
DataFrame Methods DataFrame Types DataFrame built-in Visitors Random Generators
append_column(2) enum class concat_policy { } struct AffinityPropVisitor { } gen_bernoulli_dist()
append_index(2) enum class drop_policy { } struct AutoCorrVisitor { } gen_binomial_dist()
bucketize() enum class fill_policy { } struct BetaVisitor { } gen_cauchy_dist()
bucketize_async() enum class exponential_decay_spec { } struct BollingerBand { } gen_chi_squared_dist()
concat() enum class int_dist_policy { } struct CorrVisitor { } gen_exponential_dist()
create_column() enum class io_format { } struct CovVisitor { } gen_extreme_value_dist()
drop_missing() enum class join_policy { } struct CumMaxVisitor { } gen_fisher_f_dist()
fill_missing() enum class mad_type { } struct CumMinVisitor { } gen_gamma_dist()
gen_datetime_index() enum class nan_policy { } struct CumProdVisitor { } gen_geometric_dist()
gen_sequence_index() enum class quantile_policy { } struct CumSumVisitor { } gen_lognormal_dist()
get_col_unique_values() enum class random_policy { } struct DotProdVisitor { } gen_negative_binomial_dist()
get_column(2) enum class return_policy { } struct DoubleCrossOver { } gen_normal_dist()
get_data_by_idx(2) enum class shift_policy { } struct ExpandingRollAdopter { } gen_poisson_dist()
get_data_by_loc(2) enum class sort_spec { } struct ExponentialRollAdopter { } gen_student_t_dist()
get_data_by_rand() enum class sort_state { } struct GeometricMeanVisitor { } gen_uniform_int_dist()
get_data_by_sel(3) enum class time_frequency { } struct GroupbySum { } gen_uniform_real_dist()
get_index(2) struct BadRange { } struct HarmonicMeanVisitor { } gen_weibull_dist()
get_memory_usage() struct ColNotFound { } struct KMeansVisitor { }
get_reindexed() struct DataFrameError { } struct KthValueVisitor { }
get_reindexed_view() struct InconsistentData { } struct MACDVisitor { }
get_row() struct Index2D { } struct MADVisitor { }
get_view_by_idx(2) struct MemUsage { } struct MaxVisitor { }
get_view_by_loc(2) struct NotFeasible { } struct MeanVisitor { }
get_view_by_rand() struct NotImplemented { } struct MedianVisitor { }
get_view_by_sel(3) struct MinVisitor { }
groupby() struct ModeVisitor { }
groupby_async() struct NLargestVisitor { }
has_column() struct NSmallestVisitor { }
is_equal() struct ProdVisitor { }
join_by_column() struct QuantileVisitor { }
join_by_index() struct ReturnVisitor { }
load_column(3) struct SampleZScoreVisitor { }
load_data() struct SEMVisitor { }
load_index(2) struct SimpleRollAdopter { }
make_consistent() struct SLRegressionVisitor { }
modify_by_idx() struct StatsVisitor { }
multi_visit() struct StdVisitor { }
read() struct SumVisitor { }
read_async() struct TrackingErrorVisitor { }
remove_column() struct VWAPVisitor { }
remove_data_by_idx() struct VWBASVisitor { }
remove_data_by_loc() struct ZScoreVisitor { }
remove_data_by_sel(3)
remove_lock()
rename_column()
replace(2)
replace_async(2)
replace_index()
rotate()
self_bucketize()
self_concat()
self_rotate()
self_shift()
shape()
set_lock()

shift()
shrink_to_fit()
shuffle()
single_act_visit(2)
sort(5)
sort_async(5)
transpose()
value_counts()
visit(5)
write()
write_async()

Motivation

Although Pandas has a spot-on interface and it is full of useful functionalities, it lacks
performance and scalability. For example, it is hard to decipher high-frequency intraday
data such as Options data or S&P500 constituents tick-by-tick data using Pandas.
Another issue I have encountered often is the research is done using Python, because it
has such tools as Pandas, but the execution in production is in C++ for its efficiency,
reliability and scalability. Therefore, there is this translation, or sometimes a bridge,
between research and executions.
Also, in this day and age, C++ needs a heterogeneous data container.
Mainly because of these factors, I implemented the C++ DataFrame.
I welcome all contributions from people with expertise, interest, and time to do it. I will
add more functionalities from time to time, but currently my spare time is limited.

Views were subsequently added. It is a very useful concept with practical use-cases. A
view is a slice of a DataFrame that is a reference to the original DataFrame. It appears
exactly the same as a DataFrame, but if you modify any data in the view, the
corresponding data point(s) in the original DataFrame will also be modified.
There are certain things you cannot do in views. For example, you cannot add to delete
columns, extend the index column, …
For more understanding, look at this document further and/or the test files.

Visitors are the mechanism to run statistical algorithms. Most of DataFrame statistical
algorithms are in “visitors”. Visitor is the mechanism by which DataFrame passes data
points to your algorithm. You can add your own algorithms to a visitor functor and
extend DataFrame easily. There are two kinds of visitation mechanisms in DataFrame:
1) Regular visit (visit()). In this case DataFrame passes the given column(s) data points

one-by-one to the visitor functor. This is convenient for algorithms that can operate
one data point at a time (e.g. correlation, variance).

2) Single-action visit (single_act_visit()). In this case a reference to the given column(s)
are passed to the visitor functor at once. This is necessary for algorithms that need the
whole data together (e.g. return, median).

See this document, DataFrameStatsVisitors.h, DataFrameMLVisitors.h,
DataFrameFinancialVisitors.h, and dataframe_tester.cc for more examples and
documentation.

Random Generators were added as a series of convenient stand-alone functions
to generate random numbers (it covers all C++ standard distributions). You can
seamlessly use these routines to generate random DataFrame columns.
See this document and file RandGen.h and dataframe_tester.cc.

Code structure

The DataFrame library is “almost” a header-only library with a few boilerplate source file
exceptions, HeteroVector.cc and HeteroView.cc and a few others. Also there is
DateTime.cc.

Starting from the root directory;
include directory contains most of the code. It includes .h and .tcc files. The latter are
C++ template code files (they are mostly located in the Internals subdirectory). The main
header file is DataFrame.h. It contains the DataFrame class and its interface. There are
comprehensive comments for each public interface call in that file. The rest of the files
there will show you how the sausage is made.
Include directory also contains subdirectories that contain mostly internal DataFrame
implementation.
One exception, the DateTime.h is located in the Utils subdirectory

src directory contains Linux-only make files and a few subdirectories that contain
various source codes.

test directory contains all the test source files, mocked data files, and test output files.
The main test source file is dataframe_tester.cc. It contains test cases for all
functionalities of DataFrame. It is not in a very organized structure. I plan to make the
test cases more organized.

Build Instructions
Using plain make and make-files

Go to the root of the repository, where license file is, and execute build_all.sh. This
will build the library and test executables for Linux flavors.

Using cmake
Please see README file. Thanks to @justinjk007, you should be able to build this in
Linux, Windows, Mac, and more

Example

This library is based on a heterogenous vector. The heterogeneity is achieved by using
static STL or STL-like vectors. Since C++ is a strongly typed language, you still have to
know your column types per container at compile time.
Since the containers are static, they are not thread safe by default. See below for how to
make them thread safe.

using namespace hmdf;

// Defines a DataFrame with unsigned long index type that used std::vector
using MyDataFrame = StdDataFrame<unsigned long>;

MyDataFrame df;
std::vector<int> intvec = { 1, 2, 3, 4, 5 };
std::vector<double> dblvec = { 1.2345, 2.2345, 3.2345, 4.2345, 5.2345 };
std::vector<double> dblvec2 = { 0.998, 0.3456, 0.056, 0.15678, 0.00345,
0.923, 0.06743, 0.1 };
std::vector<std::string> strvec =
 { "Some string", "some string 2", "some string 3",

 "some string 4", "some string 5" };
std::vector<unsigned long> ulgvec = { 1UL, 2UL, 3UL, 4UL, 5UL, 8UL, 7UL, 6UL }
std::vector<unsigned long> xulgvec = ulgvec;

// This is only one way of loading data into the DataFrame. There are
// many different ways of doing it. Please see DataFrame.h and
// dataframe_tester.cc
int rc = df.load_data(std::move(ulgvec),
 std::make_pair("int_col", intvec),
 std::make_pair("dbl_col", dblvec),
 std::make_pair("dbl_col_2", dblvec2),
 std::make_pair("str_col", strvec),
 std::make_pair("ul_col", xulgvec));
// Sort the Frame by index
df.sort<MyDataFrame::IndexType, int, double, std::string>
 ("INDEX", sort_spec::ascen);
// Sort the Frame by column “dbl_col_2”
df.sort<double, int, double, std::string>("dbl_col_2", sort_spec::desce);

// A functor to calculate mean, variance, skew, kurtosis, defined in
// DataFrameStatsVisitors.h file
StatsVisitor<double> stats_visitor;

// Calculate the stats on column “dbl_col”
df.visit<double>("dbl_col", stats_visitor);

View Example:

std::vector<unsigned long> idx =
 { 123450, 123451, 123452, 123450, 123455, 123450, 123449 };
std::vector<double> d1 = { 1, 2, 3, 4, 5, 6, 7 };
std::vector<double> d2 = { 8, 9, 10, 11, 12, 13, 14 };
std::vector<double> d3 = { 15, 16, 17, 18, 19, 20, 21 };
std::vector<double> d4 = { 22, 23, 24, 25 };
std::vector<std::string> s1 =
 { "11", "22", "33", "xx", "yy", "gg", "string" };
MyDataFrame df;

df.load_data(std::move(idx),
 std::make_pair("col_1", d1),
 std::make_pair("col_2", d2),
 std::make_pair("col_3", d3),
 std::make_pair("col_4", d4),
 std::make_pair("col_str", s1));

using MyDataFrameView = DataFrameView<unsigned long>;

MyDataFrameView dfv =
 df.get_view_by_loc<double, std::string>(Index2D<long> { 3, 6 });

dfv.get_column<double>("col_3")[0] = 88.0;
std::cout << "After changing a value on view: "
 << dfv.get_column<double>("col_3")[0]
 << " == " << df.get_column<double>("col_3")[3]
 << std::endl;

Multithreading safe Example:

const size_t vec_size = 100000;
auto do_work = [vec_size]() {
 MyDataFrame df;
 std::vector<size_t> vec;

 for (size_t i = 0; i < vec_size; ++i)
 vec.push_back(i);

 df.load_data(MyDataFrame::gen_sequence_index(0, vec_size, 1),
 std::make_pair("col1", vec));

 // This is an extremely inefficient way of doing it, especially in
 // a multithreaded program. Each “get_column” is a hash table
 // look up and in multithreaded programs requires a lock.
 // It is much more efficient to call “get_column” outside the loop
 // and loop over the referenced vector.
 // Here I am doing it this way to make sure synchronization
 // between threads are bulletproof.
 //
 for (size_t i = 0; i < vec_size; ++i) {
 const size_t j = df.get_column<size_t>("col1")[i];

 assert(i == j);
 }
 df.shrink_to_fit();
};

SpinLock lock;
std::vector<std::thread> thr_vec;

// Use this lock to protect internal DataFrame static members
MyDataFrame::set_lock(&lock);
for (size_t i = 0; i < 20; ++i)
 thr_vec.push_back(std::thread(do_work));
for (size_t i = 0; i < 20; ++i)
 thr_vec[i].join();
MyDataFrame::remove_lock();

For more code examples see file dataframe_testr.cc
Types

using size_type = typename std::vector<DataVec>::size_type;
size_type is the size type

using IndexType = I;
IndexType is the type of the index column

using IndexVecType = std::vector<I>;
IndexVecType is the type of the vector containing the index column

enum class nan_policy : bool {
 pad_with_nans = true,
 dont_pad_with_nans = false
};
Enumerated type of Boolean type to specify whether data should be padded with
NaN or not

enum class sort_state : bool {
 sorted = true,
 not_sorted = false
};
Enumerated type of Boolean type to specify whether data is currently sorted or
not

enum class sort_spec : unsigned char {
 ascen = 1,
 desce = 2,
};
Enumerated type to specify the direction of sort; ascending vs. descending.

