Open Shading Language 1.6

Language Specification

(© Copyright 2009-2015 Sony Pictures Imageworks Inc., et al. All rights reserved.

Editor: Larry Gritz
lg@imageworks.com

Date: 24 Feb, 2015

ii

The Open Shading Language specification, source code, and documentation are:

Copyright (c) 2009-2015 Sony Pictures Imageworks Inc., et al. All Rights Reserved.

The code that implements Open Shading Language is licensed under the BSD 3-clause (also
sometimes known as ‘“new BSD”) license:

Redistribution and use in source and binary forms, with or without modification, are per-
mitted provided that the following conditions are met:

e Redistributions of source code must retain the above copyright notice, this list of condi-
tions and the following disclaimer.

e Redistributions in binary form must reproduce the above copyright notice, this list of con-
ditions and the following disclaimer in the documentation and/or other materials provided
with the distribution.

e Neither the name of Sony Pictures Imageworks nor the names of its contributors may
be used to endorse or promote products derived from this software without specific prior
written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIB-
UTORS ”AS IS” AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT
NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FIT-
NESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUD-
ING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABIL-
ITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
SUCH DAMAGE.

This specification and other text documentation about Open Shading Language is licensed
under a the Creative Commons Attribution 3.0 Unported License.

—G)
http://creativecommons.org/licenses/by/3.0/

Open Shading Language Specification

Contents

(I_Introduction|

2

The Big Picture|

3.4 Keywords and reserved words|
3.5 Preprocessor{.

[4 Gross syntax, shader types, parameters, functions|

4.1 Shadertypes|.
4.2 Shader parameters|.

Language Syntax|

|6.1 ~ Variable declarations and assignments|
6.2 Expressions|
[6.3 Control flow: if, while,

do,

1ii

11
11
11
11
12
12

13
13
14
16
20
20

23
23
24
25
26
29
30
30
30
31
32

iv CONTENTS
6.5 Global variables| 40
[7 Standard Library Functions| 43
(/1 Basicmathfunctions| 43
[7.2 _Geometric functions|. 46
[/3 Colorfunctionsl 49
[/4 Matrix functionsl. 50
[7.5 Pattern generation| 51
[7.6 Derivatives and area operators| 55
[7.7 Displacement functions|, 56
[7.8 String functions| 56
O TeXWrel . - - o o oo e 59
(/.10 Matenial Closures| o oo oo 68
[7.11 Renderer state and message passing| 72
[7.12 Dictionary Lookups| 74
[/.13 Miscellaneous| L 76
[8 Formal Language Grammar| 77
[9 Describing shader groups| 83
A Glossary 87
[ndex] 89

Open Shading Language Specification

1 Introduction

Welcome to Open Shading Language!

Open Shading Language (OSL) is a small but rich language for programmable shading in
advanced renderers and other applications, ideal for describing materials, lights, displacement,
and pattern generation.

OSL was developed by Sony Pictures Imageworks for use in its in-house renderer used for
feature film animation and visual effects. The language specification was developed with input
by other visual effects and animation studios who also wish to use it.

OSL is distributed under the “New BSD” license. In short, you are free to use it in your own
applications, whether they are free or commercial, open or proprietary, as well as to modify the
OSL code as you desire, provided that you retain the original copyright notices as described in
the license.

How OSL is different from other shading languages

OSL has syntax similar to C, as well as other shading languages. However, it is specifically
designed for advanced rendering algorithms and has features such as radiance closures, BSDFs,
and deferred ray tracing as first-class concepts.

OSL has several unique characteristics not found in other shading languages (certainly not
all together). Here are some things you will find are different in OSL compared to other lan-
guages:

Surface and volume shaders compute radiance closures, not final colors.

OSL’s surface and volume shaders compute an explicit symbolic description, called a ’closure”,
of the way a surface or volume scatters light, in units of radiance. These radiance closures may
be evaluated in particular directions, sampled to find important directions, or saved for later
evaluation and re-evaluation. This new approach is ideal for a physically-based renderer that
supports ray tracing and global illumination.

In contrast, other shading languages usually compute just a surface color as visible from
a particular direction. These old shaders are “black boxes” that a renderer can do little with
but execute to for this once piece of information (for example, there is no effective way to
discover from them which directions are important to sample). Furthermore, the physical units
of lights and surfaces are often underspecified, making it very difficult to ensure that shaders
are behaving in a physically correct manner.

2 CHAPTER 1. INTRODUCTION

Surface and volume shaders do not loop over lights or shoot rays.

There are no “light loops” or explicitly traced rays in OSL surface shaders. Instead, surface
shaders compute a radiance closure describing how the surface scatters light, and a part of the
renderer called an “integrator” evaluates the closures for a particular set of light sources and
determines in which directions rays should be traced. Effects that would ordinarily require
explicit ray tracing, such as reflection and refraction, are simply part of the radiance closure and
look like any other BSDF.

Advantages of this approach include that integration and sampling may be batched or re-
ordered to increase ray coherence; a “ray budget” can be allocated to optimally sample the
BSDF; the closures may be used by for bidirectional ray tracing or Metropolis light transport;
and the closures may be rapidly re-evaluated with new lighting without having to re-run the
shaders.

Surface and light shaders are the same thing.

OSL does not have a separate kind of shader for light sources. Lights are simply surfaces that
are emissive, and all lights are area lights.

Transparency is just another kind of illumination.

You don’t need to explicitly set transparency/opacity variables in the shader. Transparency is
just another way for light to interact with a surface, and is included in the main radiance closure
computed by a surface shader.

Renderer outputs (AOV’s) are specified using “light path expressions.”

Sometimes it is desirable to output images containing individual lighting components such as
specular, diffuse, reflection, individual lights, etc. In other languages, this is usually accom-
plished by adding a plethora of “output variables” to the shaders that collect these individual
quantities.

OSL shaders need not be cluttered with any code or output variables to accomplish this.
Instead, there is a regular-expression-based notation for describing which light paths should
contribute to which outputs. This is all done on the renderer side (though supported by the OSL
implementation). If you desire a new output, there is no need to modify the shaders at all; you
only need to tell the renderer the new light path expression.

Shaders are organized into networks.

OSL shaders are not monolithic, but rather can be organized into networks of shaders (some-
times called a shader group, graph, or DAG), with named outputs of some nodes being con-
nected to named inputs of other nodes within the network. These connections may be done
dynamically at render time, and do not affect compilation of individual shader nodes. Further-
more, the individual nodes are evaluated lazily, only their outputs are “pulled” from the later
nodes that depend on them (shader writers may remain blissfully unaware of these details, and
write shaders as if everything is evaluated normally).

Open Shading Language Specification

No “uniform” and “varying” keywords in the language.

OSL shaders are evaluated in SIMD fashion, executing shaders on many points at once, but
there is no need to burden shader writers with declaring which variables need to be uniform or
varying.

In the open source OSL implementation, this is done both automatically and dynami-
cally, meaning that a variable can switch back and forth between uniform and varying, on an
instruction-by-instruction basis, depending on what is assigned to it.

Arbitrary derivatives without grids or extra shading points.

In OSL, you can take derivatives of any computed quantity in a shader, and use arbitrary quanti-
ties as texture coordinates and expect correct filtering. This does not require that shaded points
be arranged in a rectangular grid, or have any particular connectivity, or that any “extra points”
be shaded.

In the open source OSL implementation, this is possible because derivatives are not com-
puted by finite differences with neighboring points, but rather by “automatic differentiation”,
computing partial differentials for the variables that lead to derivatives, without any intervention
required by the shader writer.

