
Intel Golang Team

Gregory Shimansky

Copyright © 2016, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Legal Information

Intel technologies’ features and benefits depend on system configuration and may require enabled hardware, software or service activation. Learn more at
intel.com, or from the OEM or retailer.

No computer system can be absolutely secure.

Software and workloads used in performance tests may have been optimized for performance only on Intel microprocessors.

Performance tests, such as SYSmark and MobileMark, are measured using specific computer systems, components, software, operations and functions. Any
change to any of those factors may cause the results to vary. You should consult other information and performance tests to assist you in fully evaluating your
contemplated purchases, including the performance of that product when combined with other products. For more complete information visit
http://www.intel.com/performance.

Tests document performance of components on a particular test, in specific systems. Differences in hardware, software, or configuration will affect actual
performance. Consult other sources of information to evaluate performance as you consider your purchase. For more complete information about
performance and benchmark results, visit http://www.intel.com/performance.

Cost reduction scenarios described are intended as examples of how a given Intel- based product, in the specified circumstances and configurations, may
affect future costs and provide cost savings. Circumstances will vary. Intel does not guarantee any costs or cost reduction.

Results have been estimated or simulated using internal Intel analysis or architecture simulation or modeling, and provided to you for informational purposes.
Any differences in your system hardware, software or configuration may affect your actual performance.

Intel does not control or audit third-party benchmark data or the web sites referenced in this document. You should visit the referenced web site and confirm
whether referenced data are accurate.

Intel, the Intel logo and others are trademarks of Intel Corporation in the U.S. and/or other countries.

*Other names and brands may be claimed as the property of others.

© 2017 Intel Corporation.

2

http://www.intel.com/performance
http://www.intel.com/performance

Copyright © 2016, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

NFF-Go (YANFF - Yet Another Network Function Framework)

Framework for building performant native network functions
• Open-source project
• Higher level abstractions than DPDK
• Go language: productivity, performance, concurrency, safety
• Network functions are application programs and not virtual machines
Benefits:
• Easily leverage IA HW capabilities: multi-cores, AES-NI, CAT, QAT, DPDK
• 10x reduction lines of code
• No need to be expert network system programmer
• Similar performance with C
• Take advantage of cloud native deployment: continuous delivery, micro-

services, containers

https://github.com/intel-go/nff-go

3

https://github.com/intel-go/

Copyright © 2016, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Technical Motivation
 Developers need framework to shorten development cycle of VNFs

– Currently VNFs are monolithic - “virtual appliances” instead of network
functions

– Significant part of VNF is about plumbing. Plumbing VNFs to CommSPs
network is an art. Should be abstracted from VNFs

 Lack of stable and unified APIs for VNF control and data plane

 Challenges with access to HW Accelerators in cloud environment.

 Cloud-friendly APIs and designs needed.

Accelerating transition to from rule-based networking to

imperative networking

https://github.com/intel-go/nff-go 4

https://github.com/intel-go/yanff

Copyright © 2016, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

NFF-Go: Network Function Framework
• Simple but powerful abstractions:

• Flow, Packet

• User builds packet processing graph using “flow functions” chaining
• SetReceiver -> SetHandler -> SetSender
• Several predefined possibilities of adding

user processing inside packet processing graph
• Split, Separate, Generate, Handle

• Can leverage predefined functions which
parse packets, check ACL rules, etc.

• Run to completion – NFs can be expressed in
the flow functions and natural chaining

• Auto-scaling, ease of development
• Zero-copy between NFs
• Flexible incoming flow handling – sources can be

anything: network port, memory buffer, remote
procedure call, etc.

