
Security Audit Report

InterBTC Parachain:
Protocol Design and Source Code

2021/06/12
Last revised 2021/09/17

Authors: Josef Widder, Shon Feder

©2021 Informal Systems InterBTC Parachain

Contents

Audit overview 5
The Project . 5
Scope of this report . 5
Conducted work . 5
Timeline . 5
Conclusions . 6
Further Increasing Confidence . 6

Audit Dashboard 7

Engagement Goals 8
Scope . 8
Aims of audit . 8

Coverage 9

Recommendations 10
Short term . 10
Long term . 10

Minor comments 11
Fee / SLA . 11
Vault nomination . 11
Vault-registry . 11
Documentation improvements . 11

Document the reference implementation and specs in the README of the bitcoin crate 11
Fix Broken links . 12

Code quality improvements . 12
Avoid use of magic numbers . 12
Avoid redundant and scattered computations and validations . 12

Discrepancies with specification . 13
bitcoin crate . 14
btc-relay crate . 14
vault-registry crate . 15

Findings 18

IF-INTERLAY-ADTS: Under-utilization of algebraic data types leads to confusing and error
prone code 19
Involved artifacts . 19
Description . 19
Problem Scenarios . 20
Recommendation . 20

IF-INTERLAY-INTERACTION: Interaction between the issue and refund protocols 22
Involved artifacts . 22
Description . 22
Problem Scenarios . 22
Recommendation . 22

IF-INTERLAY-LIQUIDATION: Liquidation event incentives unclear 24
Involved artifacts . 24

2

©2021 Informal Systems InterBTC Parachain

Description . 24
Problem Scenarios . 24
Recommendation . 24

Thresholds . 25
Realistic scenarios . 25
Incentives . 25
Reconsider Liquidation as Liveness concern . 25

IF-INTERLAY-NAMING: Documentation and variable naming of check_and_do_reorg function is
misleading 26
Involved artifacts . 26
Description . 26
Problem Scenarios . 26
Recommendation . 26

IF-INTERLAY-NO-BLOCK: Scenario of “no block being recently submitted” (all relayers offline)
not handled gracefully 28
Involved artifacts . 28
Description . 28
Problem Scenarios . 28
Recommendation . 28

IF-INTERLAY-PARSING: raw_block_header parsing occurs at multiple locations, but should be
moved to the edge of the program 29
Involved artifacts . 29
Description . 29
Problem Scenarios . 29
Recommendation . 29

IF-INTERLAY-SPEC: Specification of Concurrent Behaviors 30
Involved artifacts . 30
Description . 30

Protocol Level - System goals (as discussed in the paper) . 30
Invariants . 31
Global invariants between BTC and InterBTC . 31

Problem Scenarios . 31
Recommendation . 31

IF-INTERLAY-STORAGE: Storage updates of Vault struct and cached values are not co-located 32
Involved artifacts . 32
Description . 32
Problem Scenarios . 33
Recommendation . 33

IF-INTERLAY-SUBJECTIVE: “Subjective initialization” condition assuming block_height is the
correct height for the raw_block_header in relay initialization not specified 34
Involved artifacts . 34
Description . 34
Problem Scenarios . 34
Recommendation . 34

IF-INTERLAY-THEFT: Theft by redeeming (replacing) too much 35
Involved artifacts . 35
Description . 35
Problem Scenarios . 35
Recommendation . 36
Collaborative discussion . 36

3

©2021 Informal Systems InterBTC Parachain

IF-INTERLAY-TIMEOUT: Timeouts (and races) on sender chain 37
Involved artifacts . 37
Description . 37
Problem Scenarios . 37
Recommendation . 37

Clarify use cases around timeouts . 37
Time parameters in the paper . 38

IF-INTERLAY-WITNESS: Missing check for illegal encoded witness in transaction parsing 39
Involved artifacts . 39
Description . 39
Problem Scenarios . 39
Recommendation . 39

4

©2021 Informal Systems InterBTC Parachain

Audit overview
The Project
In April 2021, Web3 and Interlay engaged Informal Systems to conduct a security audit over the documentation and
the current state of the implementation of interBTC : a trustless bridge from Bitcoin to Polkadot formerly known as
PolkaBTC. The bridge protocol is based on XCLAIM. XCLAIM is designed to support issuing, transferring, and
redeeming Cryptocurrency Backed Assets (CbAs). XCLAIM is intentionally generic in order to support a wide range
of assets but requires that one side of the bridge allows to execute smart contracts (Polkadot) while the other side
just needs to provide a history of transaction in the backing currency (bitcoin).

Scope of this report
The agreed-upon workplan consisted of the following tasks:

• Task 1. Deep dive of the XCLAIM protocol and its sub-protocols
– on tag 3.1.0

• Task 2. Crates to audit (parachain only)
– bitcoin: on commit e4cb057.
– btc-relay: on commit e4cb057.
– vault-registry: on tag 0.7.4

This report covers Task 1 and Task 2 that were conducted May 10 through June 7, 2021 by Informal Systems under
the lead of Josef Widder, with the support of Shon Feder.

Conducted work
Starting May 10, the Informal Systems team conducted an audit of the existing documentation and the code. Interlay
gave us a one-hour presentation with an overview over the protocol with focus on the scope of this audit. For the
protocol deep dive, the team also reviewed the xclaim paper. Our team started with reviewing the paper to get an
overview of the protocol design principles, and the “Security Analysis” parts of the protocol specs v3.1.0 in order to
get an overview over the specifics of XCLAIM(BTC,DOT). We then continued with the specific subprotocols (redeem,
replace, issue, refund, etc.) within the protocol specs v3.1.0 with special focus on correctness of concurrent
execution of these protocols.

For the code review, Interlay gave as two one-hour code walk-throughs to help us getting started. We then started
the code audit with the bitcoin and the btc-relay crates, and held back with the vault-registry crate for a
week as Interlay updated the code when we started the audit. We audited vault-registry in the last week of the
audit period.

Over the shared Discord channel we shared documents with preliminary findings, which we discussed during online
meetings. In this document, we distilled the central findings into numbered findings, and the less central issues into
a section called “minor comments”.

Timeline
• 05/10/2021: Start
• 05/10/2021: Interlay presentation (1 hour)
• 05/11/2021: code walkthrough (1 hour)
• 05/12/2021: code walkthrough (1 hour)
• 05/19/2021: submitted first intermediate report on the protocol deep dive
• 05/21/2021: meeting Informal/Interlay with discussion of first report
• 05/26/2021: submitted first intermediate report on code audit (‘bitcoin’, ‘btc-relay’)

5

https://github.com/interlay/interbtc-spec/tree/3.1.0
https://github.com/interlay/interbtc/commit/e4cb057c2cb5c69c53d87deecce7627922332c1d
https://github.com/interlay/interbtc/commit/e4cb057c2cb5c69c53d87deecce7627922332c1d
https://github.com/interlay/interbtc/tree/0.7.4
https://ieeexplore.ieee.org/document/8835387
https://github.com/interlay/interbtc-spec/tree/3.1.0
https://github.com/interlay/interbtc-spec/tree/3.1.0

©2021 Informal Systems InterBTC Parachain

• 05/26/2021: meeting Informal/Interlay with discussion of code report
• 05/28/2021: submitted second intermediate report on the protocol deep dive
• 05/28/2021: meeting Informal/Interlay with discussion of second protocol report + code report
• 06/02/2021: submitted third intermediate report on the protocol deep dive
• 06/07/2021: submitted second intermediate report on code audit (‘vault-registry’)
• 06/07/2021: meeting Informal/Interlay with discussion of intermediate reports
• 06/07/2021: End of audit
• 06/16/2021: submission of first draft of this report

Conclusions
We found that the XCLAIM(BTC,DOT) design and security model in general is well thought out and addresses the
challenges in bridge design, given the limitation that smart contracts can only be run on one side of the bridge. Despite
the general high quality in the protocol design, we found some details that need to be addressed. We highlighted
potential security issues in IF-INTERLAY-THEFT that are the result of the code of several protocols differing
from the specification, and in IF-INTERLAY-NO-BLOCK where on-chain safety is based on an off-chain liveness
assumption (existence of a correct and timely relayer). We highlighted two issues that are related to making more
explicit incentives and rational behavior, namely, IF-INTERLAY-LIQUIDATION and IF-INTERLAY-TIMEOUT .
This should help users of the bridge to understand the inherent risk they are taking and what are the beneficial
actions in dynamic scenarios (exchange rate fluctuations, being close to timeout expiration). Finally, we gave some
recommendations in IF-INTERLAY-SPEC to clarify the high-level temporal properties and invariants maintained
by the protocol.

Overall we found the code well organized, well documented, and faithful to the specification. Despite the general
high quality of the implementation work, we found seven issues regarding code quality, data representation, code
organization, and divergence from the specification. These are detailed in the relevant findings. We also found a
number of minor imperfections, which we note in the minor comments.

With one exception, all the findings we identified during the audit have been resolved at the time this report was last
updates. The sole exception is IF-INTERLAY-SPEC, which sets out recommendations towards a more exhaustive
and formalized specification.

Further Increasing Confidence
The scope of this audit was limited to manual code review and manual analysis and reconstruction of the protocols.
To further increase confidence in the protocol and the implementation, we recommend following up with more
rigorous formal measures, including automated model checking and model-based adversarial testing. Our experience
shows that incorporating test suites driven by TLA+ models that can lead the implementation into suspected edge
cases and error scenarios enables discovery of issues that are unlikely to be identified through manual review.

It is our understanding that the Interlay team intends to pursue such measures to further improve the confidence in
their system.

6

©2021 Informal Systems InterBTC Parachain

Audit Dashboard
Target Summary

• Name: Selected Crates in the InterBTC Parachain
• Code Version:

– bitcoin: on commit e4cb057.
– btc-relay: on commit e4cb057.
– vault-registry: on tag 0.7.4

• Specification Version: tag 3.1.0
• Type: Specification and Implementation
• Platform: Rust, using the Substrate framework

Engagement Summary

• Dates: 5/10/2021 to 6/15/2021
• Method: Manual review
• Employees Engaged: 2
• Time Spent: 3 person-weeks

7

https://github.com/interlay/interbtc/commit/e4cb057c2cb5c69c53d87deecce7627922332c1d
https://github.com/interlay/interbtc/commit/e4cb057c2cb5c69c53d87deecce7627922332c1d
https://github.com/interlay/interbtc/tree/0.7.4
https://github.com/interlay/interbtc-spec/tree/3.1.0
https://substrate.dev/

©2021 Informal Systems InterBTC Parachain

Engagement Goals
Scope

• Deep dive of the XCLAIM protocol and its sub-protocols
– on tag 3.1.0

• Crates to audit (parachain only)
– bitcoin: on commit e4cb057.
– btc-relay: on commit e4cb057.
– vault-registry: on tag 0.7.4

Aims of audit
(From the scoping doc)

1. Process/specification :: are there any flaws in the specification of the different protocols?
2. Implementation/specification mismatches :: are there discrepancies between the specification of the

InterBTC protocols and their implementation?
3. Bitcoin implementation issues :: are there any issues in terms of Bitcoin compatibility (e.g. parsing, fork

handling etc.)?
4. Implementation issues :: are there issues in the implementation that may introduce failures?
5. Testing issues :: are there cases/states of the parachain or clients not covered as part of the tests?

