
Vitruvian Brain

Table of content

One of the many problems with self-learning today is the lack of full-
featured tools four your studies, current tools, even when they provide
all the necessary features to a productive & plesurable learning session
they might have other f laws such as lock-in, complexity, online-only,
platform-specific etc.

The purpose of this document is to present the current state-of-art in
study/learning/thinking tools, present their respective advantages and
disadvantages and the solution currently being worked on, as to
address all the f laws where others have "failed", picking the best parts,
leaving the bad and trying building a standard that is Simple, Open
Source, Plain Text, Robust and Extensible.

To summarize, this is an attempt to create a lock-in free, off line,
platform-independent "standard" in which universal learning tools can
be build upon.

Goals

The `Vitruvian Brain` standard has the goal of describing a system in
which the following learning tools will be make available:

Zettelkasten, Incremental Reading, Spaced Repetition, Interest Repetition,
Incremental Video, Mind Maps, Learning From Text(LFT), Incremental
Thinking, Incremental Work, Getting Things Done(GTD), Interleaving
and Incremental Writing.

It'll do so by describing a series of procedures, formats and protocols
in which *any* developer[s] might choose to "implement" or "be
compatible with" . This is to make sure the standard is long-lived and
does not succumb to the fate of "bit-rot" in which programs tend to
have a rather short shelf life. Protocols are much more resilient because
they're implementation-independent, so anyone can write an
implementation for it, one analogy might be that web browsers come
and go all the time, but the HTTP protocol has shown itself to outlive
most of its concrete implementations.

Why not Anki?

Anki is a f lashcard spaced repetition application where you can review
cards on a exponential schedule, only needing to keep the daily review.

Pros

- Popular: A lot of people in medical school and the language
learning community have been using anki for ages, so
familiarity with them is a plus.
- Community: A lot of pre-made decks and plugins

Cons

- Light Lock In: Anki "locks" your files, videos, images, audios
and f lashcards in a non plain-text format thus "sucking"
everything you throw at it and you have to do some work in get
it back.
- Complexity: maybe there's too many, unecessary options which
might scare beginners.
- Bad Integration: in order to intereact with something like a
zettelkasten system you would need to either connect with
AnkiWeb(API) or open the app every time(too wlo).

Anki Conclusion

Implementing anki into the system I've presented you with would be
possible, but we would suffer from integration inefficiencies and the
"what it could have been" effect.

Why not Supermemo?

Supermemo is a software program created by Pitr Wozniack. Its most
known features are *Incremental Reading* and *Spaced Repetition
Flashcards*.

Pros

- Completeness: It has Spaced Repetition(SM17), Incremental
Reading, Sleep Chart, Knowledge Tree, Neural Review and more.
- Efficiency: It has probabily the most efficient interval calculating
algorithm(SM17) and Incremental Reading is not implement to the
level it has in supermemo, it has clozes, image clozes, topic
schedule etc.
- Community: It's considerably big, you can find plugins,
workflows, tips, keyboard shortcuts etc.

Cons

- Complexity: It looks like the central panel for a nuclear reactor
station. It takes too much time to get used to the buttons,
shortcuts, conventions, nomeclatures etc.
- Platform Dependend: Windows Only(Wine is not always reliable
)
- Zettelkasten: I have heard you can implement it on SuperMemo,
In my opinion it also suffer from a "what it could have been"
effect in my view.
- Lock In: It locks your files into a non-plaintext format.

Supermemo Conclusion

In terms of raw cognitive power and stufy efficiency, SuperMemo is
not only probably the best tool around, but it quite literally pioneers a
lot of the ideas in which we take as best practices today(Spaced
Repetition, Incremental Reading, Incremental Learning in general).
But I feel like we could take the best parts of supermemo, turn it into
a concrete-implementation-agnostic and let people make their own tools
according to it, it might leave to considerable growth in the field of
study tools

Why not Obsidian?

Obsidian is a note-taking application where it works with plain-text
markdown files, it's very commonly used to implement a zettelkasten
system.