enum class join_policy : unsigned char {
 inner_join = 1,
 left_join = 2,
 right_join = 3,
 left_right_join = 4 // This is merge
};
Enumerated type to specify joining two DataFrames

enum class concat_policy : unsigned char {
 common_columns = 1,
 all_columns = 2,
 lhs_and_common_columns = 3,
};

Enumerated type to specify joining concatenating one DataFrame to the end of
another.

template<typename T>
struct Index2D {
 T begin {};
 T end {};
};
It represents a range with begin and end within a continuous memory space

enum class shift_policy : unsigned char {
 down = 1, // Shift/rotate the content of all columns down, keep index unchanged
 up = 2, // Shift/rotate the content of all columns up, keep index unchanged
};
This policy is relative to a tabular data structure
There is no right or left shift (like Pandas), because columns in DataFrame
have no ordering. They can only be accessed by name

enum class fill_policy : unsigned char {
 value = 1,
 fill_forward = 2,
 fill_backward = 3,
 linear_interpolate = 4, // Using the index as X coordinate
 linear_extrapolate = 5, // Using the index as X coordinate
 mid_point = 6, // Mid-point of x and y
};
This policy determines how to fill missing values in the DataFrame
value: Fill all the missing values, in a given column, with the given value.
fill_forward: Fill the missing values, in a given column, with the last valid
 value before the missing value
fill_backward: Fill the missing values, in a given column, with the first valid
 value after the missing value
linear_interpolate:
linear_extrapolate:
Use the index column as X coordinate and the given column as Y coordinate
And do interpolation/extrapolation as follows:
 X - X1
Y = Y1 + ----------- * (Y2 - Y1)
 X2 - X1

enum class quantile_policy : unsigned char {
 lower_value = 1, // Take the higher index
 higher_value = 2, // Take the lower index
 mid_point = 3, // Average the two quantiles
 linear = 4, // Linearly combine the two quantiles
};

This policy determines how to calculate quantiles when they fall between two
values. Linear is calculates as:
X1 + (X2 – X1) * (1.0 – QT)

enum class drop_policy : unsigned char {
 all = 1, // Remove row if all columns are nan
 any = 2, // Remove row if any column is nan
 threshold = 3 // Remove row if threshold number of columns are nan
};
This policy specifies what rows to drop/remove based on missing column data
all: Drop the row if all columns are missing
any: Drop the row if any column is missing
threshold: Drop the column if threshold number of columns are missing

enum class exponential_decay_spec : unsigned char {
 center_of_gravity = 1, // decay = 1 / (1 + value), for value >= 0
 span = 2, // decay = 2 / (1 + value), for value >= 1
 halflife = 3, // decay = 1 − exp(log(0.5) / value), for value > 0
 fixed = 4, // decay = value, for 0 < value <= 1
};
This spec determines how an exponentially moving stat decays. It is used as a
parameter to the ExponentialRollAdopter adopter constructor. Based on this spec,
the value parameter is converted to decay.

enum class mad_type : unsigned char {
 mean_abs_dev_around_mean = 1, // Mean of absolute distances from mean
 mean_abs_dev_around_median = 2, // Mean of absolute distances from median
 median_abs_dev_around_mean = 3, // Median of absolute distances from mean
 median_abs_dev_around_median = 4, // Median of absolute distances from median
};
This defines different ways of calculating averages around averages,
in other words different types of Mean Absolute Deviation.

enum class io_format : unsigned char {
 csv = 1,
 json = 2,
 hdf5 = 3, // Not Implemented
 binary = 4, // Not Implemented
};
This specifies the I/O format for reading and writing to/from files, streams, etc.
Currently only CSV format is supported. The CSV format is as follows:
-- Any empty line or any line started with # will be ignored
-- A data line has the following format:
 <column name>:<number of data points>:<\<type\>>:data,data,…
 An example line would look like this:
 price:1001:<double>:23.456,24.56,…

enum class time_frequency : unsigned char {
 annual = 1,
 monthly = 2,
 weekly = 3,
 daily = 4,
 hourly = 5,
 minutely = 6,
 secondly = 7,
 millisecondly = 8,
 // microsecondly = 9,
 // nanosecondly = 10
};
This enum specifies time frequency for index generation and otherwise. The
names are self-explanatory.

enum class return_policy : unsigned char {
 log = 1,
 percentage = 2,
 monetary = 3,
};
This policy specifies the type of return to be calculated
log: log(present / past)
percentage: (present - past) / past)
monetary: present - past

enum class random_policy : unsigned char {
 num_rows_with_seed = 1, // Number of rows with specifying a seed
 num_rows_no_seed = 2, // Number of rows with no seed specification
 frac_rows_with_seed = 3, // Fraction of rows with specifying a seed
 frac_rows_no_seed = 4, // Fraction of rows with no seed specification
};
Specification for calling get_[data|view]_by_rand()
Number of rows means the n parameter is an positive integer specifying
the number of rows to select
Fraction of rows means the n parameter is a positive real number [0:1]
specifying a fraction of rows to select

template<typename T>
struct RandGenParams {
 // Minimum value
 T min_value { std::numeric_limits<T>::min() };
 // Maximum value
 T max_value { std::numeric_limits<T>::max() };

 // Generator seed. By using the same seed, you can generate the

 // same random numbers each time. -1 means do not use a seed,
 // so each generation will be different.
 unsigned int seed { (unsigned int) -1 };

 // The p distribution parameter (probability of generating true)
 double prob_true { 0.5 };
 // The t or k distribution parameter (number of trials)
 std::size_t t_dist { 1 };
 // The μ distribution parameter (the mean of the distribution)
 double mean { 1.0 };
 // the σ distribution parameter (standard deviation)
 double std { 0 };
 // The λ distribution parameter (the rate parameter)
 double lambda { 1.0 };
 // The α distribution parameter (shape, location)
 double alpha { 1.0 };
 // The β distribution parameter (scale)
 double beta { 1.0 };
 // The m distribution parameter (log-scale)
 double m { 0 };
 // The s distribution parameter (shape)
 double s { 1.0 };
 // The n distribution parameter (degrees of freedom)
 double n { 1.0 };
 // degrees of freedom for fisher_f_distribution
 double n2 { 1.0 };
};
This structure is used as a list of parameters for the stand-alone random number
generators. Note, not all parameters are applicable to all generators. Please refer
to each generator documentation in this document for list of applicable
parameters.

template<typename T, typename U>
struct type_declare;

template<typename U>
struct type_declare<HeteroVector, U> { using type = std::vector<U>; };

template<typename U>
struct type_declare<HeteroView, U> { using type = VectorView<U>; };
This is a spoofy way to declare a type at compile time dynamically. Here it is
used in declaring a few different data structures depending whether we are a
DataFrame or DataFrameView

struct MemUsage {

 size_t column_used_memory { 0 };
 size_t column_capacity_memory { 0 };
 size_t column_type_size { 0 };
 size_t index_used_memory { 0 };
 size_t index_capacity_memory { 0 };
 size_t index_type_size { 0 };

 template<typename S>
 friend S &operator << (S &stream, const MemUsage &mu);
};
This struct holds the result of calling get_memory_usage() method on DataFrame.

template<typename I, typename H>
class DataFrame;

template<typename I>
using StdDataFrame = DataFrame<I, HeteroVector>;

template<typename I>
using DataFrameView = DataFrame<I, HeteroView>;
DataFrame is a class that has; An index column of type I (timestamp, although it
doesn’t have to be time), and many other columns of different types. The storage
used throughout is std::vector.
DataFrames could be instantiated in two different modes:
StdDataFrame is the standard fully functional data-frame.
DataFrameView is a referenced to a slice of another data-frame. Most of the
functionalities of StdDataFrame is also available on the DataFrameView. But
some functionalities such as adding/removing columns etc. are not allowable on
views. If you change any of the data in a DataFrameView the corresponding data
in the original StdDataFrame will also be changed.

Methods
In the following methods, “I” stands for the Index type and “H” stands for a Heterogenous vector
type:

static void set_lock (SpinLock *lock);
static void remove_lock ();
DataFrame has unprotected static data. If you are using DataFrame in a multi-
threaded program, you must provide a SpinLock. DataFrame will use your
SpinLock to protect its static data.
This is done this way, so by default, there is no locking overhead.

lock: A pointer to SpinLock defined in Utils/ThreadGranularity.h file

template<typename T>
std::vector<T> &
create_column(const char *name);
It creates an empty column named “name”

T: Type of the column
Returns a reference to the vector for that column

void
remove_column(const char *name);
It removes a column named name.
The actual data vector is not deleted, but the column is dropped from
DataFrame

void
rename_column (const char *from, const char *to);
It renames column named from to to. If column from does not exists,
it throws an exception

template<typename … Ts>
size_type
load_data(IndexVecType &&indices, Ts … args);
This is the most generalized load function. It creates and loads an index and a
variable number of columns. The index vector and all column vectors are
"moved" to DataFrame.

 Ts: The list of types for columns in args
 indices: A vector of indices (timestamps) of type IndexType;
 args: A variable list of arguments consisting of
 std::pair(const char *name, std::vector<T> &&data).
 Each pair represents a column data and its name
Returns number of items loaded

template<typename ITR>
size_type
load_index(const ITR &begin, const ITR &end);
It copies the data from iterators begin to end into the index column

ITR: Type of the iterator
Returns number of items loaded

size_type
load_index(IndexVecType &&idx);
It moves the idx vector into the index column.
Returns number of items loaded

static std::vector<I>
gen_datetime_index(const char *start_datetime,
 const char *end_datetime,
 time_frequency t_freq,
 long increment = 1,
 DT_TIME_ZONE tz = DT_TIME_ZONE::LOCAL);
This static method generates a date/time-based index vector that could be fed
directly to one of the load methods. Depending on the specified frequency, it
generates specific timestamps (see below).
It returns a vector of I timestamps.
Currently I could be any built-in numeric type or DateTime

start_datetime, end_datetime: They are the start/end date/times of
 requested timestamps.
 They must be in the following format:
 MM/DD/YYYY [HH[:MM[:SS[.MMM]]]]
t_freq: Specifies the timestamp frequency. Depending on the frequency,
 and I type specific timestamps are generated as follows:
 - I type of DateTime always generates timestamps of DateTime.
 - Annual, monthly, weekly, and daily frequencies generates YYYYMMDD
 timestamps.
 - Hourly, minutely, and secondly frequencies generates epoch
 timestamps (64 bit).
 - Millisecondly frequency generates nano-second since epoch
 timestamps (128 bit).
increment: Increment in the units of the frequency
tz: Time-zone of generated timestamps

 NOTE: It is the responsibility of the programmer to make sure I type is big
enough to contain the frequency.

static std::vector<IndexType>

gen_sequence_index(const IndexType &start_value,
 const IndexType &end_value,
 long increment = 1);
This static method generates a vector of sequential values of IndexType that could
be fed directly to one of the load methods.
The values are incremented by "increment".
The index type must be incrementable.
If by incrementing "start_value" by increment you would never reach
"end_value", the behavior will be undefined.
It returns a vector of IndexType values.

start_value, end_value: Starting and ending values of IndexType.
 Start value is included. End value is excluded.
increment: Increment by value

template<typename T, typename ITR>
size_type
load_column(const char *name,
 Index2D<const ITR &> range,
 nan_policy padding = nan_policy::pad_with_nans);
It copies the data from iterators begin to end to the named column. If column does
not exist, it will be created. If the column exist, it will be over written.

T: Type of data being copied
ITR: Type of the iterator
name: Name of the column
range: The begin and end iterators for data
padding: If true, it pads the data column with nan if it is shorter than the
 index column.
Returns number of items loaded

template<typename T>
size_type
load_column(const char *name,
 std::vector<T> &&data,
 nan_policy padding = nan_policy::pad_with_nans);

template<typename T>
size_type
load_column(const char *name,
 const std::vector<T> &data,
 nan_policy padding = nan_policy::pad_with_nans);
It moves or copies (depending on the version) the data to the named column in
DataFrame. If column does not exist, it will be created. If the column exist, it will
be over written.

T: Type of data being moved
name: Name of the column
padding: If true, it pads the data column with nan,
 if it is shorter than the index column.
Returns number of items loaded

size_type
append_index(const IndexType &val);
It appends val to the end of the index column.
Returns number of items loaded

template<typename ITR>
size_type
append_index(Index2D<const ITR &> range);
It appends the range begin to end to the end of the index column

ITR: Type of the iterator
range: The begin and end iterators for data
Returns number of items loaded

template<typename T>
size_type
append_column(const char *name,
 const T &val,
 nan_policy padding = nan_policy::pad_with_nans);
It appends val to the end of the named data column. If data column doesn't exist,
it throws an exception.

