
Vitruvian Brain

Table of Content
Introduction
Goals
Current Solutions & Flaws

Anki
Supermemo
Obsidian
Roam Research
Vitruvian Brain

Principles
The 2 Brains

First
Second

Fundamentals
Incremental Reading
Spaced Repetition Scheduling
Interest Repetition
Interleaving

Introduction
One of the many problems with self-learning today is the lack of full-featured tools four your
studies, current tools, even when they provide all the necessary features to a productive &
plesurable learning session they might have other f laws such as lock-in, complexity, online-only,
platform-specific etc.

The purpose of this document is to present the current state-of-art in study/learning/thinking
tools, present their respective advantages and disadvantages and the solution currently being
worked on, as to address all the f laws where others have "failed", picking the best parts, leaving the
bad and trying building a standard that is Simple, Open Source, Plain Text, Robust and Extensible.

To summarize, this is an attempt to create a lock-in free, off line, platform-independent "standard" in
which universal learning tools can be build upon.

Goals

The `Vitruvian Brain` standard has the goal of describing a system in which the following
learning tools will be make available:

Zettelkasten, Incremental Reading, Spaced Repetition, Interest Repetition, Incremental Video, Mind
Maps, Learning From Text(LFT), Incremental Thinking, Incremental Work, Getting Things
Done(GTD), Interleaving and Incremental Writing.

It'll do so by describing a series of procedures, formats and protocols in which *any* developer[s]
might choose to "implement" or "be compatible with" . This is to make sure the standard is long-
lived and does not succumb to the fate of "bit-rot" in which programs tend to have a rather short
shelf life. Protocols are much more resilient because they're implementation-independent, so anyone
can write an implementation for it, one analogy might be that web browsers come and go all the
time, but the HTTP protocol has shown itself to outlive most of its concrete implementations.

Current Solutions and their f laws

Anki

Anki is a f lashcard spaced repetition application where you can review cards on a exponential
schedule, only needing to keep the daily review.

Pros

Popular: A lot of people in medical school and the language learning community have been
using anki for ages, so familiarity with them is a plus.
Community: A lot of pre-made decks and plugins

Cons

Light Lock In: Anki "locks" your files, videos, images, audios and f lashcards in a non plain-
text format thus "sucking" everything you throw at it and you have to do some work in get
it back.
Complexity: maybe there's too many, unecessary options which might scare beginners.
Bad Integration: in order to intereact with something like a zettelkasten system you would
need to either connect with AnkiWeb(API) or open the app every time(too wlo).

Conclusion

Implementing anki into the system I've presented you with would be possible, but we would
suffer from integration inefficiencies and the "what it could have been" effect.

Supermemo

Supermemo is a software program created by Pitr Wozniack. Its most known features are
Incremental Reading and *Spaced Repetition Flashcards*.

Pros

Completeness: It has Spaced Repetition(SM17), Incremental Reading, Sleep Chart, Knowledge
Tree, Neural Review and more.
Efficiency: It has probabily the most efficient interval calculating algorithm(SM17) and
Incremental Reading is not implement to the level it has in supermemo, it has clozes, image
clozes, topic schedule etc.
Community: It's considerably big, you can find plugins, workflows, tips, keyboard shortcuts
etc.

Cons

Complexity: It looks like the central panel for a nuclear reactor station. It takes too much time
to get used to the buttons, shortcuts, conventions, nomeclatures etc.
Platform Dependend: Windows Only(Wine is not always reliable)
Zettelkasten: I have heard you can implement it on SuperMemo, In my opinion it also suffer
from a "what it could have been" effect in my view.
Lock In: It locks your files into a non-plaintext format.

Conclusion

In terms of raw cognitive power and stufy efficiency, SuperMemo is not only probably the best
tool around, but it quite literally pioneers a lot of the ideas in which we take as best practices
today(Spaced Repetition, Incremental Reading, Incremental Learning in general). But I feel like we
could take the best parts of supermemo, turn it into a concrete-implementation-agnostic and let
people make their own tools according to it, it might leave to considerable growth in the field of
study tools

Obsidian

Obsidian is a note-taking application where it works with plain-text markdown files, it's very
commonly used to implement a zettelkasten system.

Pros

Almost Platform Independent: It's available for Windows, MaxOS, Linux and mobile.
No lock in: It's plain text files a folders
Popular: A lot of people in medical school and the language learning community have been
using anki for ages, so familiarity with them is a plus.
Community: A lot of pre-made decks and plugins
Extensible: With The Obsidian Plugin API you can write features the tool does have but you
want to use.

Cons

Files is the lowest level you could go, and block references don't work that well.
Concrete implementation that might not have everything users need and the possiblity of a
plugin might be be as promising.

