (n =nyg V n > ng) A P n))
using le_less by blast

also have (... = (3n. (P np) V (n > ngp A P n))) by blast
finally show ?thesis using Suc_le_eq by simp
qed

lemma forall_nat_set_suc:({x. Vm > n. P x m} = {x. Pxn} N {x. Vm > Suc n. P x m})
proof
{ fix x assume h:(x € {x. Vm > n. P x m}
hence (P x n) by simp
moreover from h have (x € {x. Vm > Suc n. P x m}) by simp
ultimately have (x € {x. P x n} N {x. Vm > Suc n. P x m}) by simp
} thus {x. Vm > n. Pxm} C {x. Pxn} N {x. Vm > Suc n. P x m} ..
next
{ fix x assume h:(x € {x. P xn} N {x. Vm > Suc n. P x m}
hence (P x n) by simp
moreover from h have (Vm > Suc n. P x m) by simp
ultimately have (Vvm > n. P x m) using forall_nat_expansion by blast
hence (x € {x. Vm > n. P x m}) by simp



6.2. COINDUCTION UNFOLDING PROPERTIES 41

} thus ({x. Pxn} N {x. Vm > Sucn. Pxm} C {x. Vm > n. P xm} ..
qed

lemma exists_nat_set_suc:({x. I3m > n. P x m} = {x. P x n} U {x. 3m > Suc n. P x m})
proof
{ fix x assume h:(x € {x. I3m > n. P x n})
hence (x € {x. I3m. (m =n Vm > Suc n) AP xm})
using Suc_le_eq antisym_conv2 by fastforce
hence (x € {x. P x n} U {x. 3m > Suc n. P x m}) by blast
} thus ({x. 3m > n. Pxm} C {x. Pxn} U {x. I3m > Suc n. P x m}) ..
next
{ fix x assume h:(x € {x. P x n} U {x. 3m > Suc n. P x m}
hence (x € {x. 3m > n. P x m}) using Suc_leD by blast
} thus ({x. Pxn} U {x. 3m > Sucn. Pxm} C {x. 3m > n. P x m}) ..
qed

6.2 Coinduction Unfolding Properties

The following lemmas show how to shorten a suffix, i.e. to unfold one instant in the construction
of a run. They correspond to the rules of the operational semantics.

lemma TESL_interp_stepwise_sporadicon_coind_unfold:
([ €1 sporadic 7 on C2 |rpsr2 ® =
[Ciftonlprim N[Codner Jprim — rule sporadic_on_e2

U [ C1 sporadic 7 on Cp ]]TESLE Sue my  __rule sporadic_on_el

unfolding TESL_interpretation_atomic_stepwise.simps(1)
symbolic_run_interpretation_primitive.simps(1,6)
using exists_nat_set_suc[of (n) (Ap n. ticks (Rep_run g n Cp)
A time (Rep_run g n C2) = 7)]
by (simp add: Collect_conj_eq)

lemma TESL_interp_stepwise_sporadicon_tvar_coind_unfold:
([ ¢1 sporadicf (Tvar(K, n’) @ 7| on C2 ]]TESLZ o=
|I Cy ﬂ n ]]p'rim N |I C2 ‘U« n @u (ITvar(K, n’) @ TD ]]pv‘i'm
U [ C1 sporadicf (Tvar(K, n’) @ 7| on C2 ]]TESLZ Suc ny
proof -
have ({ p. Im>n. ticks ((Rep_run p) m C;) = True A time ((Rep_run p) m C3) = time ((Rep_run p) n’
K) + 7}
= { p. ticks ((Rep_run p) n C;) = True A time ((Rep_run p) n C3) = time ((Rep_run p) n’ K) + 7
V (dm>Suc n. ticks ((Rep_run p) m C;) = True A time ((Rep_run p) m C2) = time ((Rep_run
o) n’ K) + 7)1}
using Suc_leD not_less_eq_eq by fastforce
then show ?thesis by auto
qed

lemma TESL_interp_stepwise_sporadicon_tvar_coind_unfold2:
([ C1 sporadict Tegpr on Co JrEsr= ™ =

[Citolprim N[ C2odned Teapr Jprim — rule sporadic_on_tvar_e2
U [ C1 sporadict Tezpr on C2 Jrpsr= 59 ®  —rule sporadic_on_tvar_el
proof -

from tag_expr.exhaust obtain v 7 where ( Tczpr=( v & 7 |)) by blast

moreover from tag_var.exhaust obtain K n where (v=7,4,(K, n)) by auto

ultimately have (T¢zpr=( Tvar &, n) @ 7 |)) by simp

thus 7thesis using TESL_interp_stepwise_sporadicon_tvar_coind_unfold by blast
qged

lemma TESL_interp_stepwise_tagrel_coind_unfold:
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([ time-relation [C1, C2] € R Jresr= ™ = —rule tagrel_e

[[ |_7—’U(17'(Clx n), Tyar(C2, H)J € R ﬂprim
N [ time-relation [C1, C2] € R Jrrgr2 S8 ™
proof -
have ({¢. Vm>n. R (time ((Rep_run o) m C1), time ((Rep_run p) m C2))}
= {o0. R (time ((Rep_run p) n C1), time ((Rep_run p) n C2))}
N {o. Vm>Suc n. R (time ((Rep_run g) m C;), time ((Rep_run p) m C2))}
using forall_nat_set_sucl[of () (Ax y. R (time ((Rep_run x) y C1),
time ((Rep_run x) y C2)))] by simp
thus 7thesis by auto
qed

lemma TESL_interp_stepwise_implies_coind_unfold:

([ master implies slave Jrpgr= ™ =
([ master =t n Jprim —rule implies_el
U [ master ff n Jprim N [ slave ft n Jprim) —rule implies_e2

N [ master implies slave |rpsr= 5% 0

proof -
have ({¢. Vm>n. ticks ((Rep_run p) m master) — ticks ((Rep_run p) m slave)}
= {p. ticks ((Rep_run p) n master) — ticks ((Rep_run ) n slave)}
N {o. Vm>Suc n. ticks ((Rep_run p) m master)
— ticks ((Rep_run g) m slave)})
using forall_nat_set_suc[of (n) (Ax y. ticks ((Rep_run x) y master)
— ticks ((Rep_run x) y slave))] by simp
thus 7thesis by auto
qed

lemma TESL_interp_stepwise_implies_not_coind_unfold:
([ master implies not slave [7pgr= ™ =
( [ master =t n Jprim —rule implies_not_el

U [ master ft n Jprim N [ slave =t n Jprim) —rule implies_not_e2

N [ master implies not slave [rpsr= 5™

proof -
have ({¢. Vm>n. ticks ((Rep_run p) m master) — — ticks ((Rep_run p) m slave)}
= {o. ticks ((Rep_run p) n master) — — ticks ((Rep_run p) n slave)}
N {o. Vm>Suc n. ticks ((Rep_run p) m master)
— — ticks ((Rep_run p) m slave)l})
using forall_nat_set_suc[of (n) (Ax y. ticks ((Rep_run x) y master)
— —ticks ((Rep_run x) y slave))] by simp
thus 7thesis by auto
qed

lemma TESL_interp_stepwise_timedelayed_coind_unfold:
([ master time-delayed by §7 on measuring implies slave ]]TESLE o=
( [ master =1t n Jprim —rule timedelayed_el

U ([ master ft n Jprim N [ measuring @ n @ §7 = slave [prim))
—rule timedelayed_e2

N [ master time-delayed by 07 on measuring implies slave ]]TESLZ Suc n,
proof -
let ?prop = (Ap m. ticks ((Rep_run @) m master) —
(let measured_time = time ((Rep_run ) m measuring) in
Vp > m. first_time p measuring p (measured_time + §7)
— ticks ((Rep_run p) p slave)))
have ({¢. Vm > n. ?prop ¢ m} = {p. ?prop ¢ n} N {¢. Vm > Suc n. ?prop o m})
using forall_nat_set_suc[of (n) 7prop] by blast
also have (... = {p. ?prop p n}
N [ master time-delayed by §7 on measuring implies slave ]]TESLZ Suc m,)
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by simp
finally show ?7thesis by auto
qed

lemma nat_set_suc:({x. Vm > n. P xm} = {x. Pxn} N {x. Vm > Suc n. P x m})
proof
{ fix x
assume h:(x € {x. Vm > n. P x m})
hence (P x n) by simp
moreover from h have (x € {x. Vm > Suc n. P x m}) by simp
ultimately have (x € {x. P x n} N {x. Vm > Suc n. P x m}) by simp
} thus ({x. Vm > n. Pxm} C {x. Pxn} N {x. Vm > Suc n. P x m}) ..
next
{ fix x
assume h:(x € {x. P x n} N {x. Vm > Suc n. P x m})
hence (P x n) by simp
moreover from h have (Vm > Suc n. P x m) by simp
ultimately have (Vm > n. P x m) using forall_nat_expansion by blast
hence (x € {x. Vm > n. P x m}) by simp
} thus ({x. Pxn} N {x. Vm > Sucn. Pxm} C {x. Vm > n. P xm} ..
qed

lemma TESL_interp_stepwise_timedelayed_tvar_coind_unfold:
([[ master time-delayedi< by 47 on measuring implies slave ]]TESLZ o=
( [ master =t n Jprim —rule timedelayed_tvar_el

U ([ master f+ n Jprim N [ slave sporadicf (Tyar(measuring, n) @ J7| on measuring ]]TESLZ n))
—rule timedelayed_tvar_e2
N [ master time-delayed)<! by §7 on measuring implies slave ]]TESLZ Suc n)
proof -
have ({ p. Vm>n. ticks ((Rep_run p) m master) —
(let measured_time = time ((Rep_run o) m measuring) in
Jp > m. ticks ((Rep_run p) p slave)
A time ((Rep_run ) p measuring) = measured_time + §7)}
= { p. ticks ((Rep_run p) n master) —>
(let measured_time = time ((Rep_run p) n measuring) in
Jdp > n. ticks ((Rep_run p) p slave)
A time ((Rep_run g) p measuring) = measured_time + 67)}
N { p. Vm>Suc n. ticks ((Rep_run p) m master) —>
(let measured_time = time ((Rep_run p) m measuring) in
Jp > m. ticks ((Rep_run p) p slave)
A time ((Rep_run p) p measuring) = measured_time + §7)})
using nat_set_suc[of (n) (Ax y. ticks ((Rep_run x) y master) —
(let measured_time = time ((Rep_run x) y measuring) in
Jp > y. ticks ((Rep_run x) p slave)
A time ((Rep_run x) p measuring) = measured_time + §7))] by simp
then show ?thesis by auto
qed

lemma TESL_interp_stepwise_weakly_precedes_coind_unfold:
([ C1 weakly precedes Co HTESLZ o= — rule weakly_precedes_e
[[ (’—#S Co n, #S C1 Il-‘ S (A(X,y) ng)) ]pT'i7IL
N [ ¢ weakly precedes Cz [rpsrp= 5% ™)
proof -
have ({p. Vp>n. (run_tick_count p C2 p) < (run_tick_count o C; p)}
= {o. (run_tick_count p C2 n) < (run_tick_count p C; n)}
N {o. Vp>Suc n. (run_tick_count p C2 p) < (run_tick_count g C; p)}
using forall_nat_set_sucl[of (n) (Ao n. (run_tick_count ¢ C2 n)
< (run_tick_count p C; n))]
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by simp
thus 7thesis by auto
qged

lemma TESL_interp_stepwise_strictly_precedes_coind_unfold:
([ C1 strictly precedes Ca ]]TESLZ no= —rule strictly_precedes_e
[ (J#< C2 n, #< C1 0] € A&, . x<y)) Jprim
N [ C1 strictly precedes C2 |rpsr= 5™
proof -
have ({p. Vp>n. (run_tick_count p C2 p) < (run_tick_count_strictly o C1 p)}
= {o. (run_tick_count p C2 n) < (run_tick_count_strictly g C; n)}
N {o. Vp>Suc n. (run_tick_count p C2 p) < (run_tick_count_strictly o C; p)})
using forall_nat_set_sucl[of (n) (Ap n. (run_tick_count p C2 n)
< (run_tick_count_strictly o C; n))]
by simp
thus ?thesis by auto
qed

lemma TESL_interp_stepwise_kills_coind_unfold:
<[ C1 kills Co ]]TESLZ o=

C [¢ o lprim — rule kills_el
J[Ciftalprim N[ C = >n Jprim) — rule kills_e2
N [ C1 kills Co [rpsr= 5™
proof -

let ?kills = (An p. Vp>n. ticks ((Rep_run o) p C1)
— (VYm>p. — ticks ((Rep_run o) m C2)))
let ?ticks = (An p c. ticks ((Rep_run o) n c))
let ?dead = (An p ¢. Vm > n. —ticks ((Rep_run p) m c))
have ([ C1 kills C2 [rpsr= ™ = {o. ?kills n @}) by simp
also have (... = ({g. = 7ticks n p C1} N {p. 7kills (Suc n) p})
U ({o. 7ticks n p C1} N {p. ?dead n p C2}))
proof
{ fix 0::(’7::1linordered_field run)
assume (¢ € {p. 7kills n g}
hence (7kills n p) by simp
hence ((?ticks n o C; A 7?dead n o C2) V (—7ticks n ¢ C1 A 7kills (Suc n) o))
using Suc_leD by blast
hence (o € ({po. 7ticks n ¢ C1} N {p. ?dead n o C2})
U ({o. - 7ticks n o C1} N {o. 7kills (Suc n) p}))
by blast
} thus ({p. 7kills n g}
C {o. = 7ticks n o C1} N {p. 7kills (Suc n) p}
U {p. ?ticks n o C1} N {p. ?dead n p C2}) by blast
next
{ fix p::(’7::linordered_field rum)
assume (p € ({o. — 7ticks n o C1} N {p. 7kills (Suc n) p})
U ({o. ?ticks n o C1} N {o. ?dead n o C2}))
hence (— ?7ticks n p C; A 7kills (Suc n) p
V ?ticks n 9 C; A ?dead n p C3) by blast
moreover have (((— ?ticks n g C;) A (?kills (Suc n) p)) — 7%kills n o)
using dual_order.antisym not_less_eq_eq by blast
ultimately have (7kills n p V 7ticks n o C; A ?dead n g C2) by blast
hence (7kills n ) using le_trans by blast
} thus <({po. — 7ticks n ¢ C1} N {g. ?7kills (Suc n) e})
U ({p. ?ticks n o C1} N {p. ?dead n o C2})
C {o. 7kills n p}) by blast
qged
also have (... = {p. = 7ticks n p C1} N {p. ?kills (Suc n) p}
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U {o. ?ticks n o C1} N {o. ?dead n ¢ C2} N {p. ?kills (Suc n) e}
using Collect_cong Collect_disj_eq by auto
also have (... = [ C1 =t n Jprim N [ C1 kills C2 [rgpgr= 5™
U [[Cl ﬂn]]primn [CQ _‘ﬂznﬂprim
N [ C1 kills C2 Jresr= 5™ by simp
finally show ?7thesis by blast
qed

The stepwise interpretation of a TESL formula is the intersection of the interpretation of its
atomic components.

fun TESL_interpretation_stepwise
::(’7::1linordered_field TESL_formula = nat = ’7 run set)
Il - Nresc= -»
where
(r 0 Nlrescz®

= {o. True}
| [ ¢ # @ resc=™

=lelrestZ®* N[l @ llrestZ ™

lemma TESL_interpretation_stepwise_fixpoint:
([ @ Nresc=™ =N (Qe. [ ¢ lresL=™ * set @)
by (induction ¢, simp, auto)

The global interpretation of a TESL formula is its interpretation starting at the first instant.

lemma TESL_interpretation_stepwise_zero:
Qe lrese =1 ¢ lrestz©
proof (induction ¢)
case (SporadicOn x1 x2 x3)
then show ?case by simp
next
case (SporadicOnTvar Ci Tezpr C2)
then show ?case
proof (induction Tegpr)
case (AddDelay Tyqro 0T)
then show ?case
proof (induction Tygar0)
case (TSchematic tuple)
then show ?case
proof (induction tuple)
case (Pair Cpast Npast)
then show 7case by simp
qed
qed
qed
next
case (TagRelation x1 x2 x3)
then show ?case by simp
next
case (Implies x1 x2)
then show 7case by simp
next
case (ImpliesNot x1 x2)
then show ?case by simp
next
case (TimeDelayedBy x1 x2 x3 x4)
then show 7case by simp
next
case (RelaxedTimeDelayed x1 x2 x3 x4)
then show 7case by simp
next
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case (WeaklyPrecedes x1 x2)
then show ?case by simp
next
case (StrictlyPrecedes x1 x2)
then show 7case by simp
next
case (Kills x1 x2)
then show ?case by simp
qed

lemma TESL_interpretation_stepwise_zero’:

([ @ Nrese = [ @ Nrese=®
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by (induction ¢, simp, simp add: TESL_interpretation_stepwise_zero)

lemma TESL_interpretation_stepwise_cons_morph:

T lrest2>n [ @ llrescZ>=[[¢ # @ llrest>™

by auto

theorem TESL_interp_stepwise_composition:

shows ([[ ®1 @ ®2 JlreseZ® = [[ ®1 llresc ™ 0 ([ ®2 llrest™

by (induction ®;, simp, auto)

6.3 Interpretation of configurations

The interpretation of a configuration of the operational semantics abstract machine is the inter-

section of:

e the interpretation of its context (the past),

e the interpretation of its present from the current instant,

e the interpretation of its future from the next instant.

fun configuration_interpretation

::(’7::linordered_field config = ’7 run set)

where

(<|I - ]]Eonfig> 71)

Ty nkE¥e ®Jeonpig = [T lprim NI Y Wrese™® N 012 Nrese™ 5™

lemma configuration_interp_composition:

<ﬂ: I'i, n ': v > Py ]]config n II T2, n ’: Yo > o ]]config
=[ Ty eT2), n = (¥ @ U2) > (D1 @ P2) Jeonfig)
using TESL_interp_stepwise_composition symrun_interp_expansion

by (simp add: TESL_interp_stepwise_composition

symrun_interp_expansion inf_assoc inf_left_commute)

When there are no remaining constraints on the present, the interpretation of a configuration
is the same as the configuration at the next instant of its future. This corresponds to the

introduction rule of the operational semantics.

lemma configuration_interp_stepwise_instant_cases:
I T,nkE= 0> Jeonfig =[ T, Sucn = 0> [0 Jeongig

proof -

have ([ T, n = [0 > @ Jeonfig = [[ T llprim O [[ O llresc=® N Il @ llrese %™

by simp

moreover have ([ ', Suc n = ® > [ Jeonysig

= [T Mprim NI @ Nresc= %> N [[ O [resc> 5™

by simp
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moreover have ([[ T Jlprim N [[ 00 Jlresc=> N [[ ® Jlresc> 5™ ®
=[[ T llprim N [[ @ NrescZ 5> N [[ O Jlrescs 5™
by simp
ultimately show ?thesis by blast
qged

The following lemmas use the unfolding properties of the stepwise denotational semantics to give
rewriting rules for the interpretation of configurations that match the elimination rules of the
operational semantics.

lemma configuration_interp_stepwise_sporadicon_cases:
([T, n = ((C1 sporadic 7 on C2) # ¥) > P Jeonysig
=[T, nkE ¥ ((C; sporadic 7 on C2) # ®) Jconyig
Ul #CUnen) #I), nk= Y0P Jeonfig
proof -
have ([ T', n }= (C1 sporadic 7 on C2) # ¥ > @ Jeonfig
= [[ T Iprim N [[ (C1 sporadic 7 on C2) # ¥ JlresrZ N [[ @ lresc2 5™
by simp
moreover have ([ ', n = ¥ > ((C; sporadic 7 on C2) # ®) Jeonfig
= [[ T prim 0 [[ ¥ llrEsc= ™
N [[ (¢c1 sporadic 7 on C2) # & [[rgsr= 5™
by simp
moreover have ([ ((C; 1 n) # (Co yne7) #I1), n k= V> @ Jeonfig
= [[ i 1 n)#(Codner)#D) [lprim
NI Y Nrescz® NIl @ Nrese= 5™
by simp
ultimately show ?thesis
proof -
have (([ C1 f n Jprim N[ C2 U n @ 7 Jprim U [ C1 sporadic 7 on Co [rpsr= 5 ™)
O LT prim N IL Y NlrEsz= ™
= [ ¢1 sporadic 7 on C2 Jresr2® N ([ ¥ JlrescZ N [[ T Ilprim))
using TESL_interp_stepwise_sporadicon_coind_unfold by blast
hence ([[ ((C1 1 n) # (Co 4 ne@7) #TI) Jlprim N[ ¥ JlresrZ™
U M I ]]]]p’rim n M v MTESLZ 2N |I C1 sporadic 7 on Co ]]TESLZ Suc n
= [[ (c1 sporadic 7 on C2) # U Jlrrsr= ™ N [[ T [lprim) by auto
thus 7thesis by auto
qed
qed

lemma configuration_interp_stepwise_sporadicon_tvar_cases:
([T, n = ((C1 sporadicf Texpr on C2) # V) > @ Jeongig
=[ T, nE ¥ ((C; sporadicf Tezpr on C2) # @) Jeongig
U [[ ((Cy1 ﬂ n) # (Cq U' n @ﬁ Texp'r‘) #I), n ): v> P ]]config>
proof -
from tag_expr.exhaust obtain v 67 where ( Tegpr=( v @ 67 |)) by blast
moreover from tag_var.exhaust obtain Cpast npast wWhere (v=Tyar(Cpast, Npast)) by auto
ultimately have *:(Tezpr=( Tvar(Cpast, Dpast) @ 67 |)) by simp
show 7thesis
proof -
have ((II Cy ﬂ n Hpv‘i'm N II Co U n @ﬁ (I Tvar (cpast) npast) @ oT D ﬂprim
U [[ C1 Sporadicﬁ (l Tvar (Cpast: npast) @ ot D on C2 }]TE‘SLZ Sue )
NALT Mprim N[ ¥ rESLE™
= [ ¢1 sporadich (| Twar (Cpast, Dpast) ® 67 ) on Co JrescZ ™ N ([ ¥ JlrescZ ™ N [[ T Jprim))
using TESL_interp_stepwise_sporadicon_tvar_coind_unfold[of (C1) (Cpast) (Mpast) (d1) (Co2) (m)]
Int_commute by blast
then have ([[ (C1 t n) # (C2 | n @ ( Tvar (Cpasts Dpast) ® 07 )) # T Jlprim
ALY rese=® UL T Jprim N [[ ¥ llrmse®™
N [ 1 sporadict ( Tvar (Cpasts Npast) ® 67 ) on Co Jrpsr= 5™
= M r M:Dv"im N M (C1 sporadict (| Tvar (Cpast, Dpast) @ 67 |) on C2) # ¥ ]]]]TESLZ i
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by auto

then have ([ I', n = ((C1 sporadict (| Tvar (Cpast, Dpast) @ 67 |) on C2) # W) > @ Jeonfig
= II ((C1 ffn) # (C2 § nof (l Tvar (Cpast, npast) @ ot D) #1),n ): v > P ]]config