Acknowledgments

The main developers of OSL are (in order of joining the project):

Larry Gritz

CIliff Stein

Chris Kulla
Alejandro Conty
Jay Reynolds
Solomon Boulos
Adam Martinez
Brecht Van Lommel

We cannot possibly express sufficient gratitude to the managers at Sony Pictures Image-
works who allowed this project to proceed, supported it wholeheartedly, and permitted us to
release the source, especially Rob Bredow, Brian Keeney, Barbara Ford, Rene Limberger, and
Erik Strauss.

Huge thanks also go to the crack shading team at SPI, and the brave lookdev TDs and CG
supes willing to use OSL on their shows. They served as our guinea pigs, inspiration, testers,
and a fantastic source of feedback. Thank you, and we hope we’ve been responsive to your
needs.

OSL was not developed in isolation. We owe a debt to the individuals and studios who
patiently read early drafts of the language specification and gave us very helpful feedback and

Open Shading Language Specification

4 CHAPTER 1. INTRODUCTION

additional ideas. (I hope to mention them by name after we get permission of the people and
studios involved.)

The open source OSL implementation incorporates or depends upon several other open
source packages:

e OpenImageIO (©) 2008 Larry Gritz et al. http://openimageio.org
e Ilmbase (©) 2006, Industrial Light & Magic. http://www.openexr.com
e Boost (©) various authors. http://www.boost.org

e LLVM (© 2003-2010 University of Illinois at Urbana-Champaign. http://11lvm.org

These other packages are all distributed under licenses that allow them to be used by and
distributed with Open Shading Language.

Open Shading Language Specification

2 The Big Picture

This chapter attempts to lay out the major concepts of Open Shading Language, define key
nomenclature, and sketch out how individual shaders fit together in the context of a renderer as
a whole.

Other than the background material of this chapter, the rest of this specification deals strictly
with the language itself. In the future, there will be separate (shorter) documents explaining in
detail the use of the language compiler, the renderer-side issues, the library and APls for how a
renderer actually causes shaders to be evaluated, and so on.

A shader is code that performs a discrete task

A shader is a program, with inputs and outputs, that performs a specific task when rendering a
scene, such as determining the appearance behavior of a material or light. The program code is
written in Open Shading Language, the specification of which comprises this document.

For example, here is a simple gamma shader that performs simple gamma correction on is
Cin input, storing the result in its output Cout:

Inputs Outputs
shader gamma (
Cin color Cin = 1,
gam float gam = 1,
output color Cout = 1 Cout

Cout = pow (Cin, 1/gam);

The shader’s inputs and outputs are called shader parameters. Parameters have default
values, specified in the shader code, but may also be given new values by the renderer at runtime.

Shader instances

A particular shader may be used many times in a scene, on different objects or as different
layers in a shader group. Each separate use of a shader is called a shader instance. Although all

5

6 CHAPTER 2. THE BIG PICTURE

instances of a shader are comprised of the same program code, each instance may override any
or all of its default parameter values with its own set of instance values.

Below is a schematic showing a gamma instance with the gam parameter overridden with an
instance-specific value of 2. 2.

gamma

— Cin (1,1,1) Cout —
2.2 — gam

Shader groups and layers

A shader group is an ordered sequence of individual shaders called /ayers that are executed in
turn. Output parameters of an earlier-executed layer may be connected to an input parameter of
a later-executed layer. This connected network of layers is sometimes called a shader network
or a shader DAG (directed acyclic graph). Of course, it is fine for the shader group to consist of
a single shader layer.

Below is a schematic showing how several shader instances may be connected to form a
shader group.

layer 1: "tex1" layer 3: "gam1"
texturemap gamma
"rings.tx" —| name Cout Cin Cout
—'s 2.2 —| gam
—t layer 5: "wood1"
wood
layer 2: "tex2" layer 4: "gam2"
rings G —
texturemap gamma
—,— grain
"grain.tx" —| name Cout Cin Cout
—s 1.0 — gam
—t

And here is sample pseudo-code shows how the above network may be assembled using an API
in the rendererflt

ShaderGroupBegin ()

Shader ("texturemap", /* shader name */
"texl", /* layer name */
"string name", "rings.tx") /* instance variable */

Shader ("texturemap", "tex2", "string name", "grain.tx")

IThis document does not dictate a specific renderer API for declaring shader instances, groups, and connections;
the code above is just an example of how it might be done.

Open Shading Language Specification

Shader ("gamma", "gaml", "float gam", 2.2)
Shader ("gamma", "gam2", "float gam", 1)
Shader ("wood", "woodl")

ConnectShaders ("texl1", /* layer name A */
"Cout", /* an output parameter of A */
"gaml", /* layer name B */
"Cin") /* Connect this layer of B to A’s Cout */
ConnectShaders ("tex2", "Cout", "gam2", "Cin")
ConnectShaders ("gaml", "Cout", "woodl", "rings")
ConnectShaders ("gam2", "Cout", "woodl", "grain")
ShaderGroupEnd ()

Or, expressed as serialized text (as detailed in Appendix ??):

param string name "rings.tx" ;
shader "texturemap" "texl" ;
param string name "grain.tx" ;
shader "texturemap" "tex2" ;
param float gam 2.2 ;

shader "gamma" "gaml" ;

param float gam 1.0 ;

shader "gamma" "gam2" ;

shader "wood" "woodl" ;

connect texl.Cout gaml.Cin ;
connect tex2.Cout gam2.Cin ;
connect gaml.Cout woodl.rings ;
connect gam2.Cout woodl.grain ;

Geometric primitives

The scene consists of primarily of geometric primitives, light sources, and cameras.

Geometric primitives are shapes such as NURBS, subdivision surfaces, polygons, and curves.
The exact set of supported primitives may vary from renderer to renderer.

Each geometric primitive carries around a set of named primitive variables. Nearly all shape
types will have, among their primitive variables, control point positions that, when interpolated,
actually designate the shape. Some shapes will also allow the specification of normals or other
shape-specific data. Arbitrary user data may also be attached to a shape as primitive variables.
Primitive variables may be interpolated in a variety of ways: one constant value per primitive,
one constant value per face, or per-vertex values that are interpolated across faces in various
ways.

If a shader input parameter’s name and type match the name and type of a primitive variable
on the object (and that input parameters is not already explicitly connected to another layer’s
output), the interpolated primitive variable will override the instance value or default.

Attribute state and shader assignments

Every geometric primitive has a collection of attributes (sometimes called the graphics state)
that includes its transformation matrix, the list of which lights illuminate it, whether it is one-
sided or two-sided, shader assignments, etc. There may also be a long list of renderer-specific

Open Shading Language Specification

8 CHAPTER 2. THE BIG PICTURE

or user-designated attributes associated with each object. A particular attribute state may be
shared among many geometric primitives.

The attribute state also includes shader assignments — the shaders or shader groups for each
of several shader uses, such as surface shaders that designate how light reflects from each point
on the shape, displacement shaders that can add fine detail to the shape on a point-by-point
basis, volume shaders that describe how light is scattered within a region of space, and light
shaders that describe how light is emitted from a light source. A particular renderer may have
additional shader types that it supports.

Shader execution state: parameter binding and global variables

When the body of code of an individual shader is about to execute, all its parameters are bound
— that is, take on specific values (from connections from other layers, interpolated primitive
variables, instance values, or defaults, in that order).

Certain state about the position on the surface where the shading is being run is stored in
so-called global variables. This includes such useful data as the 3D coordinates of the point
being shaded, the surface normal and tangents at that point, etc.

