Math and proofs for the quantum algorithms implemented in the code
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1 Important notes

A few things that cause weird behavior;

e if you get probabilities that sum to more than one, you probably applied a controlled gate with repeated qubits; i.e.
apply a controlled-not gate with control and target both being the same qubit.

e Be very careful with operations involving unsigned ints and ints. I decided to make most types in the code unsigned,
but this often causes strange things to happen, and caused me many minutes of confusion. If in doubt, be very explicit;
convert everything to an int when doing loops and calculations, and then convert back to unsigned int when sending
values into functions.

e When computing modulo powers, use my mod_power (a, x, N) function from methods.h instead of (int)pow(a, x)
% N, because the latter often causes an overflow if a or x are large enough. The mod_power function works based off of
Theorem 3.

2 Grover search algorithm

Let {|Jz) | 0 < 2 < N} be a basis in order (for the code, |0) corresponds to |00..00), |2) corresponds to |00..10), [N — 1)
corresponds to [11..11), ...)

Consider that we are given some unitary operator U, such that

) fr=w
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Our goal is to ﬁnd w (U, is a ‘black box’, we cannot look inside). Let |s) be the equal superposition of all basis states
ls) = \F Z \m) and the Grover dlffusmn operator be defined as D = 2|s) (s| — I.

2.1 Steps
1. Start with the register in state |¢)) = |0) = |00...00); there must be at least log,(N) number of qubits in order to have
the necessary N basis states
2. Apply the Hadamard gate to each qubit so that [¢)) = |s)
3. Apply U, to the system |¢), then apply D to the system |)

. . . -
4. Perform step 3 a total of r times, where r is the closest integer to Tarem (V) 1/2

5. Perform a measurement to collapse the system into a basis state; the resulting basis state will, with high probability,

be [¢) = |w)

2.2 Why it works

Let |s') = ﬁzm 0.0 1) s0 that [s) = /22 s \F |w). |s') and |w) are orthonormal; use them to define an
orthonormal basis {|s’),|w)}. In this basis,
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Thus, the total operator that we define in step 3 above is

by - L( N-2 -—2/N-1
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Notice that this can be written as the standard rotation operator

Ry — (cps 0 —sin 0)

sinf  cosf

with
% = cosf &N_l = sin ¢

= cos?(0/2) — sin®(6/2) = 2sin(6/2) cos(6/2)

=2cos?(0/2) -1 — — 25in(6/2) %

where we plug in the result of cos(6/2) on the third line on the left into the third line on the right. Thus, at every iteration,
we rotate our state |¢)) by an angle 6 = 2 arcsin(l/ﬁ) counterclockwise in the (|s'), |w)) plane.

Note that we start off rotated counterclockwise at an angle ¢ in the (|s'),|w)) plane, where cos ¢ = = /Y=L This is

equivalent to sin¢ = 1/v/N, or ¢ = /2. We apply the operation DU,, r times to our state |¢)) that is mltlally at |s). The
goal is to make it that (w|y) = (w| (DU,)" |s) is maximum. Thus, we need to rotate an angle of 7/2 — ¢, because we start
off offset from |s’) by ¢ and we want to get to |w) which is offset from |s’) by 7/2.

Therefore, we want that 70 = 7/2 — ¢. Plugging in for ¢ = 6/2 and sin(/2) = 1/v/N, we find that

s 1
r=—x -

4arcsin(1/\/ﬁ) 2

Of course, we need to apply it an integer number of times, so we pick the closest integer to r. Note that for large IV,

rzﬂ\/ﬁ/él.

Applying the Hadamard gate to each qubit at the beginning is how we initialize the initial |¢)) = |s) state.

3 Quantum Fourier transform (QFT)

The quantum Fourier transform is very similar to the classical DFT. It is defined to be the unitary operator F' that operates
on the basis states as follows;

N—
Flj) = TZ p(2mijk/N) k)

With n qubits, there are N = 2™ basis states. We can see then that in this basis, the matrix of F' is defined component wise
by

wik

vN
I will not go into detail on how this transformation can be mapped to a series of one and two qubit logic gates; [1] pages
217-220 has a very good explanation, and I fear I would just plagiarize if I tried to explain it here.

Fj, = where w = exp(2mi/N)

In the end, we apply the Hadamard gate O(n) times and the Controlled-Phase gate O(n?) times, then the swap gate O(n/2)
times (see below). The algorithm can be seen in the code.