8

https://github.com/interlay/interbtc-spec/tree/3.1.0
https://github.com/interlay/interbtc/commit/e4cb057c2cb5c69c53d87deecce7627922332c1d
https://github.com/interlay/interbtc/commit/e4cb057c2cb5c69c53d87deecce7627922332c1d
https://github.com/interlay/interbtc/tree/0.7.4
https://docs.google.com/document/d/1P5vOzsQBlt8zXDK1CxGq-5wjcI0m7L7zxdVZnQUq3JM/edit#heading=h.x6eum3ppphzg

©2021 Informal Systems InterBTC Parachain

Coverage
Informal Systems manually reviewed, the xclaim paper, the protocol specs v3.1.0 the code of the crate bitcoin on
commit e4cb057, of the crate btc-relay on commit e4cb057, and the crate vault-registry on tag 0.7.4.

Manual review resulted in the folowing findings:

• Reviewing the paper lead to finding unclear incentives IF-INTERLAY-LIQUIDATION, and unclear high-level
properties and invariants as noted in IF-INTERLAY-SPEC.

• Reviewing the code and the specification we identified potential attacks in IF-INTERLAY-THEFT, IF-
INTERLAY-NO-BLOCK as well as potential races in IF-INTERLAY-TIMEOUT.

• Reviewing the specification we found that the interaction between issue and refund are somewhat unclear, as
reported in IF-INTERLAY-INTERACTION.

• Comparing specifications against the implementation, and reviewing the source code in detail yielded the
various findings in IF-INTERLAY-ADTS, IF-INTERLAY-SUBJECTIVE, IF-INTERLAY-PARSING, IF-
INTERLAY-NAMING, IF-INTERLAY-STORAGE, and IF-INTERLAY-WITNESS. Details of each are to be
found in the relevant sections.

• From these activities, we also collected an extensive list of extensive minor comments. These remarks do not
address major security or code quality risks, but aim to indicate minor defects or suggest helpful improvements.

9

https://ieeexplore.ieee.org/document/8835387
https://github.com/interlay/interbtc-spec/tree/3.1.0
https://github.com/interlay/interbtc/commit/e4cb057c2cb5c69c53d87deecce7627922332c1d
https://github.com/interlay/interbtc/commit/e4cb057c2cb5c69c53d87deecce7627922332c1d
https://github.com/interlay/interbtc/tree/0.7.4

©2021 Informal Systems InterBTC Parachain

Recommendations
This section summarizes key recommendations made during the audit. Short-term recommendations address the
immediate causes of issues. Long-term recommendations pertain to the development process and long-term design
goals.

Short term
• Align implementation with specification to eliminate attack vector (IF-INTERLAY-THEFT). The implementa-

tion introduced an attack that was not possible in the specification

• Adding some shielding against timing attacks on-chain (IF-INTERLAY-NO-BLOCK). The assumption of a
correct relayer is not checked in the btc-relay.

• Place links to the specific requirements from the spec in the docstrings of implementation units. This will help
act against the other natural tendency of implementation and specification to diverge. See details in the minor
comments.

Long term
• Clarify incentives and rational behavior (IF-INTERLAY-LIQUIDATION and IF-INTERLAY-TIMEOUT). Due

to the dynamics of the system, it is not always clear what a specific agent should do in a specific environment
to act rationally.

• Clarify invariants and temporal properties (IF-INTERLAY-SPEC). E.g., formalizing what is the relation of
amounts BTC and amounts InterBTC over time is delicate.

• Look for opportunities to encode the business logic into the logic expressible in Rust’s algebraic data types.
Maximizing this brings a number of wins. See IF-INTERLAY-ADTS.

• Use the “parse, don’t validate” approach where applicable to push validation of incoming data to the edge of
the program. See IF-INTERLAY-PARSING.

• Make a principle of collocating storage updates as much as possible. This reduces the chance of errors
introduced during development, and will likely lead to more performant code. See IF-INTERLAY-STORAGE

10

https://lexi-lambda.github.io/blog/2019/11/05/parse-don-t-validate/

©2021 Informal Systems InterBTC Parachain

Minor comments
NOTE: At the time the report was last updated, the Interlay team has reported having made changes to address
all of the following comments.

Fee / SLA
The specification of SLA could be made more complete along the following points:

• SLA and fee distribution is not so clear in the current documentation. It would be great to make these issues
more explicit in specification to understand incentives.

• this seems to be the only place where SLA is updated in redeem, that is, there is no increase on success, like
in issue.
It would be great to have a central list want actions lead to increase/decrease of SLA.

• How precisely are SLAs and fees correlated. Is this subject to parameterization? Are there any constraints?

The flow graphic gives a great overview but is a bit unspecific what events lead to the depicted transfers.

Vault nomination
• “Operators are assumed to be trusted by their nominators not to steal Bitcoin backed by nominated collateral.”

The incentives of nomination are unclear, and could be clarified.

• “Operator and Nominator collateral cannot be withdrawn directly. Rather, withdrawals are subject to an
unbonding period.” It seems that there is a relation between unbonding period and the required time to
replace: If a vault is close to a threshold it needs to replace. Otherwise, by unbonding it might run the risk
to get under a threshold and even be liquidated.

Vault-registry
• functions not specified in specification

– accept_new_issues
– report_undercollateralized_vault

• What is the reason for the punishment delay? In particular, as the fees are spread over all participants, the
consequence of not being able to act seem unclear.

Documentation improvements
The documentation provided by the specification and the doc strings on public objects is generally robust. The
following minor suggestions were made towards further improvement.

Document the reference implementation and specs in the README of
the bitcoin crate
Links to the reference implementations and documents used to guide the implementation for the bitcoin crate
are only to be found scattered in various places in the source code. In keeping with the helpful documentation of
specs and sources of truth we encounter in the README’s of other crates in this project, ensure that the reference
implementation any specs or documents used to guide development for the bitcoin crate are recorded prominently
in the README.

Authoritative sources referenced include:

11

https://github.com/interlay/interbtc-spec/blob/3.1.0/polkabtc-spec/docs/source/spec/sla.rst
https://github.com/interlay/interbtc/blob/1b4a8dc5d89bbf74393b6ba04d2219e7a2b0dbb2/crates/redeem/src/lib.rs#L519
https://github.com/interlay/interbtc/blob/1b4a8dc5d89bbf74393b6ba04d2219e7a2b0dbb2/crates/issue/src/lib.rs#L379
https://github.com/interlay/interbtc-spec/blob/3.1.0/polkabtc-spec/docs/source/spec/fee.rst
https://github.com/interlay/interbtc-spec/blob/3.1.0/polkabtc-spec/docs/source/spec/fee.rst
https://github.com/interlay/interbtc-spec/blob/3.1.0/polkabtc-spec/docs/source/spec/nomination.rst
https://github.com/interlay/interbtc-spec/blob/3.1.0/polkabtc-spec/docs/source/spec/vaultregistry.rst
https://github.com/interlay/interbtc-spec/blob/3.1.0/polkabtc-spec/docs/source/spec/vaultregistry.rst

©2021 Informal Systems InterBTC Parachain

• the recapitulation in the btc-relay spec
• the btc-relay specs
• bitcoin core impl
• BIT

Fix Broken links
• The link to https://bitcoin.org/en/transactions-guide#term-null-data at https://github.com/interlay/interbtc-

spec/blob/3.1.0/btcrelay-spec/docs/source/intro/accepted-format.rst#L14 gives a 404.
• The link to https://bitcoin.org/en/operating-modes-guide#simplif ied-payment-verification-spv at

https://github.com/interlay/interbtc-spec/blob/3.1.0/btcrelay-spec/docs/source/intro/at-a-glance.rst#L8
gives a 404.

Code quality improvements
Code quality was generally deemed to be robust, especially given the volume and velocity of development. The
following minor suggestions were offered to remove warts and further improve the quality.

Avoid use of magic numbers
While most constant values are properly protected and documented in named constants, there were a number of
magic numbers in the source code.

Instances include

• https://github.com/interlay/interbtc/blob/e4cb057c2cb5c69c53d87deecce7627922332c1d/crates/bitcoin/src/
script.rs#L50-L64

• https://github.com/interlay/interbtc/blob/e4cb057c2cb5c69c53d87deecce7627922332c1d/crates/bitcoin/src/
parser.rs#L322

• https://github.com/interlay/interbtc/blob/e4cb057c2cb5c69c53d87deecce7627922332c1d/crates/btc-
relay/src/lib.rs#L1202

The recommendation here aims to avoid the well-known problems with unnamed numerical constant.

Avoid redundant and scattered computations and validations
In addition to the more significant cases such as those identified in IF-INTERLAY-PARSING and IF-INTERLAY-
STORAGE, we identified a more minor pattern of performing redundant computations when the information could
have been passed between functions easily, sometimes requiring unnecessary reads via Substrate, and introducing
the risk of logic that should be identical diverging.

One example is the duplicate computation of current_block_height. in the _store_block_header function.

Immediately after ensuring that the parachain is not shut down, _store_block_header applies verify_block_header
to the raw_block_header to derive the basic_block_header:

https://github.com/interlay/interbtc/blob/e4cb057c2cb5c69c53d87deecce7627922332c1d/crates/btc-relay/src/lib.
rs#L574

574 let basic_block_header = Self:: verify_block_header(&raw_block_header)?;

The next five statements derive the block_header_hash, the prev_header, prev_blockchain, prev_block_height,
and current_block_height on the basis of the basic_block_header: https://github.com/interlay/interbtc/blob/
e4cb057c2cb5c69c53d87deecce7627922332c1d/crates/btc-relay/src/lib.rs#L577-L589

577 let prev_header =
Self:: get_block_header_from_hash(basic_block_header.hash_prev_block)?;↪→

