NFF-GO (YANFF) — YET ANOTHER NETWORK
FUNCTION FRAMEWORK

Legal Information

Intel technologies’ features and benefits depend on system configuration and may require enabled hardware, software or service activation. Learn more at
intel.com, or from the OEM or retailer.

No computer system can be absolutely secure.
Software and workloads used in performance tests may have been optimized for performance only on Intel microprocessors.

Performance tests, such as SYSmark and MobileMark, are measured using specific computer systems, components, software, operations and functions. Any
change to any of those factors may cause the results to vary. You should consult other information and performance tests to assist you in fully evaluating your
contemplated purchases, including the performance of that product when combined with other products. For more complete information visit
http://www.intel.com/performance.

Tests document performance of components on a particular test,in specific systems. Differences in hardware, software, or configuration will affect actual
performance. Consult other sources of information to evaluate performance as you consider your purchase. For more complete information about
performance and benchmark results, visit http://www.intel.com/performance.

Cost reduction scenarios described are intended as examples of how a given Intel- based product, in the specified circumstances and configurations, may
affect future costs and provide cost savings. Circumstances will vary. Intel does not guarantee any costs or cost reduction.

Results have been estimated or simulated using internal Intel analysis or architecture simulation or modeling, and provided to you for informational purposes.
Any differences in your system hardware, software or configuration may affect your actual performance.

Intel does not control or audit third-party benchmark data or the web sites referenced in this document. You should visit the referenced web site and confirm
whether referenced data are accurate.

Intel, the Intel logo and others are trademarks of Intel Corporation in the U.S. and/or other countries.

*Other names and brands may be claimed as the property of others.

© 2017 Intel Corporation.

YANFF - Yet Another Network Function Framework

Framework for building performant native network functions

* Open-source project

* Higher level abstractions than DPDK

* Go language: productivity, performance, concurrency, safety

* Network functions are application programs and not virtual machines

Benefits:

» Easily leverage IA HW capabilities: multi-cores, AES-NI, CAT, QAT, DPDK

* 10x reduction lines of code

* No need to be expert network system programmer

* Similar performance with C

+ Take advantage of cloud native deployment: continuous delivery, micro-
services, containers

https://github.com/intel-go/vanff

Technical Motivation
» Developers need framework to shorten development cycle of VNFs

— Currently VNFs are monolithic - “virtual appliances” instead of network
functions

- Significant part of VNF is about plumbing. Plumbing VNFs to CommSPs
network is an art. Should be abstracted from VNFs

= Lack of stable and unified APIs for VNF controland data plane
= Challenges with access to HW Accelerators in cloud environment.
* Cloud-friendly APIs and designs needed.

Accelerating transition to from rule-based networking to
imperative networking

https://github.com/intel-go/yanff (nteD |

VMs have relatively high overhead and memory footprint

YANFF: Yet Another Network Function Framework

* Simple but powerful abstractions:
* Flow, Packet
* Userbuilds packet processing graph using “flow functions” chaining
* SetReceiver -> SetHandler -> SetSender
« Several predefined possibilities of adding IA Platform
user processing inside packet processing graph

Split, Separate, Generate, Handle Application

* (Can leverage predefined functions which t
parse packets, check ACL rules, etc. Optimized Platform Software
*+ Runto completion - NFs can be expressedin = I I

the flow functions and natural chaining 1
* Auto-scaling, ease of development
» Zero-copy between NFs

Opumlzed Software on

* Flexible incoming flow handling - sources can be I l l I

anything: network port, memory buffer, remote
procedure call, etc.

smarn NIC

https://github.com/intel-go/yanff

L3 Simple Forwarding Example

var L3Rules *rules.L3Rules

func main() {
flow.systemInit(16)
L3Rules = rules.GetL3RulesFromoRIG("Forwarding.conf")
inputFlow := flow.SetReceiver(0)
outputFlows := flow.setsSplitter(inputFlow, L3splitter, uint(3))
flow.setStopper (outputFlows[0])
for 1 = 1; 1 < 3; i++ {
flow.setSender(outputFlows[1], uint8(i-1))
}
flow.systemstart()

// User defined function for splitting packets

func L3splitter(currentPacket *packet.Packet) uint {
currentPacket.ParseL4()
return rules.L3_ACL_port(currentPacket, L3Rules)

Configuration file for Forwarding

Source address, Destination address, L4 protocol ID, Source port, Destination port, Output port

111.2.0.0/31 ANY tcp ANY ANY 1
111.2.0.2/32 ANY tcp ANY ANY Reject
ANY ANY udp 3078:3964 56:61020 2

Exactly The Same Example in DPDK/C

23 SLOC in YANFF vs 2079 in DPDK/C!

YANFF — Main Architectural Concepts

Flow
Abstraction without public fields, which
is used for pointing connections
between Flow functions.
Opened by Receive / Split/
Separate / Counter / Generate.
Closed by Send / Merge / Stop.