UIT, nE ¥ > ((C; sporadict (| Twar (Cpast, Dpast) @ 67 |) on C2) # ®) Jeonfig)
by auto

then show 7thesis using *
by blast
qed
qed

lemma configuration_interp_stepwise_tagrel_cases:
(I T, n = ((time-relation [C1, C2] € R) # W) > @ Jeonsig
= II ((LT’ua'r(Cl, n), Tyar(Cz, Il)J ER) #I),n
E U > ((time-relation |Ci, C2] € R) # ®) Jeonfig)

([T, n = (time-relation [C1, C2|] € R) # ¥ > @ Jeonygig
= [[ T llprim N [[ (time-relation |Ci, C2|] € R) # ¥ [lrpsr2®
NIl @ llresc= ™ by simp
moreover have ([ ((|[Tvar(Ci, n), Tyar(C2, n)] ER) # ), n
= U > ((time-relation |[Ci, C2] € R) # ®) Jeonfig
= M (I_TUGT(Cly n), Tyar(C2, n)J €R) #T1 ﬂﬂprim N M v ]H]TESL2 ?
N [[ (time-relation |[C1, C2| € R) # @ [Jrrsr2 5™
by simp
ultimately show ?thesis
proof -
have <[[ \_Tvar(cl, n), Tyar(C2, n)J € R ]]prim
N [ time-relation [C1, C2] € R Jrggp= Su¢®
NIl ¥ llrestZ ™ = [[ (time-relation |[C1, C2| € R) # ¥ [lrpsr2 ™
using TESL_interp_stepwise_tagrel_coind_unfold
TESL_interpretation_stepwise_cons_morph by blast
thus 7thesis by auto
qed
qed

lemma configuration_interp_stepwise_implies_cases:
(I T, n = ((C1 implies C2) # ¥) > @ Jeonfig
=[ (€1 -t n) # ), n |= ¥ p> ((C; implies C2) # ®) Jconfig
UL WCL o) # (Coftn) #1), n =¥ p ((C; implies C2) # ®) Jeonfig)
proof -
have ([ T', n }= (C; implies C2) # ¥ > @ Jconyfig
= [[ T llprim N [[ (C1 implies C2) # ¥ JlrpsrZ ™ N [[ @ Jlresrs %™
by simp
moreover have ([ ((C; -t n) # I), n |= ¥ p> ((C; implies C2) # ®) Jconfig
=l €1 =t o) #T llprim N [[ ¢ JJrEsz=™
N [[ (C1 implies C2) # @ |[rpsr= 5™ by simp
moreover have ([ ((C; n) # (C2 1 n) # ), n = ¥ > ((C1 implies C2) # ®) Jeonfig
= [[«ci o) # € #D) Jlprim N[ ¥ llresc™®

N [[ (C1 implies C2) # @ [|rpsr= 5™ by simp
ultimately show 7?thesis

proof -

have f1: ([ C1 = n Jprim U [ C1 0 Jprim N [ C2 1 Jprim)
n [[ C1 implies Co HTESLZ Suc n (M \ ]”]TESLZ n
NIl ® lresc= ™

= M (Cy implies Cp) # U MTESLZ N M <] ]]]]TESLZ Suc n)
using TESL_interp_stepwise_implies_coind_unfold
TESL_interpretation_stepwise_cons_morph by blast
have <[[ Ci - n ]]pr‘im N M r ]]]]prim U [ Ci ' n ]]prim n [[[[ (C2 tn) # T Mprim

= (II C1 “ﬂ n ]]p'rim U [[ C1 ﬂ n ]]prim n II C2 ﬂ n ]]T—”I‘im) n H[ r M]prim>
by force
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hence ([ I, n |= ((C1 implies C2) # ¥) > @ Jconfig
= (|I Cy _‘ﬂ n ]]prim N IH[ r ]]]]prim U [Cl ﬂ n ]]prim n M (C2 ﬂ n) # I ]H]prim)
N ([ v MTESLZ » N [ (Ci implies C2) # @ ]]]]TESLZ Suc ny)
using f1 by (simp add: inf_left_commute inf_assoc)
thus 7thesis by (simp add: Int_Un_distrib2 inf_assoc)
qed
qed

lemma configuration_interp_stepwise_implies_not_cases:
([T, n = ((C1 implies not C2) # ¥) > @ Jeonfig
=[ 1 -t n) #1), n = ¥ > ((C; implies not C2) # P) ]]config
UL WCL ffn)# (Co—fn) #), n= ¥ > ((C; implies not C2) # @) Jeonfig)
proof -
have ([ T', n }= (C; implies not C2) # ¥ > @ Jconfig
= M N Mprim n M (C1 implies not C2) # WU MTESLZ N M P ]]]]TESLZ Suc n,
by simp
moreover have ([ ((C; -t n) # I), n = ¥ p> ((C1 implies not C2) # ®) Jconfig
=[[ €1 =t ) # T Jlprim 0 [[ ¥ lrEsL=™
N [[ (C1 implies not C2) # ® [JresrZ %™ by simp
moreover have ([ ((C; ft n) # (C2 -t n) # I), n |= ¥ > ((C; implies not C2) # ®) Jeonfig
=[[ (c1 o) # (Co~mn)# D) [lprim NIV [lrEscZ®
N [[ (C1 implies not C2) # @ [Jrrsr= S°°™ by simp
ultimately show 7thesis
proof -
have f1: (([ C1 1 n Jprim U [ C1 ff 0 Jprim N [ C2 = 1 Jprim)
N [ C1 implies not Cy Jrggp= S ™
N ALY NlreseZ> NI @ lrese= 5™
= [[ (C1 implies not C2) # ¥ [lresrZ ™ N [[ ® Jlresc> 5™
using TESL_interp_stepwise_implies_not_coind_unfold
TESL_interpretation_stepwise_cons_morph by blast
have <[[ C1 “ﬂ n ]]prim N IHI T ]]]]prim U [I C1 ﬂ n ]]prim N M (C2 “ﬂ n) # T ]]]]pri'm
= ([[ Ci -t n ﬂpm‘m U [[ Ci ftn ]pri7n N [[ Co =t n ]]prim) N M r Mprim>
by force
then have ([ I', n = ((C; implies not C2) # W) > @ Jeonysig
= ([[ C1 _‘ﬂ n ]]prim N IM T ]]]]prim U [ C1 'ﬂ n ]]prim
NIl 2~ n) # T Jlprimd N ([ ¥ Jlresc>®
N [[ (C1 implies not C2) # @ [JrrsrZ 5% ™)
using f1 by (simp add: inf_left_commute inf_assoc)
thus 7thesis by (simp add: Int_Un_distrib2 inf_assoc)
qed
qed

lemma configuration_interp_stepwise_timedelayed_cases:
({ T, n = ((C1 time-delayed by d7 on Cz implies C3) # U) > P Jconyfig
=[ ((Ci = n) #T), n = ¥ > ((C; time-delayed by d7 on C2 implies C3) # ®) Jconyfig
U (Ci tn) # (C2@n & ér = C3) #I), n
= ¥ > ((C; time-delayed by 67 on Cz implies C3) # ®) Jconfig)
proof -
have 1:([ ', n |= (C1 time-delayed by d7 on C2 implies C3) # ¥ > @ Jconfig
= [[ T Jlprim N [[ (C1 time-delayed by o7 on Co implies C3) # ¥ |[rpsr2 ®
n II[[ [ ]]]]TESLZ Suc m) by simp
moreover have ([ ((C; -t n) # '), n
= ¥ > ((C1 time-delayed by 67 on Cz implies C3) # ®) Jconfig
=l € =t #T llprim NI ¢ rEsL™®
N [[ (C1 time-delayed by &7 on Co implies C3) # @ Jlrpsr= 5™
by simp
moreover have ([ ((C; ffn) # (C2 @n @ 67 = C3) # '), n
= ¥ > ((C; time-delayed by 67 on Cy implies C3) # ®) Jconfig
=[[ (1 ftn)#Cenddr =C3) # T [lprim N[ ¥ rEstZ™
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N [[ (C1 time-delayed by &7 on Co implies C3) # @ Jlrpsr= 5™
by simp
ultimately show ?thesis
proof -
have ([ T', n |= (C; time-delayed by 67 on C2 implies C3) # ¥ > @ Jeonfig
= [[ T 1lprim N ([[ (C1 time-delayed by &7 on Co implies C3) # ¥ [Jrpsr2 ™
NI ® Nrese= ™)
using 1 by blast
hence ([ T, n |= (C; time-delayed by d7 on C implies C3) # ¥ > @ Jeonfig
= ([[Cl _‘ﬂnﬂprimu[[clﬂnﬂprim ﬁ[[CQ@n@5T=>C3 ]]przm)
N LT Mprim 0 AL ¥ Jl7EsL™ "
N [[ (€1 time-delayed by 67 on Co implies C3) # ® JlrpsrZ 5% ™)
using TESL_interpretation_stepwise_cons_morph
TESL_interp_stepwise_timedelayed_coind_unfold
proof -
have ([[ (C; time-delayed by 67 on Cp implies C3) # ¥ JlrpsrZ ®
= (Hcl “ﬂn]]p'rimu[[Clﬂn]]primmllCQQH@aT:}C3 ]]pri'm)
N [ C1 time-delayed by &7 on Co implies C3 Jresr= 5 N [[ ¥ Jlrest2 ™
using TESL_interp_stepwise_timedelayed_coind_unfold
TESL_interpretation_stepwise_cons_morph by blast
then show ?thesis
by (simp add: Int_assoc Int_left_commute)
qed
then show ?thesis by (simp add: inf_assoc inf_sup_distrib2)
qed
qed

lemma configuration_interp_stepwise_timedelayed_tvar_cases:
([ T, n = ((C1 time-delayed>d by 67 on Cz implies C3) # ¥) > @ Jeonyfig
=[ (€t i n) # ), n = ¥ »> ((C; time-delayed< by d7 on Cz implies C3) # ®) Jconfig
U[ 1 tn) #T), n
= (C3 sporadicf (Tvar(C2, n) @ 7)) on C2) # ¥
> ((C; time-delayedi< by 67 on Co implies C3z) # @) ]]config>
proof -
have (M 4 ]]]]TESLE n
N Ct falprim U[C fnlprim N[ C3 sporadict ( Tvar (C2, n) @ 7 |) on C2 ]]TESLZ n)
N [ C1 time-delayedr< by &7 on Cp implies C3 Jrpsr= S ™
=[[ ¥ Jlresc=™ N [ C1 time-delayed< by &7 on Co implies C3 Jrmsr= ™
using TESL_interp_stepwise_timedelayed_tvar_coind_unfold[of (C1) (67) (C2) (C3) (n)]
Int_assoc by blast
then have ([ I', n = (C; time-delayed>d by 07 on Cz implies C3) # ¥ > @ Jeonfig
=[[ ¥ llresc="
N Ct talprim U[C fnlprim N[ C3 sporadict ( Tvar (C2, n) & 67 |) on Ca ]]TESLZ n)
N [ C1 time-delayed:< by 67 on Co implies C3 |rpsr= S ™
Nl @ Nrese= %< N [[ T Mprim)
by force
then show 7?thesis
by auto
qed

lemma configuration_interp_stepwise_weakly_precedes_cases:

(I T, n = ((C1 weakly precedes C2) # U) > @ Jconyfig

=[ (([#S C2 n, #= C; n] € A(&,y). x<y)) # ), n
= ¥ > ((C1 weakly precedes C2) # ®) Jconfig

proof -

have ([ I', n |= (C1 weakly precedes C2) # ¥ > @ Jeonsig

=[[ T Jlprim N [[ (C1 weakly precedes Ca) # ¥ MTESLZ n
n M [} ]]]]TESLE Suc n, by simp
moreover have ([ (([#< Co n, #= €1 n] € A\(x,y). x<y)) # ), n
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= ¥ > ((C1 weakly precedes C2) # ®) Jconysig
[[ ([#= C2 n, #= €1 n] € A&,y . x<y)) # T Jlprim
v

n

NrescZ ™ N [[ (C1 weakly precedes C2) # @ [Jresr= 5% ™
by simp
ultimately show ?thesis
proof -

have ([ [#5 C3 n, #= €1 n] € (A&, y). xy) Jprim
N [ C1 weakly precedes C2 |rrsrZ " N [[ ¥ [lrescZ ™
= [[ (C1 weakly precedes C2) # ¥ |jrrsrZ ™
using TESL_interp_stepwise_weakly_precedes_coind_unfold
TESL_interpretation_stepwise_cons_morph by blast
thus ?thesis by auto
qed
qged

lemma configuration_interp_stepwise_strictly_precedes_cases:
([ T, n = ((C1 strictly precedes C2) # W) > @ Jeonfig
=[ (([#S Ca n, #< €1 n] € A(&x,y). x<y)) # ), n
= ¥ > ((C; strictly precedes C2) # ®) Jeonfig)
proof -
have ([ T', n |= (C; strictly precedes C2) # ¥ > @ Jconyfig
= [[ T Mprim N [[ (C1 strictly precedes C2) # ¥ [lrpsr= ®
NIl @ llresc= 5™ by simp
moreover have ([ (([#5 C3 n, #< C; n] € (\(x,y). x<y)) # ), n
= ¥ > ((C1 strictly precedes C2) # ®) Jconfig
[[lI (|—#S Co n, #< C n] e (Ax,y). xZy)) # T Mprim
NILY lrese=®
N [[ (C1 strictly precedes C2) # @ [|rpsr= 5™ by simp
ultimately show 7thesis
proof -
have ([ [#S Co n, #< C1 n] € A, . x<Y) lprim
N [ C1 strictly precedes C2 |resr= > N [[ ¥ JlrescZ ™
= [[ (C1 strictly precedes C2) # VU Jlrpsr2 ™
using TESL_interp_stepwise_strictly_precedes_coind_unfold
TESL_interpretation_stepwise_cons_morph by blast
thus ?thesis by auto
qed
qged

lemma configuration_interp_stepwise_kills_cases:
<|I I', n '= ((C1 kills Co) # W) > @ ]]config
=[ (¢t ) #T), n = ¥ > ((C; kills C2) # ®) Jconrsig
U |I ((Ci fn) # (Co »t >n) #1), n ): ¥ > ((C; kills Co) # &) ]]config>
proof -
have ([ T', n = ((C1 kills C2) # U) > @ Jeonygig
=[[ T Mprim N [[ (C1 kills C2) # ¥ JlresrZ > N [[ @ Jlress2 5™
by simp
moreover have ([ ((C; -t n) # I), n = ¥ > ((C1 kills C2) # ®) Jconrsig
=[[ €1 =t ) # T Jprim N [[ ¥ llrEsL=™
N [ (€1 kills C3) # @ JJresr= 5% ™ by simp
moreover have ([ ((C; 1 n) # (C2 -t > n) # ), n = ¥ > ((C1 kills C2) # ®) Jeonysig
= M (C1 ffn) # (Co -t >mn) # 1 Mprim n M v ]]]]TESLZ n
N [ C1 kills Co) # @ [lrrsiZ 5% ™ by simp
ultimately show ?thesis
proof -
have ([[ (Ci kills C2) # ¥ [Jresr2 ™
= ([[ (C1 _"ﬂ n) ]prim ) [[ (C1 TT n) ]]prim n [[ (C2 _‘ﬂ > n) ]]prim)
N [ (€1 kills C2) JresrZ %2 N [[ ¥ Jlresc= ™
using TESL_interp_stepwise_kills_coind_unfold
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TESL_interpretation_stepwise_cons_morph by blast
thus 7thesis by auto
qed
qed

end



Chapter 7

Main Theorems

theory Operational_SoundComplete
imports
Coinductive_Prop

begin

Using the properties we have shown about the interpretation of configurations and the stepwise
unfolding of the denotational semantics, we can now prove several important results about the
construction of runs from a specification.

7.1 Initial configuration

The denotational semantics of a specification W is the interpretation at the first instant of a
configuration which has ¥ as its present. This means that we can start to build a run that
satisfies a specification by starting from this configuration.

theorem solve_start:

shows ([ ¢ |lresc =[ 0, 0 ¥ > [ ]]config>

proof -
have ([[ ¥ [lresc = [[ ¥ lrescZ©
by (simp add: TESL_interpretation_stepwise_zero’)
moreover have ([ [1, 0 = ¥ > [ Jeonfig =

Il 0 Wprim NI Jlresc=® N1 O Nresc™ %%

by simp
ultimately show ?7thesis by auto

qed

7.2 Soundness

The interpretation of a configuration Ss that is a refinement of a configuration S is contained in
the interpretation of §;. This means that by making successive choices in building the instants of
a run, we preserve the soundness of the constructed run with regard to the original specification.

lemma sound_reduction:
assumes ((I'1, n1 E ¥ > 1) — (T2, ng E Yo > Po))
shows ([[ T1 [lprim N [[ ¥1 Nresc=™ N [[ @1 Jlresc= %™
2 M T2 Ilprim N[ Y2 llrescZ ™ N [[ 2 Jlrescs 52 (s 7P)
proof -
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from assms consider
(a) ((I'1, n1 '= Uy > $1) —; (2, n2 )= Yo > P3))
| ) (T'1, n1 = ¥ > P1) —e (T2, no E ¥y > P2))
using operational_semantics_step.simps by blast
thus ?thesis
proof (cases)
case a
thus 7thesis by (simp add: operational_semantics_intro.simps)
next
case b thus ?7thesis
proof (rule operational_semantics_elim.cases)
fix I'nC, 7C ¥ &
assume ((I'y, n; = ¥ > 1) = (I', n = (C; sporadic 7 on C2) # ¥ > P))
and ((I'z, ng E ¥ > P3) = (', n E ¥ > ((C; sporadic 7 on C2) # P)))
thus 7P using configuration_interp_stepwise_sporadicon_cases
configuration_interpretation.simps by blast
next
fix I'nC 7C ¥ &
assume ((I't, ng = ¥ > &) = (I', n = (C; sporadic 7 on C2) # ¥ > &)
and ((T'2, ng = Yo > P3) = (((C1 fin) #(C2yner) #D),nE T I
thus 7P using configuration_interp_stepwise_sporadicon_cases
configuration_interpretation.simps by blast
next
fix ' n C; Texpr C2 v P
assume ((I't, n; = ¥y > ®1) = (', n |= (C; sporadicf Tegpr on C2) # ¥ > D))
and ((I'2, na | ¥a > ®2) = (I, n = ¥ > ((C; sporadic Tezpr on C2) # P)))
thus 7P using configuration_interp_stepwise_sporadicon_tvar_cases
configuration_interpretation.simps by blast
next
fix I' n C1 Texpr Co ¥ &
assume ((I't, n; = ¥y > ®1) = (', n |= (C; sporadicf Tezpr on C2) # ¥ > D))
and ((I'2, na | P > ®2) = (((C1 1 n) # (Co Y nof Teapr) #1), n | T > D))
thus 7P using configuration_interp_stepwise_sporadicon_tvar_cases
configuration_interpretation.simps by blast
next
fix ’'nC; Co RV @
assume ((I'y, n; E ¥; > &) = (I', n | (time-relation |[C;, C2|] € R) # ¥ > P))
and ((I'2, n2 = W2 > ®2) = ((([Tyar (C1, n), Tyar (C2, n)] €R) # 1), n
= ¥ > ((time-relation [Ci, C2] € R) # ®)))
thus 7P using configuration_interp_stepwise_tagrel_cases
configuration_interpretation.simps by blast
next
fix 'nCy Co ¥ &
assume ((I'y, n; = ¥ > 1) = (', n |= (C; implies C2) # ¥ > P))
and ((T'2, ng = Yo > P3) = (((C1 -t n) # 1), n E ¥ > ((C1 implies Ca) # P)N
thus 7P using configuration_interp_stepwise_implies_cases
configuration_interpretation.simps by blast
next
fix 'nCy Co ¥ @
assume ((I'y, n; = ¥ > ®1) = (', n = ((C; implies C2) # ¥) > D))
and ((T'2, ng = Po > P3) = (((C1 i n) # (C2 tn) #1), n
E ¥ > ((C; implies C2) # ®)))
thus 7P using configuration_interp_stepwise_implies_cases
configuration_interpretation.simps by blast
next
fix 'nC Co ¥ &
assume ((I'y, n; E ¥1 > ®1) = (I, n E ((C; implies not C2) # W¥) > P
and ((T'z, ng E Yo > P2) = (((C1 -t n) # D, n = ¥ > ((C; implies not Cz) # P)))
thus 7P using configuration_interp_stepwise_implies_not_cases
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configuration_interpretation.simps by blast
next

fix 'nCi Co U @
assume ((I'y, n1 = ¥ > ®1) = (', n | ((C; implies not C2) # W) > P))
and ((I'z, n2 ': Uy > $P2) = (((C; tn) # (Ca =t n) # 1), n
E ¥ > ((C; implies not C2) # ®)))
thus 7P using configuration_interp_stepwise_implies_not_cases
configuration_interpretation.simps by blast
next

fix ’'nC; 67 Co C3 ¥ &
assume ((I'1, n1 = ¥ > §1) =

(', n = ((C; time-delayed by 07 on Cy implies C3) # W) > ®))
and ((I'2, n» ': Uy > Pg) =

(((C1 -t n) # ), n E ¥ > ((C; time-delayed by 67 on Co implies C3) # P)))
thus 7P using configuration_interp_stepwise_timedelayed_cases
configuration_interpretation.simps by blast
next

fix 'nCy 67 C2 C3 ¥ &
assume ((I'1, n1 = ¥ > §1) =

(', n = ((C; time-delayed by 47 on Cy implies C3) # W¥) > ®))
and ((I'2, n» ': Uy > Po)

