
iPlug 2: Desktop Plug-in Framework Meets
Web Audio Modules

Oliver Larkin
Creative Coding Lab

The University of Huddersfield
oli@webaudiomodules.org

Alex Harker
Creative Coding Lab

The University of Huddersfield
a.harker@hud.ac.uk

Jari Kleimola
Web Audio Modules

Espoo, Finland
jari@webaudiomodules.org

ABSTRACT
This paper introduces iPlug 2: a desktop C++ audio plug-in
framework that has been extended and reworked in order to support
Web Audio Modules, a new format for browser-based audio effects
and instruments, using WebAssembly. iPlug 2 provides a complete
solution and workflow for the development of cross-platform audio
plug-ins and apps. It allows the same concise C++ code to be used
to create desktop and web-based versions of a software musical
instrument or audio effect, including audio signal processing and
user interface elements. This new version of the framework has
been updated to increase its flexibility so that alternative drawing
APIs, plug-in APIs and platform APIs can be supported easily. We
have added support for the distributed models used in recent audio
plug-in formats, as well as new graphics capabilities. The codebase
has also been substantially modernised. In this paper, we introduce
the problems that iPlug 2 aims to address and discuss trends in
modern plug-in APIs and existing solutions. We then present iPlug
2 and the work required to refactor a desktop plug-in framework to
support the web platform. Several approaches to implementing
graphical user interfaces are discussed as well as creating remote
editors using web technologies. A real-world example of a WAM
compiled with iPlug 2 is hosted at https://virtualcz.io, a new web-
based version of a commercially available synthesizer plug-in.

1. INTRODUCTION
Audio plug-in formats such as VST, Audio Units, LV2 and AAX
are well-established as a means of providing specific audio
synthesis, audio processing or MIDI capabilities to a host
environment. Each format has an application programming
interface (API) that is based on a specific model of interaction with
the host. Nevertheless, these formats all share the fundamental
requirements of processing audio samples, handling parameter
changes, managing state and displaying a user interface. The Web
Audio Module (WAM) format aims to offer similar functionality in
the browser [7].
The iPlug 2 C++ framework presented in this paper allows the same
codebase that is used to create a desktop plug-in to be used to
generate a Web Audio Module. Figure 1 shows VirtualCZ, a
software synthesizer programmed using iPlug 2, running in both a
popular desktop Digital Audio Workstation (DAW), and in a web

browser, demonstrating a highly consistent visual appearance
between the two.

Figure 1. VirtualCZ VST in the Reaper DAW

WAM in Google Chrome

1.1 Audio Plug-in Frameworks
There are many challenges that audio plug-in developers face when
making a product for a wide audience. Most plug-ins must work
with a range of different hosts, which are generally not limited to a
single operating system and will only support certain plug-in
formats. A cross-platform user interface (UI) toolkit must be used
for what is usually a single window interface, often featuring
controls such as sliders, meters, knobs and buttons. The UI toolkit
is responsible for drawing to the window, handling events and
creating contextual controls, potentially supporting both mouse and
touch interaction. Yet more platform differences occur when files
must be read or written. Finally, plug-ins often need to be able to
support multiple processor architectures.
For audio plug-in developers targeting multiple formats and
platforms, it is impractical to code for each one individually, as this
approach results in long development times, and a large codebase
that is hard to maintain. Ideally, the same code is used to target
multiple formats and platforms, whilst ensuring compliance with
all the APIs involved - plug-in APIs, drawing APIs and platform
APIs. This is the task of an audio plug-in framework such as iPlug.
In our view, such a framework should allow a developer to iterate
on ideas quickly and focus on the creative elements of their task,
whilst at the same time producing reliable, performant binaries in
multiple formats and with a high degree of parity in look and feel
across all platforms. In a real-time audio context, there are many
details of implementation, such as ensuring thread-safety, that can
distract a developer from their creative focus. Ideally a plug-in
framework should handle such details elegantly. Thus, we
introduce iPlug 2 which aims to address these issues, improving
upon the original iPlug, whilst maintaining a degree of backward
compatibility with existing code. iPlug 2 adds support for
additional target formats and platforms, including Web Audio

Licensed under a Creative Commons Attribution 4.0 International License (CC BY
4.0). Attribution: owner/author(s).
Web Audio Conference WAC-2018, September 19–21, 2018, Berlin, Germany.
© 2018 Copyright held by the owner/author(s).

