
Lecture Notes in Adaptive Filters
Third Edition

Jesper Kjær Nielsen
jkn@create.aau.dk
Aalborg University

Søren Holdt Jensen
shj@es.aau.dk

Aalborg University

Last revised: July 5, 2019

http://kom.aau.dk/~jkn
jkn@create.aau.dk
http://kom.aau.dk/~shj
shj@es.aau.dk

Nielsen, Jesper Kjær and Jensen, Søren Holdt
Lecture Notes in Adaptive Filters

Copyright c© 2011-2019 Jesper Kjær Nielsen and Søren Holdt Jensen, except where otherwise stated.
All rights reserved.
1. edition: June 7, 2011
2. edition: September 19, 2012
3. edition: July 4, 2019

Audio Analysis Lab, CREATE
Aalborg University
Rendsburggade 14
DK-9000 Aalborg
Denmark

These lecture notes have been printed with Computer Modern 10pt and been typeset using LATEX2ε on
a computer running the GNU/Linux operating system. All of the figures have been created using GNU-
PLOT, PGF and the macro packages TikZ and PGFPLOTS. Simulations have been run in MATLABTM.

Contents

Preface v

1 Introduction, Wiener-Hopf Equations, and Normal Equations 1
1.1 Review of the Basics . 1

1.1.1 Linear Algebra . 1
1.1.2 Optimisation . 2
1.1.3 Stochastic Processes . 3

1.2 Block Diagram of Adaptive Filtering . 5
1.2.1 Mean-Squared Error and Squared Error cost functions 5

1.3 The Wiener-Hopf Equations . 6
1.3.1 Principle of Orthogonality . 7
1.3.2 The Modified Yule-Walker Equations . 7

1.4 The Normal Equations . 7
1.4.1 Principle of Orthogonality . 8
1.4.2 Estimation of the (Cross-)Correlation . 9
1.4.3 Data Windowing . 9

2 Steepest Descent and Least-Mean-Square Adaptive Filters 11
2.1 Review of the Basics . 11

2.1.1 The Eigenvalue Decomposition . 11
2.2 The Wiener-Hopf Equations . 12
2.3 The Method of Steepest Descent . 15

2.3.1 Basic Idea . 15
2.3.2 Transient Analysis . 15

2.4 Least-Mean-Square Adaptive Filters . 17
2.4.1 Basic Idea . 17
2.4.2 Transient Analysis . 18
2.4.3 Steady-State Analysis . 20
2.4.4 Computational Cost . 21

3 Normalised LMS and Affine Projection Algorithm 23
3.1 Review of the Basics . 23

3.1.1 Inversion of a 2 by 2 Block Matrix . 23
3.1.2 The Method of Lagrange Multipliers . 23

3.2 Overview over Adaptive Filters based on the Mean-Squared Error Cost Function 25
3.2.1 Model for the Analysis of SGMs . 26
3.2.2 How to Analyse Adaptive Filters . 27

3.3 LMS Revisited . 28

iii

iv Contents

3.3.1 Transient Analysis . 28
3.3.2 Steady-State Analysis . 29

3.4 Normalised LMS Adaptive Filters . 30
3.4.1 Transient Analysis . 30
3.4.2 Steady-State Analysis . 31
3.4.3 Computational Cost . 31
3.4.4 Another Derivation of the NLMS Algorithm 31

3.5 Affine Projection Adaptive Filters . 32
3.5.1 Transient Analysis . 34
3.5.2 Steady-State Analysis . 34
3.5.3 Computational Cost . 34

4 Recursive Least-Squares Adaptive Filters 35
4.1 Review of the Basics . 35

4.1.1 The Matrix Inversion Lemma . 35
4.2 Method of Least-Squares . 35

4.2.1 Weighted Least-Squares . 36
4.2.2 Weight Functions . 38

4.3 The Recursive Least-Squares Algorithm with an Exponential Weight Function . . 40
4.3.1 Selection of the Forgetting Factor . 42
4.3.2 Transient Analysis . 43
4.3.3 Steady-State Analysis . 43
4.3.4 Computational Cost . 44

Bibliography 45

A Summary 47

B Transient and Steady-State Analysis of the LMS Adaptive Filter 51
B.1 A Special Fourth Order Moment of a Gaussian Random Vector 51
B.2 The Analysis Model . 52
B.3 Transient Analysis . 52

B.3.1 Mean-Square Convergence . 52
B.3.2 Learning Curve . 58

B.4 Steady-State Analysis . 58
B.4.1 Mean-Square Deviation . 58
B.4.2 Excess Mean-Square Error . 60
B.4.3 Misadjustment . 61

Preface

*
* Your warranty is now void.
*
* By installing this knowledge onto your brain, you accept that we, the
* authors of the present lecture notes, are not responsible for potential
* confusion, wasted time, failed exams, or misguided missiles.
*
* You will most likely encounter unclear statements and remarks, poor English
* usage, and errors when you read the present notes. Therefore, use these
* notes at your own risk, and please help us correct these problems by giving
* us some feedback.
*\

The present lecture notes were written for the annual course on adaptive filters at Aalborg
University. The content of the course is now a part of the annual course called Array and Sensor
Signal Processing. The notes are written for the lecturer, but they may also be useful to the
student as a supplement to his/her favourite textbook. Consequently, the notes are very concise
and contain only what we believe to be the basics of adaptive filtering. Moreover, we have also
made some important simplifications.

1. We use real-valued numbers and not complex-valued numbers. Although the latter is more
general, it is less confusing and leads to fewer errors when real-valued numbers are used.

2. We only consider FIR adaptive filters.

3. The signals have zero mean. This is a standard assumption used in most textbooks.

Each of the lectures contains an amount of material suited for a lecture lasting for approximately
90 minutes. The appendices contain a summary and some supplementary material.

These lecture notes are always work in progress. Therefore, if you have found an error, have
a suggestion for a better statement and/or explanation, or just want to give us some feedback,
then do not hesitate to contact us.

v

vi Preface

Lecture 1

Introduction, Wiener-Hopf
Equations, and Normal Equations

Review of the Basics

Linear Algebra
Notation

An N -dimensional vector is written as

x =




x1
x2
...
xN


 =

[
x1 x2 · · · xN

]T (1.1)

where (·)T denotes the transpose. An N ×M -dimensional matrix is written as

A =



a11 · · · a1M
...

aN1 · · · aNM


 . (1.2)

Matrix Properties

Let A be a square matrix. We then have that

A is orthogonal ⇐⇒ AT = A−1 ⇐⇒ I = AAT = ATA (1.3)
A is symmetric ⇐⇒ AT = A (1.4)
A is skew-symmetric ⇐⇒ AT = −A . (1.5)

1

2 Lecture 1. Introduction, Wiener-Hopf Equations, and Normal Equations

Let Q(x) = xTAx where A is a square and symmetric matrix. We then have that

A is positive definite (p.d.) ⇐⇒ Q(x) > 0 ∀ x 6= 0
A is positive semidefinite (p.s.d.) ⇐⇒ Q(x) ≥ 0 ∀ x
A is negative definite (n.d.) ⇐⇒ Q(x) < 0 ∀ x 6= 0
A is negative semidefinite (n.s.d.) ⇐⇒ Q(x) ≤ 0 ∀ x
A is indefinite otherwise.

The interested reader can find more on linear algebra in for example [1] and [2].

Optimisation
Gradiant and Hessian

Let f(x) be a scalar function with continuous second-order partial derivatives. The gradient
vector of f(x) is defined as

g(x) = ∇f(x) = ∂f

∂x
=
[
∂f
∂x1

∂f
∂x2

· · · ∂f
∂xN

]T
. (1.6)

The Hessian matrix of f(x) is symmetric and defined as

H(x) = ∇[gT (x)] = ∇[∇T f(x)] = ∂2f

∂x∂xT

=




∂2f
∂x2

1
· · · ∂2f

∂x1∂xN

...
∂2f

∂xN∂x1
· · · ∂2f

∂x2
N


 . (1.7)

When f(x) consists of a constant term, we have that

f(x) = c =⇒
{
g(x) = 0
H(x) = 0

.

When f(x) consists of a linear term, we have that

f(x) = vTx = xTv =⇒
{
g(x) = v

H(x) = 0
.

When f(x) consists of a quadratic term, we have that

f(x) = xTAx =⇒
{
g(x) = (A+AT)x = 2Ax
H(x) = A+AT = 2A

where the last equality for the gradient and the Hessian holds if and only if A is symmetric.

Unconstrained Optimisation

We can solve an unconstrained optimisation problem by following a five step recipe.

1.1. Review of the Basics 3

1. Construct the cost function f(x).

2. Find the gradient g(x) = ∂f
∂x .

3. Solve g(x) = 0 for x. The solutions {xi} are called critical points.

4. Find the Hessian H(x) = ∂2f
∂x∂xT and compute it for all the critical points. If

H(xi) is p.d =⇒ f(xi) is a local minimum
H(xi) is n.d =⇒ f(xi) is a local maximum
H(xi) is indefinite ⇐⇒ f(xi) is a saddle point
H(xi) is p.s.d or n.s.d ⇐⇒ further analysis is necessary [3, p. 41]

5. Find the global minimiser/maximiser by evaluating f(xi) for every critical point.

If f(x) is a convex1 function, we have the following useful fact [3, p. 57]

f(x) is a convex function ⇐⇒ H(x) is p.d. ∀ x .

Thus, there is only one critical point corresponding to a minimum if and only if f(x) is a convex
function.

The interested reader can find more on optimisation in for example [3] and [4].

Stochastic Processes
Let X(n) for n = n0, n0 + 1, . . . , n0 +N −1 be a stochastic process with joint probability density
function (pdf) pX(x(n0), x(n0 + 1), . . . , x(n0 +N − 1)).

Mean, Covariance and Correlation

The mean, covariance and correlations sequences are defined as

Mean sequence: µX(n) = E[X(n)] =
∫
x(n)pX(x(n))dx(n) (1.8)

Covariance sequence: cX(n, n+ k) = cov(X(n), X(n+ k))
= E[(X(n)− µX(n))(X(n+ k)− µX(n+ k))] (1.9)

Correlation sequence: rX(n, n+ k) = E[X(n)X(n+ k)] , (1.10)

and they are related by

cX(n, n+ k) = rX(n, n+ k)− µX(n)µX(n+ k) . (1.11)

For a finite number of observation, we may define the mean vector

µX =
[
µX(n0) µX(n0 + 1) · · · µX(n0 +N − 1)

]T
, (1.12)

the covariance matrix

CX =




cX(n0, n0) · · · cX(n0, n0 +N − 1)
...

cX(n0 +N − 1, n0) · · · cX(n0 +N − 1, n0 +N − 1)


 , (1.13)

1If we should be completely accurate, we should distinguish between weakly and strictly convex functions.
However, in this note, we only use convexity in the strict sense.

4 Lecture 1. Introduction, Wiener-Hopf Equations, and Normal Equations

and the correlation matrix

RX =




rX(n0, n0) · · · rX(n0, n0 +N − 1)
...

rX(n0 +N − 1, n0) · · · rX(n0 +N − 1, n0 +N − 1)


 . (1.14)

They are related by
CX = RX − µXµTX . (1.15)

CX and RX are symmetric and p.s.d. They are p.d. if X(n) is not perfectly predictable.

Stationarity and Wide Sense Stationarity (WSS)

X(n) is stationary ⇐⇒ pX(x(n0 +m), x(n0 + 1 +m), . . . , x(n0 +N − 1 +m))
⇓ = pX(x(n0), x(n0 + 1), . . . , x(n0 +N − 1)) ∀ n0,m,N

X(n) is WSS ⇐⇒
{
µX(n) = µX (a constant)
rX(n, n+ k) = rX(0, k) (a function of k not n)

Since rX(0, k) does not depend on n, it is often written as rX(k). A Venn diagram for all
stochastic processes is shown in Fig. 1.1.

stationary
processes

WSS
processes

all stochastic
processes

Figure 1.1: A Venn diagram for all stochastic processes.

Let Y (n) be another stochastic process.

X(n) and Y (n) are jointly WSS ⇐⇒





X(n) is WSS
Y (n) is WSS
rX,Y (n, n+ k) = rX,Y (0, k)

where rX,Y (n, n+ k) is the cross-correlation sequence.

Estimation of Statistics

Often, we wish to estimate the statistics of X(n) from a single realisation x(n). If X(n) is (wide
sense) stationary and ergodic2 in some sense (for example, in mean, in correlation, in power,
or in distribution), we may estimate some or all of its statistics from a single realisation x(n).
Examples are the unbiased estimators of the mean

µ̂X = 1
N

n0+N−1∑

n=n0

x(n) (1.16)

2Ergodicity basically means that we can infer something about the statistics of a stochastic process from a
single realisation of it.

1.2. Block Diagram of Adaptive Filtering 5

and the correlation sequence

r̂X(k) = 1
N − k

n0+N−1−k∑

n=n0

x(n)x(n+ k) . (1.17)

The interested reader can find more on stochastic processes in for example [5] and [6].