System SW

Optimized SW

Application

IA PlatformIA Platform

Optimized Platform Software

Optimized Software on
CPU ISA (e.g. AES, AVX)

Standard NIC
Accelerators
(Intel® QAT)

Application

Smart NIC Integrated FPGA

U
P
I

NFF-Go

https://github.com/intel-go/nff-go 5

https://github.com/intel-go/yanff

Copyright © 2016, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

L3 Simple Forwarding Example
var L3Rules *rules.L3Rules

func main() {

flow.SystemInit(16)

L3Rules = rules.GetL3RulesFromORIG("Forwarding.conf")

inputFlow := flow.SetReceiver(0)

outputFlows := flow.SetSplitter(inputFlow, L3Splitter, uint(3))

flow.SetStopper(outputFlows[0])

for i := 1; i < 3; i++ {

flow.SetSender(outputFlows[i], uint8(i-1))

}

flow.SystemStart()

}

// User defined function for splitting packets

func L3Splitter(currentPacket *packet.Packet) uint {

currentPacket.ParseL4()

return rules.L3_ACL_port(currentPacket, L3Rules)

}

6

Copyright © 2016, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Configuration file for Forwarding

Source address, Destination address, L4 protocol ID, Source port, Destination port, Output port

111.2.0.0/31 ANY tcp ANY ANY 1

111.2.0.2/32 ANY tcp ANY ANY Reject

ANY ANY udp 3078:3964 56:61020 2

7

Copyright © 2016, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Exactly The Same Example in DPDK/C

… 10 more screens to get to the end…23 SLOC in NFF-Go vs 2079 in DPDK/C!

8

Copyright © 2016, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

NFF-Go – Main Architectural Concepts

Flow
Abstraction without public fields, which

is used for pointing connections
between Flow functions.

Opened by Receive / Split /
Separate / Counter / Generate.
Closed by Send / Merge / Stop.

Packet
High-level representation of network

packet. Private field is *mbuf, public fields
are mac / ip / data /etc: pointers to mbuf

with offsets (zero copy).
Is extracted before any User defined

function. Can be filled after user request by
Packet functions. Can be checked by Rule

functions.

Port
Network door, used in

Receive, Send.

Rule
Set of checking rules,
used in User defined

functions.

9

Copyright © 2016, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Building Processing Graph

Separate(SeparateFunction) {input stay}

-> Flow
Flow -> SeparateFunction -> Flow

Merge
Flow ->
Flow -> Flow
Flow ->

Partition (periodicity)

-> Flow
Flow -> calculation -> Flow

Split (SplitFunction) {input closed}

-> Flow
Flow -> SplitFunction -> Flow

-> Flow

Generate (GenerateFunction) {can wait}

GenerateFunction -> Flow

Stop
Flow -> drop

Receive (Port)

driver (loop) -> Flow

Send (Port)

Flow -> driver (loop)

Read (File)

PCAP file -> Flow

Write (File)

Flow -> PCAP file

10

Copyright © 2016, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Packet modification functions

Handle (SeparateFunction) {can drop}

-> Stop
Flow -> SeparateFunction-> Flow

Handle (HandleFunction) {can’t drop}

Flow -> HandleFunction -> Flow

Packet functions

Parsing packet fields
Parse L2 or/and L3 or/and L4 levels

Checking packet fields by rule
Check L2 or/and L3 or/and L4 levels

Create rule
Create checking rule from json / config

Initializing packet fields
Initialize L2 or/and L3 or/and L4 levels

Rule functions

Encapsulate / Decapsulate

11

Copyright © 2016, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Flow Graph Example - Forwarding

1

Receiver

2

Splitter

3

Stop

3

3

Send

Send

12

Copyright © 2016, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Let’s build some functions!

13

Copyright © 2016, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Create test VMs

1.Create and provision two test VMs:
$ cd nff-go/vagrant

$ vagrant up

2.Open two terminal windows
3.cd to vagrant directory below
4.run “vagrant ssh nff-go-”VM_number” to connect to pktgen VM and target

VM, e.g.

$ vagrant ssh nff-go-1 # NFF-Go test program host

nff-go-1$ bindports # if ports not bound yet

$ vagrant ssh nff-go-0 # pktgen host

nff-go-0$ bindports # if ports not bound yet

14

Copyright © 2016, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Let’s try (01 of 11)
Flow graph:

package main
import "github.com/intel-go/nff-go/flow"

func main() {
// Init NFF-Go system
config := flow.Config{}
checkFatal(flow.SystemInit(&config))

initCommonState()

checkFatal(flow.SystemStart())
}

nff-go-0$ cd $NFF_GO/examples/tutorial

nff-go-0$./genscripts

nff-go-0$./runpktgen.sh

Pktgen:/> start 0

……

Pktgen:/> quit

nff-go-1$ cd $NFF_GO/examples/tutorial

nff-go-1$ sudo ./step01

15

Copyright © 2016, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Let’s try (02 of 11)
Flow graph:

Receive

Send

package main

import "github.com/intel-go/nff-go/flow"

func main() {
config := flow.Config{}
checkFatal(flow.SystemInit(&config))

initCommonState()

firstFlow, err := flow.SetReceiver(0)
checkFatal(err)
checkFatal(flow.SetHandler(firstFlow, modifyPacket[0], nil))
checkFatal(flow.SetSender(firstFlow, 0))

checkFatal(flow.SystemStart())
}

nff-go-0$./runpktgen.sh

Pktgen:/> load step02.pg

Pktgen:/> start 0

…

Pktgen:/> quit

nff-go-1$ sudo ./step02

Modify

16

Copyright © 2016, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Let’s try (03 of 11)
Flow graph:

Receive

Send

Partition

Send

package main
import "github.com/intel-go/nff-go/flow"

func main() {
config := flow.Config{}
checkFatal(flow.SystemInit(&config))

initCommonState()

firstFlow, err := flow.SetReceiver(0)
checkFatal(err)
secondFlow, err := flow.SetPartitioner(firstFlow, 300, 300)
checkFatal(err)
checkFatal(flow.SetHandler(firstFlow, modifyPacket[0], nil))
checkFatal(flow.SetHandler(secondFlow, modifyPacket[1], nil))
checkFatal(flow.SetSender(firstFlow, 0))
checkFatal(flow.SetSender(secondFlow, 1))

checkFatal(flow.SystemStart())
}

nff-go-0$./runpktgen.sh

Pktgen:/> load step03.pg

Pktgen:/> start 0

…

Pktgen:/> quit

nff-go-1$ sudo ./step03

Modify Modify

17

Copyright © 2016, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Let’s try (04 of 11)
package main
import "github.com/intel-go/nff-go/flow“
import "github.com/intel-go/nff-go/packet“

func main() {
config := flow.Config{}
checkFatal(flow.SystemInit(&config))
initCommonState()

firstFlow, err := flow.SetReceiver(0)
checkFatal(err)
secondFlow, err := flow.SetSeparator(firstFlow, mySeparator, nil)
checkFatal(err)
checkFatal(flow.SetHandler(firstFlow, modifyPacket[0], nil))
checkFatal(flow.SetHandler(secondFlow, modifyPacket[1], nil))
checkFatal(flow.SetSender(firstFlow, 0))
checkFatal(flow.SetSender(secondFlow, 1))

checkFatal(flow.SystemStart())
}

func mySeparator(cur *packet.Packet, ctx flow.UserContext) bool {
cur.ParseL3()
if cur.GetIPv4() != nil {

cur.ParseL4ForIPv4()
if cur.GetTCPForIPv4() != nil &&

packet.SwapBytesUint16(cur.GetTCPForIPv4().DstPort) == 53 {
return false

}
}
return true

}

Flow graph:

Receive

Send

Separate

Send

nff-go-0$./runpktgen.sh

Pktgen:/> load step04.pg

Pktgen:/> start 0

…

Pktgen:/> quit

nff-go-1$ sudo ./step04

Modify Modify

18

Copyright © 2016, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Let’s try (05 of 11) … … …
import "github.com/intel-go/nff-go/rules“
var L3Rules *rules.L3Rules

func main() {
var err error
config := flow.Config{}
checkFatal(flow.SystemInit(&config))
initCommonState()

l3Rules, err = packet.GetL3ACLFromORIG("rules1.conf")
checkFatal(err)

firstFlow, err := flow.SetReceiver(0)
checkFatal(err)
secondFlow, err := flow.SetSeparator(firstFlow, mySeparator, nil)
checkFatal(err)
checkFatal(flow.SetHandler(firstFlow, modifyPacket[0], nil))
checkFatal(flow.SetHandler(secondFlow, modifyPacket[1], nil))
checkFatal(flow.SetSender(firstFlow, 0))
checkFatal(flow.SetSender(secondFlow, 1))
checkFatal(flow.SystemStart())

}

func MySeparator(cur *packet.Packet, ctx flow.UserContext) bool {
return cur.L3ACLPermit(l3Rules)