= (((Cp tn) # (C2@n @ 67 = C3) # 1), n

E ¥ > ((C; time-delayed by 67 on C2 implies C3) # ®))

thus 7P using configuration_interp_stepwise_timedelayed_cases

configuration_interpretation.simps by blast
next
fix 'nC; 67 Co C3 ¥ @
assume ((I't, n; = ¥y > ®;) = (I', n | (C1 time-delayedi<i by 67 on Co implies C3) # U > ®))
and ((I'2, n2 = ¥y > P3) = (((C; =t n) # D, n E ¥ > ((C; time-delayedr by §7 on Cz implies
C3) # ®)))
thus 7P using configuration_interp_stepwise_timedelayed_tvar_cases
configuration_interpretation.simps by blast
next
fix 'nC; 67 C2o C3 ¥ @
assume ((I'1, n1 = ¥; > @) = (I', n | (C; time-delayed<! by 47 on Cz implies C3) # ¥ »> P))
and ((T'2, na | Uy > P3) = (((C1 t n) # '), n | (C3 sporadicf ( Tyar (C2, n) @ 67 |) on C2)

U > ((C1 time-delayedr<t by d7 on Cz implies C3) # P)))
thus 7P using configuration_interp_stepwise_timedelayed_tvar_cases
configuration_interpretation.simps by blast
next
fix 'nC Co U @
assume ((I'y, n1 = ¥; > @) = (I', n | ((C; weakly precedes C2) # U) > ®))
and ((T'2, na = Uy > P3) = (((|—#S Co n, #5 C n] € A&, ). x<y) #D,n
= ¥ > ((C; weakly precedes C2) # ®)))
thus 7P using configuration_interp_stepwise_weakly_precedes_cases
configuration_interpretation.simps by blast
next
fix 'nCy Co ¥V @
assume ((I't, n1 = ¥ > ®1) = (I', n = ((C; strictly precedes C2) # ¥) > ®))
and ((I'2, n2 = ¥y > Py) = (((|—#S Comn, #¥ Cin]l € Az, . x<y)) #D), n
E ¥ > ((Ci strictly precedes C2) # ®))
thus 7P using configuration_interp_stepwise_strictly_precedes_cases
configuration_interpretation.simps by blast
next
fix I'nC Co U @
assume ((I'y, n1 &= ¥ > @) = (', n E ((C; kills C2) # ¥) > )
and ((I'2, n2 = ¥ > P3) = (((C1 =t n) # D, n = ¥ > ((C1 kills C2) # P)))
thus 7P using configuration_interp_stepwise_kills_cases
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configuration_interpretation.simps by blast
next
fix 'nC Co ¥ &
assume ((I'y, n; E ¥1 > @) = (', n E ((C; kills C2) # ¥) > )
and ((I'2, n2 ': Uy > Py) =
(((C1 n) # (C2 ~ff >mn) #), n = ¥ > ((C; kills C3) # P)))
thus 7P using configuration_interp_stepwise_kills_cases
configuration_interpretation.simps by blast
qed
qged
qed

inductive_cases step_elim:(S; — Sa2)

lemma sound_reduction’:
assumes (S1 — S2)
shows <|I S1 ]]config 2 |I82 ﬂconfig>
proof -
have (Vs1 s2. ([ s2 Jeonsgig C [ 81 Jeonfig) V —(s1 — s2))
using sound_reduction by fastforce
thus 7thesis using assms by blast
qed

lemma sound_reduction_generalized:
assumes (S1 —¥ Sa)
shows <[[ S1 ]config ) [[82 ﬂconfig>
proof -
from assms show ?7thesis
proof (induction k arbitrary: Sg2)
case 0
hence *: (S] =% S = S; = S2) by auto
moreover have (S; = S2) using * "O.prems" by linarith
ultimately show ?case by auto
next
case (Suc k)
thus ?case
proof -
fix k :: nat
assume ff: (S} <=5k So)
assume hi: (AS2. Si =k Sy — [[82 ]]config - [[Sl ﬂconfig>
obtain S, where red_decomp: ((S1 —Ff Sp) A (S, < S2)) using ff by auto
hence ([ 81 Jeonfig 2 [ Sn Jeconfig) using hi by simp
also have ([ Sn Jeonfig 2 [ S2 Jeconfig) by (simp add: red_decomp sound_reduction’)
ultimately show ([ S1 Jeonfig 2 [ S2 Jeconfig) by simp
qed
qged
qed

From the initial configuration, a configuration S obtained after any number k of reduction steps
denotes runs from the initial specification W.

theorem soundness:
assumes (([1, 0 F ¥ > [1) <=k &
shows ([[ ¥ Jlresr 2 [ S Jeonsig
using assms sound_reduction_generalized solve_start by blast
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7.3 Completeness

We will now show that any run that satisfies a specification can be derived from the initial
configuration, at any number of steps.

We start by proving that any run that is denoted by a configuration S is necessarily denoted by
at least one of the configurations that can be reached from S.

lemma complete_direct_successors:
shows (lI I', n ': v > P ﬂco’nfig - (Uxecnem (T, n ): U > P). [[ X ]]config)>
proof (induct W)
case Nil
show ?case
using configuration_interp_stepwise_instant_cases operational_semantics_step.simps
operational_semantics_intro.instant_i
by fastforce
next
case (Cons i VW) thus ?case
proof (cases )
case (SporadicOn K1 7 K2) thus ?thesis
using configuration_interp_stepwise_sporadicon_cases
[of (I) () (K1) (1) (K2) () (P)]
Cnext_solve_sporadicon[of (I") (n) (¥) (K1) (m) (K2) (P)] by blast
next
case (SporadicOnTvar X1 X2 X3) thus ?thesis
using configuration_interp_stepwise_sporadicon_tvar_cases
[of (I () X1) (X2) (X3) (V) (P)]
Cnext_solve_sporadicon_tvar[of (I (n) (¥) (X1) (X2) (X3) ()] by blast
next
case (TagRelation C; C2 R) thus 7thesis
using configuration_interp_stepwise_tagrel_cases
[of (I) (m) (C1) (C2) (RY (¥) (P)]
Cnext_solve_tagrel[of (C1) (n) (C2) (R) (I (I) ()] by blast
next
case (Implies K1 K2) thus 7thesis
using configuration_interp_stepwise_implies_cases
[of (I (m) (K1) (K2) () (P)]
Cnext_solve_implies[of (K1) (m) (I (¥) (K2) (®)] by blast
next
case (ImpliesNot K1 K2) thus ?thesis
using configuration_interp_stepwise_implies_not_cases
[of (I (m) (K1) (K2) (&) (P)]
Cnext_solve_implies_not[of (K1) (m) (I) (I) (K2) ()] by blast
next
case (TimeDelayedBy Kmast 7 Kmeas Kslave) thus 7thesis
using configuration_interp_stepwise_timedelayed_cases
[of (IY (n) (Kmast) (7) (Kmeas) (Kslave) (U) (®)]
Cnext_solve_timedelayed
[of (Kmast) (m) (I (¥) (1) (Kmeas) (Kslave) ($)] by blast
next
case (RelaxedTimeDelayed Kmast 7 Kmeas Kslave) thus 7thesis
using configuration_interp_stepwise_timedelayed_tvar_cases
[of (IY (n) (Kmast) (7) (Kmeas) (Kslave) (U) (®)]
Cnext_solve_timedelayed_tvar
[of (Kmast) (m) (I (¥) (1) (Kmeas) (Kslave) ($)] by blast
next
case (WeaklyPrecedes K1 K2) thus ?thesis
using configuration_interp_stepwise_weakly_precedes_cases
[of (I (@) (K1) (K2) () (P)]
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Cnext_solve_weakly_precedes[of (K2) ) (K1) (I (I (P)]
by blast
next
case (StrictlyPrecedes K1 K2) thus ?thesis
using configuration_interp_stepwise_strictly_precedes_cases
[of (ID (m) (K1) (K2) (¥) ()]
Cnext_solve_strictly_precedes[of (K2) (m) (K1) I (I ()]
by blast
next
case (Kills K1 K2) thus ?thesis
using configuration_interp_stepwise_kills_cases[of (I) (m) (K1) (K2) (I) (P)]
Cnext_solve_kills[of (K1) (m) (I) (I) (K2) (®)] by blast
qed
qged

lemma complete_direct_successors’:
shows ([ S ]]config C (UXECnezt S. [ X ]]config)>
proof -
from configuration_interpretation.cases obtain I' n ¥ &
where (S = (I', n = ¥ > ®)) by blast
with complete_direct_successors[of (I) (n) (¥) ()] show ?7thesis by simp
qed

Therefore, if a run belongs to a configuration, it necessarily belongs to a configuration derived
from it.

lemma branch_existence:
assumes (@ € [ S1 Jeonfig)
shows (3S2. (§1 — S2) A (0 € [[82 ]]config”
proof -
from assms complete_direct_successors’ have (p € (|JXECnezt S1. [ X }]config)) by blast
hence (3s€Cnezt S1. 0 € [ s Jeconfig) by simp
thus 7thesis by blast
qed

lemma branch_existence’:
assumes (@ € [ S1 Jeonfig)
shows (3S3. (81 =% S2) A (o € [ Sz Jeonfig)?
proof (induct k)
case 0
thus 7case by (simp add: assms)
next
case (Suc k)
thus 7case
using branch_existence relpowp_Suc_I[of (k) (operational_semantics_step)]
by blast
qed

Any run that belongs to the original specification ¥ has a corresponding configuration S at any
number k of reduction steps from the initial configuration. Therefore, any run that satisfies a
specification can be derived from the initial configuration at any level of reduction.

theorem completeness:
assumes (¢ € [[ ¥ [lresr’
shows 3S. (([1, 0 F ¥ > [1) <=¥ &
No€l[S ]]cenfig>
using assms branch_existence’ solve_start by blast
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7.4 Progress

Reduction steps do not guarantee that the construction of a run progresses in the sequence of
instants. We need to show that it is always possible to reach the next instant, and therefore any

future instant, through a number of steps.

lemma instant_index_increase:
assumes (¢ € [T, n = ¥ > @ Jeonfig
shows TTy Uy &p k. (T, n = ¥ @) <=k (I, Sucn | Uy > dp))
N o € [[ Ik, Suc n |= Ug > Py ]]config>
proof (insert assms, induct V¥ arbitrary: I' &)
case (Nil ' &)
then show 7?case
proof -
have (', n E [I > ®) <! (I, Sucn E & > [O)
using instant_i intro_part by fastforce
moreover have ([ T', n = [1 > @ Jeonfig = [T, Sucn = & > [ Jeonsig
by auto
moreover have (9 € [T, Suc n = ® > [ Jeonysig)
using assms Nil.prems calculation(2) by blast
ultimately show ?7thesis by blast
qed
next
case (Cons 3 W)
then show 7?case
proof (induct %)
case (SporadicOn C; 7 C2)
have branches: ([ I', n |= ((C; sporadic 7 on C2) # ¥) > @ Jeonyig
=[ T, nkE ¥ ((Cp sporadic 7 on C2) # ®) Jeonytig
U[[((Clﬂn) # (C2 yner) #F),H'Z‘IJDCI)]]CO”JCFL‘!ﬂ
using configuration_interp_stepwise_sporadicon_cases by simp
have bri: (¢ € [T, n = ¥ > ((C1 sporadic 7 on C2) # ®) Jconysig
((I', n &= ((C; sporadic 7 on C2) # ¥) > P)
—¥ (I'y, Suc n | Uy > )
N o € |I Ty, Suc n ': U > Pp ]]config>
proof -
assume hi: (¢ € [T, n = ¥ > ((C; sporadic 7 on C2) # ®) Jeonfig)
hence (3T ¥y & k. ((I', n = ¥ > ((C; sporadic 7 on C2) # P))
—¥ (I'y, Suc n = Uy > $p))
A (o € [[ Ty, Suc n | Uy > Py ﬂconfig”
using hl SporadicOn.prems by simp
from this obtain I'y ¥, &, k where
fp:(((I', n = ¥ > ((C; sporadic 7 on C2) # P))
—k (T'g, Suc n | Uy > Pp))
Ao € [Ty, sucn |= Uy > & Jeonfig) by blast
have
((I', n &= ((C1 sporadic 7 on C2) # ¥) > ®)
— (', n E ¥ > ((C; sporadic 7 on C2) # ®))
by (simp add: elims_part sporadic_on_el)
with fp relpowp_Suc_I2 have
(((I', n = ((C; sporadic 7 on C2) # ¥) > P)
—Suwck (I'y, Suc n = Uy > ®))) by auto
thus 7thesis using fp by blast
qged
have br2: ¢ € [ ((C1 tn) # (C2 yne7) #I), n = ¥ > ® Jeongig
= 3Ty Uy P k. ((I', n = ((C1 sporadic 7 on C2) # ¥) > P)
ok (I'y, Suc n ': U > D))
N o € [[st Suc n = Uy > P ]]config>
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proof -
assume h2: (@ € [ ((C1 i) # (C2 yne7) #I), n =TV P Jeongig
hence (ITy, Py P k. ((((C1 T n) # (C2oyne7) #I), nE T > d)
sk (Fk, Suc n ): \I/k > q)k))
N o € [[ Ik, Suc n = ¥y > Py, ]]config>
using h2 SporadicOn.prems by simp

from this obtain I'y ¥, P k
where fp:(((((C; 1 n) # (C2 yn@7) #), nkE= V¥ P)
sk (Fk, Suc n ): \Ifk > ‘I:‘k)))
and rc:(¢ € [ Tk, Suc n |= ¥y > @ Jeonfig) by blast
have pc:((I', n |= ((C; sporadic 7 on C2) # U) > ®)
— ((C1 ) # (C2yner) #I),nE T d)
by (simp add: elims_part sporadic_on_e2)
hence ((I', n = (C; sporadic 7 on C2) # ¥ > &)
«ySuc k (I'g, Suc n ': Ve > D))
using fp relpowp_Suc_I2 by auto
with rc show ?7thesis by blast
qed
from branches SporadicOn.prems(2) have
(@ € [T, n = ¥ ((C; sporadic 7 on C2) # ®) Jconygig
Ul i ftm) #C2ynen) #D), n k= V> P Jeongig
by simp
with brl br2 show 7case by blast
next
case (SporadicOnTvar Ci Tezpr C2)
have branches: ([ I', n |= ((C; sporadicf Tezpr on C2) # ¥) > @ Jeonsig
=[ T, nkE= ¥ ((C; sporadicf Texzpr on C2) # ®) Jeonfig
U 1 ftn) # (Co | neof Tezpr) # '), n Evp>d ﬂconfig>
using configuration_interp_stepwise_sporadicon_tvar_cases by simp
have bri: (¢ € [T, n | ¥ > ((C; sporadicf Tezpr on C2) # ®) Jeonfig
- HFk U, P k.
((I', n = ((C; sporadicf Tezpr on C2) # U) > P)
sk (', Suc n ': U > D))
Ao € [Tk, Sucn E Uy > P ]]COﬂfig>
proof -
assume h:(¢g € [ ', n |= ¥ > ((C; sporadicf Tezpr on C2) # ®) Jeonfig)
hence 3T, ¥, o) k.
((T', n = ¥ > ((C; sporadicf Tezpr on C2) # ®))
ke (T, Suc n ': U > D))
N o € |I Iy, Suc n '= U > Of Hconfig>
using Cons.hyps by blast
from this obtain I'y ¥, ¥, k where
(((T', n = ¥ > ((C; sporadicl Tegpr on C2) # ®)) =¥ (I'y, Suc n = Uy > &)
and *:(¢ € [ Ty, Suc n = ¥y > &y Jeonpigd by blast
moreover have ((I', n |=((C; sporadicf Tegpr on C2) # U) > P)
—(I', n = ¥ > ((C; sporadicf Tezpr on C2) # P@))
by (simp add: sporadic_on_tvar_el elims_part)
ultimately have (((I', n |= ((C1 sporadicf Tegpr on C2) # ¥) > P)
Sk (I'p, Suc n = Uy > &)
using relpowp_Suc_I2[of (operational_semantics_step)] by blast
with * have (((I', n |= ((C; sporadicf Tegpr on C2) # U) > P)
‘_>Suc k (Fk, Suc n '= \Ifk > (I’k))
AN € [Ty, Suc n |= ¥y > @ Jeonfig) by simp
thus 7thesis by blast
qed
moreover have br2: (¢ € [ ((C1 1 n) # (C2  n @f Teapr) # ), n | ¥ > @ Jeonpig = AT, Uy

Dy k.
((I', n = ((C; sporadic Tezpr on C2) # W) > @) ¥ (I'y, Suc n = Uy > P))
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N o € |I Ik, Suc n = Uy > Py ]]config)
proof -
assume h:(o € [ ((C1 1 n) # (C2 § n Of Texpr) # 1D, n = U > @ Jeonfig)
hence 3T, Vi Pp k.
(€1 tm) # (Co2 ynof Texpr) # 1), n =T > D)
sk (Fk, Suc n '= \I/k > @k))
N o € [[Fk, Suc n | Uy > P ]]config>
using Cons.hyps by blast
from this obtain I'y ¥, ®;, k where
((CCCC1 rmn) # (Co mneff Teapr) #D, n E V> ®) <K (I'g, Suc n | Uy > Op) )
and *:(p € [ Ty, Suc n |= ¥y > @ Jeonsig) by blast
moreover have ((I', n |=((C; sporadicf Tegzpr on C2) # U) > )
—(((Cy ' n) # (Co Jynof Texpr) # 1), n =¥ > )
by (simp add: sporadic_on_tvar_e2 elims_part)
ultimately have (((I', n |= ((C; sporadicf Tezpr on C2) # W) > &)
Sk (T, Suc n = Uy > $p) )
using relpowp_Suc_I2[of (operational_semantics_step)] by blast
with * have (((I', n | ((C; sporadicf Tegzpr on C2) # U) > ®)
Sk (I, Suc n = Uy > $y))
Ao € [Ty, Sucn |= Uy > & Jeonfig) by simp
thus 7thesis by blast
qged
ultimately show 7case
using branches SporadicOnTvar.prems(2) by blast
next
case (TagRelation C; C2 R)
have branches: ([ I', n |= ((time-relation [Ci, C2] € R) # U) > @ Jeonyfig
= II ((I_Tva'r(cl, n), Tyar(C2, H)J €ER) #1),n
= ¥ > ((time-relation |Ci, C2] € R) # ®) Jconfig)
using configuration_interp_stepwise_tagrel_cases by simp
thus 7case
proof -
have dI'y ¥, Py k.
((((l_Tvar(Cl, n), Tyar(C2, H)J ER) #I), n
= U > ((time-relation [Ci, C2] € R) # ®))
sk (I'y, Suc n ): U > Pp)) A o € [[Fk, Suc n | Uy > Py ]]config>
using TagRelation.prems by simp

from this obtain I'y ¥, P, k
where fp:(((((|Tvar(C1, D), Tvar(C2, )] € R) # T), n
= U > ((time-relation [Ci, C2] € R) # ®))
—k (I'g, Suc n | Uy > $p)))
and rc:(¢ € [ Ty, Suc n = ¥y > ® Jeonfig) by blast
have pc:((I', n | ((time-relation [C1, C2| € R) # ¥) > &)
— (((LT'ua'r (C1) n), Tvar (C2s n)J € R) # F), n
E U > ((time-relation [Ci, C2| € R) # ®))
by (simp add: elims_part tagrel_e)
hence (I', n = (time-relation |[Ci, C2| € R) # U > P)
8wk (Ty, Suc n = Uy > @)
using fp relpowp_Suc_I2 by auto
with rc show ?7thesis by blast
qed
next
case (Implies C; C2)
have branches: ([ I', n |= ((C; implies C2) # U) > @ Jeonyig
=[Ci =t n) #1), n E ¥ > ((C; implies C2) # ®) ]]config
UL CL o) # (Cofrn) #1), n = ¥ p ((C; implies C2) # ®) Jeonfig)
using configuration_interp_stepwise_implies_cases by simp
moreover have bri: (¢ € [ ((C1 =ff n) # I'), n = ¥ > ((C1 implies C2) # ®) Jeonfig
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= 3Ty U Py k. ((I', n = ((C; implies C3) # U) > P)
sk (Fk, Suc n ): \Ifk > q)k))
N o € [[ I'y, Suc n }: U > Oy ]]config>
proof -
assume hi: (9 € [ ((C1 -t n) # ), n = ¥ > ((C; implies C2) # ®) Jeonfig)
then have 3Ty ¥, P k.
((((¢1 *ft n) # ), n E ¥ > ((C; implies C2) # P))
sk (Fk, Suc n '= \I’k > (Dk))
N o € [[ Ik, Suc n = ¥y > Py, ]]config>
using hl Implies.prems by simp
from this obtain I'y ¥, &, k where
fp:(((((C1 =t n) # ), n E ¥ > ((C1 implies C3) # P))
—% (g, Suc n | Uy > $p) )
and rc:(¢ € [ 'y, Suc n = ¥y > Py Jeonyig’ by blast
have pc:((I', n |= (C; implies C3) # ¥ > ®)
— (((C1 =t n) # 1), n E ¥ > ((C; implies C2) # P)))
by (simp add: elims_part implies_el)
hence ((I', n = (C; implies C3) # ¥ p &) 5k (I'y, Suc n = Uy > &)
using fp relpowp_Suc_I2 by auto
with rc show 7thesis by blast
qed
moreover have br2: (p € [ ((C; 1 n) # (C2 1 n) # 1), n
= U > ((C; implies C2) # ®) Jconfig
= IT, ¥ & k. (T, n | ((C1 implies C2) # ¥) > &)
—¥ (I, Suc n = Uy > $p))
Ao €Ty, Sucn = Uy > O Jeonsig)
proof -
assume h2: (¢ € [ ((C; 1 n) # (Co fn) #I), n
= ¥ > ((C1 implies C2) # ®) Jeonfig)
then have ATy ¥y &5 k. (
((C1 fn) # (C2 tmn) #I), n E ¥ > ((C; implies C2) # D))
—¥ (I'y, Suc n = Uy > dp)
) Ao €[ Tk, Sucn = Uy > &y ]]config>
using h2 Implies.prems by simp
from this obtain I'y ¥, ®, k where
fp:((((Cy f n) # (Co 1 n) # ), n = ¥ > ((C; implies C2) # P))
—k (', Suc n E Uy > &)
and rc:(¢ € [ 'y, Suc n = ¥y > Pp Jeongig’ by blast
have ((I', n = ((C; implies C2) # V) > &)
— (((C1 ffn) # (C2ftn) #1), n E ¥ > ((C; implies Ca) # PN
by (simp add: elims_part implies_e2)
hence ((I', n = ((C; implies C) # W) > &) 5k (I} Suc n | Uy b Pp))
using fp relpowp_Suc_I2 by auto
with rc show 7thesis by blast
qed
ultimately show ?case using Implies.prems(2) by blast
next
case (ImpliesNot Cj C2)
have branches: ([ I', n |= ((C; implies not C2) # ¥) > @ Jconfig
=[ (1 fn) # ), n = ¥ > ((C; implies not C2) # ®) Jeonysig
UL C ftn) # (Co=fn) #I), nl= ¥ > ((C; implies not C2) # ®) Jeonyig
using configuration_interp_stepwise_implies_not_cases by simp
moreover have bri: (¢ € [ ((C; ~ffn) # ), n
= ¥ > ((C; implies not C2) # ®) Jconfig
= 3Ty ¥y Py k. ((I', n = ((C1 implies not C2) # ¥) > P)
—k (T, Suc n | Uy > $p))
N o € [[ Ty, Suc n ): U > Op ]]config>
proof -
assume hi: (@ € [ ((C; = n) # '), n = ¥ > ((C; implies not C2) # ®) Jconfig’
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then have 3Ty Uy Pi k.
((((C; = n) #T), n = ¥ > ((C; implies not C2) # D))
—¥ (T, Suc n | ¥y > Pp))
Ao € [T, Sucn E Uy > & ]config>
using hl ImpliesNot.prems by simp
from this obtain I'y ¥, ®; k where
fp:(((((C1 =t n) # ), n = ¥ > ((C; implies not C2) # P))
sk (Fk, Suc n '= \I/k > @k)))
and rc:(¢ € [ Ty, Suc n = ¥y > Py Jeonfig’ by blast
have pc:((I', n | (C; implies not C2) # ¥ > )
— (((C1 =t n) # D, n = ¥ > ((C; implies not Cz) # P)))
by (simp add: elims_part implies_not_el)
hence ((I', n = (C; implies not C2) # ¥ > ®) eySuc k (T, Suc n E Up > &)
using fp relpowp_Suc_I2 by auto
with rc show 7thesis by blast
qed
moreover have br2: (¢ € [ ((C; f n) # (Co -t n) # '), n
E U > ((C; implies not C2) # ®) Jconfig

