COL380: Introduction to Parallel and Distributed Computing

MapReduce Using Google’s PageRank Algorithm
using MPI

Vasu Jain: 2017CS10387 , Shreya Sharma: 2017CS50493
May 4, 2020

Vasu Jain, Shreya Sharma MapReduce Using Google’s PageRank Algorithm COL380

Contents
[Design Philosophy, Objectives and Workflow| 3
[Fhe PageRank Algorithm)| 3
|Problems with Convergence of I|. 3
Solving the Problem| 4
.. 4
) calphal 4
[Optimizing the Calculation| o 4
[Simplitying Formulal 4
[Calculating M x I(k)[. o oo 4
(Data Structures| 5
... 5
Colummnsl e e 5
MOITalZationl . . . - o v v o o e e e e e 5
[Mapreduce C++ Library| 6
[Our Implementation] 6
|Calculating Factor using Mapreduce] L o 6
|Calculating PageRank using Mapreduce| o oo 7
[Mapreduce MPI Library| 8
IIn terms of Principlel e 8
In terms of Implementation| 9
|Calculating Factor using Mapreduce ot MPI| L. 9
|Calculating Pagerank using Mapreduce ot MPI| 9
[Self-implemented Mapreduce Library using MPI| 10
[Observations and Conclusions 11
|Execution Time of Different Implementations| 11
|Graphs and Analysis| L e 12
IMapReduce C+4 Library| e 12
IMapReduce Self with MPI}.00 o0 13
IMapReduce with MPI Library] o 14
|Comparative Analysis of Different Implementations|. 15
|[Observations and Explanation of Graph Trends| 17

Page 2 of

Vasu Jain, Shreya Sharma MapReduce Using Google’s PageRank Algorithm COL380

Design Philosophy, Objectives and Workflow

We approached this assignment with the following objectives and design philosophy:
1. Implement mapreduce-pagerank using mapreduce C+-+ library
2. Implement our own mapreduce library with MPI by implementing the functions needed for pagerank.

3. Implement pagerank using existing mapreduce MPI library. In each of the above cases compare cor-
rectness of the pagrank output against the given java/python outputs.

4. Plot graphs with x-axis as benchmark ID, and y-axis as pagerank runtime (three graphs for the three
executables).

5. Compare pagerank latencies across the three implementations and comment on the observations

The time measurements were done by using the std: :chrono: :high_resolution_clock These objectives
were achieved to a large extent by continuous evolution of the code-base. The design philosophy caused
changes across the objectives in tandem. However, the general design cycle was

Optimize Serial — Parallelize algorithm — Refactor Code — Optimize Serial — ...

Our code and scripts can be found in the repository at:
https://github.com/jainvasu631/MPI-MapReduce—PageRank

The PageRank Algorithm

We will assign to each web page P a measure of its importance I(P), called the page’s PageRank.

Suppose that page Pj has lj links. If one of those links is to page Pi, then Pj will pass on 1/1j of its importance
to Pi. The importance ranking of Pi is then the sum of all the contributions made by pages linking to it.
That is, if we denote the set of pages linking to Pi by Bi, then I(P;) = > I(};j) ,Pj e By

l

e Hyperlink Matrix

H := [Hij] = if Pj in Bi then 1/j else 0

H := [Hij] = if Pj to Pi is Edge then 1/]j else 0

H is a stochastic matrix. The sum of all entries in a column is 1/0
e Importance Vector

I := [I(Pi)] whose components are the PageRanks or the importance rankings of all the pages.
I = HI i.e. Iis an eigenvector of H with eigenvalue 1. This is the stationary vector of H.

e Computing I
H can be a very very large matrix of the order of 10'0. However most entries of H are zero.Therefore
its a sparse matrix.
I(k+1) = HI(k). Sequence of I(k) converges to I.

Problems with Convergence of 1

1. Dangling nodes which have no out links. Then H is no more perfectly stochastic. In this case these
nodes will act as importance sinks.

