
Interlay Security Audit

Audit of pallets and configuration

Reference 22-03-942-REP
Version 1.1

Date 2022/04/13

Quarkslab SAS
13 rue Saint Ambroise

75011 Paris
France

Contents

1 Project Information 1

2 Executive Summary 2
2.1 Disclaimer . 2
2.2 Findings Summary . 2

3 Context and Scope 6
3.1 Context . 6
3.2 Safety and Security Properties . 6
3.3 Scope . 6
3.4 Audit Settings . 7

4 Methodology 8
4.1 Familiarize with the Interlay ecosystem . 8
4.2 Static code review and analysis . 8
4.3 Configuration review . 9
4.4 Dynamic testing . 9
4.5 Tools . 9

5 Recommendations 11
5.1 Vault Registry . 11
5.2 Democracy . 22
5.3 Escrow . 27
5.4 Annuity . 30
5.5 Supply . 30
5.6 Runtime Configuration . 32
5.7 Weights . 33
5.8 Bitcoin . 34

6 Conclusion 41

Glossary 42

Bibliography 43

A Polkadot-launch Configuration 44

1 Project Information

Document history
Version Date Details Authors

1.1 2022/04/13 Initial Version Sébastien Rolland, Mahé Tardy and two
Quarkslab auditors1.

Quarkslab
Contact Role Contact Address

Frédéric Raynal CEO fraynal@quarkslab.com
Stavia Salomon Sales Manager ssalomon@quarkslab.com
Matthieu Ramtine Tofighi Shirazi Project Manager mrtofighishirazi@quarkslab.com
Sébastien Rolland R&D Engineer srolland@quarkslab.com
Mahé Tardy R&D Engineer mtardy@quarkslab.com
Quarkslab auditor1 R&D Engineer
Quarkslab auditor1 R&D Engineer

Interlay
Contact Role Contact Address

Dominik Harz Co-Founder & CTO dominik@interlay.io
Alexei Zamyatin Co-Founder & CEO alexei@interlay.io
Sander Bosma Software Engineer sander@interlay.io
Gregory Hill Research & Software Engineering gregory@interlay.io

1Given the public release of this report, some auditors preferred to remain anonymous.

Ref: 22-03-942-REP 1 Quarkslab SAS

mailto:fraynal@quarkslab.com
mailto:ssalomon@quarkslab.com
mailto:mrtofighishirazi@quarkslab.com
mailto:srolland@quarkslab.com
mailto:mtardy@quarkslab.com
mailto:dominik@interlay.io
mailto:alexei@interlay.io
mailto:sander@interlay.io
mailto:gregory@interlay.io

2 Executive Summary

This report describes the results of the security evaluation made by Quarkslab on multiple
components of the parachain developed by Interlay. The audit was focused on the Vault Registry,
which is the on-chain part of the vaults management, and the Governance components.

The main components reviewed were the vault-registry pallet and the governance pallets,
democracy, escrow, annuity and supply. Their configuration and integration into the runtimes
were also investigated.

The audit aims at verifying that the implementation respects the specification written by Interlay
and presents no security issues in terms of availability and resources theft.

Audits have already been performed on some components like the Vault Registry by another audit
company [1]. During Quarkslab’s assessment, no major vulnerability has been found. The report
is composed of many recommendations on minor flaws that were discovered during the audit.

This is version 1.1, which was delivered to Interlay on 2022/04/13, for public release. It follows
the initial version, 1.0, which was delivered and discussed with Interlay.

2.1 Disclaimer

This report reflects the work and results obtained within the duration of the audit on the specified
scope (see. Section 3.3) as agreed between Interlay and Quarkslab. Tests are not guaranteed to
be exhaustive and the report does not ensure the code to be bug-free.

2.2 Findings Summary

The severity classification, informative, low, and medium, reflects a relative hierarchy between
the various findings of this report. For example, most panics are unreachable in practice, but in
order to reflect the importance of this class of bugs, they were promoted to medium severity. The
following table describes in more details the rating for findings severity levels.

Severity Description
High Exploitable major issues that could result in loss of funds or DDoS attack.

Medium Medium issues that cannot be directly exploited, such as the use of unsafe arithmetic
or potential panics. These issues could potentially lead to loss of funds or DDoS
attacks in future updates.

Low Low issues that cannot be directly exploited such as mismatch between the spec-
ification and implementation on pre/post conditions or incorrect weight. These
issues could potentially lead to logic bugs and cheap computation or storage.

Info Diverse informative recommendations on code structure, documentation, TODO
annotations, etc.

Ref: 22-03-942-REP 2 Quarkslab SAS

No critical or exploitable vulnerabilities were found during the audit.

ID Description Category Severity
MEDIUM_1 Hook on_initialize from supply pallet

will panic in the future
Runtime panic Medium

MEDIUM_2 Integer overflow and panic in make_-
parsable_int macro

Unsafe arithmetic Medium

MEDIUM_3 Integer overflow and panic in U256::parse
implementation

Unsafe arithmetic Medium

MEDIUM_4 Potential panic with missing checks and
copy_from_slice

Runtime panic Medium

LOW_1 Parachain security status is not verified Unverified precondition Low
LOW_2 The SystemCollateralCeiling is not ver-

ified
Unverified submitted
value

Low

LOW_3 The Secure Collateral Threshold is not veri-
fied

Unverified submitted
value

Low

LOW_4 The Liquidation Threshold is not verified Unverified submitted
value

Low

LOW_5 The replaceCollateral is decreased by
the caller

Not enforced postcondi-
tion

Low

LOW_6 The depositStake function is not called Not enforced postcondi-
tion

Low

LOW_7 The Vault status is not verified properly Wrong precondition ver-
ification

Low

LOW_8 The replaceCollateral is not increased Not enforced postcondi-
tion

Low

LOW_9 Usage of unsafe multiplication in the check-
point and supply_at function

Unsafe arithmetic Low

LOW_10 Pre-condition in withdraw is not verified Unverified pre-condition Low
LOW_11 Pre-condition in balance_at is not verified Unverified pre-condition Low
LOW_12 Incorrect weights estimation in various ex-

trinsics with length variable arguments
Incorrect weights Low

LOW_13 Overflow check made after parsing in bit-
coin::BytesParser::parse

Unsafe arithmetic Low

LOW_14 Potential panic with unwrap in from_hex_-
le and from_hex_be

Runtime panic Low

INFO_1 Parachain security status is indirectly veri-
fied

Unverified precondition Info

INFO_2 Succesfully completed DepositStake
should be added to post-conditions

Missing postcondition Info

Ref: 22-03-942-REP 3 Quarkslab SAS

ID Description Category Severity
INFO_3 Parachain security status is indirectly veri-

fied
Unverified precondition Info

INFO_4 TODO annotations in add_btc_address TODO annotation Info
INFO_5 Precondition seems to be inverted Error in specification Info
INFO_6 Unspecified accept_new_issues extrinsic Missing specification Info
INFO_7 Unspecified report_undercollateral-

ized_vault extrinsic
Missing specification Info

INFO_8 Preconditions checked by the callees Indirect verification of
precondition

Info

INFO_9 Preconditions checked by the callees Indirect verification of
precondition

Info

INFO_10 Preconditions checked by the callees Indirect verification of
precondition

Info

INFO_11 Preconditions checked by the callees Indirect verification of
precondition

Info

INFO_12 Preconditions checked by the callees Indirect verification of
precondition

Info

INFO_13 Mismatch of amount of collateral between
redeem_tokens_liquidation and spec

Specification issue Info

INFO_14 The name of the function does not match
the specification

Specification minor is-
sue

Info

INFO_15 The second extrinsic is not specified Lack of specification Info
INFO_16 Call to an unsupported function Cur-

rency::repatriate_reserved
Useless computation Info

INFO_17 Panic in debug because of debug_assert Runtime panic Info
INFO_18 Function maturing_referenda_at_inner

could use available utility functions
Refactor Info

INFO_19 Internal function use a different logging
mechanism

Debug logging Info

INFO_20 Wrong pre-condition in increase_un-
lock_height

Error in pre-condition Info

INFO_21 TODO annotations in get_free_balance
for account restrictions

TODO annotation Info

INFO_22 Missing benchmark on withdraw weight TODO annotation and
missing benchmark

Info

INFO_23 Base weight and transaction byte fee set at
0 in interbtc

Weight miscomputation
and TODO annotations

Info

Ref: 22-03-942-REP 4 Quarkslab SAS

ID Description Category Severity
INFO_24 Pallet sudo in the interBTC runtime config-

uration
Privileged pallet Info

INFO_25 Useless copies in parse functions Useless copies Info
INFO_26 Integer overflow in parse_transaction_-

input
Unsafe arithmetic Info

INFO_27 Shift left overflow in Merkle-
Tree:computer_width

Unsafe arithmetic Info

INFO_28 Assumptions on the length of slices in
MerkleProof::traverse_and_build

Length assumptions Info

Ref: 22-03-942-REP 5 Quarkslab SAS

3 Context and Scope

3.1 Context

Interlay aims at bringing Bitcoin liquidity to many networks based on an implementation on
Polkadot. Currently, the goal is to create a bridge between the Bitcoin network and the Polkadot
network to bring liquidity to other parachains of the network.

