MASTER UNIVERSITARIO EN INGENIERIA DE
TELECOMUNICACIONES

. v -
ESCUELA TECNICA SUPERIOR\DE INGENIEROS ELECQMUNICACI \ ;V
", : T R ll /7
N\
N y
B Gz

MACHINE LEARNING LAB

HALF-TERM ACTIVITIES REPORT:
Methodology and Tools for Developing Machine Learning Models

Case Study: Obstructive Sleep Apnea

Jaime Pérez Sanchez
Course 2019/20

o

o

Table of Contents

Methodology

1.1. Guidelines for Machine Learning Models Development
1.2. Implementation Schedule

1.3. Experimental Setup

Data Wrangling
2.1. Data Description
2.2. Data Preparation
2.2.1. Missing Values
2.2.2. Label Encoding ‘Smoker’
2.2.3. One Hot Encoding ‘Gender’
2.2.4. Setting ‘Patient’ to Index
2.2.5. Computing ‘BMI’
2.2.6. Computing ‘log(AHI+1)
2.2.7. Computing ‘OSA’ for Classification Models

Exploratory Data Analysis (EDA)
Machine Learning Models

4.1. Data Preprocessing
4.2. Regression
4.3. Classification

Conclusions
References

N NN YNOo 0o o0 O o AN -

12
13
14

16
17

1. Methodology

1.1.

this

Guidelines for Machine Learning Models Development

The very first step in any project is to define the problem we want to solve. However,
report focuses on the development of the Machine Learning models to address these

problems. Therefore, we will assume that the problem has already been defined in the report

of the subject “Predictive and Descriptive Learning”. The main structure of every Machine

Learning project can be synthesized the following 6 steps, summarized in Figure 1.

1.

Data Data

Data Acquisition: It is the process of collecting the data that will be used to train the
algorithms. This is a critical step that will determine how good our model will work, the
more and better data we get, the better our model will perform.

Data Cleaning, processing and Exploratory Data Analysis: Before training the
Machine Learning models we must ensure that the data is correctly transformed and
cleaned so that it can be interpreted by the models. An Exploratory Data Analysis (EDA)
is also important in order to extract the main characteristics and correlations of the
dataset (typically with visualizations), to be able to formulate preliminary hypotheses that
could lead to new data collections and experiments.

Choosing Evaluation Metrics and Protocols: In order to select and improve our model,
we must establish specific metrics that capture the objective of the problem we want to
solve. In addition, we must define the protocols to accomplish this evaluation of the
model (typically splitting the dataset into train and test sets, and Cross-Validation
techniques).

Model Selection and Training: In this step we choose Machine Learning models
suitable for our kind of problem, and train them with the data obtained from the previous
phases. There is a great variety of algorithms for very different problems.

. Model Testing: Once the model has been trained, we check its performance with the

metrics and protocols previously chosen. In this step we compare the performance of the
different chosen algorithms.

Hyperparameter tuning and Model Deployment: After we have tested which
algorithms solve the problems most satisfactorily, there are many hyperparameters (of
both the model and the preprocessing of the data) that we can adjust to obtain more
precise results. After this step and if the results are satisfactory, we will be able to deploy
the model.

Model
Training &

Model Model

Acquisition Cleaning Building . Testing Deployment

Figure 1. Overview of a Machine Learning Project Structure

1.2. Implementation Schedule

Our objective is the development of an Obstructive Sleep Apnea (OSA) predictive
model. We will follow a methodology based on the one explained in the previous section. The
first dataset used has been provided in the Moodle website of the subject and contains basic
clinical information such as: age, weight, height, cervical perimeter... Also, the target variable
that we have to predict: Apnea-Hypopnea Index (AHI); and other data that may be risk factors
such as whether the patient is a smoker, other diseases, etc...