Additionally, the shader may query other information about other elements of the attribute
state attached to the primitive, and information about the renderer as a whole (rendering options,
etc.).

Surface and volume shaders compute closures

Surface shaders (and volume shaders) do not by themselves compute the final color of light
emanating from the surface (or along a volume). Rather, the compute a closure, which is a sym-
bolic representation describing the appearance of the surface, that may be more fully evaluated
later. This is in effect a parameterized formula, in which some inputs have definite numeric
values, but others may depend on quantities not yet known (such as the direction from which
the surface is being viewed, and the amount of light from each source that is arriving at the
surface).
For example, a surface shader may compute its result like this:

color paint = texture ("file.tx", u, v);
Ci = paint * diffuse (N);

In this example, the variable paint will take on a specific numeric value (by looking up from
a texture map). But the diffuse () function returns a closure color, not a definite numeric
color. The output variable Ci that represents the appearance of the surface is also a closure
color, whose numeric value is not known yet, except that it will be the product of paint and a
Lambertian reflectance.

instance variables

primitive variables_____—_ | shader code closure color

global state variables_—= | executes (0.5,0.1,0.8) * lambert((0.4,0.3,0.5))

textures —

The closures output by surface and volume shaders can do a number of interesting things
that a mere number cannot:

Open Shading Language Specification

e Evaluate: given input and output light directions, compute the proportion of light propa-
gating from input to output.

e Sample: given just an input (or output) direction, choose a scattering direction with a
probability distribution that is proportional to the amount of light that will end up going
in various directions.

o Integrate: given all lights and a view direction, compute the total amount of light leaving
the surface in the view direction.

e Recompute: given changes only to lights (or only to one light), recompute the integrated
result without recomputing other lights or any of the calculations that went into assem-
bling constants in the closure (such as texture lookups, noise functions, etc.).

At present, we are assuming that the primitive closure functions (such as diffuse, ward,
cooktorrance, etc.) are all built into the renderer, or implemented as renderer plugins. At a
later time, possibly in a later draft or maybe not until a truly later version of the spec, we will fully
spec it out so that closure primitive functions may be written in Open Shading Language. But |
fear that if we do it too soon, we’ll screw it up. But, yes, the eventual goal is for you to be able to
write these primitive functions in the language itself.

Integrators

The renderer contains a number of integrators (selectable via the renderer’s API) which will
combine the color closures computed by surfaces and volumes with the light sources and view-
dependent information, to yield the amount of light visible to the camera.

color closure
from surface shader\

view—dependent _____ | integrator - f‘P‘j‘l color
global variables visible from camera

/

lights

At present, this document is written as if the integrators are built into the renderer itself (or
implemented as renderer plug-ins). At a later time, we intend to make it possible for integrators
themselves to be written in Open Shading Language.

Units

You can tell the renderer (through a global option) what units the scene is using for distance
and time. Then the shader has a built-in function called transformu () that works a lot like
transform (), but instead of converting between coordinate systems, it converts among units.
For example,

Open Shading Language Specification

10 CHAPTER 2. THE BIG PICTURE

displacement bumpy (float bumpdist = 1,

string bumpunits = "cm")

// convert bumpdist to common units

float spacing = transformu (bumpunits, "common", bumpdist);
float n = noise (P / spacing);

displace (n);

So you can write a shader to achieve some effect in real world units, and that shader is
totally reusable on another show that used different modeling units.

It knows all the standard names like "cm", "in", "km"”, etc., and can convert among any of
those, as well as between named coordinate systems. For example,

n

float x = transformu ("object", "mm", 1);

now x is the number of millimeters per unit of "object" space on that primitive.

Open Shading Language Specification

3 Lexical structure

3.1 Characters

Source code for Open Shading Language consists of ASCII or UTF-8 characters.

The characters for space, tab, carriage return, and linefeed are collectively referred to as
whitespace. Whitespace characters delimit identifiers, keywords, or other symbols, but other
than that have no syntactic meaning. Multiple whitespace characters in a row are equivalent to
a single whitespace character.

Source code may be split into multiple lines, separated by end-of-line markers (carriage
return and/or linefeed). Lines may be of any length and end-of-line markers carry no signif-
icant difference from other whitespace, except that they terminate // comments and delimit
preprocessor directives.

3.2 Identifiers

Identifiers are the names of variables, parameters, functions, and shaders. In Open Shading
Language, identifiers consist of one or more characters. The first character may be a letter (2-Z
or a-z) or underscore (_), and subsequent characters may be letters, underscore, or numerals
(0-9). Examples of valid and invalid identifiers are:

opacity // valid

Long_name4?2 // valid - letters, underscores, numbers are ok
_foo // valid - ok to start with an underscore
2smart // invalid - starts with a numeral

bigbucks$ // invalid - $ is an illegal character

3.3 Comments

Comments are text that are for the human reader of programs, and are ignored entirely by the
Open Shading Language compiler. Just like in C++, there are two ways to designate comments
in Open Shading Language:

1. Any text enclosed by /* and */ will be considered a comment, even if the comment spans
several lines.

11

12 CHAPTER 3. LEXICAL STRUCTURE

/* this is a comment */

/* this is also
a comment, spanning
several lines */

2. Any text following //, up to the end of the current line, will be considered a comment.

// This is a comment
a=3; // another comment

3.4 Keywords and reserved words

There are two sets of names that you may not use as identifiers: keywords and reserved words.
The following are keywords that have special meaning in Open Shading Language:

and break closure color continue do else emit float for if illuminance
illuminate int matrix normal not or output point public return string
struct vector void while

The following are reserved words that currently have no special meaning in Open Shading
Language, but we reserve them for possible future use, or because they are confusingly similar
to keywords in related programming languages:

bool case catch char class const delete default double enum extern

false friend goto inline long new operator private protected short
signed sizeof static switch template this throw true try typedef uniform
union unsigned varying virtual volatile

3.5 Preprocessor

Shader source code is passed through a standard C preprocessor as a first step in parsing.
Preprocessor directives are designated by a hash mark (#) as the first character on a line,
followed by a preprocessor directive name. Whitespace may optionally appear between the
hash and the directive name.
Open Shading Language compilers support the full complement of C/C++ preprocessing
directives, including:

#define
#undef
#if
#ifdef
#ifndef
#elif
telse
#endif
#include

Open Shading Language Specification

4 Gross syntax, shader types,
parameters, functions

The overall structure of a shader is as follows:

optional-function-or-struct-declarations

shader-type shader-name (optional-parameters)

{

Statements

Note that statements may include function or structure definitions, local variable declara-
tions, or public methods, as well as ordinary execution instructions (such as assignments, etc.).

4.1 Shader types

Shader types include the following: surface, displacement, light, volume, and generic
shader. Some operations may only be performed from within certain types of shaders (e.g.,
one may only call displace () or alter P in a displacement shader), and some global variables
may only be accessed from within certain types of shaders (e.g., dPdu is not defined inside a
volume shader).

Following are brief descriptions of the basic types of shaders:

surface shaders

Surface shaders determine the basic material properties of a surface and how it reacts to light.
They are responsible for computing a closure color that describes the material, and option-
ally setting other user-defined output variables. They may not alter the position of the surface.
Surface shaders are written as if they describe the behavior of a single point on the primitive,
and the renderer will choose the positions surface at which the shader must be evaluated.
Surface shaders also are used to describe emissive objects, i.e., light sources. OSL does not
need a separate shader type to describe lights.