To develop its solution, Interlay has a parachain on the Kusama network named Kintsugi. The
organization entered the Polkadot auction in the second batch and won the 10th parachain slot.
Their interBTC parachain on Polkadot started on the 11th of March 2022.

The purpose of a bridge is to lock an asset on the blockchain of origin and to mint an asset,
equivalent in value, on the destination blockchain. One of the difficulties to implement bridges
comes from the fact that blockchains have different technologies that present more or less capable
interfaces. For example, Polkadot network blockchains are extremely customizable and flexible
in comparison to the Bitcoin blockchain, that has very limited programming capabilities. To solve
this issue, Interlay has built an off-chain client to perform complex tasks on the Bitcoin side and
use its parachain to safely lock on-chain collateral on the Polkadot network. In addition, one
specificity of the Interlay solution is that the vaults, which are the components that keep the locked
Bitcoin, are fully decentralized and can operate independently. They register themselves via the
parachain on the Polkadot network and can manage their actions on-chain via this interface.

3.2 Safety and Security Properties

In the case of a substrate-based network, the traditional security properties of a blockchain
are somehow delegated to the relay chain of their network. Indeed, parachains are not fully
independent and uses the consensus mechanism of the underlying relay chain. The block time
can vary so there are no 1:1 block correspondence between relay chains and parachains. Yet,
the parachain mechanism ensures a perfect lineage tracking between relay chain and parachain
blocks.

However, specifically for blockchain bridges, one of the main security concern is that the 1:1 peg
is not true because of vulnerabilities in the logic or the implementation of the bridge.

The considered security model takes into account a misbehaving user of the interlay ecosystem
which attempts to attack the available interface surface of the parachain. The entry point for
users is the JSON-RPC API which mainly exposes functions, called extrinsics.

3.3 Scope

The scope of this audit is defined by Rust modules or crates, that compose the features of a
substrate-based blockchain. They are called pallets in the Polkadot ecosystem. All the audited

Ref: 22-03-942-REP 6 Quarkslab SAS

source code is available in the main Github repository of Interlay named interbtc1.

The audit focused on the following pallets and their respective runtime configuration in the
parachains implementations:

• vault-registry: handles the management (registration, reporting, etc.) of the vaults.

• Governance related pallets:

– escrow: implements a mechanism to lock governance token in exchange of voting
power.

– democracy: implements the governance features of the parachain to propose privileged
actions and vote for them.

– annuity: distributes various rewards.

– supply: generates new supply to support inflation.

The usage of libraries and frameworks, such as ORM or Substrate, were reviewed but their
respective implementations were out of the scope of this audit.

More information about the specific version and the setup of the audit can be found in Section 3.4.

3.4 Audit Settings

As the Interlay codebase is undergoing significant changes with the approach of the launch of
interBTC on the Polkadot mainnet, versions used for the audit have been frozen in agreement
with the Interlay team. Exact versions and commit ID are shown in Table 3.1. From the specified
commit hashes, the parachain runtime binary was compiled on Linux x86-64 as well as macOS
arm64.

Project interbtc

Repository https://github.com/interlay/interbtc

Commit hash 9fed496a74c9b2b8bc0a3ed15e35804f79c79728

Commit date 2022/02/07

Runtime v1.7.1

Table 3.1: interbtc version references

To start a network, the CLI tool polkadot-launch2 was used with a configuration to start a
rococo-local relay chain with three validators and the testnet interBTC runtime with one
collators. Polkadot v0.9.153 was used. A custom build-spec was given to the parachain to alter
the initial values used by some pallets. To see more about the JSON configuration used, see in
Appendix A.
1https://github.com/interlay/interbtc
2https://github.com/paritytech/polkadot-launch
3https://github.com/paritytech/polkadot/releases/tag/v0.9.15

Ref: 22-03-942-REP 7 Quarkslab SAS

https://github.com/interlay/interbtc
https://github.com/interlay/interbtc/commit/9fed496a74c9b2b8bc0a3ed15e35804f79c79728
https://github.com/interlay/interbtc
https://github.com/paritytech/polkadot-launch
https://github.com/paritytech/polkadot/releases/tag/v0.9.15

4 Methodology

4.1 Familiarize with the Interlay ecosystem

The first step of the audit was to dive into the ecosystem, reading the documentation at our
disposal and testing the product with the testnet available. Then a local working setup was built
to experiment comfortably with the parachain and perform some dynamic tests. In the case of
Interlay, it was pretty straightforward using polkadot-launch presented in Section 3.4.

The project has multiple documentations. The auditors first discovered the Interlay & Kintsugi
Documentation [2], that had a FAQ hosted on notion [3]. Then, the general content also available
on video provided a clear introduction to the project [4]. Finally, the auditors spent time reading
the specification documentation [5].

4.2 Static code review and analysis

The next step consisted in manually reviewing the code of the pallets in order to find potential
issues. Most of the attention was given to the extrinsics, which are the dispatchable functions
from the blockchain. A close look was given to the internal and private functions that could be
called from extrinsics and thus somehow reachable by a user.

Here is the methodology, designed as a checklist, that was used when auditing extrinsics.

Verify that weights are computed and benchmarked correctly. Weight is the computational
cost of calling a dispatchable. The “pricing” of this value has to be correct to avoid cost-less execu-
tion on the blockchain which can lead to a denial of service attack. The substrate documentation
recommends to write benchmarks and to run them against a specific machine configuration to
measure the weight of calling extrinsics. If the weight is a constant, it must be wisely chosen via
a benchmark, but a weight can also be variable according to the length or value of arguments of
a dispatchable. Indeed, some extrinsics can take arrays, or blob of data, as inputs so the weight
has to be adjusted to take its length into account if it can increase the computing cost.

Look for unsafe arithmetic functions. Rust is well-known for providing many protections
against memory-related problems. But arithmetic, for performances reasons, is not checked when
compiling in release mode. In blockchain environments, arithmetic is often critical because it is
applied to assets. More generally, an overflow or an underflow could break the logic of a function
or the computation of its weight, thus providing free execution or generation/destruction of
assets.

Look for missing storage deposits. Some extrinsics that require storage can use deposits to
avoid providing free storage without asking the user to pay for important fees. Such extrinsics
should be investigated because free storage means denial of service attacks.

Ref: 22-03-942-REP 8 Quarkslab SAS

Look for runtime panic. Parachain runtimes must be written in a defensive manner and never
panic because the blockchain has to produce blocks. Thus panics must be avoided as much as
possible, that is why it is interesting to look for .unwrap() and .expect(), among others, in the
code.

Verify the authorization model. Extrinsics usually start with an authorization check, under the
form of ensure_something(origin)?; or a configuration filter for example. For each extrinsic,
the authorization model must be enforced in order to prevent an unprivileged user to perform a
privileged operation.

Verify the usage of the transactional macro. The #[transactional] macro was recently
introduced in Substrate and is useful in order to make sure that the side effects of an extrinsic
can be reverted if it does not succeed. Otherwise, an error during a dispatchable execution could
create an undetermined state for the blockchain storages.

Verify the validity of pre and post conditions. The specification of interbtc [5] contains, for
most of the extrinsics, the conditions that should be met before and after the execution of the
extrinsic, making it easier to verify the correctness of the implementation.

Look for general logic and implementation errors. Look for anything that could produce an
error or something that was forgotten at the time of implementation.

4.3 Configuration review

The configuration was also reviewed for the pallets that were audited. The types used by the
pallets and called by the extrinsics were investigated. Most of the time, it is difficult to audit a
pallet without looking at its typical configuration. At the time of the audit, there were interlay,
kintsugi and testnet runtimes.

4.4 Dynamic testing

Given the weak points discovered during the static analysis phase, some test scenarios were
performed to ensure that extrinsics behave correctly or that an exploitation was not possible. For
that, the auditors used the @polkadot/api [6] in TypeScript by generating the TypeScript types
of the interbtc runtime and a custom wrapper around the py-substrate-interface Python
library [7].

4.5 Tools

In addition to manual reviews and dynamic tests, some tools were used to ease the analysis. Rust
Analyzer [8] was used to navigate in the code, finding correct types, and also to expand macros.

Ref: 22-03-942-REP 9 Quarkslab SAS

Also, the auditors used Clippy [9], the reference linter tool for the Rust language. For example,
among others, this kind of Clippy command was used, retrieving a lot of false positive that have
to be manually reviewed.

$ cargo clippy --no-deps -p CRATE_NAME -- -A clippy::all -W
clippy::integer_arithmetic -W clippy::string_slice -W clippy::expect_used -W
clippy::fallible_impl_from -W clippy::get_unwrap -W
clippy::index_refutable_slice -W clippy::indexing_slicing -W
clippy::match_on_vec_items -W clippy::match_wild_err_arm -W
clippy::missing_panics_doc -W clippy::panic -W clippy::panic_in_result_fn -W
clippy::unreachable -W clippy::unwrap_in_result -W clippy::unwrap_used

↪→

↪→

↪→

↪→

↪→

↪→

Ref: 22-03-942-REP 10 Quarkslab SAS

5 Recommendations

The following sections are mostly organized into pallets with the remarks, associated with the
code and the configuration, grouped. However, there is a section for general recommendations on
the runtime configuration and on pallets content that were out of scope but partially investigated
with the approval of the Interlay team.