First, the data will be cleaned in order to deal with missing information, its
transformation in so that it can be introduced into the models, and to decide which variables
will be used to make the predictions. For a better generalization and confidence in the
obtained results, the cross-validation method K-Fold will be used. Through this method, we
will divide the dataset into 5 random sets of the same size (20%), and evaluated one by one
taking the rest as training data in each case. Therefore, the evaluation metrics will be
conducted with the predictions of the entire dataset. Figure 2 shows a schematic illustration of
this.
¢—— Total Number of Dataset ———p

Experiment 4 |

Experiment 1 | |] l
Experiment 2 |] | [[[] Training
Experiment 3 | J | | | Validation
[| I |
\ | l |

|
|
|
\

Experiment 5 |

Figure 2. Cross-validation K-Fold diagram

The following evaluation metrics will be used for the regression models:

e Coefficient of determination (R?): The proportion of the variance in the dependent
variable that is predictable from the independent variables.

n

Zl(yj_xj)z

j=
jzzl(yrfj)z

e Maximum Absolute Error (MaxAE): The maximum error, in absolute value,
between predicted and actual values.

RZ=

MaxAE=mdx{|y,— x|, ¥j€[1,n]}

e Mean Absolute Error = Standard Deviation (MAE + STD): MAE is the mean
error, in absolute value, between predicted and actual values. And STD is the amount
of variation or dispersion of a set of values, in this case, the errors between predicted
and actual values.

1 n
MAE:ZZ ;=% S1h= *Z(y/‘”)z
j=1

e Root Mean Square Error (RMSE): The root of the squared mean of the errors
between predicted and actual values.

RMSE = %an(yj—xjy
j=1

The following evaluation metrics will be used for the classification models:

e Precision and Recall: Precision is the fraction of relevant instances among the
retrieved instances, while recall is the fraction of the total amount of relevant
instances that were actually retrieved.

n® True Positives

Precision = — —
n® True Positives + n° False Positives

n° True Positives
Recall =

n° True Positives + n° False Negatives

o F1 score: The single weighted value of accuracy and recall.

Precision X Recall

F = 2%
Precision + Recall

e Balanced Accuracy: The weighted mean of the recall obtained in each class.

N
Z() W(class 1)) X recall(classj)
J —

Balanced Accuracy =

classes

e Confusion Matrix Plot: The root of the squared mean of the errors between
predicted and actual values.

Actual Values

Negative Positive
[72]
0]
2 .) True Negative False Positive
© egative
> (TN) (FP)
©
0}
+—
9O
_O . .
Q Positive False Negative True Positive
[
ol (FN) (TP)

Figure 2. Correlation matrix diagram

ROC AUC Curve: ROC (Receiver Operating Characteristic) illustrates the
diagnostic ability of a binary classifier system as its discrimination threshold is
varied. AUC (Area Under the Curve) is the metric computed for the ROC curve plot.
The Y axis is the True Positives ratio, and the X axis is the False Positives ratio. An
illustrative example is shown below.

ROC CURVE
10" [PERFECT CLASSFIER [<=
w08=
[
<
o
W 0
E
bl
Q
aoy=-
')
=)
¥
01~
leXell -
= T T v T []
o0 o1 oL 0.6 o8 \.0

FALSE POSITIVE RATE

Figure 3. ROC curve diagram

In a preliminary analysis it appears that we have insufficient data to make a reliable

predictive model. Although, if this data is sufficiently representative we could draw
interesting conclusions about the risk factors of the OSA, which could help doctors to
diagnose the disease more accurately and earlier.

1.3.

Experimental Setup

This project has been conducted on the student's personal computer and in an

Anaconda’s virtual environment [1]. The main specifications of the PC are:

Host: Lenovo Ideapad 700-15ISK

OS: Arch Linux x86_64

CPU: Intel i5-6300HQ (4 cores) @3.2 GHz
RAM: 16 GB

It has been decided that this project would be developed in Python (version 3.7)

programming language. The main reasons for this choice are: previous experience with the

language from the developer, simpler syntax, large number of libraries for Machine Learning

development (with smoothly difficult curves) and simplicity of integration in case of model
deployment. In the following we will briefly describe the Python libraries used during the

project.

NumPy: [2] Fundamental package for scientific computing, including powerful
N-Dimensional array objects and functions (essential for Machine Learning).

