
Dynamic ivars: solving a fragile base class problem
In the "modern" Objective-C runtime (that's iPhone OS or 64-bit Mac OS X), you can dynamically
add ivars (instance variables) to a class without declaring them first. This allows a solution to the
common "fragile base class" problem involving ivar layouts. Dynamic ivars can also help data hiding
and abstraction and can even create a confusing situation where a base class and a sub class have
ivars with the same names that don't refer to the same underlying data.

Introduction

The post is about dynamic ivars in Objective-C. Dynamic ivars exist to solve a common type of
fragile base class, specifically, the problem of ivar layouts.

A fragile base class problem is a situation where a minor change to the base class can break
subclasses. The ivar layout problem is a fragile base class problem where you can't add an ivar to a
base class without requiring all subclasses to be recompiled.

The fragile base class problem with ivar layouts occurs because accessing an ivar requires adding
the ivar's offset within the object to the object's pointer. Since a subclass' ivars are always
positioned after the base class' ivars, the offset to a subclass' ivars must always be the total size of
the base class' ivar region plus their own relative offset. Since these offsets are traditionally fixed
and unchangeable after compile-time, this means that you can't change the total size of a base
class' ivar area without needing to recompile all subclasses to update their ivar offsets.

The reality is that in most object-oriented languages (including Objective-C before dynamic ivars),
adding ivars to established classes while maintaining backwards binary compatibility is practically
impossible.

Objective-C in conjunction with the Objective-C modern runtime is one of the few compiled
language environments to address this problem.

Dynamic does not mean "at any time": by dynamic, I mean that the absolute ivar layout is
not known at compile-time. Really, I'm talking about ivars that will appear dynamically from the
perspective of subclasses (to the base class, they will appear like a normal ivar). While
additional ivars can be added to a class at runtime, they can only be added before the class
pair is registered (i.e. before there are any instances of the class). See the Apple
documentation for class_addIvar for more.

The fragile base class problem of ivar layouts

Let's have a look at how the fragile base class problem of ivar layouts can cause problems by
looking at an example.

Adding an ivar to a base class would break all subclasses

Consider an example where a writer of dynamic libraries (e.g. Apple writing the Mac OS X or iPhone
OS Cocoa libraries) issues a version of a class that is designed to allow subclasses:

@interface LibraryBaseObject : NSObject
{
 NSString *baseObjectIVar;
}
@end

Users of that library class then make their own subclasses of the base class:

@interface UserSubObject : LibraryBaseObject
{
 NSString * userSubObjectIVar;
}
@end

This works fine until the writer of the library wants to add a feature to LibraryBaseObject that
requires an additional ivar:

@interface LibraryBaseObject : NSObject
{
 NSString *baseObjectIVar;
 id newFeatureObject;
}
@end

Traditionally, this would break every existing subclass of LibraryBaseObject because no existing
subclass would allocate enough memory to hold this new ivar and the offsets to
userSubObjectIVar would be wrong because these offsets were compiled to include the old
instance memory size of NSObject + LibraryBaseObject and will now offset by the wrong
amount.

Yes, code can simply be recompiled with the new headers and all offsets would be corrected to the
new values automatically, but until such a recompile, all existing programs that subclass the
LibraryBaseObject will break.

Greg Parker's Hamster Emporium: [objc explain] has a good post titled Non-fragile ivars with
more diagrams showing the ivar layout problem.

Cocoa with Love: Dynamic ivars: solving a fragile base class problem http://cocoawithlove.com/2010/03/dynamic-ivars-solving-fragile-b...

1 of 4 10/4/10 11:46 AM

subclass would allocate enough memory to hold this new ivar and the offsets to
userSubObjectIVar would be wrong because these offsets were compiled to include the old
instance memory size of NSObject + LibraryBaseObject and will now offset by the wrong
amount.

Yes, code can simply be recompiled with the new headers and all offsets would be corrected to the
new values automatically, but until such a recompile, all existing programs that subclass the
LibraryBaseObject will break.

Greg Parker's Hamster Emporium: [objc explain] has a good post titled Non-fragile ivars with
more diagrams showing the ivar layout problem.

Previous workarounds for the fragile base class problem

The common workaround to the fragile base class problem of ivar layouts is to declare your class
like this:

@interface LibraryBaseObject : NSObject
{
 id private;
}
@end

and then actually store all your data in the private class, which you can change in size without
affecting the actual LibraryBaseObject since the private ivar will only ever be the size of a
pointer.

However, this has three problems:

You must have had the foresight to include this private pointer from the beginning
It involves two dereferences (see the performance note below where I explain that the
dereference is the slowest part of ivar access)
In this untyped scenario, it is unwieldy since all your code must cast this private ivar to its
actual class before use. You can forward declare a @class and use that instead to eliminate
this difficulty.