}

Flow graph:

Receive

Send

Separate

Send

Rules

nff-go-0$./runpktgen.sh

Pktgen:/> load step05.pg

Pktgen:/> start 0

…

Pktgen:/> quit

nff-go-1$ sudo ./step05

Modify Modify

19

Copyright © 2016, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Let’s try (06 of 11) … … …
func main() {

var err error
config := flow.Config{}
checkFatal(flow.SystemInit(&config))
L3Rules = rules.GetL3RulesFromORIG(“rules1.conf")
checkFatal(err)
firstFlow, err := flow.SetReceiver(0)
checkFatal(err)
secondFlow, err := flow.SetSeparator(firstFlow, mySeparator, nil)
checkFatal(err)
checkFatal(flow.SetHandler(firstFlow, modifyPacket[0], nil))
checkFatal(flow.SetSender(firstFlow, 0))
checkFatal(flow.SetStopper(secondFlow))
checkFatal(flow.SystemStart())

}

func MySeparator(cur *packet.Packet, ctx flow.UserContext) bool {
return cur.L3ACLPermit(l3Rules)

}

Flow graph:

Receive

Send

Separate

Stop

Rules

nff-go-0$./runpktgen.sh

Pktgen:/> load step06.pg

Pktgen:/> start 0

…

Pktgen:/> quit

nff-go-1$ sudo ./step06

Modify

20

Copyright © 2016, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Let’s try (07 of 11) … … …
import “time”
var rulesp unsafe.Pointer
… … …

l3Rules, err := packet.GetL3ACLFromORIG("rules1.conf")
checkFatal(err)
rulesp = unsafe.Pointer(&l3Rules)
go updateSeparateRules()

… … …

func MySeparator(cur *packet.Packet, ctx flow.UserContext) bool {
localL3Rules := (*packet.L3Rules)(atomic.LoadPointer(&rulesp))
return cur.L3ACLPermit(localL3Rules)

}

func updateSeparateRules() {
for {

time.Sleep(time.Second * 5)
locall3Rules, err := packet.GetL3ACLFromORIG("rules1.conf")
checkFatal(err)
atomic.StorePointer(&rulesp, unsafe.Pointer(locall3Rules))

}
}

Flow graph:

Receive

Send

Separate

Stop

updated
Rules

nff-go-0$./runpktgen.sh

Pktgen:/> load step07.pg

Pktgen:/> start 0

…

Pktgen:/> quit

nff-go-1$ sudo ./step07

Modify

To make changes in rules1.conf file it is necessary to
connect to target VM in another window or run NFF-Go
executable in screen terminal multiplexer.

21

Copyright © 2016, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Let’s try (08 of 11)
… … …
const flowN = 3
… … …

firstFlow, err := flow.SetReceiver(0)
checkFatal(err)
outputFlows, err := flow.SetSplitter(firstFlow, mySplitter, flowN, nil)
checkFatal(err)
checkFatal(flow.SetStopper(outputFlows[0]))
for i := uint8(1); i < flowN; i++ {

checkFatal(flow.SetHandler(outputFlows[i], modifyPacket[i-1], nil))
checkFatal(flow.SetSender(outputFlows[i], i-1))

}
… … …

func mySplitter(cur *packet.Packet, ctx flow.UserContext) uint {
localL3Rules := L3Rules
return cur.L3ACLPort(localL3Rules)

}
… … …

Flow graph:

Receive

Stop

Split

Send

updated
Rules

Send

nff-go-0$./runpktgen.sh

Pktgen:/> load step08.pg

Pktgen:/> start 0

…

Pktgen:/> quit

nff-go-1$ sudo ./step08

Modify

Modify

To make changes in rules2.conf file it is necessary to
connect to target VM in another window or run NFF-Go
executable in screen terminal multiplexer.

