
Some benchmarks for transformations of the

CEK machine

kwxm

December 2018

Introduction

This document contains some timing results for various versions of the CEK
machine. If you look at the description of the CEK machine you can see that
the return phase is essentially calling a sort of concretised continuation, so I
wondered if things would be any faster with real continuations (short answer:
no).

Experiments

I used the following abstract machines.

• Three versions of the CEK machine from commit 96fb387 (pretty much
the earliest version), but with the bounds check for sized integers in
Constant/Make.hs updated to use the bit function rather than calcu-
lating 2n for large n (this was slowing things down quite substantially and
has been fixed in more recent versions).

– The original CEK machine

– The CEK machine with a refunctionalisation transformation applied
so that it uses explicit continuations rather than the frames and
return operation in the contextual version of the CEK machine.

– The refunctionalised version with an “un-CPS” transformation ap-
plied. This essentially turns the machine into a simple recursive
evaluator providing a direct implementation of a standard structural
operational semantics.

• The current CEK machine at commit c9a8ae24. This has been signifi-
cantly modified from the earlier version, using monads and including the
new infrastructure for “dynamic” built-in functions.

Olivier Danvy and a number of collaborators have done a lot of work on trans-
formations of abstract machines (see “A Functional Correspondence between
Evaluators and Abstract Machines”, for example), and the transformations here
are instances of the kind of thing they’ve studied.

1



Inputs

The programs were run with the inputs shown in Figure 1. These are the
same (hand-written) programs and inputs as were used for evaluation of the
lazy machine in a previous document, and the same statistics were used (col-
lected using /usr/bin/time -f "%U %S %M" on Linux). The programs are all
recursive programs using the Z combinator:

• Loop: loop n times.

• Tri: calculate n + (n− 1) + . . . + 2 + 1

• Fac: calculate n(n− 1) · · · 2 · 1 (requires very large integers)

• Fib: Naive recursive Fibonacci

The programs were run once only for each input; ideally we’d run them
several times each and take the average, but this would be a lengthy process
and the results below don’t suggest that we’d gain much from a more detailed
test.

Program Minimum input Step Maximum input Integer size (bytes)
Loop 0 20,000 1,000,000 4
Tri 0 50,000 2,000,000 8
Fac 0 5,000 100,000 190,000
Fib 1 1 31 4

Figure 1: Programs and inputs

2



Results

●
●

●
●

●
●

●
●●

●
●

●●
●

●
●●

●●

●●●

●
●●●

●
●●

●●
●

●●
●●

●●
●●

●●●

●●
●●

●
●●●

●

●

●●●
●

●
●

●

●
●

●
●

●
●

●
●

●

●●●
●

●
●●●

●●
●

●
●

●

●
●

●●

●

●●

●

●
●

●

●

●
●

●

●

●
●

0e+00 2e+05 4e+05 6e+05 8e+05 1e+06

0
1

2
3

4
5

6
Loop (time)

n

T
im

e 
(s

)

●●●●●●●●●●
●●●●●●●●

●●●●●●●●
●●●

●●●
●●

●●
●

●
●

●●
●●●

●●●●●●

●
●●●●●

●●●
●●●

●●
●●

●●
●●

●
●●

●●●
●●●●

●

●●

●

●●
●

●

●
●

●●●●

●
●●

●

●

●

●

●●●●●
●●●●●

●●●●●●●●
●●

●●●●●●●●●●
●●

●
●●●

●●
●●

●●●
●●

●●●●●●●
●●

●●●
●

●

●
●

●●●

●

●●●

●
●

●

●

●
●

●
●

●●●
●●

●●●

●

●●
●●

●●●●

●

●●
●●

●
●

●

●●●●●●●●●●
●●●●●●●●

●●●●●●●●●
●●●

●●
●

●●

●●●●
●●

●●●●

●
●

●●
●●●

●
●

●

●●●●

●●●●

●●●●●

●

●
●

●
●●

●●●●
●

●
●●

●●

●
●

●●
●

●●

●

●
●●

●
●●

●
●●

master
recursive
CPS
Original CEK machine

●
●

●
●●

●●●●

●●●●●●●●

●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

0e+00 2e+05 4e+05 6e+05 8e+05 1e+06

0
10

0
20

0
30

0
40

0
50

0
60

0

Loop (memory)

n

M
em

or
y 

(M
B

)