A fix requires that one of the compile-time values becomes dynamic

Previously, I said that we access an ivar by:

Add the ivar's offset within the object to the object's pointer value1.
Dereference (read or write from) the memory location referred to by the offset pointer value2.

This should not be new information to any programmer since Algol: it is the approach taken for
accessing data in any struct, record or instance variable in most compiled languages.

The problem is that the offset of any subclass' ivars must include the total size of the base class
ivar area and none of this can change at runtime.

Obviously, to fix the problem, something must be changeable at runtime. Objective-C's modern
runtime fixes this by making the "size of the base class ivar area" a value that can be looked up at
runtime.

The "modern" Objective-C runtime therefore requires that accessing an ivar follows this modified
approach:

Add the offset for the subclass' instance value area to the object's pointer value1.
Add the offset from the subclass' instance area to the ivar2.
Dereference (read or write from) the memory location referred to by the offset pointer value3.

Once this is done, the base class' ivar area can grow and the subclass' offsets will shift to
accommodate this.

All ivars are dynamic in the modern runtime: Since this procedure is followed for all ivars, that
means that all ivars in the modern Objective-C runtime are dynamic in that their absolute
offsets are never known at compile-time.

Performance note

You may be concerned that the "modern" runtime makes a very common task (accessing ivars)
slower.

Yes, adding the extra offset might slow down some code but for most, the reality is that the
difference will be unmeasurably small.

Theoretically, if the extra offset needs to be fetched from the struct that describes the class' ivar
layout, then the new approach could double time taken. However, the offset for the current
subclass will normally already be stored in the rip register, which is designed for this type of
doubly offset dereference and may reduce the impact of the extra offset to zero. Even if the extra
cycle to add the offset is needed, it will be a maximum 20% speed impact, assuming the ivar is in
the L1 cache (1 cyle impact versus 4 cycles just to fetch from L1 on newer Intel CPUs), less than
10% for L2 (where the fetch takes 10 cycles) and about 1% for main memory fetches.

In addition to this, compilers already eliminate unnecessary dereferencing, so multiple accesses to
the same ivar will be optimized so that this additional offset only occurs once.

Synthesizing ivars

The next question is how do we take advantage of this to add additional ivars to an existing,
established class? The reality is that since all ivars are dynamic in the modern runtime, you can
simply add extra ivars to a base class and it won't cause a problem for existing subclasses.

Cocoa with Love: Dynamic ivars: solving a fragile base class problem http://cocoawithlove.com/2010/03/dynamic-ivars-solving-fragile-b...

2 of 4 10/4/10 11:46 AM

the L1 cache (1 cyle impact versus 4 cycles just to fetch from L1 on newer Intel CPUs), less than
10% for L2 (where the fetch takes 10 cycles) and about 1% for main memory fetches.

In addition to this, compilers already eliminate unnecessary dereferencing, so multiple accesses to
the same ivar will be optimized so that this additional offset only occurs once.

Synthesizing ivars

The next question is how do we take advantage of this to add additional ivars to an existing,
established class? The reality is that since all ivars are dynamic in the modern runtime, you can
simply add extra ivars to a base class and it won't cause a problem for existing subclasses.

But dynamic ivars also enable another way of creating ivars that involves even less disruption to
existing classes since it doesn't require changing the header file at all — you can use a synthesized
property without a matching ivar. This will create an additional ivar in the implementation that
doesn't appear in the declaration that other classes see.

For example, if you start with the following class:

@interface MyIvarlessObject : NSObject
{
}
@end

You could add dynamic ivars by altering the declaration to:

@interface MyIvarlessObject : NSObject
{
}
@property (nonatomic, copy) NSString *myProperty;
@property (nonatomic, copy) NSString *anotherProperty;
@end

and add the following to the implementation:

@synthesize myProperty=myIvar; // a dynamic ivar named myIvar will be generated
@synthesize anotherProperty; // a dynamic ivar named anotherProperty will be generated

With no matching ivars for either myIvar or anotherProperty, the @synthesize statement will
generate a dynamic ivar for each and the @synthesize statement becomes the declaration of
these ivars.

Since the @synthesize statement acts as a declaration, you can now reference myIvar or
anotherProperty in the implementation as though they were regular declared ivars. For example,
you could write:

- (id)init
{
 self = [super init];
 if (self)
 {
 myIvar = [[NSString alloc] initWithString:@"someString"];
 anotherProperty = [[NSString alloc] initWithString:@"someOtherString"];
 }
 return self;
}

If you wanted to hide the property declaration or avoid changing the header file at all, you can
declare the properties in a private category in your implementation file instead of in your interface
fi le:

@interface MyIvarlessObject ()
@property (nonatomic, copy) NSString *myProperty;
@property (nonatomic, copy) NSString *anotherProperty;
@end

This will need to appear above the implementation block for MyIvarlessObject.