Modules. For the first time, the same C++ DSP and UI code can be
used to create desktop and web versions of an audio plug-in -
opening new possibilities for distribution, documentation, and
promotional activities.

2. CONTEXT
The VST audio plug-in standard introduced by Steinberg in 1997 is
a landmark in the history of music technology, which significantly
changed the world of music production. It created a platform for
software virtual instruments and effects which offered portability,
affordability and scalability for consumers, compared with
hardware alternatives.
Technology and software development practices have changed
significantly since the time of the first plug-in instruments and
effects. Modern plug-in APIs reflect technological developments
and address problems and limitations in earlier APIs. VST2, which
is still widely used, has a simplistic C interface which gives plug-
in and host developers significant freedom but it exemplifies some
core problems in the domain. A key example is the ambiguity
regarding the timing and threading of parameter change events,
with respect to the audio processing. On today’s multi-core
processors, thread-safety is a far greater concern than it may have
been during the late nineties, perhaps explaining the lack of a clear
threading specification in the original API.
Here we present an overview of the defining features of some
modern plug-in formats that have been considerations for the
development of iPlug 21.

2.1 VST3
Steinberg’s VST32 was released in 2008 and has a C++ API which
is much more verbose than VST2, explicitly specifying many
details that were previously ambiguous. VST3 introduces a
distinction between a controller and a processor part of an audio
plug-in, and if the developer follows the recommendations of the
API documentation, he/she must assume that these two elements
may run in different address spaces, or even on different computers.
Whilst this separation promotes good practice of isolating user
interface code from real-time audio processing code, it also
presents challenges in terms of keeping the state of the two
elements synchronised, as well as for transferring any data between
the two. Normalized parameters are used for single value
communication, which may include additional “read only”
parameters in order to allow functionality such as metering
visualisations. For more complex synchronisation a messaging
system exists which can send arbitrary data, but, depending on the
complexity of a plug-in’s requirements, the developer may need to
implement multiple queueing mechanisms for sending/receiving
messages safely on the high priority audio thread.
2.2 Audio Unit Extensions (AUv3)
Apple’s AUv3 API provides the first unified API for Audio Unit
development across the macOS and iOS platforms. An AUv3 plug-
in must be implemented using the Objective-C or Swift
programming languages, with the audio processing callback using
C/C++. Possibly the biggest change in AUv3 is the introduction of

1 Although they both offer unique approaches and solutions to

issues discussed here, AVID’s AAX and Propellerhead’s Rack
Extensions are not included in this list, since the SDKs are not in
the public domain.

2 https://www.steinberg.net/en/company/technologies/vst3.html

a model that runs the Audio Unit in a separate, sandboxed process,
protecting the host from misbehaving plug-ins. This adds a small
amount of overhead, and from a plug-in developer’s point of view
- especially when targeting multiple formats - flexibility and
functionality are limited. Since the extension is sandboxed it no
longer has access to the computer's file system (which is an issue
when resources are shared with other formats) and it may not be
possible to do things such as communicate with other instances or
external hardware. If AUv3 plugins are to be used on both desktop
and mobile platforms different HCI modalities must be considered
in UIs, as well as the different screen space afforded by different
devices.

2.3 LV2
The LV2 plug-in API is written in C with RDF semantic web
descriptors to provide information about the functionality the plug-
in supports [11]. It is highly extensible and addresses many issues
discussed here. For example, it promotes the separation of DSP and
user interface into different binaries, which can be run out of
process. LV2 offers a great deal of flexibility at the expense of ease
of use, although this complexity may be reduced by targeting via
an intermediary audio plug-in framework.
2.4 Web Audio Modules
The Web Audio Module (WAM) API [7] is the most recent of all
APIs discussed here. It is still under development, as it uses
technology that has only recently become available in mainstream
web browsers and only a small number of web-based audio plug-in
host environments exist [2][5]. The WAM format has been
conceived and developed outside of industry, and aims to support a
wide range of end users and use cases, with a community website3
to get feedback from other interested parties whilst the API is
developed. It has been designed taking into consideration some of
the issues discussed with existing plug-in APIs and aims to be
lightweight and flexible, so that it may be used with existing plug-
in frameworks and codebases, and readily support experimental
and creative uses of audio plug-ins. Like VST3, the WAM API
splits the concept of a plug-in into two components, although the
relationship between the two parts is different [7]. The controller is
implemented in JavaScript and extends the Web Audio API’s
AudioWorkletNode, running on the browser’s main thread. The
processor is typically implemented in C/C++ and is compiled to
WebAssembly using the emscripten toolchain4 [12]. The processor
extends AudioWorkletProcessor and is thus sandboxed for security
reasons, since it runs on browser’s high priority audio thread. User
interfaces are implemented on the controller side with any
technologies available in the browser. Communication between the
two parts is asynchronous, and the parts cannot directly access each
other’s properties.