13

14 CHAPTER 4. GROSS SYNTAX, SHADER TYPES, PARAMETERS, FUNCTIONS

displacement shaders

Displacement shaders alter the position and shading normal (or, optionally, just the shading
normal) to make a piece of geometry appear deformed, wrinkled, or bumpy. They are the only
kind of shader that is allowed to alter a primitive’s position.

volume shaders

Volume shaders describe how a participating medium (air, smoke, glass, etc.) reacts to light
and affects the appearance of objects on the other side of the medium. They are similar to
surface shaders, except that they may be called from positions that do not lie upon (and are
not necessarily associated with) any particular primitive.

shader generic shaders

Generic shaders are used for utility code, generic routines that may be called as individual layers
in a shader group. Generic shaders need not specify a shader type, and therefore may be reused
from inside surface, displacement, or volume shader groups. But as a result, they may not
contain any functionality that cannot be performed from inside all shader types (for example,
they may not alter P, which can only be done from within a displacement shader).

4.2 Shader parameters

An individual shader has (optionally) many parameters whose values may be set in a number of
ways so that a single shader may have different behaviors or appearances when used on different
objects.

4.2.1 Shader parameter syntax

Shader parameters are specified in the shader declaration, in parentheses after the shader’s name.
This is much like the parameters to a englishfunction (or a function in C or similar languages),
except that shader parameters must have an initializer, giving a default value for the parameter.
Shader parameter default initializers may be expressions (i.e., may be computed rather than
restricted to numeric constants), and are evaluated in the order that the parameters are declared,
and may include references to previously-declared parameters. Formally, the grammar for a
simple parameter declaration looks like this:

type parametername = default-expression

where type is one of the data types described in Chapter [5| parametername is the name of the
parameter, and default-expression is a valid expression (see Section [6.2)). Multiple parameters
are simply separated by commas:

typel parameterl = exprl , type2 parameter2 = expr2 , ...
Fixed-length, one-dimensional array parameters are declared as follows:

type parametername | array-length 1 = { exprO, exprl ... }

Open Shading Language Specification

4.2. SHADER PARAMETERS 15

where array-length is a positive integer constant giving the length of the array, and the initializer
is a series of initializing expressions listed between curly braces. The first initializing expres-
sion provides the initializer for the first element of the array, the second expression provides
the initializer for the second element of the array, and so on. If the number of initializing ex-
pressions is less than the length of the array, any additional array elements will have undefined
values.

Arrays may also be declared without a set length:

type parametername [1 = { exprO, exprl ... }

where no array length is found between the square brackets. This indicates that the array’s
length will be determined based on whatever is passed in — a connection from the output of
another shader in the group (take on the length of that output), an instance value (take on the
length specified by the declaration of the instance value), or a primitive variable (length deter-
mined by its declaration on the primitive). If no instance value, primitive value, or connection
is supplied, then the number of initializing expressions will determine the length, as well as the
default values, of the array.
Structure parameters are also straightforward to declare:

structure-type parametername = { expr0 , exprl ... }

where structure-type is the name of a previously-declared st ruct type, and the expr initializers
correspond to each respective field within the structure. An initializer of appropriate type is
required for every field of the structure.

4.2.2 Shader output parameters

Shader parameters are, by default, read-only in the body of the shader. However, special output
parameters may be altered by execution of the shader. Parameters may be designated outputs
by use of the output keyword immediately prior to the type declaration of the parameter:

output type parametername = expr

(Output parameters may be arrays and structures, but we will omit spelling out the obvious
syntax here.)

Output parameters may be connected to inputs of later-run shader layers in the shader group,
may be queried by later-run shaders in the group via message passing (i.e., getmessage ()
calls), or used by the renderer as an output image channel (in a manner described through the
renderer’s API).

4.2.3 Shader parameter example

Here is an example of a shader declaration, with several parameters:

surface wood (
/* Simple params with constant initializers */
float Kd = 0.5,
color woodcolor = color (.7, .5, .3),
string texturename = "wood.tx",
/* Computed from an earlier parameter */

Open Shading Language Specification

16

CHAPTER 4. GROSS SYNTAX, SHADER TYPES, PARAMETERS, FUNCTIONS

color ringcolor = 0.25 * woodcolor,
/* Fixed-length array */
color paintcolors([3] = { color(0,.25,0.7), color(l,1,1),
color(0.75,0.5,0.2) 1},
/* variable-length array */
int pattern[] = { 2, 4, 2, 1},
/* output parameter */
output color Cunlit = 0
)

4.2.4 How shader parameters get their values

Shader parameters get their values in the following manner, in order of decreasing priority:

o [f the parameter has been designated by the renderer to be connected to an output param-

eter of a previously-executed shader layer within the shader group, that is the value it will
get.

o If the parameter matches the name and type of a per-primitive, per-face, or per-vertex

primitive variable on the particular piece of geometry being shaded, the parameter’s value
will be computed by interpolating the primitive variable for each position that must be
shaded.

e If there is no connection or primitive variable, the parameter may will take on an in-

stance value, if that parameter was given an explicit per-instance value at the time that
the renderer referenced the shader (associating it with an object or set of objects).

o If none of these overrides is present, the parameter’s value will be determined by execut-

ing the parameter initialization code in the shader.

This triage is performed per parameter, in order of declaration. So, for example, in the code

sample above where the default value for ringcolor is a scaled version of woodcolor, this
relationship would hold whether woodcolor was the default, an instance value, an interpolated
primitive value, or was connected to another layer’s output. Unless ringcolor itself was given
an instance, primitive, or connection value, in which case that’s what would be used.

4.3 Shader metadata

A shader may optionally include metadata (data about the shader, as opposed to data used by
the shader). Metadata may be used to annotate the shader or any of its individual parameters
with additional hints or information that will be compiled into the shader and may be queried
by applications. A common use of metadata is to specify user interface hints about shader
parameters — for example, that a particular parameter should only take on integer values, should
have an on/off checkbox, is intended to be a filename, etc.

Open Shading Language Specification

4.3. SHADER METADATA 17

Metadata is specified inside double brackets [[and]] enclosing a comma-separated list
of metadata items. Each metadatum looks like a parameter declaration — having a data type,
name, and initializer. However, metadata may only be simple types or arrays of simple types
(not structs or closures) and their value initializers must be numeric or string constants (not
computed expressions).

Metadata about the shader as a whole is placed between the shader name and the parameter
list. Metadata about shader parameters are placed immediately after the parameter’s initial-
izing expression, but before the comma or closing parentheses that terminates the parameter
description.

Below is an example shader declaration showing the use of shader and parameter metadata:

surface wood
[[string help = "Realistic wood shader" 1]]

float Kd = 0.5
[[string help = "Diffuse reflectivity",
float min = 0, float max =1]] ,
color woodcolor = color (.7, .5, .3)
[[string help = "Base color of the wood"]],
color ringcolor = 0.25 * woodcolor
[[string help = "Color of the dark rings"]],

string texturename = "wood.tx"
[[string help = "Texture map for the grain",
string widget = "filename"]],
int pattern = 0
[[string widget = "mapper",
string options = "oak:0|elm:1|walnut:2"]]

The metadata are not semantically meaningful; that is, the metadata does not affect the
actual execution of the shader. Most metadata exist only to be embedded in the compiled shader
and able to be queried by other applications, such as to construct user interfaces for shader
assignment that allow usage tips, appropriate kinds of widgets for setting each parameter, etc.

The choice of metadata and their meaning is completely up to the shader writer and/or
modeling system. However, we propose some conventions below. These conventions are not
intended to be comprehensive, nor to meet all your needs — merely to establish a common
nomenclature for the most common metadata uses.