= 3Ty ¥ P k. ((I', n = ((C; implies not C2) # ¥) > P)

—¥ (I'y, Suc n = Uy > $p))
Ao € [Ty, Sucn = Uy > & ]]config>
proof -
assume h2: (9 € [ ((C; 1 n) # (C2 =t n) # ), n
= ¥ > ((C; implies not C2) # ®) Jeonfig)
then have AT, ¥, P k. (
(((C1 fn) # (C2 ~tn) #I), n
= ¥ > ((C; implies not C3) # ®)) —¥ (I'y, Suc n = ¥y > Py)
) Ao € [Tk, Sucn = ¥y > P Jeonfig)
using h2 ImpliesNot.prems by simp
from this obtain I'y ¥, P, k where
fp:((((C1 f n) # (Co - n) # '), n = ¥ > ((C; implies not C2) # D))
sk (T'g, Suc n | Vg > Pi))
and rc:(¢ € [ Ty, Suc n = ¥y > P Jeonyigd by blast
have ((I', n = ((C1 implies not C2) # ¥) > )
— (((C1 ftn) # (C2 =t n) # ), n = ¥ > ((C; implies not C2) # P)))
by (simp add: elims_part implies_not_e2)
hence ((I', n = ((C1 implies not C2) # ¥) > P)
eySuc k (T'x, Suc n ': U > Op))
using fp relpowp_Suc_I2 by auto
with rc show ?thesis by blast
qed
ultimately show 7case wusing ImpliesNot.prems(2) by blast
next
case (TimeDelayedBy C; 67 C2 C3)
have branches:
([T, n = ((C1 time-delayed by d7 on Cz implies C3) # U) > P Jconyfig
=[] (€1 -ftn) #I), n
= ¥ > ((C; time-delayed by 67 on Co implies C3) # ®) Jcongfig
UJC; tn) #(C2@n® dr =C3) #I), n
= ¥ > ((C; time-delayed by 67 on C2 implies C3) # ®) Jconfig)
using configuration_interp_stepwise_timedelayed_cases by simp
moreover have bri:
(o€ ((Ci = n) #T), n
= ¥ > ((C; time-delayed by 67 on Cp implies C3) # ®) Jcongfig
(', n = ((C1 time-delayed by 07 on Cz implies C3) # W) > &)
sk (Fk, Suc n ': \I’k > ‘bk))
N o € [[ I'y, Suc n '= U > O ]]anf”ﬁ
proof -
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assume hil: (¢ € [ ((C; = n) # ), n
E ¥ > ((C; time-delayed by 67 on Cz implies C3) # ®) Jeonfig)
then have ATy ¥, P k.
((((C; = n) # ), n = ¥ > ((C; time-delayed by d7 on Co implies C3) # P))
—¥ (g, Suc n = Uy > )
N o € [[Fk, Suc n ): U > Py ]]Config>
using hl TimeDelayedBy.prems by simp
from this obtain I'y ¥, P k
where fp:((((C; =t n) # ), n
= ¥ > ((C; time-delayed by 67 on Cz implies C3) # ®))
—% (g, Suc n | Vg > O )
and rc:(¢ € [ T'y, Suc n = ¥y > P Jeonypig) by blast
have ((I', n = ((C; time-delayed by 67 on Cy implies C3) # ¥) > P)
— (((C1 ~n) #1), n
= ¥ > ((C; time-delayed by 47 on C2 implies C3) # P)))
by (simp add: elims_part timedelayed_el)
hence ((I', n = ((C; time-delayed by 67 on Co implies C3) # U) > P)
«ySuc k (Fk, Suc n ): \Ifk > (I)k)>
using fp relpowp_Suc_I2 by auto
with rc show 7thesis by blast

qed
moreover have br2:

(0 €[ ((C1 tn) # (C2@n @ 07 = C3) # 1), n
= ¥ > ((C; time-delayed by 67 on Co implies C3) # ®) Jeongfig
— dI'y Vi Df k.
((I', n E ((C; time-delayed by &7 on Cy implies C3) # W¥) > P)
—% (T, Suc n | Uy > dp))
N o € [[ Ty, Suc n | Uy > Py ﬂconfig>

proof -

assume h2: (9 € [ ((C; 1 n) # (C2 @n @ 67 = C3) # ), n
= ¥ > ((C1 time-delayed by 67 on Cz implies C3) # ®) Jeonyfig)
then have (3T, Vi @ k. ((((C1 t n) # (C2 @n @ 07 = C3) # ), n
E ¥ > ((C; time-delayed by 67 on Co implies C3) # P))
ok (T'x, Suc n ): U > $p))
Ao € [Tk, Sucn E Uy > O ]]config>
using h2 TimeDelayedBy.prems by simp
from this obtain I'y ¥, P k
where fp:¢((((C; ft n) # (C2 @n @ 07 = C3) # 1), n
= ¥ > ((C; time-delayed by 67 on Cy implies Cz) # P))
—k (T, Suc n | Uy > Op))
and rc:(¢ € [ T'y, Suc n = ¥y > ® Jeonfig) by blast
have ((I', n = ((C; time-delayed by 47 on C2 implies C3) # U) > P)
< (((C1 ffn) # (C2@n @ 67 = C3) #I), n
= ¥ > ((C; time-delayed by 67 on C2 implies C3) # P)))
by (simp add: elims_part timedelayed_e2)
with fp relpowp_Suc_I2 have
(', n = ((C1 time-delayed by d7 on C2 implies C3) # ¥) »> P)
—Suc k (I'y, Suc n E Up > &)
by auto
with rc show 7thesis by blast

qed
ultimately show ?case using TimeDelayedBy.prems(2) by blast

next

case (RelaxedTimeDelayed C; 67 C2 C3)
have branches:

(I T, n = ((C1 time-delayedr< by 67 on Co implies C3) # W) > @ Jeonfig
=[(C ~fm) #D), n
= ¥ > ((C; time-delayed>< by 67 on Co implies C3) # ®) Jconfig
ULCC o) #D), n
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= (C3 sporadict (Tvar(C2, n) @ 07| on C2) # U
> ((C1 time-delayed>d by 67 on Cz implies C3) # ®) Jconyfig
using configuration_interp_stepwise_timedelayed_tvar_cases by simp
have more_branches:
([ (c1 ' n) #T), n | ((C3 sporadict (Tvar(C2, n) @ I7|) on C2) # )
> ((C1 time-delayed>d by d7 on C2 implies C3) # @) Jconfig
=[ i tn) D), n T
> ((C3 sporadicl (Tvar(C2, n) @ 47| on C2)
# (C; time-delayedr by 67 on Cy implies C3) # P) ]]config
U (€3 n)# (C2 § nof (Tyar(C2, n) & 67))) # (Ct 1 n) # ), n
E ¥ > ((C; time-delayedr< by 67 on Cp implies C3) # P) ]]config>
using configuration_interp_stepwise_sporadicon_tvar_cases by blast
moreover have bri:
e[ (¢t ~ffn) #I), n
= ¥ > ((C1 time-delayed>< by 67 on Cz implies C3) # ®) Jconfig
(', n = ((C1 time-delayedr by 67 on Co implies C3) # U) > P)
—¥ (I'y, Suc n | Uy > dp))
Ao € [Tk, Sucn = Uy > &y ﬂconfig>
proof -
assume hil: (p € [ ((C; =t n) # ), n
E ¥ > ((C; time-delayed>d by 67 on Co implies C3) # ®) Jeonjfig)
then have dI'y ¥, 5 k.
((((C; = n) # ), n = ¥ > ((C; time-delayed<i by 67 on Cz implies C3) # P))
—% (I, Suc n | Uy > )
Ao € [Ty, Sucn |= Uy > O Jeonfig)
using hl RelaxedTimeDelayed.prems by simp
from this obtain T'y ¥, Pp k
where fp:((((C; =t n) # I), n
= ¥ > ((C; time-delayedi<I by 67 on C2 implies C3) # ®))
¥k (I'y,, Suc n E U > )
and rc:(9 € [ Ty, Suc n = ¥y > P Jeonfig) by blast
have ((I', n = ((C; time-delayed by 47 on C2 implies C3) # U) »> &)
— (((C1 7t n) # 1), n
= ¥ > ((C; time-delayed<i by 47 on Cz implies C3) # ®)))
by (simp add: elims_part timedelayed_tvar_el)
hence ((I', n = ((C1 time-delayedrt by d7 on C2 implies C3) # ¥) > P)
ySuc k (T'x, Suc n ': U > Op))
using fp relpowp_Suc_I2 by auto
with rc show ?thesis by blast
qed
moreover have br2:
(€[ (€1 tn) #1), n E ¥ > ((C3 sporadich (Twar(C2, n) @ 67 on C2)
# (C1 time-delayed< by 47 on Cz implies C3) # ®) Jconyfig
(', n = ((C1 time-delayedr by 07 on C2 implies C3) # U) »> P)
sk (I'x, Suc n ): U > Pp)) A o € [Fk, Suc n '= U > Py ]]config>
proof -
assume h2: (p € [ ((C; tn) #I), n = ¥
> ((C3 sporadicf (Tvar(C2, n) @ 67| on C2)
# (C1 time-delayed>d by 07 on Cz implies C3) # ®) Jconfig)
then have (3T Uy P k. ((((C1 tn) # ), n | T
> ((C3 sporadic# (Tvaer(C2, n) @ 47| on C2)
# (C1 time-delayedr< by 67 on Co implies C3) # ®))
sk (T, Suc n '= U > Pp)) A o € [[ T'y, Suc n ): U > Oy ]]c()nfig>
using h2 RelaxedTimeDelayed.prems by simp
from this obtain 'y ¥; ®; k where (((((C1 1 n) # ), n E ¥
> ((C3 sporadic# (Tvar(C2, n) @ 47| on C2)
# (C; time-delayedr< by 67 on Cp implies C3) # ®))
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by blast

% (T, Suc n = Wy > ®;))) and *:(p € [ Ty, Suc n = ¥y > Pk Jeonfig
moreover have (( ((C; 1 n) # I), n
= (C3 sporadict ( Tvar (C2, n) @ 67 |) on C2) # ¥
> ((C; time-delayedr< by 67 on Cy implies Cz) # ®))
— ( ((C1 tm) #1), n
E v

> ((C3 sporadic# (| Twar (C2, n) @ 67 |) on C2)

# (C; time-delayedd by 67 on Cy implies C3) # P)))
by (simp add: elims_part sporadic_on_tvar_el)

ultimately have (( ((C; f n) # '), n

): (C3 Sporadicﬁ (I Tvar (CQ, n) @ oT D on 02) # U

> ((C; time-delayedi< by 67 on Cy implies Cz) # ®))
‘—}SHCk (Fk, Suc n ): ‘lfk > (I)k)>

using relpowp_Suc_I2[of (operational_semantics_step)] by blast

moreover have ((I', n | ((C; time-delayedi<i by 7 on Cy implies C3) # W) > P)
— (((C1 fn) #I), n

E (C3 sporadict ( Tvar (C2, n) @ 67 |) on C2) # ¥
> ((C; time-delayedr<i by 47 on Co implies C3) # ®)))
by (simp add: elims_part timedelayed_tvar_e2)
ultimately have ((I', n = ((C; time-delayedi< by 67 on Cy implies C3) # ¥) > ®)
ySueue 0 (P Suc n = Uy > Pp))

using relpowp_Suc_I2[of (operational_semantics_step)] by blast
with * show 7thesis by blast
qed
moreover have br2’:
(0 € [ ((C3 n) # (C2 § nef (Tvar(C2, n) ® d7)) # (C1 ftn) # D, n
= ¥ > ((C; time-delayed>d by 67 on Co implies C3) # ®) Jconfig
— dI'y Vi Pf k.

proof -

((I', n = ((C; time-delayed< by d7 on C2 implies C3) # U) > &)
% Ty, Sucn = Uy > ®p)) A g € [T, Sucn = ¥y > B Jeonyfig)

assume h2: (¢ € [ ((C3 f n) # (Co I n @f (Tvar(C2, n) @ 7)) # (C1 At n) #T), n
E ¥ > ((C; time-delayedi< by 07 on C2 implies C3) # D) ]]c(mf,-g>
then have (IT'; ¥, P; k.

(3 1 n) # (C2 § nof (Toar(C2, n) @ 67)) # (C1 1 n) #), n
E ¥ > ((C; time-delayed< by 47 on Co implies C3) # ®)) —¥ (I'y, Suc n | Uy > Pp))
N o € [[ I'y, Suc n ': Ve > Py ]]config>
using h2 RelaxedTimeDelayed.prems by simp
from this obtain I'y ¥, ®; k where (

( (€3t n) # (C2 §nof (Toar(C2, n) & 67)) # (C1 1 m) #T), n

= ¥ > ((C; time-delayedr< by 07 on Cp implies C3) # P))
<3k (T),, Suc n = Uy > &)

and *:(¢0 € [ Ty, Suc n = ¥y > Py Jeonyig’ by blast
moreover have (( ((C; f n) # '), n = (C3 sporadict ( Tvar (C2, n) @ 67 |) on C2) # W
> ((C; time-delayed<i by d7 on C2 implies C3) # ®))
<5 (((C3 f n) # (C2 U n @ (Tpar(Co, m) @ &7)) # (C1 1 n) # 1), n
= ¥ > ((C; time-delayedr< by 07 on Cp implies C3) # P)))

by (simp add: elims_part sporadic_on_tvar_e2)
ultimately have (( ((C; f n) # '), n

= (C3 sporadict ( Tvar (C2, n) @ 67 |) on C2) # ¥

> ((C; time-delayedr< by 67 on Co implies Cz) # ®))
<_>Suck (Fk, Suc n ): \Ifk > ‘I:‘k)>

using relpowp_Suc_I2[of (operational_semantics_step)] by blast
moreover have ((I', n | ((C; time-delayedi<i by 7 on C2 implies C3) # U) > &)
— (((Ci fn) #I), n

): (C3 Sporadicﬁ (I Tvar (CQ, n) @ oT D on CQ) # U

> ((C; time-delayedr<i by 47 on C2 implies C3) # ®)))
by (simp add: elims_part timedelayed_tvar_e2)
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next

ultimately have ((I', n = ((C; time-delayed by 67 on Cy implies C3) # ¥) > P)
pSuc@ue ) () Suc n = WUy > Bp))
using relpowp_Suc_I2[of (operational_semantics_step)] by blast
with * show 7thesis by blast

qed
ultimately show ?case using RelaxedTimeDelayed.prems(2) branches more_branches by blast

case (WeaklyPrecedes Ci C2)
have ([ I', n = ((C; weakly precedes C2) # W) > @ Jeonfig =

[ (([#= Can, #= C1n] € O(x, . x<y) #1), n
= ¥ > ((C; weakly precedes C2) # ®) Jconfig)
using configuration_interp_stepwise_weakly_precedes_cases by simp
moreover have (0 € [ (([#= Co n, #= C1 n] € A&z, y). x <) # 1), n
E U > ((C; weakly precedes C2) # ®) Jconfig
= 3Ty Vg P k. ((I', n = ((C1 weakly precedes C2) # ¥) > D)
sk (Fk, Suc n ): \I/k > q)k))
A (o€ [Tk, Suc n |= Uy > @ Jeonfig)))
proof -
assume (o € [ (([#= C2 n, #< ¢ n] € A&, . x<y)#I, n
= U > ((C; weakly precedes C2) # ®) Jeongfig)
hence ATy ¥y ®p k. (((([#S Can, #= Ci n] € O(x, y). x < y)) # ), n
= ¥ > ((C; weakly precedes C2) # ®))
—% (I'y, Suc n | Uy > $p))
A (o € [[ I'y, Suc n ): U > Op ]]config)>
using WeaklyPrecedes.prems by simp
from this obtain 'y ¥, P k
where fp:(((([#S Can, #= C1 n] € O(x, ). x <) # 1), n
= ¥ > ((C; weakly precedes C2) # ®))
¥ (I'y, Suc n E Up > $p))
and rc:(¢ € [ Ty, Suc n = ¥y > P Jeonfig) by blast
have ((I', n & ((C1 weakly precedes C2) # ¥) > &)
— (((]—#S Co n, #5 ¢ n] € A, y). x<y)) #D,n
= U > ((C; weakly precedes C2) # P)))
by (simp add: elims_part weakly_precedes_e)
with fp relpowp_Suc_I2 have ((I', n | ((C; weakly precedes C2) # ¥) > P)
eySuc k (T'g, Suc n | Vg > Pi))
by auto
with rc show ?thesis by blast

qed
ultimately show 7case using WeaklyPrecedes.prems(2) by blast

next
case (StrictlyPrecedes C; C2)

have ([ T, n = ((C; strictly precedes C2) # U) > ® Jeonpig =
[ (([#= Can, #<Cin] € O(x, ). x<y) #1), n
= ¥ > ((C; strictly precedes C2) # ®) Jeonfig)
using configuration_interp_stepwise_strictly_precedes_cases by simp
moreover have (9 € [ (([#S Co n, #< €1 n] € (A (x, ). x <)) #), n
= ¥ > ((Cy strictly precedes C2) # ®) Jconfig
= (T Vi Pr k. ((I', n E ((C1 strictly precedes C2) # U) > P)
—k (T'g, Suc n | Uy > Pp))
A (o € [Fk, Suc n '= Ve > Py ]]config))>
proof -
assume (9 € [ (([#= Ca n, #< C; n] € (\(x, y). x < y)) # ), n
= U > ((C1 strictly precedes C2) # @) Jeonfig)
hence ATy, V) @y k. (((([#5 Co n, #< Cin] € Ox, y). x < y) #I), n
= U > ((C; strictly precedes C2) # ®))
sk (Fk, Suc n 'Z \I’k > @k))
AN (g € [Tk, Suc n = ¥ > Pk Jeonfig))
using StrictlyPrecedes.prems by simp
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from this obtain I'y ¥, P k
where fp:(((([#5 Con, #< C1 n] € (A (x, y). x < y)) # ), n
E U > ((C; strictly precedes C2) # ®))
sk (Fk, Suc n '= \I/k > @k))
and rc:(¢ € [ Ty, Suc n = ¥y > Py Jeonfig) by blast
have ((I', n = ((C; strictly precedes C2) # U) > P)
— ((([#= Camn, #< Ci1n] € O(x, Y. x < y) #), n
= ¥ > ((C; strictly precedes C2) # ®)))
by (simp add: elims_part strictly_precedes_e)
with fp relpowp_Suc_I2 have ((I', n = ((C; strictly precedes C2) # ¥) > )
—Suwck (I, Suc n = Uy > &)
by auto
with rc show 7thesis by blast
qed
ultimately show ?case using StrictlyPrecedes.prems(2) by blast
next
case (Kills Cy Cg)
have branches: ([ I', n |= ((C; kills C2) # ) > @ Jconfig
=[ (€1 -t n) #), n = ¥ > ((C; kills C2) # ®) Jconfig
UL WCL frn) # (Co—f>n) # ), n |= ¥ > ((C1 kills C2) # ®) Jeonfig)
using configuration_interp_stepwise_kills_cases by simp
moreover have bri: (¢ € [ ((C; =ff n) # I'), n = ¥ > ((C1 kills C2) # ®) Jconyig
= 3Ty Uy P k. ((I', n = ((C1 kills C2) # U) > P)
—¥ (T, Suc n | Ui > Pp))
N o € |I Iy, Suc n )= U > Op ]]config>
proof -
assume hi: (9 € [ ((C; =t n) # ), n = ¥ > ((C; kills C2) # @) Jeonfig)
then have 3Ty ¥, P k.
((((C1 = n) # ), n = ¥ > ((C; kills C2) # D))
—¥ (I'y, Suc n = Uy > ®p))
Ao € [Tk, Sucn E Uy > O ]]config>
using hl Kills.prems by simp
from this obtain I'y ¥, ®, k where
fp:(((((C1 ~ft n) # ), n | ¥ > ((C; kills C2) # D))
ok (I'x, Suc n )= Ve > O )
and rc:(¢ € [ 'y, Suc n = ¥y > Py Jeonyig’ by blast
have pc: ((I', n | (C; kills C2) # ¥ »> P)
— (((C1 7t n) # ), n E ¥ > ((C; kills Cp) # P)))
by (simp add: elims_part kills_el)
hence ((I', n = (C1 kills C2) # U b &) <5k (T, Suc n | ¥y > $p))
using fp relpowp_Suc_I2 by auto
with rc show 7thesis by blast
qed
moreover have br2:
(o € |I ((Ci fn) # (Co -t >n) #1), n '= U > ((C; kills C3) # P) ]]config
— EIFk ‘I/k Cbk k. ((F, n ’: ((Cl kills CQ) # U) > D)
‘—)k (Fk, Suc n '= \I/k > q)k))
N o € [[ Ik, Suc n = Vg > Py, ]]config>
proof -
assume h2: (¢ € [((C1 ff m#(C2 —ft > w#[), n = ¥ > ((C1 kills C2)#P)]config
then have 3Ty, ¥, P k. (
(((C1 ' m) # (C2 1t >mn) #), n = ¥ > ((C; kills C2) # D))
sk (Fk, Suc n ): \I/k > ‘I)k)
) Ao € [[Fk, Suc n | Uy > P ]]config>
using h2 Kills.prems by simp
from this obtain I'y ¥, &, k where
fp:((((C1y f n) # (Co =t > n) # ), n E ¥ > ((C; kills C2) # D))
—¥ (T, Suc n = Uy > O )
and rc:(¢ € [ 'y, Suc n = ¥y > P Jeongig’ by blast
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have ((I', n = ((C1 kills C2) # ¥) > P)
— (((C1 tn) # (C2 =t > n) # ), n E ¥ > ((C; kills C2) # P)))
by (simp add: elims_part kills_e2)
hence ((I', n | ((C; kills Co) # W) > &) 5k (T, Suc n | ¥y > &)
using fp relpowp_Suc_I2 by auto
with rc show ?7thesis by blast
qed
ultimately show ?case using Kills.prems(2) by blast
qed
qged