2.5 Existing Solutions
Companies producing plug-ins in multiple formats will often make
use of an intermediary plug-in framework for the reasons stated
above, but many have proprietary solutions that are not publicly
available. In the public domain, the JUCE library5 is an extremely
popular choice for audio plug-in developers, and provides a wide

3 https://webaudiomodules.org
4 http://emscripten.org
5 https://juce.com

range of functionality. It might be considered alternatively as an
application framework, plug-in framework, plug-in hosting
framework, UI toolkit and even a DSP library. Other publicly
available solutions include the DISTRHO plug-in framework6,
RackAFX7 [10] and Dplug8. The VST3 SDK contains VSTGUI
(which is suitable for use with a range of plug-in formats) as well
as wrappers for several other plug-in APIs. Developers may create
their plug-in as a VST3 primarily and then wrap it to other formats.
Symbiosis9 is another wrapper tool that some developers use to
support the AUv2 format by wrapping VST2 plug-ins. Whilst
wrappers allow for perfect compliance with the original API, this
approach can cause problems where the wrapped plug-in’s API is
significantly different to the wrapper - an example of this might be
the case of VST3 where MIDI controller messages are handled in a
way that is very different to other plug-in APIs.

Support for individual plug-in formats varies across the solutions
presented above. Although it promotes separation of audio
processing and graphics code, JUCE does not currently support
distributed plug-ins. It has a restrictive license due to its
commercial nature. DISTRHO lacks AU, VST3 and AAX, support
and has limited graphics functionality, although it does support
distributed LV2, and a range of Linux plug-in formats. Dplug uses
the D programming language, which has not been widely adopted.
RackAFX is a stand-alone windows application that can be used to
create code for VST2, VST3, AAX and AU plug-ins. None of the
solutions above offer web browser support. One project that does
support the web, but not desktop plug-ins is JSAP by Jillings et al.
[3].

3. IPLUG 2
The iPlug framework was originally developed by John Schwartz
and provided support for the VST2 and AUv2 formats. It was open-
sourced in 2008 as part of Cockos’ WDL10. Since then several
modified versions have been available, including the first author’s
“WDL-OL” which added VST3, RTAS, AAX, and standalone app
targets. At its core the original iPlug has two abstract C++
interfaces: IPlug - for plug-in API communication and IGraphics -
for the UI, including layout, drawing, platform-specific event
handling, contextual controls and filesystem access. The base class
for a UI element is an IControl. In IDE projects and makefiles, pre-
processor macros are used to switch between different graphics and
plug-in API base classes, as required.

The development of iPlug 2 was motivated by the following aims:

• Creative Coding: iPlug 2’s abstract interface cleanly presents

the core elements of an audio plug-in. We believe this
promotes creativity, allowing developers to quickly iterate on
the most important parts: the DSP, UI and UX. For example,
iPlug 2 simplifies the repetitive task of defining the
characteristics of parameters, which can now be achieved with
a single line of code [8].

• Simplicity of plug-in developer experience: iPlug 2 comes
with a well-defined project structure and ready-made IDE

6 https://github.com/DISTRHO/DPF
7 http://www.willpirkle.com/rackafx/
8 https://github.com/AuburnSounds/Dplug
9 http://nuedge.net/article/5-symbiosis
10 https://www.cockos.com/wdl/

example projects which should compile easily. Projects can
quickly be created and duplicated. By abstracting the
complicated details of plug-in APIs, the framework becomes
well suited for teaching purposes - it is easy for learners to get
results quickly

• Portability and extensibility: iPlug 2 can target different
architectures, operating systems, plug-in APIs and UI drawing
backends. More targets and functionality can be added easily.

