
1



2



3



VMs have relatively high overhead and memory footprint 

4



5



6



7



8



9



10



11



12



13



14



15



Example program receives packets from port 0 and sends them back to port 0. 

After “start 0” command pktgen should show that packets are not only sent on 

interface 0, but also the same number of packets is received back.

16



Example program receives packets from port 0 and sends them back half to 

port 0 and half to port 1. After “start 0” command pktgen should show that 

packets are sent on interface 0, and half of packets is received on interface 0, 

half on interface 1.

17



Example program receives packets from port 0 and sends back packets with 

port 53 to interface 1, all other packets to interface 0. Since step4.pg script 

generates packets with 11 different port numbers, 10/11 of packets should be 

received on port 0, and 1/11 should be received on port 1.

18



Example program receives packets from port 0 and sends back packets based 

on rules written in rules1.conf file. This rules file contents is written so that ¾ of 

packets should be received on port 0 and ¼ of packets should be received on 

port 1.

19



Example program receives packets from port 0 and sends back packets based 

on rules written in rules1.conf file. Only accepted packets are sent back to 

interface 0, rejected packets are dropped in this example. Rules file contents is 

written so that ¾ of packets should be received on port 0 and nothing should 

be received on interface 1.

20



Example program receives packets from port 0 and sends back packets based 

on rules written in rules1.conf file. Only accepted packets are sent back to 

interface 0, rejected packets are dropped in this example. Rules file original 

contents is written so that ¾ of packets should be received on port 0 and 

nothing should be received on interface 1. But this example allows on the fly 

modification of rules file, so for example changing Reject rule to “111.2.0.2/31” 

should change number of received packets on interface 0 to ½.

21



Example program receives packets from port 0 and sends back packets based 

on rules written in rules2.conf file. This rules file specifies to which output port 

the program should send a packet, port 0 meaning to drop packet. Rules file 

original contents is written so that ½ of packets should be received on port 0 

and ¼ should be received on port 1. But this example allows on the fly 

modification of rules file, so for example changing port 1 rule to “111.2.0.0/32” 

should change number of received packets on interface 0 to ¼ and received 

packets on interface 1 to ½.

22



Example program receives packets from port 0 and sends back packets based 

on rules written in rules2.conf file. Difference with previous example is that port 

1 flow also encapsulates a packet into IPv4 packet. Therefore received traffic 

on port 0 should be slightly higher than ½ of packets. If for example port 0 

(drop) rule is changed to “111.2.1.2/32” (no packet will match) ½ of packets 

should be received on port 0 and ½ of packets should be received on port 1, 

but since on port 0 they are encapsulated, received traffic should be slightly 

higher on port 0.

23



Example program receives packets from port 0 and sends back packets based 

on rules written in rules2.conf file. Difference with previous example is that 

handler function accepts a packet vector, everything else is the same.

24



Example program receives packets from port 0 and sends back packets based 

on rules written in rules2.conf file. Difference with previous example is that 

vector handler function executes some heavy code to demonstrate automatic 

scaling. On systems with many CPU cores the example program should try to 

use more than in step 10 example.

25



Example demonstrates using NAT example with pktgen. Sample 
configuration for NAT configures port 0 as private network port and port 1 as 
public network port. Addresses are translated from 192.168.1.1/24 subnet 
to 10.1.1.1/24 subnet with NAT IP on public interface 10.1.1.1. Sample 
pktgen script implements 11 client addresses that try to access one server 
on public network and server sending packets back to the clients. When 
both “start 0” and “start 1” commands are executed pktgen should show the 
same traffic received on interface 0 and interface 1 which means that 
address translation works in both directions.

26



27



28



29



30



31