5.1 Vault Registry

The Vault Registry pallet takes care of vault management. For example, it allows vaults to register
themselves, update their collateral, update public keys, and liquidate. It is composed of 7 extrinsics
including 2 undocumented ones. It also contains 5 "privileged" extrinsics which require to be
called by the root account. Functions of the Vault Registry module are mainly used by the issue,
redeem, refund and replace modules which are not in the scope of this audit.

5.1.1 register_vault extrinsic and others

INFO_1 Parachain security status is indirectly verified

Category Unverified precondition

Status Present

Rating Severity: Info Impact: None Exploitability: None

The register_vault method should comply with preconditions and postconditions as per the
specification1, version 5.6.1 at the time the audit has been performed. It seems that the following
precondition is not verified: “The BTC Parachain status in the Security component MUST NOT be
SHUTDOWN:2”

However, the implemented BaseCallFilter of Interlay runtime prevents from calling Vault
Registry pallet extrinsics in this case.

177 impl Contains<Call> for BaseCallFilter {
178 fn contains(call: &Call) -> bool {
179 if matches!(
180 call,
181 Call::System(_)
182 | Call::Authorship(_)
183 | Call::Session(_)
184 | Call::Timestamp(_)
185 | Call::ParachainSystem(_)

1https://spec.interlay.io/spec/vault-registry.html#register-vault

Ref: 22-03-942-REP 11 Quarkslab SAS

https://spec.interlay.io/spec/vault-registry.html#register-vault

186 | Call::Sudo(_)
187 | Call::Democracy(_)
188 | Call::Escrow(_)
189 | Call::TechnicalCommittee(_)
190) {
191 // always allow core calls
192 true
193 } else if security::Pallet::<Runtime>::is_parachain_shutdown() {
194 // in shutdown mode, all non-core calls are disallowed
195 false
196 } else if let Call::PolkadotXcm(_) = call {
197 // For security reasons, disallow usage of the xcm package by users. Sudo

and↪→

198 // governance are still able to call these (sudo is explicitly
white-listed, while↪→

199 // governance bypasses this call filter).
200 false
201 } else {
202 true
203 }
204 }
205 }

As per the precondition and as a good practice, it should be verified within the extrinsic to prevent
future updates from breaking the rule.

Warning

The following extrinsics and internal functions also have the exact same issue:

• deposit_collateral extrinsic, see Section 5.1.2 for more information.
• decrease_tokens.
• decrease_to_be_issued_tokens.
• decrease_to_be_redeemed_tokens.
• decrease_tokens.
• issue_tokens.
• redeem_tokens.
• redeem_tokens_liquidation.

INFO_2 Succesfully completed DepositStake should be added to post-conditions

Category Missing postcondition

Status Present

Rating Severity: Info Impact: None Exploitability: None

As this extrinsic is calling the deposit_collateral and the try_deposit_collateral functions,
both of which in turn call VaultStaking::deposit_stake, it would make sense to add it as a
postcondition.

Ref: 22-03-942-REP 12 Quarkslab SAS

5.1.2 deposit_collateral extrinsic

INFO_3 Parachain security status is indirectly verified

Category Unverified precondition

Status Present

Rating Severity: Info Impact: None Exploitability: None

Like above, the deposit_collateral extrinsic does not verify the precondition mentioned in the
specification “The BTC Parachain status in the Security component MUST NOT be SHUTDOWN:2”

However, in addition of being blocked by the BaseCallFilter runtime configuration, the call
wouldn’t succeed thanks to the Oracle crate that calls ensure_parachain_status_running while
checking for the exchange rate. This would raise an error if the status is not set on RUNNING:0.

As per the precondition and as a good practice, it should anyway be verified within the extrinsic
to prevent future updates to the filter or the oracle to break this precondition.

5.1.3 withdraw_collateral extrinsic and others

LOW_1 Parachain security status is not verified

Category Unverified precondition

Status Present

Rating Severity: Low Impact: None Exploitability: None

The withdraw_collateral method does not verify the precondition mentioned in the specifica-
tion [5]: “The BTC Parachain status in the Security component MUST be set to RUNNING:0.”

This precondition, unlike the above in Section 5.1.1, is not verified because the BaseCallFilter
only blocks extrinsics when the status is SHUTDOWN:2. The parachain could also be in ERROR:1
and the functions would be executed.

Warning

The following extrinsics and internal functions also have the exact same issue:

• replace_tokens internal function.
• try_increase_to_be_redeemed_tokens internal function.
• try_increase_to_be_issued_tokens internal function, see Section 5.1.18

for more information.
• try_increase_to_be_replaced_tokens internal function, see Sec-

tion 5.1.19 for more information.

Ref: 22-03-942-REP 13 Quarkslab SAS

5.1.4 register_address extrinsic

INFO_4 TODO annotations in add_btc_address

Category TODO annotation

Status Present

Rating Severity: Info Impact: None Exploitability: None

In add_btc_address method, reached by register_vault -> insert_vault_deposit_address
-> RichVault::insert_deposit_address, in vault-registry/src/types.rs:125 there is the follow-
ing line:

// TODO: add maximum or griefing collateral

The exact meaning of this todo is unclear without more context but it should be reviewed.
Moreover, a TODO in production source code needs to be highlighted.

INFO_5 Precondition seems to be inverted

Category Error in specification

Status Present

Rating Severity: Info Impact: None Exploitability: None

The specification2 mentions several preconditions of which:

• A vault with id vaultId MUST NOT be registered

However it seems it should be:

• A vault with id vaultId MUST be registered

5.1.5 accept_new_issues extrinsic

INFO_6 Unspecified accept_new_issues extrinsic

Category Missing specification

Status Present

Rating Severity: Info Impact: None Exploitability: None

2https://spec.interlay.io/spec/vault-registry.html#registeraddress

Ref: 22-03-942-REP 14 Quarkslab SAS

https://spec.interlay.io/spec/vault-registry.html#registeraddress

The method accept_new_issues is an extrinsic of the Vault Registry pallet, however it is missing
from the specification. No issue was found and an authorization model is enforced.

5.1.6 report_undercollateralized_vault extrinsic

INFO_7 Unspecified report_undercollateralized_vault extrinsic

Category Missing specification

Status Present

Rating Severity: Info Impact: None Exploitability: None

The method report_undercollateralized_vault is an extrinsic of the Vault Registry pallet,
however it is missing from the specification. No issue was found and an authorization model is
enforced.

5.1.7 set_system_collateral_ceiling privileged extrinsic

LOW_2 The SystemCollateralCeiling is not verified

Category Unverified submitted value

Status Present

Rating Severity: Low Impact: None Exploitability: None

As written above the definition of SystemCollateralCeiling, in a comment, the SystemCol-
lateralCeiling should be greater than an other value:

/// Determines the over-collateralization rate for collateral locked by Vaults,
necessary for↪→

/// wrapped tokens. This threshold should be greater than the
LiquidationCollateralThreshold.↪→

However, this condition is not verified by set_system_collateral_ceiling. This information
should also be added in the specification [5] as a precondition.

Ref: 22-03-942-REP 15 Quarkslab SAS

5.1.8 set_secure_collateral_threshold privileged extrinsic

LOW_3 The Secure Collateral Threshold is not verified

Category Unverified submitted value

Status Present

Rating Severity: Low Impact: None Exploitability: None

This method allows to change the secure collateral threshold. According to the specification [5]:

• The Secure Collateral Threshold MUST be greater than the Liquidation Threshold.

• The Secure Collateral Threshold MUST be greater than the Premium Redeem Threshold.

However, there is no verification on the submitted new threshold.

5.1.9 set_liquidation_collateral_threshold privileged extrinsic

LOW_4 The Liquidation Threshold is not verified

Category Unverified submitted value

Status Present

Rating Severity: Low Impact: None Exploitability: None

This method allows to change the liquidation collateral threshold for a currency. If a Vault’s
collateral rate drops below this, automatic liquidation is triggered. According to the specification
3, “The Liquidation Threshold MUST be greater than 100% for any collateral asset”. However
there is no verification on the submitted new threshold.