22

Copyright © 2016, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Let’s try (09 of 11)
… … …
import "github.com/intel-go/nff-go/common“
… … …

firstFlow, err := flow.SetReceiver(0)
checkFatal(err)
outputFlows, err := flow.SetSplitter(firstFlow, mySplitter, flowN, nil)
checkFatal(err)
checkFatal(flow.SetStopper(outputFlows[0]))
checkFatal(flow.SetHandler(outputFlows[1], myHandler, nil))
for i := uint8(1); i < flowN; i++ {

checkFatal(flow.SetHandler(outputFlows[i], modifyPacket[i-1], nil))
checkFatal(flow.SetSender(outputFlows[i], i-1))

}
… … …
func myHandler(cur *packet.Packet, ctx flow.UserContext) {

cur.EncapsulateHead(common.EtherLen, common.IPv4MinLen)
cur.ParseL3()
cur.GetIPv4NoCheck().SrcAddr = packet.BytesToIPv4(111, 22, 3, 0)
cur.GetIPv4NoCheck().DstAddr = packet.BytesToIPv4(3, 22, 111, 0)
cur.GetIPv4NoCheck().VersionIhl = 0x45
cur.GetIPv4NoCheck().NextProtoID = 0x04

}

Flow graph:

Receive

Send

Split

Send

updated
Rules

Stop

Handle

nff-go-0$./runpktgen.sh

Pktgen:/> load step09.pg

Pktgen:/> start 0

…

Pktgen:/> quit

nff-go-1$ sudo ./step09

ModifyModify

To make changes in rules2.conf file it is necessary to
connect to target VM in another window or run NFF-Go
executable in screen terminal multiplexer.

23

Copyright © 2016, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Let’s try (10 of 11) … … …

func myHandler(curV []*packet.Packet, num uint, ctx flow.UserContext) {
for i := uint(0); i < num; i++ {

cur := curV[i]
cur.EncapsulateHead(common.EtherLen, common.IPv4MinLen)
cur.ParseL3()
cur.GetIPv4NoCheck().SrcAddr = packet.BytesToIPv4(111, 22, 3, 0)
cur.GetIPv4NoCheck().DstAddr = packet.BytesToIPv4(3, 22, 111, 0)
cur.GetIPv4NoCheck().VersionIhl = 0x45
cur.GetIPv4NoCheck().NextProtoID = 0x04

}
}

Flow graph:

Receive

Send

Split

Send

updated
Rules

Stop

Handle

Packet
vector

nff-go-0$./runpktgen.sh

Pktgen:/> load step10.pg

Pktgen:/> start 0

…

Pktgen:/> quit

nff-go-1$ sudo ./step10

Modify Modify

To make changes in rules2.conf file it is necessary to
connect to target VM in another window or run NFF-Go
executable in screen terminal multiplexer.

24

Copyright © 2016, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Let’s try (11 of 11) … … …

func myHandler(curV []*packet.Packet, num uint, ctx flow.UserContext) {
for i := uint(0); i < num; i++ {

cur := curV[i]
cur.EncapsulateHead(common.EtherLen, common.IPv4MinLen)
cur.ParseL3()
cur.GetIPv4NoCheck().SrcAddr = packet.BytesToIPv4(111, 22, 3, 0)
cur.GetIPv4NoCheck().DstAddr = packet.BytesToIPv4(3, 22, 111, 0)
cur.GetIPv4NoCheck().VersionIhl = 0x45
cur.GetIPv4NoCheck().NextProtoID = 0x04

}
// Some heavy computational code
heavyCode()

}

Flow graph:

Receive

Send

Split

Send

updated
Rules

Stop

Handle

Packet
vector

Scaling

nff-go-0$./runpktgen.sh

Pktgen:/> load step11.pg

Pktgen:/> start 0

…

Pktgen:/> quit

nff-go-1$ sudo ./step11

Modify Modify

To make changes in rules2.conf file it is necessary to
connect to target VM in another window or run NFF-
Go executable in screen terminal multiplexer.

25

Copyright © 2016, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Alternative network packet IO

• KNI interfaces (examples/kni.go)

• Linux raw sockets (examples/OSforwarding.go)

• PCAP files (examples/clonablePcapDumper.go)

• Linux XDP (coming soon)

26

Copyright © 2016, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Statistic counters … … …

// Set up address for stats web server
statsServerAddres = &net.TCPAddr{

Port: 8080,
}

config := flow.Config{
StatsHTTPAddress: statsServerAddres,

}

… … …

27

Copyright © 2016, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Finally: NAT

nff-go-0$./runpktgen.sh

Pktgen:/> load nat.pg

Pktgen:/> start 0

Pktgen:/> start 1

…

Pktgen:/> quit

nff-go-1$./genscripts -pktgen direct

nff-go-1$ sudo ../nat/main/nat -config nat.json

28

Copyright © 2016, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Q & A ?