Pros

- Almost Platform Independent: It's available for Windows, MaxOS,
Linux and mobile.
- No lock in: It's plain text files a folders
- Popular: A lot of people in medical school and the language
learning community have been using anki for ages, so
familiarity with them is a plus.
- Community: A lot of pre-made decks and plugins
- Extensible: With The Obsidian Plugin API you can write
features the tool does have but you want to use.

Cons

- Files is the lowest level you could go, and block references don't
work that well.
- Concrete implementation that might not have everything users
need and the possiblity of a plugin might be be as promising.

Obsidian Conclusion

Obsidian comes the closest to an "open" study tool. It does not lock
your files in, have zettelkasten, incremental reading and spaced
repetition plugins. My only problem with obsidian is the fact that its
main "primitive" or "unit of work" is a markdown file, which is fine
for most people but I'm pretty sure some people would desire a more
"lightweight" way of creating relationship. One example would be a
interesting quote, if you want to make this quote a node in the
graph/zettelkasten you need to create an entire file for it, which is in
my opinion too cumbersome/uncecessary, if you collect 100 quotes
you'll have 100 more files ... of course you can all put them in a single
file, but referencing them from this single file would go "against" the
atomicity principle of zettelkasten and each individual one would not
be visible in any graph.

Why not Roam Research?

Roam Research is a paid online note-taking application where people
can access their *graphs* or note online.

Pros

- Simple: Very slick and intuitive.
- Almost Platform Independent: Works on the brower, it means it's
almost universal.
- Blocks: small, cheap and removes the "does this deserver a file?"
effect.

Cons

- Online Only:
- Lock In: Roam has the option to export - []
- Paid: Roam is a paid tools which makes is non-accessible for a
lot people.

Roam Research Conclusion

Roam is probabily the best optiosn between all of the presented here
but ... It's not free. So that's a no.

Why [not] ZIR Standard?

`Vitruvian Brain` Standard is a series of documentation and practices
in which developers might implement learning applications. By
following those design choices it'll ease the cognitive load of inventing

everything from scrath, they can have a battle-tested framework for
study tools and focus on the delivery of said tools, instead of
discussing which solutions are the best one.

Pros

- No lock in: It's just files and folder.
- Platform Independent: Since it's a standard and not a concrete
implementation we might implement it in: C++, python, bash, Web,
iOS, Windows, Linux, MacOS, Embedded etc.
- Good Primitive: Bullets, files and folders, everythign else is
build atop those basic primitives.
- Bullets: small, cheap and remove the "does this deserver a file?"
effect.
- No "Software Rot": Since it's not even a concrete implementation,
there's nothing to rot here, protocols outlive programs by the
decades, that's the intent here.

Cons

- To be added ...

ZIR Standard Conclusion

The very purpose of the `Vitruvian Brain` standard is to learn from
those previous tools, take their best points, mitigate their weaknesses
and make an open standard from a hypothetical study tool with the
features that provide the most benefit(Spaced Repetition, Incremental
Reading, Incremental Writing, Zettelkasten, Interest Repetition,
Interleaving etc.)

Principles

The `Vitruvian Brain` will takes inspiration from the `Unix
Philosophy` such as:

`Do one thing and do it well`

`Plain text is the ultimate interface`: We don't make use of `JSON`,
things such as configuration are also non-json plaintext.

Fundamentals
Bullets

Bullets are the "Working Blocks" of a ZIR system, bullet are simple
lines in the following format:

:

Examples

20270216193456: [[Typography]] ==Typefaces== with a **taller** x-height
are considered modern and easier to read.

20200522162753: #todo/review A [[Liver]] cell, although it carries the
genes to do so, will generally not be able to function as a skin cell
[[DNA]] [[Biology]] [[Totipotency]]

Explanation

20200522162753: ID

#todo/review: Tags

A [[Liver]] cell, although it carries the genes to do so, will generally not
be able to function as a skin cell: Content(With Tags)

[[DNA]] [[Biology]] [[Totipotency]]: Tags

Bullet ID

The bullet id is the current timestamp including seconds when the
bullet was made, this works as a timestamp and also as an local
unique ID, considering you can't possibly create 2 bullets in the same
second. All of the bullets are considered to be unique, if one is
malformed, like, without an ID, it'll not try to correct it.