578

579 // get the block chain of the previous header

12

https://github.com/interlay/interbtc-spec/blob/3.1.0/btcrelay-spec/docs/source/intro/bitcoin.rst
https://bitcoin.org/en/transactions-guide#term-null-data
https://github.com/interlay/interbtc-spec/blob/3.1.0/btcrelay-spec/docs/source/intro/accepted-format.rst#L14
https://github.com/interlay/interbtc-spec/blob/3.1.0/btcrelay-spec/docs/source/intro/accepted-format.rst#L14
https://bitcoin.org/en/operating-modes-guide#simplified-payment-verification-spv
https://github.com/interlay/interbtc-spec/blob/3.1.0/btcrelay-spec/docs/source/intro/at-a-glance.rst#L8
https://github.com/interlay/interbtc/blob/e4cb057c2cb5c69c53d87deecce7627922332c1d/crates/bitcoin/src/script.rs#L50-L64
https://github.com/interlay/interbtc/blob/e4cb057c2cb5c69c53d87deecce7627922332c1d/crates/bitcoin/src/script.rs#L50-L64
https://github.com/interlay/interbtc/blob/e4cb057c2cb5c69c53d87deecce7627922332c1d/crates/bitcoin/src/parser.rs#L322
https://github.com/interlay/interbtc/blob/e4cb057c2cb5c69c53d87deecce7627922332c1d/crates/bitcoin/src/parser.rs#L322
https://github.com/interlay/interbtc/blob/e4cb057c2cb5c69c53d87deecce7627922332c1d/crates/btc-relay/src/lib.rs#L1202
https://github.com/interlay/interbtc/blob/e4cb057c2cb5c69c53d87deecce7627922332c1d/crates/btc-relay/src/lib.rs#L1202
https://en.wikipedia.org/wiki/Magic_number_(programming)#Unnamed_numerical_constants
https://github.com/interlay/interbtc/blob/e4cb057c2cb5c69c53d87deecce7627922332c1d/crates/btc-relay/src/lib.rs#L574
https://github.com/interlay/interbtc/blob/e4cb057c2cb5c69c53d87deecce7627922332c1d/crates/btc-relay/src/lib.rs#L574
https://github.com/interlay/interbtc/blob/e4cb057c2cb5c69c53d87deecce7627922332c1d/crates/btc-relay/src/lib.rs#L577-L589
https://github.com/interlay/interbtc/blob/e4cb057c2cb5c69c53d87deecce7627922332c1d/crates/btc-relay/src/lib.rs#L577-L589

©2021 Informal Systems InterBTC Parachain

580 let prev_blockchain = Self:: get_block_chain_from_id(prev_header.chain_ref)?;
581

582 // Update the current block header
583 // check if the prev block is the highest block in the chain
584 // load the previous block header block height
585 let prev_block_height = prev_header.block_height;
586

587 // update the current block header with height and chain ref
588 // Set the height of the block header
589 let current_block_height = prev_block_height + 1;

However, almost all of this is already computed in verify_block_header itself:

1179 let block_header_hash = raw_block_header.hash();
1180

1181 // Check that the block header is not yet stored in BTC-Relay
1182 ensure! (
1183 !Self:: block_header_exists(block_header_hash),
1184 Error:: <T>:: DuplicateBlock
1185);
1186

1187 // Check that the referenced previous block header exists in BTC-Relay
1188 let prev_block_header =

Self:: get_block_header_from_hash(basic_block_header.hash_prev_block)?;↪→

1189 // Check that the PoW hash satisfies the target set in the block header
1190 ensure! (
1191 block_header_hash.as_u256() < basic_block_header.target,
1192 Error:: <T>:: LowDiff
1193);
1194

1195 // Check that the diff. target is indeed correctly set in the block header, i.e., check
for re-target.↪→

1196 let block_height = prev_block_header.block_height + 1;

In addition to following the recommendation of IF-INTERLAY-PARSING to parsing of the raw_block_header
to the edge of the program, we recommend making the verification function take the arguments BlockHeader,
block_hash, prev_header, current_height, to a Result<(), DispatchError>. This will reduce duplicate logic,
minimizing the chance of errors being introduced letter in development.

Discrepancies with specification
There were numerous minor discrepancies between the specification (or, where relevant, reference implementation),
and the implementation. Very few critical discrepancies were identified, and those are reported in the findings. But
many minor discrepancies were identified, which is to be expected, as the implementation and specification evolve
over time.

Nonetheless, we have found it is critical to keep the implementation and spec synchronized to the best of our ability.
Subtle differences, such as slightly different naming of parameters or variables, can induce substantial disparities
between the theory intended by the author of the specification and the understanding of the developer of the
implementation (even when this communication is between the same person at different times). As a result of the
fact that programming can be understood as theory building, the implications of such miscommunication on the
correctness and reliability of the implementation can end up being quite serious.

As a general measure to help protect against drift, we recommend annotating the implementation with links back
to the specification as precisely and frequently as possible. At the maximum, this means including a link to the
specification of each function and data structure included in the respective objects docstring.

13

https://github.com/interlay/interbtc/blob/e4cb057c2cb5c69c53d87deecce7627922332c1d/crates/btc-relay/src/lib.rs#L1179-L1196
https://pages.cs.wisc.edu/~remzi/Naur.pdf

©2021 Informal Systems InterBTC Parachain

This is probably not an exhaustive list of discrepancies.

bitcoin crate
There were numerous and subtle differences between the names for things in the specs, reference implementation,
and associated documentation, and the names for things in the implementation of the bitcoin crate. This adds
cognitive load for any reader trying to connect the two, and adds to the risk of divergence.

In all these cases, we recommended either bringing the implementation in line with the spec or clearly documenting
the divergence (often simply through comments in the source code).

Undocumented points of divergence included:

• Use of derived the value target instead of the specified nBits, in the BlockHeader fields.

• Undocumented absence of fields tx_in count, tx_out count. These are obviated in Rust by access to the
length of the vectors used to store in/out transactions, but this should be commented, since they are listed in
the spec.

• The fields named tx_in and tx_out in the reference implementation and documentation are instead named
inputs and outputs in the Transaction struct.

• Discrepancies between the specified BlockChain structure and the

implementation included:

– fields specified as type U256, are given type u32 in the (tho U256 is imported from sp_core in the same
module).

– The chain field is missing in the implementation
– no_data and invalid are specified as beings lists (Vec) but implemented as sets (BTreeSet).

• The specified previous_output field isn’t present in the implementation of the TransactionInput struct.

• Value of opcode OpInvalidOpcode does not match the reference implementation.

In the reference implementation, OP_INVALIDOPCODE = 0xff, but in the implementation, it is left implicit:

156 OpNop9 = 0xb8,
157 OpNop10 = 0xb9,
158

159 OpInvalidOpcode,

which will default to 0xba.

Since the opcode is not used, this itself won’t create any issues with the current code, but it seems the
discrepancy should be corrected.

btc-relay crate
• The RichBlockHeader includes the unspecified fields para_height and account_id. These could just be

an implementation detail, were it not that the implementation annotates account_id as “required for fault
attribution”:

10 pub struct RichBlockHeader<AccountId, BlockNumber> {
11 pub block_hash: H256Le,
12 pub block_header: BlockHeader,
13 pub block_height: u32,
14 pub chain_ref: u32,
15 // required for fault attribution
16 pub account_id: AccountId,
17 pub para_height: BlockNumber,
18 }

14

https://github.com/interlay/interbtc/blob/e4cb057c2cb5c69c53d87deecce7627922332c1d/crates/bitcoin/src/types.rs#L245
https://github.com/interlay/interbtc/blob/e4cb057c2cb5c69c53d87deecce7627922332c1d/crates/bitcoin/src/types.rs#L316-L323
https://github.com/interlay/interbtc/blob/e4cb057c2cb5c69c53d87deecce7627922332c1d/crates/bitcoin/src/types.rs#L316-L323
https://github.com/interlay/interbtc/blob/e4cb057c2cb5c69c53d87deecce7627922332c1d/crates/bitcoin/src/types.rs#L319-L320
https://github.com/interlay/interbtc-spec/blob/3.1.0/btcrelay-spec/docs/source/spec/data-model.rst#L110
https://github.com/interlay/interbtc/blob/e4cb057c2cb5c69c53d87deecce7627922332c1d/crates/bitcoin/src/types.rs#L491-L499
https://github.com/interlay/interbtc-spec/blob/3.1.0/btcrelay-spec/docs/source/intro/bitcoin.rst#L45
https://github.com/interlay/interbtc/blob/e4cb057c2cb5c69c53d87deecce7627922332c1d/crates/bitcoin/src/types.rs#L260
https://github.com/bitcoin/bitcoin/blob/ecf5f2c1a06edd8372402872525f8de1d4277453/src/script/script.h#L204
https://github.com/interlay/interbtc/blob/7c02930d7f7f0b32693110b702bde74072436594/crates/bitcoin/src/types.rs#L156
https://github.com/interlay/interbtc-spec/blob/3.1.0/btcrelay-spec/docs/source/spec/data-model.rst#L101-108
https://github.com/interlay/interbtc/blob/e4cb057c2cb5c69c53d87deecce7627922332c1d/crates/btc-relay/src/types.rs#L10-L18

©2021 Informal Systems InterBTC Parachain

During discussion, the team determined that account_id could be removed. Which was completed in this PR.

• Minor discrepancies in the initialize function between the specification and implementation. include:

– The function signature is missing the required relayer parameter.
– The spec names the parameter blockHeaderBytes but the implementation has raw_block_header.

• An unspecified error can arise from calling initialize due to block header parsing. Only the
AlreadyInitialized error is specified, but the implementation can also result in an error from a failed call to
parse_block_header.

• Unspecified preconditions of initialize:

– raw_block_header must be well formed and able to be parsed successfully

– active_block_height must be initialized, due to btc-relay/src/lib.rs#L519-L520

519 // register the current height to track stable parachain confirmations
520 let para_height = ext::security::active_block_number:: <T>();

– The “Warning” re: block headers submitted to initialize needing to be from the main chain in the
spec should be a function preconditions.

• Discrepancies between store_block_header function between the spec and the implementation include:

– The spec has blockHeaderBytes but the implementation has raw_block_header.
– Missing preconditions:

1. raw_block_header is valid (if we are following the example of preconditions from initialize)
2. Previous block (as indicated by the hash in the header of the current block) must already have been

stored
In order to compute the height of the current block, (which is required for both fork detection and
storing the new block), the previous block must already be stored, otherwise we will error out in the
call to get_block_header_from_hash:
https://github.com/interlay/interbtc/blob/e4cb057c2cb5c69c53d87deecce7627922332c1d/crates/bt
c-relay/src/lib.rs#L977-L985

977 /// Get a block header from its hash
978 fn get_block_header_from_hash(
979 block_hash: H256Le,
980) -> Result<RichBlockHeader<T:: AccountId, T:: BlockNumber>, DispatchError> {
981 if BlockHeaders:: <T>:: contains_key(block_hash) {
982 return Ok(BlockHeaders:: <T>:: get(block_hash));
983 }
984 Err(Error:: <T>:: BlockNotFound.into())
985 }

This requirement is implicit in the specification of the function, but to clarify for future implementations,
the spec should make this explicit.

vault-registry crate
As with the other crates considered, the vault-registry implementation diverged from the specification in numerous
small ways.

Disparity in structs fields

The spec of the Vault struct’s bannedUntil field does not mention the optionality used in the implementation. To
maintain alignment, the spec should either reflect this optionality, or the implementation should be annotated with
a comment indicating the reason for the discrepancy.