3.1 Swap gate

When swapping two qubits, we have the basis {|00) , |01), [10) , |11)}, so the operations corresponding to the first and last basis
element should be the identity, and the operations corresponding to the middle two should be the NOT gate. Thus,

1 0 00
0 010
Uswap = 01 0 0
0 0 01

Consider the Controlled-Not gate in this basis. If we want to control with the first qubit and NOT the second, then the
operations corresponding to the first two basis elements should be the identity, because the control is zero, and the operations
corresponding to the second two should be the NOT gate. Call this U(lj%\lot' If we want to control with the second qubit and
NOT the first, then the operations corresponding to the first and third basis elements should be the identity because the
control is zero, and the operations corresponding to the second and fourth basis elements should be the NOT gate. Call this
UL, Thus,

1 0 0 O 1 0 0 0
01 00 0 0 0 1
Ué%\fot = 0O 0 0 1 Ué%\Tot = 0 0 1 0
00 1 0 01 0 0

By matrix multiplication, we see that
12 21 12
Uswap = UCNotUCNotUCNot

In other words, applying the swap gate to qubits ¢ and j is equivalent to applying the Controlled-Not gate three times; the
first and third time with the control being qubit ¢ and target qubit j, and the second time with the control being qubit j
and the target qubit <.

4 Shor factorization algorithm

Using quantum computers to compute the factors of a number.

4.1 Necessary lemmas and theorems

Theorem 1. Define the order, or period, of a mod N to be the smallest r > 1 such that
a"=1 mod N
ie a®t" =a® mod N. Ifa and N are coprime, then a period v must exist and r < N.

Proof. Consider the list [a! mod N,a? mod N, ...,a mod N]. Since ged(a, N) = 1, 0 is not in this list, meaning that this
list can only contain the numbers (1,2,..., N — 1). Thus we have a list of N elements but only N — 1 possible numbers; by
the Pigeonhole principle, the list must contain at least one repeated element, implying that there exists an 0 < m < N and
an 0 <n < N with m > n such that

a” mod N=a" mod N

Therefore, the period is r = m — n where 0 <m —n < N. O
Lemma 1. ged(a,b) = ged(a, b+ a)

Proof. Let ¢1 = ged(a,b) and g2 = ged(a,b + a). Since gila and ¢1]b, it must be that gi|a + b. Similarly, since gz|a and
g2]a + b, it must be that gs|b. Thus, g1 = go. O



Theorem 2. In order to compute ged(a,b), we execute the following three assignments in order until b= 0:
t="0;b=rem(a/b); a =t;
When b = 0, a has become the gcd.

Proof. Show that g = ged(a,b) = ged(a,rem(b/a)). From this, the algorithm is clear, as is it just a recursive occurrence.

We have that a =r mod b where r is rem(b/a). Thus, a — r = zb for some integer z. By Lemma 1,
ged(b,r) = ged(b,r + b) = ged(b,r + 2b) = ... = ged(b, r + 2b) = ged(b, a)
O
Lemma 2. Bezout’s identity states that for any nonzero integers a and b, there exists integers x and y such that ax + by =

ged(a, b).

Proof. This is easy to see; since a/ ged(a,b) and b/ ged(a,b) are both integers, we have that xz1 + yzo = 1 where z1, 25 are
integers. Thus, pick y to be an integer with yzo =1 mod z;, then z = (1 — yz2)/z; is an integer. Note that we can pick
such a y so long as z1 # z5. If 21 = 29, then a = b, and the identity is trivial. O

Theorem 3. For positive integers a, x, and N,

a® mod N =(a mod N)* mod N

Proof. a can be written a = a9 + AN where a9 < N. Then,

a® mod N = (ap + AN)” mod N
= (aj + N(stuff)) mod N
=a; mod N
=(a mod N)* mod N

Lemma 3. If N|b® — 1, then
1. ged(b—1,N)=1—b=—-1 mod N
2. gedb+1,N)=1—b=1 mod N

Proof.

1. By Lemma 2, there exists  and y such that (b — 1)z + Ny = 1. Thus, (b> — 1)z + N(b+ 1)y = b+ 1. Since N|b? — 1,
it must be that N|b+ 1 in order for that relation to hold. Thus, b= —1 mod N.

2. By Lemma 2, there exists x and y such that (b+ 1)z + Ny = 1. Thus, (b> — 1)z + N(b— 1)y = b — 1. Since N|b* — 1,
it must be that N|b — 1 in order for that relation to hold. Thus, b=1 mod N.

O

Theorem 4. Let N not be even or an integer power of a prime (modular arithmetic is often different when dealing with
primes). If a is coprime with N (ie gcd(a, N) = 1) and the period of f(x) = a® mod N isr € evens with a™/> # —1 mod N,
then ged(a™? + 1, N) and ged(a™/? — 1, N) are both nontrivial factors of N.