2. Circular Reference Problem. S isn’t Primitive anymore and the I(k) never converges.

3. Importance Sink. S is reducible, i.e. when we have a sub graph of fully connected nodes with no edge
coming out of it.

Page 3 of

https://github.com/jainvasu631/MPI-MapReduce-PageRank

Vasu Jain, Shreya Sharma MapReduce Using Google’s PageRank Algorithm COL380

Solving the Problem
Google Matrix

Replace all 0 columns in matrix H with 1/n to create S. Thus we don’t have dangling nodes anymore.
So, S = H + A where A := [Ajj] = if Hi==0 then 1/n else 0

Choose a parameter o between 0 and 1. Now, with probability a , the random surfer is guided by S
and with probability 1 — « , he chooses the next page at random. This solves the problem of importance
sinks and circular references.

So,G:=axS+(1—a)x1l/nx]l.

Choosing alpha

The parameter o has an important role. When « is 1 we get G:=S and when o is 0 G:=(1 — «)/n x 1. The
rate of convergence of I depends on a. Therefore as a compromise we use o = 0.85.

Optimizing the Calculation
Simplifying Formula

Ik+1) =axHxIk) + ax AxIk) + (1 —-a)/nx1xIk).

This can be further simplified. A = J/n where J = [Ji] = 1 if Corresponding Column is 0 else 0.
Let 8 := (1/a-1) and so M:= (J + 8 x 1)/n.

Then I(k+1) = a x (Hx I(k) + (J + (1/a-1) x 1)/n x I(k)) which simplifies to

I(k+1) = o (H I(k) + M I(k)).

Calculating M x I(k)

As all rows of M are identical, we can write M = 1 x N and M x I(k) = 1 x N x I(k).
factor:= N x I(k) = (1 + beta if Corresponding column is 0 else beta) x I(k)/n
Now the expression simplifies to I(k+1) = o x H x I(k) + 1 x factor.

Page 4 of

Vasu Jain, Shreya Sharma MapReduce Using Google’s PageRank Algorithm COL380

Data Structures

Graphs

Input files contain two space separated numbers (denoting 2 web-pages) in each line indicating a link from
the first webpage to the second. We read and convert the input into a graph with of nodes (N) = maximum
node index in the file.

Class Graph contains -

e VertexList (type vector(int))- Protected variable denoting a list of vertices (type int).
e EdgeList (type vector(pair(int,int))) - Protected variable denoting list of edges (type pair(int,int)).

e toList (type vector(VertexList)) - Public variable denoting a list such that toList][i] is the VertexList

ki

of all the vertices which have an edge from ”i
e fromList (type vector(VertexList)) - Public variable denoting a list such that fromList][i] is the Ver-

texList of all the vertices which have an edge to "i”.

Columns

Columns is a vector of Values where Values has type - "double”. Two important uses of Columns are -
e PageRank - This data structure simply contains the calculated page rank for each web-page.
e Hyperlink - ith element of Hyperlink contains the importance ith node will give to the nodes it has an

outgoing edge to.

Initialization

After the graph is generated from the input file:

Listing 1: Calculating Hyperlink

static Column calculateHyperLinkColumn (const Graph::ToList& toList) {
const Graph::Size N = tolist.size();
Column hyperlink (N);
for (Graph::Size 1=0;i<N; i++)
hyperlink[i] = (toList[i].size()>0)? 1.0/toList[i].size() : O;
return hyperlink;

PageRank is initialised as a vector of doubles of size N with all values = 1.0/N

Listing 2: Initialising PageRank

static inline Column getInitPageRank (const Graph::Size N) {
return Column (N,1.0/N);

Page 5 of

Vasu Jain, Shreya Sharma MapReduce Using Google’s PageRank Algorithm COL380

Mapreduce C++ Library

The MapReduce C++ Library implements a single-machine platform for programming using the the Google
MapReduce idiom. Users specify a map function that processes a key/value pair to generate a set of
intermediate key/value pairs, and a reduce function that merges all intermediate values associated with the
same intermediate key.