T: Type of the named data column
name: Name of the column
padding: If true, it pads the data column with nan,
 if it is shorter than the index column.
Returns number of items loaded

template<typename T, typename ITR>
size_type
append_column(const char *name,
 Index2D<const ITR &> range,
 nan_policy padding = nan_policy::pad_with_nans);
It appends the range begin to end to the end of the named data column. If data
column doesn't exist, it throws an exception.

T: Type of the named data column
ITR: Type of the iterator
name: Name of the column

range: The begin and end iterators for data
padding: If true, it pads the data column with nan,
 if it is shorter than the index column.
Returns number of items loaded

template<typename ... Ts>
void
remove_data_by_idx (Index2D<I> range);
It removes the data rows from index begin to index end.
DataFrame must be sorted by index or behavior is undefined.
This function first calls make_consistent() that may add nan values to
data columns.

Ts: The list of types for all columns. A type should be specified only once.
range: The begin and end iterators for index specified with index values

template<typename ... Ts>
void
remove_data_by_loc (Index2D<int> range);
It removes the data rows from location begin to location end
within range.
This function supports Python-like negative indexing. That is why the
range type is int.
This function first calls make_consistent() that may add nan values to
data columns.

Ts: The list of types for all columns. A type should be specified only once.
range: The begin and end iterators for data

template<typename T, typename F, typename ... Ts>
void
remove_data_by_sel (const char *name, F &sel_functor);
It removes data rows by boolean filtering selection via the sel_functor (e.g. a
functor, function, or lambda). Each element of the named column along with its
corresponding index is passed to the sel_functor. If sel_functor returns true, that
row will be removed.
The signature of sel_fucntor:
 bool ()(const IndexType &, const T &)

NOTE: If the selection logic results in empty column(s), the empty
 column(s) will _not_ be padded with NaN's. You can always call
 make_consistent() afterwards to make all columns into consistent length

T: Type of the named column
F: Type of the selecting functor
Ts: The list of types for all columns. A type should be specified only once

name: Name of the data column
sel_functor: A reference to the selecting functor

template<typename T1, typename T2, typename F, typename ... Ts>
void
remove_data_by_sel (const char *name1,
 const char *name2,
 F &sel_functor);
This does the same function as above remove_data_by_sel() but operating on two
columns.
The signature of sel_fucntor:
 bool ()(const IndexType &, const T1 &, const T2 &)

T1: Type of the first named column
T2: Type of the second named column
F: Type of the selecting functor
Ts: The list of types for all columns. A type should be specified only once
name1: Name of the first data column
name2: Name of the second data column
sel_functor: A reference to the selecting functor

template<typename T1, typename T2, typename T3, typename F,
 typename ... Ts>
void
remove_data_by_sel (const char *name1,
 const char *name2,
 const char *name3,
 F &sel_functor);
This does the same function as above remove_data_by_sel() but operating on
three columns.
The signature of sel_fucntor:
 bool ()(const IndexType &, const T1 &, const T2 &, const T3 &)

T1: Type of the first named column
T2: Type of the second named column
T3: Type of the third named column
F: Type of the selecting functor
Ts: The list of types for all columns. A type should be specified only once
name1: Name of the first data column
name2: Name of the second data column
name3: Name of the third data column
sel_functor: A reference to the selecting functor

template<size_t N, typename ... Ts>
void
shuffle(const std::array<const char *, N> col_names,

 bool also_shuffle_index);
It randomly shuffles the named column(s) non-deterministically.

also_shuffle_index: If true, it shuffles the named column(s) and the
 index column. Otherwise, index is not shuffled.
N: Number of named columns
Ts: The list of types for all columns. A type should be specified only once.

template<typename T, size_t N>
void
fill_missing(const std::array<const char *, N> col_names,
 fill_policy policy,
 const std::array<T, N> values = { },
 int limit = -1);
It fills all the "missing values" with the given values, and/or using the given
method (See fill_policy above). Missing is determined by being NaN for types
that have NaN. For types without NaN (e.g. string), default value is considered
missing value.

T: Type of the column(s) in col_names array
N: Size of col_names and values array
col_names: An array of names specifying the columns to fill.
policy: Specifies the method to use to fill the missing values.
 For example; forward fill, values, etc.
values: If the policy is "values", use these values to fill the missing
 holes. Each value corresponds to the same index in the
 col_names array.
limit: Specifies how many values to fill. Default is -1 meaning fill all missing
values.

template<typename ... Ts>
void
drop_missing(drop_policy policy, size_type threshold = 0);
It removes a row if any or all or some of the columns are NaN, based
on drop policy

Ts: The list of types for all columns. A type should be specified only once.
threshold: If drop policy is threshold, it specifies the numbers of
 NaN columns before removing the row.

template<typename T, size_t N>
size_type
replace(const char *col_name,
 const std::array<T, N> old_values,
 const std::array<T, N> new_values,
 int limit = -1);

It iterates over the column named col_name (or index, if col_name == "INDEX")
and replaces all values in old_values with the corresponding values in new_values
up to the limit. If limit is omitted, all values will be replaced.
It returns number of items replaced.

T: Type on column col_name. If this is index it would be the same as I.
N: Size of old_values and new_values arrays
col_name: Name of the column
old_array: An array of values to be replaced in col_name column
new_array: An array of values to replace the old_values in col_name column
limit: Limit of how many items to replace. Default is to replace all.

template<typename T, size_t N>
std::future<size_type>
replace_async(const char *col_name,
 const std::array<T, N> old_values,
 const std::array<T, N> new_values,
 int limit = -1);
Same as replace() above, but executed asynchronously
NOTE: multiple instances of replace_async() maybe executed for different
columns at the same time with no problem.

template<typename T, typename F>
void
replace(const char *col_name, F &functor);
This is similar to replace() above but it lets a functor replace the values in the
named column. The functor is passed every value of the column along with a
const reference of the corresponding index value.
Unlike the replace version above, this replace can only work on data
columns. It will not work on index column.
The functor must have the following interface at minimum:
 bool operator() (const IndexType &ts, T &value);
A false return from the above operator method stops the iteration
through named column values.

T: Type on column col_name. If this is index it would be the same as I.
F: The functor type
col_name: Name of the column
functor: An instance of the functor

template<typename T, typename F>
std::future<void>
replace_async(const char *col_name, F &functor);
Same as replace() above, but executed asynchronously
NOTE: multiple instances of replace_async() maybe executed for different
columns at the same time with no problem.

template<size_t N>
size_type
replace_index(const std::array<IndexType, N> old_values,
 const std::array<IndexType, N> new_values,
 int limit = -1);
This does the same thing as replace() above for the index column

N: Size of old_values and new_values arrays
old_array: An array of values to be replaced in col_name column
new_array: An array of values to replace the old_values in col_name column
limit: Limit of how many items to replace. Default is to replace all.

template<typename ... Ts>
void
make_consistent ();
Make all data columns the same length as the index. If any data column is shorter
than the index column, it will be padded by nan.
This is also called by sort(), before sorting

Ts: The list of types for all columns. A type should be specified only once.

template<typename ... Ts>
void
shrink_to_fit ();
This will reclaim unused/reserve memory from all columns including the index.
If your DataFrame has grown organically from different data sources,
shrink_to_fit() could potentially reduce your memory footprint significantly.
After this call, any iterator or reference you hold to any data point in the
DataFrame could be invalidated.

Ts: The list of types for all columns. A type should be specified only once.

template<typename T, typename ... Ts>
void
sort(const char *name, sort_spec dir);
Sort the DataFrame by the named column. If name equals "INDEX", it sorts
by index. Otherwise it sorts by the named column. Sort first calls
make_consistent() that may add nan values to data columns.
nan values make sorting nondeterministic.

T: Type of the by_name column. You always of the specify this type,
 even if it is being sorted to the default index
Ts: The list of types for all columns. A type should be specified only once.
name: The name of a column or string "INDEX".
dir: Direction of sorting, ascending or descending

template<typename T1, typename T2, typename ... Ts>
void
sort(const char *name1, sort_spec dir1, const char *name2, sort_spec dir2);
This sort function sorts DataFrame based on two columns, also specified by the
two directions. name[n] could be "INDEX" in whcih case the index column is
taken as the sorting column.
NOTE: The order of T[n] type specifications must match the order of
 name[n] column names. In addition, all column types must be
 specified separately. Otherwise, the behavior is undefined.
NOTE: Sort first calls make_consistent() that may add nan values to
 data columns.
 nan values make sorting nondeterministic.

T1: Type of the first named column. You always must specify this type, even if it
is being sorted by the index.
T2: Type of the second named column. You always must specify this type, even if
it is being sorted by the index.
Ts: List all the types of all data columns. A type should be specified in the list
only once.
name1: Name of the first column or string "INDEX"
name2: Name of the second column or string "INDEX"
dir1: Direction of sorting for the first column
dir2: Direction of sorting for the second column

template<typename T1, typename T2, typename T3, typename ... Ts>
void
sort(const char *name1, sort_spec dir1,
 const char *name2, sort_spec dir2,
 const char *name3, sort_spec dir3);
This sort function is similar to above, but it uses 3 columns

template<typename T1, typename T2, typename T3, typename T4,
 typename ... Ts>
void
sort(const char *name1, sort_spec dir1,
 const char *name2, sort_spec dir2,
 const char *name3, sort_spec dir3,
 const char *name4, sort_spec dir4);
This sort function is similar to above, but it uses 4 columns

template<typename T1, typename T2, typename T3, typename T4,

 typename T5, typename ... Ts>
void
sort(const char *name1, sort_spec dir1,
 const char *name2, sort_spec dir2,
 const char *name3, sort_spec dir3,
 const char *name4, sort_spec dir4,
 const char *name5, sort_spec dir5);
This sort function is similar to above, but it uses 5 columns

template<typename T, typename ... Ts>
std::future<void>
sort_async(const char *name, sort_spec dir = sort_spec::ascen);
Same as sort() above, but executed asynchronously

template<typename T1, typename T2, typename ... Ts>
std::future<void>
sort_async(const char *name1, sort_spec dir1,
 const char *name2, sort_spec dir2);

template<typename T1, typename T2, typename T3, typename ... Ts>
std::future<void>
sort_async(const char *name1, sort_spec dir1,
 const char *name2, sort_spec dir2,
 const char *name3, sort_spec dir3);

template<typename T1, typename T2, typename T3, typename T4,
 typename ... Ts>
std::future<void>
sort_async(const char *name1, sort_spec dir1,
 const char *name2, sort_spec dir2,
 const char *name3, sort_spec dir3,
 const char *name4, sort_spec dir4);

template<typename T1, typename T2, typename T3, typename T4,
 typename T5, typename ... Ts>
std::future<void>
sort_async(const char *name1, sort_spec dir1,
 const char *name2, sort_spec dir2,
 const char *name3, sort_spec dir3,
 const char *name4, sort_spec dir4,
 const char *name5, sort_spec dir5);

template<typename F, typename T, typename ... Ts>
DataFrame
groupby (F &&func,
 const char *gb_col_name = nullptr,

 sort_state already_sorted = sort_state::not_sorted) const;
Groupby copies the DataFrame into a temp DataFrame and sorts the temp df by
gb_col_name before performing groupby. If gb_col_name is null, it groups by
index.

F: type functor to be applied to columns to group by
T: type of the groupby column. In case of index, it is type of index
Ts: The list of types for all columns. A type should be specified only once.
func: The functor to do the groupby. Specs for the functor is
 in a separate doc.
already_sorted: If the DataFrame is already sorted by gb_col_name,
 this will save the expensive sort operation

template<typename F, typename T, typename ... Ts>
std::future<DataFrame>
groupby_async (F &&func,
 const char *gb_col_name = nullptr,
 sort_state already_sorted = sort_state::not_sorted) const;
Same as groupby() above, but executed asynchronously

template<typename T>
StdDataFrame<T>
value_counts (const char *col_name) const;
It counts the unique values in the named column.
It returns a StdDataFrame of following specs:
1) The index is of type T and contains all unique values in
 the named column.
2) There is only one column named "counts" of type size_type that
 contains the count for each index row.
For this method to compile and work, 3 conditions must be met:
1) Type T must be hashable. If this is a user defined type, you
 must enable and specialize std::hash.
 2) The equality operator (==) must be well defined for type T.
 3) Type T must match the actual type of the named column.
 Of course, if you never call this method in your application,
 you need not be worried about these conditions.