Proof. Let r be the smallest integer such that a" =1 mod N = N|(a" —1).
Assume that we have found r and it is even. Define b = a’/? mod N. We know that a"/2 # 1 mod N because we
found that r was the smallest integer such that a” =1 mod N. Thus, b # 1 mod N, and by assumption b Z —1 mod N.

(Note that there exists an a such that a"/? #1,—1 mod N via the Chinese remainder theorem since N is not a prime power).

Thus, d = ged(b — 1, N) is a proper factor of N, because 1 < d < Nj;



e if d = 1, then by Lemma 3, since N|(a" —1=1%> 1), b= —1 mod N, which contradicts our assumption.
e if d = N, then N|b— 1 meaning that b =1 mod N which contradicts what we found earlier.
Similarly, f = ged(b+ 1, N) is a proper factor of N, because 1 < f < Nj;
e if f =1, then by Lemma 3, since N|(a” —1=0? —1), b=1 mod N, which contradicts what we found earlier.

e if f =N, then N|b+ 1 meaning that b = —1 mod N which contradicts our assumption.

4.1.1 Continuous fractions expansion

The continuous fraction expansion of ¢ is defined by

1
c = lag,a1,az,as,...] = ap+ PRI —
a1 (l2+ﬁ
Consider truncating this expansion:
[ao] =
a = an = —
0 0 1
1 apai + 1
[ag, a1] = ag + — = ———
al al
lag, a1, as] = ag + 1 __apaiag +ap + az
0,01, 02] = Qo =
T a + é aras +1
Let n; be the numerator and d; be the denominator for
[ |==
apg, A1, ..., 5| = —
b b b 3 dz

From the above expansion, it is easy to see that (easier if you do one or two more expansions)
do=1 dy=ay di = a;d;i—1 + d;i_2

ng =ag ni =apa +1 N = a;Ni—1 + Nij—a
Similarly, if ¢ = [ag, a1, ...] then

e { 1 J 1
ap=|c] & =c—ap a1 = | = Eit1 = — — Gis1
! & o E; “t

(2

where £ is defined to aid in calculating the recurrence.

4.2 Quantum period-finding method

We want to find the period of f(z); ie v such that f(z) = f(x + r). Assume that 0 < f(z) < N for all z (this is the only
kind of function of interest for Shor’s algorithm, which uses a function modulo N).

We will use two registers; the first with L, qubits, and the second with Lo qubits.

We need to choose L; such that register one has enough bits to hold numbers from 0 to > N?; pick N? < 2f1 < 2N?2,
so 2logy N < Ly < logy(2N?). Let ¢ = 2F1. We want the first register to be able to hold ¢ > N? numbers so that



Q/r > N, meaning that there are at least N different = that can be stored that produce the same f(x) (see below for more
detail)?.

We need to choose Lo such that register two has enough bits to hold numbers from 0 to N — 1; so Ly = |log, N | + 1.

1.

Register one has L qubits; register two has Lo qubits. Initialize [¢/) = |0) |0). Or, if you like, our register has L; 4+ Lo
qubits, and we initialize

1) =10,0)
I will use the ladder notation; there are L; qubits before the comma, and Lo qubits after the comma.

Make a uniform superposition in the first register. This can either be done by apply the Hadamard gate to qubits 0
through L; — 1, or by applying the quantum Fourier transform to qubits 0 through L; — 1. Either way, we now have

== |$70>
\/E]xzo

As usual, |z) is our base ten number representation of the qubit representation of 2 in binary; ie |010110...).

Apply the oracle function to register two with inputs from register one: ie |j,0) — |4, f(j)). Thus, we now have

1l

) = %;)Iz,f(w

This entangles the two registers! This oracle transformation all happens at once due to quantum parallelism, the reason
quantum computers are of interest. In real life, I think that the quantum circuit implementation of the oracle must be
created specifically for a given function f. Lucky for us, we’re using C++4, so we just use the apply_function method
to the register.

. Measure the second register. Say our measurement results in the second register being w (ie we measure qubits L,

through L; + L — 1 and convert to base ten and we get w). Then, because the registers are entangled, our state
becomes

) = Z |z, X = {all z s.t. f(z) =w)}

\% HX reX

Now we apply the quantum fourier transform to the first register. Recall the QFT from Section 3; we have w =
exp(2mi/q), then applying the QFT to v gives

) = \/”7 Z Zwkm |k, w)

CEGX

Measure register one. Now the whole system is collapsed; we are now in the state
|¢) = [k, w)

The probability of measuring a state |k, w) (ie measuring the value k since we already collapsed register two — w is

guaranteed) is
. 2 2
Pr = —m

q|]]