• Minimal and lightweight API classes: iPlug 2 itself uses
lightweight data structures - it is limited in scope, acting solely
as a plug-in framework and aims to excel at that one function.

• Permissive license: iPlug 2 offers the freedom to have control
over the elements of code that interact with the plug-in host.

3.1 Refactoring iPlug
The development of iPlug 2 was prompted by the desire to support
Web Audio Modules, but also by a need to address limitations of
the original framework in order to make it future proof and support
modern plug-in APIs, whilst maintaining a good degree of
backwards compatibility with existing product codebases. Thus, we
did not have the option to completely rewrite the framework from
the ground up.

Firstly, we decided that the IPlug and IGraphics components should
be able to operate independently, i.e. it should be possible to make
a plug-in using the IPlug base classes but with a different UI toolkit.
Likewise, it should be possible to use IGraphics to implement
simple user interfaces without an iPlug plug-in underneath.

The next set of changes relate to drawing. iPlug’s original drawing
backend using Cockos’ LICE was severely limited in the area of
vector graphics. Modern plug-ins must work on a variety of screen
resolutions and at different DPIs with high frame rates for smooth
animation. A trend in modern plug-in UIs is to make use of vector
graphics rather than bitmap-based approaches, since they are more
suitable for rescaling and have a small memory footprint. This is
particularly important on the web where the size of a website
payload must be minimised. For these reasons, we implemented
multiple new IGraphics drawing backends to evaluate different
approaches, each of which has distinct advantages and
disadvantages, in terms of portability, features and performance.
We also added an abstract interface IGraphicsPathBase, which
extends IGraphics with a generic way of supporting path-based
drawing. Only a small number of methods need to be implemented
to support a given path-based drawing API, and this approach has
been used for implementations using Cairo11, NanoVG12, Anti-
Grain Geometry13, and the HMTL5 canvas. The IGraphics interface
was also modified to support multi-resolution bitmaps and at the
same time we now support drawing SVGs into a graphics context.
A new library of controls has been added, including themeable and
animated vector-based controls.

Another major change was a requirement for distributed UI and
DSP components in order to support Web Audio Modules and

11 https://cairographics.org
12 https://github.com/memononen/nanovg
13 http://www.antigrain.com

provide better VST3 compliance. This change needed to be
seamless and transparent whilst maintaining a simple API and so
necessitated a more flexible class hierarchy.

Finally, we modernised the codebase. The original version of iPlug
used a small subset of C++ 98 functionality, with numerous issues
due to multiple developers of different levels of experience having
modified the code over many years. Making use of C++11 allows
for simpler and safer code constructions, such as the inclusion of
‘actions’ attached to UI controls, which use C++11 lamda
functions. This means that developers don’t have to write custom
controls for custom functionality. Lamdas are also used to
implement custom animations, parameter display strings and
several other useful features.

4. IPLUG 2 WAM SUPPORT
In [7] the authors discussed a preliminary version of iPlug with
support for Web Audio Modules, but no graphics capability. Since
that time, the WAM API has changed slightly due to the arrival of
the AudioWorklet and WebAssembly[3].
4.1 Workflow
iPlug 2 aims to provide a quick workflow for desktop plug-ins and
the same should apply when producing a WAM - ideally building
a WAM should be as easy as any other plug-in target. A build script
handles compilation via the emscripten toolchain followed by the
packaging of all the required files. This may be executed from an
IDE such as Xcode, allowing the build process to be handled
alongside other formats. To compile a WAM, the plugin developer
just needs to install the emscripten toolchain and place the WAM
SDK in the correct folder.

There are two options provided when generating a WAM - the first
is a “stand-alone” web page designed to allow the WAM to be used
in isolation, with boilerplate code for connecting with the Web
Audio graph and Web Midi [6]. The second option produces a Web
Component ready for embedding into WAM hosting applications
[2] – where each Web Component has a shadow DOM that avoids
namespace conflicts when multiple plug-ins are hosted on a single
page.

