MOTIVATION
Since DataFrame is a statistical library, it often deals with time-series data. So, it needs to
keep track of time.
The most efficient way of indexing DataFrame by time is to use an index type of time t
for second precision or double or long long integer for more precision. DateTime class
provides a more elaborate handling of time. Also, it is a general handy DateTime object.

CODE STRUCTURE

Both the header (DateTime.h) and source (DateTime.cc) files are part of the DataFrame
project. They are in the usual include/Utils and src/Utils directories.

BUILD INSTRUCTIONS
Follow the DataFrame build instructions.

EXAMPLE

This library can have up to Nano second precision depending on what systems calls are
available.

These are some example code:
DateTime now;
DateTime gmt_now (DT_TIME_ZONE::GMT);
DateTime hk_now (DT_TIME_ZONE:: AS_HONG_KONG);

cout << "Local Time is: " << now.string_format (DT_FORMAT::DT_TM2) << std::endl;
cout << "GMT Time is: " << gmt_now.string_format (DT_FORMAT::DT_TM2) << std::endl;

double diff = now.diff_seconds (gmt_now);
now = 19721202;

gmt_now = 19721210;

diff = now.diff_weekdays (gmt_now);

now.add_days(3)
now.add_weekdays(-2);

For more examples see file date time_tester.cc

TYPES

enum class DT _FORMAT : unsigned short int {

AMR DT =1,
AMR DT CTY =2,
EUR DT =3,
EUR DT CTY =4,
DT TM =5,
SCT DT =6,
DT MMDDYYYY = 7,
DT YYYYMMDD =8,
DT TM2 =9,
DT DATETIME = 10,
DT PRECISE = 11
ISO_DT TM = 12,
ISO_DT = 13,

}’.

//e.g. 09/16/99

//e.g. 09/16/1999

//e.g. 16/09/99

//e.g. 16/09/1999

/e.g. 09/16/1999 13:51:04
//e.g. Sep 16, 1999

/e.g 09161999

/e.g 19990916

/eg 09/16/1999 13:51:04.256
//eg 20010103 09:31:15.124
/eg 1516179600.874123908 = Epoch.Nanoseconds
/e.g 2015-05-05 13:51:04.000234
/eg 2015-05-05

These constants are used for formatting date/time into strings.

enum class DT _TIME ZONE : short int {

LOCAL = -2,
GMT =0,

AM BUENOS AIRES = 1,

AM CHICAGO =2,

AM LOS ANGELES = 3,
AM MEXICO CITY = 4,

AM _NEW YORK =5,
AS DUBAI = 6,

AS HONG KONG = 7,

AS SHANGHAI = 8,
AS SINGAPORE = 9,
AS TEHRAN = 10,
AS TEL AVIV =11,
AS TOKYO = 12,

AU MELBOURNE = 13,

AU SYDNEY = 14,

BR RIO DE JANEIRO = 15,

EU BERLIN = 16,
EU _LONDON = 17,
EU_MOSCOW = 18,
EU PARIS = 19,
EU ROME = 20,
EU VIENNA = 21,
EU ZURICH = 22,
UTC = 23,

AS SEOUL = 24,
AS TAIPEI = 25,

EU STOCKHOLM = 26,
NZ =27,
EU OSLO = 28,
EU_WARSAW = 29,
EU BUDAPEST = 30

}’.

These are the available time zones, used in a few methods and constructors.

enum class DT WEEKDAY : unsigned char {
BAD DAY =0,
SUN =1,
MON = 2,
TUE = 3,
WED = 4,
THU =35,
FRI = 6,
SAT =7
}’.
Week days: 1 - 7 (Sunday - Saturday), used by various methods.

enum class DT _MONTH : unsigned char {
BAD MONTH = 0,
JAN =1,
FEB =2,
MAR = 3,
APR =4,
MAY =5,
JUN =6,
JUL =7,
AUG =6,
SEP =9,
OCT = 10,
NOV =11,
DEC =12
}’.
Months: 1 - 12 (January - December), used by various methods.

enum class DT DATE STYLE : unsigned char {
YYYYMMDD = 1,
AME STYLE = 2,
EUR STYLE = 3,

ISO STYLE =3
}’.
These constants are used for parsing data
AME STYLE: MM/DD/YYYY

EUR _STYLE: YYYY/MM/DD

ISO _STYLE: YYYY-MM-DD

using DateType = unsigned int

using DatePartType = unsigned short int
using HourType = unsigned short int
using MinuteType = unsigned short int
using SecondType = unsigned short int
using MillisecondType = short int

using MicrosecondType = int

using NanosecondType = int

using EpochType = time t

using LongTimeType = long long int

/I YYYYMMDD

// year, month etc.