The developer is required to write two classes:

e MapTask - It implements a mapping function to process key/value pairs generate a set of intermediate
key/value pairs

e ReduceTask - It implements a reduce function to merges all intermediate values associated with the
same intermediate key.

There are three optional template parameters that can be used to modify the default implementation:

e Datasource - It implements a mechanism to feed data to the Map Tasks - on request of the MapReduce
library

e Combine - It can be used to partially consolidate results of the Map Task before they are passed to
the Reduce Tasks

o IntermediateStore - It handles storage, merging and sorting of intermediate results between the Map

and Reduce phases

Our Implementation

We have used the concept of Mapreduce while solving the pagerank finding problem at two steps. First is
in finding the factor Column (as defined in the pagerank algorithm section) and second is in finding the
pagerank Column.

Calculating Factor using Mapreduce

Listing 3: MapTask for Factor

class MapFactor : public mapreduce::map_task<Graph::Vertex, Value>{
// Identity Map
public: template<typename Runtime>
void operator () (Runtime& runtime, const key_typeé& key, const value_type&
value) const{runtime.emit_intermediate (COMMON, value);}
private: static constexpr Graph::Size COMMON = 0;
i

Listing 4: ReduceTask for Factor

class ReduceFactor : public mapreduce::reduce_task<Graph::Size, Value>{
// Calculate Factor by Accumulation
public: template<typename Runtime, typename Iterator>
void operator () (Runtime& runtime, const key_typeé& key, Iterator it,
Iterator end) const{runtime.emit (key,std::accumulate (it,end,0.0));}
}i

We have defined a class named FactorData used by ” Calculation” - an instance of mapreduce::job to compute
factor column using mapreduce template of C++.

Page 6 of

Vasu Jain, Shreya Sharma MapReduce Using Google’s PageRank Algorithm COL380

Listing 5: Mapreduce Job for Factor

using Calculation = mapreduce::job<MapFactor,ReduceFactor,
mapreduce: :null_combiner,FactorData>;

Calculating PageRank using Mapreduce

Listing 6: MapTask for PageRank

class MapPageRank : public mapreduce::map_task<Graph::Vertex, VertexInfo >{
// Function to generate Intermediate Values
// Will map for each to Vertex a probability contribution that is summed by
reduce
public: template<typename Runtime>
void operator () (Runtime& runtime, const key_typeé& key, const value_typeé&
value) const{
runtime.emit_intermediate (key, ZERO); // Emitting Zero Insures that
each Node has atleast Tuple
for (const Graph::Vertex& to : value.second)
runtime.emit_intermediate (to, value.first);
}

private: static constexpr Value ZERO = 0.0;

}i

Listing 7: ReduceTask for PageRank

class ReducePageRank : public mapreduce::reduce_task<Graph::Vertex, Value>{

// Function to add all probabilities in Hyperlink Matrix
public: template<typename Runtime, typename Iterator>
void operator () (Runtime& runtime, const key_type& key, Iterator it,
Iterator end) const{runtime.emit (key,std::accumulate(it,end,0.0));}
i

We have defined a class named PageRankData used by ”Iteration” - an instance of mapreduce::job to compute
pageRank column using mapreduce template of C++-.

Listing 8: Mapreduce Job for PageRank

using Iteration = mapreduce::job<MapPageRank, ReducePageRank,
mapreduce: :null_combiner, PageRankData>;

Page 7 of

Vasu Jain, Shreya Sharma MapReduce Using Google’s PageRank Algorithm COL380

Mapreduce MPI Library

In terms of Principle

In C++, your program includes two library header files and uses the MapReduce namespace:

include ”mapreduce.h”
include ”keyvalue.h”
using namespace MAPREDUCE_NS

Arguments to the library’s map() and reduce() methods include function pointers to serial "mymap” and
"myreduce” functions in your code (named anything you wish), which will be ”called back to” from the
library as it performs the parallel map and reduce operations.