Block Diagram of Adaptive Filtering
The adaptive filtering problem is shown in Fig. 1.2. From the figure, we have that

d(n)

u(n) wm Σ e(n)
y(n)

−

Figure 1.2: Block Diagram of Adaptive Filtering in a WSS environment.

u(n): zero-mean, WSS input signal

wm: M -tap FIR-filter with impulse response w0, w1, . . . , wM−1

y(n): output signal given by

y(n) =
M−1∑

m=0
wmu(n−m) (1.18)

d(n): zero-mean, WSS desired signal

e(n): error signal

Moreover, u(n) and d(n) are assumed to be jointly WSS.

Mean-Squared Error and Squared Error cost functions
Define

w =
[
w0 w1 · · · wM−1

]T (1.19)

u(n) =
[
u(n) u(n− 1) · · · u(n−M + 1)

]T (1.20)
Ru = E[u(n)uT (n)] (1.21)
rud = E[u(n)d(n)] . (1.22)

Here, Ru is the correlation matrix of the input signal vector u(n), and rud is the cross-correlation
vector between the input signal vector u(n) and the desired signal d(n).

6 Lecture 1. Introduction, Wiener-Hopf Equations, and Normal Equations

For n = n0, n0 + 1, . . . , n0 +K − 1 with K ≥M , define

A =
[
u(n0) u(n0 + 1) · · · u(n0 +K − 1)

]T (1.23)

d =
[
d(n0) d(n0 + 1) · · · d(n0 +K − 1)

]T (1.24)

e =
[
e(n0) e(n0 + 1) · · · e(n0 +K − 1)

]T
. (1.25)

Then
e(n) = d(n)− uT (n)w ⇐⇒ d(n) = uT (n)w + e(n) (1.26)

and
e = d−Aw ⇐⇒ d = Aw + e . (1.27)

We observe the input signal u(n) and the desired signal d(n), and we wish to find the filter vector
w which minimises the error in some sense. Two popular choices for the cost function of this
problem are

Mean-squared error: J1(w) = E[e(n)2] (statistics is known) (1.28)

Squared error: J2(w) =
n0+K−1∑

n=n0

e2(n) = eTe (statistics is unknown) (1.29)

If rank(A) > M , Eq. (1.27) constitutes an overdetermined system of equations which do not
have an exact solution that makes J2(w) = 0. The problem of minimising the squared error is
often referred to as the method of least-squares, and the argument minimising the squared error
is referred to as the least-squares solution. Moreover, the squared error divided by the number
of elements in the error vector e can be seen as an unbiased estimate of the mean-squared error
when u(n) and d(n) are assumed to be jointly WSS. That is,

E

[
1
K
J2(w)

]
= J1(w) . (1.30)

The Wiener-Hopf Equations
We want to solve the following unconstrained optimisation problem

wo = arg min
w

J1(w) (1.31)

where wo is the vector containing the optimal filter coefficients. We use the five step recipe in
Sec. 1.1.2 to solve the optimisation problem.

1. Construct the cost function

J1(w) = E[e(n)2] = E[(d(n)− uT (n)w)2] = E[(d(n)− uT (n)w)T (d(n)− uT (n)w)]
= E[d(n)2] + E[wTu(n)uT (n)w]− E[d(n)uT (n)w]− E[wTu(n)d(n)]
= E[d(n)2] +wTE[u(n)uT (n)]w − 2wTE[u(n)d(n)]
= σ2

d +wTRuw − 2wTrud (quadratic cost function) (1.32)

2. Find the gradient
g(w) = (Ru +RT

u)w − 2rud = 2Ruw − 2rud (1.33)

1.4. The Normal Equations 7

3. Solve g(w) = 0 for w

g(w) = 2Ruw − 2rud = 0
m

Ruw = rud (Wiener-Hopf Equations) (1.34)
m

w = R−1
u rud (If Ru is invertible) (1.35)

4. Find the Hessian
H(w) = 2Ru (1.36)

which is p.d. for all w if u(n) is not perfectly predictable.

5. This implies that

• J1(w) is a convex function,
• Ru is invertible,
• wo = R−1

u rud is the global minimiser, and
• J1(wo) = σ2

d − rTudR−1
u rud .

The solution wo is often referred to as the least-mean-squares solution.

Principle of Orthogonality
The Wiener-Hopf equations can also be derived from the principle of orthogonality. For m =
0, 1, . . . ,M − 1, the principle of orthogonality states

0 = E[u(n−m)eo(n)] ⇐⇒ 0 = E[yo(n)eo(n)] ⇐⇒ wo = R−1
u rud . (1.37)

where eo(n) and yo(n) are the error and the filter output, respectively, when the filter is optimised
in the mean-squared sense.

The Modified Yule-Walker Equations
The Wiener-Hopf equations are closely related to the Modified Yule-Walker equations. To see
this, let d(n) = u(n+ 1). Then

rud = E[u(n)d(n)] = E[u(n)u(n+ 1)] = pu (1.38)

which implies that

Ruw = pu (Modified Yule-Walker Equations) . (1.39)

The Normal Equations
We want to solve the following unconstrained optimisation problem

wo = arg min
w

J2(w) (1.40)

where wo is the vector containing the optimal filter coefficients. We use the five step recipe in
Sec. 1.1.2 to solve the optimisation problem.

8 Lecture 1. Introduction, Wiener-Hopf Equations, and Normal Equations

d

R(A)

P ud = Awo

eo = P ⊥
u d

Figure 1.3: The principle of orthogonality for the squared error cost function.

1. Construct the cost function

J2(w) = eTe = (d−Aw)T (d−Aw)
= dTd+wTATAw − 2wTATd (quadratic cost function) (1.41)

2. Find the gradient

g(w) = (ATA+ATA)w − 2ATd = 2ATAw − 2ATd (1.42)

3. Solve g(w) = 0 for w

g(w) = 2ATAw − 2ATd = 0
m

ATAw = ATd (Normal Equations) (1.43)
m

w = (ATA)−1ATd (If A has full rank) (1.44)

4. Find the Hessian
H(w) = 2ATA (1.45)

which is p.d. for all w if A has full rank.

5. This implies that

• J2(w) is a convex function,
• wo = (ATA)−1ATd is the global minimiser, and
• J2(wo) = dT (I − P u)d = dTP⊥u d where P u = A(ATA)−1AT is the orthogonal
projection matrix and P⊥u is the complementary projection matrix to P u.

The solution wo is often referred to as the least-squares solution.

Principle of Orthogonality
The normal equations can also be derived from the principle of orthogonality

0 = ATeo ⇐⇒ 0 = yTo eo ⇐⇒ wo = (ATA)−1ATd . (1.46)

where eo and yo are the error vector and the filter output vector, respectively, when the filter is
optimised in the squared sense. Fig. 1.3 illustrates the principle of orthogonality.

1.4. The Normal Equations 9

Estimation of the (Cross-)Correlation
Comparing the normal equations with the Wiener-Hopf equations, we see that

R̂u = 1
K
ATA (1.47)

r̂ud = 1
K
ATd (1.48)

are the build in estimates of the correlation matrix and the cross-correlation vector, respectively,
in the method of least-squares.

Data Windowing

Recall the definition of AT in Eq. (1.23) with n0 = 1 and K = N +M − 1.



u(1) · · · u(M − 1)
u(0) · · · u(M − 2)
...

u(2−M) · · · u(0)

u(M) · · · u(N)
u(M − 1) · · · u(N − 1)

...
u(1) · · · u(N −M + 1)

u(N + 1) · · · u(N +M − 1)
u(N) · · · u(N +M − 2)
...

u(N −M + 2) · · · u(N)




In real-world applications, we only observe a finite amount of data. Assume that we observe
u(n) for n = 1, . . . , N while the remaining data for n ≤ 0 and n > N are unobserved. If we set
the unobserved data equal to zero, we obtain the structure for A shown in Fig 1.4. The various

0

0





AT =

AT
1

AT
2

AT
3

AT
4

Figure 1.4: Four different data windowing methods.

choices for A are

A1 - covariance method: n0 = M K = N −M + 1
A2 - autocorrelation method: n0 = 1 K = N +M − 1
A3 - prewindowing method: n0 = 1 K = N

A4 - postwindowing method: n0 = M K = N

The cost function and the length of e in Eq. (1.25) and d in Eq. (1.24) must be adjusted according
to the windowing method. The covariance method leads to unbiased estimates of Ru and rud in
Eq. (1.47) and Eq. (1.48), respectively.

10 Lecture 1. Introduction, Wiener-Hopf Equations, and Normal Equations

Lecture 2

Steepest Descent and
Least-Mean-Square Adaptive
Filters

Review of the Basics

The Eigenvalue Decomposition
If a square M ×M matrix A has an eigenvalue decomposition (EVD), it can be written as

A = XΛX−1 ⇐⇒ AX = XΛ (2.1)

where X contains the M linearly independent eigenvectors of A, and the diagonal matrix Λ
contains the M eigenvalues {λm}Mm=1 of A. If A does not have an eigenvalue decomposition, it
is said to be defective.

Matrix Powers

Let A have an EVD. Then

A = XΛX−1 (2.2)
A2 =

...
XΛX−1XΛX−1 = XΛ2X−1 (2.3)

An = XΛnX−1 . (2.4)

EVD of Special Matrices

Let A be a symmetric matrix. Then

A has an EVD,

A = XΛXT (X is an orthogonal matrix), and

λm ∈ R for m = 1, . . . ,M

11

12 Lecture 2. Steepest Descent and Least-Mean-Square Adaptive Filters

Let A be a p.d. matrix. Then

λm ∈ R+ for m = 1, . . . ,M .

where R+ is the set of all positive real numbers.

Matrix Trace

The trace of A is

tr(A) =
M∑

m=1
amm =

M∑

m=1
λm = tr(Λ) . (2.5)

Condition Number of a Normal Matrix

If A is a normal matrix (i.e., ATA = AAT), then the condition number of A is

κ(A) =
∣∣∣∣
λmax
λmin

∣∣∣∣ = χ(A) (2.6)

where χ(A) is the eigenvalue spread of A.

The Wiener-Hopf Equations
The adaptive filtering problem with time-varying filter coefficients is shown in Fig. 2.1. From

d(n)

u(n) wm(n) Σ e(n)
y(n)

−

Figure 2.1: Block diagram of adaptive filtering in a non-WSS environment.

the figure, we have that

u(n): zero-mean input signal

wm(n): M -tap FIR-filter with impulse response w0(n), w1(n), . . . , wM−1(n)

y(n): output signal given by yn =
∑M−1
m=0 wm(n)u(n−m)

d(n): zero-mean desired signal

e(n): error signal

2.3. The Method of Steepest Descent 13

WSS Signals

When u(n) and d(n) are jointly WSS, the filter coefficients are not time-varying. Define

w =
[
w0 w1 · · · wM−1

]T (2.7)

u(n) =
[
u(n) u(n− 1) · · · u(n−M + 1)

]T
. (2.8)

Then
e(n) = d(n)− y(n) = d(n)− uT (n)w . (2.9)

We wish to minimise

J1(w) = E[e(n)2] = E[d(n)2] +wTE[u(n)uT (n)]w − 2wTE[u(n)d(n)]
= σ2

d +wTRuw − 2wTrud (2.10)

w.r.t. w. The minimiser
wo = R−1

u rud (2.11)

is the unique solution to the Wiener-Hopf equations

Ruw = rud , (2.12)

provided that Ru is p.d.

Non-WSS Signals

If u(n) and d(n) are not jointly WSS, the optimal filter coefficients are time-varying, and we
have that

Ru(n)w(n) = rud(n) (2.13)

where

Ru(n) =




ru(n, n) · · · ru(n, n−M + 1)
...

ru(n−M + 1, n) · · · ru(n−M + 1, n−M + 1)


 (2.14)

rud(n) =
[
rud(n, n) · · · rud(n−M + 1, n)

]T
. (2.15)

We could find the optimal solution by calculating

wo(n) = R−1
u (n)rud(n) (2.16)

for every time index n. However, this approach may suffer from problems such as that

1. the computational complexity is high, and

2. the statistics is unknown.

The steepest descent algorithm solves the first problem, and the least-mean-square (LMS) adap-
tive filter solves both problems.

14 Lecture 2. Steepest Descent and Least-Mean-Square Adaptive Filters

w

J1(w)

wo

g(w(0))

−µ
2 g(w(0))

g(w(1))

−µ
2 g(w(1))

w(0) w(1)w(2)

Figure 2.2: The first three iterations of the steepest descent algorithm for a one-dimensional filter vector.

w0

w1

wo

g(w(0))

−µ
2 g(w(0))

g(w(1))

−µ
2 g(w(1))

w(0)

w(1)

Figure 2.3: The first three iterations of the steepest descent algorithm for a two-dimensional filter vector.

2.3. The Method of Steepest Descent 15

The Method of Steepest Descent

Basic Idea
The basic idea of the steepest descent (SD) algorithm is to find the unique solution wo of the
Wiener-Hopf equations through a series of steps, starting from some point w(0). The steps are
taken in the opposite direction of the gradient g(w(n)). This idea is illustrated in Fig. 2.2 and
Fig. 2.3. We update the filter coefficients by a recursive update equation given by

w(n+ 1) = w(n)− µ

2 g(w(n)) (2.17)

where µ is the step-size and g(w(n)) is the gradient of the cost function J1(w(n)). The gradient
is

g(w(n)) = 2Ru(n)w(n)− 2rud(n) . (2.18)
Since the gradient is a deterministic function, the evolution of the filter coefficient vector is also
a deterministic function.