/10-23

//0-59

//0-59

//0-999

/10 °-999,999

/70 -999,999,999

// Signed epoch

// Nano seconds since epoch

METHODS
explicit DateTime (DT TIME ZONE tz = DT TIME ZONE::LOCAL) noexcept;
A constructor that creates a DateTime initialized to now.

tz: Desired time zone from DT _TIME ZONE above.

explicit DateTime (DateType d,

HourType hr = 0,

MinuteType mn = 0,

SecondType sc = 0,

NanosecondType ns = 0,

DT TIME ZONE tz = DT TIME ZONE::LOCAL) noexcept,
The constructor that creates a DateTime based on parameters passed.

d: Date e.g. 20180112

hr: Hour e.g. 13

mn: Minute e.g. 45

sc: Second e.g. 45

ns: Nano-second e.g. 123456789

tz: Desired time zone from DT _TIME ZONE above.

explicit DateTime (const char *s,
DT DATE STYLE ds = DT DATE STYLE::YYYYMMDD,
DT TIME ZONE tz = DT TIME ZONE::LOCAL);
The constructor that creates a DateTime by parsing a string and based on parameters
passed.
Currently, the following formats are supported:

(1) YYYYMMDD

AME STYLE:
(2) MM/DD/YYYY
(3) MM/DD/YYYY HH
(4) MM/DD/YYYY HH:MM
(5) MM/DD/YYYY HH:MM:SS
(6) MM/DD/YYYY HH:MM:SS.MMM

EUR STYLE:
(7) YYYY/MM/DD
(8) YYYY/MM/DD HH
(9) YYYY/MM/DD HH:MM
(10) YYYY/MM/DD HH:MM:SS
(11) YYYY/MM/DD HH:MM:SS.MMM

ISO STYLE:
(12) YYYY-MM-DD

(13) YYYY-MM-DD HH

(14) YYYY-MM-DD HH:MM

(15) YYYY-MM-DD HH:MM:SS

(16) YYYY-MM-DD HH:MM:SS.MMM

s: The string to be parsed
ds: String format from DT DATE STYLE above
tz: Desired time zone from DT _TIME ZONE above.

void set_time (EpochType the time, NanosecondType nanosec = () noexcept,
A convenient method, if you already have a DateTime instance and want to change the
date/time quickly.

the_time: Time as epoch
nanosec: Nano seconds

void set_timezone (DT TIME ZONE tz);

Changes the time zone to desired time zone.

NOTE: This method is not multithread-safe. This method modifies the TZ environment
variable which changes the time zone for the entire program.

tz: Desired time zone

DT TIME ZONE get timezone () const;
Returns the current time zone.

DateTime &operator = (DateType rhs);
Sets self to right-hand-side.

rhs: A date e.g. dt=20181215;

DateTime &operator = (const char *rhs);
Sets self to right-hand-side.
Currently, the following formats are supported:
1) YYYYMMDD [LOCAL | GMT]
2) YYYYMMDD HH:MM:SS.MMM [LOCAL | GMT]

rhs: A date/time string e.g. dt=“20181215";

int dt_compare(const DateTime &rhs) const;
Compares self with right-hand-side and returns an integer result accordingly.

rhs: Another DateTime instance

DateType date () const noexcept; /e.g. 20020303
DatePartType year () const noexcept, /e.g. 1990

S

DT MONTH month () const noexcept, //JAN - DEC

DatePartType dmonth () const noexcept, /=31
DatePartType dyear () const noexcept, /1 -366

DT WEEKDAY dweek () const noexcept; // SUN - SAT
HourType hour () const noexcept; //0-23
MinuteType minute () const noexcept, //0-359
SecondType sec () const noexcept; //0-359
MillisecondType msec () const noexcept, /0 -999
MicrosecondType microsec () const noexcept; /0 - 999,999
NanosecondType nanosec () const noexcept, /0 - 999,999,999
EpochType time () const noexcept, // Like time()
LongTimeType long time () const noexcept, // Nano seconds since epoch

These methods return the corresponding date/time parts.

DatePartType days_in_month () const noexcept;, // 28, 29, 30, 31
It returns the number of days in the month represented in self

double diff seconds (const DateTime &that) const;

double diff minutes (const DateTime &that) const noexcept;

double diff hours (const DateTime &that) const noexcept;

double diff days (const DateTime &that) const noexcept;

double diff weekdays (const DateTime &that) const noexcept,

double diff weeks (const DateTime &that) const noexcept;

These return the diff including the fraction of the unit. This is why they return a double.
The diff could be +/- based on "this - that"

that: Another instance of DateTime

void add nanoseconds (long nanosecs) noexcept;

void add_seconds (EpochType secs) noexcept;

void add days (long days) noexcept;

void add weekdays (long days) noexcept,

void add _months (long months) noexcept,

void add years (long years) noexcept;

These methods either advance or pullback the time accordingly. The parameter to these
methods could be +/-.

secs, days: A positive or negative number representing the units to change time

template<typename T>

void date_to_str (DT FORMAT format, T &result) const;

std::string string _format (DT FORMAT format) const;

These methods format the date/time into a string based on the format parameter

T: Type of string
result: a string instance to store the formatted date/time

format: String format parameter based on DT FORMAT above