Bullet ID Format

`YYYMMDDhhmmss`
`YYYY`: Year
`MM`: Month[s]
`DD`: Day[s]
`hh`: Hour[s]
`mm`: Minute[s]
`ss`: Second[s]

All single-digit values will have a leading 0 so: 1 -> 01, 2 ->
02, 9 -> 09 etc.

Bullet Content

You might use plain-text for the content of the bullet or the standard
markdown f lavor, markdown links can be either \[Technology\]
(https://example.org) or [[Technology]]. Any embedding, or dynamic
content will be implemented on software, this gives enough f lexibility
for your writing without any specialized program, but remember
that IDs are still needed, and when you open an actual software
implementation, you'll see the images, videos, sounds etc.

Bullet Location

Bullets can be in any file such as: `Javascript.md` `Journal.md` or
`Medicine Summary.md`. But it is assumed you have a "main" file in
which most of your bullets will resize in(the default target location).
By default this file is simply called `Vitruvian Brain`.

You can modify the default location for the bullets if you want.

Files

Files should be automatically created when we find a new link such
as: `[[HTML]]` if the file named `HTML.md` has not been already
created, then it should be.

Tags

Tags are defined by the following format: # or #tag/

Incremental Reading

Spaced Repetition

- [] The algorithm for spaced repetition will be.

The main tag used for spaced repetition is: `#sr`, and all of its children
will be used for configuring its previous reviews, next schedule, status
etc.

The algorithm for spaced repetition will be configured in tags like
this:

20200522162753: #sr #sr/review/dqwdqwddqw #sr/ireview/22020202
#sr/treview/32121312

Interest Repetition

Interest Repetition will take into account the current "mood" of the
users while showing and scheduling new cards. When "raw", it's the

same as an *Spaced Repetition* algorithm where the interval between
the days in exponential

Spaced Repetition & Interest Repetition scheduling algorithm

Depending if the item is being reviewed because of motivation or
because of time is important to the algorithm. If it's a time-only
review, then a normal exponential scheduling will work just as fine.
But when we review an item *Before* its schedule date due to
momentum, the scheduling date will not be the same.

It's also important not to "burden" users with accumulating reviews,
which might create displeasure in retaining information and that
should not be the case, we'll allow for a more forgiving algorithm
than Anki's modified SM2 Algorithm.

Which means users might skip a day without being heavily punished,
we're here to maximize the pleasure of learning and retention, not
punish users for missing a review day.

Example:

Interest Repetition Queue

The *Interest Repetition Queue* is basically a list of files, that is, items,
in which they have an "interest point" assigned to them. This "interest
point" will define the item's probbility, as well as its average frequence.
This is due to the fact that this list of items(the queue) is not static,
it's dynamic and it's constantly changing, every time you read an
item, the queue will "shift" and item, or remove its first items, and add
it to the end of the list. This way, in order to see an item twice(
without any modiciation) you would need to read every item on the
queue in order to see the other item again.

The *Interest Repetition Queue* is a list of your interest that will act in
all 3 areas: Consumption, Retention and Application

For the "Consumption" area, this will be for items you want to read,
watch or consume in general. This is where most of the learning will
take place, since this is where you're consumption new content instead
of remembering old content or re-thinking concepts you already
know(meditation).

Some examples of items that are in the "consumption" area are:

News about an industry you would like to know
A book on neuroscience

A blog about how machine learning backpropagation works.
A infographic you want to integrate into your life
A 10 seconds video you saw online about how a guys lubricates
his joint and you want to incorporate this knowledge, behavior
and habit to yourself
A 7 seconds video where you clipped from an artist performing
a keyboard-shortcut on a software program you also happen to
use, in order for you to start using the shortcut yourself.
For the "Retention" area, this is the items you want to have a
memory for life, this might be
Some examples for the "Retention" area are:

A 7 seconds video where you clipped from an artist performing
a keyboard-shortcut on a software program you also happen to
use, in order for you to start using the shortcut yourself.