The use of metadata is entirely optional on the part of the shader writer, and any application
that queries shader metadata is free to honor or ignore any metadata it finds.

string label

A short label to be displayed in the Ul for this parameter. If not present, the parameter
name itself should be used as the widget label.

Open Shading Language Specification

18 CHAPTER 4. GROSS SYNTAX, SHADER TYPES, PARAMETERS, FUNCTIONS

string help

Help text that describes the purpose and use of the shader or parameter.

string page
Helps to group related widgets by “page.”

string widget
The type of widget that should be used to adjust this parameter. Suggested widget types:

"number"

Provide a slider and/or numeric input. This is the default widget type for float or
int parameters. Numeric inputs also may be influenced by the following metadata:
"min", "max", "sensitivity", "digits", "slider", "slidermin", "slidermax",
"slidercenter", "sliderexponent".

"string"

Provide a text entry widget. This is the default widget type for st ring parameters.

"boolean"

Provide a pop-up menu with “Yes” and “No” options. Works on strings or numbers.
With strings, “Yes” and “No” values are used, with numbers, 0 and 1 are used.

"checkBox"

A boolean widget displayed as a checkbox. Works on strings or numbers. With
strings, ”Yes” and "No” values are used, with numbers, 0 and 1 are used.

n popup "

A pop-up menu of literal choices. This widget further requires parameter metadata
"options" (a string listing the supported menu items, delimited by the ‘|’ char-
acter), and optionally "editable" (an integer, which if nonzero means the widget
should allow the text field should be directly editable). For example:

string wrap = "default"
[[string widget = "popup",
string options = "default|black|clamp|periodic|mirror" 1]
umapperu

A pop-up with associative choices (an enumerated type, if the values are integers).
This widget further requires parameter metadata "options", a ‘| ’-delimited string
with “key:value” pairs. For example:

int pattern = 0

[[string widget = "mapper",
string options = "oak:0|elm:1|walnut:2"]]

Open Shading Language Specification

4.3. SHADER METADATA 19

"filename"

A file selection dialog.

"null"

A hidden widget.

float min
float max
int min
int max

The minimum and/or maximum value that the parameter may take on.

float sensitivity
int sensitivity

The precision or step size for incrementing or decrementing the value (within the appro-
priate min/max range).

int digits

The number of digits to show (-1 for full precision).

int slider

If nonzero, enables display of a slider sub-widget. This also respects the following addi-
tional metadata that control the slider specifically: "slidermin" (minimum value for the
slider, "slidermax" (maximum value for the slider), "slidercenter" (origin value for
the slider), "sliderexponent" (nonlinear slider options).

string URL

Provides a URL for full documentation of the shader or parameter.

string units

Gives the assumed units, if any, for the parameter (e.g., "cm", "sec", "degrees"). The
compiler or renderer may issue a warning if it detects that this assumption is being vi-
olated (for example, the compiler can warn if a "degrees" variable is passed as the
argument to cos).

Open Shading Language Specification

20 CHAPTER 4. GROSS SYNTAX, SHADER TYPES, PARAMETERS, FUNCTIONS

4.4 Functions
You may define functions much like in C or C++.

return-type function-name (optional-parameters)

{

statements

Parameters to functions are similar to shader parameters, except that they do not permit
initializers. A function call must pass values for all formal parameters. Function parameters
in Open Shading Language are all passed by reference, and are read-only within the body of
the function unless they are also designated as output (in the same manner as output shader
parameters).

Like for shaders, statements inside functions may be actual executions (assignments, func-
tion call, etc.), local variable declarations (visible only from within the body of the function),
or local function declarations (callable only from within the body of the function).

The return type may be any simple data type, a struct, or a closure. Functions may
not return arrays. The return type may be void, indicating that the function does not return a
value (and should not contain a return statement). A return statement inside the body of the
function will halt execution of the function at that point, and designates the value that will be
returned (if not a void function).

Functions may be overloaded. That is, multiple functions may be defined to have the same
name, as long as they have differently-typed parameters, so that when the function is called the
list of arguments can disambiguate which version of the function is desired.

4.5 Public methods

Ordinary (non-public) functions inside a shader may be called only from within the shader; they
do not generate entry points that the renderer is aware of.

A public method is a function that may be directly called by the renderer. Only top-level
local functions of a shader — that is, declared within the braces that define the local scope of
the shader, but not within any other such function — may be public methods. A function may
be designated a public method by using the public keyword immediately before the function
declaration:

shader-type shader-name (params)
{

public return-type function-name (optional-parameters)

{
}

statements

Open Shading Language Specification

4.5. PUBLIC METHODS 21

A given renderer will publish a list of public methods (names, arguments expected, and return
value) that has particular meaning for that renderer. For example, a renderer may honor a public
method

public float maxdisplacement ()

that computes and returns the maximum distance that a displacement shader will move any
surface points.

At some later point, this spec will recommend several “standard” public methods that should
be honored by most renderers.

Open Shading Language Specification

22 CHAPTER 4. GROSS SYNTAX, SHADER TYPES, PARAMETERS, FUNCTIONS

Open Shading Language Specification

5 Data types

Open Shading Language provides several built-in simple data types for performing computa-
tions inside your shader:

int Integer data

float Scalar floating-point data (numbers)

point Three-dimensional positions, directions, and surface orientations
vector

normal

color Spectral reflectivities and light energy values

matrix 4 x 4 transformation matrices

string Character strings (such as filenames)

void Indicates functions that do not return a value

In addition, you may create arrays and structures (much like C), and Open Shading Lan-
guage has a new type of data structure called a closure.

The remainder of this chapter will describe the simple and aggregate data types available in
Open Shading Language.

5.1 int

The basic type for discrete numeric values is int. The size of the int type is renderer-
dependent, but is guaranteed to be at least 32 bits.

Integer constants are constructed the same way as in C. The following are examples of int
constants: 1, -32, etc.

Unlike C, no unsigned, bool, char, short, or long types are supplied. This is to simplify the
process of writing shaders (as well as implementing shading systems).

The following operators may be used with int values (in order of decreasing precedence,
with each box holding operators of the same precedence):

23

24 CHAPTER 5. DATA TYPES

operation result

int ++ int post-increment by 1

int —— int post-decrement by 1

++ int int pre-increment by 1

—-—int int pre-decrement by 1

- int int unary negation

" int int bitwise complement (1 and 0 bits flipped)

!' int int boolean ‘not’ (1 if operand is zero, otherwise 0)

int * int int multiplication

int / int int division

int % int int modulus

int 4+ int int addition

int = int int subtraction

int << int int shift left

int >> int int shift right

int < int int 1 if the first value is less than the second, else 0

int <= int int 1 if the first value is less or equal to the second, else O
int > int int 1 if the first value is greater than the second, else O

int >= int int 1 if the first value is greater than or equal to the second, else 0
int == int int 1 if the two values are equal, else 0

int !'= int int 1 if the two values are different, else 0

int & int int bitwise and

int © int int bitwise exclusive or

int | int int bitwise or

int && int int boolean and (1 if both operands are nonzero, otherwise 0)
int || int int boolean or (1 if either operand is nonzero, otherwise 0)

Note that the not, and, and or keywords are synonyms for !, &&, and | |, respectively.

5.2 float

The basic type for scalar floating-point numeric values is f1oat. The size of the float type is
renderer-dependent, but is guaranteed to be at least IEEE 32-bit float (the standard C f1oat data
type). Individual renderer implementations may choose to implement float with even more
precision (such as using the C double as the underlying representation).