Port
Network door, used in
Receive, Send.

Packet
High-level representation of network
packet. Private field is *mbuf, public fields
are mac / ip / data /etc: pointers to mbuf
with offsets (zero copy).
Is extracted before any
.Can be filled after user request by
Packet functions. Can be checked by Rule
functions.

Rule
Set of checking rules,
used in

Building Processing Graph

SpinFunction

Generatefunction
Gener.
GenerateFunction SpitFunction

SeparateFunction

SeparateFunction

10

Packet modification functions

Packet functions

Parsing packetfields
Parse L2 or/and L3 or/and L4 levels

Initializing packet fields
Initialize L2 or/and L3 or/and L4 levels

Handle() {can drop}
-> Stop
Flow -> -> Flow
Handle(){can‘tdrop}
Flow -> -> Flow

& late /D

Rule functions

Create rule
Create checking rulefrom json / config

Checking packet fields by rule
Check L2 or/and L3 or/and L4 levels

11

Flow Graph Example - Forwarding

Receiver Splitter

12

Let’s build some functions!

13

Create test VMs

1.Create and provision two test VMs:
$ cd $GOPATH/src/github.com/intel-go/yanff/vagrant
$ vagrant up
2.0pen two terminal windows
3.cd to vagrant directory below
4.run “vagrant ssh yanf-"VM_number” to connect to pktgen VM and target
VM, e.g.

$ vagrant ssh yanff-1 # YANFF test program host
yanff-1$ bindports # if ports not bound yet

$ vagrant ssh yanff-0 # pktgen host

yanff-0$ bindports # if ports not bound yet

14

Let's try (1 of 11)

Flow graph:

yanff-1$ cd $YANFF/examples/tutorial
yanff-1$ sudo ./stepl

yanff-0$ cd $YANFF/examples/tutorial
yanff-0$./genscripts
yanff-0$./runpktgen.sh

Pktgen: /> start 0

Pktgen: /> quit

package main
import "github.com/intel-go/yanff/flow"

func main() {
// Init YANFF system
config := flow.Config{}
checkFatal(flow.SystemInit(&config))

initCommonState()

checkFatal(flow.SystemStart())
}

15

Let's tl'y (2 of 1 1) package main

import "github.com/intel-go/yanff/flow"
Flow graph: func main() {
| config := flow.Config{}

| Receive checkFatal(flow.SystemInit(&config))

initCommonState()

firstFlow, err := flow.SetReceiver(0)
checkFatal(err)
checkFatal(flow.SetHandler(firstFlow, modifyPacket[0], nil))

| Modify | checkFatal(flow.SetSender(firstFlow, 0))

| Send | checkFatal(flow.SystemStart())

yanff-1$ sudo ./step2

yanff-0§ ./runpktgen.sh
Pktgen: /> load step2.pg
Pktgen: /> start 0

Pktgen: /> quit

Example program receives packets from port 0 and sends them back to port 0.
After “start 0" command pktgen should show that packets are not only sent on
interface 0, but also the same number of packets is received back.

Let's try (3 of 11)

Flow graph:

| Receive |

| Partition |

| Meodify | | Modify |
' ~

| Send | | Send |

yanff-1$ sudo ./step3

yanff-0$./runpktgen.sh
Pktgen: /> load step3.pg
Pktgen: /> start 0

Pktgen: /> quit

package matin
import "github.com/intel-go/yanff/flow"

func main() {
config := flow.Config{}
checkFatal(flow.SystemInit(&config))

initCommonState()

firstFlow, err := flow.SetReceiver(0)

checkFatal(err)

secondFlow, err := flow.SetPartitioner(firstFlow, 300, 300)
checkFatal(err)

checkFatal(flow.SetHandler(firstFlow, modifyPacket[0], nil))
checkFatal(flow.SetHandler(secondFlow, modifyPacket[1], nil))
checkFatal(flow.SetSender(firstFlow, 0))
checkFatal(flow.SetSender(secondFlow, 1))

checkFatal(flow.SystemStart())

Example program receives packets from port 0 and sends them back half to
port 0 and half to port 1. After “start 0” command pktgen should show that
packets are sent on interface 0, and half of packets is received on interface 0,

half on interface 1.