4.2 Distributed Elements
In the build process, there are two WebAssembly (WASM)
compilation stages - one for the IPlugWAM WASM module that
extends the AudioWorkletProcessor, and one for the IPlugWeb
WASM module that communicates with the AudioWorkletNode
and which owns the plugin UI (see Figure 2). Integration with the
Web Audio API is via the WAM processor and controller
interfaces. In order to support iPlug’s single class approach, these
compilation stages involve inheriting two different base classes and
the switching of base classes is handled by the build script, so the
plug-in developer does not need to deal with the separation.

14 https://www.polymer-project.org/

Figure 2. Separation of IPlugWeb and IPlugWAM base

classes with respect to AudioWorklet and WAM interfaces
The distribution of editor and processor parts of a plug-in is
facilitated by the doubling of the plug-in state (i.e. the current
values of all parameters plus any arbitrary state data). This allows
either element of the plug-in to access state data rapidly. Although
this wasn't a requirement for WAM support, when dealing with
other distributed plug-in formats, such as VST3, this means that the
editor can feature custom preset handling functionality, even
though the main state serialisation code must be handled on the
processor side.

4.2.1 Plug-in Processor
The audio processing part of iPlug 2’s WAM support differs only
slightly from the implementation discussed in [7]. This is because
the WAM processor is now in the AudioWorkletGlobalScope
whereas previously, when the ScriptProcessorNode was used, it
was in global scope. When the IPlugWAM class is compiled, audio
processing, midi processing and parameter handling methods are
valid but UI-related code is excluded, along with preset handling.
The plug-in developer must exclude any UI only code via the C pre-
processor.

4.2.2 Plug-in Editor
In [7] we provided options to create generic user interfaces, from
the WAM JSON descriptor, but new user interfaces had to be
implemented for the web. This can be seen with WebCZ101 - a
prototype WAM using the same DSP as the first author’s plug-in
VirtualCZ, but with a new UI written using polymer14. In the
process of updating iPlug we investigated whether using web
technologies (HTML/JS/CSS) for UI across desktop and web
targets was an option, to leverage the ever-increasing layout and
rendering capabilities of modern browser engines. At the time of
writing, platform web views are inconsistent across different
operating systems, as are the methods available for communicating
with them, so this was not a viable solution. We also investigated
embeddable web rendering engines, but everything currently
available was either a significant dependency (a large dynamic
library) or had a complicated build system, conflicting with the
overall aims of iPlug 2.
To achieve a consistent UI across all platforms we decided to
continue to use IGraphics (via C++) and to create a second WASM
module - which inherits the IPlugWeb base class. This editor
module runs in the global scope, and is thus able to communicate
with a WAM’s controller, as well as the DOM.

4.3 IGraphics on the Web
IGraphics classes for the web are implemented in C++, but the code
largely consists of JavaScript calls transliterated using emscripten’s
embind library. Events are handled by the IGraphicsWeb platform
base class using emscripten’s HTML5 library.
There are several options for adding drawing support, each
extending IGraphicsWeb into a concrete class:

4.3.1 IGraphicsCanvas
IGraphicsCanvas draws to a single HTML5 canvas object. Vector
drawing is simplified by inheriting the IGraphicsPathBase
interface, with most methods mapped to a single canvas method
call, except for PathStroke and PathFill, which require a larger
number of calls to set multiple properties before drawing.
Bitmap support poses a specific challenge in the web environment
where resource loading is typically asynchronous, unlike in desktop
applications which have a synchronous model. For parity with the
desktop we cannot make use of the browser’s file loading
mechanisms to load and decode image resources, and must instead
preload files via the emscripten virtual file system.

4.3.2 WebGL via IGraphicsNanoVG
NanoVG is an antialiased 2D vector graphics library for OpenGL
which has been adapted to work with recent GPU based
technologies such as Apple’s Metal. On the desktop,
IGraphicsNanoVG provides iPlug 2 with an option for hardware
accelerated vector graphics, and the integration of 3D displays and
shaders with IControls, which may be useful for some plug-in UIs.
NanoVG can also be compiled with emscripten using it’s GLFW
emulation library to render with WebGL. In this case the same text
rasterizer can be used, making this a good option for parity of look
and feel across all platforms, at the expense of increasing the
payload of the web page and duplication of functionality already
available in the browser. Whilst it is likely that most browser
canvas drawing is hardware accelerated in some way, WebGL may
still offer better performance with large full screen high-resolution
UIs, as well as the assurance of hardware acceleration where
available.