15

https://github.com/interlay/interbtc/pull/27
https://github.com/interlay/interbtc-spec/blob/3.1.0/btcrelay-spec/docs/source/spec/functions.rst#L23
https://github.com/interlay/interbtc/blob/e4cb057c2cb5c69c53d87deecce7627922332c1d/crates/btc-relay/src/lib.rs#L511
https://github.com/interlay/interbtc/blob/e4cb057c2cb5c69c53d87deecce7627922332c1d/crates/btc-relay/src/lib.rs#L515-L516
https://github.com/interlay/interbtc/blob/e4cb057c2cb5c69c53d87deecce7627922332c1d/crates/btc-relay/src/lib.rs#L519-L520
https://github.com/interlay/interbtc-spec/blob/3.1.0/btcrelay-spec/docs/source/spec/functions.rst#L68
https://github.com/interlay/interbtc-spec/blob/3.1.0/btcrelay-spec/docs/source/spec/functions.rst#L68
https://github.com/interlay/interbtc-spec/blob/3.1.0/btcrelay-spec/docs/source/spec/functions.rst#L72
https://github.com/interlay/interbtc/blob/e4cb057c2cb5c69c53d87deecce7627922332c1d/crates/btc-relay/src/lib.rs#L556
https://github.com/interlay/interbtc/blob/e4cb057c2cb5c69c53d87deecce7627922332c1d/crates/btc-relay/src/lib.rs#L977-L985
https://github.com/interlay/interbtc/blob/e4cb057c2cb5c69c53d87deecce7627922332c1d/crates/btc-relay/src/lib.rs#L977-L985
https://github.com/interlay/interbtc-spec/blob/6fded3a9bfbad800cbc23de9e24fbece382f8a93/polkabtc-spec/docs/source/spec/vaultregistry.rst#L96
https://github.com/interlay/interbtc/blob/7c02930d7f7f0b32693110b702bde74072436594/crates/vault-registry/src/types.rs#L163-L165

©2021 Informal Systems InterBTC Parachain

Underspecification of event emissions

The events emitted by most functions are underspecified. As an example, consider the specification of the events
emitted by registerVault.

The spec only indicates that register_vault emits a single event:

127 *Events*
128

129 * ``RegisterVault(Vault, collateral)``: emit an event stating that a new vault (``vault``) was
registered and provide information on the Vault's collateral (``collateral``).↪→

But the call to lock collateral during vault registration

588 ext::collateral::lock:: <T>(vault_id, amount)?;

ends up emitting at least two additional events:

(2) Event::Lock in the lock function itself

157 /// Lock an `amount` of currency. Note: this removes it from the
158 /// free balance and adds it to the locked supply.
159 ///
160 /// # Arguments
161 ///
162 /// * `account` - the account to operate on
163 /// * `amount` - the amount to lock
164 pub fn lock(account: &T:: AccountId, amount: BalanceOf<T, I>) -> DispatchResult {
165 T::Currency:: reserve(account, amount).map_err(|_| Error:: <T,

I>:: InsufficientFreeBalance)?;↪→

166

167 // update total locked balance
168 Self:: increase_total_locked(amount)?;
169

170 Self:: deposit_event(Event:: Lock(account.clone(), amount));
171 Ok(())
172 }

(1) Event::Reserved in the call to the T::Currency::reserve in the lock function, which, executes the following
Substrate function:

/// Move `value` from the free balance from `who` to their reserved balance.
///
/// Is a no-op if value to be reserved is zero.
fn reserve(who: &T:: AccountId, value: Self:: Balance) -> DispatchResult {

if value.is_zero() { return Ok(()) }

Self:: try_mutate_account(who, |account, _| -> DispatchResult {
account.free = account.free.checked_sub(&value).ok_or(Error:: <T,

I>:: InsufficientBalance)?;↪→

account.reserved =
account.reserved.checked_add(&value).ok_or(ArithmeticError:: Overflow)?;↪→

Self:: ensure_can_withdraw(&who, value.clone(),
WithdrawReasons:: RESERVE, account.free)↪→

})?;

Self:: deposit_event(Event:: Reserved(who.clone(), value));
Ok(())

}

16

https://github.com/interlay/interbtc-spec/blob/6fded3a9bfbad800cbc23de9e24fbece382f8a93/polkabtc-spec/docs/source/spec/vaultregistry.rst#L127-129
https://github.com/interlay/interbtc-spec/blob/6fded3a9bfbad800cbc23de9e24fbece382f8a93/polkabtc-spec/docs/source/spec/vaultregistry.rst#L127-129
https://github.com/interlay/interbtc-spec/blob/6fded3a9bfbad800cbc23de9e24fbece382f8a93/polkabtc-spec/docs/source/spec/vaultregistry.rst#L127-129
https://github.com/interlay/interbtc/blob/7c02930d7f7f0b32693110b702bde74072436594/crates/vault-registry/src/lib.rs#L588
https://github.com/interlay/interbtc/blob/7c02930d7f7f0b32693110b702bde74072436594/crates/currency/src/lib.rs#L157-L172
https://github.com/paritytech/substrate/blob/ea5d3570673d125dfe0b7da33b345c3c13195380/frame/balances/src/lib.rs#L1553-L1567

©2021 Informal Systems InterBTC Parachain

As we discussed in one of our meetings, at minimum, the spec should explicitly inform the reader that the specified
events emitted due to a successful function call are only a subset of the possible events. Otherwise, someone trying
to reason about the system from the spec is liable to have a false sense of confidence.

Discrepancies in preconditions

For example, the spec is missing at least the following preconditions for liquidateVault:

• Vault is registered : https://github.com/interlay/interbtc/blob/7c02930d7f7f0b32693110b702bde74072436594/crates/vault-
registry/src/lib.rs#L1131

• Vault is active : https://github.com/interlay/interbtc/blob/7c02930d7f7f0b32693110b702bde74072436594/crates/vault-
registry/src/lib.rs#L1131

This preconditions are so widely required, it is probably a good idea to just state them as preconditions of the entire
applicable class of functions.

Discrepancies in postconditions

E.g., in the spec for liquidateVault the following post-condition is not specified:

Vault status is set to VaultStatus::Liquidated, ensured by vault-registry/src/types.rs#L525

521 // Update vault: clear to_be_issued & issued_tokens, but don't touch to_be_redeemed
522 let _ = self.update(|v| {
523 v.to_be_issued_tokens = Zero:: zero();
524 v.issued_tokens = Zero:: zero();
525 v.status = status;
526 Ok(())
527 });

Additionally, the return value of this function is not specified in the signature, if this is not an implementation detail,
may want to specify that it returns the collateral amount.

17

https://github.com/interlay/interbtc-spec/blob/6fded3a9bfbad800cbc23de9e24fbece382f8a93/polkabtc-spec/docs/source/spec/vaultregistry.rst#L794-795
https://github.com/interlay/interbtc-spec/blob/6fded3a9bfbad800cbc23de9e24fbece382f8a93/polkabtc-spec/docs/source/spec/vaultregistry.rst#L778
https://github.com/interlay/interbtc/blob/7c02930d7f7f0b32693110b702bde74072436594/crates/vault-registry/src/types.rs#L525

©2021 Informal Systems InterBTC Parachain

Findings

ID Title Type Severity Status
IF-INTERLAY-THEFT Theft by redeeming (replacing) too

much
Protocol High Resolved

IF-INTERLAY-NO-
BLOCK

Scenario of “no block being recently
submitted” (all relayers offline) not
handled gracefully

Protocol High Resolved

IF-INTERLAY-
LIQUIDATION

Liquidation event incentives unclear Protocol Medium Resolved

IF-INTERLAY-TIMEOUT Timeouts (and races) on sender
chain

Protocol High Resolved

IF-INTERLAY-ADTS Under-utilization of algebraic data
types leads to confusing and error
prone code

Practice Low Resolved

IF-INTERLAY-
SUBJECTIVE

“Subjective initialization” condition
assuming block_height is the
correct height for the
raw_block_header in relay
initialization not specified

Protocol Low Resolved

IF-INTERLAY-PARSING raw_block_header parsing occurs
at multiple locations, but should be
moved to the edge of the program

Implementation Low Resolved

IF-INTERLAY-NAMING Documentation and variable
naming of check_and_do_reorg
function is misleading

Implementation Low Resolved

IF-INTERLAY-STORAGE Storage updates of Vault struct and
cached values are not co-located

Implementation Low Resolved

IF-INTERLAY-WITNESS Missing check for illegal encoded
witness in transaction parsing

Implementation Low Resolved

IF-INTERLAY-
INTERACTION

Interaction between the issue and
refund protocols

Protocol Rec Resolved

IF-INTERLAY-SPEC Specification of Concurrent
Behaviors

Specification Rec Unresolved

Severity Categories

Severity Description
High The issue is an exploitable security vulnerability
Medium The issue is a security vulnerability that may not be directly exploitable or may require certain

complex conditions in order to be exploited
Low The issue is objective in nature, but the security risk is relatively small or does not represent security

vulnerability
Rec No security vulnerability or immanent risk is identified, but an improvement is recommended

18

©2021 Informal Systems InterBTC Parachain

IF-INTERLAY-ADTS: Under-utilization of algebraic data
types leads to confusing and error prone code

Severity Low
Type Practice

Difficulty Easy
Status Resolved by interbtc@d3059, interbtc@98900

Involved artifacts
• bitcoin/src/script.rs#L40-L64
• bitcoin/src/address.rs#L34-L51
• bitcoin/src/types.rs#L315-L323
• bitcoin/src/parser.rst#L322-L326

Description
We identified several cases where inapt types were used to encode data, resulting in unclear and error prone code.

An illustrative example regards the block_height and locktime fields of the Transaction struct annotated with
FIXME comments in bitcoin/src/types.rs#L315-L323

315 /// Bitcoin transaction
316 #[derive(PartialEq, Debug, Clone)]
317 pub struct Transaction {
318 pub version: i32,
319 pub inputs: Vec<TransactionInput>,
320 pub outputs: Vec<TransactionOutput>,
321 pub block_height: Option<u32>, // FIXME: why is this optional?
322 pub locktime: Option<u32>, // FIXME: why is this optional?
323 }

The logic corresponding to this typing entails that either, both, or neither of the two fields could have values.
However, this is an overly permissive encoding of what should actually a mutually exclusive choice between two
alternatives, as shown by the parsing logic:

322 let (locktime, block_height) = if locktime_or_blockheight < 500_000_000 {
323 (None, Some(locktime_or_blockheight))
324 } else {
325 (Some(locktime_or_blockheight), None)
326 };

Since these are mutually exclusive values, and there is no possibility for both to None the correct representation for
this would be a disjoint sum (canonically an Either type, but a custom enum would work as well).