17

Let's try (4 of 11)

Flow graph:
Receive
\ Separate \
__Modify | | Modify
! N\
| Send | Send |
yanff-1$ sudo ./step4d

yanff-0$./runpktgen.sh
Pktgen: /> load step4d.pg
Pktgen: /> start 0

Pktgen: /> quit

package main
import * gtthub com/intel- go/yanff/flow“

import thub.com/intel-go/yanff/packet”

func main() {
config := flow.Config{}
checkFatal(flow.SystemInit(&config))
initCommonState()

firstFlow, err := flow.SetReceiver(0)
checkFatal(err)

econdFlow, err := flow.SetSeparator(firstFlow,
checkFatal(err)

checkFatal(flow.SetHandler(firstFlow, modifyPacket[0],

checkFatal(flow.SetHandler(secondFlow, modifyPacket[1],

checkFatal(flow.SetSender(firstFlow, 0))
checkFatal(flow.SetSender(secondFlow, 1))

checkFatal(flow.SystemStart())

}
func mySeparator(cur *packet.Packet, ctx flow.UserContext) bool {
cur.Parsel3()
if cur.GetIPv4() != nil {
.Parsel4ForIPv4()
if ’ur.GﬂTIAFF rIPv4() != nil &
packet .SwapBytesUint16(cur.GetTCPForIPv4().DstPort) == 53 {
return false
return true

mySeparator, nil)

nil))
nil))

Example program receives packets from port 0 and sends back packets with
port 53 to interface 1, all other packets to interface 0. Since step4.pg script
generates packets with 11 different port numbers, 10/11 of packets should be
received on port 0, and 1/11 should be received on port 1.

18

LEt'S tl'y (5 Of 1 1) meort "github.com/intel-go/yanff/rules”

Flow graph:

| Receive | Rules

| Sepérate |

| Meodify | | Modify |
' ~

| Send | | Send |

yanff-1$ sudo ./step5

yanff-0$./runpktgen.sh
Pktgen: /> load step5.pg
Pktgen: /> start 0

Pktgen: /> quit

var L3Rules *rules.L3Rules

func main() {
var err error
config := flow.Config{}
checkFatal(flow.SystemInit(&config))
initCommonState()

13Rules, err = packet.GetL3ACLFromORIG("rulesl.conf")

checkFatal(err)

firstFlow, err := flow.SetReceiver(0)

checkFatal(err)

secondFlow, err := flow.SetSeparator(firstFlow, mySeparator, nil)
checkFatal(err)

checkFatal(flow.SetHandler(firstFlow, modifyPacket[0], nil))
checkFatal(flow.SetHandler(secondFlow, modifyPacket[1], nil))
checkFatal(flow.SetSender(firstFlow, 0))
checkFatal(flow.SetSender(secondFlow, 1))
checkFatal(flow.SystemStart())

}

func MySeparator(cur *packet.Packet, ctx flow.UserContext) bool {
return cur.L3ACLPermit(13Rules)
}

Example program receives packets from port 0 and sends back packets based
on rules written in rulesl.conf file. This rules file contents is written so that % of
packets should be received on port 0 and ¥4 of packets should be received on

port 1.

19

var err error
config := flow.Config{}

Flow graph: checkFatal(flow.SystemInit(&config))
; L3Rules = rules.GetL3RulesFromORIG(“rulesl.conf")
| Receive | Rules checkFatal(err)

' firstFlow, err := flow.SetReceiver(0)

' checkFatal(err)
| Separate | secondFlow, err := flow.SetSeparator(firstFlow, mySeparator, nil)

checkFatal(err)
| Modify

checkFatal(flow.SetHandler(firstFlow, modifyPacket[0], nil))
checkFatal(flow.SetSender(firstFlow, 0))
checkFatal(flow.SetStopper(secondFlow))
checkFatal(flow.SystemStart())

| Send | Stop | }
func MySeparator(cur *packet.Packet, ctx flow.UserContext) bool {
yanff-1$ sudo ./stepé6 return cur.L3ACLPermit(13Rules)
}

yanff-0$./runpktgen.sh
Pktgen: /> load step6.pg
Pktgen: /> start 0

Pktgen: /> quit

Example program receives packets from port 0 and sends back packets based
on rules written in rulesl.conf file. Only accepted packets are sent back to
interface 0, rejected packets are dropped in this example. Rules file contents is
written so that % of packets should be received on port 0 and nothing should
be received on interface 1.