Define the weight error
∆w(n) = wo −w(n) . (2.19)

In order for the SD algorithm to converge to the solution wo, we must require that the step-size
µ is selected such that

lim
n→∞

∆w(n) = 0 (2.20)

when u(n) and d(n) are jointly WSS. If this is true, the SD algorithm is said to be stable.
Moreover, we would like to select µ such that the ∆w(n) becomes small as fast as possible.

Transient Analysis
Assume that u(n) and d(n) are jointly WSS. We then have that

∆w(n) = wo −
(
w(n− 1)− µ

2 g(w(n− 1))
)

(2.21)

= ∆w(n− 1) + µ(Ruw(n− 1)−Ruwo) (2.22)
= (I − µRu)∆w(n− 1) (2.23)
= (I − µRu)(I − µRu)∆w(n− 2) (2.24)
= (I − µRu)n∆w(0) . (2.25)

Since the correlation matrix Ru is symmetric, it has an eigenvalue decomposition Ru = XΛXT

where X is an orthogonal matrix. That is, we may write

∆w(n) = X(I − µΛ)nXT∆w(0) (2.26)

where I − µΛ is a diagonal matrix with the m’th diagonal given by the mode 1 − µλm. For
Eq. (2.20) to be fulfilled from any starting point w(0), we must therefore require that

lim
n→∞

(1− µλm)n = 0 , for m = 1, 2, . . . ,M . (2.27)

Thus

−1 < 1−µλm < 1 , for m = 1, 2, . . . ,M (2.28)
m
−1 < 1−µλmax < 1 (2.29)

16 Lecture 2. Steepest Descent and Least-Mean-Square Adaptive Filters

Solving for µ leads to that the SD algorithm is stable if

0 < µ <
2

λmax
. (2.30)

From Eq. (2.20), we see that
|1− µλm| is close to 0 ⇐⇒ mode with fast convergence
|1− µλm| is close to 1 ⇐⇒ mode with slow convergence

The optimal step-size µo is therefore given by
µo = arg min

µ
max
λm

|1− µλm| (2.31)

subject to |1− µλm| < 1 , for m = 1, . . . ,M . (2.32)
That is, µo minimises the value of the largest (slowest) mode. We solve this optimisation problem
by the use of Fig 2.4. From Fig 2.4, we see that the optimal step-size µo satisfies

µ

|1− µλm|
1

1
λmax

1
λ2

1
λmin

µo

Figure 2.4: Finding the optimal step-size.

1− µoλmin = −(1− µoλmax) (2.33)
m

µo = 2
λmax + λmin

. (2.34)

For the optimal step-size, the slowest modes ±(1 − µoλmax) and ±(1 − µoλmin) are therefore
given by

± λmax − λmin
λmax + λmin

= ±κ(Ru)− 1
κ(Ru) + 1 (2.35)

where κ(Ru) is the condition number of the correlation matrixRu. Thus, if the condition number
is large, the slowest modes are close to one, and the convergence of the SD algorithm is slow.
Conversely, if the condition number is close to one, the slowest modes are close to zero, and the
convergence of the SD algorithm is fast.

Learning Curve

The cost function can be written as
J1(w(n)) = J1(wo) + ∆wT (n)Ru∆w(n) (2.36)

= J1(wo) + ∆wT (0)X(I − µΛ)nΛ(I − µΛ)nXT∆w(0) (2.37)

= J1(wo) +
M∑

m=1
λm(1− µλm)2n (xTm∆w(0)

)2
. (2.38)

2.4. Least-Mean-Square Adaptive Filters 17

The plot of J1(w(n)) as a function of n is called the learning curve, and a sketch of it is shown
in Fig. 2.5.

n

J1(w(n))

J1(wo)

Figure 2.5: The learning curve of the steepest descent algorithm.

Least-Mean-Square Adaptive Filters

Basic Idea
Recall, that the gradient of the mean-squared error cost function J1(w(n)) is

g(w(n)) = ∂E[e2(n)]
∂w(n) = 2E

[
∂e(n)
∂w(n)e(n)

]
= −2E[u(n)e(n)] . (2.39)

Often, we do not know the gradient, and we therefore have to estimate it. A simple estimate is

ĝ(w(n)) = −2u(n)e(n) . (2.40)

If we replace the gradient in the steepest descent algorithm with this estimate, we obtain

w(n+ 1) = w(n) + µu(n)e(n) (2.41)

which is called the least-mean-square (LMS) algorithm. A block diagram of the LMS filter is
depicted in Fig. 2.6. The LMS algorithm is the simplest stochastic gradient method (SGM). The

d(n)

u(n) wm(n) Σ e(n)

Weight Control

y(n)

−

Figure 2.6: Typical block diagram of an adaptive filter in the case where the statistics is unknown.

naming of the SGM refers to that the gradient is a stochastic process. This has the following
consequences.

18 Lecture 2. Steepest Descent and Least-Mean-Square Adaptive Filters

1. The filter coefficient vector w(n) is also a stochastic process. This makes the analysis of
the SGMs difficult. To see this, consider the cost function

J1(w(n)) = E[e2(n)]
= σ2

d(n) + E[wT (n)u(n)uT (n)w(n)]− 2E[wT (n)u(n)d(n)] . (2.42)

For the stochastic gradient methods, it is not easy to evaluate the expectations in the cost
function since w(n) and u(n) are not independent (unless M = 1 and u(n) is a white
process).

2. The weight error ∆w(n) = wo−w(n) never goes permanently to zero. That is, in steady-
state (n→∞), the filter coefficient vector w(∞) fluctuates randomly around the optimum
wo. Consequently, the mean-square error (MSE) J1(w(∞)) in steady-state is larger than
Jmin = J1(wo) by an amount referred to as the excess mean-square error (EMSE)

Jex = J1(w(∞))− Jmin . (2.43)

The ratio of the EMSE to the MSE is called the misadjustment

M = Jex
Jmin

= J1(w(∞))
Jmin

− 1 . (2.44)

In Lecture 3, we say more about these parameters and the analysis of adaptive filters.

Transient Analysis
Assume that d(n) is given by1

d(n) = uT (n)wo + v(n) (2.45)

where v(n) is white Gaussian noise with variance σ2
v and uncorrelated with u(n). Moreover,

assume that the random variables of the stochastic process u(n) are independent and identically
distributed (IID) with a Gaussian distribution and correlation matrix Ru. This assumption is
infeasible unless M = 1. Nevertheless, we make this assumption anyway in order to make the
transient analysis as simple as possible. We are concerned with

lim
n→∞

E[∆w(n)] = 0 (Convergence in mean)

lim
n→∞

E[‖∆w(n)‖2] = c <∞ (Convergence in mean-square)

where ‖∆w(n)‖2 = ∆wT (n)∆w(n) is the vector 2-norm, and c in some positive constant2.

Convergence in the Mean

By subtracting the LMS recursion from the optimal filter coefficients, we obtain

∆w(n) = wo − [w(n− 1) + µu(n− 1)e(n− 1)] (2.46)
= ∆w(n− 1)− µu(n− 1)

[
d(n− 1)− uT (n− 1)w(n− 1)

]
(2.47)

=
[
I − µu(n− 1)uT (n− 1)

]
∆w(n− 1)− µu(n− 1)v(n− 1) (2.48)

1This model is quite popular for the analysis of adaptive filters. We say more about this model in Sec. 3.2.1.
2Apparently, the definition of convergence in mean-square used for adaptive filtering analysis is different from

the usual definition where c = 0.

2.4. Least-Mean-Square Adaptive Filters 19

Taking the expectation of both sides and using the above assumptions, we obtain

E[∆w(n)] = (I − µRu)E[∆w(n− 1)] (2.49)
= X(I − µΛ)nXTE[∆w(0)] . (2.50)

This recursion is the same as in the transient analysis of the steepest descent algorithm. We
therefore have that the LMS algorithm is stable in the mean if

0 < µ <
2

λmax
. (2.51)

The bound given above ensures convergence in the mean, but places no constraint on the variance
of ∆w(n). Furthermore, since Ru is unknown, λmax is unknown, and we have to estimate or
upper bound it. We have that

λmax ≤ tr(Ru) =
M∑

m=1
ru(0) = Mru(0) = ME[u2(n)] . (2.52)

The expected power E[u2(n)] can be estimated as

Ê[u2(n)] = 1
M
uT (n)u(n) . (2.53)

Note that the estimation accuracy increases with the filter length M . From Parseval’s Theorem,
we also have that

E[u2(n)] = 1
2π

∫ π

−π
Su(ω)dω ≤ 1

2π

∫ π

−π
Smaxdω = Smax (2.54)

where Su(ω) is the power spectral density of u(n). Thus, we have that

2
MSmax

≤ 2
tr(Ru) = 2

ME[u2(n)] ≤
2

λmax
, (2.55)

provided that the desired signal model is given by Eq. (2.45) and that u(n) is an IID random
process.

Convergence in the Mean-Square

From Eq. (2.48), we have that

‖∆w(n)‖2 = ‖
[
I − µu(n− 1)uT (n− 1)

]
∆w(n− 1)− µu(n− 1)v(n− 1)‖2

= ‖
[
I − µu(n− 1)uT (n− 1)

]
∆w(n− 1)‖2

+ µ2v2(n− 1)‖u(n− 1)‖2

− 2µv(n)uT (n− 1)
[
I − µu(n− 1)uT (n− 1)

]
∆w(n− 1) (2.56)

Taking the expectation on both sides and using the above assumptions, we obtain

E[‖∆w(n)‖2] = E
[
‖
[
I − µu(n− 1)uT (n− 1)

]
∆w(n− 1)‖2]+ µ2Jmintr(Λ) (2.57)

where Jmin = σ2
v . Evaluating the expected value of the first term and finding the values of

the step-size µ for which E[‖∆w(n)‖2] converges in the mean-square require a lot of work. In

20 Lecture 2. Steepest Descent and Least-Mean-Square Adaptive Filters

Appendix B, we show how this can be done. Alternatively, a derivation can also be found in [7,
pp. 452–465]. The final result is that the LMS filter is mean-square stable (and thus stable in
the mean) if and only if the step-size satisfies [7, pp. 462]

f(µ) = µ

2

M∑

m=1

λm
1− µλm

= 1
2tr(Λ(µ−1I −Λ)−1) < 1 . (2.58)

For small step-sizes µ� 1/λmax, we have that

f(µ) ≈ µ

2

M∑

m=1
λm = µ

2 tr(Λ) < 1 . (2.59)

which leads to that the LMS algorithm is mean-square stable if

0 < µ <
2

tr(Ru) . (2.60)

Learning Curve

The learning curve is also difficult to find. In Appendix B, we show that the learning curve is
given by

J1(w(n)) = ∆wT (0)XS(n)XT∆w(0) + µ2Jmin

n−1∑

i=0
tr(S(i)Λ) + Jmin (2.61)

where
S(n) = S(n− 1)− 2µΛS(n− 1) + µ2[Λtr(S(n− 1)Λ) + 2ΛS(n− 1)Λ] (2.62)

with S(0) = Λ.

Steady-State Analysis
When the LMS algorithm is operating in steady-state and is mean-square stable, the EMSE, the
mean-square deviation (MSD), and the misadjustment are [7, pp. 465]

Jex = Jmin
f(µ)

1− f(µ) (2.63)

M = f(µ)
1− f(µ) (2.64)

E[‖∆w(∞)‖2] = Jmin
1− f(µ)

µ

2

M∑

m=1

1
1− µλm

. (2.65)

These results are also derived in Appendix B. For small step-sizes µ� 1/λmax, the EMSE, MSD,
and misadjustment simplify to [7, pp. 465]

Jex ≈ µJmin
tr(Ru)

2− µtr(Ru) ≈
µ

2 Jmintr(Ru) (2.66)

M≈ µ tr(Ru)
2− µtr(Ru) ≈

µ

2 tr(Ru) = µ

2ME[u2(n)] (2.67)

E[‖∆w(∞)‖2] ≈ µJmin
M

2− µtr(Ru) ≈
µ

2 JminM . (2.68)

2.4. Least-Mean-Square Adaptive Filters 21

The approximated expression for the misadjustment shows that misadjustment is approximately
proportional to the input power. This is undesirable and referred to as gradient noise amplifica-
tion. In Lecture 3, we consider the normalised LMS algorithm which solves this problem.

Computational Cost
Table 2.1 shows the computational cost of the LMS algorithm in terms of the number of multi-
plications and additions or subtractions. From the table, we see that the total number of flops
is 4M + 1. Thus, the LMS algorithm has a linear complexity O(M) in the filter length M .

Term × + or −
uT (n)w(n) M M − 1
e(n) = d(n)− uT (n)w(n) 1
µe(n) 1
µu(n)e(n) M
w(n) + µu(n)e(n) M

Total 2M + 1 2M

Table 2.1: Computational cost of the LMS algorithm.

