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Problem 
Description
What challenge are we trying to solve?
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Problem Description

Symptoms:

◎ Excessive daytime sleepiness

◎ Loud Snoring

◎ Morning headache

◎ Not rested after sleeping

◎ Abrupt awakenings

◎ High blood pressure

◎ ...
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Problem Description

Risk Factors:

◎ Smoking

◎ Diabetes

◎ High blood pressure

◎ Neck circumference > 40 cm

◎ Be over 40 years of age

◎ Male

◎ ...
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Machine Learning Approach
Objective: Apnea-Hypopnea Index (AHI)

Supervised Learning Problem:
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Machine Learning Approach
Experimental Setup: 

◎ Python (3.7) in an Anaconda’s Virtual Environment

◎ Libraries:

○ Numpy

○ Pandas & Pandas-profiling

○ Scikit-Learn & XGBoost & CatBoost

○ Matplotlib & Seabon

6



Machine Learning Approach
Methodology: 

1. Data Acquisition

2. Data Wrangling

3. Evaluation Metrics and Protocols

4. Model Selection and Training

5. Model Testing and Results

6. Hyperparameter tuning and Model Deployment
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1.
Data Acquisition
Clinical dataset
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2.
Data Wrangling
Describing and preparing the data to feed 
the Machine Learning models.
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2.  Data Wrangling
Pandas-Profiling:  Report file

Selected columns:
○ Patient  (index)
○ Gender  (categorical)
○ Weight  (numerical)
○ Height  (numerical)
○ Age  (numerical)
○ Smoker  (categorical)
○ Cervical Perimeter  (numerical)
○ BMI  (numerical)
○ AHI  (target - numerical)
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https://drive.google.com/file/d/1dOYM8Ih584abMqunbqxWSVj2xyb11Mpr/view?usp=sharing


2.  Data Wrangling
Missing Values:

○ Replace ‘ns’ and -1 values with NumPy
○ Drop NaN values with Pandas 
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2.  Data Wrangling
Missing Values:
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2.  Data Wrangling
Encoding Categorical Variables:
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2.  Data Wrangling
Encoding Categorical Variables:
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‘Smoker’ ‘Gender’



2.  Data Wrangling
Feature Engineering:

Creating new variables from available data

◎

◎ log(AHI+1)
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2.  Data Wrangling
‘OSA’ for Classification Models:
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3.
Evaluation Metrics 
and Protocols
Methods for evaluating the performance 
and generalization of the models
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3.  Evaluation Metrics and Protocols
Regression metrics:

◎ Coefficient of determination (R2)

◎ Max. Absolute Error (MaxAE)

◎ Mean Absolute Error  ±  Standard Deviation (MAE ± STD)

◎ Root Mean Square Error (RMSE)
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3.  Evaluation Metrics and Protocols
Classification metrics:

◎ Precision and Recall

◎ F1-Score

◎ Balanced Accuracy

◎ Confusion Matrix Plot

◎ ROC AUC Curve
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3.  Evaluation Metrics and Protocols
K-Fold cross-validation:

◎ For a better generalization and confidence in the model

◎ K = 5  →  20% each set
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4.
Exploratory Data 
Analysis
Approach to analyze datasets: summarize their 
main characteristics, discover patterns, spot 
anomalies, test hypothesis… Know your data!
Often with visual methods
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4.  Exploratory Data Analysis
Correlation Matrix:
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4.  Exploratory Data Analysis
Join Plots:

23



4.  Exploratory Data Analysis
Violin Plot (categorical vars ⟺ target):
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4.  Exploratory Data Analysis
Pair Plots (hue Gender):
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4.  Exploratory Data Analysis
Pair Plots (hue Smoker):
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4.  Exploratory Data Analysis
Classification:
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5.
Model Selection 
and Training
Implementing the Machine Learning models
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5.  Model Selection and Training
Data Preprocessing:

◎ Polynomial Features

[a, b]  →  [1, a, b, a2, ab, b2]

◎ Standard Scaler

◎ MinMax Scaler
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5.  Model Selection and Training
Implemented Models:  Why not all of them?

◎ Generalized Linear Models

◎ Support Vector Machines

◎ Nearest Neighbors

◎ Gaussian Processes

◎ Decision Trees

◎ Ensemble Methods

◎ XGBoost and CatBoost (Gradient Boosting Decision Trees)

◎ Neural Networks
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6.
Model Testing and 
Results
Comparing the performance of the models
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6.  Model Testing and Results
Regression Models: (Standard Scaling)
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6.  Model Testing and Results
Regression Models: (Standard Scaling)
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6.  Model Testing and Results
Regression Models: (Standard Scaling)
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Kernel Ridge Gaussian Process



6.  Model Testing and Results
Regression Models Discussion: 

◎ No sufficient precision to be useful in real-world

◎ Despite a certain correlation between real and predicted 
values, the variance is very high and there are very 
remarkable mistakes

◎ The positive aspect… Best models are white box 
(explainability)

◎ The most complex models are not leading the results… This 
may indicate that the weak results are not caused by a bad 
choice of hyperparameters or models              

◎ The problem may be in the data itself (lack of samples or 
too high complexity of the problem to be solved with the 
used variables)
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6.  Model Testing and Results
Classification Models: (Raw Data)
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6.  Model Testing and Results
Classification Models: (Raw Data)
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6.  Model Testing and Results
Classification Models: (Raw Data)
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6.  Model Testing and Results
Classification Models: (Raw Data)

K-Neighbors
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6.  Model Testing and Results
Classification Models: (Raw Data)

Random Forest
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6.  Model Testing and Results
Classification Models: (Raw Data)

CatBoost
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6.  Model Testing and Results
Regression Models Discussion: 

◎ Certainly good results (easier problem than regression…)

◎ Best results obtained with CatBoost model, but...

◎ In health applications minimizing False Negatives (FN) is 
critical → Minimize severe patients classified as healthy        
→ Random Forest model

◎ Explainability is also very important in this field → 
K-Neighbors model
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Conclusions
What lessons can we draw from this project?
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Conclusions
◎ In regression approach, it has not been possible to obtain 

models good enough for deployment in real-world scenarios

◎ In classification approach, certainly good results

◎ This weak results are probably due to data itself (lack of 
samples or too high complexity of the problem to be solved 
with the used variables)

◎ Python and the presented libraries for Machine Learning 
problems and data processing, provides a very powerful and 
user-friendly framework for ML development
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Future Lines
What can be done to improve the models?
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Future Lines
◎ Use of the frequencies audio dataset (Feature Selection)

◎ Feature Engineering (linear combinations of the variables)

◎ Methods for handling with missing values (mean, median, 
last/next observation, interpolation, most frequent value…)  

◎ Different scalers for the input data

◎ Ensembling methods to combine multiple models

◎ Hyperparameter optimization on the best models (grid 
search, random search, bayesian optimization…) 

◎ Analysis of the requirements (computational and time) of the 
models used, since is a critical factor for a real-world 
deployment
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Thanks!
Any questions?

You can find me at:
www.github.com/jaimeperezsanchez/
www.linkedin.com/in/jaime-perez-sanchez/
jaime.perez.sanchez@alumnos.upm.es
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