The impact of the ill fitting encoding also shows up in the following unclear, method of accessing the mutually
wrapped values:

199 // only block_height or locktime should ever be Some
200 if let Some(b) = self.block_height.or(self.locktime) {
201 formatter.format(b)
202 }

19

https://github.com/interlay/interbtc/commit/d30598f7396a05299fe8b13f15e6e30001fadda1
https://github.com/interlay/interbtc/commit/98900edd55db64c28b62be8407462e3d2363555d
https://github.com/interlay/interbtc/blob/e4cb057/crates/bitcoin/src/script.rs#L40-L64
https://github.com/interlay/interbtc/blob/e4cb057/crates/bitcoin/src/address.rs#L34-L51
https://github.com/interlay/interbtc/blob/7c02930d7f7f0b32693110b702bde74072436594/crates/bitcoin/src/types.rs#L315-L323
https://github.com/interlay/interbtc/blob/e4cb057c2cb5c69c53d87deecce7627922332c1d/crates/bitcoin/src/parser.rs#L322-L326
https://github.com/interlay/interbtc/blob/7c02930d7f7f0b32693110b702bde74072436594/crates/bitcoin/src/types.rs#L315-L323
https://github.com/interlay/interbtc/blob/e4cb057c2cb5c69c53d87deecce7627922332c1d/crates/bitcoin/src/parser.rs#L322-L326
https://github.com/interlay/interbtc/blob/e4cb057c2cb5c69c53d87deecce7627922332c1d/crates/bitcoin/src/formatter.rs#L199-L202

©2021 Informal Systems InterBTC Parachain

This is hard to read, thus the clarifying comment. More importantly, it is not faithful to the underlying logic:
reasoning locally about this code, one would naturally assume that b may or may not end up being formatted. But,
as we know from the way values of this type are constructed, this is an infallible conditional, and b will always end
up being formatted.

These problems are resolved by instead representing the alternative with the proper type:

let b = match self.block_or_time {
Foo:: BlockHeight(b) => b,
Foo:LockTime(b) => b

};
formatter.format(b);

This encoding obviates the need for comments, and gives a more faithful encoding of the logic at the type level.

Another salient example regards the predicate methods on the Script struct, used to determine the kind of script
represented by the wrapped bytes. We can see from the usage of this predicate that is also representing mutually
exclusive alternatives:

40 pub fn from_script_pub_key(script: &Script) -> Result<Self, Error> {
41 if script.is_p2pkh() {
42 // 0x76 (OP_DUP) - 0xa9 (OP_HASH160) - 0x14 (20 bytes len) - <20 bytes pubkey hash>

- 0x88 (OP_EQUALVERIFY)↪→

43 // - 0xac (OP_CHECKSIG)
44 Ok(Self:: P2PKH(H160:: from_slice(&script.as_bytes()[3..23])))
45 } else if script.is_p2sh() {
46 // 0xa9 (OP_HASH160) - 0x14 (20 bytes hash) - <20 bytes script hash> - 0x87

(OP_EQUAL)↪→

47 Ok(Self:: P2SH(H160:: from_slice(&script.as_bytes()[2..22])))
48 } else if script.is_p2wpkh_v0() {
49 // 0x00 0x14 (20 bytes len) - <20 bytes hash>
50 Ok(Self:: P2WPKHv0(H160:: from_slice(&script.as_bytes()[2..])))
51 } else if script.is_p2wsh_v0() {
52 // 0x00 0x20 (32 bytes len) - <32 bytes hash>
53 Ok(Self:: P2WSHv0(H256:: from_slice(&script.as_bytes()[2..])))
54 } else {
55 Err(Error:: InvalidBtcAddress)
56 }
57 }

Problem Scenarios
Failing to make effective use of algebraic types to encode the logic of the underlying domain increases the cost of
maintenance by requiring that logic to be implemented manually, and it leaves unnecessary opportunities for future
development to introduce errors due to, e.g.,

• Script values of the wrong kind being used in certain contexts, if the developer doesn’t remember to invoke
the predicate first.

• Case analysis of a Script’s kind might be incomplete.
• Logic errors introduced by developers reasoning locally about the code.

Recommendation
Look for opportunities to encode the business logic into the logic expressible in Rust’s algebraic data types. By
expressing logical relationships like mutually exclusive predicates and values, necessarily conjoined values, or
implications, in the type level, we leverage the type checker to automate the enforcement of logical invariants through

20

©2021 Informal Systems InterBTC Parachain

exhaustiveness checking and data structures that are correct by construction. (I.e., always keep an eye out for
opportunities to leverage Curry-Howard .)

21

https://en.wikipedia.org/wiki/Curry%E2%80%93Howard_correspondence

©2021 Informal Systems InterBTC Parachain

IF-INTERLAY-INTERACTION: Interaction between the
issue and refund protocols

Severity Recommendation
Type Protocol

Difficulty Easy
Status Resolved by interbtc-spec#68

Involved artifacts
• Specification

Description
As indicated in IF-INTERLAY-THEFT, there is some flexibility in the design that allows a difference between

• the amount of BTC submitted via request-issue, and
• the actual amount transferred from a user to a vault on the bitcoin network.

During a meeting in the course of the audit, it was discussed that this was done to allow more usability.

One aspect of this area is that there is a refund protocol, that allows to request the return of over-payments. As
a result, there is substantial complexity in the different choices and the combination of the issue and refund
protocols.

Problem Scenarios
The usability of the bridge might be hindered as the choice of actions in these protocols may not be clear to the user.

Recommendation
We suggest to clarify the interaction between the issue and refund protocols. More generally, the (distributed)
control flow of the issue protocol could be documented more explicitly.

It would be great to have a protocol flow (decision tree) from the viewpoint of the user. For issue it could start
with the following points:

1. issue request-issue (x) on Polkadot
2. transfer y to vault on Bitcoin (expected x = y)

• if transaction never occurs on Bitcoin, then the vault can call cancel issue after timeout
-> “TO COMPLETE: outcome”

3. otherwise, that is, if transaction appears on Bitcoin
• user may execute-issue (proof of y transaction) on Polkadot with the following possible outcomes depending

on the value of y
– x = y:

∗ execute-issue was in-time -> success.
-> user has x InterBTC

∗ execute-issue was too late
· cancel-issue had been called before

-> “TO COMPLETE: outcome”

22

https://github.com/interlay/interbtc-spec/pull/68/files
https://github.com/interlay/interbtc-spec/tree/3.1.0
.findings/IF-INTERLAY-THEFT.md

©2021 Informal Systems InterBTC Parachain

· cancel-issue had not been called before
-> “TO COMPLETE: outcome”

– x < y: “TO COMPLETE: resulting flow”
– x > y: “TO COMPLETE: resulting flow”

∗ vault has enough collateral
∗ vault does not have enough collateral
∗ user may try to refund . . . “TO COMPLETE: possible outcomes etc.”

23

©2021 Informal Systems InterBTC Parachain

IF-INTERLAY-LIQUIDATION: Liquidation event incen-
tives unclear

Severity Medium
Type Protocol

Difficulty Hard
Status Resolved by interbtc-spec@64120a via interbtc-spec#40

Involved artifacts
• XCLAIM SP paper
• Specification
• Liquidation Documentation

Description
Liquidation is the solution to the problem of “Redeemability”. Intuitively, it means that a user that exchanges BTC
for InterBTC should get its value back. A formal understanding of this property is not immediate. However, in the
solution it is enforced

• either by successful completion of redeem, or
• by slashing a vault that does not comply with redeem, or
• by a liquidation event. The latter might lead to somewhat surprising results.

In particular in the case of a liquidation event, the incentives of the different agents are not so clear. Similarly,
the solution is based on thresholds where it is not so clear what is the rationale for the concrete values for these
thresholds.

Problem Scenarios
Liquidation event. Assume BTC suddenly rises relative to DOT:

• In order to not fall under the liquidation thresholds, a vault needs to quickly add collateral
• If it fails to do so quickly enough, it might be liquidated
• The users will be reimbursed DOTs at the current rate
• If BTC continues to rise,

– the vault still has its locked BTC and will have made a profit from not acting quickly enough
– the users will have lost their expensive BTC for relatively cheap DOTs

• The paper mentions in Section III.C an assumption on Delta_min(epsilon), but neither the assumption itself
nor how it is used is clear

• The paper also claims that this “is necessary to prevent users from financial loss”. What the precise meaning
of this claim is, is not so obvious in case of exchange rate fluctuations.

This may provide a potentials attack vector whereby dishonest vaults could deliberately profit off of exchange rate
fluctuations (deliberately not participate in redeem protocol, not update collateral, etc.).

Recommendation

24

https://github.com/interlay/interbtc-spec/commit/64120a5d37cf9a8dd538905dd2042018c8931381
https://github.com/interlay/interbtc-spec/commit/64120a5d37cf9a8dd538905dd2042018c8931381
https://ieeexplore.ieee.org/document/8835387
https://github.com/interlay/interbtc-spec/tree/3.1.0
https://github.com/interlay/interbtc-spec/blob/6fded3a9bfbad800cbc23de9e24fbece382f8a93/polkabtc-spec/docs/source/security_performance/liquidations.rst

©2021 Informal Systems InterBTC Parachain

Thresholds
• There are thresholds for security, redemption, and liquidation (e.g., 200%, 120%, and 110%) in the systems. It

was discuss in the meetings during that audit that the actual values are derived from comparable systems.
However, we suggest to analyze how these thresholds hold up against historical data about exchange rate
fluctuations between BTC and DOT. E.g., a central question is “how often a typical vault might have run into
liquidation events in the last year due to rapid fluctuations?”. Further, the rational used to determine these
numbers should be documented.

Section V.D of the paper presents the solution based on multiple thresholds. However, due to (a) exchange rate
fluctuations and (b) issue requests, the precise problem that is solved by the solution is not clear. What are the
precise assumption on the following?

• exchange rate fluctuations
• validator responsiveness (timeliness and its financial capacity to add collateral)
• user interference to mitigate her risk by redeeming

A vault might need to rapidly act to remain within the thresholds. Thus, exchange rate fluctuations impose

• a requirement for a vault to rapidly add collateral to avoid being liquidated (assuming it does not want to be
liquidated)

• a requirement on the user to redeem in order to mitigate exchange rate loss due to liquidation.

These timing constraints need to be captured.

Realistic scenarios
The above issues only appear in extreme situations. Can the expectation of “non-extreme” situations be captured,
e.g., “if the exchange rate changes by x in t time units, then properties are guaranteed”?

Incentives
We suggest to document different scenarios (e.g., rising/falling BTC value relative to DOT), and for each agent (e.g.,
vault, user, staked relayer) to make explicit the rational behavior. This would also help in argueing whether the
protocols are indeed aligned with the incentives.

Reconsider Liquidation as Liveness concern
Liquidation on Theft is expensive (nearly as expensive as possible; 150% of BTC value). At the same time:

• Undercollateralization can only be achieved by
– not locking collateral quickly enough
– not redeeming -> being punished -> go beyond threshold -> liquidation

• It is unclear what precisely is achieved by liquidating
– the vault must hold on to its BTC
– users will receive DOT

∗ value depends on when the users want to burn
∗ race between users to burn or redeem depending in the exchange rate

Thus, while presented as safety concern, “Severe Undercollteralization” in fact can only be achieved by passive
vaults. As a result, if a vault maintainer is offline for some time period, this may result in a slashing event. The
consequences should be discussed/highlighted in the documentation.