Floating-point constants are constructed the same way as in C. The following are examples
of float constants: 1.0, 2.48, -4.3e2.

An int may be used in place of a f1oat when used with any valid float operator. In such
cases, the int will be promoted to a f1oat and the resulting expression will be float. An int

Open Shading Language Specification

5.3. COLOR

25

may also be passed to a function that expects a f1loat parameters, with the int automatically

promoted to float.

The following operators may be used with f1oat values (in order of decreasing precedence,
with each box holding operators of the same precedence):

operation result

float ++ float post-increment by 1

float —— float post-decrement by 1

++ float float pre-increment by 1

——float float pre-decrement by 1

- float float unary negation

float * float float multiplication

float / float float division

float + float float addition

float = float float subtraction

float < float int 1 if the first value is less than the second, else O

float <= float int 1 if the first value is less or equal to the second, else O

float > float int 1 if the first value is greater than the second, else O

float >= float int 1 if the first value is greater than or equal to the second,
else 0

float == float int 1 if the two values are equal, else 0

float != float int 1 if the two values are different, else 0

5.3 color

The color type is used to represent 3-component (RGB) spectral reflectivities and light ener-
gies. You can assemble a color out of three floats, either representing an RGB triple or some
other color space known to the renderer, as well as from a single float (replicated for all three
channels). Following are some examples:

color (0, O,
color ("rgb",
color ("hsv",
color (0.5)

0)

.75, .5,

.2,

// black

// pinkish

// specify in "hsv" space

// same as color (0.5, 0.5, 0.5)

All these expressions above return colors in "rgb" space. Even the third example returns a
color in "rgb" space — specifically, the RGB value of the color that is equivalent to hue 0.2,
saturation 0.5, and value 0.63. In other words, when assembling a color from components given
relative to a specific color space in this manner, there is an implied transformation to "rgb"
space. Table[5.1]lists the built-in color spaces.

Colors may be assigned another color or a f1oat value (which sets all three components to

the value). For example:

color C;

Open Shading Language Specification

26 CHAPTER 5. DATA TYPES

Table 5.1: Names of color spaces.

"rgb" The coordinate system that all colors start out in, and in which the renderer
expects to find colors that are set by your shader.

"hsv" hue, saturation, and value.

"hsl" hue, saturation, and lightness.

"YIQ" the color space used for the NTSC television standard.

"XYyz" CIE XYZ coordinates.

"xyY" CIE xyY coordinates.

C = color (0, 0.3, 0.3);
C=0.5; // same as C = color (0.5, 0.5, 0.5)

Colors can have their individual components examined and set using the [] array access
notation. For example:

color C;
float g = C[1]; // get the green component
C[0] = 0.5; // set the red component

Components 0, 1, and 2 are red, green, and blue, respectively. It is an error to access a color
component with an index outside the [0...2] range.

The following operators may be used with color values (in order of decreasing precedence,
with each box holding operators of the same precedence):

operation result

color [int] float component access

- color color unary negation

color % color color component-wise multiplication
color % float color scaling

float * color color scaling

color / color color component-wise division

color / float color scaling

float / color color scaling

color + color color component-wise addition

color = color color component-wise subtraction
color == color int 1 if the two values are equal, else 0
color !'=color int 1 if the two values are different, else O

All of the binary operators may combine a scalar value (float or int) with a color, treat-
ing the scalar if it were a color with three identical components.

5.4 Point-like types: point, vector, normal

Points, vectors, and normals are similar data types with identical structures but subtly different
semantics. We will frequently refer to them collectively as the “point-like” data types when

Open Shading Language Specification

5.4. POINT-LIKE TYPES: POINT, VECTOR, NORMAL 27

making statements that apply to all three types.

A point is a position in 3D space. A vector has a length and direction, but does not
exist in a particular location. A normal is a special type of vector that is perpendicular to a
surface, and thus describes the surface’s orientation. Such a perpendicular vector uses different
transformation rules than ordinary vectors, as we will describe below.

All of these point-like types are internally represented by three floating-point numbers that
uniquely describe a position or direction relative to the three axes of some coordinate system.

All points, vectors, and normals are described relative to some coordinate system. All
data provided to a shader (surface information, graphics state, parameters, and vertex data) are
relative to one particular coordinate system that we call the "common" coordinate system. The
"common" coordinate system is one that is convenient for the renderer’s shading calculations.

You can “assemble” a point-like type out of three floats using a constructor:

point (0, 2.3, 1)
vector (a, b, ¢)
normal (0, 0, 1)

These expressions are interpreted as a point, vector, and normal whose three components are
the floats given, relative to "common™ space .

As with colors, you may also specify the coordinates relative to some other coordinate
system:

Q = point ("object", 0, 0, 0);

This example assigns to Q the point at the origin of "object" space. However, this state-
ment does not set the components of Q to (0,0,0)! Rather, Q will contain the "common" space
coordinates of the point that is at the same location as the origin of "object" space. In other
words, the point constructor that specifies a space name implicitly specifies a transformation to
"common" space. This type of constructor also can be used for vectors and normals.

The choice of "common™ space is renderer-dependent, though will usually be equivalent to
either "camera" space or "world" space.

Some computations may be easier in a coordinate system other than "current" space.
For example, it is much more convenient to apply a “solid texture” to a moving object in its
"object" space than in "current" space. For these reasons, SL provides a built-in transform
function that allows you to transform points, vectors, and normals among different coordinate
systems (see Section [7.2). Note, however, that Open Shading Language does not keep track of
which point variables are in which coordinate systems. It is the responsibility of the shader pro-
grammer to keep track of this and ensure that, for example, lighting computations are performed
using quantities in "common" space.

Several coordinate systems are predefined by name, listed in Table Additionally, a ren-
derer will probably allow for additional coordinate systems to be named in the scene description,
and these names may also be referenced inside your shader to designate transformations.

Point types can have their individual components examined and set using the [] array access
notation. For example:

point P;
float y = P[1]; // get the y component
P[0] = 0.5; // set the x component

Open Shading Language Specification

28 CHAPTER 5. DATA TYPES
Table 5.2: Names of predeclared geometric spaces.

"common" | The coordinate system that all spatial values start out in and the one in which
all lighting calculations are carried out. Note that the choice of "common™"
space may be different on each renderer.

"object" | The local coordinate system of the graphics primitive (sphere, patch, etc.) that
we are shading.

"shader"™ | The local coordinate system active at the time that the shader was instanced.

"world" The world coordinate system designated in the scene.

"camera" | The coordinate system with its origin at the center of the camera lens, x-axis
pointing right, y-axis pointing up, and z-axis pointing into the screen.

"screen" | The coordinate system of the camera’s image plane (after perspective trans-
formation, if any). Coordinate (0,0) of "screen" space is looking along the
z-axis of "camera" space.

"raster" | 2D pixel coordinates, with (0,0) as the upper-left corner of the image and (xres,
yres) as the lower-right corner.

"NDC" 2D Normalized Device Coordinates — like raster space, but normalized so

that x and y both run from O to 1 across the whole image, with (0,0) being at
the upper left of the image, and (1,1) being at the lower right.

Components 0, 1, and 2 are x, y, and z, respectively. It is an error to access a point component
with an index outside the [0...2] range.