4.3.3 IGraphicsSVG
The last option we explored was an experiment using the browser's
vector graphics backend. An IGraphicsSVG implementation
provided an SVG surface holding any number of interactive or
static controls. Each control was encapsulated inside an SVG group
element for individual attachment, detachment and transformation
actions. Although all SVG elements are inherently mouse sensitive,
IGraphicsSVG had to accept mouse events at the root element level
to make it consistent with the other IGraphics implementations.
Instead of conforming to IGraphicsPathBase’s procedural path
drawing primitives, it followed SVG’s object-based paradigm and
offered corresponding primitives as classes. The primitives were
instantiated during the control initialization phase and attached as
children of the SVG group element. The runtime control state was
reflected through the primitive’s SVG attributes and CSS
properties.
Since IGraphicsSVG was only suitable for the web, it was removed
from the codebase, however it demonstrates the extensibility of the
iPlug 2 framework: from the plug-in developer’s perspective, all
IControls look alike despite the different graphics backends.

4.4 Cross-platform issues
Targeting multiple platforms with different user interface
modalities and different restrictions such as sandboxing, means it
is good to have flexibility in choice of the approaches used for UI,
depending on the project. An example would be in the case of pop-
up menus and text entry controls. Users may expect to see platform
native-style controls - but on some platforms there are limited
options for customising such controls. Furthermore, in the web
browser contextual menus and text entry controls are regularly
implemented with differing look and feel to the native platform. For
this reason, we have added the option of using bespoke controls for
menus and text entries which are then drawn using IGraphics.

5. REMOTE EDITORS
Remote editor functionality arises as a side-effect of enabling
separation between plug-in processor and editor in iPlug 2, along
with IGraphics web support. Given these features of the framework
it becomes possible to provide near identical-looking remote
editors for desktop plug-ins via WebSockets, by changing the
communication layer between editor and processor. In this use
case, tablets or other devices run the editor which is used to interact
with a desktop plug-in running on a remote machine via a local
network. The IPlugWeb class – the plugin editor - is compiled as a
WASM module, but instead of being connected to the IPlugWAM
WASM module in the browser, messages to and from the user
interface are sent over a WebSocket connection. This has been
made possible by defining a messaging protocol between editor and
processor parts, including variations for sending parameter
changes, MIDI and arbitrary data. The WebSocket server in the
desktop plug-in seamlessly keeps all the clients for a particular
plug-in instance in sync.

Figure 3. Remote editor and visualizer for a suite of

spatialisation plug-ins using WebVR, via the aframe.io
JavaScript library.

The technologies available in the browser may also be used to
provide supplementary interfaces for desktop audio plug-ins that
would not be feasible inside a traditional single window audio plug-
in UI, and iPlug 2 comes with a generic WebSocket server interface
in order to facilitate these use cases. An example of this has been
implemented using WebVR to visualise panning locations
(azimuths and elevations) in a suite of spatial audio tools developed
at the University of Huddersfield (see Figure 3). Since the plug-ins

are running a server, devices can connect as WebSocket clients over
a local network. This allows us to support a wide range of VR
headsets, including mobile phone-based systems such as Google
cardboard.

6. FUTURE WORK
At the time of writing iPlug 2 is still under development. Work
needs to be done on documentation, portability, optimisation and
further simplifying the codebase. There are issues that will need to
be addressed as more desktop plug-ins are ported to the Web Audio
Module format, including the translation of platform SIMD and
multi-threaded code to WebAssembly-friendly equivalents.
A more formal evaluation of the performance of different graphics
libraries and drawing approaches is necessary both for web and
desktop deployment. Initial findings are positive, suggesting that
despite calls between code written in different programming
languages user interfaces remain responsive on current hardware,
even with complex graphical elements.
In this paper, we have presented approaches to creating imperative
UIs using C++ code originally developed for desktop plug-ins.
Another approach for future exploration in the context of iPlug is
to use embedded web views for desktop plug-in UIs. This is
dependent on the availability of lightweight platform web views or
embeddable rendering engines capable of consistent results across
platforms.
We added support for bespoke controls for popup menus and text
entries (rather than using platform controls) but this has
implications for the accessibility of plug-in UIs. Screen readers
have no knowledge of such custom controls, or of any IControls,
for that matter. iPlug has previously been used for accessible
interfaces for audio software using techniques such as sonification
[9]. Further work is necessary to develop solutions that can natively
offer good accessibility and this is something that should be
handled at framework-level to proliferate accessible interfaces. In
this regard, declarative HTML-based UIs are an appealing option
since they can retain a high degree of semantic information for
screen readers.