25

https://github.com/interlay/interbtc/blob/e4cb057c2cb5c69c53d87deecce7627922332c1d/crates/vault-registry/src/mock.rs#L241-L243
https://interlay.gitlab.io/polkabtc-spec/security_performance/liquidations.html
https://github.com/interlay/interbtc-spec/blob/6fded3a9bfbad800cbc23de9e24fbece382f8a93/polkabtc-spec/docs/source/security_performance/liquidations.rst

©2021 Informal Systems InterBTC Parachain

IF-INTERLAY-NAMING: Documentation and variable
naming of check_and_do_reorg function is misleading

Severity Low
Type Implementation

Difficulty Medium
Status Resolved by interbtc@a355e

Involved artifacts
• https://github.com/interlay/interbtc/blob/7c02930d7f7f0b32693110b702bde74072436594/crates/btc-

relay/src/lib.rs#L1371-L1378

Description
check_and_do_reorg is documented as follows:

https://github.com/interlay/interbtc/blob/7c02930d7f7f0b32693110b702bde74072436594/crates/btc-
relay/src/lib.rs#L1371-L1378

1371 /// Checks if a newly inserted fork results in an update to the sorted
1372 /// Chains mapping. This happens when the max height of the fork is greater
1373 /// than the max height of the previous element in the Chains mapping.
1374 ///
1375 /// # Arguments
1376 ///
1377 /// * `fork` - the blockchain element that may cause a reorg
1378 fn check_and_do_reorg(fork: &BlockChain) -> Result<(), DispatchError> {

but in the condition where the function is called, it is in the branch where is_fork is false:

https://github.com/interlay/interbtc/blob/7c02930d7f7f0b32693110b702bde74072436594/crates/btc-
relay/src/lib.rs#L623-L635

Problem Scenarios
This led to significant confusion while trying to read code (even for the developers). Such legibility issues increase
the risk of error during development.

Recommendation
Dom suggested that changing is_fork to is_new_fork in the initialize function could help.

I also recommend moving the initial check inside check_and_do_reorg out of that function:

// Check if the ordering needs updating
// if the fork is the main chain, we don't need to update the ordering
if fork.chain_id == MAIN_CHAIN_ID {

return Ok(());
}

26

https://github.com/interlay/interbtc/commit/a355eda3aff2434cb65de9abec56fbce108924d5
https://github.com/interlay/interbtc/blob/7c02930d7f7f0b32693110b702bde74072436594/crates/btc-relay/src/lib.rs#L1371-L1378
https://github.com/interlay/interbtc/blob/7c02930d7f7f0b32693110b702bde74072436594/crates/btc-relay/src/lib.rs#L1371-L1378
https://github.com/interlay/interbtc/blob/7c02930d7f7f0b32693110b702bde74072436594/crates/btc-relay/src/lib.rs#L1371-L1378
https://github.com/interlay/interbtc/blob/7c02930d7f7f0b32693110b702bde74072436594/crates/btc-relay/src/lib.rs#L1371-L1378
https://github.com/interlay/interbtc/blob/7c02930d7f7f0b32693110b702bde74072436594/crates/btc-relay/src/lib.rs#L623-L635
https://github.com/interlay/interbtc/blob/7c02930d7f7f0b32693110b702bde74072436594/crates/btc-relay/src/lib.rs#L623-L635

©2021 Informal Systems InterBTC Parachain

Putting this conditional inside of the function with an early return that bypasses the function body effectively hides
the control flow.

iiuc, what we really what to say is

if !(chain.chain_id == MAIN_CHAIN_ID) {
do_reorg(chain)

}

but with the current structure, the reader can’t see this control flow until they look inside check_and_do_reorg.

27

©2021 Informal Systems InterBTC Parachain

IF-INTERLAY-NO-BLOCK: Scenario of “no block being
recently submitted” (all relayers offline) not handled grace-
fully

Severity High
Type Protocol

Difficulty Hard
Status Resolved by interbtc@6fb17

Involved artifacts
• security analysis
• Specification
• btc-relay/src/lib.rs

Description
As mentioned in the security analysis, the BTC-relay safety relies on a “a steady stream of Bitcoin block headers”.
In other words, the safety of the on-chain software relies on safety and liveness of off-chain activity.

It should be noted that the security of the chainrelay does not directly derive from the PoW “objectivity
property”, as it involves transaction outside of the bitcoin network (that are not visible there). Hence it
is unfeasible to rely on the usual incentive assumptions appealed to by SPVs.

BTC-Relay does not deal with time, that is, BTC-Relay does not have a failure mode in the case when no new
headers are uploaded for extended durations.

Problem Scenarios
If no correct relayer is online, the BTC-relay may not be updated for an undetermined period of time. As a result
the state of BTC-relay may be arbitrarily outdated. At this point, an adversarial relayer may submit an alternative
bitcoin history and thus “prove” existence of non-existing bitcoin transactions.

Recommendation
Adding some shielding against timing attacks on-chain. To illustrate how other bridges deal with this kind of problem
we sketch how IBC mitigates such an attack. It does so by

1. disabling the on-chain light client if no new header was uploaded for a specific time span (trusting period).
2. introducing a “packet delay”. Translated to interBTC, this would mean that a transaction can only be verified

against header h if there are sufficiently many headers on top of the h AND h has been uploaded some
“quarantine period” ago (to give other relayers some time to fix the current view of the bitcoin chain at
BTC-relay).

28

https://github.com/interlay/interbtc/commit/6fb17304d2a5fa3f9ab510b40aa6b5ad9ed8bd50
https://github.com/interlay/interbtc-spec/blob/3.1.0/polkabtc-spec/docs/source/security_performance/security-analysis.rst
https://github.com/interlay/interbtc-spec/tree/3.1.0
https://github.com/interlay/interbtc/blob/a06ada7d8e9c1cc20fa0a4d8507523333ff474df/crates/btc-relay/src/lib.rs
https://github.com/interlay/interbtc-spec/blob/3.1.0/polkabtc-spec/docs/source/security_performance/security-analysis.rst

©2021 Informal Systems InterBTC Parachain

IF-INTERLAY-PARSING: raw_block_header parsing occurs
at multiple locations, but should be moved to the edge of
the program

Severity Low
Type Implementation

Difficulty Easy
Status Resolved by interbtc@347a4

Involved artifacts
• https://github.com/interlay/interbtc/blob/e4cb057/crates/btc-relay/src/lib.rs#L1177

Description
Currently, parsing the RawBlockHeader happens in multiple different places, e.g.,

• In verify_block_header: https://github.com/interlay/interbtc/blob/e4cb057/crates/btc-relay/src/lib.rs#L1177

• In initialize: https://github.com/interlay/interbtc/blob/e4cb057/crates/btc-relay/src/lib.rs#L516

Problem Scenarios
Anywhere raw data is handled inside a program there is a risk of corrupting, misparsing, or otherwise compromising
its integrity. There is also a runtime cost of having to perform validation repeatedly.

Recommendation
Using the parse, don’t validate approach described by Alexis King, these functions can be changed to take a
BlockHeader instead of a RawBlockHeader, and the parsing of the raw header can be pushed into the edges of the
program.

This moves one of the preconditions for the functions into static analysis (which can then be removed from the spec),
simplifies the possible error handling needed for these complex functions, and ensures junk data is intercepted at the
earliest possible point, thus reducing the chance for errors to be inserted later during maintenance and development.

Since the hash of the raw_block_header is also needed, I suggest adding a private field to the BlockHeader struct
that stores the hash, and then a hash getter to retrieve this value. This follows, e.g., https://github.com/summa-
tx/bitcoin-spv/blob/master/golang/btcspv/types.go#L20-L27

29

https://github.com/interlay/interbtc/commit/347a44a19b24fe92e7e823017898f13c6b87fe5b
https://github.com/interlay/interbtc/blob/e4cb057/crates/btc-relay/src/lib.rs#L1177
https://github.com/interlay/interbtc/blob/e4cb057c2cb5c69c53d87deecce7627922332c1d/crates/btc-relay/src/lib.rs#L1177
https://github.com/interlay/interbtc/blob/e4cb057c2cb5c69c53d87deecce7627922332c1d/crates/btc-relay/src/lib.rs#L516
https://lexi-lambda.github.io/blog/2019/11/05/parse-don-t-validate/
https://github.com/summa-tx/bitcoin-spv/blob/master/golang/btcspv/types.go#L20-L27
https://github.com/summa-tx/bitcoin-spv/blob/master/golang/btcspv/types.go#L20-L27

©2021 Informal Systems InterBTC Parachain

IF-INTERLAY-SPEC: Specification of Concurrent Behav-
iors

Severity Recommendation
Type Protocol

Difficulty Hard
Status Unresolved

Involved artifacts
• XCLAIM SP paper
• Specification
• vault registry specification

Description
In general, the possibility of determining whether a system is operating correctly is limited by the extent to which its
expected behavior has been specified. As such, specification is a condition of possibility for determining whether or
not something is correct. It is all the more important to specify behavior when dealing with concurrent systems, since
the interaction of concurrent behaviors are notoriously difficult to reason about and often defy intuition. That said,
the completeness and exactness of specification is a matter of degree: some aspects of a system are too innocuous
to warrant specification, others are too little understood to enable it, while most aspects are worthy of general
description, but not critical enough to call for rigorous specification. Each team must make their own cost/benefit
analysis when deciding how extensively to describe their systems’ expected behaviors and how intensively to specify
those properties.

This finding collects recommendations regarding aspects of the system which are unspecified or underspecified.

Protocol Level - System goals (as discussed in the paper)
General remarks:

• The overall properties of the protocol as described in the paper are sometimes vague.

• Sometimes the properties are implicitly preconditioned by environment assumptions (e.g., timing, synchrony,
smooth exchange rate fluctuations). These assumptions should be made explicit.

We give some more detailed comments below.

Auditability

While in general the goal is clear, the term “protocol failures” is not so clear. Under the assumption that the
chainrelay is reliable, in principle it is enough to have access to I to track the complete history of the transactions.

Consistency

The property seems hard to formalize precisely. It should be something like: if i(b) is issued at time t, then at time
t, b tokens are locked and it holds that |i(b)| = |b|. Also it should be formalized that a token in the backing currency
cannot be blocked for multiple issued tokens.

Redeemability

see IF-INTERLAY-THEFT.

30

https://ieeexplore.ieee.org/document/8835387
https://github.com/interlay/interbtc-spec/tree/3.1.0
https://github.com/interlay/interbtc-spec/blob/3.1.0/polkabtc-spec/docs/source/spec/vaultregistry.rst
%5B./findings/IF-INTERLAY-THEFT.md%5D

©2021 Informal Systems InterBTC Parachain

Liveness

Liveness seems to be preconditioned by some timing assumptions. These should be clarified. Section V.B of the
paper mentions several timing assumptions. It is not clear whether

• some components in the design are responsible for ensuring them, or
• they are entirely put on the environment.

It is also not clear whether these timing assumptions are relevant for safety or liveness (or both).

Some of these timing assumptions also are safety critical (see IF-INTERLAY-NO-BLOCK). This should be clarified.

Invariants
The vault registry manages different amounts of tokens in InterBTC and DOTS, e.g.,

• toBeIssuedTokens
• issuedTokens
• toBeRedeemedTokens
• collateral

To specify correct behavior, it would be great to define

• invariants, e.g.,
– toBeRedeemedTokens <= issuedTokens

• transition invariants, e.g.,
– for all functions different from executeIssue and [. . .] it holds that issuedTokens' = issuedTokens
– for all functions different from [. . .], toBeIssuedTokens' + issuedTokens' = toBeIssuedTokens +

issuedTokens

Towards this, there already exist quite insightful figures (e.g., this figure). They are very helpful in understanding
the evolution of the protocol/amounts. However, the figures are not always complete/correct. For instance,
executeIssue may move a different amount of tokens than the one announced in requestIssue, so the invariant is
not obvious.