The following operators may be used with point-like values (in order of decreasing prece-
dence, with each box holding operators of the same precedence):

operation result

ptype [int] float component access

- ptype vector | component-wise unary negation
ptype * ptype ptype component-wise multiplication
float * ptype ptype scaling of all components

ptype * float ptype scaling of all components

ptype / ptype ptype component-wise division

ptype / float ptype division of all components

float / ptype ptype division by all components

ptype + ptype ptype component-wise addition

ptype — ptype vector | component-wise subtraction

ptype == ptype int 1 if the two values are equal, else 0
ptype = ptype int 1 if the two values are different, else O

The generic ptype is listed in places where any of point, vector, or normal may be used.

All of the binary operators may combine a scalar value (float or int) with a point-like
type, treating the scalar if it were point-like with three identical components.

Open Shading Language Specification

5.5. MATRIX 29

5.5 matrix

Open Shading Language has a matrix type that represents the transformation matrix required
to transform points and vectors between one coordinate system and another. Matrices are rep-
resented internally by 16 floats (a 4 x 4 homogeneous transformation matrix).

A matrix can be constructed from a single float or 16 floats. For example:

matrix zero = 0; // makes a matrix with all 0 components
matrix ident = 1; // makes the identity matrix

// Construct a matrix from 16 floats
matrix m = matrix (m00, m0l, m02, m03, ml0, mll, ml2, ml3,
m20, m21, m22, m23, m30, m31, m32, m33);

Assigning a single floating-point number x to a matrix will result in a matrix with diagonal
components all being x and other components being zero (i.e., x times the identity matrix).
Constructing a matrix with 16 floats will create the matrix whose components are those floats,
in row-major order.

Similar to point-like types, a mat rix may be constructed in reference to a named space:

// Construct matrices relative to something other than "common"

matrix g = matrix ("shader", 1);

matrix m = matrix ("world", m00, m01, m02, m03, ml10, mll, ml2, ml3,
m20, m21, m22, m23, m30, m31, m32, m33);

The first form creates the matrix that transforms points from "current" space to "shader"
space. Transforming points by this matrix is identical to calling transform("shader",...).
The second form prepends the current-to-world transformation matrix onto the 4 x 4 matrix
with components myg...m33. Note that although we have used "shader" and "world" space
in our examples, any named space is acceptable.

A matrix may also be constructed from the names of two coordinate systems, yielding the
matrix that transforms coordinates from the first named space to the second named space:

matrix m = matrix ("object", "world");

The example returns the object-to-world transformation matrix.

Matrix variables can be tested for equality and inequality with the == and != boolean op-
erators. Also, the * operator between matrices denotes matrix multiplication, while m1 / m2
denotes multiplying m1 by the inverse of matrix m2. Thus, a matrix can be inverted by writing
1/m. In addition, some functions will accept matrix variables as arguments, as described in
Section [7}

Individual components of a matrix variable may be set or accessed using array notation, for
example,

matrix M;
float x = M[row] [col];
M[row] [col] = 1;

Open Shading Language Specification

30 CHAPTER 5. DATA TYPES

Valid component indices are integers on [0...3]. It is an error to access a matrix component
with either a row or column outside this range.

The following operators may be used with matrices (in order of decreasing precedence, with
each box holding operators of the same precedence):

operation result
matrix [int] [int] float component access (row, column)
—-matrix matrix | unary negation
matrix * matrix matrix | matrix multiplication
matrix * float matrix | component-wise scaling
float * matrix matrix | component-wise scaling
matrix / matrix matrix | multiply the first matrix by the inverse of the second
matrix / float matrix | component-wise division
float / matrix matrix | multiply the float by the inverse of the matrix
matrix ==matrix int 1 if the two values are equal, else 0
matrix '=matrix int 1 if the two values are different, else O
5.6 string

The string type may hold character strings. The main application of strings is to provide the
names of files where textures may be found. Strings can be compared using == and ! =.

String constants are denoted by surrounding the characters with double quotes, asin "I am
a string literal". Asin C programs, string literals may contain escape sequences such as

\n (newline), \r (carriage return), \t (tab), \" (double quote), \\ (backslash).
Two quote-quoted string literals that are separated only by whitespace (spaces, tabs, or
newlines) will be automatically concatenated into a single string literal. In other words,

llfooll llbarll

is exactly equivalent to "foobar".

5.7 void

The void type is used to designate a function that does not return a value. No variable may
have type void.

5.8 Arrays

Arrays of any of the basic types are supported, provided that they are 1D and statically sized,
using the usual syntax for C-like languages:

float d[10]; // Declare an uninitialized array
float ¢[3] = { 0.1, 0.2, 3.14 }; // Initialize the array
float £ = c[1]; // Access one element

Open Shading Language Specification

5.9. STRUCTURES 31

The built-in function arraylength () returns the number of elements in an array. For ex-
ample:

float c[3];
int clen = arraylength(c); // should return 3

There are two circumstances when arrays do not need to have a declared length — an array
parameter to a function, and a shader parameter that is an array. This is indicated by empty
array brackets, as shown in the following example:

float sum (float x[])
{

float s = 0;

for (int 1 = 0; 1 < arraylength(x); ++1i)
s += x[1];

return s;

It is allowed in OSL to copy an entire array at once using the = operator, provided that the
arrays contain elements of the same type and that the destination array is at least as long as the
source array. For example:

float array[4], anotherarrayl[4];

anotherarray = array;

5.9 Structures

Structures are used to group several fields of potentially different types into a single object that
can be referred to by name. You may then use the structure type name to declare structure
variables as you would for any of the built-in types. Structure elements are accessed using the
‘dot’ operator. The syntax for declaring and using structures is similar to C or C++:

struct ray { // Define a structure type
point pos;
vector dir;

i

ray r; // Declare a structure
r.pos = point (1, 0, 0); // Assign to one field
point p = r.pos; // Read from a structure field

It is permitted to have a structure field that is an array, as well as to have an array of struc-
tures. But it is not permitted for one structure to have a field that is another structure. For
example:

struct A {
color a;
float bl4]; // struct may contain an array

Open Shading Language Specification

32 CHAPTER 5. DATA TYPES

bi

A d[5]; // Array of structures
color e = d[0].a; // Field of one element of array of struct
d[2].b[4] = 0.25; // Element of a field of a struct in an array

5.10 Closures

A closure is an expression or function call that will be stored, along with necessary contextual
information, to be evaluated at a later time.

In general, the type “closure gentype” behaves exactly like a gentype, except that its nu-
meric values may not be examined or used for the duration of the shader’s execution. For
example, a closure color behaves mostly like a color — you can multiply it by a scalar, as-
signitto a closure color variable, etc. — but you may not assign it to an ordinary color or
examine its individual component’s numeric values.

It is legal to assign 0 to a closure, which is understood to mean setting it to a null closure
(even though in all other circumstances, assigning a f1oat to a closure would not be allowed).

At present, the only type of closure supported by Open Shading Language is the closure
color, and the only allowed operations are those that let you form a linear combination of
closure color’s. Additional closure types and operations are reserved for future use.

Allowable operations on closure color’s include:

operation result

— closure color closure color unary negation

color % closure color closure color component-wise scaling
closure color % color closure color component-wise scaling
float * closure color closure color scaling

closure color x float closure color scaling

closure color + closure color | closure color component-wise addition

Open Shading Language Specification

6 Language Syntax

The body of a shader is a sequence of individual statements. This chapter describes the types of
statements and control-flow patterns in Open Shading Language.
Statements in Open Shading Language include the following types of constructs:

e Scoped statements.

e Variable declarations.

Expressions.

Assignments.

Control flow: if, else, while, do, for, break, continue

Function declarations.