7. CONCLUSION
iPlug 2 offers a solution for rapidly deploying audio plug-ins to a
range of targets, including the web browser. The framework allows
the creation of desktop and web plug-ins from a single codebase,
easing the process of porting plug-ins from existing C++ code,
including their graphical user interfaces.
In this paper, the key features of iPlug 2 related to web audio have
been discussed. These include seamless support for distributed
editor and processor parts (required for using IGraphics with the
WAM format) as well as a more modular approach allowing
different drawing APIs to be used. We have also presented several
options for web-based drawing backends and we discussed using
these with WebSockets to enable remote editors for desktop plug-
ins. iPlug 2 brings together web technologies and the world of audio
plug-ins. We hope that this work will help create a richer ecosystem
for Web Audio.
iPlug 2 is liberally licensed and is available for free under the WDL
license at https://github.com/iPlug2. The WAM version of
VirtualCZ can be tried online at https://virtualcz.io

8. ACKNOWLEDGEMENTS
We would like to acknowledge the support of The Creative Coding
Lab at The University of Huddersfield. Thanks to Justin Frankel
and John Schwartz from Cockos, as well as all contributors to the
iPlug framework and the open-source libraries it uses.

9. REFERENCES
[1] Adenot, P., Toy, R., Wilson, C., Web Audio API, W3C

Working Draft, 08 December 2015 and W3C Editor’s Draft,
19 April 2018. Available online at
http://www.w3.org/TR/webaudio/ and
http://webaudio.github.io/web-audio-api/

[2] Buffa, M., Lebrun, J., Kleimola, J., Larkin, O., Letz, S. 2018.
Towards an open Web Audio plug-in standard. In
Proceedings of the International World Wide Web
Conference (WWW '18). Lyon, France.

[3] Choi, H. 2018. AudioWorklet: The future of web audio. In
Proceedings of the International Computer Music
Conference (ICMC2018), Daegu, South Korea.

[4] Jillings, N., Wang Y., Reiss, J.D. and Stables, R. 2016.
JSAP: A plugin standard for the Web Audio API with
intelligent functionality. In Proceedings of the Audio
Engineering Society Convention 141, Los Angeles, USA.

[5] Jillings, N. and Stables, R. 2017. An Intelligent audio
workstation in the browser. In Proceedings of 3rd Web Audio
Conference, London, UK.

[6] Kalliokoski, J., and Wilson, C. Web Midi API, W3C
Working Draft, 17 March 2015 and W3C Editor’s Draft,
Draft 07 November 2017. Available online at
http://www.w3.org/TR/webmidi/ and
http://webaudio.github.com/web-midi-api/

[7] Kleimola, J., and Larkin, O. 2015. Web Audio Modules. In
Proceedings of the 12th Sound and Music Computing
Conference (SMC-2015). Maynooth, Ireland.

[8] Larkin, O. 2018. Faust in iPlug 2: Creative coding audio
plug-ins. In Proceedings of the 1st International Faust
Conference (IFC-18). Mainz, Germany.

[9] Martin, F., Metatla, O., Bryan-Kinns, N., Stockman T. 2016.
Accessible Spectrum Analyser. In Proceedings of the 22nd
International Conference on Auditory Display (ICAD-2016).
Atlanta, USA.

[10] Pirkle, W. 2012. Designing Audio Effect Plug-Ins in C++:
With Digital Audio Signal Processing Theory. Focal Press
(Taylor & Francis Group).

[11] Robillard, D. 2014. LV2 Atoms: A Data Model for Real-
Time Audio Plugins. In Proceedings of the Linux Audio
Conference (LAC-2014). Karlsruhe, Germany.

[12] Zakai, A. 2011. Emscripten: an LLVM-to-JavaScript
compiler. In Proceedings of the ACM International
Conference on Object Oriented Programming Systems
Languages and Applications (OOPSLA '11). New York,
USA.