% NumPy

e Pandas: [3] Data structures management and data analysis library. Provides a
high-performance and easy-to-use framework to manage and manipulate datasets.

pandas h%f

e Pandas Profiling: [4] Package in a layer over Pandas, that generates profile reports
from a DataFrame for a quick data analysis.

e Scikit-learn: [5] Fundamental Machine Learning library that includes a large number
of algorithms (classification, regression, clustering...) together with preprocessing and
evaluation functions.

‘.‘4&mwn

e XGBoost and CatBoost: [6] [7] Optimized distributed gradient boosting libraries
designed to be highly efficient, flexible and portable. Provides a parallel tree boosting
that solve many data scientist problems in a fast and accurate way.

e Matplotlib: [8] 2D plotting library which produces publications quality figures in a
variety of hard copy formats and interactive environments across platforms.

matpl:tlib

e Seaborn: [9] Data visualization library over Matplotlib that provides a high-level
interface for drawing attractive and informative statistical graphics.

All the developed code is available in the student's GitHub profile [10] [11] and in Google
Collaboratory [12] [13].

2. Data Wrangling
2.1. Data Description

The analysis of the data has been carried out with the “pandas-profiling” library.
When executing the following lines of code, it generates a report, from a Pandas DataFrame,
in a “.html” file with a basic analysis of all variables and their correlations.

import pandas

import pandas_profiling

report = df_tmp.profile report(title='0SA_report')
report.to_file(output_file="0SA report.html")

2.2. Data Preparation

The preparation and transformation of the data so that it can be fed to the predictive
models, has been done with the Pandas and NumPy libraries.

import pandas as pd
import numpy as np

2.2.1. Missing Values

The main actions carried out in this section have been: replacing the “ns” values with
NaNs, replacing the -1 values with NaNs, and removing all rows containing NaN values.

df_tmpl = df_tmpl.replace('ns', np.nan)
df_tmpl = df_tmpl.replace(-1, np.nan)
df final = df_tmpl.dropna()

2.2.2. Label Encoding ‘Smoker’

The main actions carried out in this section have been: replacing the “ns” values with
NaNs, replacing “si (poco)” values for “poco”, setting the variable ‘Smoker’ as ‘category’ and
label encoding this category.

df_tmpl = df_tmpl.replace('ns', np.nan)

df _tmpl = df_tmpl.replace('si (poco)', 'poco')
df_tmpl['Smoker'] = df_tmpl['Smoker'].astype('category")
df_tmpl['Smoker'] = df_tmpl['Smoker'].cat.codes

2.2.3. One Hot Encoding ‘Gender’

The main actions carried out in this section have been: adding the two new columns
with One Hot Encoding of ‘Gender’ and dropping the variable ‘Gender’.

pd.concat([df_tmpl,pd.get_dummies(df_tmpl['Gender'])],axis=1)

df_tmpl.drop(['Gender'],axis=1)

2.2.4. Setting ‘Patient’ to Index

The actions carried out in this section have been: replacing the repeated label (P0363)
and setting the ‘Patient’ column as index..

df_tmpl[df_tmpl['Patient']=="P0363"]

df_tmpl.iloc[] = df_tmpl.iloc|[].replace('P0363"','P9999")

df_tmpl.set index('Patient', inplace=True)

2.2.5. Computing ‘BMI’

The BMI has been computed from the Weight and Height data.

df _final['BMI'] = df_final['Weight']/((df_final['Height']/100)**2)

2.2.,6. Computing ‘log(AHI+1)’

As explained in the report of ‘Predictive and Descriptive Learning’, the justification
for adding 1 to the AHI before making the logarithm is to avoid that the O values are
transformed into ‘-Infinity’. Finally, this column will not be used in the models because when
analyzing the results, it did not represent an appreciable improvement.

np_AHI = df _final['AHI'].to_numpy()
df_final['log AHI'] = df_final['AHI'].apply(lambda row:np.logl@(row+1))

df _final = df_final.drop(['AHI'],axis=1)