Let'stry (7 of 11) oo i

var rulesp unsafe.Pointer

Flow graph: "7 U3Rules, err := packet.GetL3ACLFromORIG("rulesl.conf")
: checkFatal(err)
| Receive UPRthed rulesp = unsafe.Pointer(&l3Rules)
utes go updateSeparateRules()
| Sepérate e T

func MySeparator(cur *packet.Packet, ctx flow.UserContext) bool {
locallL3Rules := (*packet.L3Rules)(atomic.LoadPointer(&rulesp))
return cur.L3ACLPermit(locallL3Rules)

|_Modify

| Send | Stop | func updateSeparateRules() {
for {
time.Sleep(time.Second * 5)
yvanff-1$ sudo ./step?7 locall3Rules, err := packet.GetL3ACLFromORIG("rulesl.conf")
checkFatal(err)
atomic.StorePointer(&rulesp, unsafe.Pointer(locall3Rules))
yanff-0$./runpktgen.sh }
Pktgen: /> load step7.pg }
Pktgen: /> start 0 To make changes in rules1.conffile it is necessary to
. onnect to target VM in another window or run YANFF
Pktgen: /> quit xecutable in screen terminal multiplexer.

Example program receives packets from port 0 and sends back packets based
on rules written in rulesl.conf file. Only accepted packets are sent back to
interface 0, rejected packets are dropped in this example. Rules file original
contents is written so that % of packets should be received on port 0 and
nothing should be received on interface 1. But this example allows on the fly
modification of rules file, so for example changing Reject rule to “111.2.0.2/31”
should change number of received packets on interface 0 to Y.

21

Let'stry (8 of 11) =i -

mfirstFlow, err := flow.SetReceiver(0)
. checkFatal(err)
Flowgraph. utputFlows, err := flow.SetSplitter(firstFlow, mySplitter, flowN, nil)
- \ heckFat
| Receive | updated S
] Rules for 1 i=
! checkFatal t [i], modifyPacket[i-1 nil
1 Spllt | checkFatal(flow.SetSender(outputFlows[i], i-1))
MOdI ‘ func mySplitter(cur *packet.Packet, ctx flow.UserContext
locall3Rules := L3Rules
G return ir.L3ACLPort(locallL3Rules)
Modify }
| Stop || Send | Send |

yanff-1$ sudo ./step8

yanff-0$./runpktgen.sh

Pktgen: /> load step8.pg

Pktgen: /> start 0 To make changesin rules2.conffile it is necessary to
konnect to target VM in another window or run YANFF

Pktgen: /> quit xecutable in screen terminal multiplexer.

@ |

Example program receives packets from port 0 and sends back packets based
on rules written in rules2.conf file. This rules file specifies to which output port
the program should send a packet, port 0 meaning to drop packet. Rules file
original contents is written so that ¥z of packets should be received on port 0
and ¥4 should be received on port 1. But this example allows on the fly
modification of rules file, so for example changing port 1 rule to “111.2.0.0/32”
should change number of received packets on interface 0 to ¥ and received
packets on interface 1 to %.

22

Let's try (9 of 11)

Flow graph:
| Receive | updated
—17 Rules
. Split |

Handle ~_
(_Modify_J |Modify _
Stop | Send | Send

yanff-1$ sudo ./step9
yanff-0$./runpktgen.sh
Pktgen: /> load step9.pg

Pktgen: /> start 0

Pktgen: /> quit

"github.com/intel-go/yanff/common*

mfirstFlow, err := flow.SetReceiver(0)

checkFatal(err)
outputFlows, err := flow.SetSplitter(firstFlow, mySplitter, flowN, nil)
checkFatal(err)

checkFatal(flow.SetStopper(outputFlows[0])

checkFatal(flow.SetHandler(outputFlows[1], myHandler, nil))

for 1 := uint8(1); 1 < flowN; i++ {
checkFatal(flow.SetHandler(outputFlows[i], modifyPacket[i-1], nil))
checkFatal(flow.SetSender(outputFlows[i], i-1))

onnectto target VM in another window or run YANFF

To make changesin rules2.conffile it is necessary to
xecutable in screen terminal multiplexer.

@ | »

Example program receives packets from port 0 and sends back packets based
on rules written in rules2.conf file. Difference with previous example is that port
1 flow also encapsulates a packet into IPv4 packet. Therefore received traffic
on port 0 should be slightly higher than ¥ of packets. If for example port 0
(drop) rule is changed to “111.2.1.2/32” (no packet will match) %2 of packets
should be received on port 0 and %2 of packets should be received on port 1,
but since on port 0 they are encapsulated, received traffic should be slightly

higher on port 0.