5.1.10 cancel_replace_tokens internal function

INFO_8 Preconditions checked by the callees

Category Indirect verification of precondition

Status Present

Rating Severity: Info Impact: None Exploitability: None

The following preconditions listed in the specification [5] are checked in an indirect way, using
checked_sub inside the functions it calls:
3https://spec.interlay.io/spec/vault-registry.html#register-vault

Ref: 22-03-942-REP 16 Quarkslab SAS

https://spec.interlay.io/spec/vault-registry.html#register-vault

1. If oldVault is not liquidated, its toBeRedeemedTokens MUST be greater than or equal to
tokens.

2. If oldVault is liquidated, the liquidation vault’s toBeRedeemedTokens MUST be greater than
or equal to tokens.

3. If newVault is not liquidated, its toBeIssuedTokens MUST be greater than or equal to tokens.

4. If newVault is liquidated, the liquidation vault’s toBeIssuedTokens MUST be greater than or
equal to tokens.

The use of the ensure! macro would improve the readability and prevent future updates to the
vaults’ decrease_to_be_issued function from breaking these checks

5.1.11 decrease_to_be_issued_tokens internal function

INFO_9 Preconditions checked by the callees

Category Indirect verification of precondition

Status Present

Rating Severity: Info Impact: None Exploitability: None

Similarly to the cancel_replace function (5.1.10), the use of the ensure! macro would improve
the readability of the following preconditions:

1. If the vault is not liquidated, it MUST have at least tokens toBeIssuedTokens.

2. If the vault is liquidated, it MUST have at least tokens toBeIssuedTokens.

5.1.12 decrease_to_be_redeemed_tokens internal function

INFO_10 Preconditions checked by the callees

Category Indirect verification of precondition

Status Present

Rating Severity: Info Impact: None Exploitability: None

Same as for the cancel_replace function (5.1.10), the use of the ensure! macro would improve
the readability and stability of the following preconditions:

1. If the vault is not liquidated, its toBeRedeemedTokens MUST be greater than or equal to
tokens.

2. If the vault is liquidated, the toBeRedeemedTokens of the liquidation vault MUST be greater
than or equal to tokens.

Ref: 22-03-942-REP 17 Quarkslab SAS

5.1.13 decrease_to_be_replaced_tokens internal function

LOW_5 The replaceCollateral is decreased by the caller

Category Not enforced postcondition

Status Present

Rating Severity: Low Impact: None Exploitability: None

The postcondition “The vault’s replaceCollateral MUST be decreased by (min(tokens, toBeRe-
placedTokens) / toBeReplacedTokens) * replaceCollateral.” is not respected by the function. The
computed value is returned but the function is not taking care of decreasing the replaceCollat-
eral value of the vault. Nevertheless the calling functions are then using that returned value as
an argument of the transfer_funds function which in turn takes care of decreasing the value.
No exception was found during the audit but relying on the caller to enforce the postcondition of
a function is error prone.

5.1.14 decrease_tokens internal function

INFO_11 Preconditions checked by the callees

Category Indirect verification of precondition

Status Present

Rating Severity: Info Impact: None Exploitability: None

Same as for the cancel_replace function (5.1.10), the use of the ensure! macro would improve
the readability and stability of the following preconditions:

1. If the vault is not liquidated, its toBeRedeemedTokens and issuedTokens MUST be greater
than or equal to tokens.

2. If the vault is liquidated, the toBeRedeemedTokens and issuedTokens of the liquidation
vault MUST be greater than or equal to tokens.

5.1.15 issue_tokens internal function

INFO_12 Preconditions checked by the callees

Category Indirect verification of precondition

Status Present

Rating Severity: Info Impact: None Exploitability: None

Ref: 22-03-942-REP 18 Quarkslab SAS

Same as for the cancel_replace function (5.1.10), the use of the ensure! macro would improve
the readability and stability of the following preconditions:

1. If the vault is not liquidated, its toBeIssuedTokens MUST be greater than or equal to tokens.

2. If the vault is liquidated, the toBeIssuedTokens of the liquidation vault MUST be greater
than or equal to tokens.

5.1.16 redeem_tokens internal function

LOW_6 The depositStake function is not called

Category Not enforced postcondition

Status Present

Rating Severity: Low Impact: None Exploitability: None

The postcondition “If the vault IS liquidated function depositStake MUST complete success-
fully - parameterized by vaultId, vaultId, and toBeReleased.”" is not respected. The function
depositStake is never called in that case as shown on the following unrolled snippet:

let mut vault = Self::get_rich_vault_from_id(&vault_id)?;

// need to read before we decrease it
let to_be_redeemed_tokens = vault.to_be_redeemed_tokens();

vault.to_be_redeemed_tokens().checked_sub(&tokens)?.amount();
vault.update(|v| {

v.to_be_redeemed_tokens = new_value;
});

Pallet::<T>::get_rich_liquidation_vault(vault.data.id.currencies)
.decrease_issued(tokens);

let to_be_released = Self::calculate_collateral(&vault.liquidated_collateral(),
tokens,
&to_be_redeemed_tokens

)?;

let new = Self::get_total_user_vault_collateral(vault_id.currencies)?
.checked_sub(to_be_released)?;

TotalUserVaultCollateral::<T>::insert(vault_id.currencies, new.amount());

vault.update(|v| {
v.liquidated_collateral = v

.liquidated_collateral

.checked_sub(&to_be_released.amount())

.ok_or(Error::<T>::ArithmeticUnderflow)?;

Ref: 22-03-942-REP 19 Quarkslab SAS

});

// release the collateral back to the free balance of the vault
ensure!(

<orml_tokens::Pallet<T>>::unreserve(to_be_released.currency_id,
vault_id.account_id,
to_be_released.amount
).is_zero(),

orml_tokens::Error::<T>::BalanceTooLow
);

No attack scenario was derived from this, hence the low rating of this bug.

5.1.17 redeem_tokens_liquidation internal function

INFO_13 Mismatch of amount of collateral between redeem_tokens_liquidation and spec

Category Specification issue

Status Present

Rating Severity: Info Impact: None Exploitability: None

The postcondition “The redeemer MUST have received an amount of collateral equal
to (tokens × liquidationV ault.backingCollateral)/liquidationV ault.issuedTokens”
seems to be incorrect. The implementation is instead making a transfer of
(tokens × liquidationV ault.backingCollateral)/(liquidationV ault.issuedTokens +
liquidationV ault.to_be_issued_tokens), which is the amount documented in other place
of the specification, in the “Vault Liquidation” part, in the section “Liquidations (Safety Failures)”4
for example.

// transfer liquidated collateral to redeemer
let to_transfer = Self::calculate_collateral(

&source_liquidation_vault.current_balance(currency_id)?,
amount_wrapped,
&liquidation_vault.backed_tokens()?,

)?;

The function calculate_collateral takes the collateral, the numerator and the denominator
for the calculation. We noted that the denominator is liquidated_vault.backed_tokens() and
this method returns self.issued_tokens().checked_add(&self.to_be_issued_tokens()).

5.1.18 try_increase_to_be_issued_tokens internal function

The try_increase_to_be_issued_tokens method does not verify the precondition mentioned
in the specification [5], “The BTC Parachain status in the Security component MUST be set to
4https://spec.interlay.io/security_performance/liquidations.html#liquidations-safety-failures

Ref: 22-03-942-REP 20 Quarkslab SAS

https://spec.interlay.io/security_performance/liquidations.html#liquidations-safety-failures

RUNNING:0.”, see Section 5.1.3 for more information.

LOW_7 The Vault status is not verified properly

Category Wrong precondition verification

Status Present

Rating Severity: Low Impact: None Exploitability: None

One of the precondition mentioned by the specification [5] tells that:

• The vault status MUST be Active(true)

However the vault is retrieved using get_active_rich_vault_from_id in vault-
registry/src/lib.rs:974 which retrieves an active Vault without further verification on the
internal boolean value.

974 let mut vault = Self::get_active_rich_vault_from_id(&vault_id)?;

The following method is defined as follow :

1802 /// Like get_rich_vault_from_id, but only returns active vaults
1803 fn get_active_rich_vault_from_id(vault_id: &DefaultVaultId<T>) ->

Result<RichVault<T>, DispatchError> {↪→

1804 Ok(Self::get_active_vault_from_id(vault_id)?.into())
1805 }

In turn get_active_vault_from_id evaluates to:

767 /// Like get_vault_from_id, but additionally checks that the vault is active
768 pub fn get_active_vault_from_id(vault_id: &DefaultVaultId<T>) ->

Result<DefaultVault<T>, DispatchError> {↪→

769 let vault = Self::get_vault_from_id(vault_id)?;
770 ensure!(
771 matches!(vault.status, VaultStatus::Active(_)),
772 Error::<T>::VaultNotFound
773);
774 Ok(vault)
775 }

The method verifies that the vault is Active(_) but not if it is Active(true). The gathered vault
is active but may not accept new issue requests.

An additional check should be added to ensure the retrieved vault is accepting new issues, for
example using an ensure! block like so:

Ref: 22-03-942-REP 21 Quarkslab SAS

ensure!(
vault.status == VaultStatus::Active(true),
Error::<T>::VaultNotAcceptingNewIssues

);

5.1.19 try_increase_to_be_replaced_tokens internal function

INFO_14 The name of the function does not match the specification

Category Specification minor issue

Status Present

Rating Severity: Info Impact: None Exploitability: None

It seems this method is documented as increaseToBeReplacedToken in the specification5 instead
of tryIncreaseToBeReplacedTokens.

The try_increase_to_be_replaced_tokens method does not verify the preconditionmentioned
in the specification [5], “The BTC Parachain status in the Security component MUST be set to
RUNNING:0.”, see Section 5.1.3 for more information.

LOW_8 The replaceCollateral is not increased

Category Not enforced postcondition

Status Present

Rating Severity: Low Impact: None Exploitability: None

The try_increase_to_be_replaced_tokens method does not fulfill the postcondition men-
tioned in the specification:

• The vault’s replaceCollateral MUST be increased by collateral.

The new_collateral is computed and used as a return value, but the vault’s replaceCollateral
in not increased by the function. It seems the caller is not using the value either to increase the
vault’s replaceCollateral.