22 Lecture 2. Steepest Descent and Least-Mean-Square Adaptive Filters

Lecture 3

Normalised LMS and Affine
Projection Algorithm

Review of the Basics

Inversion of a 2 by 2 Block Matrix

Let A and M1 = D −CA−1B be non-singular matrices. Then
[
A B
C D

]−1
=
[
A−1 +A−1BM−1

1 CA−1 −A−1BM−1
1

−M−1
1 CA−1 M−1

1

]
. (3.1)

Let instead D and M2 = A−BD−1C be non-singular matrices. Then
[
A B
C D

]−1
=
[

M−1
2 −M−1

2 BD−1

−D−1CM−1
2 D−1 +D−1CM−1

2 BD−1

]
. (3.2)

The matrices M1 and M2 are said to be the Schur complement of A and D, respectively.

The Method of Lagrange Multipliers
The method of Lagrange multipliers can be used to solve optimisation problems with equality
constraints1

optimise
x

f(x)

subject to h(x) = 0
(3.3)

Consider the optimisation problem in Fig. 3.1 with the cost function f(x) and the constraints
h(x) = 0. At the constrained optimum xc, the gradients of f(x) and h(x) are parallel. Thus,

∇f(x) = λ∇h(x) (single constraint)

∇f(x) =
M∑

m=1
λm∇hm(x) = ∇h(x)λ (multiple constraints)

1The method of Lagrange multipliers can also be used to solve the more general problem with inequality
constraints, but we do not consider this here.

23

24 Lecture 3. Normalised LMS and Affine Projection Algorithm

x1

x2

xu

xc

f(x)

h(x)

∇f(xc)

∇h(xc)

Figure 3.1: Optimisation problem with a single equality constraint. The points xu and xc are the unconstrained
and the constrained minimum, respectively.

The vector λ contains the Lagrange multipliers, and they ensure that the gradients have the
same direction and length.

If we define the Lagrangian function

L(x,λ) = f(x)− λTh(x) , (3.4)

then its critical points satisfy

∇xL(x,λ) = 0 ⇐⇒ ∇f(x) = ∇h(x)λ (3.5)
∇λL(x,λ) = 0 ⇐⇒ h(x) = 0 . (3.6)

Eq. (3.5) is the same as what we previously derived from Fig. 3.1, and Eq. (3.6) is simply the
constraints of our optimisation problem. Thus, the solutions to the system of equations given
by Eq. (3.5) and Eq. (3.6) are indeed the critical points of our optimisation problems. In order
to find the optimum, we need to classify the critical points as either minimums, maximums,
or saddle points. The classification of the critical points for any pair of cost function and
constraints is beyond the scope of these lecture notes. We refer the interested reader to [3,
pp. 294–308]. Alternatively, we may formulate the constrained optimisation problem in Eq. (3.3)
as the sequential unconstrained optimisation problem [4, ch. 5]

max
λ

{
optimise

x
L(x,λ)

}
. (3.7)

We could solve this optimisation problem by applying the five step recipe for unconstrained
optimisation in Sec. 1.1.2 to first the inner optimisation problem and then the outer optimisation
problem.

We are here not concerned with these general methods. Instead, we consider the simpler
problem of minimising a quadratic cost function with linear equality constraints.

Quadratic Cost Function with Linear Equality Constraints

We consider the following equality constrained minimisation problem

min
x

f(x) = 1
2x

TPx+ qTx+ r

subject to h(x) = Ax− b = 0
(3.8)

3.2. Overview over Adaptive Filters based on the Mean-Squared Error Cost Function 25

in which the cost function is quadratic and the equality constraints are linear. We assume that
P is an N ×N p.d. matrix so that f(x) is a convex function. Moreover, we assume that A is a
full rank M ×N matrix with M ≤ N . The Langrangian function is

L(x,λ) = 1
2x

TPx+ qTx+ r − λT (Ax− b) (3.9)

and its gradient w.r.t. x is
∇xL(x,λ) = Px+ q −ATλ . (3.10)

The system of equations given by Eq. (3.5) and Eq. (3.6) are therefore
[
P −AT

−A 0

] [
x
λ

]
=
[
−q
−b

]
. (3.11)

Since the cost function f(x) is assumed to be convex, there is only one point satisfying this
system of equations. By using the 2× 2 block matrix inversion rule in Eq. (3.1), we obtain that
this point (xc,λc) is

λc = (AP−1AT)−1(AP−1q + b) (3.12)
xc = P−1(ATλc − q) . (3.13)

Thus, the solution to the constrained minimisation problem in Eq. (3.8) is xc given by Eq. (3.13).

Overview over Adaptive Filters based on the Mean-Squared
Error Cost Function

An overview over the adaptive filters is shown in Fig. A.1. Recall that we have the following
important properties for the steepest descent algorithm and the stochastic gradient methods.

Steepest Descent (SD)

• Since the statistics is assumed known, the gradient and filter coefficients are deterministic
functions.

• SD is of limited practical usage, but illustrates nicely how adaptive filters function an how
they are analysed.

• SD is the "ideal" (first-order) adaptive filter.

Stochastic Gradient Methods (SGMs)

• Since the statistics is unknown, the gradient and filter coefficients are stochastic processes.

• They are generally easy to implement and hard to analyse.

• They are approximations to the steepest descent algorithm.

26 Lecture 3. Normalised LMS and Affine Projection Algorithm

v(n)

u(n) wo,m Σ

wm(n) Σ e(n)

z(n)

d(n)
y(n)

−

Adaptive Filter

Figure 3.2: Block diagram showing the model used to analyse adaptive filters.

Model for the Analysis of SGMs
In order to make the SGMs easier to analyse, a model is typically assumed for the relationship
between the input signal u(n) and the desired signal d(n). Fig. 3.2 shows one of the most popular
models used for the analysis of adaptive filters. Define

wo =
[
wo,0 · · · wo,M−1

]T (3.14)

w(n) =
[
w0(n) · · · wM−1(n)

]T (3.15)

u(n) =
[
u(n) · · · u(n−M + 1)

]T (3.16)
∆w(n) = wo −w(n) (3.17)

where ∆w(n) is referred to as the weight error.

Assumptions

From Fig. 3.2, we have that

d(n) = z(n) + v(n) = uT (n)wo + v(n) . (3.18)

Moreover, we assume that

1. v(n) is white noise with variance σ2
v .

2. v(n) and u(n) are uncorrelated.

3. u(n) is a white process with correlation matrix Ru. This assumption implies that u(n)
and w(n) are uncorrelated.

Equations

We have that

e(n) = d(n)− y(n) = v(n) + uT (n)wo − uT (n)w(n) (3.19)
= uT (n)∆w(n) + v(n) (3.20)

3.2. Overview over Adaptive Filters based on the Mean-Squared Error Cost Function 27

Thus, at the optimum where ∆w(n) = 0, we have that

J1(wo) = Jmin = J1(v2(n)) = σ2
v . (3.21)

The cost function can be written as

J1(w(n)) = E[e2(n)] = E[v2(n)] + E[∆wT (n)u(n)uT (n)∆w(n)]
= σ2

v + E[E[∆wT (n)u(n)uT (n)∆w(n)|∆w(n)]]
= Jmin + E[∆wT (n)Ru∆w(n)] . (3.22)

When viewed as a function of n, the cost function is called the learning curve.

How to Analyse Adaptive Filters
Adaptive filters can be analysed in several ways.

Transient Performance How does the filter handle an abrupt change in the statistics of u(n),
and how fast does it converge to steady-state?

Steady-state Performance How does the filter perform in a WSS environment after all tran-
sients have died out?

Tracking Performance How does the filter handle slow variations in the statistics of u(n)
and/or d(n)?

Numerical Precision Effects What happens when the filter is implemented on a finite preci-
sion computer?

Computational Complexity How much processing time does the algorithm require?

Important Values and Functions

When analysing adaptive filters, we typically quantify their performance in terms of the following
values and functions.

n

J1(w(n))

Jmin
Jmin + Jex

MSE

EMSE

Figure 3.3: The cost function (same as the MSE), the minimum MSE, and the excess MSE.

28 Lecture 3. Normalised LMS and Affine Projection Algorithm

J1(w(n)) (Mean-Square Error (MSE)) (3.23)
J1(wo) = Jmin (Minimum MSE (MMSE)) (3.24)
Jex = J1(w(∞))− Jmin (Excess MSE (EMSE)) (3.25)

M = Jex
Jmin

(Misadjustment) (3.26)

E[‖∆w(∞)‖2] (Mean-Square Deviation (MSD)) (3.27)
λmax (Maximum Eigenvalue of Ru) (3.28)
λmin (Minimum Eigenvalue of Ru) (3.29)

κ(Ru) = λmax
λmin

(Condition number of Ru) (3.30)

In adaptive filtering, some people use the term eigenvalue spread χ(Ru) instead of the condition
number. The MSE, the EMSE, the MSD, and the misadjustment depend on the adaptive filtering
algorithm. Conversely, the remaining parameters depend on the desired signal and the input
signal and are thus independent of the adaptive filtering algorithm. In Fig. 3.3, some of the
quantities are shown.

LMS Revisited
Recall the steepest descent algorithm

w(n+ 1) = w(n)− µ

2 g(w(n)) (3.31)

where
g(w(n)) = 2Ruw(n)− 2rud = −2E[u(n)e(n)] (3.32)

is the gradient of J1(w(n)). Replacing the gradient with the simple estimate

ĝ(w(n)) = −2u(n)e(n) (3.33)

leads to the LMS algorithm

w(n+ 1) = w(n) + µu(n)e(n) (3.34)
= (I − µu(n)uT (n))w(n) + µu(n)d(n) . (3.35)

In order to analyse the LMS algorithm, we use the analysis model in Sec. 3.2.1.

Transient Analysis
We would like that

lim
n→∞

E[∆w(n)] = 0 (Convergence in mean)

lim
n→∞

E[‖∆w(n)‖2] = c <∞ (Convergence in mean-square)

Convergence in the Mean

We have that
∆w(n+ 1) = (I − µu(n)uT (n))∆w(n) + µu(n)v(n) (3.36)

3.3. LMS Revisited 29

from which we get
E[∆w(n+ 1)] = (I − µRu)E[∆w(n)] . (3.37)

Thus, the LMS algorithm is stable in the mean if (same as for SD)

0 < µ <
2

λmax
. (3.38)

Since λmax is unknown and hard to estimate, we can bound it by

λmax ≤ tr(Ru) = ME[u2(n)] ≤MSmax . (3.39)

Estimating the power E[u2(n)] or the maximum is the power spectral density Smax is fairly easy.

Convergence in the Mean-Square

We assume that u(n) has a Gaussian distribution with zero-mean and covariance matrix Ru.
Then, as we have shown in Appendix B, we get that the LMS algorithm is stable in the mean-
square if the step-size satisfies

f(µ) = µ

2

M∑

m=1

λm
1− µλm

< 1 . (3.40)

For small step-sizes µ� 1/λmax, we have

f(µ) ≈ µ

2

M∑

m=1
λm = µ

2 tr(Ru) < 1 . (3.41)

Thus, stability in the mean-square requires that the step-size satisfies

0 < µ <
2

tr(Ru) . (3.42)

Steady-State Analysis
From Appendix B, we have that

EMSE: Jex = J1(w(∞))− Jmin = Jmin
f(µ)

1− f(µ) (3.43)

≈ µ

2 Jmintr(Ru) (3.44)

Misadjustment: M = Jex
Jmin

= f(µ)
1− f(µ) (3.45)

≈ µ

2 tr(Ru) (3.46)

MSD: E[‖∆w(∞)‖2] ≈ µ

2 JminM (3.47)

Here, the approximations are valid for small step-sizes. We see that the EMSE is approximately
proportional to the input power. This is a problem and referred to as gradient noise amplification.

30 Lecture 3. Normalised LMS and Affine Projection Algorithm

Normalised LMS Adaptive Filters
Recall that we can bound the maximum eigenvalue by

λmax ≤ tr(Ru) = ME[u2(n)] . (3.48)

An estimate of the power could be

Ê[u2(n)] = 1
M
uT (n)u(n) = 1

M
‖u(n)‖2 . (3.49)

This leads to the following bound on the step-size

0 < µ <
2

‖u(n)‖2 ⇐⇒ 0 < µ‖u(n)‖2 < 2 . (3.50)

We may define the time-varying step-size

µ(n) = β

‖u(n)‖2 , 0 < β < 2 . (3.51)

Then, the LMS algorithm is

w(n+ 1) = w(n) + β

‖u(n)‖2u(n)e(n) (3.52)

which is called the normalised LMS (NLMS) algorithm. The NLMS bypasses the problem of
gradient noise amplification by normalising the gradient estimate by the input power. However,
this normalisation causes numerical problems when the input power is close to zero. In order to
avoid this, we introduce the regularisation parameter ε, which is a small positive constant, into
the NLMS algorithm

w(n+ 1) = w(n) + β

ε+ ‖u(n)‖2u(n)e(n) . (3.53)

Fast Computation

The power estimate may be computed very efficiently by writing it in a recursive manner

‖u(n)‖2 =
M−1∑

m=0
u2(n−m) = u2(n)− u2(n−M) +

M∑

m=1
u2(n−m)

= u2(n)− u2(n−M) + ‖u(n− 1)‖2 . (3.54)

It should be noted that the use of this recursion can be problematic in practice due to accumulated
rounding errors [7, p. 227]. These rounding errors may potentially cause the norm to be negative.