T: Type of the col_name column.

template<typename F, typename ... Ts>
DataFrame
bucketize (F &&func, const IndexType &bucket_interval) const;
It bucketizes the data and index into bucket_interval's, based on index values and
calls the functor for each bucket. The result of each bucket will be stored in a new
DataFrame with same shape and returned. Every data bucket is guaranteed to be
as wide as bucket_interval. This mean some data items at the end may not be

included in the new bucketized DataFrame. The index of each bucket will be the
last index in the original DataFrame that is less than bucket_interval away from
the previous bucket
NOTE: The DataFrame must already be sorted by index.

F: type functor to be applied to columns to bucketize
Ts: The list of types for all columns. A type should be specified only once.
bucket_interval: Bucket interval is in the index's single value unit.
 For example, if index is in minutes, bucket_interval
 will be in the unit of minutes and so on.
already_sorted: If the DataFrame is already sorted by index,
 this will save the expensive sort operation

template<typename F, typename ... Ts>
std::future<DataFrame>
bucketize_async (F &&func, const IndexType &bucket_interval) const;
Same as bucketize() above, but executed asynchronously

template<typename F, typename ... Ts>
void self_bucketize (F &&func, const IndexType &bucket_interval);
This is exactly the same as bucketize() above. The only difference is it stores the
result in itself and returns void. So, after the return the original data is lost and
replaced with bucketized data

template<typename T, typename V>
DataFrame
transpose(IndexVecType &&indices,
 const V ¤t_col_order,
 const V &new_col_names) const;
It transposes the data in the DataFrame.
The transpose() is only defined for DataFrame's that have a single
data type.
NOTE: Since DataFrame columns have no ordering, the user must specify
 the order with current_col_order.

T: The single type for all data columns
V: The type of string vector specifying the new names for new columns
 after transpose
indices: A vector on indices for the new transposed DataFrame.
 Its length must equal the number of rows in this DataFrame.
 Otherwise an exception is thrown
current_col_order: A vector of strings specifying the order of columns
 in the original DataFrame.
new_col_names: A vector of strings, specifying the column names for the
 new transposed DataFrame.
 Its length must equal the number of rows in this

 DataFrame. Otherwise an exception is thrown

template<typename RHS_T, typename ... Ts>
StdDataFrame<I>
join_by_index (const RHS_T &rhs, join_policy mp) const;
It joins the data between self (lhs) and rhs and returns the joined data
in a StdDataFrame, based on specification in join_policy.
The following conditions must be meet for this method
to compile and work properly:
1) I type must be the same between lhs and rhs.
2) Ordering (< > != ==) must be well defined for type I
3) In both lhs and rhs, columns with the same name must have the same Type

RHS_T: Type of DataFrame rhs
Ts: The list of types for all columns. A type should be specified only once.
rhs: The rhs DataFrame
join_policy: Specifies how to join. For example inner join,
 or left join, etc. (See join_policy definition)

template<typename RHS_T, typename T, typename ... Ts>
StdDataFrame<unsigned int>
join_by_column(const RHS_T &rhs, const char *name, join_policy jp) const;
It joins the data between self (lhs) and rhs and returns the joined data in a
StdDataFrame, based on specification in join_policy.
The returned DataFrame is indexed by a sequence of unsigned integers from 0 to
N. The returned DataFrame will at least have two columns names lhs.INDEX and
rhs.INDEX containing the lhs and rhs indices based on join policy.
The following conditions must be meet for this method
to compile and work properly:
1) Ordering (< > != ==) must be well defined for the type of the named column.
2) Both lhs and rhs must contain the named column
3) In both lhs and rhs, columns with the same name must have the same type

RHS_T: Type of DataFrame rhs
T: Type of the named column
Ts: List all the types of all data columns. A type should be specified in the list
only once.
rhs: The rhs DataFrame
name: Name of the column which the join will be based on
join_policy: Specifies how to join. For example inner join, or left join, etc. (See
join_policy definition)

template<typename RHS_T, typename ... Ts>
StdDataFrame<IndexType>
concat(const RHS_T &rhs, concat_policy cp = concat_policy::all_columns) const;
It concatenates rhs to the end of self and returns the result as another DataFrame.

Concatenation is done based on policy

RHS_T: Type of DataFrame rhs
Ts: List all the types of all data columns. A type should be specified in the list
only once.
rhs: The rhs DataFrame
cp: Concatenation policy:

all_columns: concatenate all columns. If a column does not exist in self,
create one in the result and prepend with nan
common_columns: only apply concatenation to the common columns
lhs_and_common_columns: the result will have all the columns in self, but
only common columns and index are concatenated

template<typename RHS_T, typename ... Ts>
void
self_concat(const RHS_T &rhs, bool add_new_columns = true);
This is similar to concat() method but it is applied to self. It changes self.

RHS_T: Type of DataFrame rhs
Ts: List all the types of all data columns. A type should be specified in the list
only once.
rhs: The rhs DataFrame
add_new_columns: If true, it creates new columns in self and prepend them with
nan

template<typename ... Ts>
void
self_shift (size_type periods, shift_policy sp);
It shifts all the columns in self up or down based on shift_policy.
Values that are shifted will be assigned to NaN. The index column remains
unchanged.
If user shifts with periods that is larger than the column length,
all values in that column become NaN.

Ts: The list of types for all columns. A type should be specified only once.
periods: Number of periods to shift
shift_policy: Specifies the direction (i.e. up/down) to shift

template<typename ... Ts>
StdDataFrame<I>
shift (size_type periods, shift_policy sp) const;
It is exactly the same as self_shift, but it leaves self unchanged
and returns a new DataFrame with columns shifted.

template<typename ... Ts>
void self_rotate (size_type periods, shift_policy sp);

It rotates all the columns in self up or down based on shift_policy.
The index column remains unchanged.
If user rotates with periods that is larger than the column length, the behavior is
undefined.

Ts: The list of types for all columns. A type should be specified only once.
periods: Number of periods to rotate
shift_policy: Specifies the direction (i.e. up/down) to rotate

template<typename ... Ts>
StdDataFrame<I>
rotate (size_type periods, shift_policy sp) const;
It is exactly the same as self_rotate, but it leaves self unchanged
and returns a new DataFrame with columns rotated.

template<typename S, typename ... Ts>
bool
write (S &o, bool values_only = false, io_format iof = io_format::csv) const;
It outputs the content of DataFrame into the stream o. Currently two formats (i.e.
csv, json) are supported specified by the iof parameter.
The csv file format must be:

INDEX:<Number of data points>:<Comma delimited list of values>
<Column1 name>:<Number of data points>:<Column1 type>:<Comma
delimited list of values>
<Column2 name>:<Number of data points>:<Column2 type>:<Comma
delimited list of values>
.
.
.

All empty lines or lines starting with # will be skipped.

The JSON file format looks like this:

{
"INDEX":{"N":3,"T":"ulong","D":[123450,123451,123452]},
"col_3":{"N":3,"T":"double","D":[15.2,16.34,17.764]},
"col_4":{"N":3,"T":"int","D":[22,23,24]},
"col_str":{"N":3,"T":"string","D":["11","22","33"]},
"col_2":{"N":3,"T":"double","D":[8,9.001,10]},
"col_1":{"N":3,"T":"double","D":[1,2,3.456]}

}
Please note DataFrame json does not follow json spec 100%. In json, there is no
particular order in dictionary fields. But in DataFrame json:
1) Column “INDEX” must be the first column
2) Fields in column dictionaries must be in N, T, D order

S: Output stream type
Ts: The list of types for all columns. A type should be specified only once.
o: Reference to an streamable object (e.g. cout)

values_only: If true, the name and type of each column is not written
iof: Specifies the I/O format. The default is CSV

template<typename S, typename ... Ts>
std::future<bool>
write_async (S &o,
 bool values_only = false,
 io_format iof = io_format::csv) const;
Same as write() above, but executed asynchronously

bool
read(const char *file_name, io_format iof = io_format::csv);
It inputs the contents of a text file into itself (i.e. DataFrame). Currently two
formats (i.e. csv, json) are supported specified by the iof parameter.
The csv file format must be:

INDEX:<Number of data points>:<Comma delimited list of values>
<Column1 name>:<Number of data points>:<Column1 type>:<Comma delimited list of values>
<Column2 name>:<Number of data points>:<Column2 type>:<Comma delimited list of values>
.
.
.

All empty lines or lines starting with # will be skipped.

The JSON file format looks like this:

{
"INDEX":{"N":3,"T":"ulong","D":[123450,123451,123452]},
"col_3":{"N":3,"T":"double","D":[15.2,16.34,17.764]},
"col_4":{"N":3,"T":"int","D":[22,23,24]},
"col_str":{"N":3,"T":"string","D":["11","22","33"]},
"col_2":{"N":3,"T":"double","D":[8,9.001,10]},
"col_1":{"N":3,"T":"double","D":[1,2,3.456]}

}
Please note DataFrame json does not follow json spec 100%. In json, there is no
particular order in dictionary fields. But in DataFrame json:
3) Column “INDEX” must be the first column
4) Fields in column dictionaries must be in N, T, D order

file_name: Complete path to the file
iof: Specifies the I/O format. The default is CSV

std::future<bool>
read_async (const char *file_name, io_format iof = io_format::csv);
Same as read() above, but executed asynchronously

std::pair<size_type, size_type> shape();
It returns a pair containing number of rows and columns.
Note: Number of rows is the number of index rows. Not every column
 has the same number of rows, necessarily. But each column has,

 at most, this number of rows.

template<typename T>
MemUsage
get_memory_usage(const char *col_name) const;
It returns the memory used by the given column and index column.
All numbers are in bytes.
MemUsage is a structure defined in DataFrameTypes.h file.

NOTE: The returned values are only estimates. The actual allocated
 memory by OS is unknown to any container object.
 In other words, the actual memory used might be and probably is
 larger than numbers returned by this call.
 Also if a type (T) allocates dynamic memory, it is not included
 in the result

T: Type of the col_name column.
col_name: Name of the column

template<typename T>
typename type_declare<H, T>::type &
get_column (const char *name);
It returns a reference to the container of named data column
The return type depends on if we are in standard or view mode

T: Data type of the named column

template<typename T>
const typename type_declare<H, T>::type &
get_column (const char *name) const;
It returns a const reference to the container of named data column
The return type depends on if we are in standard or view mode

T: Data type of the named column

template<typename T>
bool
has_column (const char *name) const;
Returns true if self has the named column, otherwise false

name: Name of the column

template<size_t N, typename ... Ts>
HeteroVector
get_row(size_type row_num,
 const std::array<const char *, N> col_names) const;

It returns the data in row row_num for columns in col_names. The order of data
items in the returned vector is the same as order of columns on col_names.
The first item in the returned vector is always the index value
corresponding to the row_num
It returns a HeteroVector which contains a different type for each column.

N: Size of col_names and values array
Ts: The list of types for all columns. A type should be specified only once.
row_num: The row number
col_names: Names of columns to get data from. It also specifies the
 order of data in the returned vector

template<typename T>
std::vector<T>
get_col_unique_values (const char *name) const;
It returns a vector of unique values in the named column in the same
order that exists in the column.
For this method to compile and work, 3 conditions must be met:
1) Type T must be hash-able. If this is a user defined type, you
 must enable and specialize std::hash.
2) The equality operator (==) must be well defined for type T.
3) Type T must match the actual type of the named column.
 Of course, if you never call this method in your application,
 you need not be worried about these conditions.

T: Data type of the named column

template<typename ... Ts>
DataFrame
get_data_by_idx (Index2D<IndexType> range) const;
It returns a DataFrame (including the index and data columns) containing the data
from index begin to index end. This function assumes the DataFrame is consistent
and sorted by index. The behavior is undefined otherwise.