2.2.7. Computing ‘OSA’ for Classification Models

As explained in the report of ‘Predictive and Descriptive Learning’, for the
classification models we intend to predict if the male patients are healthy (i.e. AHI < 10
encoding as a 0) or have severe OSA (i.e. AHI > 30 encoding as a 1). The patients between
these values are set as NaNs for further elimination.

df_tmpl['OSA'] = np.where(df_tmpl['AHI'] <=
np.where(df_tmpl['AHI'] >=

np.nan))

3. Exploratory Data Analysis (EDA)

The EDA has been carried out mainly with the Seaborn and Matplotlib libraries,

performing the operations on DataFrames of the Pandas library.

import seaborn as sns

import matplotlib.pyplot as plt

Plotting Missing Values: In order to visualize the missing values and help us to
understand the dataset, a Heatmap has been used with a DataFrame that only indicates
if the values it contains is NaN or not. An example of the result can be found in
Figure 4.

sns.heatmap(df_tmpl.isnull(),cmap="Blues',cbar=False)

b4
S

| ' | i
Patient Gender |AH Weight Height Age Smoker Cervical

Figure 4. Plotting missing values with Heatmap

Plotting Correlation Matrix: In this step, we must first calculate the correlation
matrix and then visualize it with a Heatmap. In Figure 5 we can find an example of
the result.

corr_matrix = df_final.corr()

sns.heatmap(corr,center=9, square=True, linewidths=.5,annot=True)

Plotting Linear Regression, Histograms and KDE: To visualize the relationship
and statistical distributions of two variables we can use the jointplot method of the
Seaborn library. An example of the result is shown in Figure 6.

sns.jointplot('Cervical', 'AHI',kind="reg',data=0SA_df)

AHI - 039 0.092 016 0.058 0.42 018 .18 037
Weight - 039 - 046 013 00069 035 0.35 n
Height - 0.092 046 . 031 0.055 046 0.67 H -0.084 I 08
Age - 016 013 031 a1 0.082 .07 007 0.039 _ 04
Smoker - -0.058 -0.0069 0.055 0.1 0.022 0.011 0.011 -0.045 - 00

Cervical - 042 073 046 0.082 0.022
-0.8
-0.015

o H- "
BMI -| 037 “ -0.084 0.039 -0.045 0.015 0015

£

Gender==Man - 018 035 -0.07 0011

Gender==Woman - .18 035

=3
@
-

=]

=1

=

BMI

%

Height -

Smoker -
Cervical -|

Weight |

Gender==Man -

'
c
]
E
S
=
I
n
7]
=
c
&

Figure 5. Correlation matrix Heatmap

Cervical

Figure 6. Linear regression, histograms and KDE between two variables with jointplot

Plotting Categorical Variables: A very visual approach for analyzing categorical
variables is the violinplot method of the Seaborn library. In Figure 7 we can see an
example of the result, where the lines inside the violins indicate the quartiles of the
statistical distribution. In this case we are also analyzing the categorical variable
‘Gender’ that is displayed on the sides of the violin.

sns.violinplot(x="'Smoker',y="AHI',hue="'Gender"',

split=True,inner="quart',palette="'Set2")

e 3 Gendar==Man

[N
[=== ¥

120 -

00 -

g0 -

60 -

20 -

70 -

i ' ' '
0.0 10 20 30
Smoker

AHI

8

\ 48

El
.

Figure 7. Plotting categorical variables with violinplot

Matrix of Scatter Plots: To visualize all the relationships between several variables
you can use a scatter plots matrix with the pairplot method of the Seaborn library. In
this case we can also visualize the distributions according to some categorical
variable (e.g. ‘Gender’). In Figure 8 we can see an example of the result.

sns.pairplot(OSA_df,hue="'Gender")

0 100 150 40 60 180 200
Wieight Height

Figure 8. Matrix of scatter plots with pairplot

10

Bar Plots: To represent an estimation of central tendency and confidence intervals
for a numeric variable as a function of another one, we can use the barplot method of
the Seaborn library. In Figure 9 we can observe an example of the result.