A typical simple MapReduce program involves these steps:

Listing 9: MapReduce Program Layout

MapReduce *mr = new MapReduce (MPI_COMM_WORLD); // instantiate an MR object
mr—>map (nfiles, smymap); // parallel map

mr->collate() // collate keys

mr—>reduce (&myreduce); // parallel reduce

delete mr; // delete the MR object

All the library methods operate on two basic data structures stored within the MapReduce object -

e KeyValue object (KV) - A KV is a collection of key/value pairs. The same key may appear many
times in the collection, associated with values which may or may not be the same.

e KeyMultiValue object (KMV) - A KMV is also a collection of key/value pairs. But each key
in the KMV is unique, meaning it appears exactly once.The value associated with a KMV key is a
concatenated list (a multi-value) of all the values associated with the same key in the original KV.

Various library methods operated on KV and KMV objects in our implementation are -

e MapReduce add() method - wint6/_t MapReduce::add(MapReduce *mr2)
Adds the KeyValue pairs contained in a second MapReduce object mr2, to the KeyValue object of the
first MapReduce object, which is created if one does not exist.

e MapReduce broadcast() method - uint64_t MapReduce::broadcast(int root)
Deletes the key/value pairs of a KeyValue object on all processors except root, and then broadcasts
the key/value pairs owned by the root processor to all the other processors.

e MapReduce collate() method - wint64_t MapReduce::collate(int (*myhash)(char *, int))
Aggregates a KeyValue object across processors and converts it into a KeyMultiValue object.

e MapReduce gather() method - wint6/_t MapReduce::gather(int nprocs)
Collects the key/value pairs of a KeyValue object spread across all processors to form a new KeyValue
object on a subset (nprocs) of processors.

e MapReduce sort_keys() method - wint64_t MapReduce::sort_keys(int flag)
Sorts a KeyValue object by its keys to produce a new KeyValue object.

Page 8 of

Vasu Jain, Shreya Sharma MapReduce Using Google’s PageRank Algorithm COL380

In terms of Implementation

The concept of approach is completely similar to the one used in the first part with MapReduce C++ Library.
We calculate the factor column and then the pagerank column using MapReduce API of MPI.
Calculating Factor using Mapreduce of MPI

In ”MPI Base/Calculator.cpp” We have defined function -

e MapFactor - static void MapFactor(Graph:: Vertex key, KeyValue* keyvalue, void* calculator) as” mymap”
function

e ReduceFactor - static void ReduceFactor(char* key, int keybytes, char* multivalue, int nvalues, int*
valuebytes, KeyValue* keyvalue, void* calculator) as ”myreduce” function.

e GatherFactor - static void GatherFactor(uint6/-t index, char* key, int keybytes, char* value, int val-
uebytes, KeyValue* keyvalue, void* calculator) as ”mygather” function.

Listing 10: Calculating Factor

auto kvPairs = mapreduce.map (N,MapFactor,void_this);// Map Part
mapreduce.collate (NULL) ;

auto kvmPairs = mapreduce.reduce (ReduceFactor,void_this);// Reduce Part
mapreduce.gather (HOME) ;

mapreduce.broadcast (ROOT) ;

kvPairs = mapreduce.map (¢mapreduce, GatherFactor,void_this);// Gather Part

Calculating Pagerank using Mapreduce of MPI
In ”MPI Base/Calculator.cpp” We have defined function -

e MapPageRank - static void MapPageRank(Graph::Vertex key, KeyValue* keyvalue, void* calculator)
as "mymap” function

e ReducePageRank - static void ReducePageRank(char* key, int keybytes, char* multivalue, int nvalues,
int* valuebytes, KeyValue* keyvalue, void* calculator) as ”myreduce” function.

e GatherPageRank - static void GatherPageRank(uint64_t index,char* key, int keybytes, char* value, int
valuebytes, KeyValue* keyvalue, void* calculator) as ”mygather” function.