Application - []

Examples: - []

Interest Repetition Queue Scheduling Algorithm

Different from the *Spaced Repetition* scheduling algorithm, the
Interest Repetition scheduling algorithm is not about hard time, or
"dates". It's more about rations and probabilities.

While a *Spaced Repetition algorithm* might schedule your items like: -
day(1) -> day(3) -> day(10) -> day(30) -> day(80)

A interest repetition has no concept of "days" or "dates", it has the
notion of "rations" and "probability". Since every item in the *Interest
Repetition Queue* has a "interest point" which ranges from -99 to 99.
-99 means that is has a 99% probability of being "ignored" while
reading your queue. while 99 means it has a 99% change of going up
one step every time you read your queue.

This means that the queue is "self-regulating". Items will move up and
down, being popped and shifted based on their interest point.

- []

Plugins

In order to prevent software rot, it's recommended to develop plugins
with the following technologies: HTML, CSS and Javascript.

This way, it's a simple .html file that can be opened in the browser,
since browsers generally don't have access the the Operational System's

Filesystem, you'll have to copy your bullets from your main file and
then paste in on the plugin. This way your data is protected from
being deleted.

It's recommended to add a keyboard shortcut to copy all of the bullets
to the clipboard to transform it more easily for plugins.

Main Files

zettelkasten
- The file where most of your bullets will go.

ir
It's optional, but avoids "bloating" your `Vitruvian Brain`
file, where this one will store the bullets for your *Interest
Repetition*.

queue
It's the consumption queue for your interests, it might
include things such as: Videos, Audios, images, PDFs, scripts
for automation, scripts for plugins etc.

statistics
It's the file with read/write/delete/qpop/qshift/qscan including
the time you spend, so you can know what you read, what
extract you took, what you deleted, how much time you
spend reading, how much time you spend working, how
much time you spend on a certain script or plugin , did
you spend today more on the topic of *Biology* or *Clinical
Pathology* etc.

Main Folders

irq
It's the folder for the *actual* *Interest Repetition* files, such as
videos, images, PDFs, HTML, Scripts etc.

.trash
Trash folder

Folder Structure Example

zir/
zettelkasten
ir
queue
statistics
irq/

890123.video.mp4
123124.pathology.pdf

380921.pathology.pdf
453809.mtDNA.pdf
32879.human-anatomy.pdf

Exponential Interval Scheduling

Importing PDFs

Avoid having more than 1 final dot in a PDF file like: "book from
John H. R. last edition" instead have: "book from john H R last
edition.pdf" this will prevent bugs.

Requirements
Plain Text Files

Folders

PDF reader(with anotation is better)

Screenshot tool

Keyboard shortcut manager(options, but makes the process much
faster)

The Tools
Zettelkasten

Incremental Reading

Interest Repetition

Spaced Repetition

Image Cloze Deletions

You'll probability need a PDF for this, the base format is an image file
like .png .jpeg etc.

So if you want cloze deletions we recommend having an automatic
PDF-to-image converter to have cloze deletions.

Incremental Reading

By having PDF files and a scheduling algorithm you can have
incremental reading.

Principles
Stateless

Plain Files Only

Everything is a bullet

Todos & Priorities

20220129123625: - [] #ilse-standard Instead of having a personal
notation for priority, instead use the normal - and [] just adding a
number in front of it(the priority) as in -> [] 3 [] 1 [] 4

Topics Three

Use tags like

topics
#topics/languages

#topics/languages/german
#topics/languages/spanish
#topics/languages/french
#topics/languages/icelandic
#topics/languages/japanese
#topics/languages/korean
#topics/languages/chinese

- #topics/cs
#topics/cs/OOP
#topics/cs/FP
#topics/cs/alalgorithms
#topics/cs/data-structures
#topics/cs/version-control
#topics/cs/compilers
#topics/cs/interpreters

#topics/cs/interpreters/context-free-grammars
#topics/cs/interpreters/llvm

#topics/cs/machine-learning
#topics/cs/machine-learning/gradient-descent

#topics/biology
topics/biology/ecology
#topics/biology/biochemistry

#topics/biology/genetics
#topics/biology/zoology

Give the exponential nature of the schedule, you might put any file
there and it'll open either when you want, or when the scheduler
makes time for it. This might be used for painting, music, editing,
incremental work, incremental documentation and more.