sns.barplot(x="0SA', y='BMI', data=0SA_df)

n -

5 -

20 -
2

15 -

0 -

5 -

o -

0.0 10
CsA

Figure 9. Bar plot example

Count Plots: If we wish to perform a similar analysis to that obtained with Bar Plots,
but with a single variable and taking into account the frequency of appearance in the
data, we can use the countplot method of the Seaborn library. In this case we have
also added a categorical variable (‘OSA’) to the analysis, so that we can study its
distribution. In Figure 10 we can observe an example of the result.

sns.countplot(x="'Smoker', data=0SA_df, hue="'0SA")

BO
osA
0 - mm 00
mm 10
m N,
50 .
-
[=
g%
30 .
20 -
lu .
o - —_
0.0 1a 20 30
Smoker

Figure 10. Count plot example

11

4. Machine Learning Models

The methodology followed in the implementation of Machine Learning models has
been to try to automate the process as much as possible. The main library used is Scikit-Learn,
which provides both the implemented models and the preprocessing methods. In the
following we will study the implementation of data preprocessing methods and the families
of the implemented algorithms, both for the problem of regression and classification.

4.1. Data Preprocessing

In this project three preprocessing methods have been tested, in addition to the raw
data, to introduce into the models. For each method, two scalers are created to facilitate data
de-transformation.

e Raw Data: In order to facilitate the obtaining of results and error metrics, the dataset
is divided into features and target columns.

columns = OSA_df.columns.tolist()

features = [c for c in columns if c not in ['AHI']]

target = 'AHI'

OSA_df.loc[:, features]
OSA_df.loc[:, target]

_reshaped = np.reshape(y.values, (y.shape[0], 1))

e Polynomial Features: Generate a new feature matrix consisting of all polynomial
combinations of the features with degree less than or equal to an specified degree.

from sklearn.preprocessing import PolynomialFeatures
poly = PolynomialFeatures(2)

X_poly = poly.fit_transform(X)

e Standard Scaler: Standardize features by subtracting the mean and scaling to unit
variance, of each variable.

from sklearn.preprocessing import StandardScaler

Scaler_std_X = StandardScaler()
Scaler_std_y = StandardScaler()

X_std = Scaler_std_X.fit_transform(X)
y_std = Scaler_std_y.fit_transform(y)

12

e MinMax Scaler: Transforms features by scaling each variable to a given range.

from sklearn.preprocessing import MinMaxScaler

Scaler_minmax_X = MinMaxScaler()
Scaler_minmax_y = MinMaxScaler()

X_minmax = Scaler_minmax_X.fit_transform(X)
y_minmax = Scaler_minmax_y.fit_transform(y)

4.2. Regression

As explained before, the objective in the implementation of the models has been to
automate it as much as possible. For this purpose, a dictionary has been created with most of
the regression models implemented in Scikit-Learn library. In addition to a for loop where the
models are executed with K-Fold validation and results metrics are obtained. The selected
hyperparameters for each model have been omitted to simplify the explanation of the code.

from sklearn import linear_model, kernel_ridge, svm, neighbors,
gaussian_process, tree, ensemble, neural_network
import xgboost, catboost
model list = {"Linear_Regression": linear_model.LinearRegression(),
"Ridge_Regression": linear_model.Ridge(),
"Lasso": linear_model.Lasso(),
"ElasticNet": linear_model.ElasticNet(),
"LARS": linear_model.Lars(),
"Lasso_LARS": linear_model.LassolLars(),
"OMP": linear_model.OrthogonalMatchingPursuit(),
"Bayesian_Ridge": linear_model.ARDRegression(),
"Bayesian_ARD": linear_model.ARDRegression(),
"Passive_Aggressive":linear_model.PassiveAggressiveRegressor(),
"RANSAC": linear_model.RANSACRegressor(),
"Theil_Sen_Regressor": linear_model.TheilSenRegressor(),
"Huber_Regressor": linear_model.HuberRegressor(),
"Kernel Rigde": kernel_ridge.KernelRidge(),
"SVM_Linear": svm.LinearSVR(),
"SVM_C-support": svm.SVR(),
"SVM_Nu-support": svm.NuSVR(),
"SGD_Regression": linear_model.SGDRegressor(),
"K-neighbors": neighbors.KNeighborsRegressor(),
"K-neighbors_Radius": neighbors.RadiusNeighborsRegressor(),
"Gaussian_Process":gaussian_process.GaussianProcessRegressor(),
"PLS_Regressor": cross_decomposition.PLSRegression(),
"Decision_Tree": tree.DecisionTreeRegressor(),
"Gradient_Boosting": ensemble.GradientBoostingRegressor(),
"Bagging Regressor": ensemble.BaggingRegressor(),
"Random_Forest": ensemble.RandomForestRegressor(),
"Extra_Tree": tree.ExtraTreeRegressor(),
"AdaBoost": ensemble.AdaBoostRegressor(),
"MLP": neural_network.MLPRegressor(),
"XGBoost": xgboost.XGBRegressor(),
"CatBoost": catboost.CatBoostRegressor()}