Scoping

Any place where it is legal to have a statement, it is legal to have multiple statements enclosed
by curly braces { }. This is called a scope. Any variables or functions declared within a scope
are only visible within that scope, and only may be used after their declaration. Variables or
functions that are referenced will always resolve to the matching name in the innermost scope
relative to its use. For example

float a = 1; // Call this the "outer" ’a’
float b = 2;
{
float a = 3; // Call this the "inner" ’a’
float ¢ = 1;
b = a; // b gets 3, because a is resolved to the inner scope

}
b += ¢; // ERROR -- c was only in the inner scope

6.1 Variable declarations and assignments

6.1.1 Variable declarations

The syntax for declaring a variable in Open Shading Language is:

33

34 CHAPTER 6. LANGUAGE SYNTAX

type name
type name = value

where

e fype is one of the basic data types, described earlier.
e name is the name of the variable you are declaring.

e If you wish to initialize your variable an initial value, you may immediately assign it a
value, which may be any valid expression.

You may declare several variables of the same type in a single declaration by separating
multiple variable names by commas:

type namel , name?2 ...
type namel | =valuel] , name2 [=value2] ...

Some examples of variable declarations are

float aj; // Declare; current value is undefined
float b = 1; // Declare and assign a constant initializer
float ¢ = a*b; // Computed initializer

float d, e = 2, f; // Declare several variables of the same type

6.1.2 Arrays

Arrays are also supported, declared as follows:

type variablename [arraylen]
type variablename [arraylen 1 ={ init0, initl ... }

Array variables in Open Shading Language must have a constant length (though function param-
eters and shader parameters may have undetermined length). Some examples of array variable
declarations are:

float d[10]; // Declare an uninitialized array
float ¢[3] = { 0.1, 0.2, 3.14 }; // Initialize the array

6.1.3 Structures

Structures are used to group several fields of potentially different types into a single object that
can be referred to by name. The syntax for declaring a structure type is:

struct structname {
typel fieldnamel ;

typeN fieldnameN ;

Open Shading Language Specification

6.2. EXPRESSIONS 35

}oi

You may then use the structure type name to declare structure variables as you would for
any of the built-in types:

structname variablename ;
structname variablename = { initializerl , ... initializerN } ;

If initializers are supplied, each field of the structure will be initialized with the initializer
in the corresponding position, which is expected to be of the appropriate type.

Structure elements are accessed in the same way as other C-like languages, using the ‘dot’
operator:

variablename . fieldname
Examples of declaration and use of structures:

struct ray {
point pos;
vector dir;

bi

ray r; // Declare a structure
ray s { point (0,0,0), vector(0,0,1) }; // declare and initialize
r.pos = point (1, 0, 0); // Assign to one field

It is permitted to have a structure field that is an array, as well as to have an array of struc-
tures. But it is not permitted for one structure to have a field that is another structure.
Please refer to Section |5.9|for more information on using struct.

6.2 Expressions

The expressions available in Open Shading Language include the following:

e Constants: integer (e.g., 1, 42), floating-point (e.g. 1.0, 3, -2.35e4), or string literals
(e.g., "hello")

e point, vector, normal, or matrix constructors, for example:

color (1, 0.75, 0.5)
point ("object", 1, 2, 3)

If all the arguments to a constructor are themselves constants, the constructed point is
treated like a constant and has no runtime cost. That is, color (1,2, 3) is treated as a
single constant entity, not assembled bit by bit at runtime.

e Variable or parameter references

Open Shading Language Specification

36

CHAPTER 6. LANGUAGE SYNTAX

e An individual element of an array (using [])

e Anindividual component of a color, point, vector, normal (using []),orofamatrix

(using [11[])

e prefix and postfix increment and decrement operators:

varref ++
varref —-
++ varref
-— varref

(post-increment)
(post-decrement)
(pre-increment)
(pre-decrement)

The post-increment and post-decrement (e.g., a++) returns the old value, then increments
or decrements the variable; the pre-increment and pre-decrement (++a) will first incre-
ment or decrement the variable, then return the new value.

e Unary and binary arithmetic operators on other expressions:

- expr
"~ expr

expr * expr
expr / expr
expr + expr
expr — expr
expr % expr
expr << expr
expr >> expr
expr & expr
expr | expr
expr " expr

(negation)

(bitwise complement)
(multiplication)
(division)

(addition)
(subtraction)

(integer modulus)
(integer shift left)
(integer shift right)
(bitwise and)
(bitwise or)

(bitwise exclusive or)

The operators +, -, *, /, and the unary - (negation) may be used on most of the nu-
meric types. For multicomponent types (color, point, vector, normal, matrix), these
operators combine their arguments on a component-by-component basis. The only op-
erators that may be applied to the matrix type are * and /, which respectively denote
matrix-matrix multiplication and matrix multiplication by the inverse of another matrix.

The integer and bit-wise operators %, <<, >>, &, |, ~, and ~ may only be used with expres-
sions of type int.

For details on which operators are allowed, please consult the operator tables for each
individual type in Chapter [3]

e Relational operators (all lower precedence than the arithmetic operators):

Open Shading Language Specification

6.2. EXPRESSIONS

37

expr == expr
expr = expr
expr < expr
expr <= expr
expr > expr
expr >= expr

(equal to)

(not equal to)

(less then)

(less than or equal to)
(greater than)

(greater than or equal)

The == and ! = operators may be performed between any two values of equal type, and are
performed component-by-component for multi-component types. The <, <=, >, >= may
not be used to compare multi-component types.

An int expression may be compared to a f1oat (and is treated as if they are both float).
A float expression may be compared to a multi-component type (and is treated as a
multi-component type as if constructed from a single float).

Relation comparisons produce Boolean (true/false) values. These are implemented as

int values, O if false

and 1 if true.

e Logical unary and binary operators:

! expr

exprl && expr2

exprl || expr2

Note that the not, and, and or keywords are synonyms for !, &&, and | |, respectively.

For the logical operators, numeric expressions (int or float) are considered frue if
nonzero, false if zero. Multi-component types (such as color) are considered true any
component is nonzero, false all components are zero. Strings are considered true if they
are nonempty, false if they are the empty string ("").

e another expression enclosed in parentheses: (). Parentheses may be used to guarantee
associativity of operations.

e Type casts, specified either by having the type name in parentheses in front of the value
to cast (C-style typecasts) or the type name called as a constructor (C++-style type con-

structors):
(vector) P
(point) £
(color) P
vector (P)
point (f)
color (P)

/*
/*
/*

/*

cast a point to a vector */
cast a float to a point */
cast a point to a color! */

Means the same thing */

The three-component types (color, point, vector, normal) may be cast to other three-
component types. A float may be cast to any of the three-component types (by placing
the float in all three components) or to a matrix (which makes a matrix with all diagonal

Open Shading Language Specification

38

CHAPTER 6. LANGUAGE SYNTAX

components being the float). Obviously, there are some type casts that are not allowed
because they make no sense, like casting a point to a float, or casting a string to a
numerical type.

function calls

assignment expressions: same thing as var = var OP expr :

var = expr (assign)

var += expr (add)

var -= expr (subtract)

var *= expr (multiply)

var /= expr (divide)

int-var &= int-expr (bitwise and)

int-var |= int-expr (bitwise or)

int-var "= int-expr (bitwise exclusive or)
int-var <<= int-expr (integer shift left)
int-var >>= int-expr (integer shift right)

Note that the integer and bit-wise operators are only allowed with int variables and ex-
pressions. In general, var OP= expr is allowed only if var = var OP expr is allowed,
and means exactly the same thing. Please consult the operator tables for each individual
type in Chapter [5]

ternary operator, just like C:
condition ? exprl : expr2

This expression takes on