Listing 11: Calculating PageRank

auto kvPairs = mapreduce.map (N, MapPageRank,void_this);// Map Part
mapreduce.collate (NULL) ;

auto kvmPairs = mapreduce.reduce (ReducePageRank,void_this);// Reduce Part
mapreduce.gather (HOME) ;

mapreduce.sort_keys (INT_SORT) ;

mapreduce.broadcast (ROOT) ;

kvPairs = mapreduce.map (&mapreduce, GatherPageRank,void_this);// Gather Part

Page 9 of

Vasu Jain, Shreya Sharma MapReduce Using Google’s PageRank Algorithm COL380

Self-implemented Mapreduce Library using MPI

Here we have implemented the methods of the MPI Library for MapReduce like "map”, ”reduce” in the
template form similar to C++ MapReduce Library.

Listing 12: MapReduce Template

template<typename MapKey, typename MapValue, typename ReduceKey, typename
ReduceValue, typename ResultKey, typename ResultValue>

Listing 13: Job Template

template <typename MapTask, typename ReduceTask, typename Generator, typename
Combiner, typename Distributor, typename Result>

General Execution Flow:

The processPipe (in Job.hpp) runs the generator to produce (key, value) pairs. It then pipes the output to
MapTask to initialise it with generator’s output known as MapTuple
3
The MapTask operator does - (k1,v1)->list(k2,v2) where (k2,v2) are created as pairs and added to results,
defined as CombinerTuple
U

Now a combiner combines the output from the MapTask’s of each processor into ReduceTuple

3
A distributor equally distributes the ReduceTuples to each processor for ReduceTask

¢
The ReduceTask does - (k2,list(v2))->list(k3,v3) where (k3,v3) are created as pairs and added to results,
giving ResultTuples

We have also defined an OutputTask that combines output from the ReduceTask of different processors
and returns the final output. It also does any additional processing of the output before returning. In our
implementation it simply divides the produced output by "N” - Number of nodes in the input graph, before
returning.

After implementing the library methods we can define "mymap” and ”"myreduce” functions which are im-
plemented similar to part-a and part-b and define data structures accordingly. We also define generator
functions for each job.

Listing 14: MapReduce class instances for Factor and PageRank Calculation

using FactorJob = MapReduce<Graph::Vertex, Value, Graph::Size, Value,
Graph::Size, Value>;

using PageRankJob = MapReduce<Graph::Vertex, VertexInfo, Graph::Vertex, Value,
Graph::Vertex, Value>;

Listing 15: Job class instances for Factor and PageRank Calculation

using Calculation = Job<MapFactor, ReduceFactor, FactorData,
FactorJob: :Combiner, FactorJob::Distributor, OutputFactor>;

using Iteration = Job<MapPageRank, ReducePageRank, PageRankData,
PageRankJob: :Combiner, PageRankJob::Distributor, OutputPageRank>;

Page 10 of

Vasu Jain, Shreya Sharma MapReduce Using Google’s PageRank Algorithm COL380

Observations and Conclusions

Execution Time of Different Implementations

Benchmark Number of Modes Number of Edges MapReduce C++ Library MapReduce Self with MPI MapReduce Library with MP1
Test Examples M E (in mes) (im mis) (im mis)
barabgsi- 20000 20000 19999 2662 2052 T5EE
barabgsi-Z0000 S0000 20990 42EE 4045 92ED
barabgsi-40000 40000 35938 4583 4170 9030
harahasi-50000 50000 45399 G768 6030 9433
barabasi-&0000 BO000 59999 TET2 6773 a741
barabasi- 70000 TOD00 63999 10544 9366 12394
barabasi-BE0000 BOD00 T9999 12634 11441 14034
barabasi-20000 0000 E9999 13439 11758 14285
barabasi-100000 100000 £o999 16642 17754 16627