13

from sklearn.model_selection import cross_val predict

from sklearn.metrics import r2_score, max_error, mean_absolute_error,
mean_squared_error

for i in model list:

y_pred = cross_val predict(model list[i], X, y, cv=5)

errors =y - y pred

print('\033[1m' + str(i) + '\@33[em")

print('Variance score R2?: %.3f"' % r2_score(y, y _pred))

print('Max Error: %.2f' % max_error(y, y_pred))

print('Mean Absolute Error = STD: %.2f + %.2f' %
(mean_absolute_error(y, y_pred), np.std(errors)))

print('Root Mean Squared Error: %.2f"' %
np.sqrt(mean_squared_error(y, y_pred)))

fig, ax = plt.subplots()

ax.scatter(y, y_pred)
ax.plot([y.min(),y.max()],[y_pred.min(),y_pred.max()], 'k--",1w=3)
ax.set_xlabel('Measured')

ax.set_ylabel('Predicted")

plt.show()

4.3. Classification

In analogy to the regression case and in order to automate the process of execution
and evaluation of the models, a dictionary has been created with most of the classification
models implemented in the Scikit-learn library. In addition to a for loop where the models are
executed and the results are obtained. The selected hyperparameters for each model have been
omitted to simplify the explanation of the code.

from sklearn import linear_model, naive_bayes, svm, neural networks
neighbors, gaussian_process, ensemble, tree

import xgboost, catboost

model list = {
"Logistic_Regression": linear_model.LogisticRegression(),
"Ridge_Classifier": linear_model.RidgeClassifier(),
"SGD_Classifier": linear_model.SGDClassifier(),
"Perceptron": linear_model.Perceptron(),
"Passive_Aggressive":linear_model.PassiveAggressiveClassifier(),

"NaiveBayes_Bernoulli": naive_bayes.BernoulliNB(),

"NaiveBayes_Multinomial": naive_bayes.MultinomialNB(),
"SVM_Linear": svm.LinearSVcC(),

"SVM_C-support"”: svm.SVC(),

"SVM_Nu-support™: svm.NuSVC(),

"K-neighbors": neighbors.KNeighborsClassifier(),
"K-neighbors_Radius": neighbors.RadiusNeighborsClassifier(),
"Neighbors_Nearest-Centroid": neighbors.NearestCentroid(),
"Gaussian_Process":gaussian_process.GaussianProcessClassifier(),
"AdaBoost": ensemble.AdaBoostClassifier(),

14

"Bagging Classifier": ensemble.BaggingClassifier(),
"Ensemble Extra_Trees": ensemble.ExtraTreesClassifier(),
"Gradient_Boost": ensemble.GradientBoostingClassifier(),
"Random_Forest": ensemble.RandomForestClassifier(),
"Decision_Tree": tree.DecisionTreeClassifier(),
"Extra_Tree": tree.ExtraTreeClassifier(),

"MLP": neural_network.MLPClassifier(),

"XGBoost": xgboost.XGBClassifier(),

"CatBoost": catboost.CatBoostClassifier()