lemma instant_index_increase_generalized:
assumes (n < ng)
assumes (¢ € [T, n = ¥ > @ Jeonyig
shows (ITy Vg Pp k. (I, n '= U > @) —k Tk, ng ): U > D))
AN o€ [[Fk, ng ': Uy > Dy ]]config>
proof -
obtain 6k where diff: (np = dk + Suc n)
using add.commute assms(1) less_iff_Suc_add by auto
show ?thesis
proof (subst diff, subst diff, insert assms(2), induct Jk)
case 0 thus 7case
using instant_index_increase assms(2) by simp
next
case (Suc 0k)
have f0: (o € [[ I', n ): v P ]]config —— EFk U, &5 k.
(T, n E ¥ > @) <k (I, 0k + Suc n | Uy > Pp))
AN S |I 'k, 0k + Suc n = ¥y > Py ﬂconfig>
using Suc.hyps by blast
obtain Fk \I/k ‘bk k
where cont: (((I', n £ ¥ b &) ¥ (I'y, dk + Suc n | Uy > )
N o € [ T'y, 0k + Suc n ': U > O ]config>
using fO assms(1) Suc.prems by blast
then have fcontinue: (3T’ Uy’ ®p’ k’. ((T'k, ok + Suc n = Uy > Py)
—¥ (I, Suc (6k + Suc n) | Uy’ > ®p’))
Ao € [Ty, Suc (0k + Suc n) = ¥’ > i’ Jeonfig)
using fO cont instant_index_increase by blast
obtain Fk’ \I’k’ q)k’ k’
where cont2: (((I'y, 0k + Suc n = ¥y > D)
—¥ (I'y?, Suc (6k + Suc n) = Uy’ > dp’))
Ao € [Ty, Suc (dk + Suc n) | ¥y’ > Py’ ]]config>
using Suc.prems using fcontinue cont by blast
have trans: ((I', n E ¥ > ®) —¥*¥ (I'y?, Suc (0k + Suc n) | ¥’ > dp’))
using operational_semantics_trans_generalized cont cont2 by blast
moreover have suc_assoc: (Suc dk + Suc n = Suc (ék + Suc n)) by arith
ultimately show ?case
proof (subst suc_assoc)
show QI'y Uy i k.
(T, n E ¥ p ®) —F (I'y, Suc (6k + Suc n) = ¥y > ®p))
N o € [[ Ik, Suc 0k + Suc n = ¥y > Py }]config>
using cont2 local.trans by auto
qed
qed
qed
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Any run that belongs to a specification ¥ has a corresponding configuration that develops it up

to the n*® instant.

theorem progress:



70 CHAPTER 7. MAIN THEOREMS

assumes (¢ € [[ ¥ [lresn)
shows 3k I'y Uy @;. (([1, 0 F U > [1) <% Ty, n E T > D))
No € [[Fk: nE ¥ > P ]]config>
proof -
have 1:(3Ty, ¥y, P, k. (([1, 0 = ¥ > [1) —k (Tg, 0 E Up > P))
N o € [Fk, 0 ): U > Of ]]config>
using assms relpowp_O_I solve_start by fastforce
show ?thesis
proof (cases (n = 0))
case True
thus 7thesis using assms relpowp_0_I solve_start by fastforce
next
case False hence pos:(n > 0) by simp
from assms solve_start have (¢ € [ [1, 0 = ¥ > [1 Jeonyig > by blast
from instant_index_increase_generalized[OF pos this] show ?thesis by blast
qed
qed

7.5 Local termination

Here, we prove that the computation of an instant in a run always terminates. Since this
computation terminates when the list of constraints for the present instant becomes empty, we
introduce a measure for this formula.

primrec measure_interpretation :: (’7::linordered_field TESL_formula = nat) ((u))
where
(u [0 = (0::nat))
| (u (p # &) = (case ¢ of
_ sporadic _on _ = 1 + pu &
| _ sporadicf _on _ = 1+ pu ®
| _ = 2+ u d)

fun measure_interpretation_config :: (’7::linordered_field config = nat) ({ttconfig))
where
(Hcon fig T, n ': Ued)=pw

We then show that the elimination rules make this measure decrease.

lemma elimation_rules_strictly_decreasing:
assumes ((I'1, nj ): Uy > &) —. (2, no |: Uy > Py))
shows (u V1 > pu Wa)
using assms by (auto elim: operational_semantics_elim.cases)

lemma elimation_rules_strictly_decreasing_meas:
assumes ((I'1, n1 | U1 > &1) < (T2, n2 E Vg > Po))
shows ((Wy, W;) € measure u)
using assms by (auto elim: operational_semantics_elim.cases)

lemma elimation_rules_strictly_decreasing meas’:
assumes (S1 —. S2)
shows ((S2, S1) € measure pconfig)
proof -
from assms obtain I'1 n; ¥; ®; where p1:<S1 = (I'1, n1 E U1 > &1
using measure_interpretation_config.cases by blast
from assms obtain I'; ny ¥y ®3 where p2:(S2 = (I'z2, na E U > $2))
using measure_interpretation_config.cases by blast
from elimation_rules_strictly_decreasing meas assms pl p2
have ((V3, ¥;) € measure p) by blast
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hence (u ¥y < p ¥p) by simp
hence (piconfig (U2, n2 = V2 > ®2) < peonfig T, n1 = V1 > $1)) by simp
with pl p2 show 7thesis by simp

qed

Therefore, the relation made up of elimination rules is well-founded and the computation of an
instant terminates.

theorem instant_computation_termination:
(wfP (A(S1::’a::linordered_field config) S2. (S1 <% S2))
proof (simp add: wfP_def)
show (wf {((S;::’a::linordered_field config), S2). S1 <=5 S2b
proof (rule wf_subset)
have (measure pconfig = {(S2, (S1::’a::linordered_field config)).
Heconfig 82 < MHconfig Sl}>
by (simp add: inv_image_def less_eq measure_def)
thus ({((S1::’a::linordered_field config), S2). S1 =% S2} C (measure peonfig))
using elimation_rules_strictly_decreasing_meas’
operational_semantics_elim_inv_def by blast
next
show (wf (measure measure_interpretation_config)) by simp
qed
qed

end
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Chapter 8

Properties of TESL

8.1 Stuttering Invariance

theory StutteringDefs
imports Denotational
begin

When composing systems into more complex systems, it may happen that one system has to
perform some action while the rest of the complex system does nothing. In order to support
the composition of TESL specifications, we want to be able to insert stuttering instants in a run
without breaking the conformance of a run to its specification. This is what we call the stuttering
invariance of TESL.

8.1.1 Definition of stuttering

We consider stuttering as the insertion of empty instants (instants at which no clock ticks) in a
run. We caracterize this insertion with a dilating function, which maps the instant indices of the
original run to the corresponding instant indices of the dilated run. The properties of a dilating
function are:

it is strictly increasing because instants are inserted into the run,

e the image of an instant index is greater than it because stuttering instants can only delay
the original instants of the run,

e no instant is inserted before the first one in order to have a well defined initial date on each
clock,

e if n is not in the image of the function, no clock ticks at instant n and the date on the
clocks do not change.

definition dilating_fun
where
(dilating_fun (f::nat = nat) (r::’a::linordered_field run)
= strict_mono f A (£ 0=0) A (Vn. £fn >n
A ((@ng. £ np = n) — (Vc. —(ticks ((Rep_run r) n c))))

73
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dilated 1
orlglnal
run 1 2 3 4 5 6 7
e instant of the original run o stuttering instant (no tick)

Figure 8.1: Dilating and contracting functions

A ((Fnp. £ ng = (Suc n)) — (Vc. time ((Rep_run r) (Suc n) c)
= time ((Rep_run r) n c)))
»

A run r is a dilation of a run sub by function f if:

e f is a dilating function for r
e the time in r is the time in sub dilated by £

e the ticks in r is the ticks in sub dilated by £

definition dilating
where

(dilating f sub r dilating_fun f r

7\ (Vn c. time ((Rep_run sub) n c) = time ((Rep_run r) (f n) c))
A (Vn c. ticks ((Rep_run sub) n c) = ticks ((Rep_run r) (f n) c)))

A run is a subrun of another run if there exists a dilation between them.

definition is_subrun ::(’a::linordered_field run = ’a run = bool) (infixl (<) 60)
where
(sub < r = (3f. dilating f sub r))

A contracting function is the reverse of a dilating fun, it maps an instant index of a dilated run
to the index of the last instant of a non stuttering run that precedes it. Since several successive
stuttering instants are mapped to the same instant of the non stuttering run, such a function is
monotonous, but not strictly. The image of the first instant of the dilated run is necessarily the
first instant of the non stuttering run, and the image of an instant index is less that this index
because we remove stuttering instants.

definition contracting_fun
where (contracting fun g = mono g A g 0 =0 A (Vn. gn < n))

Figure 8.1 illustrates the relations between the instants of a run and the instants of a dilated
run, with the mappings by the dilating function £ and the contracting function g:

A function g is contracting with respect to the dilation of run sub into run r by the dilating
function f if:
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e it is a contracting function ;
e (f o g) nis the index of the last original instant before instant n in run r, therefore:

—(fogn<n

the time does not change on any clock between instants (f o g) n and n of run r;

— no clock ticks before n strictly after (f o g) n in run r. See Figure 8.1 for a better
understanding. Notice that in this example, 2 is equal to (f o g) 2, (f o g) 3, and
(f o g) 4.

definition contracting
where
(contracting g r sub f = contracting_fun g
A (Vn. £ (g n) < n)
AN (Wnck. f(gn) <kAk<n
— time ((Rep_run r) k c) =
AN (Vnck. f(gn) <kAk<n
— - ticks ((Rep_run 1) k c)))

time ((Rep_run sub) (g n) c))

For any dilating function, we can build its inverse, as illustrated on Figure 8.1, which is a
contracting function:

definition (dil_inverse f::(nat = nat) = (An. Max {i. £ i < n}))

8.1.2 Alternate definitions for counting ticks.

For proving the stuttering invariance of TESL specifications, we will need these alternate defini-
tions for counting ticks, which are based on sets.

tick_count r c¢ n is the number of ticks of clock ¢ in run r upto instant n.

definition tick_count :: (’a::linordered_field run = clock = nat = nat)
where
(tick_count r ¢ n = card {i. i1 < n A ticks ((Rep_run r) i c)}

tick_count_strict r c¢ n is the number of ticks of clock ¢ in run r upto but excluding instant
n.

definition tick_count_strict :: (’a::linordered_field run = clock = nat = nat)
where
(tick_count_strict r ¢ n = card {i. i < n A ticks ((Rep_run r) i c)})

end

8.1.3 Stuttering Lemmas
theory Stutteringlemmas

imports StutteringDefs

begin

In this section, we prove several lemmas that will be used to show that TESL specifications are
invariant by stuttering.
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The following one will be useful in proving properties over a sequence of stuttering instants.

lemma bounded_suc_ind:
assumes (A\k. k <m = P (Suc (z + k)) =P (z + k)
shows (k <m = P (Suc (z + k)) =P 2
proof (induction k)
case 0
with assms(1) [of 0] show 7case by simp
next
case (Suc k’)
with assms[of (Suc k’)] show ?7case by force
qed

8.1.4 Lemmas used to prove the invariance by stuttering

Since a dilating function is strictly monotonous, it is injective.

lemma dilating_fun_injects:
assumes (dilating_fun f r)
shows (inj_on f A)
using assms dilating_fun_def strict_mono_imp_inj_on by blast

lemma dilating_injects:
assumes (dilating f sub r)
shows (inj_on f A)
using assms dilating_def dilating_fun_injects by blast

If a clock ticks at an instant in a dilated run, that instant is the image by the dilating function
of an instant of the original run.

lemma ticks_image:
assumes (dilating_fun f r)
and (ticks ((Rep_run r) n c))
shows (dng. f ngp = n)

using dilating_fun_def assms by blast

lemma ticks_image_sub:
assumes (dilating f sub r)
and (ticks ((Rep_run r) n c))
shows (dng. f ngp = n)
using assms dilating_def ticks_image by blast

lemma ticks_image_sub’:
assumes (dilating f sub r)
and (3c. ticks ((Rep_run r) n c))
shows (3ng. f ngp = n)
using ticks_image_sub[0F assms(1)] assms(2) by blast

The image of the ticks in an interval by a dilating function is the interval bounded by the image
of the bounds of the original interval. This is proven for all 4 kinds of intervals: Jm, n[, [m, n[,
Im, n] and [m, n].

lemma dilating_fun_image_strict:

assumes (dilating_fun f r)

shows ({k. £fm <k Ak <fn A ticks ((Rep_run r) k ¢c)}

= image f {k. m < k A k < n A ticks ((Rep_run r) (f k) <)}

(is (?IMG = image f 7SET))
proof

{ fix k assume h:(k € 7IMG)

from h obtain ko where kOprop:(f kg = k A ticks ((Rep_run r) (f ko) c))
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using ticks_image[OF assms] by blast
with h have (k € image f 7SET)
using assms dilating_fun_def strict_mono_less by blast
} thus (?IMG C image f 7SET) ..
next
{ fix k assume h:(k € image f ?7SET)
from h obtain ko where kOprop:(k = f k9 A kg € 7SET) by blast
hence (k € ?7IMG) using assms by (simp add: dilating_fun_def strict_mono_less)
} thus (image f ?7SET C 7IMG) ..
qged

lemma dilating fun_image_left:
assumes (dilating_fun f r)
shows ({k. fm <k Ak <fn A ticks ((Rep_run r) k c)}
= image f {k. m < k A k < n A ticks ((Rep_run r) (f k) )}
(is (?IMG = image f ?SET))
proof
{ fix k assume h:(k € 7IM®
from h obtain kg where kOprop:(f kg = k A ticks ((Rep_run r) (f ko) c))
using ticks_image[OF assms] by blast
with h have (k € image f ?7SET)
using assms dilating_fun_def strict_mono_less strict_mono_less_eq by fastforce
} thus (?IMG C image f ?7SET) ..
next
{ fix k assume h:(k € image f ?7SET)
from h obtain ko where kOprop:(k = f kg A kg € ?SET) by blast
hence (k € 7IMG)
using assms dilating_fun_def strict_mono_less strict_mono_less_eq by fastforce
} thus (image f ?SET C 7IMG) ..
qged

lemma dilating_fun_image_right:
assumes (dilating_fun f r)
shows ({k. £fm <k Ak < fn A ticks ((Rep_run r) k ¢)}
= image f {k. m < k A k < n A ticks ((Rep_run r) (f k) o)}
(is (?IMG = image f 7SET))
proof
{ fix k assume h:(k € ?7IM®
from h obtain kg where kOprop:(f kg = k A ticks ((Rep_run r) (f ko) c))
using ticks_image[OF assms] by blast
with h have (k € image f 7SET)
using assms dilating_fun_def strict_mono_less strict_mono_less_eq by fastforce
} thus (?IMG C image f 7SET) ..
next
{ fix k assume h:(k € image f ?7SET)
from h obtain ko where kOprop:(k = f k9 A kg € 7SET) by blast
hence (k € 7IMG)
using assms dilating_fun_def strict_mono_less strict_mono_less_eq by fastforce
} thus (image f ?SET C 7IMG) ..
qed

lemma dilating_fun_image:

assumes (dilating_fun f r)

shows ({k. fm <k Ak < fn A ticks ((Rep_run r) k c)}

= image f {k. m < k A k < n A ticks ((Rep_run r) (f k) <)}

(is (?IMG = image f ?7SET))
proof

{ fix k assume h:(k € ?IMG

from h obtain ko where kOprop:(f kg = k A ticks ((Rep_run r) (f ko) c))

7
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using ticks_image[OF assms] by blast
with h have (k € image f 7SET)
using assms dilating_fun_def strict_mono_less_eq by blast
} thus (?IMG C image f 7SET) ..
next
{ fix k assume h:(k € image f ?7SET)
from h obtain kg where kOprop:(k = f kg A ko € ?SET) by blast
hence (k € 7IMG) using assms by (simp add: dilating_fun_def strict_mono_less_eq)
} thus (image f ?SET C 7IMG) ..
qed

On any clock, the number of ticks in an interval is preserved by a dilating function.

lemma ticks_as_often_strict:
assumes (dilating_fun f r)
shows (card {p. n < p A p <m A ticks ((Rep_run r) (f p) o)}
= card {p. £fn<p Ap<fmA ticks ((Rep_run r) p c)}
(is (card 7SET = card 7IMG))
proof -
from dilating_fun_injects[OF assms] have (inj_on f ?7SET) .
moreover have (finite ?SET) by simp
from inj_on_iff_eq_card[0F this] calculation
have (card (image f 7SET) = card 7SET) by blast
moreover from dilating_fun_image_strict [OF assms] have (?IMG = image f ?SET) .
ultimately show 7?thesis by auto
qed

lemma ticks_as_often_left:
assumes (dilating fun f r)
shows (card {p. n < p A p <m A ticks ((Rep_run r) (f p) <)}
=card {p. £fn < p Ap<fmA ticks ((Rep_run r) p c)})
(is (card ?SET = card 7IMG))
proof -
from dilating_fun_injects[OF assms] have (inj_on f ?7SET) .
moreover have (finite ?SET) by simp
from inj_on_iff_eq_card[OF this] calculation
have (card (image f 7SET) = card 7SET) by blast
moreover from dilating_fun_image_left[OF assms] have (?IMG = image f 7SET) .
ultimately show ?thesis by auto
qed

lemma ticks_as_often_right:
assumes (dilating_fun f r)
shows (card {p. n < p A p < m A ticks ((Rep_run r) (f p) c)}
=card {p. fn<p Ap < fmA ticks ((Rep_run r) p c)})
(is (card ?SET = card 7IMG))
proof -
from dilating_fun_injects[OF assms] have (inj_on f ?SET) .
moreover have (finite ?SET) by simp
from inj_on_iff_eq_card[0OF this] calculation
have (card (image f 7SET) = card ?SET) by blast
moreover from dilating_fun_image_right [OF assms] have (?IMG = image f 7SET) .
ultimately show ?thesis by auto
qed

lemma ticks_as_often:
assumes (dilating_fun f 1)
shows <(card {p. n < p A

p <
=card {p. £fn < p AP

A ticks ((Rep_run r) (f p) c)}
£

m
< f m A ticks ((Rep_run r) p c)})
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(is (card ?7SET = card 7IM®))
proof -
from dilating_fun_injects[OF assms] have (inj_on f ?SET) .
moreover have (finite ?SET) by simp
from inj_on_iff_eq_card[0F this] calculation
have (card (image f 7SET) = card 7SET) by blast
moreover from dilating_fun_image[OF assms] have (?IMG = image f ?SET) .
ultimately show ?thesis by auto
qged

The date of an event is preserved by dilation.

lemma ticks_tag_image:
assumes (dilating f sub r)

and (Jc. ticks ((Rep_run r) k c))

and (time ((Rep_run r) k c) = 7)

shows (Jko. £ k9 = k A time ((Rep_run sub) ko c) = 7)
proof -

from ticks_image_sub’ [OF assms(1,2)] have (Iko. f ko = k) .
from this obtain kg where (f ko = k) by blast
moreover with assms(1,3) have (time ((Rep_run sub) ko c) = 7)
by (simp add: dilating_def)
ultimately show ?thesis by blast
qed

TESL operators are invariant by dilation.

lemma ticks_sub:

assumes (dilating f sub r)

shows  (ticks ((Rep_run sub) n a) = ticks ((Rep_run r) (f n) a))
using assms by (simp add: dilating_def)

lemma no_tick_sub:

assumes (dilating f sub r)

shows ((fing. f np = n) — —ticks ((Rep_run r) n a))
using assms dilating_def dilating_fun_def by blast

Lifting a total function to a partial function on an option domain.

definition opt_lift::((’a = ’a) = (’a option = ’a option))
where
(opt_lift £ = Ax. case x of None = None | Some y = Some (f y))

The set of instants when a clock ticks in a dilated run is the image by the dilation function of
the set of instants when it ticks in the subrun.