Ts: The list of types for all columns. A type should be specified only once.
range: The begin and end iterators for index specified with index values

template<typename ... Ts>
DataFrame
get_data_by_idx(const std::vector<IndexType> &values) const;
It returns a DataFrame (including the index and data columns) containing the data
corresponding to the indices specified in "values" vector.
This method runs in O(n), where n is the number of indices, by creating a hash
table of values. IndexType must be hash able.
NOTE: The returned DataFrame is in the same order as original DataFrame

Ts: List all the types of all data columns. A type should be specified in the list
only once.
values: List of indices to copy data from

template<typename ... Ts>
DataFrameView<I>
get_view_by_idx (Index2D<IndexType> range) const;
It behaves like get_data_by_idx(range), but it returns a DataFrameView.
A view is a DataFrame that is a reference to the original DataFrame.
So if you modify anything in the view the original DataFrame will
also be modified.
Note: There are certain operations that you cannot do with a view. For example,
you cannot add/delete columns, etc.
Note: Although this is a const method, it returns a view. So, the data could still be
modified through the returned view

Ts: The list of types for all columns. A type should be specified only once.
range: The begin and end iterators for index specified with index values

template<typename ... Ts>
DataFramePtrView<I>
get_view_by_idx(const std::vector<IndexType> &values) const;
It behaves like get_data_by_idx(values), but it returns a DataFramePtrView.
A view is a DataFrame that is a reference to the original DataFrame. So if you
modify anything in the view the original DataFrame will also be modified.
Note: There are certain operations that you cannot do with a view. For example,
you cannot add/delete columns, etc.
Note: Although this is a const method, it returns a view. So, the data could still be
modified through the returned view

Ts: List all the types of all data columns. A type should be specified in the list
only once.
values: List of indices to copy data from

template<typename ... Ts>
DataFrame
get_data_by_loc (Index2D<long> range) const;
It returns a DataFrame (including the index and data columns) containing the data
from location begin to location end.
This function supports Python-like negative indexing. That is why the range type
is long.
This function assumes the DataFrame is consistent and sorted by index. The
behavior is undefined otherwise.

Ts: The list of types for all columns. A type should be specified only once.
range: The begin and end iterators for data

template<typename ... Ts>
DataFrame
get_data_by_loc(const std::vector<long> &locations) const;
It returns a DataFrame (including the index and data columns) containing the data
from locations, specified in locations vector. This function supports Python-like
negative indexing. That is why the locations vector type is long.
NOTE: The negative indexing is relative to the "index" column, which
 may not be the size as all other column.
The returned DataFrame is in the same order as locations parameter

Ts: List all the types of all data columns. A type should be specified in the list
only once.
locations: List of indices into the index column to copy data

template<typename ... Ts>
DataFrameView<I>
get_view_by_loc (Index2D<long> range) const;
It behaves like get_data_by_loc(), but it returns a DataFrameView.
A view is a DataFrame that is a reference to the original DataFrame.
So if you modify anything in the view the original DataFrame will
also be modified.
Note: There are certain operations that you cannot do with a view. For example,
you cannot add/delete columns, etc.
Note: Although this is a const method, it returns a view. So, the data could still be
modified through the returned view

Ts: The list of types for all columns. A type should be specified only once.
range: The begin and end iterators for data

template<typename ... Ts>
DataFramePtrView<I>
get_view_by_loc(const std::vector<long> &locations) const;
It behaves like get_data_by_loc(locations), but it returns a DataFramePtrView.
A view is a DataFrame that is a reference to the original DataFrame. So if you
modify anything in the view the original DataFrame will also be modified.
Note: There are certain operations that you cannot do with a view. For example,
you cannot add/delete columns, etc.
Note: Although this is a const method, it returns a view. So, the data could still be
modified through the returned view

Ts: List all the types of all data columns. A type should be specified in the list
only once.
locations: List of indices into the index column to copy data

template<typename T, typename F, typename ... Ts>

DataFrame
get_data_by_sel (const char *name, F &sel_functor) const;
This method does Boolean filtering selection via the sel_functor (e.g. a functor,
function, or lambda). It returns a new DataFrame. Each element of the named
column along with its corresponding index is passed to the sel_functor. If
sel_functor returns true, that index is selected and all the elements of all column
for that index will be included in the returned DataFrame.
The signature of sel_fucntor:
 bool ()(const IndexType &, const T &)

NOTE: If the selection logic results in empty column(s), the result
 empty columns will _not_ be padded with NaN's. You can always
 call make_consistent() on the original or result DataFrame to make
 all columns into consistent length

T: Type of the named column
F: Type of the selecting functor
Ts: The list of types for all columns. A type should be specified only once
name: Name of the data column
sel_functor: A reference to the selecting functor

template<typename T, typename F, typename ... Ts>
DataFramePtrView<IndexType>
get_view_by_sel (const char *name, F &sel_functor) const;
This is identical with above get_data_by_sel(), but:
1) The result is a view
2) Since the result is a view, you cannot call make_consistent() on the result.
Note: There are certain operations that you cannot do with a view. For example,
you cannot add/delete columns, etc.
Note: Although this is a const method, it returns a view. So, the data could still be
modified through the returned view

T: Type of the named column
F: Type of the selecting functor
Ts: The list of types for all columns. A type should be specified only once
name: Name of the data column
sel_functor: A reference to the selecting functor

template<typename T1, typename T2, typename F, typename ... Ts>
DataFrame
get_data_by_sel (const char *name1,
 const char *name2,
 F &sel_functor) const;
This does the same function as above get_data_be_sel() but operating on two
columns.
The signature of sel_fucntor:

 bool ()(const IndexType &, const T1 &, const T2 &)

T1: Type of the first named column
T2: Type of the second named column
F: Type of the selecting functor
Ts: The list of types for all columns. A type should be specified only once
name1: Name of the first data column
name2: Name of the second data column
sel_functor: A reference to the selecting functor

template<typename T1, typename T2, typename F, typename ... Ts>
DataFramePtrView<IndexType>
get_view_by_sel (const char *name1, const char *name2, F &sel_functor) const;
This is identical with above get_data_by_sel(), but:
1) The result is a view
2) Since the result is a view, you cannot call make_consistent() on the result.
Note: There are certain operations that you cannot do with a view. For example,
you cannot add/delete columns, etc.
Note: Although this is a const method, it returns a view. So, the data could still be
modified through the returned view

T1: Type of the first named column
T2: Type of the second named column
F: Type of the selecting functor
Ts: The list of types for all columns. A type should be specified only once
name1: Name of the first data column
name2: Name of the second data column
sel_functor: A reference to the selecting functor

template<typename T1, typename T2, typename T3, typename F,
 typename ... Ts>
DataFrame
get_data_by_sel (const char *name1,
 const char *name2,
 const char *name3,
 F &sel_functor) const;
This does the same function as above get_data_be_sel() but operating on three
columns.
The signature of sel_fucntor:
 bool ()(const IndexType &, const T1 &, const T2 &, const T3 &)

T1: Type of the first named column
T2: Type of the second named column
T3: Type of the third named column
F: Type of the selecting functor
Ts: The list of types for all columns. A type should be specified only once
name1: Name of the first data column

name2: Name of the second data column
name3: Name of the third data column
sel_functor: A reference to the selecting functor

template<typename T1, typename T2, typename T3, typename F,
 typename ... Ts>
DataFramePtrView<IndexType>
get_view_by_sel (const char *name1,
 const char *name2,
 const char *name3,
 F &sel_functor) const;
This is identical with above get_data_by_sel(), but:
1) The result is a view
2) Since the result is a view, you cannot call make_consistent() on the result.
Note: There are certain operations that you cannot do with a view. For example,
you cannot add/delete columns, etc.
Note: Although this is a const method, it returns a view. So, the data could still be
modified through the returned view

T1: Type of the first named column
T2: Type of the second named column
T3: Type of the third named column
F: Type of the selecting functor
Ts: The list of types for all columns. A type should be specified only once
name1: Name of the first data column
name2: Name of the second data column
name3: Name of the third data column
sel_functor: A reference to the selecting functor

template<typename ... Ts>
DataFrame
get_data_by_rand (random_policy spec, double n, size_type seed = 0) const;
It returns a DataFrame (including the index and data columns) containing the data
from uniform random selection. random_policy determines the behavior of
method.
Note: The actual number of rows returned might be smaller than requested. That
is because the random process might produce the same number more than once.
Note: The columns in the result are not padded with NaN.

Ts: The list of types for all columns. A type should be specified only once.
random_policy: Please see random_policy in DataFrameTypes.h. It specifies how
 this function should proceed.
n: Depending on the random policy, it is either the number of rows to sample or a
 fraction of rows to sample. In case of fraction, for example 0.4 means 40% of
 rows.
seed: depending on the random policy, user could specify a seed. The same seed

 should always produce the same random selection.

template<typename ... Ts>
DataFramePtrView<IndexType>
get_view_by_rand (random_policy spec, double n, size_type seed = 0) const;
It behaves like get_data_by_rand(), but it returns a DataFrameView. A view is a
DataFrame that is a reference to the original DataFrame. So if you modify
anything in the view the original DataFrame will also be modified.
Note: There are certain operations that you cannot do with a view. For example,
you cannot add/delete columns, etc.
Note: The columns in the result are not padded with NaN.
Note: Although this is a const method, it returns a view. So, the data could still be
modified through the returned view

Ts: The list of types for all columns. A type should be specified only once.
random_policy: Please see random_policy in DataFrameTypes.h. It specifies how
 this function should proceed.
n: Depending on the random policy, it is either the number of rows to sample or a
 fraction of rows to sample. In case of fraction, for example 0.4 means 40% of
 rows.
seed: depending on the random policy, user could specify a seed. The same seed
 should always produce the same random selection.

const IndexVecType &
get_index () const { return (indices_); }
It returns a const reference to the index container

IndexVecType &
get_index () { return (indices_); }
It returns a reference to the index container

template<typename T, typename ... Ts>
StdDataFrame<T>
get_reindexed(const char *col_to_be_index,
 const char *old_index_name = nullptr) const;
It creates and returns a new DataFrame which has the col_to_be_index column as
the index. If old_index_name is not null, it will be loaded as a regular column in
the result under the name old_index_name.
Note: If the new index column is shorter than other columns, every column will
be cut to that length.
Note: Columns will not be padded by nan

T: Type of the "new index" column
Ts: List all the types of all data columns. A type should be specified in the list
only once.

col_to_be_index: Name of the column you want as the new index. This name will
not be a column in the result anymore
old_index_name: Name of the current index, if converted into a regular column in
the result. If this is null, the current index will not be loaded into the result as a
column.

template<typename T, typename ... Ts>
DataFrameView<T>
get_reindexed_view(const char *col_to_be_index,

 const char *old_index_name = nullptr) const;
This is similar to get_reindexed(), but it returns a view. Please read above for
specs.
Note: There are certain operations that you cannot do with a view. For example,
you cannot add/delete columns, etc.
Note: Although this is a const method, it returns a view. So, the data could still be
modified through the returned view

T: Type of the "new index" column
Ts: List all the types of all data columns. A type should be specified in the list
only once.
col_to_be_index: Name of the column you want as the new index. This name will
not be a column in the result anymore
old_index_name: Name of the current index, if converted into a regular column in
the result. If this is null, the current index will not be loaded into the result as a
column.

template<typename ... Ts>
void
multi_visit (Ts ... args);
This is the most generalized visit function. It visits multiple columns with the
corresponding function objects sequentially. Each function object is passed every
single value of the given column along with its name and the corresponding index
value. All functions objects must have this signature

bool (const IndexType &i, const char *name, T &col_value)
If the function object returns false, the DataFrame will stop iterating at that point
on that column..
NOTE: This method could be used to implement a pivot table.

Ts: The list of types for columns in args
args: A variable list of arguments consisting of
 std::pair(const char *name,
 &std::function<bool (const IndexType &, const char *, T &)>).
 Each pair represents a column name and the functor to run on it.
 NOTE: The second member of pair is a _pointer_ to the function or
 functor object

template<typename T, typename V>
V &
visit (const char *name, V &visitor);
It passes the values of each index and each named column to the functor visitor
sequentially from beginning to end
NOTE: This method could be used to implement a pivot table.

T: Type of the named column
V: Type of the visitor functor
name: Name of the data column

template<typename T1, typename T2, typename V>
V &
visit (const char *name1, const char *name2, V &visitor);
It passes the values of each index and the two named columns to the functor
visitor sequentially from beginning to end
NOTE: This method could be used to implement a pivot table.