erdos-10000 10000 5111 297 170 940

erdos-20000 19999 9930 525 3EL 1660

erdos-30000 0000 14894 947 839 2034

erdos-40000 40000 20077 1226 1274 2282

erdos-50000 49399 25140 154E 1517 25EE

erdos-G0000 59999 29970 2106 1794 3023

erdos-70000 63999 34860 2264 2815 3245

erdos-50000 BODO0 39919 2385 3133 3riz

erdos-00000 %999 45094 3010 3679 4107

erdos- 100000 100000 50101 3443 3780 4187

bull 5 5 3 1] 2250
chvatal 12 24 4 1] 2639
coxetar 2B 42 4 1] 2406
cubical 8 12 5 o 2622
diamond 4 5 3 o 2043

dodecahedral 20 30 5 1 3465

folkman 20 £0 4 D 25E0
franklin 12 1B] D 4023
fruche iz 1B 5 o 2331
grotzsch 11 20 2 o 1407
heawood 14 21 5 o 4018
herschel 11 1B 3 1] 2055
house 5 [4 o 3230
housex 5 [3 o 2653

icosahedral 12 30 4 o 2734
kreckhardt_kite 10 1B 15 o 5543

levy 30 45 9 1 8511
moges 24 36 10 1 4975
meredith 70 140 & 1 2364

noperfectmatching 16 27 T 1 4357
nonline 50 T2 5 1 2501
octahedral [12 3 o 2347
petersen 10 15 2 1] 241E
robertson 18 36 1B 1 3156
smallesicyclicgroup £ 15 2 o 2120
tetrahedral 4 [2 o 1960
thomassen 34 52 10 1 5205
futte 4B) 13 2 33zz2
uniguetyacolorable 12 22 4 o 1890
walther 25 31 8 1 3J0E2

Page 11 of

Vasu Jain, Shreya Sharma MapReduce Using Google’s PageRank Algorithm COL380

Graphs and Analysis
MapReduce C++ Library

1. Benchmark - Barabasi

C++ - Barabasi Mapreduce PageRank Time Vs Number of Nodes

20000
@
1=
E
@
£ 15000
'_
=,
£
[=4
5
o 10000
‘n
8
o
@
- 5000
o
1S
N =
[}
[=
o 0
20000 40000 60000 80000 100000

Number of Nodes

2. Benchmark - Erdos

C++ - Erdos Mapreduce PageRank Time Vs Number of Nodes
4000

3000

2000

1000

Benchmark Erdos Running Time (in ms)

20000 40000 60000 80000 100000

Number of Nodes

Page 12 of

Vasu Jain, Shreya Sharma MapReduce Using Google’s PageRank Algorithm COL380

MapReduce Self with MPI

1. Benchmark - Barabasi

MPI Self - Barabasi Mapreduce PageRank Time Vs Number of Nodes

20000
z
=
=
E 15000
E
o
=
=
5
& 10000
T
3
©
@
5000
[1:]
=
=
(5]
=
A 0
20000 40000 60000 80000 100000

Number of Nodes

2. Benchmark - Erdos

MPI Self - Erdos Mapreduce PageRank Time Vs Number of Nodes

4000
5

=

=)

@ 3000
E

o

=

£

S 2000
o

v

(=]

5

w

= 1000
o

=

£

2

4]

@ 0

20000 40000 60000 30000 100000

Number of Nodes

Page 13 of

Vasu Jain, Shreya Sharma MapReduce Using Google’s PageRank Algorithm COL380

MapReduce with MPI Library

1. Benchmark - Barabasi

MPI Base - Barabasi Mapreduce PageRank Time Vs Number of Nodes

20000
z
=
=
E 15000
E
o
=
=
5
& 10000
T
3
©
@
5000
[1:]
=
=
(5]
=
A 0
20000 40000 60000 80000 100000