lemma tick_set_sub:
assumes (dilating f sub r)
shows  ({k. ticks ((Rep_run r) k c)} = image f {k. ticks ((Rep_run sub) k c)})
(is (PR = image f 7S))
proof
{ fix k assume h:(k € 7R
with no_tick_sub[0F assms] have (Jko. f ko = k) by blast
from this obtain kg where kOprop:(f kg = k) by blast
with ticks_sub[0OF assms] h have (ticks ((Rep_run sub) ko c)) by blast
with kOprop have (k € image f 7S) by blast
}
thus (R C image f 7S) by blast
next
{ fix k assume h:(k € image f 7S)
from this obtain ko where (f kg = k A ticks ((Rep_run sub) kg c)) by blast
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with assms have (k € 7R) using ticks_sub by blast
}
thus (image f ?S C ?R) by blast
qed

Strictly monotonous functions preserve the least element.

lemma Least_strict_mono:
assumes (strict_mono f)
and dx e s. Vyes.x<y
shows ((LEAST y. y € £ ¢ S) = f (LEAST x. x € S))
using Least_mono[0F strict_mono_mono, OF assms]

A non empty set of nats has a least element.

lemma Least_nat_ex:
((n::nat) € S = Jdx € 8. (Vy € S. x < y))
by (induction n rule: nat_less_induct, insert not_le_imp_less, blast)

The first instant when a clock ticks in a dilated run is the image by the dilation function of the
first instant when it ticks in the subrun.

lemma Least_sub:
assumes (dilating f sub r)
and (dk::nat. ticks ((Rep_run sub) k c))
shows  ((LEAST k. k € {t. ticks ((Rep_run r) t c)})
= f (LEAST k. k € {t. ticks ((Rep_run sub) t c)}))
(is ((LEAST k. k € 7R) = f (LEAST k. k € 78)))
proof -
from assms(2) have (Ix. x € ?S) by simp
hence least:(dx € 78. Vy € 7S. x < y)
using Least_nat_ex ..
from assms(1) have (strict_mono f) by (simp add: dilating_def dilating_fun_def)
from Least_strict_mono[OF this least] have
((LEAST y. y € £ ¢ 78) = f (LEAST x. x € 73)) .
with tick_set_sub[0F assms(1), of (c)] show 7thesis by auto
qed

If a clock ticks in a run, it ticks in the subrun.

lemma ticks_imp_ticks_sub:
assumes (dilating f sub r)

and (k. ticks ((Rep_run r) k c))
shows (dko. ticks ((Rep_run sub) ko c))
proof -

from assms(2) obtain k where (ticks ((Rep_run r) k c¢)) by blast
with ticks_image_sub[0F assms(1)] ticks_sub[OF assms(1)] show 7thesis by blast
qed

Stronger version: it ticks in the subrun and we know when.

lemma ticks_imp_ticks_subk:
assumes (dilating f sub r)

and (ticks ((Rep_run r) k c))
shows (3ko. f ko = k A ticks ((Rep_run sub) kg c))
proof -

from no_tick_sub[0OF assms(1)] assms(2) have (ko. f ko = k) by blast
from this obtain kg where (f ko = k) by blast
moreover with ticks_sub[0OF assms(1)] assms(2)
have (ticks ((Rep_run sub) ko c)) by blast
ultimately show ?thesis by blast
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qged

A dilating function preserves the tick count on an interval for any clock.

lemma dilated_ticks_strict:
assumes (dilating f sub r)
shows ({i. £fm<i A i< fn A ticks ((Rep_run r) i c)}
= image f {i. m < i A i <n A ticks ((Rep_run sub) i c)}
(is (?RUN = image f ?SUB))
proof
{ fix i assume h:(i € ?SUB)
hence (m < i A i < n) by simp
hence (f m < f i A £ i < (f n)) using assms
by (simp add: dilating_def dilating_fun_def strict_monoD strict_mono_less_eq)
moreover from h have (ticks ((Rep_run sub) i c¢)) by simp
hence (ticks ((Rep_run r) (f i) c¢)) using ticks_sub[OF assms] by blast
ultimately have (f i € ?RUN) by simp
} thus (image f ?SUB C 7RUN) by blast
next
{ fix i assume h:(i € ?RUN)
hence (ticks ((Rep_run r) i c¢)) by simp
from ticks_imp_ticks_subk[OF assms this]
obtain ip where iOprop:(f ip = i A ticks ((Rep_run sub) ip c)) by blast
with h have (f m < f ig A f ip < f n) by simp
moreover have (strict_mono f) using assms dilating_def dilating_fun_def by blast
ultimately have (m < ig A ip < n)
using strict_mono_less strict_mono_less_eq by blast
with iOprop have (Jig. f ig = i A ig € ?SUB) by blast
} thus (?RUN C image f 7SUB) by blast
qed

lemma dilated_ticks_left:
assumes (dilating f sub r)
shows ({i. fm < i A i< fn A ticks ((Rep_run r) i c)}
= image f {i. m < i A i <n A ticks ((Rep_run sub) i c)}
(is (?7RUN = image f ?7SUB))
proof
{ fix i assume h:(i € ?SUB)
hence (m < i A i < n) by simp
hence (f m < f i A f i < (f n)) using assms
by (simp add: dilating_def dilating_fun_def strict_monoD strict_mono_less_eq)
moreover from h have (ticks ((Rep_run sub) i c)) by simp
hence (ticks ((Rep_run r) (f i) c¢)) using ticks_sub[OF assms] by blast
ultimately have (f i € 7RUN) by simp
} thus (image £ ?SUB C 7RUN) by blast
next
{ fix 1 assume h:(i € 7RUN)
hence (ticks ((Rep_run r) i c¢)) by simp
from ticks_imp_ticks_subk[0OF assms this]
obtain ip where iOprop:(f ip = i A ticks ((Rep_run sub) ip c)) by blast
with h have (f m < f ig A f igp < £ n) by simp
moreover have (strict_mono f) using assms dilating_def dilating_fun_def by blast
ultimately have m < ip A ip < n)
using strict_mono_less strict_mono_less_eq by blast
with iOprop have (Jig. f ip = i A ig € ?SUB) by blast
} thus (?RUN C image f 7SUB) by blast
qged

lemma dilated_ticks_right:

81
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assumes (dilating f sub r)
shows ({i. £fm<i A i < fn A ticks ((Rep_run r) i ¢)}
= image f {i. m < i A'i < n A ticks ((Rep_run sub) i c)}
(is (?RUN = image f ?SUB))
proof
{ fix i assume h:(i € 7SUB)
hence (m < i A i < n) by simp
hence (f m < £f i A £ i < (f n)) using assms
by (simp add: dilating_def dilating_fun_def strict_monoD strict_mono_less_eq)
moreover from h have (ticks ((Rep_run sub) i c¢)) by simp
hence (ticks ((Rep_run r) (f i) c¢)) using ticks_sub[OF assms] by blast
ultimately have (f i € ?RUN) by simp
} thus (image f ?SUB C 7RUN) by blast
next
{ fix i assume h:(i € ?RUN)
hence (ticks ((Rep_run r) i c)) by simp
from ticks_imp_ticks_subk[0OF assms this]
obtain ig where iOprop:(f ig = i A ticks ((Rep_run sub) ig c)) by blast
with h have (f m < f ig A f ip < f n) by simp
moreover have (strict_mono f) using assms dilating_def dilating_fun_def by blast
ultimately have m < ig A ig < n)
using strict_mono_less strict_mono_less_eq by blast
with iOprop have (3ipg. f ip = i A ip € 7SUB) by blast
} thus (?RUN C image f 7SUB) by blast
qed

lemma dilated_ticks:
assumes (dilating f sub r)
shows {i. £fm < i Ai < fn A ticks ((Rep_run r) i c)}
= image f {i. m < i Ai < n A ticks ((Rep_run sub) i c)}
(is (?RUN = image f 7SUB))
proof
{ fix i assume h:(i € ?SUB)
hence m < i A i < n) by simp
hence (f m < f i A f i < (f n))
using assms by (simp add: dilating_def dilating_fun_def strict_mono_less_eq)
moreover from h have (ticks ((Rep_run sub) i c¢)) by simp
hence (ticks ((Rep_run r) (f i) c¢)) using ticks_sub[OF assms] by blast
ultimately have (f i €7RUN) by simp
} thus (image £ ?SUB C 7RUN) by blast
next
{ fix i assume h:(i € ?RUN)
hence (ticks ((Rep_run r) i c¢)) by simp
from ticks_imp_ticks_subk[0OF assms this]
obtain ip where iOprop:(f ip = i A ticks ((Rep_run sub) ig c)) by blast
with h have (f m < f ig A f ip < f n) by simp
moreover have (strict_mono f) using assms dilating_def dilating_fun_def by blast
ultimately have m < ip A igp < n) using strict_mono_less_eq by blast
with iOprop have (3ig. £ ip = i A ig € ?SUB) by blast
} thus (?RUN C image f 7SUB) by blast
qed

No tick can occur in a dilated run before the image of 0 by the dilation function.

lemma empty_dilated_prefix:
assumes (dilating f sub r)
and (n < f O
shows (- ticks ((Rep_run r) n c))
proof -
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from assms have False by (simp add: dilating_def dilating_fun_def)
thus 7thesis ..
qed

corollary empty_dilated_prefix’:
assumes (dilating f sub r)
shows ({i. £f0 < i Ai<fnA ticks ((Rep_run r) i c)}
={i. i < fn A ticks ((Rep_run r) i c)})
proof -
from assms have (strict_mono f) by (simp add: dilating_def dilating_fun_def)
hence (f 0 < f n) unfolding strict_mono_def by (simp add: less_mono_imp_le_mono)
hence (Vi. i < fn=(1<f0) V ((E0<LiAi<T{fn) by auto
hence ({i. i < f n A ticks ((Rep_run r) i c)}

={i. i < f 0 A ticks ((Rep_run r) i c)}
U{i. £0<iAi<fnA ticks ((Rep_run r) i o)}
by auto
also have (... = {i. £ 0 < i A i < fn A ticks ((Rep_run r) i c)})

using empty_dilated_prefix[0OF assms] by blast
finally show ?thesis by simp
qged

corollary dilated_prefix:

assumes (dilating f sub r)

shows ({i. 1 < £ n A ticks ((Rep_run r) i c)}

= image f {i. i < n A ticks ((Rep_run sub) i ¢c)})

proof -

have ({i. 0 < i A1 < fn A ticks ((Rep_run r) i c)}

= image f {i. 0 < i Ai < n A ticks ((Rep_run sub) i c)})
using dilated_ticks[OF assms] empty_dilated_prefix’ [OF assms] by blast

thus 7thesis by simp

qed

corollary dilated_strict_prefix:
assumes (dilating f sub r)
shows ({i. i < f n A ticks ((Rep_run r) i c)}
= image f {i. i < n A ticks ((Rep_run sub) i c)}
proof -
from assms have dil:(dilating_fun f r) unfolding dilating_def by simp
from dil have f0:(f 0 = 0) using dilating_fun_def by blast
from dilating_fun_image_left[OF dil, of (0) (n) (c)]
have ({i. £ 0 < i Ai <f n A ticks ((Rep_run r) i c)}
= image f {i. 0 < i A i <n A ticks ((Rep_run r) (f i) <)} .
hence ({i. i < f n A ticks ((Rep_run r) i c)}
= image f {i. i < n A ticks ((Rep_run r) (f i) c)})
using fO by simp
also have (... = image f {i. i < n A ticks ((Rep_run sub) i c)}
using assms dilating_def by blast
finally show ?thesis by simp
qed

A singleton of nat can be defined with a weaker property.

lemma nat_sing_prop:
({i::nat. i = k A P(i)} = {i::nat. i =k A P(X)}
by auto

The set definition and the function definition of tick_count are equivalent.

lemma tick_count_is_fun[code]:(tick_count r ¢ n = run_tick_count r c n)
proof (induction n)
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case 0
have (tick_count r ¢ 0 = card {i. i < 0 A ticks ((Rep_run r) i c)})
by (simp add: tick_count_def)
also have (... = card {i::nat. i = 0 A ticks ((Rep_run r) 0 c)})
using le_zero_eq nat_sing_propl[of (0) (A\i. ticks ((Rep_run r) i c))] by simp
also have (... = (if ticks ((Rep_run r) O c) then 1 else 0)) by simp
also have (... = run_tick_count r c 0) by simp
finally show ?case .
next
case (Suc k)
show ?case
proof (cases (ticks ((Rep_run r) (Suc k) c)))
case True
hence ({i. i < Suc k A ticks ((Rep_run r) i c)}
= insert (Suc k) {i. i < k A ticks ((Rep_run r) i c)}) by auto
hence (tick_count r ¢ (Suc k) = Suc (tick_count r c k))
by (simp add: tick_count_def)
with Suc.IH have (tick_count r ¢ (Suc k) = Suc (run_tick_count r c k)) by simp
thus ?7thesis by (simp add: True)
next
case False
hence ({i. i < Suc k A ticks ((Rep_run r) i c)}
= {i. i < k A ticks ((Rep_run r) i c)})
using le_Suc_eq by auto
hence (tick_count r ¢ (Suc k) = tick_count r ¢ k)
by (simp add: tick_count_def)
thus 7thesis using Suc.IH by (simp add: False)
qed
qed

To show that the set definition and the function definition of tick_count_strict are equivalent,
we first show that the strictness of tick_count_strict can be softened using Suc.

lemma tick_count_strict_suc:(tick_count_strict r ¢ (Suc n) = tick_count r c n)
unfolding tick_count_def tick_count_strict_def using less_Suc_eq_le by auto

lemma tick_count_strict_is_fun[code]:
(tick_count_strict r ¢ n = run_tick_count_strictly r c n)
proof (cases (n = 0))
case True
hence (tick_count_strict r ¢ n = 0) unfolding tick_count_strict_def by simp
also have (... = run_tick_count_strictly r c 0)
using run_tick_count_strictly.simps(1) [symmetric]
finally show ?7thesis using True by simp
next
case False
from notO_implies_Suc[OF this] obtain m where *:(n = Suc m) by blast
hence (tick_count_strict r ¢ n = tick_count r ¢ m)
using tick_count_strict_suc by simp
also have (... = run_tick_count r ¢ m) using tick_count_is_fun[of (r) (c) m)]
also have (... = run_tick_count_strictly r ¢ (Suc m))
using run_tick_count_strictly.simps(2) [symmetric]
finally show ?7thesis using * by simp
qed

This leads to an alternate definition of the strict precedence relation.

lemma strictly_precedes_alt_defl:
({ 0. Vn::nat. (run_tick_count p K2 n) < (run_tick_count_strictly o K; n) }
= { p. Vn::nat. (run_tick_count_strictly g K2 (Suc n))
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< (run_tick_count_strictly p K; n) })
by auto

The strict precedence relation can even be defined using only run_tick_count:

lemma zero_gt_all:
assumes (P (0::nat))
and (An. n > 0 = P n)
shows (P n)
using assms neqO_conv by blast

lemma strictly_precedes_alt_def2:
({ p. Vn::nat. (run_tick_count g K2 n) < (run_tick_count_strictly g K; n) }
= { p. (—ticks ((Rep_run p) 0 K2))
A (Vn::nat. (run_tick_count ¢ K2 (Suc n)) < (run_tick_count ¢ K n)) }
(is (?P = 7P”))
proof
{ fix r::(’a run)
assume (r € 7P)
hence (Vn::nat. (run_tick_count r Ko n) < (run_tick_count_strictly r Kj n))
by simp
hence 1:(Vn::nat. (tick_count r Ko n) < (tick_count_strict r Kj n))
using tick_count_is_fun[symmetric, of r] tick_count_strict_is_fun[symmetric, of r]
by simp
hence (Vn::nat. (tick_count_strict r Ko (Suc n)) < (tick_count_strict r Kj n))
using tick_count_strict_suc[symmetric, of (r) (K2)] by simp
hence (Vn::nat. (tick_count_strict r Ko (Suc (Suc n))) < (tick_count_strict r K; (Suc n)))
by simp
hence (Vn::nat. (tick_count r Ko (Suc n)) < (tick_count r K; n))
using tick_count_strict_suc[symmetric, of (r)] by simp
hence *:(Vn::nat. (run_tick_count r Ko (Suc n)) < (run_tick_count r K; n))
by (simp add: tick_count_is_fun)
from 1 have (tick_count r K2 O <= tick_count_strict r K; 0) by simp
moreover have (tick_count_strict r K; 0 = 0) unfolding tick_count_strict_def by simp
ultimately have (tick_count r K2 0 = 0) by simp
hence (—ticks ((Rep_run r) O K2)) unfolding tick_count_def by auto
with * have (r € 7P’) by simp
} thus (?P C 7P*) ..
{ fix r::(’a run)
assume h:(r € ?P’)
hence (Vn::nat. (run_tick_count r K2 (Suc n)) < (run_tick_count r K; n)) by simp
hence (Vn::nat. (tick_count r Ko (Suc n)) < (tick_count r Kj n))
by (simp add: tick_count_is_fun)
hence (Vn::nat. (tick_count r Ko (Suc n)) < (tick_count_strict r K; (Suc n)))
using tick_count_strict_suc[symmetric, of (r) (K;)] by simp
hence *:(Vn. n > 0 — (tick_count r Ko n) < (tick_count_strict r Kj n))
using grO0_implies_Suc by blast
have (tick_count_strict r K; 0 = 0) unfolding tick_count_strict_def by simp
moreover from h have (—ticks ((Rep_run r) 0 K2)) by simp
hence (tick_count r Ko 0 = 0) unfolding tick_count_def by auto
ultimately have (tick_count r Kz 0 < tick_count_strict r K; 0) by simp
from zero_gt_all[of (An. tick_count r Kz n < tick_count_strict r K; n), OF this ] *
have (Vn. (tick_count r Kz n) < (tick_count_strict r K; n)) by simp
hence (Vn. (run_tick_count r Ko n) < (run_tick_count_strictly r K; n))
by (simp add: tick_count_is_fun tick_count_strict_is_fun)
hence (r € 7P) ..
} thus <?P> C 7P) ..
qged

Some properties of run_tick_count, tick_count and Suc:
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lemma run_tick_count_suc:
(run_tick_count r ¢ (Suc n) = (if ticks ((Rep_run r) (Suc n) c)
then Suc (run_tick_count r c n)
else run_tick_count r c n))

by simp

corollary tick_count_suc:
(tick_count r ¢ (Suc n) = (if ticks ((Rep_run r) (Suc n) c)
then Suc (tick_count r c n)
else tick_count r c n))

by (simp add: tick_count_is_fun)
Some generic properties on the cardinal of sets of nat that we will need later.

lemma card_suc:

(card {i. i < (Suc n) A P i} = card {i. i < n A P i} + card {i. i = (Suc n) A P i}
proof -

have {i. i < n AP i} N {i. i = (Suc n) A P i} = {}) by auto

moreover have ({i. i < n AP i} U {i. i = (Suc n) A P i}

={i. i < (Suc n) A P i}) by auto

moreover have (finite {i. i < n A P i}) by simp

moreover have (finite {i. i = (Suc n) A P i}) by simp

ultimately show ?thesis

using card_Un_disjoint[of ({i. i < n AP i} ({i. i = Suc n A P i})] by simp

qed

lemma card_le_leq:
assumes (m < n)
shows (card {i::nat. m < i A'i < n AP i}
=card {i. m < i Ai<n APi} + card {i. i =n AP i}
proof -
have ({it:nat. m < i Ai<n AP it N {i. i =n AP i} = {}) by auto
moreover with assms have
({i:tnat. m < i ANi<n AP it U{i.i=nAPi}={i.m<iAi<nAPIi}
by auto
moreover have (finite {i. m < i A i <n A P i}) by simp
moreover have (finite {i. i = n A P i}) by simp
ultimately show 7thesis
using card_Un_disjoint[of ({i. m < i Ai<n AP i} ({i. 1 =n A P i}] by simp
qed

lemma card_le_leq_O:
(card {i::nat. i < n A P i}
proof -
have ({i::nat. i <n AP i} N {i. i =n A P i} = {} by auto
moreover have ({i. i <n AP i} U {i. i =n AP i} ={i. i < n AP i}) by auto
moreover have (finite {i. i <n A P i}) by simp
moreover have (finite {i. i = n A P i}) by simp
ultimately show ?thesis
using card_Un_disjoint[of ({i. i <n A P i} ({i. 1 = n A P i}] by simp
qed

card {i. i <n AP i} + card {i. i = n A P i}

lemma card_mnm:
assumes (m < n)
shows (card {i::nat. i < n A P i}
=card {i. i <m APi} +card {i. m<i Ai<nAPi}
proof -
have 1:({i::tnat. i < m AP i} N {i. m<i Ai<nAPi}={} by auto
from assms have (Vi:inat. i <n=(G <m) V m<iAi<n)
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using less_trans by auto
hence 2:
({i::nat. i <n AP i} =4{i. i <m APit U{i. m<i Ai<nAPi}) by blast
have 3:(finite {i. i < m A P i}) by simp
have 4:(finite {i. m < i A i <n A P i}) by simp
from card_Un_disjoint[OF 3 4 1] 2 show 7thesis by simp
qged

lemma card_mnm’:
assumes m < n)
shows (card {i::nat. i < n A P i}
=card {i. i <m APi}+card {i. m < i Ai<nAPi}
proof -
have 1:({ittnat. i <m AP i} N {i. m < i Ai<nAPi}={} by auto
from assms have (Vi::inat. i <n= (A <m) V (m<iAi<n)
using less_trans by auto
hence 2:
({i:inat. i <n AP i} ={i. i<m APi} U{i. m < i Ai<nAPi}) by blast
have 3:(finite {i. i < m A P i}) by simp
have 4:(finite {i. m < i A i <n A P i} by simp
from card_Un_disjoint[OF 3 4 1] 2 show 7thesis by simp
qged

lemma nat_interval_union:
assumes (m < n)
shows ({i::nat. i < n A P i}
= {i::nat. 1 < m AP i} U {ittnat. m <i Ai<nAPi}
using assms le_cases nat_less_le by auto

lemma card_sing_prop:(card {i. i = n A P i} = (if P n then 1 else 0))
proof (cases (P n))
case True
hence ({i. i = n A P i} = {n}) by (simp add: Collect_conv_if)
with (P n) show ?thesis by simp
next
case False
hence ({i. i = n A P i} = {}) by (simp add: Collect_conv_if)
with (=P n) show ?thesis by simp
qed

lemma card_prop_mono:

assumes (m < n)

shows (card {i::nat. i < m AP i} < card {i. i < n A P i})

proof -

from assms have ({i. i < m AP i} C {i. i < n AP i} by auto

moreover have (finite {i. i < n A P i}) by simp

ultimately show ?thesis by (simp add: card_mono)
qged

In a dilated run, no tick occurs strictly between two successive instants that are the images by
f of instants of the original run.