Conclusion

Obsidian comes the closest to an "open" study tool. It does not lock your files in, have zettelkasten,
incremental reading and spaced repetition plugins. My only problem with obsidian is the fact that
its main "primitive" or "unit of work" is a markdown file, which is fine for most people but I'm
pretty sure some people would desire a more "lightweight" way of creating relationship. One
example would be a interesting quote, if you want to make this quote a node in the
graph/zettelkasten you need to create an entire file for it, which is in my opinion too
cumbersome/uncecessary, if you collect 100 quotes you'll have 100 more files ... of course you can
all put them in a single file, but referencing them from this single file would go "against" the
atomicity principle of zettelkasten and each individual one would not be visible in any graph.

Roam Research

Roam Research is a paid online note-taking application where people can access their *graphs* or
note online.

Pros

Simple: Very slick and intuitive.
Almost Platform Independent: Works on the brower, it means it's almost universal.
Blocks: small, cheap and removes the "does this deserver a file?" effect.

Cons

Online Only:
Lock In: Roam has the option to export to json but still too limited.
Paid: Roam is a paid tools which makes is non-accessible for a lot people.

Conclusion

Roam is probabily the best optiosn between all of the presented here but ... It's not free. So that's a
no.

Vitruvian Brain

`Vitruvian Brain` Standard is a series of documentation and practices in which developers might
implement learning applications. By following those design choices it'll ease the cognitive load of
inventing everything from scrath, they can have a battle-tested framework for study tools and
focus on the delivery of said tools, instead of discussing which solutions are the best one.

Global Notes

Bugs.md Rails.md Docker.md

Biology.md Vim.md Sail.mp4

Vitruvian Filesystem

notesqueue

statistics config.json

script.sh
script.bat

Statistics Configuration

Second

card.png Cloze.pdf todo.sh

Think.pdf Video.mp4 Picture.jpg

First

.trash

FolderFile

Schedule

Native Script

Pros

No lock in: It's just files and folder.
Platform Independent: Since it's a standard and not a concrete implementation we might
implement it in: C++, python, bash, Web, iOS, Windows, Linux, MacOS, Embedded etc.
Good Primitive: Bullets, files and folders, everythign else is build atop those basic primitives.
Bullets: small, cheap and remove the "does this deserver a file?" effect.
No "Software Rot": Since it's not even a concrete implementation, there's nothing to rot here,
protocols outlive programs by the decades, that's the intent here.

Cons

To be added ...

Conclusion

The very purpose of the `Vitruvian Brain` standard is to learn from those previous tools, take
their best points, mitigate their weaknesses and make an open standard from a hypothetical study
tool with the features that provide the most benefit(Spaced Repetition, Incremental Reading,
Incremental Writing, Zettelkasten, Interest Repetition, Interleaving etc.)

Principles

The `Vitruvian Brain` will takes inspiration from the `Unix Philosophy` such as:

`Do one thing and do it well`

`Plain text is the ultimate interface`: We don't make use of `JSON`, things such as configuration are
also non-json plaintext.

Since this is not a piece of software but a standard, anyone might build a client that operates with
the standard.

The 2 Brains

The Vitruvian Framework has the concept of "two brains". The First Brain and the Second Brain.

The First Brain is for everything you want to see in the future by a time schedule. Like Todos,
Books, Articles, Prompts, Writing Prompts, Videos, Inspirations, Reminders et.

The Second Brain is for References, wikipedia, Writing, catalog and thinking-trail.

First Brain

1.png 2.pdf 3.mp4

4.png 5.pdf 6.bat

1.png

2.pdf

3.mp4

4.png

Queue
First Brain

Schedule
Items

5.pdf

6.bat

Next Item

Last Item

Unless you only plan to work in the future, this is probabily the most important one, this is
where the "study" part of the framework runs on.

To summarize, the first brain is merely a folder with many files inside of it and a queue to
schedule the review of those files. So if you drop a .pdf inside the first brain folder, you'll not
review it today, but when the scheduler arranges it for you. This is good for the "stress-less" nature
of the study session, you just bind to a keyboard shortcut and press it to study.

Second Brain

Global Notes
Bugs.md Rails.md Docker.md

Project.md Vim.pdf Jokes.md

Second Brain

notes

Files & Their
local notes

The second brain is more of a wikipedia/reference/catalog/quotes/catalog where you store things
that you don't need to be reminded of on a regular basis.