T1: Type of the first named column
T2: Type of the second named column
V: Type of the visitor functor
name1: Name of the first data column
name2: Name of the second data column

template<typename T1, typename T2, typename T3, typename V>
V &
visit (const char *name1,
 const char *name2,
 const char *name3,
 V &visitor);
It passes the values of each index and the three named columns to the functor
visitor sequentially from beginning to end
NOTE: This method could be used to implement a pivot table.

T1: Type of the first named column
T2: Type of the second named column
T3: Type of the third named column
V: Type of the visitor functor
name1: Name of the first data column
name2: Name of the second data column
name3: Name of the third data column

template<typename T1, typename T2, typename T3, typename T4,
 typename V>
V &
visit (const char *name1,

 const char *name2,
 const char *name3,
 const char *name4,
 V &visitor);
It passes the values of each index and the four named columns to the functor
visitor sequentially from beginning to end
NOTE: This method could be used to implement a pivot table.

T1: Type of the first named column
T2: Type of the second named column
T3: Type of the third named column
T4: Type of the forth named column
V: Type of the visitor functor
name1: Name of the first data column
name2: Name of the second data column
name3: Name of the third data column
name4: Name of the fourth data column

template<typename T1, typename T2, typename T3, typename T4,
 typename T5, typename V>
V &
visit (const char *name1,
 const char *name2,
 const char *name3,
 const char *name4,
 const char *name5,
 V &visitor);
It passes the values of each index and the five named columns to the functor
visitor sequentially from beginning to end
NOTE: This method could be used to implement a pivot table.

T1: Type of the first named column
T2: Type of the second named column
T3: Type of the third named column
T4: Type of the fourth named column
T5: Type of the fifth named column
V: Type of the visitor functor
name1: Name of the first data column
name2: Name of the second data column
name3: Name of the third data column
name4: Name of the fourth data column
name5: Name of the fifth data column

template<typename T, typename V>
V &
single_act_visit (const char *name, V &visitor);

This is similar to visit(), but it passes a const reference to the index vector and the
named column vector at once the functor visitor. This is convenient for
calculations that need the whole data vector, for example auto-correlation.

T: Type of the named column
V: Type of the visitor functor
name: Name of the data column

template<typename T1, typename T2, typename V>
V &
single_act_visit (const char *name1, const char *name2, V &visitor);
This is similar to visit(), but it passes a const reference to the index
vector and the two named column vectors at once the functor visitor. This is
convenient for calculations that need the whole data vector.
NOTE: This method could be used to implement a pivot table.

T1: Type of the first named column
T2: Type of the second named column
V: Type of the visitor functor
name1: Name of the first data column
name2: Name of the second data column

template<typename ... Ts>
bool
is_equal (const DataFrame &rhs) const;
It compares self with rhs. If both have the same indices, same number of columns,
same names for each column, and all columns are equal, then it returns true.
Otherwise it returns false

Ts: The list of types for all columns. A type should be specified only once.

template<typename ... Ts>
DataFrame &
modify_by_idx (DataFrame &rhs,
 sort_state already_sorted = sort_state::not_sorted);
It iterates over all indices in rhs and modifies all the data columns in self that
correspond to the given index value. If not already_sorted, both rhs and self will
be sorted by index. It returns a reference to self

Ts: The list of types for all columns. A type should be specified only once.
already_sorted: If the self and rhs are already sorted by index,
 this will save the expensive sort operations

Global Operators

These are currently arithmetic operators declared in include/DataFrame.h. Because
they all have to be templated, they cannot be defined as redefined built-in operators.

template<typename DF, typename ... Ts>
inline DF df_plus (const DF &lhs, const DF &rhs);

template<typename DF, typename ... Ts>
inline DF df_minus (const DF &lhs, const DF &rhs);

template<typename DF, typename ... Ts>
inline DF df_multiplies (const DF &lhs, const DF &rhs);

template<typename DF, typename ... Ts>
inline DF df_divides (const DF &lhs, const DF &rhs);
These arithmetic operations operate on the same-name and same-type columns
on lhs and rhs. Each pair of entries is operated on, only if they have the same
index value.
They return a new DataFrame
NOTE: Both lhs and rhs must be already sorted by index, otherwise the
 result is nonsensical.

Built-in Visitors

These are all defined in file include/DataFrameStatsVisitors.h,
include/DataFrameMLVisitors.h and
include/DataFrameFinancialVisitors.h. Also see test/data_frame_tester.cc for
example usage.
There are some common interfaces in most of the visitors. For example the following
interfaces are common between most (but not all) visitors:
get_result() -- It returns the result of the visitor/algo.
pre() -- It is called by DataFrame each time before starting to pass the data to

 the visitor. pre() is the place to initialize the process
post() -- It is called by DataFrame each time it is done with passing data to

 the visitor.

template<typename T,
 typename I = unsigned long,
 typename = typename std::enable_if<std::is_arithmetic<T>::value, T>::type>
struct MeanVisitor;
This functor class calculates the mean of a given column. The constructor takes a
single optional Boolean argument to whether skip NaN values. The default is
True.
See this document and dataframe_tester.cc for examples.

T: Column data type
I: Index type
T must be an arithmetic-enabled type

template<typename T,
 typename I = unsigned long,
 typename = typename std::enable_if<std::is_arithmetic<T>::value, T>::type>
struct GeometricMeanVisitor;
This functor class calculates the geometric mean of a given column. The
constructor takes a single optional Boolean argument to whether skip NaN values.
The default is True.
See this document and dataframe_tester.cc for examples.

T: Column data type
I: Index type
T must be an arithmetic-enabled type

template<typename T,
 typename I = unsigned long,
 typename = typename std::enable_if<std::is_arithmetic<T>::value, T>::type>
struct HarmonicMeanVisitor;

This functor class calculates the harmonic mean of a given column. The
constructor takes a single optional Boolean argument to whether skip NaN values.
The default is True.
See this document and dataframe_tester.cc for examples.

T: Column data type
I: Index type
T must be an arithmetic-enabled type

template<typename T,
 typename I = unsigned long,
 typename = typename std::enable_if<std::is_arithmetic<T>::value, T>::type>
struct SumVisitor;
This functor class calculates the sum of a given column. The constructor takes a
single optional Boolean argument to whether skip NaN values. The default is
True.
See this document and dataframe_tester.cc for examples.

T: Column data type
I: Index type
T must be an arithmetic-enabled type

template<typename T,
 typename I = unsigned long,
 typename = typename std::enable_if<std::is_arithmetic<T>::value, T>::type>
struct CumSumVisitor;
This is a “single action visitor”, meaning it is passed the whole data vector in one
call and you must use the single_action_visit() interface.
This functor class calculates the cumulative sum of a given column. The
constructor takes a single optional Boolean argument to whether skip NaN values.
The default is True.
See this document and dataframe_tester.cc for examples.
The result is a vector of running sums

T: Column data type
I: Index type
T must be an arithmetic-enabled type

template<typename T,
 typename I = unsigned long,
 typename = typename std::enable_if<std::is_arithmetic<T>::value, T>::type>
struct ProdVisitor;
This functor class calculates the product of a given column. The constructor takes
a single optional Boolean argument to whether skip NaN values. The default is
True.
See this document and dataframe_tester.cc for examples.

T: Column data type
I: Index type
T must be an arithmetic-enabled type

template<typename T,
 typename I = unsigned long,
 typename = typename std::enable_if<std::is_arithmetic<T>::value, T>::type>
struct CumProdVisitor;
This is a “single action visitor”, meaning it is passed the whole data vector in one
call and you must use the single_action_visit() interface.
This functor class calculates the cumulative product of a given column. The
constructor takes a single optional Boolean argument to whether skip NaN values.
The default is True.
See this document and dataframe_tester.cc for examples.
The result is a vector of running products.

T: Column data type
I: Index type
T must be an arithmetic-enabled type

template<typename T, typename I = unsigned long>
struct MaxVisitor;
This functor class calculates the maximum of a given column. The constructor
takes a single optional Boolean argument to whether skip NaN values. The default
is True.
See this document and dataframe_tester.cc for examples.

T: Column data type
I: Index type

template<typename T, typename I = unsigned long>
struct CumMaxVisitor;
This is a “single action visitor”, meaning it is passed the whole data vector in one
call and you must use the single_action_visit() interface.
This functor class calculates the cumulative maximum of a given column. The
constructor takes a single optional Boolean argument to whether skip NaN values.
The default is True.
See this document and dataframe_tester.cc for examples.
The result is a vector of running maximums

T: Column data type
I: Index type

template<typename T, typename I = unsigned long>
struct MinVisitor;

This functor class calculates the minimum of a given column. The constructor
takes a single optional Boolean argument to whether skip NaN values. The default
is True.
See this document and dataframe_tester.cc for examples.

T: Column data type
I: Index type

template<typename T, typename I = unsigned long>
struct CumMinVisitor;
This is a “single action visitor”, meaning it is passed the whole data vector in one
call and you must use the single_action_visit() interface.
This functor class calculates the cumulative minimum of a given column. The
constructor takes a single optional Boolean argument to whether skip NaN values.
The default is True.
See this document and dataframe_tester.cc for examples.
The result is a vector of running minimum

T: Column data type
I: Index type

template<std::size_t N, typename T, typename I = unsigned long>
struct NLargestVisitor;
This functor class calculates the N largest values of a column. I runs in O(N*M),
where N is the number of largest values and M is the total number of all values.
If N is relatively small this better than O(M*logM). The constructor takes a single
optional Boolean argument to whether skip NaN values. The default is True.
See this document and dataframe_tester.cc for examples.

N: Number of largest values
T: Column data type
I: Index type

template<std::size_t N, typename T, typename I = unsigned long>
struct NSmallestVisitor;
This functor class calculates the N smallest values of a column. I runs in O(N*M),
where N is the number of largest values and M is the total number of all values.
If N is relatively small this is better than O(M*logM). The constructor takes a
single optional Boolean argument to whether skip NaN values. The default is
True.
See this document and dataframe_tester.cc for examples.

N: Number of smallest values
T: Column data type
I: Index type

template<typename T,
 typename I = unsigned long,
 typename = typename std::enable_if<std::is_arithmetic<T>::value, T>::type>
struct CovVisitor;
This functor class calculates the covariance of two given columns. In addition, it
provides the variances of both columns.

explicit CovVisitor (bool bias = true, bool skipnan = true);
See this document and dataframe_tester.cc for examples.

T: Column data type
I: Index type
T must be an arithmetic-enabled type

template<typename T,
 typename I = unsigned long,
 typename = typename std::enable_if<std::is_arithmetic<T>::value, T>::type>
struct VarVisitor;
This functor class calculates the variance of a given column.

explicit VarVisitor (bool bias = true);
See this document and dataframe_tester.cc for examples.

T: Column data type
I: Index type
T must be an arithmetic-enabled type

template<typename T,
 typename I = unsigned long,
 typename = typename std::enable_if<std::is_arithmetic<T>::value, T>::type>
struct BetaVisitor;
This functor class calculates the beta (i.e. exposure) of the given first column to
the given second column (benchmark).

explicit BetaVisitor (bool bias = true);
See this document and dataframe_tester.cc for examples.

T: Column data type
I: Index type
T must be an arithmetic-enabled type

template<typename T,
 typename I = unsigned long,
 typename = typename std::enable_if<std::is_arithmetic<T>::value, T>::type>
struct StdVisitor;
This functor class calculates the standard deviation of a given column.

explicit StdVisitor (bool bias = true);
See this document and dataframe_tester.cc for examples.

T: Column data type
I: Index type
T must be an arithmetic-enabled type

template<typename T,
 typename I = unsigned long,
 typename = typename std::enable_if<std::is_arithmetic<T>::value, T>::type>
struct SEMVisitor;
This functor class calculates the Standard Error of the Mean for a given column.

explicit SEMVisitor (bool bias = true);
See this document and dataframe_tester.cc for examples.

T: Column data type
I: Index type
T must be an arithmetic-enabled type

template<typename T,
 typename I = unsigned long,
 typename = typename std::enable_if<std::is_arithmetic<T>::value, T>::type>
struct TrackingErrorVisitor;
This functor class calculates the tracking error between two columns. Tracking
error is the standard deviation of the difference vector.

explicit TrackingErrorVisitor (bool bias = true);
See this document and dataframe_tester.cc for examples.