5.2 Democracy

The democracy pallet implements proposals and vote mechanisms to perform a privileged action
on the blockchain. Voting power is provided by the escrow pallet that is investigated in Section 5.3.

5https://spec.interlay.io/spec/vault-registry.html#increasetobereplacedtokens

Ref: 22-03-942-REP 22 Quarkslab SAS

https://spec.interlay.io/spec/vault-registry.html#increasetobereplacedtokens

To get a better understanding of the working of the democracy in the Polkadot ecosystem, the
article “Participate in Democracy” [10] provides good summary.

Technically, this pallet is mostly a fork of the FRAME democracy pallet made on November
17th 20216. Interlay first removed code from it, to see what was exactly removed, when in
interbtc/crates/democracy/src, type:

$ git diff 2c55e2cce 9fed496a -- lib.rs

The file is approximately 1150 lines long and the modifications of interlay since the fork are 100
lines, this estimation was made with the following command:

$ git blame lib.rs | grep -v 2c55e2cce | wc -l

However since November 17th 2021, the official democracy FRAME implementation changed a
little bit: many raw arithmetic operations were replaced by their corresponding safe saturating_-
{add|mul}. When in substrate/frame/democracy/src, to see the changes, type:

$ git diff c087bbedbde16711450c186518314903a2949cb3 master -- lib.rs

5.2.1 Differences with upstream substrate democracy pallet

Here is an overview of the changes on the upstream substrate repository7 since the fork that
could be cherrypicked. The crossed-out elements are those not concerned because the extrinsics
or functions were removed from the pallet.

Events

FRAME developers added two new events: voted and seconded.

Extrinsics

• second emits the new seconded event.
• fast_track uses saturating_add instead of + in the end parameter of the inject_-

referendum call.
• veto_external uses saturating_add to compute the until variable.
• reap_preimage uses saturating_add to check for the ensure! that throws a TooEarly

error.

Internal functions

• backing_for uses saturating_mul to compute a deposit.

6https://github.com/interlay/interbtc/commit/2c55e2cce9e02c8bbf31217f4b777f03fdcb530a
7https://github.com/paritytech/substrate

Ref: 22-03-942-REP 23 Quarkslab SAS

https://github.com/interlay/interbtc/commit/2c55e2cce9e02c8bbf31217f4b777f03fdcb530a
https://github.com/paritytech/substrate

• internal_start_referendum uses saturating_add for the end parameter of inject_-
referendum.

• try_vote deposits the new voted event.
• try_remove_vote uses saturating_mul to compute unlock_at.
• try_delegate adds new logic, see the diff for more information
• try_undelegate uses saturating_add to compute unlock_block used in

prior.accumulate call.
• launch_external uses saturating_add to compute the end parameter to

inject_referendum.
• launch_public uses defensive_unwrap_or_else instead of unwrap_or_else and uses

saturating_add to compute the end parameter to inject_referendum.
• bake_referendum uses saturating_add to compute the when variable.

5.2.2 General remarks

Here are a few general remarks on the democracy pallet, more information can be found in the
following subsection about the points addressed.

Note

Proposals are stored as a tuple of (index, hash, who). Deposits are tracked also
as a tuple of (who, value). It would be recommended to use specific types to
encapsulate these tuples to ease reading the code and leverage Rust’s type system.

Note

The use of the transactional macro would allow to revert modifications to the
storage in case of failure instead of relying only on the developers to check every
preconditions prior to making any change to the storage.

Note

It was noted that this crate has a different behavior than the others regarding
logging. Several internal functions are printing debug information, even in a
production build, using sp_runtime::print.

5.2.3 second extrinsic

INFO_15 The second extrinsic is not specified

Category Lack of specification

Status Present

Rating Severity: Info Impact: None Exploitability: None

Ref: 22-03-942-REP 24 Quarkslab SAS

In the absence of specifications, the role of the seconds_upper_bound parameter of the second
extrinsic is unclear.

The documentation states that it is only used to compute the weight for the extrinsic.

/// - `seconds_upper_bound`: an upper bound on the current number of seconds on
this proposal. Extrinsic is↪→

/// weighted according to this value with no refund

The auditors suggest to have the weight computed under a worst case scenario and to remove
this parameter from the extrinsic.

5.2.4 reap_preimage extrinsic

INFO_16 Call to an unsupported function Currency::repatriate_reserved

Category Useless computation

Status Present

Rating Severity: Info Impact: None Exploitability: None

INFO_17 Panic in debug because of debug_assert

Category Runtime panic

Status Present

Rating Severity: Info Impact: None Exploitability: None

The democracy pallet is configured to use the escrow pallet as its currency. This mean that the
following call inside reap_image will always return an error:

686 let res = T::Currency::repatriate_reserved(&provider, &who, deposit, BalanceStatus:: ⌋

Free);↪→

687 debug_assert!(res.is_ok());

As the implementation of escrow::repatriate_reserved is the following:

693 // NOT SUPPORTED
694 fn repatriate_reserved(
695 _slashed: &T::AccountId,
696 _beneficiary: &T::AccountId,
697 _value: Self::Balance,
698 _status: BalanceStatus,

Ref: 22-03-942-REP 25 Quarkslab SAS

699) -> sp_std::result::Result<Self::Balance, DispatchError> {
700 Err(Error::<T>::InvalidAction.into())
701 }

Knowing that, it seems odd to use debug_assert, which isn’t recommended as it panics at
runtime, even if these are removed from default release builds.

5.2.5 maturing_referenda_at_inner internal function

INFO_18 Function maturing_referenda_at_inner could use available utility functions

Category Refactor

Status Present

Rating Severity: Info Impact: None Exploitability: None

The role of the function is to get ongoing referendum which will end at a given time. This function
could be refactored to use the referendum_status and ensure_ongoing functions, as well as
simplifying the logic and types used.

fn maturing_referenda_at_inner(
n: T::BlockNumber,
range: core::ops::Range<PropIndex>,

) -> Vec<(ReferendumIndex, ReferendumStatus<T::BlockNumber, T::Hash, BalanceOf<T>>) ⌋

> {↪→

range
.into_iter()
.map(|i| (i, Self::referendum_info(i)))
.filter_map(|(i, maybe_info)| match maybe_info {

Some(ReferendumInfo::Ongoing(status)) => Some((i, status)),
_ => None,

})
.filter(|(_, status)| status.end == n)
.collect()

}

The auditors believe that encapsulating the return type in its own type will improve the overall
readability. Using a slice complicates the code and triggers a clippy warning.

very complex type used. Consider factoring parts into `type` definitions
`#[deny(clippy::type_complexity)]` implied by `#[deny(warnings)]`
for further information visit

https://rust-lang.github.io/rust-clippy/master/index.html#type_complexity↪→

Ref: 22-03-942-REP 26 Quarkslab SAS

5.2.6 check_pre_image_is_missing, pre_image_data_len,
decode_compact_u32_at and on_initialize internal function

INFO_19 Internal function use a different logging mechanism

Category Debug logging

Status Present

Rating Severity: Info Impact: None Exploitability: None

The internal functions check_pre_image_is_missing, pre_image_data_len, decode_com-
pact_u32_at and on_initialize are using sp_runtime::print which is used to print debug
information, this should be removed from a production build to use the same logging mechanisms
as the other crates.

5.3 Escrow

The escrow pallet allows locking governance tokens, for example KINT for Kintsugi or INTR for
interBTC, in exchange for voting power, implemented by the use of the reward pallet. The voting
power, or stake in the term of the reward pallet, decreases linearly following a curve. The minimal
duration, or minimal granularity on the x-axis of the curve is called the span.

This pallet is of moderate size and most of its logic complexity resides in the checkpoint internal
function. All the crate’s internal functions are only used locally and are not called by other pallets.
Most of the findings are small issues regarding the specification and unsafe arithmetic.

Note

It was noted that the default_weights, of the extrinsics increase_unlock_-
height and withdraw were significantly higher, by an order of 20 considering
RocksDbWeight, to those of create_lock and increase_amount. Those bench-
marks were apparently made considering the most complex curve scenario for the
two extrinsics.

5.3.1 unsafe arithmetic

LOW_9 Usage of unsafe multiplication in the checkpoint and supply_at function

Category Unsafe arithmetic

Status Present

Rating Severity: Low Impact: None Exploitability: None

Ref: 22-03-942-REP 27 Quarkslab SAS

The checkpoint (on line 4048) and supply_at (on line 5469) functions perform raw multiplica-
tions which could be replaced by an overflow-safe operation, saturating_mul for example.

The arithmetic rounding of the height by the span “(height/span) ∗ span” performed in the
round_height internal function should be safe as it cannot overflow.

5.3.2 increase_unlock_height extrinsic

INFO_20 Wrong pre-condition in increase_unlock_height

Category Error in pre-condition

Status Present

Rating Severity: Info Impact: None Exploitability: None

The specification for this extrinsic10 might be wrong. It seems that the pre-condition “The amount
MUST be non-zero.” is a typo from a copy-paste from the previous extrinsic. Also, the name
of the implementation increase_unlock_height is not the same as the one in the specification
extend_unlock_height.