}

from sklearn.model selection import cross_val predict

from sklearn.metrics import classification_report, f1_score,
balanced_accuracy_score, confusion_matrix

for i in model list:

y_pred = cross_val predict(model list[i], X, y, cv=5)
target_names = ['Healthy', 'Severe']

print('\@33[1m' + str(i) + '\@33[om")
print('Classification Report')

print(classification_report(y,y_pred, target_names=target_names))

print('Balanced Accuracy: %.3f' % balanced_accuracy_score(y,

y_pred))
print('fl score: %.3f"' % f1l_score(y, y_pred, average='weighted'))

print('Confusion matrix"')

cm = confusion_matrix(y, y_pred)

plt.legend(target_names)

hm = sns.heatmap(cm, annot=True, cmap='plt.cm.Blues"',
xticklabels=target_names, yticklabels=target_names)

plt.show()

Receiver operating characteristic example

Once the results have been obtained, we L0
have visualized the ROC curve (Receiver Operating
Characteristic) for each K-Fold of the model that
offers the best scores, using the code of this example

0.8 4

0.6

.
ROC fold 0 (AUC = 0.80)
ROC fold 1 (AUC = 0.74)
L ROC fold 2 (AUC = 0.75)
’ ROC fold 3 (AUC = 0.73)
> ROC fold 4 (AUC = 0.80)
ROC fold 5 (AUC = 0.88)
—— Chance
—— Mean ROC (AUC = 0.78 + 0.05)
+ 1 std. dev.

from Scikit-learn [14]. Obtaining a figure like the

0.4 4

True Positive Rate

one shown in the following. The analysis and
visualization of all the results obtained (both —
regression and classification) can be found in this
jupyter notebook [15] [16].

0.0 A

T T T T T T
0.0 0.2 0.4 0.6 0.8 10
False Positive Rate

Figure 11. ROC curve with K-Fold example

15

Conclusions

In this project a comprehensive methodology has been developed to predict
Obstructive Sleep Apnea (OSA) using Machine Learning models. This methodology, widely
used and studied, is based on state of the art Machine Learning model development
guidelines. It is described in detail in the first section of this report.

For the development of this project has been used Python programming language and
fundamental libraries for Machine Learning problems and data processing (such as Pandas,
Numpy, Scikit-Learn ...). All this provides a very powerful and user-friendly framework for
model development. Jupyter Notebooks have been used in an Anaconda virtual environment
to program all the code and display the results in the same file. The development of Feature
Engineering methods using the patient voice frequency dataset is proposed as a future line of
work.

My experience in this field due to my work as a researcher at the Polytechnic
University of Madrid (Department of Electronic Engineering), has made that the development
of this project has been carried out without outstanding issues. All the code of the project is
available in my Github account [10] [11] and in Google Collab [12] [13]. All the results and
visualizations can be found in this jupyter notebook [15] [16].

16

6. References

[1] «Anaconda Distribution», [Online]. Available: https://www.anaconda.com/distribution/
[Accessed 10 November 2019]

[2] «NumPy Library, [Online]. Available: https:/numpy.org/ [Accessed 10 November 2019]

[3] «Pandas Library, [Online]. Available: https://pandas.pydata.org/
[Accessed 10 November 2019]

[4] «Pandas-Profiling Library, [Online]. Available: https://pandas-profiling.github.io/pandas-
profiling/docs/ [Accessed 10 November 2019]

[5] «Scikit-Learn Library», [Online]. Available: https://scikit-learn.org/stable/
[Accessed 10 November 2019]

[6] «XGBoost Library», [Online]. Available: https://xgboost.readthedocs.io/
[Accessed 10 November 2019]

[7] «CatBoost Library», [Online]. Available: https://catboost.ai/ [Accesed 10 November 2019]

[8] «Matplotlib Library», [Online]. Available: https://matplotlib.org/ [Accessed 10 November 2019]

[9] «Seaborn Library», [Online]. Available: https://seaborn.pydata.org/
[Accessed 10 November 2019]