Multiple ivars with the same name

Imagine the following base class:

@interface BaseObject : NSObject
{
}
@property (nonatomic, copy) NSString *propertyOne;
@end

@implementation BaseObject
@synthesize propertyOne=myIvar;
@end

and a subclass:

@interface SubObject : BaseObject
{
}
@property (nonatomic, copy) NSString *propertyTwo;
@end

@implementation SubObject
@synthesize propertyTwo=myIvar;
@end

This base class and the sub class both @synthesize an ivar with the name myIvar.

Cocoa with Love: Dynamic ivars: solving a fragile base class problem http://cocoawithlove.com/2010/03/dynamic-ivars-solving-fragile-b...

3 of 4 10/4/10 11:46 AM

Share this post:

Posted by Matt Gallagher
Monday, March 22, 2010

Filed in categories: Objective-C

03/22/2010, 06:59:54 – Like – Reply

03/22/2010, 07:08:58 – Like – Reply

03/22/2010, 07:16:04 – Like – Reply

03/22/2010, 07:22:10 – Like – Reply

and a subclass:

@interface SubObject : BaseObject
{
}
@property (nonatomic, copy) NSString *propertyTwo;
@end

@implementation SubObject
@synthesize propertyTwo=myIvar;
@end

This base class and the sub class both @synthesize an ivar with the name myIvar.

In a somewhat unusual quirk, the myIvar in BaseObject and the myIvar in SubObject are not the
same value — they are actually different ivars, with different offsets within the instance memory
area.

This quirk is required to properly address another fragile base class problem: if a @synthesize ivar
could conflict with a subclass' ivar, then the base class' ivars would still be fragile. To support this
idea, @synthesize ivars are always @private.

However, this does not mean that they are limited to the scope of the @implementation. You can
access them in category implementations, provided that the category is below the
@implementation that synthesizes the ivar and hence can see the implicit declaration.

It also means that if the BaseObject and SubObject were implemented in the same file, they would
not compile. Why? Because if they were implemented in the same file, SubObject would see the
implicit declaration of myIvar from its superclass BaseObject, attempt to use that instead of
synthesizing its own and fail because the myIvar from BaseObject is @private.

Conclusion

You do not normally need to worry about ivar layout problems when adding ivars to your classes. It
is only a concern when you are writing or updating a dynamic library and you want to maintain
backwards binary compatibility.

Dynamic ivars are a feature of the "modern" runtime; if you are targetting 32-bit Mac OS X, they are
not supported.

For other Cocoa platforms, there are numerous reasons why you may want to @synthesize ivars:

They are convenient (don't require an ivar declaration, just a property declaration).
They allow for greater information hiding from subclasses than @private declarations since
they don't publicly declare anything.
You can add them to base classes without needing to recompile subclasses.

Dynamic ivars do require the cost of an extra pointer offset at runtime but you are paying this cost
whether you use them or not (it is a required part of the iPhone OS and 64-bit Mac OS X
Objective-C runtimes). In any case, you're unlikely to ever notice this cost.

Chris L

The iPhone Simulator is a 32-bit Mac environment, which is a shame as the dynamic ivars would
save a bit of typing & generally make my code easier to read.

 Matt Gallagher

Yeah, that part is frustrating: you can use dynamic ivars on the iPhone device but you need
to wrap everything in #if !TARGET_IPHONE_SIMULATOR because it will fail to compile when
targeting the simulator.

Markus

Hello, nice Article! Thanks!
However,
@interface UserSubObject : NSObject

should probably be
@interface UserSubObject : LibraryBaseObject

 Matt Gallagher

Fixed. Thanks for pointing that out.

Remy "Psy" Demarest

Excuse-me, but there are a few wrong things in this post !
1. @synthesize ivars has nothing dynamic at all, it's completely compile-time, ivars are added to
the class at compile-time because @synthesize will also generate the accessors that go along with
them, there isn't a special constructor that adds the ivars dynamically at runtime, especially when
you know that @synthesize can only be used in the main @implementation block and not in
categories.

2. Also, you talk about adding @property with private categories to avoid showing them in the
header, but you can only add them through class extensions (unnamed categories), because
@synthesize can only be used in the main block of the class because they're not dynamic.

Cocoa with Love: Dynamic ivars: solving a fragile base class problem http://cocoawithlove.com/2010/03/dynamic-ivars-solving-fragile-b...

4 of 4 10/4/10 11:46 AM