5.3.3 withdraw extrinsic

LOW_10 Pre-condition in withdraw is not verified

Category Unverified pre-condition

Status Present

Rating Severity: Low Impact: None Exploitability: None

For this extrinsic, it seems that the specification pre-condition: “The account’s old_locked.amount
MUST be non-zero.” condition is not checked. It does not seem to be a security issue.

8https://github.com/interlay/interbtc/blob/1.7.1/crates/escrow/src/lib.rs#L404
9https://github.com/interlay/interbtc/blob/1.7.1/crates/escrow/src/lib.rs#L546

10https://spec.interlay.io/spec/escrow.html#extend-unlock-height

Ref: 22-03-942-REP 28 Quarkslab SAS

https://github.com/interlay/interbtc/blob/1.7.1/crates/escrow/src/lib.rs#L404
https://github.com/interlay/interbtc/blob/1.7.1/crates/escrow/src/lib.rs#L546
https://spec.interlay.io/spec/escrow.html#extend-unlock-height

5.3.4 set_account_limit extrinsic

INFO_21 TODO annotations in get_free_balance for account restrictions

Category TODO annotation

Status Present

Rating Severity: Info Impact: None Exploitability: None

This extrinsic has low security risk considering that only the root origin is authorized but it is
worth noticing that it is a direct access to insert into the Limits storage that limits how much
some accounts can mint. This storage is used in the get_free_balance internal function which
should be modified in the future to remove the specific restrictions enforced on these limited
account.

fn get_free_balance(who: &T::AccountId) -> BalanceOf<T> {
let free_balance = T::Currency::free_balance(who);
// prevent blocked accounts from minting
if <Blocks<T>>::get(who) {

Zero::zero()
}
// limit total deposit of restricted accounts
else if let Some((start, end)) = <Limits<T>>::get(who) {

// TODO: remove these restrictions in the future when the token distribution
is complete↪→

let current_height = Self::current_height();
let point = Point::new::<T::BlockNumberToBalance>(free_balance, start, end, end ⌋

.saturating_sub(start));↪→

point.reverse_balance_at::<T::BlockNumberToBalance>(end, current_height)
} else {

free_balance
}

}

5.3.5 balance_at internal function

LOW_11 Pre-condition in balance_at is not verified

Category Unverified pre-condition

Status Present

Rating Severity: Low Impact: None Exploitability: None

The specified pre-condition “The height MUST be >= point.height.” is not verified in the code of
the internal function.

Ref: 22-03-942-REP 29 Quarkslab SAS

5.4 Annuity

The annuity pallet is dedicated to distributing rewards. It is composed of only one extrinsic and it
is mostly used for its on_initialize hook.

This pallet is instantiated two times in the runtimes for the rewards related to escrow and the
vaults.

type EscrowAnnuityInstance = annuity::Instance1;
... snip
type VaultAnnuityInstance = annuity::Instance2;

This pallet is, as stated, composed of a call on the on_initialize hook which is called at each
block creation. This hook will call distribute_block_reward from the type implementing the
BlockRewardProvider trait provided by the configuration. These types are slighty different
between the escrow and vault instances.

INFO_22 Missing benchmark on withdraw weight

Category TODO annotation and missing benchmark

Status Present

Rating Severity: Info Impact: None Exploitability: None

This pallet is small in size and no benchmarks or extensive tests are performed on it. The only
extrinsic, withdraw’s weight is arbitrarily set to 100_000_000 with a TODO comment on top of it. It
would be recommended to implement the corresponding benchmark to ensure the function’s cost
is adapted to the amount of accesses it makes to the storage. However the withdraw extrinsic is
pretty simple, it only ensures that the origin is signed, withdraw the reward using the withdraw_-
reward of the type implementing of the BlockRewardProvider and transferring the asset to the
signed origin.

Warning

The annuity pallet is missing from the specification.

5.5 Supply

The supply pallet handles the generation of governance tokens, for example KINT on Kintsugi
and INTR on InterBTC. These tokens, via a locking mechanism in the escrow pallet, give voting
power for the governance and are separate from the interBTC tokens emitted when sending BTC
to a vault.

Some tokens are generated every year (more precisely every 2_628_000 blocks) as part of the
inflation mechanism. The intended evolution stated in the documentation is that 10 million
governance tokens will be generated on day one and distributed over the course of the next four

Ref: 22-03-942-REP 30 Quarkslab SAS

years as rewards when generating blocks, being active as a Vault, etc. Next, “2% annual inflation
afterward, indefinitely.” means that at the start of year five 200_000 tokens will be generated and
then distributed during year five, then 204_000 to distribute during year six, etc. There should
be no other way to generate those tokens than the annual inflation. However, democracy is able
to change that inflation rate, using this pallet’s only extrinsic, through a proposal and voted by
the people owning governance tokens.

More technically, on each block creation, in the on_initialize hook, some tests are performed
against the total supply and the inflation rate to choose to call the Currency::deposit_creating
and deposit the generated supply into the pallet’s account. Then OnInflation::on_inflation
is called from the configuration with the pallet’s account as the from argument to transfer the
generated supply to different accounts. In the current configuration, some are distributed to the
vault and escrow reward pallets according to INFLATION_REWARDS constants and the rest is given
to the treasury.

The only extrinsic available is set_start_height_and_inflation which is a direct root access
to put the StartHeight and Inflation storage.

Note

This pallet’s implementation is really similar to annuity, that we review in Sec-
tion 5.4. It also lacks benchmarks for weights or complexe tests. But the only
extrinsic is a root privileged one which makes it de facto more secure.

Warning

The supply pallet is missing from the specification.

5.5.1 Inflation mechanism will panic in the future

MEDIUM_1 Hook on_initialize from supply pallet will panic in the future

Category Runtime panic

Status Present

Rating Severity: Medium Impact: None Exploitability: None

During the audit, it was noted that the internal function begin_block, used in the on_initialize
hook, performs a call to the Rust unwrap function, which is designed to panic under certain
conditions. After some investigations and exchanges with the team, it was assessed that it has
almost no security impact as the rate at which governance tokens are generated is fixed (10
million over the first four years then, starting year five, 2% every year, as explained in the previous
paragraphs) and it should cause a panic in more than 1500 years.

The panic can be triggered by modifying the should_inflate_supply_from_start_height test
as follows:

Ref: 22-03-942-REP 31 Quarkslab SAS

fn should_inflate_supply_from_start_height() {
run_test(|| {

Supply::begin_block(0);
let mut start_height = 100;
assert_eq!(Supply::start_height(), Some(start_height));
assert_eq!(Supply::last_emission(), 0);

for _emission in 1..1576 {
Supply::begin_block(start_height);
start_height += YEARS;

}
})

}

Which leads to the panic message:

"tests::should_inflate_supply_from_start_height" panicked at "called
'Option::unwrap()' on a 'None' value", crates/supply/src/lib.rs:163:99↪→

5.5.2 Configuration

No problem was found in the configuration. The distribution percentages are the ones defined
in the token economy whitepaper [11] and the on_inflation function is using a chain of
saturating_sub calls to ensure no extra tokens are distributed due to rounding errors with the
percentages.

5.6 Runtime Configuration

5.6.1 Weight general settings at 0 in interBTC runtime configuration

INFO_23 Base weight and transaction byte fee set at 0 in interbtc

Category Weight miscomputation and TODO annotations

Status Present

Rating Severity: Info Impact: None Exploitability: None

The Interlay runtime configuration contains some comments marked as TODO. It concerns the
runtime settings weights.base_extrinsic and TransactionByteFee, they are both set to 0. It
means that in the fee calculation process [12], only the call weight is added, without the base
and length based weight.

At the time of the audit, these settings are still applied on the master branch of interBTC, and
running in production. Quarkslab contacted Interlay and they explained that it was known and
should be resolved soon.

Ref: 22-03-942-REP 32 Quarkslab SAS

157 weights.base_extrinsic = 0; // TODO: this is 0 so that we can do runtime upgrade
without fees. Restore value afterwards!↪→

328 // TODO: this is 0 so that we can do runtime upgrade without fees. Restore value
afterwards!↪→

329 pub const TransactionByteFee: Balance = 0;

510 // TODO: update this once we have the crowdloan data in
511 // Require 1 vINTR for now
512 pub MinimumDeposit: Balance = 1 * UNITS;

5.6.2 Pallet sudo in interBTC runtime configuration

INFO_24 Pallet sudo in the interBTC runtime configuration

Category Privileged pallet

Status Present

Rating Severity: Info Impact: None Exploitability: None

The sudo pallet is still present in interBTC runtime configuration11. It has been removed from the
Kintsugi runtime but not from the interBTC one. It would be preferable to remove this pallet as
it allows a privileged access for an arbitrary account to perform an extrinsic call with the root
origin. Such call should be made via democracy instead of sudo, for example.

5.7 Weights

5.7.1 Incorrect weights estimation in issue::execute_issue,
redeem::execute_redeem, refund::execute_refund,
relay::report_vault_theft and replace::execute_replace

LOW_12 Incorrect weights estimation in various extrinsics with length variable arguments

Category Incorrect weights

Status Present

Rating Severity: Low Impact: None Exploitability: None

While investigating how the internal functions of vault_registry were used, it was noticed that
11https://github.com/interlay/interbtc/blob/1.7.1/parachain/runtime/interlay/src/lib.rs#L1232

Ref: 22-03-942-REP 33 Quarkslab SAS

https://github.com/interlay/interbtc/blob/1.7.1/parachain/runtime/interlay/src/lib.rs#L1232

several extrinsics from different pallets were configured without having a proper weight. It is a
good practice to have the computed weight taking into account the worst case scenario when it
comes to variable-length arrays.