Sut| =

rzeX

Z exp(2mizk/q)

1q is the number of numbers register 1 can hold. g must be at least 2N so that even if the period is r = N — 1 (which is the maximum period
it can have according to Theorem 1), the first register can still hold enough numbers to have at least two x such that f(zo) = f(x1) because
2o + 7 = x1. Most literature I have found says that we should initialize ¢ such that N2 < g < 2N2 so that q/r > N even when r = N — 1; thus
there will be at least N different = such that f(zo) = f(z1) = ... = f(xn) where z; = z¢ +ir. But for the code, I've found that ¢ = 2N works fine.
By using a smaller ¢, we have a smaller probability of measuring r, but since simulating a quantum register on a classical computer is exponential,
it is faster for the code to have a lower probability of measuring » and maybe having to try again.



We know that for each x € X, x = xg + jr where ¢ and j are some integers and r is the period, because our state is
collapsed such that all = satisfy f(z) = w. Thus, f(z¢) = f(xo + jr). Therefore, the probability becomes

2 2
[1X1] [1X1]
1

1
= — exp(2mi(zo + jr)k/q)| = ——— exp(2mijrk/q)
T | T |

Pk

(T think it is possible for the sum to start at 7 = 0 and go to ||X|| — 1, but it doesn’t matter). This probability is largest
when the sum basically runs entirely on the real axis; thus the probability is larger as rk/q approaches an integer.

Therefore, when we measured k, there is a very high probability that r = Aq/k for some integer \.

Thus, at the end of this, we have, with high probability, measured a k such that
kA

q T
for some integer A, where r is the period.

To extract r, we use the continuous fraction expansion described above in Section 4.1.1. We have that ¢ = k/q = A\/r. We
iterate through the denominators d; that come out of the recurrence and test to see if any of them satisty f(z+r) = f(x).

Note that we know from Theorem 1 that the period satisfies » < N, so we can truncate our continuous fractions expansion
if the denominator is ever greater than or equal to N, and then we must start over at step one.

4.3 Finding factors with Shor’s algorithm

Method to find factors of a number N. (Note that N must not be even or an integer power of a prime number.)
1. Randomly pick a positive integer 1 < a < N. If ged(a, N) # 1, then we have found a nontrivial factor. done

2. Otherwise, a is coprime with N. Use the quantum period-finding method discussed above to compute the period r of
f(z) = a® mod N. (In my code, to apply a®* mod N directly may cause an overflow depending on the a and the z.
Thus, I write a function that iteratively calculates a® mod N based on Theorem 3).

3. If ris odd or a”/? = —1 mod N, restart at step 1. Otherwise, we have sufficient conditions to use Theorem 4. Thus,
both ged(a’/? 4+ 1, N) and ged(a™/? — 1, N) are nontrivial factors of N. done

Note that we can compute the ged’s for Shor’s algorithm using Theorem 2.

5 Quantum addition

If we initialize our register to be a particular state with probability one, than we can add deterministically by simply applying
particular gates. If our register is in a superposition, then the each state will add in a particular way, but the result is random
from the measurement.

5.1 Ripple carry adder

This is not exactly a quantum algorithm; I will not explain in detail, as this algorithm is essentially the same as the addition
of binary numbers via the classical ripple carry algorithm, the only difference being that AND and XOR gates are renamed
to Tofolli and Controlled-Not gates (unitary operators).

Anyone interested should simply add two binary numbers by hand and see how it works and how to carry digits. For the
addition of two n bit numbers, the algorithm I implement uses 3n qubits, with qubits 0 through n—1 storing the first number,
n through 2n — 1 storing the second number, 2n through 3n — 2 being intermediate bits that store information about carrying
over, and the 3n — 1 bit is an overflow (since adding two n bit numbers can result in a n 4+ 1 bit number).

To see the full algorithm, see the code.



5.2 Adder using the QFT

Consider the numbers = and y represented in binary with n qubits. Begin with the state |z, y). We want to find an operator
A that completes the sequence below:

1 1
|z, y) % T Zexp(Qm’km/Q”) |k, v) 4 T Zexp(?m’k‘(m +y)/2") |k, 2) % |(z +y) mod 2", 2)
k k

where we don’t really care what z is. Again, for fear of plagarizing, I refer the reader to page 6 of [2] to see how this operation
A can be decomposed into Controlled-Phase gates. To see how it works, one must represent the result of the QFT in terms
of decimals in binary. Represent x and y in terms of a string of binary digits. Then the phases in the exponent of the Fourier
sum can be easily represented since dividing by 2™ in binary is like dividing by 10™ in base ten.

The full combination of gates can be seen in the code.
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