Incremental Learning

Stream Item Best Practices

Show an example of cçassofocatopm amd how more items might be
better(aomtic)

20220122104532: - [] #ilse-standard It should be software agnostic and
take the principles from the "Unix Philosophy", stuff like plain text,
accesible to other tools

20220122104715: - [] #ilse-standard Since we're using a plain-text, folder
approach, anyone should be able to write a different client for a
different platform/medium with not much troublem such as, but not
limited to: Tmux, Rofi, zenity, QT etc

20220128152712: [[Ilse]] #! #ilse-standard Incremental Reading notation
ideas: - <2>, @2, =2, +2, ir/3, incremental reading priority 3, winner =2,
this will show the "priority" from 1-5, 1 being urgent, while 5 is like
"maybe some day"

20220128162512: - [] #ilse-standard #!, #!!, #!!! for blocking and ir/1,
ir/2, ir/3, ir/4, ir/5 for incremental reading priority levels, and #!ir/3 for
"pausing" a cloze from showing, also {{c1::}} will be for cloze deletions.

20220130141057: - [] #ilse-standard Extending your data is preffered to
extending your program

20220204114840: - [] #ilse-standard Config variables -> folder for
incremental reading, file for bullets, main folder etc

20220204125829: - [] #ilse-standard incremental reading priorities will
use tags, or nested tag like ir/0 ir/1 ir/2 ir/3

20220205110038: - [] #ilse-standard stateless, it's just the data and then
you process this data into something in real-time, this is to avoid
complexity.

20220205123000: - [] #ilse-standard incremental-reading is done with
3 tools: PDFs, annotations and images.

20220205133745: - [] #ilse-standard In [[Obsidian]] when people make
block refs, it means that they need a more granular approach to
knowledge, and the software is forcing people into making bad
choices, like making a quote into an entire file.

20220205152157: - [] #ilse-standard, our spaced repetition should work
inline too, it should work SOLELY on tags like
#sr/20220204/1,2,3,4,,5,5/ or whatever, filtering should be done via text
and not something else.

20220205153617: - [] #ilse-standard to make something a f lashcard add
#sr, to add a repetition do: #sr/at/12341235 1-5, to pause #sr/paused

20220205163457: - [] #ilse-standard every config will be given with
additional tags like #ir/paused

20220206124623: - [] #ilse-standard stateless, things should be
calculated in real-time instead of storing thing for caching purpose or
later reference.

20220206202733: - [] #ilse-standard the goals is that you should be
able to have a ZIS system(Zettelkasten, Incremental Reading and
Spaced Repetition) system with plain text files, folders, a screenshot tool
and a PDF viewer

20220208213854: - [] #ilse-standard We might have a single stream
that represents 3 differents things like: incremental reading, f lashcards,
todo, since it's only one stream, you don't have to worry about
"missing" something. just keep grinding and you'll come to you

20220210163012: - [] #ilse-standard We might have an image where we
slowly but surely divide into smaller units until each item representes
one memory/action/concept

20220211142603: - [] #ilse-standard our stream thing will have the
following goals: make an open standard for Zettelkasten, it has to be
software independent -> standard, Ilse Langnar's Notebook ->
implementation. Scripts -> implementation. Stream Framework ->
Something that goes along very well? Also an open standard for
Incremental Reading, Spaced Repetition and Interest Repetition(my
thing) using only plain text files, folders, PDFs and screenshot

20220211152053: - [] #ilse-standard limitations of supermemo:
windows-only(wine is bad), software-dependent, too complicated, not
beginner friendly, non plain text + folders format(lock in)

20220211211141: - [] #ilse-standard stateless as possible, only the bullets
are used, nothign else.

20220213195249: - [] #ilse-standard #ziis when you have script for
items, it'll execute those scripts, because you might want to have
something more elaborated like "open program a, do a stream query
for "mp4" then open this .png file all at once"

- [] Add support for RSS for your first brain?

	Slide 1