lemma no_tick_before_suc:
assumes (dilating f sub r)
and ((f n) <k A k < (f (Suc n)))
shows (—ticks ((Rep_run r) k c))
proof -
from assms(1) have smf:(strict_mono f) by (simp add: dilating_def dilating_fun_def)
{ fix k assume h:(f n <k A k < f (Suc n) A ticks ((Rep_run r) k c))
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hence (3ko. f kg = k) using assms(1) dilating_def dilating_fun_def by blast
from this obtain ko where (f k9 = k) by blast
with h have (f n < f kg A f ko < £ (Suc n)) by simp
hence False using smf not_less_eq strict_mono_less by blast
} thus 7thesis using assms(2) by blast
qed

From this, we show that the number of ticks on any clock at £ (Suc n) depends only on the
number of ticks on this clock at £ n and whether this clock ticks at £ (Suc n). All the instants
in between are stuttering instants.

lemma tick_count_fsuc:
assumes (dilating f sub r)
shows (tick_count r ¢ (£ (Suc n))
= tick_count r ¢ (f n) + card {k. k = £ (Suc n) A ticks ((Rep_run r) k c)}
proof -
have smf:(strict_mono f) using assms dilating_def dilating_fun_def by blast
moreover have (finite {k. k < f n A ticks ((Rep_run r) k c)}) by simp
moreover have *:(finite {k. f n < k A k < f (Suc n) A ticks ((Rep_run r) k c)}) by simp
ultimately have ({k. k < f (Suc n) A ticks ((Rep_run r) k c)} =
{k. k < f n A ticks ((Rep_run r) k c)}
UA{k. £fn<k Ak <f (Suc n) A ticks ((Rep_run r) k c)})
by (simp add: nat_interval_union strict_mono_less_eq)
moreover have ({k. k < f n A ticks ((Rep_run r) k c)}
N {k. £fn<k Ak <f (Suc n) A ticks ((Rep_run r) k c)} = {}
by auto
ultimately have (card {k. k < f (Suc n) A ticks (Rep_run r k ¢c)} =
card {k. k¥ < f n A ticks (Rep_run r k ¢)}
+ card {k. £ n <k A k < f (Suc n) A ticks (Rep_run r k c)})
by (simp add: * card_Un_disjoint)
moreover from no_tick_before_suc[0F assms] have
{k. £fn <k Ak < f (Suc n) A ticks ((Rep_run r) k c)} =
{k. k = £ (Suc n) A ticks ((Rep_run r) k c)})
using smf strict_mono_less by fastforce
ultimately show ?thesis by (simp add: tick_count_def)
qed

corollary tick_count_f_suc:
assumes (dilating f sub r)
shows (tick_count r ¢ (f (Suc n))
= tick_count r ¢ (f n) + (if ticks ((Rep_run r) (f (Suc n)) c) then 1 else 0))
using tick_count_fsuc[0OF assms]
card_sing_prop[of (f (Suc n)) (Ak. ticks ((Rep_run r) k c))] by simp

corollary tick_count_f_suc_suc:
assumes (dilating f sub r)
shows (tick_count r ¢ (f (Suc n)) = (if ticks ((Rep_run r) (f (Suc n)) c)
then Suc (tick_count r c (f n))
else tick_count r ¢ (f n)))
using tick_count_f_suc[0OF assms] by simp

lemma tick_count_f_suc_sub:
assumes (dilating f sub r)
shows (tick_count r ¢ (f (Suc n)) = (if ticks ((Rep_run sub) (Suc n) c)
then Suc (tick_count r ¢ (f n))
else tick_count r ¢ (f n)))
using tick_count_f_suc_suc[0OF assms] assms by (simp add: dilating_def)

The number of ticks does not progress during stuttering instants.
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lemma tick_count_latest:
assumes (dilating f sub r)
and (f n, <n A (Vk. fn, <k Ak <n— (Ako. £ ko = k)))
shows (tick_count r ¢ n = tick_count r ¢ (f np))
proof -
have union:({i. i < n A ticks ((Rep_run r) i c)} =
{i. i < f np A ticks ((Rep_run r) i c)}
UAi. £fnp <i Adi < n A ticks ((Rep_run r) i c)}) using assms(2) by auto
have partition: ({i. i < f np A ticks ((Rep_run r) i c)}
N{i. £np <i A i< nA ticks ((Rep_run r) i ¢)} = {}
by (simp add: disjoint_iff_not_equal)
from assms have ({i. £ np <1 A i < n A ticks ((Rep_run r) i ¢)} = {}
using no_tick_sub by fastforce
with union and partition show ?thesis by (simp add: tick_count_def)
qed

We finally show that the number of ticks on any clock is preserved by dilation.

lemma tick_count_sub:
assumes (dilating f sub r)
shows (tick_count sub ¢ n = tick_count r ¢ (f n))
proof -
have (tick_count sub ¢ n = card {i. i < n A ticks ((Rep_run sub) i c)})
using tick_count_def [of (sub) (c) (n)]

also have (... = card (image f {i. i < n A ticks ((Rep_run sub) i c)}))

using assms dilating_def dilating_injects[OF assms] by (simp add: card_image)
also have (... = card {i. i < f n A ticks ((Rep_run r) i c)})

using dilated_prefix[OF assms, symmetric, of (n) (c)] by simp
also have (... = tick_count r ¢ (f n))

using tick_count_def[of (r) (¢) (f n)] by simp
finally show ?7thesis .
qed

corollary run_tick_count_sub:
assumes (dilating f sub r)
shows (run_tick_count sub ¢ n = run_tick_count r c (f n))
proof -
have (run_tick_count sub ¢ n = tick_count sub c n)
using tick_count_is_fun[of (sub) ¢ n, symmetric]

also from tick_count_sub[0OF assms] have (... = tick_count r c¢ (f n)) .
also have (... = #< rc (f n)) using tick_count_is_funlof r c (f n)]
finally show ?thesis .

qged

The number of ticks occurring strictly before the first instant is null.

lemma tick_count_strict_0:
assumes (dilating f sub r)
shows (tick_count_strict r ¢ (£ 0) = 0)
proof -
from assms have (f 0 = 0) by (simp add: dilating_def dilating_fun_def)
thus 7thesis unfolding tick_count_strict_def by simp
qed

The number of ticks strictly before an instant does not progress during stuttering instants.

lemma tick_count_strict_stable:
assumes (dilating f sub r)
assumes ((f n) < k A k < (f (Suc n)))
shows (tick_count_strict r ¢ k = tick_count_strict r ¢ (f (Suc n)))
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proof -

from assms(1) have smf:(strict_mono f) by (simp add: dilating_def dilating_fun_def)
from assms(2) have (f n < k) by simp
hence (Vi. k < i — £ n < i) by simp
with no_tick_before_suc[OF assms(1)] have

*:(Vi. k < i A i< f (Suc n) —> —ticks ((Rep_run r) i c)) by blast
from tick_count_strict_def have

(tick_count_strict r ¢ (f (Suc n)) = card {i. i < £ (Suc n) A ticks ((Rep_run r) i c)}) .
also have

(... =card {i. i < k A ticks ((Rep_run r) i c)}

+ card {i. k < i A i< f (Suc n) A ticks ((Rep_run r) i )}
using card_mnm’ assms(2) by simp

also have (... = card {i. 1 < k A ticks ((Rep_run r) i c)}) using * by simp
finally show ?thesis by (simp add: tick_count_strict_def)
qed

Finally, the number of ticks strictly before an instant is preserved by dilation.

lemma tick_count_strict_sub:
assumes (dilating f sub r)
shows (tick_count_strict sub ¢ n = tick_count_strict r ¢ (f n))
proof -
have (tick_count_strict sub ¢ n = card {i. i < n A ticks ((Rep_run sub) i c)})
using tick_count_strict_def [of (sub) (c) (n)]
also have (... = card (image f {i. i < n A ticks ((Rep_run sub) i c)}))
using assms dilating_def dilating_injects[OF assms] by (simp add: card_image)
also have (... = card {i. 1 < f n A ticks ((Rep_run r) i ¢)}
using dilated_strict_prefix[0OF assms, symmetric, of (n) (c)] by simp
also have (... = tick_count_strict r ¢ (£ n))
using tick_count_strict_def[of (r) (¢) (f n)] by simp
finally show ?thesis .
qed

The tick count on any clock can only increase.

lemma mono_tick_count:
(mono (A k. tick_count r c k))
proof
{ fix x y::nat
assume (x < y)
from card_prop_mono[OF this] have (tick_count r ¢ x < tick_count r c y)
unfolding tick_count_def by simp
} thus (Ax y. x < y = tick_count r ¢ x < tick_count r ¢ y) .
qged

In a dilated run, for any stuttering instant, there is an instant which is the image of an instant
in the original run, and which is the latest one before the stuttering instant.

lemma greatest_prev_image:
assumes (dilating f sub r)
shows ((np. £ ng =n) = (Fnp. £ np <n A (Vk. fnp <k Ak <n— (Fko. £ ko = K))N
proof (induction n)
case 0
with assms have (f 0 = 0) by (simp add: dilating_def dilating_fun_def)
thus 7case using "O.prems" by blast
next
case (Suc n)
show ?case
proof (cases (dng. f ngp = n))
case True
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from this obtain ng where (f np = n) by blast
hence £ ng < (Suc n) A (Vk. £fng <k A k < (Suc n) — (Fko. £ ko = k)))
using Suc.prems Suc_lel le_antisym by blast
thus 7thesis by blast
next
case False
from Suc.IH[OF this] obtain n,
where (f n, <n A (Vk. fnp <k Ak <n— (#xo. £ ko = k))) by blast
hence (f n, < Sucn A (Vk. £fnp, <k Ak <n — (Fko. £ ko = k))) by simp
with Suc(2) have (f np < (Suc n) A (Vk. £1n, <k Ak < (Suc n) — (Bko. £ ko = k)))
using le_Suc_eq by auto
thus 7thesis by blast
qed
qged

If a strictly monotonous function on nat increases only by one, its argument was increased only
by one.

lemma strict_mono_suc:
assumes (strict_mono f)
and (f sn = Suc (f n))
shows (sn = Suc n)
proof -
from assms(2) have (f sn > f n) by simp
with strict_mono_less[0OF assms(1)] have (sn > n) by simp
moreover have (sn < Suc n)
proof -
{ assume (sn > Suc n)
from this obtain i where (n < i A i < sn) by blast
hence (f n < f i A f i < f sn) using assms(1) by (simp add: strict_mono_def)
with assms(2) have False by simp
} thus 7thesis using not_less by blast
qged
ultimately show ?thesis by (simp add: Suc_lel)
qged

Two successive non stuttering instants of a dilated run are the images of two successive instants
of the original run.

lemma next_non_stuttering:
assumes (dilating f sub r)
and (f np <n A (Vk. £, <k Ak <n— (Fxo. £ ko = K))
and (f sng = Suc n)
shows (sng = Suc np)
proof -
from assms(1) have smf:(strict_mono f) by (simp add: dilating_def dilating_fun_def)
from assms(2) have *:(Vk. f n, <k A k < Suc n — (Fko. £ ko = k)) by simp
from assms(2) have (f n, < n) by simp
with smf assms(3) have **:(sng > np) using strict_mono_less by fastforce
have (Suc n < f (Suc np))
proof -
{ assume h:(Suc n > £ (Suc np))
hence (Suc np < sng) using #** Suc_lessI assms(3) by fastforce
hence (3k. k > n, A f k < Suc n) using h by blast
with * have False using smf strict_mono_less by blast
} thus ?thesis using not_less by blast
qed
hence (sng < Suc np) using assms(3) smf using strict_mono_less_eq by fastforce
with ** show ?7thesis by simp
qged
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The order relation between tick counts on clocks is preserved by dilation.

lemma dil_tick_count:
assumes (sub < 1)
and (Vn. run_tick_count sub a n < run_tick_count sub b n)
shows (run_tick_count r a n < run_tick_count r b n)
proof -
from assms(1) is_subrun_def obtain f where *:(dilating f sub r) by blast
show ?thesis
proof (induction n)
case 0
from assms(2) have (run_tick_count sub a 0 < run_tick_count sub b 0) ..
with run_tick_count_sub[0F *, of _ 0] have
(run_tick_count r a (f 0) < run_tick_count r b (f 0)) by simp
moreover from * have (f 0 = 0) by (simp add:dilating_def dilating_fun_def)
ultimately show ?case by simp
next
case (Suc n’) thus ?case
proof (cases (dng. f ngp = Suc n’))
case True
from this obtain ngp where fn0:(f ngp = Suc n’) by blast
show ?thesis
proof (cases (ticks ((Rep_run sub) ng a)))
case True
have (run_tick_count r a (f ng) < run_tick_count r b (f ng))
using assms(2) run_tick_count_sub[0OF *] by simp
thus 7thesis by (simp add: fnO)
next
case False
hence (- ticks ((Rep_run r) (Suc n’) a))
using * fn0 ticks_sub by fastforce
thus 7thesis by (simp add: Suc.IH le_SucI)
qed
next
case False
thus 7thesis wusing * Suc.IH no_tick_sub by fastforce
qed
qed
qed

Time does not progress during stuttering instants.

lemma stutter_no_time:
assumes (dilating f sub r)
and (Ak. £n<k Ak <m = (Pko. f kg = k))
and (m > f n)
shows (time ((Rep_run r) m c) = time ((Rep_run r) (f n) c))
proof -
from assms have (Vk. k <m - (f n) — (Fko. f ko = Suc ((f n) + k)) by simp
hence (Vk. k <m - (f n)
— time ((Rep_run r) (Suc ((f n) + k)) c) = time ((Rep_run r) ((f n) + k) c))
using assms(1) by (simp add: dilating_def dilating_fun_def)
hence *:(Vk. k <m - (f n) — time ((Rep_run r) (Suc ((f n) + k)) c) = time ((Rep_run r) (f n) c))
using bounded_suc_ind[of (m - (f n)) (Ak. time (Rep_run r k c)) (f n)] by blast
from assms(3) obtain mp where m0:(Suc mp = m - (£ n)) using Suc_diff_Suc by blast
with * have (time ((Rep_run r) (Suc ((f n) + mg)) c) = time ((Rep_run r) (f n) c)) by auto
moreover from m0 have (Suc ((f n) + mp) = m) by simp
ultimately show ?thesis by simp
qed
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lemma time_stuttering:
assumes (dilating f sub r)
and (time ((Rep_run sub) n c) = 7)
and (Ak. fn<k Ak <m= (Fkg. £ ko = k)
and m > f n)
shows (time ((Rep_run r) m c) = 7)
proof -
from assms(3) have (time ((Rep_run r) m c) = time ((Rep_run r) (f n) c))
using stutter_no_time[OF assms(1,3,4)] by blast
also from assms(1,2) have (time ((Rep_run r) (f n) c) = 7) by (simp add: dilating_def)
finally show ?thesis .
qged

The first instant at which a given date is reached on a clock is preserved by dilation.

lemma first_time_image:
assumes (dilating f sub r)
shows (first_time sub ¢ n t = first_time r ¢ (f n) t)
proof
assume (first_time sub c n t)
with before_first_time[0F this]
have *:(time ((Rep_run sub) n c) =t A (Vm < n. time((Rep_run sub) m c) < t))
by (simp add: first_time_def)
moreover have (Vn c. time (Rep_run sub n c¢) = time (Rep_run r (f n) c))
using assms(1) by (simp add: dilating_def)
ultimately have *x:
(time ((Rep_run r) (f n) c) =t A (Vm < n. time((Rep_run r) (£ m) c) < t))
by simp
have (Vm < f n. time ((Rep_run r) m c) < t)
proof -
{ fix m assume hyp:m < f n)
have (time ((Rep_run r) m c) < t)
proof (cases (dmp. f mp = m))
case True
from this obtain mg where mmO:(m = f mg) by blast
with hyp have mOn:(mp < n) using assms(1)
by (simp add: dilating_def dilating_fun_def strict_mono_less)
hence (time ((Rep_run sub) mg c) < t) using * by blast
thus ?thesis by (simp add: mmO mOn *x)
next
case False
hence (dmp. f mp <m A (Vk. fmp <k Ak <m — (Fko. £ ko = X))
using greatest_prev_image[0OF assms] by simp
from this obtain m;, where
mp:(f mp <m A (Vk. fmp <k Ak <m — (Bko. £ ko = k))) by blast
hence (time ((Rep_run r) m c) = time ((Rep_run sub) m, c))
using time_stuttering[OF assms] by blast
also from hyp mp have (f mp, < £ n) by linarith
hence (m, < n) using assms
by (simp add:dilating_def dilating_fun_def strict_mono_less)
hence (time ((Rep_run sub) m, c) < t) using * by simp
finally show ?7thesis by simp
qed
} thus 7thesis by simp
qged
with #*x show (first_time r ¢ (f n) t) by (simp add: alt_first_time_def)
next
assume (first_time r ¢ (f n) t)
hence *:(time ((Rep_run r) (f n) c¢) =t A (Vk < f n. time ((Rep_run r) k ¢) < t))

93
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by (simp add: first_time_def before_first_time)
hence (time ((Rep_run sub) n c) = t) using assms dilating_def by blast
moreover from * have ((Vk < n. time ((Rep_run sub) k c) < t))
using assms dilating_def dilating fun_def strict_monoD by fastforce
ultimately show (first_time sub ¢ n t) by (simp add: alt_first_time_def)
qed

The first instant of a dilated run is necessarily the image of the first instant of the original run.

lemma first_dilated_instant:
assumes (strict_mono f)
and (f (0::nat) = (0::nat))
shows (Max {i. £ 1 < 0} = 0
proof -
from assms(2) have (Vn > 0. £ n > 0) using strict_monoD[OF assms(1)] by force
hence (Vn # 0. —(f n < 0)) by simp
with assms(2) have ({i. £ i < 0} = {0}) by blast
thus ?thesis by simp
qed

For any instant n of a dilated run, let ng be the last instant before n that is the image of an
original instant. All instants strictly after ng and before n are stuttering instants.

lemma not_image_stut:
assumes (dilating f sub r)
and (ng = Max {i. f i < n}
and (£ ng <k A k < n
shows (Bkg. f kg = k
proof -
from assms(1) have smf:(strict_mono f)
and fxge:(Vx. f x > x)
by (auto simp add: dilating_def dilating_fun_def)
have finite_prefix:(finite {i. £ i < n}) by (simp add: finite_less_ub fxge)
from assms(1) have (f 0 < n) by (simp add: dilating_def dilating_fun_def)
hence ({i. £ i < n} # {} by blast
from assms(3) fxge have (f ng < n) by linarith
from assms(2) have (Vx > ngp. £ x > n) using Max.coboundedI[0OF finite_prefix]
using not_le by auto
with assms(3) strict_mono_less[OF smf] show ?7thesis by auto
qed

For any dilating function f, dil_inverse f is a contracting function.

lemma contracting_inverse:
assumes (dilating f sub r)
shows (contracting (dil_inverse f) r sub f)
proof -
from assms have smf:(strict_mono f)
and no_img_tick:(Vk. (Ako. f kg = k) — (Vc. —(ticks ((Rep_run r) k c))))
and no_img_time:(/n. (#ng. £ ngp = (Suc n))
— (Vc. time ((Rep_run r) (Suc n) c) = time ((Rep_run r) n c)))
and fxge:(Vx. £ x > x) and fOn:(An. £ 0 < n) and £0:(f 0 = 0)
by (auto simp add: dilating_def dilating_fun_def)
have finite_prefix:(An. finite {i. £ i < n}) by (auto simp add: finite_less_ub fxge)
have prefix_not_empty:(An. {i. £ i < n} # {}) using fOn by blast

have 1:(mono (dil_inverse f))

proof -

{ fix x::(nat) and y::(nat) assume hyp:(x < y)
hence inc:({i. £ i < x} C {i. £ i <y}
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by (simp add: hyp Collect_mono le_trans)
from Max_mono[0F inc prefix_not_empty finite_prefix]
have ((dil_inverse f) x < (dil_inverse f) y) unfolding dil_inverse_def .
} thus 7thesis unfolding mono_def by simp
qed

from first_dilated_instant[0OF smf f0] have 2:((dil_inverse f) 0 = 0)
unfolding dil_inverse_def .

from fxge have (Vn i. £ i < n — i < n) using le_trans by blast
hence 3:(Vn. (dil_inverse f) n < n) using Max_in[OF finite_prefix prefix_not_empty]
unfolding dil_inverse_def by blast

from 1 2 3 have *:(contracting_fun (dil_inverse f)) by (simp add: contracting_fun_def)

have (Vn. finite {i. £ i < n}) by (simp add: finite_prefix)
moreover have (Vn. {i. £ i < n} # {}) using prefix_not_empty by blast
ultimately have 4:(Vn. f ((dil_inverse f) n) < n)

unfolding dil_inverse_def

using assms(1) dilating_def dilating_ fun_def Max_in by blast

have 5:(Vn ¢ k. f ((dil_inverse f) n) <k Ak < n
— - ticks ((Rep_run r) k c))
using not_image_stut [OF assms] no_img_tick unfolding dil_inverse_def by blast

have 6:((Vn ¢ k. f ((dil_inverse f) n) < k A k < n
— time ((Rep_run r) k c) = time ((Rep_run sub) ((dil_inverse f) n) c)))

proof -
{ fix n ¢ k assume h:(f ((dil_inverse f) n) < k A k < n)
let 77 = (time (Rep_run sub ((dil_inverse f) n) c))

have tau:(time (Rep_run sub ((dil_inverse f) n) c) = ?7) ..
have gn:((dil_inverse f) n = Max {i. £ i < n}) unfolding dil_inverse_def ..
from time_stuttering[OF assms tau, of k] not_image_stut[OF assms gn]
have (time ((Rep_run r) k c) = time ((Rep_run sub) ((dil_inverse f) n) c))
proof (cases (f ((dil_inverse f) n) = k))
case True
moreover have (Vn c. time (Rep_run sub n c¢) = time (Rep_run r (f n) c))
using assms by (simp add: dilating_def)
ultimately show ?thesis by simp
next
case False
with h have (f (Max {i. £ i < n}) <k A k < n) by (simp add: dil_inverse_def)
with time_stuttering[OF assms tau, of k] not_image_stut[OF assms gn]
show 7?7thesis unfolding dil_inverse_def by auto
qed
} thus 7?thesis by simp
qed

from * 4 5 6 show 7thesis unfolding contracting_def by simp
qged

The only possible contracting function toward a dense run (a run with no empty instants) is the
inverse of the dilating function as defined by dil_inverse.

lemma dense_run_dil_inverse_only:
assumes (dilating f sub r)
and (contracting g r sub f)
and (dense_run sub)
shows (g = (dil_inverse f))
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proof
from assms(1) have *:(An. finite {i. £ i < n})
using finite_less_ub by (simp add: dilating_def dilating_fun_def)
from assms(1) have (f 0 = 0) by (simp add: dilating_def dilating_fun_def)
hence (An. 0 € {i. £ i < n}) by simp
hence **:(An. {i. £ i < n} # {}) by blast
{ fix n assume h:(g n < (dil_inverse f) n)
hence (3k > g n. £ k < n) unfolding dil_inverse_def using Max_in[0F * **] by blast
from this obtain k where kprop:(g n < k¥ A f k < n) by blast
with assms(3) dense_run_def obtain c¢c where (ticks ((Rep_run sub) k c)) by blast
hence (ticks ((Rep_run r) (f k) c¢)) using ticks_sub[OF assms(1)] by blast
moreover from kprop have (f (g n) < £f k A £ k < n) using assms(1)
by (simp add: dilating_def dilating_fun_def strict_monoD)
ultimately have False using assms(2) unfolding contracting_def by blast
} hence 1:(An. —(g n < (dil_inverse f) n)) by blast
{ fix n assume h:(g n > (dil_inverse f) n)
have (3k < gn. f k > n)
proof -
{ assume Vk < gn. f k < n
with h have False unfolding dil_inverse_def
using Max_gr_iff [OF * **] by blast
}
thus 7thesis using not_less by blast
qed
from this obtain k where (k < gn A f k > n) by blast
hence (f (g n) > f k A £ k > n) using assms(1)
by (simp add: dilating_def dilating_fun_def strict_mono_less_eq)
hence (f (g n) > n) by simp
with assms(2) have False unfolding contracting def by (simp add: leD)
} hence 2:(/\n. —(g n > (dil_inverse f) n)) by blast
from 1 2 show (An. g n = (dil_inverse f) n) by (simp add: not_less_iff_gr_or_eq)
qed

end

8.1.5 Main Theorems

theory Stuttering
imports StutteringLemmas

begin

Using the lemmas of the previous section about the invariance by stuttering of various prop-
erties of TESL specifications, we can now prove that the atomic formulae that compose TESL
specifications are invariant by stuttering.