T: Column data type
I: Index type
T must be an arithmetic-enabled type

template<typename T,
 typename I = unsigned long,
 typename = typename std::enable_if<std::is_arithmetic<T>::value, T>::type>
struct CorrVisitor;
This functor class calculates the correlation of two given columns.

explicit CorrVisitor (bool bias = true);
See this document and dataframe_tester.cc for examples.

T: Column data type
I: Index type
T must be an arithmetic-enabled type

template<typename T,
 typename I = unsigned long,
 typename = typename std::enable_if<std::is_arithmetic<T>::value, T>::type>
struct AutoCorrVisitor;

This is a “single action visitor”, meaning it is passed the whole data vector in one
call and you must use the single_action_visit() interface.
This functor class calculates the auto correlation of given column. The result is a
vector of auto correlations with lags of 0 up to length of column – 4.
See this document and dataframe_tester.cc for examples.

T: Column data type
I: Index type
T must be an arithmetic-enabled type

template<typename T,
 typename I = unsigned long,
 typename = typename std::enable_if<std::is_arithmetic<T>::value, T>::type>
struct ReturnVisitor;
This is a “single action visitor”, meaning it is passed the whole data vector in one
call and you must use the single_action_visit() interface.
This functor class calculates the return of a given column, according to the return
policy (monetary, percentage, or log). The result is a vector of returns.

explicit ReturnVisitor (return_policy rp);
See this document and dataframe_tester.cc for examples.

T: Column data type
I: Index type
T must be an arithmetic-enabled type

template<size_t K, typename T, typename I = unsigned long>
struct KMeansVisitor;
This is a “single action visitor”, meaning it is passed the whole data vector in one
call and you must use the single_action_visit() interface.
This functor class finds the K means in the data. It could also cluster the data
round the means.
The constructor takes two parameters
1. Number of iterations
2. A function to calculate distance between to data points of type T with a

default value
KMeansVisitor(size_type num_of_iter,
 distance_func f =
 [](const value_type &x, const value_type &y) -> double {
 return ((x - y) * (x - y));
 })

The result type is an array of K means of type T.
There is also a get_clusters() method that returns an array of K VectorPtrView’s
which contain the data clustered around the K-Means. The first element in each
VectorPtrView is the mean and the reset are the data points belonging to that
cluster.

K: Number of means to find
T: Column data type
I: Index type

template<typename T, typename I = unsigned long>
struct AffinityPropVisitor;
This is a “single action visitor”, meaning it is passed the whole data vector in one
call and you must use the single_action_visit() interface.
This functor class finds clusters in data using Affinity Propagation algorithm.
The constructor takes three parameters
1. Number of iterations
2. A function to calculate distance between to data points of type T with a

default value
KMeansVisitor(size_type num_of_iter,
 distance_func f =
 [](const value_type &x, const value_type &y) -> double {
 return ((x - y) * (x - y));
 })

3. Damping factor used in the algorithm. The default is 0.9. (1 – damping factor)
prevents numerical oscillations.

The result type is VectorPtrView of type T containing the centers of clusters.
There is also a get_clusters() method that returns an vector of VectorPtrView’s
which contain the data clustered around the centers.

T: Column data type
I: Index type

template<typename T,
 typename I = unsigned long,
 typename = typename std::enable_if<std::is_arithmetic<T>::value, T>::type>
struct KthValueVisitor;
This is a “single action visitor”, meaning it is passed the whole data vector in one
call and you must use the single_action_visit() interface.
This functor class finds the Kth element in the given column in linear time.

explicit KthValueVisitor (size_type ke, bool skipnan = true);

T: Column data type
I: Index type
T must be an arithmetic-enabled type

template<typename T,
 typename I = unsigned long,
 typename = typename std::enable_if<std::is_arithmetic<T>::value, T>::type>
struct QuantileVisitor;
This is a “single action visitor”, meaning it is passed the whole data vector in one
call and you must use the single_action_visit() interface.

This functor class finds the quantile specified by quantile and q_policy. Please see
quantile_policy for more explanation.

explicit QuantileVisitor (value_type quantile, quantile_policy q_policy);

T: Column data type
I: Index type
T must be an arithmetic-enabled type

template<typename T,
 typename I = unsigned long,
 typename = typename std::enable_if<std::is_arithmetic<T>::value, T>::type>
struct MedianVisitor;
This is a “single action visitor”, meaning it is passed the whole data vector in one
call and you must use the single_action_visit() interface.
This functor class finds the median of the given column, using the above Kth
element visitor. It computes in linear time.

T: Column data type
I: Index type
T must be an arithmetic-enabled type

template<std::size_t N, typename T, typename I = unsigned long>
struct ModeVisitor;
This is a “single action visitor”, meaning it is passed the whole data vector in one
call and you must use the single_action_visit() interface.
This functor class finds the N highest mode (N most repeated values) of the given
column.
The result is an array of N items each of this type:
 struct DataItem {
 // Value of the column item
 value_type value;
 // List of indices where value occurred
 std::vector<index_type> indices;
 // Number of times value occurred
 inline size_type repeat_count() const { return (indices.size()); }
 // List of column indices where value occurred
 std::vector<size_type> value_indices_in_col;
 };

N: Number of modes to find
T: Column data type
I: Index type

template<typename T,
 typename I = unsigned long,
 typename = typename std::enable_if<std::is_arithmetic<T>::value, T>::type>

struct MADVisitor
This is a “single action visitor”, meaning it is passed the whole data vector in one
call and you must use the single_action_visit() interface.
This functor class calculates 4 different forms of Mean Absolute Deviation.
Please see mad_type enum definition above in the type section

MADVisitor(mad_type mt, bool skip_nan = true)

T: Column data type
I: Index type
T must be an arithmetic-enabled type

template<typename T,
 typename I = unsigned long,
 typename = typename std::enable_if<std::is_arithmetic<T>::value, T>::type>
struct ZScoreVisitor;
This is a “single action visitor”, meaning it is passed the whole data vector in one
call and you must use the single_action_visit() interface.
This functor class calculates the z-score each value in a given column against the
same column as the population. Its result is a vector of z-scores.

T: Column data type
I: Index type
T must be an arithmetic-enabled type

template<typename T,
 typename I = unsigned long,
 typename = typename std::enable_if<std::is_arithmetic<T>::value, T>::type>
struct SampleZScoreVisitor;
This is a “single action visitor”, meaning it is passed the whole data vector in one
call and you must use the single_action_visit() interface.
This functor class calculates the z-score of a sample against its population. It
requires two columns. The first column is taken as population and the seconds
column as sample. Its result a single value.

T: Columns data type
I: Index type
T must be an arithmetic-enabled type

template<typename T,
 typename I = unsigned long,
 typename = typename std::enable_if<std::is_arithmetic<T>::value, T>::type>
struct DotProdVisitor;
This functor class calculates the dot-product of two given columns. See this
document and dataframe_tester.cc for examples.

T: Column data type

I: Index type
T must be an arithmetic-enabled type

template<typename F, typename T, typename I = unsigned long>
struct SimpleRollAdopter;
This functor applies functor F to the data in a rolling progression. The roll count
is given to the constructor of SimpleRollAdoptor.
The result is a vector of values with same number of items as the given column.
The first roll_count items, in the result, will be NAN.

inline SimpleRollAdopter(F &&functor, size_t roll_count)

F: Functor type
T: Column data type
I: Index type

template<typename F, typename T, typename I = unsigned long>
struct ExpandingRollAdopter;
This functor applies functor F to the data in an expanding rolling progression. The
roll count and the step increment count are given to the constructor.
The result is a vector of T type values. The first roll_count items, in the result,
will be NAN.

inline ExpandingRollAdopter(F &&functor,
 size_t roll_count,
 size_t increment_count = 1)

F: Functor type
T: Column data type
I: Index type

template<typename F, typename T, typename I = unsigned long>
struct ExponentialRollAdopter;
This functor applies functor F to the data in an exponentially decaying rolling
progression. The roll count is given to the constructor of ExponentialRollAdopter.
The other parameters to the constructor determine how the decay is calculated.
Please see the exponential_decay_spec type above.
The result is a vector of values with same number of items as the given column.
The first roll_count items, in the result, will be NAN.
The formula used is: (decay * Xt) + ((1 − decay) * Yt-1)
Where
Xt is current value
Yt-1 is last calculated stats

inline ExponentialRollAdopter(F &&functor, size_t roll_count,
exponential_decay_spec eds, double value)

F: Functor type
T: Column data type

I: Index type

template<typename T,
 typename I = unsigned long,
 typename = typename std::enable_if<std::is_arithmetic<T>::value, T>::type>
struct StatsVisitor;
This functor class calculates the following statistics of a given column; mean,
variance, standard deviation, skew, and kurtosis. See this document and
dataframe_tester.cc for examples.

T: Column data type
I: Index type
T must be an arithmetic-enabled type

template<typename T,
 typename I = unsigned long,
 typename = typename std::enable_if<std::is_arithmetic<T>::value, T>::type>
struct SLRRegressionVisitor;
This functor class calculates simple linear regression, in one pass, of two given
columns (x, y). See this document and dataframe_tester.cc for examples.

T: Column data type
I: Index type
T must be an arithmetic-enabled type

template<typename S_RT,
 typename L_RT,
 typename T,
 typename I = unsigned long,
 typename =
 typename std::enable_if<std::is_arithmetic<T>::value, T>::type>
struct DoubleCrossOver;
This is a “single action visitor”, meaning it is passed the whole data vector in one
call and you must use the single_action_visit() interface.
This functor class calculates the crossover of a data vector with two of its moving
averages. It could be used to generate signals within financial applications.
The constructor takes the two adopters:

DoubleCrossOver(S_RT &&short_moving, L_RT &&long_moving)

There are 3 methods that give you the results:
1) const result_type &get_raw_to_short_term() const – Returns a vector of data

column minus short moving average
2) const result_type &get_raw_to_long_term() const – Returns a vector of data

column minus long moving average
3) const result_type &get_short_term_to_long_term () const – Returns a vector

of short term moving average minus long moving average

S_RT: A short term moving average adopter. For example, a simple moving
adopter using a geometric mean
L_RT: A longer term moving average adopter. For example, an exponential
moving adopter using a simple mean
T: Column data type
I: Index type
T must be an arithmetic-enabled type

template<typename T,
 typename I = unsigned long,
 typename = typename std::enable_if<std::is_arithmetic<T>::value, T>::type>
struct BollingerBand;
This is a “single action visitor”, meaning it is passed the whole data vector in one
call and you must use the single_action_visit() interface.
This functor class calculates Bollinger bands and generates the spread between
the given column and lower/upper bands. It could be used to generate signals
within financial applications.
The constructor takes:
- Upper band multiplier to be multiplied by standard-deviation and added to the

moving average
- Lower band multiplier to be multiplied by standard-deviation and subtracted

from the moving average
- Number of periods for a simple moving mean and std.
- Biased; whether the moving std is biased. The default is false meaning the

denominator is “n – 1”.
BollingerBand(double upper_band_multiplier,
 double lower_band_multiplier,
 size_type moving_mean_period,
 bool biased = false)

There are 2 methods that give you the results:

1) const result_type &get_upper_band_to_raw() const – Returns a vector of
upper band minus data column.

2) const result_type &get_raw_to_lower_band() const – Returns a vector of
data column minus lower band.

T: Column data type
I: Index type
T must be an arithmetic-enabled type

template<typename T,
 typename I = unsigned long,
 typename = typename std::enable_if<std::is_arithmetic<T>::value, T>::type>
struct VWAPVisitor;

This functor class calculates VWAP – and more - between the two column values.
The first column is the index (assumed to represent time). The second column is
assumed to be trade price. The third column is assumed to be trade size
The constructor takes:
- The interval value for the bucket. VWAP is calculated for buckets of interval

time. 0 means everything is in one bucket.
- Max Volume: Excludes trades whose size is equal or greater than Max

Volume. 0 means include everything.
- Total Volume Limit: Stops calculations when the cumulative volume exceeds

Total Volume Limit. 0 means there is no limit.
- A function to calculates the difference between two index values. The default

is a simple subtraction.
VWAPVisitor(double interval,
 double max_volume = 0,
 double total_volume_limit = 0,
 distance_func f = [](const I &idx1, const I &idx2) -> double {
 return (static_cast<double>(idx2 - idx1));
 })

The result is a vector of following structs:

struct VWAP {
 value_type vwap;
 index_type index_value;
 size_type event_count;
 value_type total_volume;
 value_type high_price;
 value_type low_price;
 value_type cumulative_vwap;
 size_type cumulative_event_count;
 value_type cumulative_total_volume;
 value_type cumulative_high_price;
 value_type comulative_low_price;

T: Column data type
I: Index type
T must be an arithmetic-enabled type

template<typename T,
 typename I = unsigned long,
 typename = typename std::enable_if<std::is_arithmetic<T>::value, T>::type>
struct VWBASVisitor;
This functor class calculates VWBAS (Volume Weighted Bid-Ask Spread) – and
more - between the four column values. The first column is the index (assumed to
represent time). The second column is assumed to be bid price. The third column
is assumed to be ask price. The fourth column is assumed to be bid size. The fifth
column is assumed to be ask size.
The constructor takes:

- The interval value for the bucket. VWBAS is calculated for buckets of
interval time. 0 means everything is in one bucket.