Transient Analysis
In order to analyse the NLMS algorithm, we use the analysis model in Sec. 3.2.1. If σ2

v = 0, the
NLMS algorithm converges in the mean and the mean-square if [8, p. 325]

0 < β < 2 . (3.55)

Moreover, the optimal step-size is
βo = 1 . (3.56)

If σ2
v > 0, the optimal step-size is more complicated and can be found in [8, p. 325].

3.4. Normalised LMS Adaptive Filters 31

Steady-State Analysis
Assuming the analysis model in Sec. 3.2.1, it can be shown that [7, pp. 300–302,p. 474]

EMSE: Jex = J1(w(∞))− Jmin

≈ β

2 Jmintr(Ru)E
[

1
‖u(n)‖2

]
≥ β

2 Jmin (3.57)

Misadjustment: M = Jex
Jmin

≈ β

2 tr(Ru)E
[

1
‖u(n)‖2

]
≥ β

2 (3.58)

MSD: E[‖∆w(∞)‖2] ≈ β

2 JminE

[
1

‖u(n)‖2

]
≥ βJmin

2tr(Ru) (3.59)

where the inequality follows from that E[x−1] ≥ E[x]−1. The approximations are valid for small
values of β and ε. Note that the approximation of the misadjustment no longer depends on the
input power. This is a consequence of the normalisation of the LMS gradient with ‖u(n)‖2.
Moreover, it should be noted that there exist several other approximations to the EMSE and the
MSD than presented above [7, p. 474].

Computational Cost
Table 3.1 shows the computational cost of the NLMS algorithm in terms of the number of
multiplications, additions or subtractions, and divisions. From the table, we see that the total
number of flops is 6M + 2. If we use the fast computation of the normalisation constant, the
computational cost is reduced to 4M +7 flops as shown in Table 3.2. Thus, the NLMS algorithm
has a linear complexity in the filter length O(M) for both versions of the NLMS algorithm.

Term × + or − /

‖u(n)‖2 M M − 1
uT (n)w(n) M M − 1
e(n) = d(n)− uT (n)w(n) 1
βe(n)/(ε+ ‖u(n)‖2) 1 1 1
βu(n)e(n)/(ε+ ‖u(n)‖2) M
w(n) + βu(n)e(n)/(ε+ ‖u(n)‖2) M

Total 3M + 1 3M 1

Table 3.1: Computational cost of the NLMS algorithm.

Another Derivation of the NLMS Algorithm
We have two requirements to the adaptive filter.

1. If we filter the input sample at time n through the filter at time n+ 1, the error should be
zero. That is,

d(n)− uT (n)w(n+ 1) = 0 . (3.60)
There are an infinite number of solutions that satisfy this requirement if M > 1.

2. Among all the filter coefficient vectors w(n+ 1) satisfying the first requirements, we select
the vector resulting in the smallest change from iteration n to n+ 1. That is, ‖w(n+ 1)−
w(n)‖2 should be as small as possible.

32 Lecture 3. Normalised LMS and Affine Projection Algorithm

Term × + or − /

‖u(n)‖2 2 2
uT (n)w(n) M M − 1
e(n) = d(n)− uT (n)w(n) 1
βe(n)/(ε+ ‖u(n)‖2) 1 1 1
βu(n)e(n)/(ε+ ‖u(n)‖2) M
w(n) + βu(n)e(n)/(ε+ ‖u(n)‖2) M

Total 2M + 3 2M + 3 1

Table 3.2: Computational cost of the NLMS algorithm with fast update of the normalisation factor.

These two requirements lead to the following constrained minimisation problem

min
w(n+1)

f(w(n+ 1)) = ‖w(n+ 1)−w(n)‖2

s.t. h(w(n+ 1)) = d(n)− uT (n)w(n+ 1) = 0
(3.61)

This optimisation problem has a quadratic cost function and a single linear equality constraint,
and it is therefore on the same form as Eq. (3.8) with

x = w(n+ 1) (3.62)
A = −uT (n) (3.63)
b = −d(n) (3.64)
P = 2I (3.65)
q = −2w(n) (3.66)
r = ‖w(n)‖2 . (3.67)

Thus, from Eq. (3.12) and Eq. (3.13), we readily obtain the solution to the optimisation problem
in Eq. (3.61). The solution is given by

λ = − 2
‖u(n)‖2 e(n) (3.68)

w(n+ 1) = w(n) + 1
‖u(n)‖2u(n)e(n) . (3.69)

The last equation is identical to the NLMS algorithm with β = 1 and ε = 0.

Affine Projection Adaptive Filters
We may extend the requirements to the adaptive filter in the following way.

1. If we filter the input sample at time n − k for k = 0, 1, . . . ,K − 1 < M through the filter
at time n+ 1, the corresponding errors should be zero. That is,

d(n− k)− uT (n− k)w(n+ 1) = 0 , k = 0, 1, . . . ,K − 1 < M . (3.70)

If we define

U(n) =
[
u(n) u(n− 1) · · · u(n−K + 1)

]
(3.71)

d(n) =
[
d(n) d(n− 1) · · · d(n−K + 1)

]T
, (3.72)

3.5. Affine Projection Adaptive Filters 33

we may write
d(n)−UT (n)w(n+ 1) = 0 . (3.73)

If K = M and U(n) has full rank, there is only one filter coefficient vector w(n + 1)
satisfying this requirement. It is given by

w(n+ 1) = U−T (n)d(n) . (3.74)

When this is not the case, there are an infinite number of solutions that satisfy this re-
quirement, and we therefore need a second requirement.

2. Among all the filter coefficient vectors w(n+ 1) satisfying the first requirements, we select
the vector resulting in the smallest change from iteration n to n+ 1. That is, ‖w(n+ 1)−
w(n)‖2 should be as small as possible.

Note that for K = 1, the requirements are identical to the requirements leading to the NLMS
algorithm. The affine projections algorithm (APA) can therefore be viewed as a generalisation of
the NLMS algorithm. We may formulate the requirements as a constrained optimisation problem

min
w(n+1)

f(w(n+ 1)) = ‖w(n+ 1)−w(n)‖2

s.t. h(w(n+ 1)) = d(n)−UT (n)w(n+ 1) = 0
(3.75)

This optimisation problem has a quadratic cost function and K ≤M linear equality constraints,
and it is therefore on the same form as Eq. (3.8) with

x = w(n+ 1) (3.76)
A = −UT (n) (3.77)
b = −d(n) (3.78)
P = 2I (3.79)
q = −2w(n) (3.80)
r = ‖w(n)‖2 . (3.81)

Thus, from Eq. (3.12) and Eq. (3.13), we readily obtain the solution to the optimisation problem
in Eq. (3.75). The solution is given by

λ = −2
(
UT (n)U(n)

)−1
e(n) (3.82)

w(n+ 1) = w(n) +U(n)
(
UT (n)U(n)

)−1
e(n) . (3.83)

From this result, we see that the APA reduces to the NLMS algorithm for K = 1. Usually,
we add a regularisation parameter ε and a step-size parameter β to the algorithm and obtain

w(n+ 1) = w(n) + βU(n)
(
εI +UT (n)U(n)

)−1
e(n) . (3.84)

As for the NLMS algorithm, ε is a small positive value which bypasses numerical problems when
UT (n)U(n) is ill-conditioned.

For K > 1, The computational complexity of the APA is higher than that of the NLMS
algorithm since we have to invert a K ×K matrix. Although there exist fast ways of doing this
[8, pp. 339–340], the APA is more expensive than the NLMS algorithm.

34 Lecture 3. Normalised LMS and Affine Projection Algorithm

Transient Analysis
In order to analyse the APA, we use the analysis model in Sec. 3.2.1. If σ2

v = 0, the APA
converges in the mean and the mean-square if [8, p. 337]

0 < β < 2 . (3.85)

Moreover, the optimal step-size is
βo = 1 . (3.86)

If σ2
v > 0, the optimal step-size is more complicated and can be found in [8, p. 337].

Steady-State Analysis
Assuming the analysis model in Sec. 3.2.1, it can be shown that [7, p. 327]

EMSE: Jex = J1(w(∞))− Jmin

≈ β

2 Jmintr(Ru)E
[

K

‖u(n)‖2

]
≥ β

2 JminK (3.87)

Misadjustment: M = Jex
Jmin

≈ β

2 tr(Ru)E
[

K

‖u(n)‖2

]
≥ βK

2 (3.88)

where the inequality follows from that E[x−1] ≥ E[x]−1. The approximations are valid for small
values of β and ε. It should be noted that there exist several other approximations to the EMSE
than presented above [7, p. 325]. For more accurate expressions and for an expression for the
mean-square deviation, see [7, pp. 510–512] and [9].

Computational Cost
Table 3.3 shows the computational cost of the APA algorithm in terms of the number of multi-
plications and additions or subtractions. We have assumed that the cost of inverting a K ×K
matrix is K3 multiplications and additions [7, p. 240]. From the table, we see that the total
number of flops is 2M(K2 +2K)+2K3 +K2 +M . Thus, the APA has a complexity of O(MK2).
Note that there exist faster ways of implementing the APA [8, pp. 339-340].

Term × + or −
UT (n)w(n) MK (M − 1)K
e(n) = d(n)−UT (n)w(n) K

UT (n)U(n) MK2 (M − 1)K2

εI +UT (n)U(n) K

(εI +UT (n)U(n))−1 K3 K3

(εI +UT (n)U(n))−1e(n) K2 K(K − 1)
U(n)(εI +UT (n)U(n))−1e(n) MK M(K − 1)
βU(n)(εI +UT (n)U(n))−1e(n) M

w(n) + βU(n)(εI +UT (n)U(n))−1e(n) M

Total M(K2 + 2K + 1) +K3 +K2 M(K2 + 2K) +K3

Table 3.3: Computational cost of the APA.

Lecture 4

Recursive Least-Squares Adaptive
Filters

Review of the Basics

The Matrix Inversion Lemma

Let X, Y , X +UY V , and Y −1 + V X−1U all be non-singular matrices. By equating element
(1, 1) of the two block matrices in Eq. (3.1) and Eq. (3.2) and setting

X = A (4.1)
U = B (4.2)
V = C (4.3)
Y = −D−1 , (4.4)

we obtain the matrix inversion lemma

(X +UY V)−1 = X−1 −X−1U(Y −1 + V X−1U)−1V X−1 . (4.5)

The matrix inversion lemma is also sometimes called the Woodbury matrix identity or the Wood-
bury’s identity.

Method of Least-Squares
The adaptive filtering problem is shown in Fig. 4.1. From the figure, we have that

u(n): zero-mean input signal

wm(n): M -tap FIR-filter with impulse response w0(n), w1(n), . . . , wM−1(n)

y(n): output signal given by y(n) =
∑M−1
m=0 wm(n)u(n−m)

d(n): zero-mean desired signal

e(n): error signal

35

36 Lecture 4. Recursive Least-Squares Adaptive Filters

d(n)

u(n) wm(n) Σ e(n)
y(n)

−

Figure 4.1: Block diagram of adaptive filtering in a non-WSS environment.

Define

w(n) =
[
w0(n) w1(n) · · · wM−1(n)

]T (4.6)

u(n) =
[
u(n) u(n− 1) · · · u(n−M + 1)

]T
. (4.7)

For i = 1, 2, . . . , n with n ≥M , define

A(n) =
[
u(1) u(2) · · · u(n)

]T (4.8)

d(n) =
[
d(1) d(2) · · · d(n)

]T (4.9)

e(n) =
[
e(1) e(2) · · · e(n)

]T
. (4.10)

Then
e(n) = d(n)−A(n)w(n) ⇐⇒ d(n) = A(n)w(n) + e(n) . (4.11)

Note that we have made A(n), d(n), and e(n) time-dependent in order to emphasise that we are
here concerned with an online algorithm. Therefore, we also formulate the squared error cost
function J2(w(n)) in a slightly different way compared to Eq. (1.29). Here, we define it as

J2(w(n)) =
n∑

i=1
e2(i) = eT (n)e(n) . (4.12)

In the method of least-squares, we wish to minimise J2(w(n)) which we can write as

J2(w(n)) = eT (n)e(n) = (d(n)−A(n)w(n))T (d(n)−A(n)w(n))
= dT (n)d(n) +wT (n)AT (n)A(n)w(n)− 2wT (n)AT (n)d(n) . (4.13)

The minimiser
wo(n) = (AT (n)A(n))−1AT (n)d(n) (4.14)

is referred to as the least-squares solution, and it is the unique solution to the normal equations

AT (n)A(n)w(n) = AT (n)d(n) , (4.15)

provided that A(n) has full rank.

Weighted Least-Squares
When the statistics of u(n) and/or d(n) is time dependent, the minimisation of the squared error
J2(w(n)) may fail to give a good estimate at time n since all data affect the value of J2(w(n))

4.2. Method of Least-Squares 37

with the same weight. Ideally, we would like that the new data are assigned a larger weight than
the old data. In order to do this, we reformulate J2(w(n)) as a weighted cost function

Jβ(w(n)) =
n∑

i=1
β(n, i)e2(i) = eT (n)B(n)e(n) (4.16)

where β(n, i) contains the weight pertaining to the i’th error at time n, and B(n) is a diagonal
matrix given by

B(n) = diag(β(n, 1), β(n, 2), . . . , β(n, n)) . (4.17)

We use the five step recipe in Sec. 1.1.2 to minimise Jβ(w(n)) w.r.t w(n).