●
●●

●●

●●●●●

●●●●●●●●

●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●
●●

●●

●●●●●

●●●●●●●●

●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●
●

●
●●

●●●●●

●●●●●●●●

●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

master
recursive
CPS
Original CEK machine

Figure 2: Loop

3



●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●
●

●
●

●
●

●
●

●
●

●
●

●

●

●
●

●
●

●

●

●

●

0 500000 1000000 1500000 2000000

0
5

10
15

Tri (time)

n

T
im

e 
(s

)

●
●

●

●
●

●

● ●

●
●

●
●

●
●

● ● ●

● ●
●

●
● ●

● ●

●

●

● ●
●

●

●

●

●

●

●
●

●
● ●

●

●
●

●
●

●
●

●

●
●

●
● ●

● ●

● ● ●

●

●
●

●
●

●
●

●

● ●
●

●
● ●

●

●
●

●

●

●

●

●

●

●

●
●

●
●

●
●

●

●
●

●
●

●

● ●
●

●

●
● ●

● ●
●

●
●

● ●
● ●

●

● ●
●

● ● ●

●

● ●

● ● ●

master
recursive
CPS
Original CEK machine

●

●
●

● ● ●

● ● ● ●

● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ●

0 500000 1000000 1500000 2000000

0
50

0
10

00
15

00

Tri (memory)

n

M
em

or
y 

(M
B

)

●
●

●

● ●

● ● ● ●

● ● ● ● ● ● ● ●

●

● ● ● ● ● ● ● ● ● ● ● ● ● ●

●

●

●

● ● ● ● ● ●

●

●

● ●

● ● ●

● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

●

●

● ●

● ● ●

● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

master
recursive
CPS
Original CEK machine

Figure 3: Triangular numbers

4



●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

0e+00 2e+04 4e+04 6e+04 8e+04 1e+05

0
1

2
3

Fac (time)

n

T
im

e 
(s

)

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

master
recursive
CPS
Original CEK machine

●

●

●

●
●

●

● ●

●
●

●

●

●
●

●

●

●

●

●

●

●

0e+00 2e+04 4e+04 6e+04 8e+04 1e+05

50
10

0
15

0

Fac (memory)

n

M
em

or
y 

(M
B

)

●

●

●

●

●

● ●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

● ●

●

● ●
●

●

●

●

●

● ● ● ● ●

●

●

●

●

●

●

●
●

●

●
●

●
●

●

●

●
● ● ● ●

●

●

●

●

master
recursive
CPS
Original CEK machine

Figure 4: Factorial

5



● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●
●

●

●

●

●

●

●

●

●

0 5 10 15 20 25 30

0
5

10
15

Fib (time)

n

T
im

e 
(s

)

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●
●

●

●

●

●

●

●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●
●

●

●

●

●

●

●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●
●

●

●

●

●

●

●

master
recursive
CPS
Original CEK machine

● ● ● ● ●
● ● ● ● ● ● ● ● ●

●
●

● ● ● ● ●
● ●

● ● ●
●

● ● ● ●

0 5 10 15 20 25 30

10
20

30
40

50

Fib (memory)

n

M
em

or
y 

(M
B

)

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●
● ● ● ● ● ● ●

● ●
● ● ● ● ● ● ●

●
● ● ● ● ●

●
●

●
●

● ● ● ● ●
●

●

● ● ● ●
●

● ● ● ● ● ● ● ●
●

●
●

● ● ● ● ● ● ● ● ● ● ● ●
● ● ● ● ●

●
● ●

master
recursive
CPS
Original CEK machine

Figure 5: Fibonacci

6



Conclusions

The results are pretty inconclusive: the variations on the original CEK machine
don’t seem to make a lot of difference, possibly because GHC will be transform-
ing things behind the scenes anyway.

It’s notable that the current version of the CEK machine is quite a bit slower
than the original one in some cases. This is presumably because it’s quite a bit
more complicated now, and also partly because there’s at least one problem
(to do with renaming variables in booleans) which we’ve identified but which I
don’t think has been fixed in the master branch yet.

It’s also the case that the memory usage of the current version is significantly
lower than the old version in some cases: I have no idea why this is. We should
do some detailed profiling on complicated examples.

7