Global invariants between BTC and InterBTC
Intuitively, one would expect some global invariants somewhat in the spirit of

(I) "BTC locked in vaults" = "issued InterBTC"

or at least some stabilization property, e.g.,

(II) if there are no new requests (issue, redeem, etc) for 24 hours, then (I) holds.

Problem Scenarios
The InterBTC protocol is a collection of several protocols that each involve different transactions on the Bitcoin
network and Polkadot. In production, many instantiations of these protocols will run in parallel. In order to convince
oneself that the protocol is “correct” under concurrency, one would need explicit statements on the invariants, or the
expected preconditions/postconditions under which protocols run. For the mentioned amounts, such formalizations
are lacking in the specification.

Recommendation
A formalization of these invariants is a pre-requisite to reason more formally about the correctness of concurrent
execution of the involved protocols.

31

https://github.com/interlay/interbtc-spec/blob/3.1.0/polkabtc-spec/docs/source/spec/vaultregistry.rst
https://spec.interlay.io/spec/issue.html#vault-registry

©2021 Informal Systems InterBTC Parachain

IF-INTERLAY-STORAGE: Storage updates of Vault struct
and cached values are not co-located

Severity Low
Type Implementation

Difficulty Medium
Status Resolved by interbtc@82424 via interbtc#165

Involved artifacts
• https://github.com/interlay/interbtc/blob/7c02930d7f7f0b32693110b702bde74072436594/crates/vault-

registry/src/lib.rs#L1173-L1177
• https://github.com/interlay/interbtc/blob/7c02930d7f7f0b32693110b702bde74072436594/crates/vault-

registry/src/ext.rs#L23
• https://github.com/interlay/interbtc/blob/7c02930d7f7f0b32693110b702bde74072436594/crates/vault-

registry/src/slash.rs#L149-L170

Description
When depositing funds into a vault, the storage is updated in the following places:

• https://github.com/interlay/interbtc/blob/7c02930d7f7f0b32693110b702bde74072436594/crates/vault-
registry/src/lib.rs#L1173-L1177

• https://github.com/interlay/interbtc/blob/7c02930d7f7f0b32693110b702bde74072436594/crates/vault-
registry/src/ext.rs#L23

• https://github.com/interlay/interbtc/blob/7c02930d7f7f0b32693110b702bde74072436594/crates/currency/s
rc/lib.rs#L167-L168

But then it seems that same calculations and data must also be represented in the Vault struct, via

https://github.com/interlay/interbtc/blob/7c02930d7f7f0b32693110b702bde74072436594/crates/vault-
registry/src/slash.rs#L149-L170

149 pub trait TryDepositCollateral<
150 Collateral: TryInto<u128> + CheckedAdd,
151 SignedFixedPoint: FixedPointNumber,
152 E: From<SlashingError>,
153 >: SlashingAccessors<Collateral, SignedFixedPoint, E>
154 {
155 /// Called by the vault or nominator to deposit collateral.
156 fn try_deposit_collateral(&mut self, amount: Collateral) -> Result<(), E> {
157 checked_add_mut! (self, mut_collateral, &amount);
158 checked_add_mut! (self, mut_total_collateral, &amount);
159 checked_add_mut! (self, mut_backing_collateral, &amount);
160

161 let amount_as_fixed = collateral_to_fixed:: <Collateral, SignedFixedPoint>(amount)?;
162 let slash_per_token = self.get_slash_per_token()?;
163 let slash_per_token_mul_amount = slash_per_token
164 .checked_mul(&amount_as_fixed)
165 .ok_or(SlashingError:: ArithmeticOverflow)?;
166 checked_add_mut! (self, mut_slash_tally, &slash_per_token_mul_amount);
167

32

https://github.com/interlay/interbtc/commit/82424e250ef06195c03d4a0d05a3c230b8e696b5
https://github.com/interlay/interbtc/pull/165
https://github.com/interlay/interbtc/blob/7c02930d7f7f0b32693110b702bde74072436594/crates/vault-registry/src/lib.rs#L1173-L1177
https://github.com/interlay/interbtc/blob/7c02930d7f7f0b32693110b702bde74072436594/crates/vault-registry/src/lib.rs#L1173-L1177
https://github.com/interlay/interbtc/blob/7c02930d7f7f0b32693110b702bde74072436594/crates/vault-registry/src/ext.rs#L23
https://github.com/interlay/interbtc/blob/7c02930d7f7f0b32693110b702bde74072436594/crates/vault-registry/src/ext.rs#L23
https://github.com/interlay/interbtc/blob/7c02930d7f7f0b32693110b702bde74072436594/crates/vault-registry/src/slash.rs#L149-L170
https://github.com/interlay/interbtc/blob/7c02930d7f7f0b32693110b702bde74072436594/crates/vault-registry/src/slash.rs#L149-L170
https://github.com/interlay/interbtc/blob/7c02930d7f7f0b32693110b702bde74072436594/crates/vault-registry/src/lib.rs#L1173-L1177
https://github.com/interlay/interbtc/blob/7c02930d7f7f0b32693110b702bde74072436594/crates/vault-registry/src/lib.rs#L1173-L1177
https://github.com/interlay/interbtc/blob/7c02930d7f7f0b32693110b702bde74072436594/crates/vault-registry/src/ext.rs#L23
https://github.com/interlay/interbtc/blob/7c02930d7f7f0b32693110b702bde74072436594/crates/vault-registry/src/ext.rs#L23
https://github.com/interlay/interbtc/blob/7c02930d7f7f0b32693110b702bde74072436594/crates/currency/src/lib.rs#L167-L168
https://github.com/interlay/interbtc/blob/7c02930d7f7f0b32693110b702bde74072436594/crates/currency/src/lib.rs#L167-L168
https://github.com/interlay/interbtc/blob/7c02930d7f7f0b32693110b702bde74072436594/crates/vault-registry/src/slash.rs#L149-L170
https://github.com/interlay/interbtc/blob/7c02930d7f7f0b32693110b702bde74072436594/crates/vault-registry/src/slash.rs#L149-L170

©2021 Informal Systems InterBTC Parachain

168 Ok(())
169 }
170 }

And then the Vault struct itself must updated in storage.

Problem Scenarios
Having the cached valued updated in totally different locations than the principle data structure presents lots of
opportunity for subtle logic errors to be introduced during maintenance and development.

Recommendation
A more robust and maintainable design would be one of the following:

• collocate the storage updates and struct updates (each update could be a single call into a method on the
Vault struct)

• fetch the struct values from the storage (of course, this comes with a performance penalty)
• derive all updates to the ancillary storage locations from the vault struct perhaps through a store method on

the Vault struct (this was suggested by Greg in our meeting).

We recommend considering any other places where in memory structs are updated separately from the storage layer,
and co-locating the logic of these updates as closely as possible.

33

©2021 Informal Systems InterBTC Parachain

IF-INTERLAY-SUBJECTIVE: “Subjective initialization”
condition assuming block_height is the correct height for
the raw_block_header in relay initialization not specified

Severity Low
Type Protocol

Difficulty Easy
Status Resolved by interbtc-spec@6a25a

Involved artifacts
• btc-relay/src/lib.rs

Description
When the btc-relay is initialized, a block_header and block_height are supplied:

https://github.com/interlay/interbtc/blob/e4cb057c2cb5c69c53d87deecce7627922332c1d/crates/btc-relay/src/lib.
rs#L511

511 pub fn initialize(relayer: T:: AccountId, raw_block_header: RawBlockHeader, block_height:
u32) -> DispatchResult {↪→

The given block_height must correctly reflect the height of the raw_block_header, or else the fork height detection
mechanism will be invalid, since detection relies on the block_height, which is calculated based on incrementing
each successive blocks height based on that of it’s ancestor.

We call this “subjective initialization” in tendermint.

Problem Scenarios
The incorrect block height could be given during initialization of the btc-relay, making all subsequent block height
calculations incorrect.

Recommendation
The specification should make this assumption clear and it could detail any governance mechanisms, conventions, or
external conditions that help ensure that the assumption holds.

34

https://github.com/interlay/interbtc-spec/commit/6a25a132a45d93b00f24ef7a325682f43a44b45f
https://github.com/interlay/interbtc/blob/e4cb057c2cb5c69c53d87deecce7627922332c1d/crates/btc-relay/src/lib.rs#L511
https://github.com/interlay/interbtc/blob/e4cb057c2cb5c69c53d87deecce7627922332c1d/crates/btc-relay/src/lib.rs#L511
https://github.com/interlay/interbtc/blob/e4cb057c2cb5c69c53d87deecce7627922332c1d/crates/btc-relay/src/lib.rs#L511

©2021 Informal Systems InterBTC Parachain

IF-INTERLAY-THEFT: Theft by redeeming (replacing) too
much

Severity High
Type Protocol

Difficulty Easy
Status Resolved by interbtc@67c5a

Involved artifacts
• Specification
• issue/src/lib.rs
• redeem/src/lib.rs
• replace/src/lib.rs

Description
The protocols Issue, Redeem and Replace contain the following steps on Polkadot:

• request to transfer a specific amount of BTC
• submit and verify a proof for the transfer (in order to effectuate the operation)

While the specification mostly indicates that the requested amounts and the transferred amounts should be equal,
the implementation is more flexible. The implementation allows to redeem and replace larger amounts than initially
specified.

As a result, it is unclear what correct behavior actually is intended. The specification states, e.g., for Issue, on
executeIssue: “If the function completes successfully, the user receives the requested amount of InterBTC into his
account.” However, the implementation deviates from the specification. It allows different amounts to be issued than
requested.

We also observed similar deviations for redeem and replace. For these, there are scenarios that are quite comparable
to theft, e.g., when too many BTC are redeemed. In addition, it seems that over-redeeming is not recorded, and
thus leads to deviation of the actually “locked BTC” and the InterBTC issued by the same vault.

Problem Scenarios
• In the case of Redeem, a vault and a user can collaborate: A vault may redeem more BTC than recorded in

the Polkadot smart contract.
• In the case of Replace, two vaults can collaborate and replace more BTC than recorded in the Polkadot smart

contract.

In more detail, the implementation allows to transfer too many BTC linked to replace and redeem requests. This
breaks an invariant that roughly corresponds to

(I) "BTC locked in vaults" = "issued InterBTC".

Further, reporting of theft also allows

• redeeming too much
• “replacing” too much

Intuitively, we understand these latter two points as behavior that may lead to similar situations as theft.