1. Construct the cost function

Jβ(w(n)) = eT (n)B(n)e(n) = (d(n)−A(n)w(n))TB(n)(d(n)−A(n)w(n))
= d(n)TB(n)d(n) +wT (n)Φ(n)w(n)− 2wT (n)ϕ(n) (4.18)

where we have defined Φ(n) and ϕ(n) as

Φ(n) = AT (n)B(n)A(n) (4.19)
ϕ(n) = AT (n)B(n)d(n) . (4.20)

We refer to Φ(n) and ϕ(n) as the correlation matrix and the cross-correlation vector,
respectively, since they are scaled and weighted estimates of Ru and rud.

2. Find the gradient

g(w(n)) = (Φ(n) + ΦT (n))w(n)− 2ϕ(n) = 2Φ(n)w(n)− 2ϕ(n) (4.21)

3. Solve g(w(n)) = 0 for w(n)

g(w(n)) = 2Φ(n)w(n)− 2ϕ(n)
m

Φ(n)w(n) = ϕ(n) (Weighted Normal Equations) (4.22)
m

wo(n) = Φ−1(n)ϕ(n) (If Φ(n) is invertible) (4.23)

4. Find the Hessian
H(w) = 2Φ(n) (4.24)

which is p.d. for all w(n) if A(n) has full rank and β(n, i) > 0 for all n ≥ i > 0.

5. This implies that

• Jβ(w(n)) is a convex function, and
• wo(n) = Φ−1(n)ϕ(n) is the global minimiser.

The solution wo(n) is often referred to as the weighted least-squares solution.

38 Lecture 4. Recursive Least-Squares Adaptive Filters

Estimation of the (Cross-)Correlation

Comparing the weighted normal equations with the Wiener-Hopf equations, we see that

R̂u(n) = c(n, β)Φ(n) = c(n, β)AT (n)B(n)A(n) = c(n, β)
n∑

i=1
β(n, i)u(i)uT (i) (4.25)

r̂ud(n) = c(n, β)ϕ(n) = c(n, β)AT (n)B(n)d(n) = c(n, β)
n∑

i=1
β(n, i)u(i)d(i) (4.26)

are the estimates of the correlation matrix and the cross-correlation vector, respectively. The
constant c(n, β) depends on n and the weighting function β(n, i), and it can be selected such
that R̂u(n) and r̂ud(n) are unbiased estimates of Ru(n) and rud(n).

Weight Functions
We consider three simple weight functions.

Growing Window Weight Function

i

β(n, i)
1

n

Figure 4.2: The growing window weight function.

If we select the weight function as

β(n, i) =
{

1 0 < i ≤ n
0 otherwise

, (4.27)

we obtain the growing window weight function, and it is sketched in Fig. 4.2. Selecting the
growing window weight function reduces the weighted least-squares problem to the standard
least-squares problem. In order to obtain unbiased estimates of Ru(n) and rud(n) in Eq. (4.25)
and Eq. (4.26), respectively, we have to use

c(n, β) = 1
n
. (4.28)

Sliding Window Weight Function

If we select the weight function as

β(n, i) =
{

1 n− L < i ≤ n
0 otherwise

(4.29)

4.2. Method of Least-Squares 39

i

β(n, i)
1

n− L n

Figure 4.3: The sliding window weight function.

for 0 < L ≤ n, we obtain the sliding window weight function, and it is sketched in Fig. 4.3.
If we select L = n, the sliding window weight function reduces to the growing window weight
function. In order to obtain unbiased estimates of Ru(n) and rud(n) in Eq. (4.25) and Eq. (4.26),
respectively, we have to use

c(n, β) = 1
L
. (4.30)

Exponential Weight Function

i

β(n, i)
1 λn−i

n

Figure 4.4: The exponential weight function.

If we select the weight function as

β(n, i) =
{
λn−i 0 < i ≤ n
0 otherwise

(4.31)

for 0 < λ ≤ 1, we obtain the exponential weight function, and it is sketched in Fig. 4.4. The
parameter λ is called the forgetting factor. If we select λ = 1, the exponential weight function
reduces to the growing window weight function. In order to obtain unbiased estimates of Ru(n)
and rud(n) in Eq. (4.25) and Eq. (4.26), respectively, we have to use

c(n, β) =





1− λ
1− λn 0 < λ < 1
1
n

λ = 1
. (4.32)

40 Lecture 4. Recursive Least-Squares Adaptive Filters

The Recursive Least-Squares Algorithm with an Exponen-
tial Weight Function

In an online algorithm, we have to solve the weighted normal equations

Φ(n)w(n) = ϕ(n) (4.33)

for w(n) at every time index n. However, solving this equation directly as

w(n) = Φ−1(n)ϕ(n) (4.34)

yields a high computational complexity of the algorithm for the following two reasons.

1. The matrices A(n) and B(n), and the vector d(n) grows with n. Computing Φ(n) and
ϕ(n) directly would therefore be infeasible for an online algorithm, unless we use a weight
function with a finite duration window.

2. For an M -tap FIR filter, it requires in the order of O(M3) operations to solve the normal
equations for the filter coefficient vector w(n).

The recursive least-squares (RLS) algorithm bypasses these two problems. Below, we consider
how this is obtained for an exponential weight function, which is the most common weight
function.

Recursive Computation of Φ(n) and ϕ(n)

We may compute the correlation matrix recursively by rewriting it as

Φ(n) = AT (n)B(n)A(n) =
n∑

i=1
λn−iu(i)uT (i) (4.35)

= λ0u(n)uT (n) +
n−1∑

i=1
λn−iu(i)uT (i) = u(n)uT (n) + λ

n−1∑

i=1
λn−1−iu(i)uT (i)

= u(n)uT (n) + λΦ(n− 1) . (4.36)

Similarly, we may compute the cross-correlation vector recursively by rewriting it as

ϕ(n) = AT (n)B(n)d(n) =
n∑

i=1
λn−iu(i)d(i) (4.37)

= λ0u(n)d(n) +
n−1∑

i=1
λn−iu(i)d(i) = u(n)d(n) + λ

n−1∑

i=1
λn−1−iu(i)d(i)

= u(n)d(n) + λϕ(n− 1) . (4.38)

These recursive formulations of the correlation matrix and the cross-correlation vector clearly
reduce the computational complexity and are suitable to use in an online algorithm.

4.3. The Recursive Least-Squares Algorithm with an Exponential Weight Function 41

Inversion of Φ(n)

For the inversion of the correlation matrix, we use the matrix inversion lemma stated in Sec. 4.1.1.
Comparing the recursive formulation of the correlation matrix in Eq. (4.36) with the left side of
Eq. (4.5), we obtain

X = λΦ(n− 1) (4.39)
U = u(n) (4.40)
V = uT (n) (4.41)
Y = 1 . (4.42)

Thus, invoking the matrix inversion lemma, we have that

Φ−1(n) = λ−1Φ−1(n− 1)− λ−2 Φ−1(n− 1)u(n)uT (n)Φ−1(n− 1)
1 + λ−1uT (n)Φ−1(n− 1)u(n)

. (4.43)

Note that the computational complexity of the right side of the equation is much lower than that
of the left side of the equation when Φ−1(n− 1) is known. In order to simplify the notation, we
define

P (n) = Φ−1(n) (inverse correlation matrix) (4.44)

k(n) = P (n− 1)u(n)
λ+ uT (n)P (n− 1)u(n) (gain vector) (4.45)

which leads to that we may write Eq. (4.43) as

P (n) = λ−1 [P (n− 1)− k(n)uT (n)P (n− 1)
]
. (4.46)

By rearranging the expression for the gain vector, we obtain

k(n) = λ−1 [P (n− 1)− k(n)uT (n)P (n− 1)
]
u(n)

= P (n)u(n) . (4.47)

Recursive computation of w(n)

We can now develop the recursive update equation of the filter coefficient vector. We have that

w(n) = P (n)ϕ(n) (4.48)
= P (n) [u(n)d(n) + λϕ(n− 1)] = λP (n)P−1(n− 1)w(n− 1) + k(n)d(n)
=
[
P (n− 1)− k(n)uT (n)P (n− 1)

]
P−1(n− 1)w(n− 1) + k(n)d(n)

= w(n− 1)− k(n)uT (n)w(n− 1) + k(n)d(n)
= w(n− 1) + k(n)ξ(n) (4.49)

where we have defined the a priori error as

ξ(n) = d(n)− uT (n)w(n− 1) . (4.50)

42 Lecture 4. Recursive Least-Squares Adaptive Filters

The RLS Algorithm

The RLS algorithm may now be formulated as the following set of equations

π(n) = P (n− 1)u(n) (4.51)

k(n) = π(n)
λ+ uT (n)π(n) (4.52)

ξ(n) = d(n)− uT (n)w(n− 1) (4.53)
w(n) = w(n− 1) + k(n)ξ(n) (4.54)
P (n) = λ−1 [P (n− 1)− k(n)πT (n)

]
. (4.55)

For an M -tap FIR filter, it requires in the order of O(M2) operations to run one iteration of the
RLS algorithm.

Initialisation

In order to start the RLS algorithm, we need to select values for the initial inverse correlation
matrix P (0), the initial filter coefficient vector w(0), and the input samples u(n) for n = −M +
1,−M + 2, . . . , 1. Typically, we assume that

P (0) = δ−1I (4.56)
w(0) = 0 (4.57)
u(n) = 0 , for −M + 1 < n < 1 . (4.58)

The first assumption implies that we assume that u(n) for n < 1 is a white random process with
covariance matrix δI. The value of δ should reflect the SNR of the input data with δ being small
for a high SNR and δ being large for a low SNR [8, pp. 444–446]. This assumption introduces
bias into the correlation matrix Φ(n). However, this bias decreases to zero for an increasing n.
An alternative initialisation, which does not introduce bias, is to estimate the correlation matrix
and the cross-correlation vector as [10, pp. 545–546]

P (0) =
[0∑

i=−M+1
λ−iu(i)uT (i)

]−1

(4.59)

ϕ(0) =
0∑

i=−M+1
λ−iu(i)d(i) (4.60)

prior to starting the RLS algorithm at time n = 1. The initial value of the filter coefficient vector
can be set to w(0) = P (0)ϕ(0). Note, that this approach requires that we know the input signal
from time n = −2M + 2 and the desired signal from time n = −M + 2.

Selection of the Forgetting Factor
At time n, the memory of the sliding window RLS algorithm is the L newest samples indexed by
n−L+1, . . . , n. For the exponentially weighted RLS algorithm, the memory is controlled by the
forgetting factor λ. Whereas the interpretation of L is simple, the corresponding interpretation
of λ is not that intuitive when we have to investigate the memory of the exponentially weighted
RLS algorithm. That is, we would like to interpret the forgetting factor as a sliding window

4.3. The Recursive Least-Squares Algorithm with an Exponential Weight Function 43

length. We call this window length for the effective window length and denote it by Leff. A
simple way of connecting Leff and λ is by requiring that

lim
n→∞

n∑

i=1
λn−i = lim

n→∞

n∑

i=n−Leff+1
1 . (4.61)

That is, when the RLS algorithm has reached steady-state, the area under the sliding window
curve should equal the area under the exponential window curve. This leads to

lim
n→∞

n∑

i=n−Leff+1
1 = Leff (4.62)

and

lim
n→∞

n∑

i=1
λn−i = lim

n→∞

n−1∑

k=0
λk = lim

n→∞

n−1∑

k=0
λk = lim

n→∞
1− λn
1− λ = 1

1− λ (4.63)

where the second last equality follows for λ 6= 1 from the geometric series, and the last equality
follows if 0 < λ < 1. Thus, we have that

Leff = 1
1− λ . (4.64)

Transient Analysis
The RLS algorithm is stable in the mean and the mean-square if 0 < λ ≤ 1 . It may also be shown
that the rate of the convergence of the RLS algorithm is typically an order of magnitude faster
than the rate of the convergence of the LMS algorithm. Moreover, the rate of the convergence
of the RLS algorithm is invariant to the condition number of the correlation matrix Ru of the
input signal [8, p. 463, ch. 14].

Steady-State Analysis
It can be shown that [7, p. 510]

EMSE: Jex = J2(w(∞))− Jmin

≈ Jmin
(1− λ)M

1 + λ− (1− λ)M (4.65)

Misadjustment: M = Jex
Jmin

≈ (1− λ)M
1 + λ− (1− λ)M (4.66)

MSD: E[‖∆w(∞)‖2] ≈ Jex
M∑

m=1

1
λm

(4.67)

where λm is the m’th eigenvalue of the correlation matrix Ru not to be confused with the
forgetting factor λ. The approximations hold under certain conditions which may be found in
[7, pp. 508–510].