Fundamentals
Bullets

Bullets are the "Working Blocks" of a Vitruvian Brain system, bullet are simple lines in the
following format:

@id: @whitespace @content

To make "hirerarchical tags" use the format #@parent/child e.g #programming/javascript

Those bullets are stored in normal plaintext files with extentions such as ".txt" and ".md" such as:

The Bullet Id is the current timestamp including seconds when the bullet was made, this works as
a timestamp and also as an local unique ID, considering you can't possibly create 2 bullets in the
same second. All of the bullets are considered to be unique, if one is malformed, like, without an
ID, it'll not try to correct it.

The bullet format follows the following format:

YYYMMDDhhmmss
YYYY: Year
MM: Month[s]
DD: Day[s]
hh: Hour[s]
mm: Minute[s]
ss: Second[s]

All single-digit values will have a leading 0 so: 1 -> 01, 2 -> 02, 9 -> 09 etc.

You might use plain-text for the content of the bullet or the standard markdown f lavor, markdown
links can be either [Technology](https://example.org) or [[Technology]] . Any embedding, or
dynamic content will be implemented on software, this gives enough f lexibility for your writing
without any specialized program, but remember that IDs are still needed, and when you open an
actual software implementation, you'll see the images, videos, sounds
rendered from either
embedded like ![[Video.mp4]] etc.

Global bullets are inside a file called notes while any local bullet is in your file such as
Javascript.md or Docker.md

Bullets can be in any file such as: `Javascript.md` `Journal.md` or `Medicine Summary.md`. But
it is assumed you have a "main" file in which most of your bullets will resize in(the default
target location). By default this file is simply called `Vitruvian Brain`.

You can modify the default location for the bullets if you want.

Incremental Reading

Incremental Reading is like normal PDF reading but instead of processing everything in one go,
you "break" the text into smaller extracts and then those extracts will become f lashcards.
Incremental Reading is a type of Incremental Learning where instead of cramming/blocking to
study you instead study in many "small sessions" in order to increase attention, retention and
overall reading pleasure.

Vitruvian Brain implements incremental reading with normal files such as ".png", ".pdf", ".epub"
etc.

Our Incremental Reading has 2 parts, one is the "first" folder, the other is the "queue" file. The
folder will store your articles/books/cartoons/mangas/textbooks/dictionaries while your queue will
schedule when those files should be shown in a study sesion. The "incremental" part here is that
by implementing a screenshot system we can crop up a book into many different screenshots and
possibly transform those images into something else like a PDF.

Reading/Reviwing Items:

Reading / Reviewing Items

queue

5.rails.pdf

45.vim.pdf

11.ps.pdf

56.kaf.png

1.nginx.pdf

4.paint.exe

5.rails.pdf

45.vim.pdf

11.ps.pdf

56.kaf.png

1.nginx.pdf

4.paint.exe

Next Item

Open "4.paint.exe"

Writing/Making Items:

When should
you see each
item(schedule

4.paint.exe 1.nginx.pdf 5.rails.pdf

45.vim.pdf 11.ps.pdf <new>

Store books
and chunks

on folder

queue

Flashcards, Items
Todos etc.

Chunks to read or
to remember

Chapter 1

Chapter 2

part 1

part 2

part 3

part 4 part 5

part 6

part 7part 8 part 9

Book or article

5.rails.pdf

45.vim.pdf

11.ps.pdf

56.kaf.png

1.nginx.pdf

4.paint.exe

Screenshots or
PDFs

Making items

<new>

One added benefit is that since it's a "file generic" scheduler you can put anything in there, scripts
to start your project, photo editing files to start editing file immediatly, a mind map executable for
you to work on a certain tree, if it opens then you can use it.

Spaced Repetition & Scheduling Algorithm

The way the framework define the "spaced repetition algorithm" is different than the commonly
implemented like SM-2 or SM-18 is that the way the algorithm usually works is that it requires a
"daily drill", or a daily amount of cards you need to review in order for the algorithm to be
effective.

This standard uses a "scheduling queue" and not "specific" dates for review in order to avoid the
need of having a "daily drill" for several reasons. Such as when you're tired or just forgets to
review your f lashcards, or when in a specific time when you have enough energy/interest to
review around 100 items about programming, you'll only review 10. To summarize, daily drills
can be demotivating due to item accumulations and opportunity loss when you wanted to review
more items but the strict algorithm would not allow you yo.

Depending if the item is being reviewed because of motivation or because of time is important to
the algorithm. If it's a time-only review, then a normal exponential scheduling will work just as
fine. But when we review an item *Before* its schedule date due to momentum, the scheduling date
will not be the same.

It's also important not to "burden" users with accumulating reviews, which might create
displeasure in retaining information and that should not be the case, we'll allow for a more
forgiving algorithm than Anki's modified SM2 Algorithm.

Which means users might skip a day without being heavily punished, we're here to maximize the
pleasure of learning and retention, not punish users for missing a review day.