- Max Volume: Excludes trades whose size is equal or greater than Max
Volume. 0 means include everything.

- A function to calculates the difference between two index values. The default
is a simple subtraction.

VWBASVisitor(double interval,
 double max_volume = 0,
 distance_func f = [](const I &idx1, const I &idx2) -> double {
 return (static_cast<double>(idx2 - idx1));
 })

The result is a vector of following structs:

struct VWBAS {
 value_type spread;
 value_type percent_spread; // with respect to bid side
 value_type vwbas;
 value_type percent_vwbas; // with respect to bid side
 index_type index_value;
 size_type event_count;
 value_type total_ask_volume;
 value_type total_bid_volume;
 value_type high_ask_price;
 value_type low_ask_price;
 value_type high_bid_price;
 value_type low_bid_price;
 value_type cumulative_vwbas;
 size_type cumulative_event_count;
 value_type cumulative_total_ask_volume;
 value_type cumulative_total_bid_volume;
 value_type cumulative_high_ask_price;
 value_type comulative_low_ask_price;
 value_type cumulative_high_bid_price;
 value_type comulative_low_bid_price;

T: Column data type
I: Index type
T must be an arithmetic-enabled type

template<typename T,
 typename I = unsigned long,
 typename = typename std::enable_if<std::is_arithmetic<T>::value, T>::type>
struct MACDVisitor;
This is a “single action visitor”, meaning it is passed the whole data vector in one
call and you must use the single_action_visit() interface.
This functor class calculates the Moving Average Convergence/Divergence
oscillator (MACD) which is one of the simplest and most effective momentum

indicators available. It could be used to generate signals within financial
applications.
The constructor takes:
- Number of periods for the short-term exponential moving average.
- Number of periods for the long-term exponential moving average. (short-term

EMA – long-term EMA) = MACD Line
- Number of periods for the signal line. EMA(MACD Line) = Signal Line
- Decay type for the exponential moving averages.
- Decay value for the exponential moving averages (See DataFrame Types and

Exponential Roll Adopter).
MACDVisitor(size_type short_mean_period, // e.g. 12-day
 size_type long_mean_period, // e.g. 26-day
 size_type signal_line_period, // e.g. 9-day
 exponential_decay_spec ed_spec = exponential_decay_spec::span,
 double expo_decay_value = 0.2)

There are 3 methods that give you the results:

1) const result_type &get_macd_line() const – Returns vector of MACD
Line (See above).

2) const result_type &get_signal_line() const – Returns vector of Signal Line
(See above).

3) const result_type &get_macd_histogram() const – Returns vector of
MACD Histogram. (MACD Line – Signal Line) = MACD Histogram

T: Column data type
I: Index type
T must be an arithmetic-enabled type

Random Generators

A set of convenient routines to generate random number.
For the definition and defaults of RandGenParams, see this document and file
DataFrameTypes.h

It generates n uniform integer distribution random numbers.
P(i|a,b) =

1
b − a + 1

.
It returns the vector of results
Optional parameters to set:
 max_value, min_value, seed

T: Type can only be [unsigned] char, [unsigned] short, [unsigned] int,
 [unsigned] long int, or [unsigned] long long int
n: Number of numeric to generate
params: List of all applicable parameters, see DataFrameTypes.h
template<typename T>
std::vector<T>
gen_uniform_int_dist(std::size_t n,
 const RandGenParams<T> ¶ms = { });

It generates n uniform real distribution random numbers.

P(i|a,b) =
1

b − a
.

It returns the vector of results
Optional parameters to set:
 max_value, min_value, seed

T: Type can only be float, double, or long double
n: Number of numeric to generate
params: List of all applicable parameters, see DataFrameTypes.h
template<typename T>
std::vector<T>
gen_uniform_real_dist(std::size_t n,
 const RandGenParams<T> ¶ms = { });

It generates random Boolean values, according to the discrete probability
function. The probability of true is:

 ⎧ p if b == true
P(b|p) = ⎨
 ⎩ 1 - p if b == fasle

It returns the vector of results
Optional parameters to set:
 prob_true, seed

n: Number of numeric to generate
params: List of all applicable parameters, see DataFrameTypes.h
std::vector<bool>
gen_bernoulli_dist(std::size_t n,
 const RandGenParams<bool> ¶ms = { });

Produces random non-negative integer values i, distributed according to
discrete probability function:

P(i|t,p)=(ti)⋅pi⋅(1−p)t−i

It returns the vector of results
Optional parameters to set:
 t_dist, prob_true, seed

T: Type can only be [unsigned] char, [unsigned] short, [unsigned] int,
 [unsigned] long int, or [unsigned] long long int
n: Number of numerics to generate
params: List of all applicable parameters, see DataFrameTypes.h
template<typename T>
std::vector<T>
gen_binomial_dist(std::size_t n, const RandGenParams<T> ¶ms = { });

Produces random non-negative integer values i, distributed according to
discrete probability function:

P(i|k,p)=(k+i−1i)⋅pk⋅(1−p)i

It returns the vector of results
Optional parameters to set:
 t_dist, prob_true, seed

T: Type can only be [unsigned] char, [unsigned] short, [unsigned] int,
 [unsigned] long int, or [unsigned] long long int
n: Number of numerics to generate
params: List of all applicable parameters, see DataFrameTypes.h
template<typename T>
std::vector<T>
gen_negative_binomial_dist(std::size_t n,
 const RandGenParams<T> ¶ms = { });

Produces random non-negative integer values i, distributed according to
discrete probability function:

P(i|p)=p⋅(1−p)i

It returns the vector of results
Optional parameters to set:
 prob_true, seed

T: Type can only be [unsigned] char, [unsigned] short, [unsigned] int,
 [unsigned] long int, or [unsigned] long long int
n: Number of numerics to generate
params: List of all applicable parameters, see DataFrameTypes.h
template<typename T>
std::vector<T>
gen_geometric_dist(std::size_t n, const RandGenParams<T> ¶ms = { });

Produces random non-negative integer values i, distributed according to
discrete probability function:

 -u i
 e u
P(i|u) = ------------
 i!

It returns the vector of results
Optional parameters to set:
 mean, seed

T: Type can only be [unsigned] char, [unsigned] short, [unsigned] int,
 [unsigned] long int, or [unsigned] long long int
n: Number of numerics to generate
params: List of all applicable parameters, see DataFrameTypes.h
template<typename T>
std::vector<T>
gen_poisson_dist(std::size_t n, const RandGenParams<T> ¶ms = { });

duces random non-negative floating-point values x,
distributed according to probability density function:

P(x|λ) = λe-λx

It returns the vector of results
Optional parameters to set:
 lambda, seed

T: Type can only be float, double, or long double
n: Number of numerics to generate
params: List of all applicable parameters, see DataFrameTypes.h
template<typename T>
std::vector<T>

gen_exponential_dist(std::size_t n,
 const RandGenParams<T> ¶ms = { });

Produces random non-negative floating-point values x,
distributed according to probability density function:

p(x∣α,β)=e−x/ββα⋅Γ(α)⋅xα−1

It returns the vector of results
Optional parameters to set:
 alpha, beta, seed

T: Type can only be float, double, or long double
n: Number of numerics to generate
params: List of all applicable parameters, see DataFrameTypes.h
template<typename T>
std::vector<T>
gen_gamma_dist(std::size_t n, const RandGenParams<T> ¶ms = { });

Produces random non-negative floating-point values x,
distributed according to probability density function:
see https://en.cppreference.com/w/cpp/numeric/random/weibull_distribution

It returns the vector of results
Optional parameters to set:
 alpha (shape), beta (scale), seed

T: Type can only be float, double, or long double
n: Number of numerics to generate
params: List of all applicable parameters, see DataFrameTypes.h
template<typename T>
std::vector<T>
gen_weibull_dist(std::size_t n, const RandGenParams<T> ¶ms = { });

Produces random numbers according to the extreme value distribution
(it is also known as Gumbel Type I, log-Weibull, Fisher-Tippett Type I):
see https://en.cppreference.com/w/cpp/numeric/random/extreme_value_distribution

It returns the vector of results
Optional parameters to set:
 alpha (location), beta (scale), seed

T: Type can only be float, double, or long double
n: Number of numerics to generate
params: List of all applicable parameters, see DataFrameTypes.h
template<typename T>
std::vector<T>

gen_extreme_value_dist(std::size_t n, const RandGenParams<T> ¶ms = { });

Generates random numbers according to the Normal (or Gaussian)
random number distribution. It is defined as:
see https://en.cppreference.com/w/cpp/numeric/random/normal_distribution

It returns the vector of results
Optional parameters to set:
 mean, std (scale), seed

T: Type can only be float, double, or long double
n: Number of numerics to generate
params: List of all applicable parameters, see DataFrameTypes.h
template<typename T>
std::vector<T>
gen_normal_dist(std::size_t n, const RandGenParams<T> ¶ms = { });

The lognormal_distribution random number distribution produces
random numbers x > 0 according to a log-normal distribution:
see https://en.cppreference.com/w/cpp/numeric/random/lognormal_distribution

It returns the vector of results
Optional parameters to set:
 m (log-scale), s (shape), seed

T: Type can only be float, double, or long double
n: Number of numerics to generate
params: List of all applicable parameters, see DataFrameTypes.h
template<typename T>
std::vector<T>
gen_lognormal_dist(std::size_t n,
 const RandGenParams<T> ¶ms = { });

The chi_squared_distribution produces random numbers x > 0 according
to the Chi-squared distribution:
see https://en.cppreference.com/w/cpp/numeric/random/chi_squared_distribution

It returns the vector of results
Optional parameters to set:
 n (degree of freedom), seed

T: Type can only be float, double, or long double
n: Number of numerics to generate
params: List of all applicable parameters, see DataFrameTypes.h
template<typename T>
std::vector<T>

gen_chi_squared_dist(std::size_t n,
 const RandGenParams<T> ¶ms = { });

Produces random numbers according to a Cauchy distribution
(also called Lorentz distribution):
see https://en.cppreference.com/w/cpp/numeric/random/cauchy_distribution

It returns the vector of results
Optional parameters to set:
 alpha (location), beta (scale), seed

T: Type can only be float, double, or long double
n: Number of numerics to generate
params: List of all applicable parameters, see DataFrameTypes.h
template<typename T>
std::vector<T>
gen_cauchy_dist(std::size_t n, const RandGenParams<T> ¶ms = { });

Produces random numbers according to the f-distribution:
see https://en.cppreference.com/w/cpp/numeric/random/fisher_f_distribution

It returns the vector of results
Optional parameters to set:
 n (degree of freedom), n2 (degree of freedom), seed

T: Type can only be float, double, or long double
n: Number of numerics to generate
params: List of all applicable parameters, see DataFrameTypes.h
template<typename T>
std::vector<T>
gen_fisher_f_dist(std::size_t n, const RandGenParams<T> ¶ms = { });

Produces random floating-point values x, distributed according
to probability density function:
see https://en.cppreference.com/w/cpp/numeric/random/student_t_distribution

It returns the vector of results
Optional parameters to set:
 n (degree of freedom), seed

T: Type can only be float, double, or long double
n: Number of numerics to generate
params: List of all applicable parameters, see DataFrameTypes.h
template<typename T>
std::vector<T>
gen_student_t_dist(std::size_t n, const RandGenParams<T> ¶ms = { });