44 Lecture 4. Recursive Least-Squares Adaptive Filters

Computational Cost
Table 4.1 shows the computational cost of the RLS algorithm in terms of the number of multipli-
cations, additions or subtractions, and divisions. From the table, we see that the total number
of flops is 5M2 +5M +1. Thus, the RLS algorithm has a complexity of O(M2). Note, that there
exist faster ways of implementing the RLS algorithm [7, pp. 247]. Some of them even achieve
linear complexity [11].

Term × + or − /

π(n) = P (n− 1)u(n) M2 M(M − 1)
k(n) = π(n)/(λ+ uT (n)π(n)) M M 1
ξ(n) = d(n)− uT (n)w(n− 1) M M
w(n) = w(n− 1) + k(n)ξ(n) M M
P (n) = (P (n− 1)− k(n)πT (n))/λ M2 M2 M2

Total 2M2 + 3M 2M2 + 2M M2 + 1

Table 4.1: Computational cost of the RLS algorithm.

Bibliography

[1] D. C. Lay, Linear algebra and its applications, 3rd ed. Pearson/Addison-Wesley, Sep. 2005.

[2] G. Strang, Introduction to Linear Algebra, 4th ed. Wellesley Cambridge Press, Feb. 2009.

[3] A. Antoniou and W.-S. Lu, Practical Optimization: Algorithms and Engineering Applica-
tions. Springer, Mar. 2007.

[4] S. Boyd and L. Vandenberghe, Convex Optimization. Cambridge University Press, Mar.
2004.

[5] S. M. Kay, Intuitive Probability and Random Processes using MATLAB. Springer Science,
New York, Inc., 2006.

[6] A. Leon-Garcia, Probability, Statistics, and Random Processes For Electrical Engineering,
3rd ed. Prentice Hall, Jan. 2008.

[7] A. H. Sayed, Fundamentals of Adaptive Filtering. Wiley-IEEE Press, Jun. 2003.

[8] S. Haykin, Adaptive Filter Theory, 4th ed. Prentice Hall, Sep. 2001.

[9] H.-C. Shin and A. H. Sayed, “Mean-square performance of a family of affine projection
algorithms,” IEEE Trans. Signal Process., vol. 52, no. 1, pp. 90–102, Jan. 2004.

[10] M. H. Hayes, Statistical Digital Signal Processing and Modeling. Wiley, 1996.

[11] D. T. M. Slock and T. Kailath, “Numerically stable fast transversal filters for recursive least
squares adaptive filtering,” IEEE Trans. Signal Process., vol. 39, no. 1, pp. 92–114, Jan.
1991.

[12] K. B. Petersen and M. S. Pedersen, “The matrix cookbook,” Online, oct 2008, version
20081110. [Online]. Available: http://www2.imm.dtu.dk/pubdb/p.php?3274

45

http://www2.imm.dtu.dk/pubdb/p.php?3274

46 Bibliography

Appendix A

Summary

Fig. A.1 shows an overview over the various important concepts, equations and adaptive filters
covered in these lecture notes. All relationships indicated by the arrows have been covered with
the exception of the arrow from the steepest descent block to the NLMS block. The interested
reader may establish this relationship by solving Problem 1 of Chapter 6 in [8].

Table A.1 shows a summary of the adaptive filters covered in these lecture notes. Most the
expressions for the mean-square stability, the excess mean-square error (EMSE), the misadjust-
ment, and the mean-square deviation (MSD) are approximations, and they can therefore only
be used as a rule of thumb. For more accurate expressions see the description of the adaptive
filters and the references therein.

47

48 Appendix A. Summary

d(n)

u(n) wm Σ e(n)
y(n)

−

Wiener-Hopf
Equations

Normal
Equations

Steepest
Descent LMS

NLMS

Affine Pro-
jections

Recursive
Least-Squares

Known Statistics Unknown Statistics

W
SS

Si
gn

al
s

N
on

-W
SS

Si
gn

al
s

Stochastic
G
radient

M
ethods

Increasing
C
om

putational
C
om

plexity
and

Perform
ance

Figure A.1: Overview over the various important concepts, equations and adaptive filters covered in these
lecture notes.

49

N
am

e
A
lg
or
ith

m
C
os
t

M
ea
n-
Sq

ua
re

St
ab

ili
ty

E
M
SE

M
is
ad

ju
st
m
en
t

M
SD

SD
g

(w
(n

))
=

2R
u
w

(n
)−

2r
u
d
(n

)
O

(M
)

0
<
µ
<

2
λ

m
ax

0
0

0

w
(n

+
1)

=
w

(n
)−

µ 2
g

(w
(n

))

LM
S

e(
n

)
=
d
(n

)−
u
T

(n
)w

(n
)

O
(M

)
0
<
µ
<

2
tr

(R
u
)

µ 2
J

m
in
tr

(R
u
)

µ 2
tr

(R
u
)

µ 2
J

m
in
M

w
(n

+
1)

=
w

(n
)+

µ
u

(n
)e

(n
)

N
LM

S
e(
n

)
=
d
(n

)−
u
T

(n
)w

(n
)

O
(M

)
0
<
β
<

2
β 2
J

m
in

β 2
β
J

m
in

2t
r(
R
u
)

w
(n

+
1)

=
w

(n
)+

β

ε
+
‖u

(n
)‖

2
u

(n
)e

(n
)

A
PA

e
(n

)
=
d

(n
)−

U
T

(n
)w

(n
)

O
(M

K
2
)

0
<
β
<

2
β 2
J

m
in
K

β 2
K

no
si
m
pl
e
ex
pr
es
si
on

w
(n

+
1)

=
w

(n
)+

β
U

(n
)[
εI

+
U
T

(n
)U

(n
)]−

1
e
(n

)

R
LS

π
(n

)
=
P

(n
−

1)
u

(n
)

O
(M

2
)

0
<
λ
≤

1
J

m
in

1−
λ

1+
λ
M

1
−

1−
λ

1+
λ
M

1−
λ

1+
λ
M

1
−

1−
λ

1+
λ
M

J
m

in
1−
λ

1+
λ
M

1
−

1−
λ

1+
λ
M

M ∑ m
=

1

1 λ
m

k
(n

)
=

π
(n

)
λ

+
u
T

(n
)π

(n
)

ξ(
n

)
=
d
(n

)−
u
T

(n
)w

(n
−

1)
w

(n
)
=
w

(n
−

1)
+
k

(n
)ξ

(n
)

P
(n

)
=
λ
−

1
[P

(n
−

1)
−
k

(n
)π

T
(n

)]

T
ab

le
A

.1
:
O
ve
rv
ie
w

ov
er

th
e
ba

si
c
ad

ap
ti
ve

fil
te
rs

an
d
th
ei
r
pr
op

er
ti
es
.
M
os
t
of

th
e
ex
pr
es
si
on

s
fo
r
th
e
m
ea
n-
sq
ua

re
st
ab

ili
ty
,t

he
ex
ce
ss

m
ea
n-
sq
ua

re
er
ro
r

(E
M
SE

),
th
e
m
is
ad

ju
st
m
en
t,
an

d
th
e
m
ea
n-
sq
ua

re
de
vi
at
io
n
(M

SD
)
ar
e
ap

pr
ox

im
at
io
ns
.

50 Appendix A. Summary

Appendix B

Transient and Steady-State
Analysis of the LMS Adaptive
Filter

In this appendix, we give a more detailed transient and steady-state analysis of the LMS adaptive
filter than found in Lecture 2. Specifically, we derive the condition for mean-square convergence
and the expressions for the learning curve, the excess mean-square error (EMSE), the mean-
square deviation (MSD), and the misadjustment. We do this for two reasons. Firstly, it is
instructive to see how the analysis is carried out, and, secondly, it highlights how difficult the
analysis is - even of the simple LMS adaptive filter.

In the derivation below, we use the analysis model previously discussed in Sec. 3.2.1. We also
need the following important result.

A Special Fourth Order Moment of a Gaussian Random
Vector

Let u be a real-valuedM×1 dimensional Gaussian random vector with zero-mean and correlation
matrix Ru. Moreover, let W be an M ×M symmetric matrix. We then have that [7, p. 44]

E[uuTWuuT] = Rutr(WRu) + 2RuWRu . (B.1)

If Ru = XΛXT is the eigenvalue decomposition of the correlation matrix and if we define
F = XTWX, we may write

E[uuTWuuT] = X[Λtr(FΛ) + 2ΛFΛ]XT . (B.2)

With this result in mind, we can now evaluate the following expectation

E[(I − µuuT)W (I − µuuT)] = W + µ2E[uuTWuuT]− µRuW − µWRu (B.3)
= W + µ2Rutr(WRu) + 2µ2RuWRu − µRuW − µWRu

(B.4)
= X[F − µ(ΛF + FΛ) + µ2(Λtr(FΛ) + 2ΛFΛ)]XT . (B.5)

51

52 Appendix B. Transient and Steady-State Analysis of the LMS Adaptive Filter

If F is diagonal, then FΛ = ΛF and we have that

E[(I − µuuT)W (I − µuuT)] = X[F − 2µΛF + µ2(Λtr(FΛ) + 2Λ2F)]XT . (B.6)

This result is very important for the derivation below.

The Analysis Model
The LMS algorithm is given by

w(n+ 1) = w(n) + µu(n)e(n) (B.7)

where w(n), u(n), and e(n) are the filter vector, the input vector and the error, respectively, at
time index n. The positive scalar µ is the step-size, and the error is given by

e(n) = d(n)− uT (n)w(n) (B.8)

where the desired signal d(n) in the analysis model (see also Sec. 3.2.1) is given by

d(n) = v(n) + uT (n)wo . (B.9)

We assume that v(n) is white Gaussian noise with variance σ2
v and uncorrelated with the input

signal u(n). Finally, we assume that u(n) is a white Gaussian process with correlation matrix
Ru. This implies that u(n) and w(n) are uncorrelated.

The difference between the optimal filter vector wo and the filter vector w(n) is called the
weight error, and it is given by

∆w(n) = wo −w(n) = wo −w(n− 1)− µu(n− 1)e(n− 1) (B.10)
= ∆w(n− 1)− µu(n− 1)[v(n) + uT (n− 1)wo − uT (n− 1)w(n− 1)] (B.11)
= [I − µu(n− 1)uT (n− 1)]∆w(n− 1)− µu(n− 1)v(n) . (B.12)

In terms of the weight error, the error is given by

e(n) = d(n)− uT (n)w(n) = v(n) + uT (n)∆w(n) , (B.13)

and the minimum mean-squared error (MMSE) is achieved at the optimum where ∆w(n) = 0
and thus given by

Jmin = J1(wo) = E[v2(n)] = σ2
v . (B.14)

Transient Analysis
In the transient analysis, we first consider how we should select the step-size µ in order to ensure
the mean-square stability of the LMS algorithm. Second, we derive an expression for the learning
curve.

Mean-Square Convergence
As already discussed in Lecture 2, we say that the LMS algorithm converges in the mean-square
if

lim
n→∞

E[‖∆w(n)‖2] = c <∞ . (B.15)

B.3. Transient Analysis 53

In this section, we show that the LMS algorithm converges in the mean square if the step-size µ
is selected such that it satisfies

f(µ) = µ

2

M∑

m=1

λm
1− µλm

< 1 (B.16)

where λm is the m’th eigenvalue of the correlation matrix Ru.
In order to do this, we investigate E[‖∆w(n)‖2] as n grows. For convenience of notation, it

turns out to be easier to work with E[‖c(n)‖2] where c(n) = XT∆w(n) and X contains the M
eigenvectors of Ru. Since X is orthogonal, it follows that

E[‖c(n)‖2] = E[‖XT∆w(n)‖2] = E[‖∆w(n)‖2] (B.17)

Thus, E[‖c(n)‖2] converges in the same way as E[‖∆w(n)‖2] does. In the derivation below,
we express E[‖c(n)‖2] as a function of c(0), µ, Λ, and Jmin. We do this in a recursive manner
starting by expressing E[‖c(n)‖2] as a function of c(n − 1), µ, Λ, and Jmin. Once we have
obtained an expression for this recursion, we express E[‖c(n)‖2] as a function of c(n− 2), µ, Λ,
and Jmin in the next recursion and so on.

The First Recursion

Multiplying Eq. (B.12) from the left with XT and inserting it into E[‖c(n)‖2] yields

E[‖c(n)‖2] = E[‖XT [I − µu(n− 1)uT (n− 1)]Xc(n− 1)− µXTu(n− 1)v(n)‖2] (B.18)
= E[cT (n− 1)XT [I − µu(n− 1)uT (n− 1)]2Xc(n− 1)]

+ µ2E[v2(n)uT (n− 1)u(n− 1)] (B.19)

where the last equality follows from the assumption that v(n) and u(n) are uncorrelated. The
expectation of the last term is given by

E[v2(n)uT (n− 1)u(n− 1)] = E[v2(n)]E[uT (n− 1)u(n− 1)] (B.20)
= JminE[tr(uT (n− 1)u(n− 1))] (B.21)
= JminE[tr(u(n− 1)uT (n− 1))] (B.22)
= Jmintr(E[u(n− 1)uT (n− 1)]) (B.23)
= Jmintr(Ru) (B.24)
= Jmintr(Λ) . (B.25)

The second equality follows since the trace of a scalar equals the value of the scaler. The third
equality follows from a property of the trace operator given by

tr(AB) = tr(BA) (B.26)

for any pair of matrices A and B with A and BT being of the same dimension. The fourth
equality follows since both the expectation and the trace operators are linear operators whose
order can therefore be interchanged. Finally, the last equality follows since

tr(Ru) = tr(XΛXT) = tr(ΛXTX) = tr(Λ) . (B.27)

This was previously stated in the beginning of Lecture 2.