Sporadic specifications are preserved in a dilated run.

lemma sporadic_sub:
assumes (sub < r)
and (sub € [c sporadic 7 on c¢’|rEsL’
shows (r € [c sporadic 7 on ¢’Jrpsy)
proof -
from assms(1) is_subrun_def obtain f
where (dilating f sub r) by blast
hence (Vn c. time ((Rep_run sub) n c) = time ((Rep_run r) (£ n) c)
A ticks ((Rep_run sub) n c) = ticks ((Rep_run r) (f n) c)) by (simp add: dilating_def)
moreover from assms(2) have
(sub € {r. 3 n. ticks ((Rep_run r) n c) A time ((Rep_run r) n c¢’) = 7}) by simp
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from this obtain k where (time ((Rep_run sub) k c¢’) = 7 A ticks ((Rep_run sub) k c)) by auto
ultimately have (time ((Rep_run r) (f k) c’) = 7 A ticks ((Rep_run r) (f k) c)) by simp
thus ?thesis by auto

qed

Implications are preserved in a dilated run.

theorem implies_sub:
assumes (sub < r)
and (sub € [c; implies c2]rEsL)
shows (r € [c; implies c2]rpsp)
proof -
from assms(1) is_subrun_def obtain f where (dilating f sub r) by blast
moreover from assms(2) have
(sub € {r. Vn. ticks ((Rep_run r) n ci) — ticks ((Rep_run r) n c2)}) by simp
hence (Vn. ticks ((Rep_run sub) n c;) — ticks ((Rep_run sub) n c2)) by simp
ultimately have (vn. ticks ((Rep_run r) n c1) — ticks ((Rep_run r) n c2))
using ticks_imp_ticks_subk ticks_sub by blast
thus 7thesis by simp
qed

theorem implies_not_sub:
assumes (sub < r)
and (sub € [ci implies not c2]rEsr)
shows (r € [ci implies not c2]rEsL’
proof -
from assms(1) is_subrun_def obtain f where (dilating f sub r) by blast
moreover from assms(2) have
(sub € {r. Vn. ticks ((Rep_run r) n c1) — — ticks ((Rep_run r) n c2)}) by simp
hence (Vn. ticks ((Rep_run sub) n c;) — — ticks ((Rep_run sub) n c2)) by simp
ultimately have (Vn. ticks ((Rep_run r) n c¢1) — — ticks ((Rep_run r) n c3))
using ticks_imp_ticks_subk ticks_sub by blast
thus 7thesis by simp
qed

Precedence relations are preserved in a dilated run.

theorem weakly_precedes_sub:
assumes (sub < r)
and (sub € [c; weakly precedes ca2]rgpsr)
shows (r € [c1 weakly precedes ca2]rgEsr)
proof -
from assms(1) is_subrun_def obtain f where *:(dilating f sub r) by blast
from assms(2) have
(sub € {r. Vn. (run_tick_count r cz n) < (run_tick_count r c¢; n)}) by simp
hence (Vn. (run_tick_count sub c2 n) < (run_tick_count sub c¢; n)) by simp
from dil_tick_count[0OF assms(1) this]
have (Vn. (run_tick_count r c2 n) < (run_tick_count r c¢i n)) by simp
thus ?thesis by simp
qged

theorem strictly_precedes_sub:
assumes (sub < r)
and (sub € [c; strictly precedes ca]rpsr)
shows (r € [ci strictly precedes ca]rpsr)
proof -
from assms(1) is_subrun_def obtain f where *:(dilating f sub r) by blast
from assms(2) have
(sub € { 0. Vn::nat. (run_tick_count g c2 n) < (run_tick_count_strictly p c; n) })
by simp
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with strictly_precedes_alt_def2[of (c2) (c1)] have
(sub € { p. (—ticks ((Rep_run p) 0 c2))
A (Vn::nat. (run_tick_count ¢ c3 (Suc n)) < (run_tick_count g ci n)) }
by blast
hence ((—ticks ((Rep_run sub) 0 c2))
A (Vn::nat. (run_tick_count sub cg (Suc n)) < (run_tick_count sub c; n)))
by simp
hence
1:((—ticks ((Rep_run sub) 0 c2))
A (Vn::nat. (tick_count sub cg (Suc n)) < (tick_count sub cj n)))
by (simp add: tick_count_is_fun)
have (Vn::nat. (tick_count r cg (Suc n)) < (tick_count r c; n))
proof -
{ fix n::nat
have (tick_count r cg (Suc n) < tick_count r c; n)
proof (cases (dnp. f no = n))
case True — n is in the image of

from this obtain ng where fn:(f np = n) by blast
show 7thesis
proof (cases (Isng. f sng = Suc n))

case True — Suc n is in the image of f

from this obtain sny where fsn:(f sng = Suc n) by blast
with fn strict_mono_suc * have (sng = Suc ng’
using dilating_def dilating_fun_def by blast
with 1 have (tick_count sub c2 sng < tick_count sub cj ng) by simp
thus 7thesis using fn fsn tick_count_sub[0F *] by simp
next
case False — Suc n is not in the image of f

hence (—ticks ((Rep_run r) (Suc n) c2))
using * by (simp add: dilating_def dilating_fun_def)
hence (tick_count r co (Suc n) = tick_count r co n)
by (simp add: tick_count_suc)
also have (... = tick_count sub cs ng)
using fn tick_count_sub[0F *] by simp
finally have (tick_count r cg (Suc n) = tick_count sub c2 ng) .
moreover have (tick_count sub c2 ng < tick_count sub co (Suc ng))
by (simp add: tick_count_suc)
ultimately have
(tick_count r c2 (Suc n) < tick_count sub c2 (Suc ng)) by simp
moreover have
(tick_count sub c2 (Suc ng) < tick_count sub c¢; ng) using 1 by simp
ultimately have (tick_count r c2 (Suc n) < tick_count sub ci ng) by simp
thus 7thesis using tick_count_sub[0F *] fn by simp
qed
next
case False — 1 is not in the image of f

from greatest_prev_image[OF * this] obtain n, where

np_prop:¢f np < n A (Vk. £fn, <k Ak <n— (Fko. £ ko = k))) by blast
from tick_count_latest[0OF * this] have

(tick_count r c¢1 n = tick_count r ci (f np)) .
hence a:(tick_count r ¢; n = tick_count sub c; np)

using tick_count_sub[0F *] by simp
have b: (tick_count sub cz (Suc np) < tick_count sub c; np) using 1 by simp
show ?thesis
proof (cases (dsng. f sng = Suc n))

case True — Suc n is in the image of f

from this obtain sny where fsn:(f sng = Suc n) by blast
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from next_non_stuttering[OF * np_prop this] have sn_prop:(sng = Suc np) .
with b have (tick_count sub c2 sng < tick_count sub ci np) by simp
thus 7thesis using tick_count_sub[0F *] fsn a by auto
next
case False — Suc n is not in the image of f
hence (—ticks ((Rep_run r) (Suc n) c32))
using * by (simp add: dilating_def dilating_fun_def)
hence (tick_count r c2 (Suc n) = tick_count r c3 n)
by (simp add: tick_count_suc)
also have (... = tick_count sub c2 np) using np_prop tick_count_sub[0OF *]
by (simp add: tick_count_latest[OF * np_propl)
finally have (tick_count r c2 (Suc n) = tick_count sub c2 np) .
moreover have (tick_count sub c2 np < tick_count sub c2 (Suc np))
by (simp add: tick_count_suc)
ultimately have
(tick_count r c2 (Suc n) < tick_count sub c2 (Suc ny)) by simp
moreover have
(tick_count sub cz (Suc np) < tick_count sub ci np) using 1 by simp
ultimately have (tick_count r cs (Suc n) < tick_count sub ci np) by simp
thus 7thesis using np_prop mono_tick_count using a by linarith
qed
qed
} thus 7?thesis ..
qed
moreover from 1 have (—ticks ((Rep_run r) 0 c2))
using * empty_dilated_prefix ticks_sub by fastforce
ultimately show ?thesis by (simp add: tick_count_is_fun strictly_precedes_alt_def2)

qed
Time delayed relations are preserved in a dilated run.

theorem time_delayed_sub:

assumes (sub < 1)
and (sub € [ a time-delayed by 47 on ms implies b |rgsr)
shows (r € [ a time-delayed by d7 on ms implies b [rpsr’
proof -
from assms(1) is_subrun_def obtain f where *:(dilating f sub r) by blast

from assms(2) have (Vn. ticks ((Rep_run sub) n a)
— (Ym > n. first_time sub ms m (time ((Rep_run sub) n ms) + §7)

— ticks ((Rep_run sub) m b)))
using TESL_interpretation_atomic.simps(5) [of (a) (47) (ms) (b)] by simp
hence **:(Vng. ticks ((Rep_run r) (f ng) a)
— (Vmp > ng. first_time r ms (f mp) (time ((Rep_run r) (£ ngp) ms) + 07)
— ticks ((Rep_run r) (f mg) b)) )
using first_time_image[OF *] dilating_def * by fastforce
hence (Vn. ticks ((Rep_run r) n a)
— (Vm > n. first_time r ms m (time ((Rep_run r) n ms) + J7)
— ticks ((Rep_run r) m b)))

proof -
{ fix n assume assm:(ticks ((Rep_run r) n a))
from ticks_image_sub[0OF * assm] obtain ny where nfn0:(n = £ ng) by blast
with ** assm have £tO0:
((Vmg > ng. first_time r ms (f mg) (time ((Rep_run r) (f ng) ms) + J7)
— ticks ((Rep_run r) (f mg) b))) by blast
have ((Vm > n. first_time r ms m (time ((Rep_run r) n ms) + J7)
— ticks ((Rep_run r) m b)) )
proof -

{ fix m assume hyp:(m > n)
have (first_time r ms m (time (Rep_run r n ms) + §7) — ticks (Rep_run r m b))

99
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proof (cases (Img. f mp = m))
case True
from this obtain mg where (m = f mg) by blast
moreover have (strict_mono f) using * by (simp add: dilating_def dilating_fun_def)
ultimately show ?thesis using ft0 hyp nfn0 by (simp add: strict_mono_less_eq)
next
case False thus 7?thesis
proof (cases (m = 0))
case True
hence (m = £ 0) using * by (simp add: dilating_def dilating_fun_def)
then show ?7thesis using False by blast
next
case False
hence (Ipm. m = Suc pm) by (simp add: notO_implies_Suc)
from this obtain pm where mpm:(m = Suc pm) by blast
hence (Fpmg. f pmp = Suc pm) using FAmp. £ mp = m) by simp
with * have (time (Rep_run r (Suc pm) ms) = time (Rep_run r pm ms))
using dilating_def dilating_fun_def by blast
hence (time (Rep_run r pm ms) = time (Rep_run r m ms)) using mpm by simp
moreover from mpm have (pm < m) by simp
ultimately have (3m’ < m. time (Rep_run r m’ ms) = time (Rep_run r m ms)) by blast
hence (= (first_time r ms m (time (Rep_run r n ms) + 67)))
by (auto simp add: first_time_def)
thus ?7thesis by simp
qed
qged
} thus 7thesis by simp
qed
} thus ?thesis by simp
qged
thus ?thesis by simp
qed

Relaxed time delayed relations are preserved in a dilated run.

theorem relaxed_time_delayed_sub:
assumes (sub < r)
and (sub € [ a time-delayed< by d7 on ms implies b |rpsr)
shows (r € [ a time-delayedi<! by 67 on ms implies b [rgsp)
proof -
from assms(1) is_subrun_def obtain f where dilf:(dilating f sub r) by blast
from assms(2) have (Vn. ticks ((Rep_run sub) n a)
— (dm > n. ticks ((Rep_run sub) m b)
A time ((Rep_run sub) m ms) = time ((Rep_run sub) n ms) + §7))
using TESL_interpretation_atomic.simps(6) [of (a) (§7) (ms) (b)] by simp
hence **:(Vng. ticks ((Rep_run r) (f ng) a)
— (dmp > ng. ticks ((Rep_run r) (f mg) b)
A time ((Rep_run r) (f mp) ms) = time ((Rep_run r) (f ng) ms) + 07))
using first_time_image[OF dilf] dilating_def dilf by fastforce
hence (Vn. ticks ((Rep_run r) n a)
— (3m > n. ticks ((Rep_run r) m b)
A time ((Rep_run r) m ms) = time ((Rep_run r) n ms) + 67))
proof -
{ fix n assume assm:(ticks ((Rep_run r) n a))
from ticks_image_sub[0OF dilf assm] obtain np where nfn0:(n = f ng) by blast
with *x assm have £tO0:
((3mp > ng. ticks ((Rep_run r) (f mg) b)
A time ((Rep_run r) (f mgp) ms) = time ((Rep_run r) (f ng) ms) + 67)) by blast
from this obtain mg where
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(mp > ng A ticks ((Rep_run r) (f mg) b)
A (time ((Rep_run r) (f mgp) ms) = time ((Rep_run r) n ms) + 67)) using nfn0 by blast
hence (f mg > n)
and (ticks ((Rep_run r) (f mg) b)
A (time ((Rep_run r) (f mg) ms) = time ((Rep_run r) n ms) + 67))
using dilf nfnO
by (simp add: dilating_def dilating_fun_def strict_mono_less_eq, simp)
hence ((3m > n. ticks ((Rep_run r) m b)
A time ((Rep_run r) m ms) = time ((Rep_run r) n ms) + 7)) by blast
} thus 7thesis by simp
qed
thus 7thesis by simp
qed

Time relations are preserved through dilation of a run.

lemma tagrel_sub’:
assumes (sub < r)
and (sub € [ time-relation |ci,c2| € R |resr)
shows (R (time ((Rep_run r) n c1), time ((Rep_run r) n c2)))
proof -
from assms(1) is_subrun_def obtain f where *:(dilating f sub r) by blast
moreover from assms(2) TESL_interpretation_atomic.simps(2) have
(sub € {r. Vn. R (time ((Rep_run r) n ci), time ((Rep_run r) n c2))}) by blast

hence 1:(Vn. R (time ((Rep_run sub) n c1), time ((Rep_run sub) n c2))) by simp
show ?thesis

proof (induction n)
case 0

from 1 have (R (time ((Rep_run sub) 0 ci), time ((Rep_run sub) O c2))) by simp
moreover from * have (f 0 = 0) by (simp add: dilating_def dilating_fun_def)
moreover from * have (Vc. time ((Rep_run sub) O c) = time ((Rep_run r) (f 0) c))
by (simp add: dilating_def)
ultimately show 7case by simp
next
case (Suc n)
then show ?case
proof (cases (Eno. f ng = Suc n))
case True
with * have (Vc. time (Rep_run r (Suc n) c) = time (Rep_run r n c))
by (simp add: dilating_def dilating_fun_def)
thus 7thesis using Suc.IH by simp
next
case False
from this obtain ny where ngprop:(f ngp = Suc n) by blast
from 1 have (R (time ((Rep_run sub) ng ci), time ((Rep_run sub) ng c2))) by simp
moreover from npoprop * have (time ((Rep_run sub) ng ci) = time ((Rep_run r) (Suc n) c1))
by (simp add: dilating_def)
moreover from ngprop * have (time ((Rep_run sub) ng c2) = time ((Rep_run r) (Suc n) c2))
by (simp add: dilating_def)
ultimately show ?thesis by simp
qed
qed
qged

corollary tagrel_sub:
assumes (sub < r)
and (sub € [ time-relation |ci,c2| € R |rEsr)
shows (r € [ time-relation |ci,c2| € R JrEsy)
using tagrel_sub’ [OF assms] unfolding TESL_interpretation_atomic.simps(3) by simp
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Time relations are also preserved by contraction

lemma tagrel_sub_inv:
assumes (sub < 1)
and (r € [ time-relation |c1, c2] € R JrpsL’
shows (sub € [ time-relation |ci, c2| € R [rEsr)
proof -
from assms(1) is_subrun_def obtain f where df:(dilating f sub r) by blast
moreover from assms(2) TESL_interpretation_atomic.simps(2) have
(r € {p. Vn. R (time ((Rep_run o) n c1), time ((Rep_run p) n c2))}) by blast
hence (Vn. R (time ((Rep_run r) n c1), time ((Rep_run r) n c2))) by simp
hence (Vn. (3ng. f ng = n) — R (time ((Rep_run r) n ci), time ((Rep_run r) n c2))) by simp
hence (Vng. R (time ((Rep_run r) (f ng) ci), time ((Rep_run r) (f ng) c2))) by blast
moreover from dilating_def df have
(Vn c. time ((Rep_run sub) n c) = time ((Rep_run r) (£ n) c)) by blast
ultimately have (Vnp. R (time ((Rep_run sub) ng ci), time ((Rep_run sub) np c2))) by auto
thus 7thesis by simp
qed

Kill relations are preserved in a dilated run.

theorem kill_sub:
assumes (sub < r)
and (sub € [ c1 kills c2 [rEsL)
shows (r € |I c1 kills cg ]]TESL>
proof -
from assms(1) is_subrun_def obtain f where *:(dilating f sub r) by blast
from assms(2) TESL_interpretation_atomic.simps(8) have
(Yn. ticks (Rep_run sub n c1) — (Vm>n. — ticks (Rep_run sub m c3))) by simp
hence 1:(Vn. ticks (Rep_run r (f n) c¢;) — (Vm>n. — ticks (Rep_run r (f m) c2)))
using ticks_sub[0OF *] by simp
hence (Vn. ticks (Rep_run r (f n) c¢1) — (Vm> (f n). — ticks (Rep_run r m c2)))
proof -
{ fix n assume (ticks (Rep_run r (f n) ci))
with 1 have 2:(V m > n. — ticks (Rep_run r (f m) c2)) by simp
have (Vv m> (f n). — ticks (Rep_run r m c2))
proof -
{ fix m assume h:m > f n)
have (- ticks (Rep_run r m c2))
proof (cases (Img. f mp = m))
case True
from this obtain mg where fm0:(f mp = m) by blast
hence (mg > n)
using * dilating_def dilating_fun_def h strict_mono_less_eq by fastforce
with 2 show ?7thesis using fm0 by blast
next
case False
thus ?7thesis using ticks_image_sub’ [0OF *] by blast
qed
} thus 7thesis by simp
qed
} thus ?thesis by simp
qed
hence (Vn. ticks (Rep_run r n ¢;) — (Vm > n. - ticks (Rep_run r m c3)))
using ticks_imp_ticks_subk[0F *] by blast
thus 7thesis using TESL_interpretation_atomic.simps(9) by blast
qed

lemmas atomic_sub_lemmas = sporadic_sub tagrel_sub implies_sub implies_not_sub
time_delayed_sub weakly_precedes_sub
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strictly_precedes_sub kill_sub relaxed_time_delayed_sub

We can now prove that all atomic specification formulae are preserved by the dilation of runs.

lemma atomic_sub:
assumes (sub < r)
and (is_public_atom ¢)
and (sub € [[ %) ]]TESL>
shows (r € [ ¢ [rEsL’
using assms(2,3) atomic_sub_lemmas[0OF assms(1)] by (cases ¢, simp_all)

Finally, any TESL specification is invariant by stuttering.

theorem TESL_stuttering_invariant:
assumes (sub < r)
shows ([is_public_spec S; sub € [[ S [lresrt] = r € [[ S llresr)
proof (induction S)
case Nil
thus ?case by simp
next
case (Cons a s) print_facts
from Cons.prems(1) have puba:(is_public_atom a) and pubs:(is_public_spec s) by simp+
from Cons.prems(2) have sa:(sub € [ a |Jrgsy) and sb:(sub € [[ s [lrest)
using TESL_interpretation_image by simp+
from Cons.IH[OF pubs sb] have r € [[ s [lresr) -
moreover from atomic_sub[0OF assms(1) puba sa] have (r € [ a [rgsr) -
ultimately show ?case using TESL_interpretation_image by simp
qged

end
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