[10] Jupyter Notebook with regression approach code, [Online]. Available:
https://github.com/jaimeperezsanchez/Machine I.earning Iab/blob/master/CaseStudy OSA/CODE
Python/Notebooks/1 Regression OSA Extra.ipynb [Accessed 10 November 2019]

[11] Jupyter Notebook with classification approach code, [Online]. Available:

https://github.com/jaimeperezsanchez/Machine Learning Lab/blob/master/CaseStudy OSA/CODE
Python/Notebooks/2 Classification OSA.ipynb [Accessed 10 November 2019]

[12] Jupyter Notebook with regression approach code on Google Collab, [Online]. Available:
https://drive.google.com/file/d/1 BaVajc6zagngJL.SN vzwwn91S5qS2NP/view?usp=sharing
[Accessed 10 November 2019]

[13] Jupyter Notebook with classification approach code on Google Collab, [Online]. Available:
https://drive.google.com/file/d/1LdWIC2MSEiHzccP1Tq0gRCY CJ8PeTtOP/view 2usp=sharing
[Accessed 10 November 2019]

[14] «Receiver Operating Characteristic (ROC) with cross validation», [Online]. Available:
https://scikit-learn.org/stable/auto _examples/model selection/plot roc crossval.html#sphx-glr-auto-e

xamples-model-selection-plot-roc-crossval-py [Accessed 10 November 2019]

[15] Jupyter Notebook with model results and analysis, [Online]. Available:

https://github.com/jaimeperezsanchez/Machine Learning Lab/blob/master/CaseStudy OSA/CODE
Python/Notebooks/Results.ipynb [Accessed 10 November 2019]

[16] Jupyter Notebook with model results and analysis on Google Collab, [Online]. Available:
https://drive.google.com/file/d/1UvIL. XJFKYAQI11.JO38HtDrU7gbajTcDI3Z/view 2usp=sharing
[Accessed 10 November 2019]

17

https://www.anaconda.com/distribution/
https://numpy.org/
https://pandas.pydata.org/
https://pandas-profiling.github.io/pandas-profiling/docs/
https://pandas-profiling.github.io/pandas-profiling/docs/
https://scikit-learn.org/stable/index.html
https://xgboost.readthedocs.io/
https://catboost.ai/
https://matplotlib.org/
https://seaborn.pydata.org/
https://github.com/jaimeperezsanchez/Machine_Learning_Lab/blob/master/CaseStudy_OSA/CODE_Python/Notebooks/1_Regression_OSA_Extra.ipynb
https://github.com/jaimeperezsanchez/Machine_Learning_Lab/blob/master/CaseStudy_OSA/CODE_Python/Notebooks/1_Regression_OSA_Extra.ipynb
https://github.com/jaimeperezsanchez/Machine_Learning_Lab/blob/master/CaseStudy_OSA/CODE_Python/Notebooks/2_Classification_OSA.ipynb
https://github.com/jaimeperezsanchez/Machine_Learning_Lab/blob/master/CaseStudy_OSA/CODE_Python/Notebooks/2_Classification_OSA.ipynb
https://drive.google.com/file/d/1_BaVajc6zaqngJLSN_vzwwn9lS5qS2NP/view?usp=sharing
https://drive.google.com/file/d/1LdWIC2MSEiHzccP1Tq0qRCYCJ8PeTt0P/view?usp=sharing
https://scikit-learn.org/stable/auto_examples/model_selection/plot_roc_crossval.html#sphx-glr-auto-examples-model-selection-plot-roc-crossval-py
https://scikit-learn.org/stable/auto_examples/model_selection/plot_roc_crossval.html#sphx-glr-auto-examples-model-selection-plot-roc-crossval-py
https://github.com/jaimeperezsanchez/Machine_Learning_Lab/blob/master/CaseStudy_OSA/CODE_Python/Notebooks/Results.ipynb
https://github.com/jaimeperezsanchez/Machine_Learning_Lab/blob/master/CaseStudy_OSA/CODE_Python/Notebooks/Results.ipynb
https://drive.google.com/file/d/1UvLXJFKYAQ1LJ038HtDrU7gbajTcDI3Z/view?usp=sharing