35

https://github.com/interlay/interbtc/commit/67c5a5d5276d634ee2f91a66f463010d5808ad7f
https://github.com/interlay/interbtc-spec/tree/3.1.0
https://github.com/interlay/interbtc/blob/a06ada7d8e9c1cc20fa0a4d8507523333ff474df/crates/issue/src/lib.rs
https://github.com/interlay/interbtc/blob/a06ada7d8e9c1cc20fa0a4d8507523333ff474df/crates/redeem/src/lib.rs
https://github.com/interlay/interbtc/blob/a06ada7d8e9c1cc20fa0a4d8507523333ff474df/crates/replace/src/lib.rs
https://github.com/interlay/interbtc-spec/blob/3.1.0/polkabtc-spec/docs/source/spec/issue.rst
https://github.com/interlay/interbtc/blob/a06ada7d8e9c1cc20fa0a4d8507523333ff474df/crates/issue/src/lib.rs#L307
https://github.com/interlay/interbtc/blob/eb177b0560176cccfb3100c6bfec872fd27a4548/crates/staked-relayers/src/lib.rs#L299
https://github.com/interlay/interbtc-spec/blob/3.1.0/polkabtc-spec/docs/source/spec/staked-relayers.rst
https://github.com/interlay/interbtc/blob/9c7171d5e82a8f6202c6388ef6544801c22aea25/crates/redeem/src/lib.rs#L365
https://github.com/interlay/interbtc/blob/9c7171d5e82a8f6202c6388ef6544801c22aea25/crates/replace/src/lib.rs#L388

©2021 Informal Systems InterBTC Parachain

Moreover, it seems that the concept of “undercollateralization” is detected and checked in terms of InterBTC (rather
than BTC locked with a vault). This is OK if (I) holds. However, if (I) is violated, then this becomes less clear.

Recommendation
• For Redeem and Replace: Implement checks for equality of the requested amount and the actually transferred

amounts, in the execute as well as in the slashing conditions.
• For Issue, the checks do not seem safety relevant. Non-precise checks allow for more usability. We suggest to

precisely document the cases; cf. IF-INTERLAY-SPEC.

Collaborative discussion
In the course of addressing this finding, the team at Interlay identified a related attack scenario where multiple
transactions on the Bitcoin network could contain the same OP_RETURN. This constitutes a variant of double spending.
The proposed solution was to introduce a new evidence type that consists of two distinct transactions with the same
OP_RETURN, and thus punish this behavior. We recommend to implement this slashing condition.

36

https://github.com/interlay/interbtc/blob/eb177b0560176cccfb3100c6bfec872fd27a4548/crates/vault-registry/src/lib.rs#L293

©2021 Informal Systems InterBTC Parachain

IF-INTERLAY-TIMEOUT: Timeouts (and races) on sender
chain

Severity High
Type Protocol

Difficulty Hard
Status Resolved by interbtc@c43d5 via interbtc#156

Involved artifacts
• XCLAIM SP paper
• Specification

Description
The protocol uses timeouts, mostly to de-risk agents. E.g., during issue, if a vault locks InterBTC, and the user
fails to transfer (rather “fails to prove a transfer of”) BTC within 24 hours, the locked InterBTC will be returned to
the vault. Similarly, if redeem times out, the vault is slashed for not providing a proof of a BTC transfer.

Problem Scenarios
If the vault redeems BTC but fails to get the transaction on the issuing chain in-time (before DeltaˆI_redeem
expires), then there is a race between the vault and the user (depending on whether execute is still allowed after
the timeout expires). The user can end up with

• its initial BTC
• AND wrongly paid back InterBTC

Even if there is no race, if cancel succeeds although the BTC transaction took place, this seems to violate an
(implicit) invariant that should relate the amount of locked BTC with the stored amounts of issued InterBTC in
Polkadot.

Recommendation

Clarify use cases around timeouts
The inherent reason for the race lies in the problem of proving the absence of payment on the bitcoin chain (from
vault back to the user). In the design, the timeout period needs to transpire on the Polkadot side.

In other designs, e.g., in IBC there is no such race: the comparable timeout would need to transpire on the
receiving side, that is, translated to interBTC, the vault would need to get the transaction into bitcoin before a
certain timeout height T is reached on the bitcoin chain. Then, the absence of the transaction could be proven by
inspecting the bitcoin chain up to height T. On the other hand, the vault also would not try to get the transaction
on the bitcoin chain once the height T is surpassed.

We suggest do document the involved risks, incentives, and potentially broken global invariants in adverse scenarios
in the specification.

Similar to the race in redeem, there is a timeout with a race in issue. The function executeIssue may abort because
of timeout (measured in terms of activeblockcount), even if there is a Merkle proof that the transfer has happened.

37

https://github.com/interlay/interbtc/commit/c43d580f142d2a519db91fbac877e3d3db2bcd7b
https://github.com/interlay/interbtc/pull/156
https://ieeexplore.ieee.org/document/8835387
https://github.com/interlay/interbtc-spec/tree/3.1.0
https://github.com/interlay/interbtc-spec/blob/3.1.0/polkabtc-spec/docs/source/spec/issue.rst
https://github.com/interlay/interbtc-spec/blob/3.1.0/polkabtc-spec/docs/source/spec/issue.rst

©2021 Informal Systems InterBTC Parachain

Time parameters in the paper
The paper mentions several involved times that should be clarified:

• DeltaˆI_redeem: enforced by the smart contract. What are the guarantees on time provided by the Polkadot
blockchain?

• Delta_relay: seems to be an assumption of XLAIM. It is the sum of
– Delta_B: from transaction broadcast to secure inclusion. This is out of control of the protocol. How is it

estimated? Is it accounted for that a transaction may be put on a “wrong fork”?
– Delta_submit: unclear what this precisely is. It seems that a relayer might be responsible to ensure it.

Are relayers incentivized to do so, or is it also the responsibility of the user?
– 2 DeltaˆI: unclear

• Delta_redeem > DeltaˆB + Delta_relay
• Where is the time it takes the user to prepare and submit a transaction to Bitcoin (after initiating the redeem

process and the “DeltaˆI_redeem” timeout starts to run)?
• the mentioned timeout for batching is unclear

38

©2021 Informal Systems InterBTC Parachain

IF-INTERLAY-WITNESS: Missing check for illegal encoded
witness in transaction parsing

Severity Low
Type Implementation

Difficulty Easy
Status Resolved by interbtc@44f00 via interbtc#160

Involved artifacts
• reference implementation
• bitcoin/src/parser.rs#L317
• bitcoin/src/types.rs#L272-L275

Description
In the reference implementation, a transaction with a set witness-flag must actually include witnesses in the
transaction.

214 if (!tx.HasWitness()) {
215 /* It's illegal to encode witnesses when all witness stacks are empty. */
216 throw std::ios_base::failure("Superfluous witness record");
217 }

However, this was not checked in the parsing function:

314 if (flags & 1) != 0 && allow_witness {
315 flags ˆ= 1;
316 for input in &mut inputs {
317 input.with_witness(flags, parser.parse()?);
318 }
319 }

or the with_witness method it envokes:

272 pub fn with_witness(&mut self, flags: u8, witness: Vec<Vec<u8>>) {
273 self.flags = flags;
274 self.witness = witness;
275 }

Problem Scenarios
An illegally encoded transaction could be parsed successfully.

Recommendation
Add a check that makes the implementation faithful to the bitcoin core reference implementation.

39

https://github.com/interlay/interbtc/commit/44f0024bf837e98c009c2aa19e5f30574bb5225f
https://github.com/interlay/interbtc/pull/160
https://github.com/bitcoin/bitcoin/blob/be4171679b8eab8205e04ff86140329bd67878a0/src/primitives/transaction.h#L214-L217
https://github.com/interlay/interbtc/blob/e4cb057/crates/bitcoin/src/parser.rs#L317
https://github.com/interlay/interbtc/blob/e4cb057/crates/bitcoin/src/types.rs#L272-L275
https://github.com/bitcoin/bitcoin/blob/be4171679b8eab8205e04ff86140329bd67878a0/src/primitives/transaction.h#L214-L217
https://github.com/interlay/interbtc/blob/e4cb057c2cb5c69c53d87deecce7627922332c1d/crates/bitcoin/src/parser.rs#L314-L319
https://github.com/interlay/interbtc/blob/e4cb057/crates/bitcoin/src/types.rs#L272-L275

	Audit overview
	The Project
	Scope of this report
	Conducted work
	Timeline
	Conclusions
	Further Increasing Confidence

	Audit Dashboard
	Engagement Goals
	Scope
	Aims of audit

	Coverage
	Recommendations
	Short term
	Long term

	Minor comments
	Fee / SLA
	Vault nomination
	Vault-registry
	Documentation improvements
	Document the reference implementation and specs in the README of the bitcoin crate
	Fix Broken links

	Code quality improvements
	Avoid use of magic numbers
	Avoid redundant and scattered computations and validations

	Discrepancies with specification
	bitcoin crate
	btc-relay crate
	vault-registry crate

	Findings
	IF-INTERLAY-ADTS: Under-utilization of algebraic data types leads to confusing and error prone code
	Involved artifacts
	Description
	Problem Scenarios
	Recommendation

	IF-INTERLAY-INTERACTION: Interaction between the issue and refund protocols
	Involved artifacts
	Description
	Problem Scenarios
	Recommendation

	IF-INTERLAY-LIQUIDATION: Liquidation event incentives unclear
	Involved artifacts
	Description
	Problem Scenarios
	Recommendation
	Thresholds
	Realistic scenarios
	Incentives
	Reconsider Liquidation as Liveness concern

	IF-INTERLAY-NAMING: Documentation and variable naming of check_and_do_reorg function is misleading
	Involved artifacts
	Description
	Problem Scenarios
	Recommendation

	IF-INTERLAY-NO-BLOCK: Scenario of ``no block being recently submitted'' (all relayers offline) not handled gracefully
	Involved artifacts
	Description
	Problem Scenarios
	Recommendation

	IF-INTERLAY-PARSING: raw_block_header parsing occurs at multiple locations, but should be moved to the edge of the program
	Involved artifacts
	Description
	Problem Scenarios
	Recommendation

	IF-INTERLAY-SPEC: Specification of Concurrent Behaviors
	Involved artifacts
	Description
	Protocol Level - System goals (as discussed in the paper)
	Invariants
	Global invariants between BTC and InterBTC

	Problem Scenarios
	Recommendation

	IF-INTERLAY-STORAGE: Storage updates of Vault struct and cached values are not co-located
	Involved artifacts
	Description
	Problem Scenarios
	Recommendation

	IF-INTERLAY-SUBJECTIVE: ``Subjective initialization'' condition assuming block_height is the correct height for the raw_block_header in relay initialization not specified
	Involved artifacts
	Description
	Problem Scenarios
	Recommendation

	IF-INTERLAY-THEFT: Theft by redeeming (replacing) too much
	Involved artifacts
	Description
	Problem Scenarios
	Recommendation
	Collaborative discussion

	IF-INTERLAY-TIMEOUT: Timeouts (and races) on sender chain
	Involved artifacts
	Description
	Problem Scenarios
	Recommendation
	Clarify use cases around timeouts
	Time parameters in the paper

	IF-INTERLAY-WITNESS: Missing check for illegal encoded witness in transaction parsing
	Involved artifacts
	Description
	Problem Scenarios
	Recommendation