23

Let'stry(100f 11) "~

func myHandler(curV []*packet.Packet, num uint, ctx flow.UserContext) {
for i := uint(0); i < num; i++ {
Flow graph: := curV[i]
EncapsulateHead(common.EtherLen, common.IPv4MinLen)
| Receive | updated ParselL3()
Rules GetIPv4ANoCheck().SrcAddr = packet.BytesToIPv4(111, 22, 3, 0)
GetIPv4NoCheck().DstAddr = packet.BytesToIPv4(3, 22, 111, 0)
| S -Ut ‘ GetIPv4NoCheck().VersionIhl = @x45
P Packet GetIPv4NoCheck().NextProtoID = 0x04
vector . }
Handle |
- A N
__Modify | [Modify
’ ~
Stop || Send | Send |

yanff-1$ sudo ./stepl0

yanff-0§ ./runpktgen.sh
Pktgen: /> load stepl0.pg
Pktgen: /> start 0

Pktgen: /> quit

o make changes in rules2.conffile it is necessary to
onnect to target VM in another window or run YANFF
xecutable in screen terminal multiplexer.

Example program receives packets from port 0 and sends back packets based
on rules written in rules2.conf file. Difference with previous example is that
handler function accepts a packet vector, everything else is the same.

] -
Let's try (11 of 11)
func myHandler(curV []*packet.Packet, num uint, ctx flow.UserContext) {
for i := uint(0); 1 < num; i++ {
Flow graph: cur := curV[i]
cur.EncapsulateHead(common.EtherLen, common.IPv4MinLen)
i updated cur.Parsel3()
Receive P cur.GetIPvaNoCheck().SrcAddr = packet.BytesToIPv4(111, 22, 3, 0)
Rules cur.GetIPv4NoCheck().DstAddr = packet.BytesToIPv4(3, 22, 111, 0)
4 cur.GetIPv4NoCheck().VersionIhl = 0x45
‘ Spllt ‘ Packet i cur.GetIPv4NoCheck().NextProtoID = 0x04
vector // Some heavy computational code
heavyCode()
Handle s } '
/ Modi Modu |
Stop Send ‘\ Send
. anff-1§ sudo ./stepll
Scaling Y ¥ / p
yanff-0$./runpktgen.sh
= —— Pktgen: /> load stepll.pg

To make changes in rglesz.conffllg it is necessary to Pktgen: /> start 0

connect to target VM in another window or run

YANFF executable in screen terminal multiplexer. Pktgen: /> quit

Example program receives packets from port 0 and sends back packets based
on rules written in rules2.conf file. Difference with previous example is that
vector handler function executes some heavy code to demonstrate automatic
scaling. On systems with many CPU cores the example program should try to
use more than in step 10 example.

25

Finally: NAT

vanff-1$./genscripts -pktgen direct
yvanff-1$ sudo ../nat/main/nat -config nat.json

yanff-0$./runpktgen.sh
Pktgen: /> load nat.pg
Pktgen: /> start 0
Pktgen: /> start 1

Pktgen: /> quit

Example demonstrates using NAT example with pktgen. Sample
configuration for NAT configures port O as private network port and port 1 as
public network port. Addresses are translated from 192.168.1.1/24 subnet
to 10.1.1.1/24 subnet with NAT IP on public interface 10.1.1.1. Sample
pktgen script implements 11 client addresses that try to access one server
on public network and server sending packets back to the clients. When

both “start 0" and “start 1" commands are executed pktgen should show the
same traffic received on interface O and interface 1 which means that
address translation works in both directions.

26

Q&A?

27

Optimization Notice

Optimization Notice

Intel’s compilers may or may not optimize to the same degree for non-Intel microprocessors for optimizations that
are not unique to Intel microprocessors. These optimizations include SSE2®, SSE3, and SSSE3 instruction sets and
other optimizations. Intel does not guarantee the availability, functionality, or effectiveness of any optimization on
microprocessors not manufactured by Intel. Microprocessor-dependent optimizations in this product are intended
for use with Intel microprocessors. Certain optimizations not specific to Intel microarchitecture are reserved for
Intel microprocessors. Please refer to the applicable product User and Reference Guides for more information

regarding the specific instruction sets covered by this notice.

Notice revision #20110804

28

Flow functions

Tk

Basic components

Packet functions

User defined functions

Instances (new types)

Library External Components Library Internal Co

ningof ~ flowf

defined functions

User package: us

29

Lab configuration

g dcompOl

dcomp02

dcomp03

dcomp10

dcompll

Trafficgenerators —

dcomp12

dbdw04

dbdw05

Q.

o

Q
EI

o

[
Q
o
Q
&
~

dbdw09
dbdw10
dbdwi1l
dbdw12
dbdw13
dbdwi14

dbdw15

dbdw16
dbdw17

=— YANFF target hosts

Jump host 207.108.8.161, Login: gashiman, Password: YanffLab

30

Finally (2 of 2): ipsec

* Showing ipsec example

31