29

Copyright © 2016, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Optimization Notice

Optimization Notice

Intel’s compilers may or may not optimize to the same degree for non-Intel microprocessors for optimizations that

are not unique to Intel microprocessors. These optimizations include SSE2®, SSE3, and SSSE3 instruction sets and

other optimizations. Intel does not guarantee the availability, functionality, or effectiveness of any optimization on

microprocessors not manufactured by Intel. Microprocessor-dependent optimizations in this product are intended

for use with Intel microprocessors. Certain optimizations not specific to Intel microarchitecture are reserved for

Intel microprocessors. Please refer to the applicable product User and Reference Guides for more information

regarding the specific instruction sets covered by this notice.

Notice revision #20110804

30

Copyright © 2016, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Basic components

External (bytes inside network)

Flow (*mbufs inside rings)

Packets (as function arguments)

Send (Port)

Flow -> driver
(loop)

Receive (Port)

driver (loop) ->
Flow

Stop
Flow -> free

Separate(SeparateFunction) {input

stay}
-> Flow

Flow -> SeparateFunction -> Flow

Merge {slow}

Flow ->
Flow -> Flow

User defined
functions

Separate Function *
-> Packet -> Boolean value ->

Handle Function *
-> Packet ->

Flow
functions

Handle (SeparateFunction) {can

drop}
-> Stop

Flow -> SeparateFunction-> Flow

Generate (GenerateFunction) {can

wait}
GenerateFunction -> Flow

Connectio
ns

boo
l

Packet functions
Parsing packet fields

Parse L2 or/and L3 or/and L4
levels

Partition (periodicity)

->
Flow

Flow -> calculation ->
Flow

Instances (new
types)

Flow
Abstraction without public fields,

which is used for pointing
connections between Flow

functions.
Opened by Receive / Split /

Separate / Counter / Generate.
Closed by Send / Merge / Stop.

Packet
High-level representation of

network packet. Private field is
*mbuf, public fields are mac / ip /
data /etc: pointers to mbuf with

offsets (zero copy).
Is extracted before any User

defined function. Can be filled
after user request by Packet

functions. Can be checked by Rule
functions.

Split Function
-> Packet -> № of Flow ->

uint

Split (SplitFunction) {input closed}

-> Flow
Flow -> SplitFunction -> Flow

-> Flow

Checking packet fields by
rule

Check L2 or/and L3 or/and L4
levels

• Flow: type “Flow” Init, Starting, Checking, Flow functions
• Packet: type “Packet”, parsing / initializing packet functions
• Rules: type “Rule”, parsing rules / checking Packet functions
• User package: user defined functions

Library External
Components

Create rule
Create checking rule from json /

config

• Scheduler: Cloning of user defined flow functions
• Asm: assembler functions added to GO
• Common: technical functions shared by other

components
• Low: connections with DPDK C implementation

Library Internal ComponentsHandle (HandleFunction) {can’t

drop}
Flow -> HandleFunction -> Flow

Port
Network

door, used in
Receive,

Send.

Initializing packet fields
Initialize L2 or/and L3 or/and L4

levels

Rule functions

Rule
Set of

checking
rules, used in
User defined

functions.

Encapsulate / Decapsulate

Generate Function *
Packet ->

* Can
process
vector of

packets at
one time

All
functions

take packet
and

handling
context All

functions at
separate

cores and
can be
cloned

31

Copyright © 2016, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Lab configuration

dcomp01

Switch

dcomp02

dcomp03

dcomp10

dcomp11

dcomp12

dbdw04

dbdw05

dbdw06

dbdw07

dbdw08

dbdw09

dbdw10

dbdw11

dbdw12

dbdw13

dbdw14

dbdw15

dbdw16

dbdw17

Traffic generators NFF-Go target hosts

Jump host: , Login: gashiman, Password:

32

Copyright © 2016, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Finally (2 of 2): ipsec

Showing ipsec example

33