The queue(schedule) * is basically a list of files, that is, items, in which they have an "interest point"
assigned to them. This "interest point" will define the item's probbility, as well as its average
frequence. This is due to the fact that this list of items(the queue) is not static, it's dynamic and
it's constantly changing, every time you read an item, the queue will "shift" and item, or remove
its first items, and add it to the end of the list. This way, in order to see an item twice(without any
modiciation) you would need to read every item on the queue in order to see the other item
again.

The queue(schedule) is a list of your interest that will act in all 3 areas: Consumption, Retention
and Application

For the "Consumption" area, this will be for items you want to read, watch or consume in general.
This is where most of the learning will take place, since this is where you're consumption new
content instead of remembering old content or re-thinking concepts you already know(meditation
).

Some examples of items that are in the "consumption" area are:

News about an industry you would like to know
A book on neuroscience
A blog about how machine learning backpropagation works.
A infographic you want to integrate into your life
A 10 seconds video you saw online about how a guys lubricates his joint and you want to
incorporate this knowledge, behavior and habit to yourself
A 7 seconds video where you clipped from an artist performing a keyboard-shortcut on a
software program you also happen to use, in order for you to start using the shortcut
yourself.
For the "Retention" area, this is the items you want to have a memory for life, this might be
Some examples for the "Retention" area are:

A 7 seconds video where you clipped from an artist performing a keyboard-shortcut on a
software program you also happen to use, in order for you to start using the shortcut
yourself.

Different from the *Spaced Repetition* scheduling algorithm, the *Interest Repetition* scheduling
algorithm is not about hard time, or "dates". It's more about rations and probabilities.

While a *Spaced Repetition algorithm* might schedule your items like: - day(1) -> day(3) -> day(10) -
> day(30) -> day(80)

A interest repetition has no concept of "days" or "dates", it has the notion of "rations" and
"probability". Since every item in the *Interest Repetition Queue* has a "interest point" which ranges
from -99 to 99. -99 means that is has a 99% probability of being "ignored" while reading your
queue. while 99 means it has a 99% change of going up one step every time you read your queue.

This means that the queue is "self-regulating". Items will move up and down, being popped and
shifted based on their interest point.

Give the exponential nature of the schedule, you might put any file there and it'll open either when
you want, or when the scheduler makes time for it. This might be used for painting, music,
editing, incremental work, incremental documentation and more.

Interest Repetition

Interest Repetition is an upgrade to Spaced Repetition, that is, the scheduling algorithm that
schedules reviews based on the forgetting curve where each consecutive correct review will
schedule the next review exponentially longer. This way, you might review an item around only 5
times in your lifetime(1day, 1week, 1month, 1year, 50years) while retaining the memory forever.

Interest Repetition will take into account the current "mood" of the users while showing and
scheduling new cards. Then adjusts the card schedules accordingly. When "raw", it's the same as an
Spaced Repetition algorithm where the interval between the days in exponential

Interleaving

Lorem ipsum dolor sit amet, consectetur adipisicing elit, sed do eiusmod tempor incididunt ut
labore et dolore magna aliqua. Ut enim ad minim veniam, quis nostrud exercitation ullamco
laboris nisi ut aliquip ex ea commodo consequat. Duis aute irure dolor in reprehenderit in
voluptate velit esse cillum dolore eu fugiat nulla pariatur. Excepteur sint occaecat cupidatat non
proident, sunt in culpa qui officia deserunt mollit anim id est laborum.

Main Files

notes
Global Bullets, this is the file where most of your bullets will go.

queue
It's the scheduled consumption queue for your interests, it might include things such as:
Videos, Audios, images, PDFs, scripts for automation, scripts for plugins etc.

statistics
It's the file with read/write/delete/qpop/qshift/qscan including the time you spend, so you
can know what you read, what extract you took, what you deleted, how much time you
spend reading, how much time you spend working, how much time you spend on a
certain script or plugin , did you spend today more on the topic of *Biology* or *Clinical
Pathology* etc.

Main Folders

first
It's the folder for the actual *Interest Repetition* files, such as videos, images, PDFs, HTML,
Scripts etc.

second
Second Brain, Zettelkasten, References, Files etc.

.trash
Trash folder

Folder Structure Example

brain/
notes
queue
statistics
first/

890123.video.mp4
123124.pathology.pdf
380921.pathology.pdf
453809.mtDNA.pdf
32879.human-anatomy.pdf

second/
890123.video.mp4
123124.pathology.pdf
380921.pathology.pdf
453809.mtDNA.pdf
32879.human-anatomy.pdf

Incremental Learning

	Slide 1