Number of Nodes

2. Benchmark - Erdos

MPI Base - Erdos Mapreduce PageRank Time Vs Number of Nodes

5000
5
=
£ 4000
L1k}
=
E
£ 3000
=
=
=
o
2 2000
=l
w
=
E 1000
£
[5]
=
4]
o

20000 40000 60000 80000 100000

Number of Nodes

Page 14 of

Vasu Jain, Shreya Sharma MapReduce Using Google’s PageRank Algorithm COL380

Comparative Analysis of Different Implementations

1. Benchmark - Barabasi

Comparison between three implementations on the running time of
Benchmark - Barabasi

== MapReduce C++ Library = MapReduce Self with MPI MapReduce Library with MPI

20000

15000

10000

Running Time (in ms)

5000

0
20000 40000 60000 80000 100000

Number of Nodes

2. Benchmark - Erdos

Comparison between three implementations on the running time of
Benchmark - Erdos

== MapReduce C++ Library = MapReduce Self with MPI MapReduce Library with MPI

5000
4000
3000

2000

Running Time (in ms)

1000

20000 40000 60000 80000 100000

Number of Nodes

Page 15 of

COL380

MapReduce Using Google’s PageRank Algorithm
Execution Time (in ms)

Vasu Jain, Shreya Sharma

Execution Time of 3 Implementations on Different Benchmarks
B MapReduce C++ Library B MapReduce Self with MPI MapReduce Library with MP1

20000
15000
10000

5000

§§= FRRTCCIl | EESNNSSNSSHSESEESSSSSNNESEESEE!

& SRS R PP PP PPN P PP FHE S PP @ S A S > & & o
S FELFS LSS & o%oo%o FFEFF I FFLFT LTS F LS E %@%% S G g
et g »o & zooeo%woo%oooo LSS T oo%%%.%.%o Ao% A S &g & FTFLFEFE S8
)) o 2 O '
555 P %% P »&o »Vo »Vo »00 »00 »&o »&o mvo mvo @w 3 F & 4 e &F F IEIC AR A.mu%
FELLLLLELS & & & $
F o F P & o%. o) Ray
o < &

Benchmark Tests

Page 16 of

Vasu Jain, Shreya Sharma MapReduce Using Google’s PageRank Algorithm COL380

Observations and Explanation of Graph Trends

1.

One common observation is that the execution time increases strictly with increasing size of network
i.e increasing number of nodes.

We can see that the execution time of sparse networks (ex: Erdos) is much less than comparatively
denser networks (ex: Barabasi) for all the three implementations.

From the previous point we can also conclude that our implementations take more time to calculate
pagerank of networks with more edges.

From the comparative analysis graph we can see that the MapReduce Library with MPI (part c) has
a considerable parallel communication overhead and thus it takes significant time to run on very small
graphs compared to the other implementations (ex: bull).

In terms of running time the performance of first two implementations - ”MapReduce C++ Library”
and " Self MapReduce with MPI” | is fairly similar and better than the third implemnetation - " MapRe-
duce MPI Library”. A possible reason could be the significant parallel communication overhead in the
third.

Page 17 of

	Design Philosophy, Objectives and Workflow
	The PageRank Algorithm
	Problems with Convergence of I
	Solving the Problem
	Google Matrix
	Choosing alpha

	Optimizing the Calculation
	Simplifying Formula
	Calculating M x I(k)

	Data Structures
	Graphs
	Columns
	Initialization

	Mapreduce C++ Library
	Our Implementation
	Calculating Factor using Mapreduce
	Calculating PageRank using Mapreduce

	Mapreduce MPI Library
	In terms of Principle
	In terms of Implementation
	Calculating Factor using Mapreduce of MPI
	Calculating Pagerank using Mapreduce of MPI

	Self-implemented Mapreduce Library using MPI
	Observations and Conclusions
	Execution Time of Different Implementations
	Graphs and Analysis
	MapReduce C++ Library
	MapReduce Self with MPI
	MapReduce with MPI Library
	Comparative Analysis of Different Implementations

	Observations and Explanation of Graph Trends