For example, if we take a closer look to the issue::execute_issue extrinsic, both merkle_proof
and raw_tx parameters are not used in the weight computation.

#[pallet::weight(<T as Config>::WeightInfo::execute_issue())]
#[transactional]
pub fn execute_issue(

origin: OriginFor<T>,
issue_id: H256,
merkle_proof: Vec<u8>,
raw_tx: Vec<u8>,

) -> DispatchResultWithPostInfo {
let executor = ensure_signed(origin)?;
Self::_execute_issue(executor, issue_id, merkle_proof, raw_tx)?;
Ok(().into())

}

The same problem exists in redeem::execute_redeem, refund::execute_refund, re-
lay::report_vault_theft and replace::execute_replace.

5.8 Bitcoin

In accordance with Interlay, the auditors spent a few days to verify that functions used by the
bitcoin crate were panic-free. It is to be noted that these functions were previously audited and
not in the scope of this audit. Even so, the auditors were interested to take a quick look at them
because they were flagged with several warnings by Clippy.

Nothing critical was found but refactoring parts of the code should be done.

5.8.1 Integer overflow and panic make_parsable_int

MEDIUM_2 Integer overflow and panic in make_parsable_int macro

Category Unsafe arithmetic

Status Present

Rating Severity: Medium Impact: None Exploitability: None

After investigating the incorrect weights in Section 5.7.1, it was noticed that these extrinsics are
using the functions btc_relay::parse_transaction and btc_relay::parse_merkfle_proof,
with inputs controlled by an attacker. The implementations of these functions can be found in
the bitcoin crate files12.
12https://github.com/interlay/interbtc/blob/1.7.1/crates/bitcoin/src/merkle.rs#L222

Ref: 22-03-942-REP 34 Quarkslab SAS

https://github.com/interlay/interbtc/blob/1.7.1/crates/bitcoin/src/merkle.rs#L222

In the macro that will implement Parsable for all Rust integer, make_parsable_int, see Listing 1,
there is a potential overflow that leads to a panic. It can’t be triggered in practice since it requires
to overflow an usize, which is a huge array input for an extrinsic, but the check for the integer
overflow needs to be rewritten.

/// Macro to generate `Parsable` implementation of uint types
macro_rules! make_parsable_int {

($type :ty, $bytes :expr) => {
impl Parsable for $type {

fn parse(raw_bytes: &[u8], position: usize) -> Result<($type , usize), Error> {
if position + $bytes > raw_bytes.len() {

return Err(Error::EndOfFile);
}
let mut value_bytes: [u8; $bytes] = Default::default();
value_bytes.copy_from_slice(&raw_bytes[position..position + $bytes]);
Ok((<$type >::from_le_bytes(value_bytes), $bytes))

}
}

};
}

Listing 1: make_parsable_int macro

Here is a test to trigger the overflow that will fail in release mode and the output result.

#[test]
fn test_overflow() {

let raw_bytes = vec![0u8; 100];
let position = usize::MAX - 1;

let (result, bytes_consumed) = u64::parse(&raw_bytes, position).unwrap();
}

---- parser::tests::test_overflow stdout ----
thread 'parser::tests::test_overflow' panicked at 'slice index starts at

18446744073709551614 but ends at 6', crates/bitcoin/src/parser.rs:55:1↪→

note: run with `RUST_BACKTRACE=1` environment variable to display a backtrace

5.8.2 Integer overflow in U256::parse

MEDIUM_3 Integer overflow and panic in U256::parse implementation

Category Unsafe arithmetic

Status Present

Rating Severity: Medium Impact: None Exploitability: None

Ref: 22-03-942-REP 35 Quarkslab SAS

The same problem as the one explained in Section 5.8.1 is present in U256::parse.

impl Parsable for U256 {
fn parse(raw_bytes: &[u8], position: usize) -> Result<(U256, usize), Error> {

if position + 4 > raw_bytes.len() {
return Err(Error::EndOfFile);

}

let mut bytes: [u8; 4] = Default::default();
bytes.copy_from_slice(&raw_bytes[position..position + 4]);

let bits = u32::from_le_bytes(bytes);
let compact = U256::set_compact(bits).ok_or(Error::InvalidCompact)?;
Ok((compact, 4))

}
}

The following test fails in release mode:

#[test]
fn test_overflow_U256() {

let raw_bytes = vec![0u8; 100];
let position = usize::MAX - 3;

let (result, bytes_consumed) = U256::parse(&raw_bytes, position).unwrap();
}

---- parser::tests::test_overflow_U256 stdout ----
thread 'parser::tests::test_overflow_U256' panicked at 'slice index starts at

18446744073709551612 but ends at 0', crates/bitcoin/src/parser.rs:148:32↪→

5.8.3 Logical error in bitcoin::BytesParser::parse

LOW_13 Overflow check made after parsing in bitcoin::BytesParser::parse

Category Unsafe arithmetic

Status Present

Rating Severity: Low Impact: None Exploitability: None

The overflow check in bitcoin::BytesParser::parse is made after parsing, see Listing 2. It
does not prevent the potential panic in parse implementation if self.position is close to
usize::MAX, which may not possible to reach with a real world example.

Ref: 22-03-942-REP 36 Quarkslab SAS

pub(crate) fn parse<T: Parsable>(&mut self) -> Result<T, Error> {
let (result, bytes_consumed) = T::parse(&self.raw_bytes, self.position)?;
self.position = self

.position

.checked_add(bytes_consumed)

.ok_or(Error::ArithmeticOverflow)?;
Ok(result)

}

Listing 2: bitcoin::BytesParser::parse

5.8.4 Useless copies in parse functions

INFO_25 Useless copies in parse functions

Category Useless copies

Status Present

Rating Severity: Info Impact: None Exploitability: None

It is to be noted that the parsing creates a lot of useless copies. Slices are converted to a Vec when
a ByteParser is created.

let mut parser = BytesParser::new(input_script);
... snip
impl BytesParser {

/// Creates a new `BytesParser` to parse the given raw bytes
pub(crate) fn new(bytes: &[u8]) -> BytesParser {

BytesParser {
raw_bytes: Vec::from(bytes),
position: 0,

}
}

}

5.8.5 Integer overflow in parse_transaction_input

INFO_26 Integer overflow in parse_transaction_input

Category Unsafe arithmetic

Status Present

Rating Severity: Info Impact: None Exploitability: None

Ref: 22-03-942-REP 37 Quarkslab SAS

An integer overflow is present in the parse_transaction_input function. It does not really
matter since the height_size needed to overflow will cause the next call to read to fail.

script_size = script_size.checked_sub(height_size + 1).ok_or(Error::EndOfFile)?;

5.8.6 Shift left overflow in MerkleTree::compute_width

INFO_27 Shift left overflow in MerkleTree:computer_width

Category Unsafe arithmetic

Status Present

Rating Severity: Info Impact: None Exploitability: None

The preconditions for the shift left to overflow cannot currently be met, but it should be best to
verify.

impl MerkleTree {
pub fn compute_width(transactions_count: u32, height: u32) -> u32 {

(transactions_count + (1 << height) - 1) >> height
}

5.8.7 Slice length assumptions issues in MerkleProof::traverse_and_build

INFO_28 Assumptions on the length of slices in MerkleProof::traverse_and_build

Category Length assumptions

Status Present

Rating Severity: Info Impact: None Exploitability: None

This function makes heavy assumptions on the size of tx_ids and matches. A check should be
added to verify that the sizes are correct and identical before proceeding.

pub(crate) fn traverse_and_build(
&mut self,
height: u32,
pos: u32,
tx_ids: &[H256Le],
matches: &[bool],

) -> Result<(), Error> {

Ref: 22-03-942-REP 38 Quarkslab SAS

let mut parent_of_match = false;
let mut p = pos << height;
while p < (pos + 1) << height && p < self.transactions_count {

parent_of_match |= matches[p as usize];
p += 1;

}

self.flag_bits.push(parent_of_match);

if height == 0 || !parent_of_match {
let hash = self.compute_merkle_root(pos, height, tx_ids)?;
self.hashes.push(hash);

} else {
let next_height = height.checked_sub(1).ok_or(Error::ArithmeticUnderflow)?;
let left_index = pos.checked_mul(2).ok_or(Error::ArithmeticOverflow)?;
let right_index = left_index.checked_add(1).ok_or(Error::ArithmeticOverflow)?;

self.traverse_and_build(next_height, left_index, tx_ids, matches)?;
if right_index < self.compute_partial_tree_width(next_height) {

self.traverse_and_build(next_height, right_index, tx_ids, matches)?;
}

}

Ok(())
}

5.8.8 types::H256Le various panics

MEDIUM_4 Potential panic with missing checks and copy_from_slice

Category Runtime panic

Status Present

Rating Severity: Medium Impact: None Exploitability: None

The input slice used in from_bytes_le and from_bytes_be functions is not checked and the call
to copy_from_slice can panic13.

impl H256Le {
/// Creates a H256Le from little endian bytes
pub fn from_bytes_le(bytes: &[u8]) -> H256Le {

let mut content: [u8; 32] = Default::default();
content.copy_from_slice(&bytes);
H256Le { content }

}

13https://doc.rust-lang.org/std/primitive.slice.html#panics-29

Ref: 22-03-942-REP 39 Quarkslab SAS

https://doc.rust-lang.org/std/primitive.slice.html#panics-29

/// Creates a H256Le from big endian bytes
pub fn from_bytes_be(bytes: &[u8]) -> H256Le {

let bytes_le = reverse_endianness(bytes);
let mut content: [u8; 32] = Default::default();
content.copy_from_slice(&bytes_le);
H256Le { content }

}

LOW_14 Potential panic with unwrap in from_hex_le and from_hex_be

Category Runtime panic

Status Present

Rating Severity: Low Impact: None Exploitability: None

The call to hex::decode in from_hex_le and from_hex_be functions is not checked properly, the
unwrap can fail and cause a panic. Nevertheless, please note that these functions are only enabled
in std environment, see the #[cfg(feature = "std")] annotation. Thus, these functions will
only be available if the +runtime is built and run as a native binary and not a WASM binary.

#[cfg(feature = "std")]
pub fn from_hex_le(hex: &str) -> H256Le {

H256Le::from_bytes_le(&hex::decode(hex).unwrap())
}

#[cfg(feature = "std")]
pub fn from_hex_be(hex: &str) -> H256Le {

H256Le::from_bytes_be(&hex::decode(hex).unwrap())
}

Ref: 22-03-942-REP 40 Quarkslab SAS

6 Conclusion

First of all, the quality of the interBTC code base managed by Interlay should be highlighted. The
audit was facilitated by the organization of the code and the global help provided by Interlay. On
top of that, the specification and the effort made to write preconditions and postconditions for
each specified function were really useful for static code review. Quarkslab encourages Interlay
to keep the quality consistency that was noted on most of the pallets for the whole project and to
continue having their code audited by external companies.

The audit unveiled mostly informative and low recommendations, that should not be exploitable
in practice but might be interesting for the Interlay team, to keep a consistent quality across the
project and prevent future issues. A lot of the recommendations are informative, related to the
preconditions and the postconditions of the specification, the lacking of specification for some
part of the code, and “TODO” annotations in the code. Some of these recommendations were
made possible because of the extensive specification and documentation of the project which must
be hard to maintain. Nevertheless, some issues were found, related to runtime panic, incorrect
weight computation or race conditions.

Ref: 22-03-942-REP 41 Quarkslab SAS

Glossary

clippy A collection of lints to catch common mistakes and improve your Rust code. See https:
//github.com/rust-lang/rust-clippy.

collator A node that maintains a parachain by collecting parachain transactions and producing
state transition proofs for the validators.

extrinsic State changes that come from the outside world, i.e. they are not part of the system
itself. Extrinsics can take two forms, "inherents" and "transactions".

interBTC is Interlay’s flagship product - Bitcoin on any blockchain. A 1:1 Bitcoin-backed asset,
fully collateralized, interoperable, and censorship-resistant. interBTC will be hosted as a
Polkadot parachain and connected to Cosmos, Ethereum and other major DeFi networks.

pallet Substrate modules exposing various extrinsics, events, errors and storage items that will
be compiled in the runtime and usable by users or other components. It is implemented as
Rust crates.

validator A node that secures the Relay Chain by staking DOT, validating proofs from collators
on parachains and voting on consensus along with other validators.

Ref: 22-03-942-REP 42 Quarkslab SAS

https://github.com/rust-lang/rust-clippy
https://github.com/rust-lang/rust-clippy

Bibliography

[1] Informal Systems. Security Audits. 2021. url: https://github.com/informalsystems/
audits (visited on Mar. 10, 2022) (cit. on p. 2).

[2] Interlay & Kintsugi Documentation. Interlay. url: https://docs.interlay.io/ (visited
on Mar. 14, 2022) (cit. on p. 8).

[3] Interlay FAQ. Interlay. url: https://interlay.notion.site/interlay/Interlay-FAQ-
5e3019b1cfd94f6693dc186e9640e607 (visited on Mar. 14, 2022) (cit. on p. 8).

[4] Alexei Zamyatin. “Kintsugi - Radically open Bitcoin for Kusama”. In: Kusama Demo Day Sep
2021. Sept. 1, 2021. url: https://www.youtube.com/watch?v=ErZBxmZY-_Y (visited
on Mar. 14, 2022) (cit. on p. 8).

[5] interBTC Technical Specification. v5.6.1. Interlay. url: https://spec.interlay.io/
(visited on Mar. 14, 2022) (cit. on pp. 8, 9, 13, 15, 16, 20–22).

[6] Parity. polkadot/api. url: https://github.com/polkadot-js/api (visited on Mar. 14,
2022) (cit. on p. 9).

[7] Polkascan. Python Substrate Interface. url: https : / / github . com / polkascan / py -
substrate-interface (visited on Mar. 14, 2022) (cit. on p. 9).

[8] Rust-analyzer. Rust-analyzer. url: https : / / github . com / rust - analyzer / rust -
analyzer (visited on Mar. 14, 2022) (cit. on p. 9).

[9] rust-lang. rust-clippy. url: https://github.com/rust-lang/rust-clippy (visited on
Mar. 14, 2022) (cit. on p. 10).

[10] Polkadot. Participate in Democracy. url: https://wiki.polkadot.network/docs/
maintain-guides-democracy (visited on Mar. 17, 2022) (cit. on p. 23).

[11] Kintsugi Labs. INT Token Economy. Dec. 7, 2021. url: hhttps://github.com/interlay/
whitepapers/blob/master/Interlay_Token_Economy.pdf (visited on Mar. 14, 2022)
(cit. on p. 32).

[12] Polkadot. Fee Calculation. url: https : / / wiki . polkadot . network / docs / learn -
transaction-fees#fee-calculation (visited on Mar. 21, 2022) (cit. on p. 32).

Ref: 22-03-942-REP 43 Quarkslab SAS

https://github.com/informalsystems/audits
https://github.com/informalsystems/audits
https://docs.interlay.io/
https://interlay.notion.site/interlay/Interlay-FAQ-5e3019b1cfd94f6693dc186e9640e607
https://interlay.notion.site/interlay/Interlay-FAQ-5e3019b1cfd94f6693dc186e9640e607
https://www.youtube.com/watch?v=ErZBxmZY-_Y
https://spec.interlay.io/
https://github.com/polkadot-js/api
https://github.com/polkascan/py-substrate-interface
https://github.com/polkascan/py-substrate-interface
https://github.com/rust-analyzer/rust-analyzer
https://github.com/rust-analyzer/rust-analyzer
https://github.com/rust-lang/rust-clippy
https://wiki.polkadot.network/docs/maintain-guides-democracy
https://wiki.polkadot.network/docs/maintain-guides-democracy
hhttps://github.com/interlay/whitepapers/blob/master/Interlay_Token_Economy.pdf
hhttps://github.com/interlay/whitepapers/blob/master/Interlay_Token_Economy.pdf
https://wiki.polkadot.network/docs/learn-transaction-fees#fee-calculation
https://wiki.polkadot.network/docs/learn-transaction-fees#fee-calculation

Appendix A

Polkadot-launch Configuration

{
"relaychain": {

"bin": "/home/vagrant/binaries/polkadot-v0.9.15",
"chain": "rococo-local",
"nodes": [

{
"name": "alice",
"wsPort": 9944,
"port": 30444

},
{

"name": "bob",
"wsPort": 9955,
"port": 30555

},
{

"name": "charlie",
"wsPort": 9966,
"port": 30666

}
],
"genesis": {

"runtime": {
"runtime_genesis_config": {

"configuration": {
"config": {

"validation_upgrade_frequency": 1,
"validation_upgrade_delay": 20

}
}

}
}

}
},
"parachains": [

{
"bin": "/home/vagrant/binaries/interbtc-parachain-9fed496a",
"id": "2121",
"balance": "1000000000000000000000",
"nodes": [

{
"wsPort": 9988,
"port": 31200,
"name": "alice",

Ref: 22-03-942-REP 44 Quarkslab SAS

"flags": [
"--",
"--execution=wasm"

]
}

],
"chain": "/home/vagrant/configs/interbtc-spec-raw.json"

}
],
"simpleParachains": [],
"hrmpChannels": [],
"types": {},
"finalization": false

}

Ref: 22-03-942-REP 45 Quarkslab SAS

	Project Information
	Executive Summary
	Disclaimer
	Findings Summary

	Context and Scope
	Context
	Safety and Security Properties
	Scope
	Audit Settings

	Methodology
	Familiarize with the Interlay ecosystem
	Static code review and analysis
	Configuration review
	Dynamic testing
	Tools

	Recommendations
	Vault Registry
	Democracy
	Escrow
	Annuity
	Supply
	Runtime Configuration
	Weights
	Bitcoin

	Conclusion
	Glossary
	Bibliography
	Polkadot-launch Configuration