54 Appendix B. Transient and Steady-State Analysis of the LMS Adaptive Filter

In order to evaluate the expectation of the first term in Eq. (B.19), we use the law of iterated
expectations given by1

E[X] = E[E[X|Y]] , (B.28)
and the assumption that u(n) and w(n) are uncorrelated. From this, we obtain that

E[cT (n− 1)XT [I − µu(n− 1)uT (n− 1)]2Xc(n− 1)] =
E[cT (n− 1)XTE[(I − µu(n− 1)uT (n− 1))2]Xc(n− 1)] . (B.29)

The inner expectation is on the same form as Eq. (B.6) with W = F = I. Thus, we have that

S(1) = XTE[(I − µu(n− 1)uT (n− 1))2]X (B.30)
= I − 2µΛ + µ2[Λtr(Λ) + 2Λ2] . (B.31)

which is a diagonal matrix. Thus, we can write Eq. (B.19) as

E[‖c(n)‖2] = E[cT (n− 1)S(1)c(n− 1)] + µ2Jmintr(Λ) . (B.32)

The Second Recursion

Since the second term of Eq. (B.32) does not depend on c(n), we consider the first term of
Eq. (B.32). Multiplying Eq. (B.12) for time index n− 1 from the left with XT and inserting it
into the first term yields

E[cT (n− 1)S(1)c(n− 1)] =
E[cT (n− 2)XT [I − µu(n− 2)uT (n− 2)]XS(1)XT [I − µu(n− 2)uT (n− 2)]Xc(n− 2)]
+ µ2E[v2(n)uT (n− 2)XS(1)XTu(n− 2)] . (B.33)

The expectation of the last term is given by

E[v2(n)uT (n− 2)XS(1)XTu(n− 2)] = E[v2(n)]E[uT (n− 2)XS(1)XTu(n− 2)]
= JminE[tr(uT (n− 2)XS(1)XTu(n− 2))]
= Jmintr(XS(1)XTE[u(n− 2)uT (n− 2)])
= Jmintr(S(1)Λ) . (B.34)

The equalities in the derivation above follows from the same arguments as in the derivation
for the equivalent expression in the first recursion. Using the same arguments as in the first
recursion, the first term of Eq. (B.33) may be written as an outer and an inner expectation. The
inner expectation can be evaluated using Eq. (B.6) with W = XS(1)XT or F = S(1). Thus,
we have that S(2) is given by

S(2) = XTE
[
[I − µu(n− 2)uT (n− 2)]XS(1)XT [I − µu(n− 2)uT (n− 2)]

]
X

= S(1)− 2µΛS(1) + µ2[Λtr(S(1)Λ) + 2ΛS(1)Λ] (B.35)
1It follows since

E[E[X|Y]] =
∫

E[X|Y]fY (y)dy =
∫ [∫

xfX|Y (x|y)dx

]
fY (y)dy =

∫ ∫
xfX,Y (x, y)dxdy

=
∫

x

[∫
fX,Y (x, y)dy

]
dx =

∫
xfX(x)dx = E[X] .

B.3. Transient Analysis 55

which is diagonal since S(1) is diagonal. Thus, in total we have that

E[‖c(n)‖2] = E[cT (n− 1)S(1)c(n− 1)] + µ2Jmintr(Λ) (B.36)
= E[cT (n− 2)S(2)c(n− 2)] + µ2Jmintr(S(1)Λ) + µ2Jmintr(Λ) (B.37)
= E[cT (n− 2)S(2)c(n− 2)] + µ2Jmintr([S(1) + I]Λ) . (B.38)

The Third Recursion

Since the second term of Eq. (B.38) does not depend on c(n), we consider the first term of
Eq. (B.38). This has the same form as the first term of Eq. (B.32) so the derivation of the
third recursion is the same as for the second recursion, except that all the time indices should
be decreased by one. We therefore obtain that

E[‖c(n)‖2] = E[cT (n− 1)S(1)c(n− 1)] + µ2Jmintr(Λ) (B.39)
= E[cT (n− 2)S(2)c(n− 2)] + µ2Jmintr([S(1) + I]Λ) (B.40)
= E[cT (n− 3)S(3)c(n− 3)] + µ2Jmintr([S(2) + S(1) + I]Λ) . (B.41)

The n’th Recursion

From the first, second, and third recursion, it is not hard to see a pattern for the recursions.
Therefore, for the n’th recursion, we have that

E[‖c(n)‖2] = cT (0)S(n)c(0) + µ2Jmin

n−1∑

i=0
tr(S(i)Λ) (B.42)

where

S(n) = S(n− 1)− 2µΛS(n− 1) + µ2[Λtr(S(n− 1)Λ) + 2ΛS(n− 1)Λ] (B.43)

with S(0) = I. From the recursion in Eq. (B.42), we see that we must require that cT (0)S(n)c(0)
remains bounded for n → ∞, regardless of the initial conditions c(0). Since cT (0)S(n)c(0)
remains bounded if and only if all the eigenvalues of S(n) are in the interval [−1, 1], we therefore
perform an eigenvalue analysis of S(n).

Eigenvalue Analysis of S(n)

Define the vector of ones
1 =

[
1 1 · · · 1

]T
. (B.44)

Using this vector, we may write the trace of a diagonal matrix M as

tr(M) = 1TM1 . (B.45)

Since S(n) and Λ are diagonal matrices, the product S(n)Λ is also diagonal, and we have that

S(n− 1)Λ = ΛS(n− 1) (B.46)
tr(S(n)Λ) = 1TS(n)Λ1 = 1TΛS(n)1 . (B.47)

Multiplying both sides of Eq. (B.43) from the right with 1, we obtain

S(n)1 = S(n− 1)1− 2µΛS(n− 1)1 + µ2[Λ11TΛS(n− 1)1 + 2Λ2S(n− 1)1] (B.48)
= [I − 2µΛ + µ2(Λ11TΛ + 2Λ2)]S(n− 1)1 . (B.49)

56 Appendix B. Transient and Steady-State Analysis of the LMS Adaptive Filter

Now, we define
D = I − 2µΛ + µ2(Λ11TΛ + 2Λ2) (B.50)

so that we have

S(n)1 = DS(n− 1)1 (B.51)
=
...
D2S(n− 2)1 (B.52)

= DnS(0)1 (B.53)

This means that the elements of the diagonal matrix S(n) are bounded if and only if all the
eigenvalues of D are in the interval [−1, 1].

Eigenvalue Analysis of D

We can write D as
D = 2(I − µΛ)2 + 2µΛ + µ2Λ11TΛ (B.54)

which is clearly positive semidefinite since µ > 0 and λm > 0. Thus, all eigenvalues of D are
non-negative, and the only requirement to the eigenvalues is therefore that they are smaller than
one. This is equivalent to requiring that I −D is positive definite. From Sylvester’s criterion,
we know that an M ×M matrix A is positive definite if and only if the determinant of all the
upper m ×m matrices Am of A are positive for m = 1, . . . ,M . If 1m is a vector consisting of
m ones, Im is the m×m identity matrix, and Λm and Dm are the upper m×m matrices of Λ
and D, respectively, we have that

Dm = Im − 2µΛm + µ2Λm(1m1Tm + 2Im)Λm , for m = 1, . . . ,M , (B.55)

and we require that
|Im −Dm| > 0 , for m = 1, . . . ,M (B.56)

for I −D to be positive definite. The determinant of Im −Dm is

|Im −Dm| = |2µΛm − µ2Λm(1m1Tm + 2Im)Λm| (B.57)
= |µ2Λm||2µ−1Im − 2Λm − 1m1TmΛm| (B.58)

Since µ > 0 and λm > 0, the determinant of µ2Λm is positive for all m = 1, . . . ,M . In order to
evaluate the second determinant, we use the matrix determinant lemma which states that

|A+UV T | = |A||I + V TA−1U | (B.59)

where A is an N ×N matrix, and U and V are N ×M matrices. From the matrix determinant
lemma, we have that

|2µ−1Im − 2Λm − 1m1TmΛm| = |2µ−1Im − 2Λm||1−
1
21TmΛm(µ−1Im −Λm)−11m| (B.60)

The argument of the first determinant is a diagonal matrix. Thus, it leads to

0 < 2µ−1 − 2λm , for m = 1, . . . ,M (B.61)
m

µ <
1

λmax
. (B.62)

B.3. Transient Analysis 57

The argument of the second determinant is a scalar. It leads to

0 < 1− 1
21TmΛm(µ−1Im −Λm)−11m , for m = 1, . . . ,M (B.63)

m
1 > 1

21TmΛm(µ−1Im −Λm)−11m , for m = 1, . . . ,M (B.64)

= 1
2tr(Λm(µ−1Im −Λm)−1) , for m = 1, . . . ,M (B.65)

= 1
2

m∑

i=1

λi
µ−1 − λi

, for m = 1, . . . ,M (B.66)

= µ

2

m∑

i=1

λi
1− µλi

= fm(µ) , for m = 1, . . . ,M . (B.67)

The first bound on the step-size in Eq. (B.62) ensures that λi/(1−µλi) is always positive. Thus,

f1(µ) < f2(µ) < · · · < fM (µ) , for µ ∈ [0, λ−1
max] . (B.68)

Therefore, if the step-size satisfies

f(µ) = fM (µ) < 1 , (B.69)

then all of the functions fm(µ) are also smaller than one. Moreover, f(0) = 0, and f(µ) is an
increasing function as long as the first bound on the step-size in Eq. (B.62) is satisfied. The
latter follows since the derivative of f(µ) satisfies

df

dµ
= 1

2

M∑

m=1

λm
(1− µλm)2 > 0 , for µ ∈ [0, λ−1

max] . (B.70)

These observations lead to the conclusion that I − D is positive definite, provided that the
step-size satisfies the bound

f(µ) = µ

2

M∑

m=1

λm
1− µλm

< 1 . (B.71)

In matrix notation, we can write this bound as

f(µ) = 1
21TΛ(µ−1I −Λ)−11 = 1

2tr(Λ(µ−1I −Λ)−1) < 1 (B.72)

where the last equality follows since Λ(µ−1I −Λ)−1 is diagonal. Moreover, since

lim
µ→λ−1

max

f(µ) =∞ > 1 , (B.73)

the first bound in Eq. (B.62) is always satisfied if the second bound in Eq. (B.71) is satisfied.
Thus, we have shown that the LMS algorithm converges in the mean-square if and only if the
step-size satisfies Eq. (B.71) or, equivalently, Eq. (B.72).

58 Appendix B. Transient and Steady-State Analysis of the LMS Adaptive Filter

Learning Curve
The value of the cost function at time n is given by

J1(w(n)) = E[e2(n)] = E[(v(n) + uT (n)∆w(n))2] (B.74)
= E[∆wT (n)u(n)uT (n)∆w(n)] + Jmin (B.75)

where the last equality follows from the fact that v(n) and u(n) are uncorrelated. If we also use
the law of iterated expectations and that u(n) and w(n) are uncorrelated, we obtain that

J1(w(n)) = E[∆wT (n)E[u(n)uT (n)|w(n)]∆w(n)] + Jmin (B.76)
= E[∆wT (n)E[u(n)uT (n)]∆w(n)] + Jmin (B.77)
= E[∆wT (n)Ru∆w(n)] + Jmin . (B.78)

Finally, if we replace the correlation matrix Ru of u(n) with its eigenvalue decomposition Ru =
XΛXT , we have that

J1(w(n)) = E[cT (n)Λc(n)] + Jmin (B.79)

where we again have defined that c(n) = XT∆w(n). Now, for S(0) = Λ, we obtain from
Eq. (B.42) that

J1(w(n)) = cT (0)S(n)c(0) + µ2Jmin

n−1∑

i=0
tr(S(i)Λ) + Jmin (B.80)

where

S(n) = S(n− 1)− 2µΛS(n− 1) + µ2[Λtr(S(n− 1)Λ) + 2ΛS(n− 1)Λ] (B.81)
= diag(S(n)1) = diag(DnΛ1) . (B.82)

Here, diag(·) creates a diagonal matrix from a vector.

Steady-State Analysis
In the steady-state analysis, we derive expressions for the mean-square deviation (MSD), the
excess mean-square error (EMSE), and the misadjustment of the LMS algorithm. These expres-
sions can be derived in two different ways. One way is presented in [7, pp. 462–465]. Here, we
give another derivation which we believe is more intuitive.

Mean-Square Deviation
The MSD is given by the limit

MSD: lim
n→∞

E[‖∆w(n)‖2] , (B.83)

B.4. Steady-State Analysis 59

and we denote this limit by E[‖∆w(∞)‖2]. We make direct use of the definition in the derivation
of the MSD. Again, we define c(n) = XT∆w(n). Thus, from Eq. (B.42), we have that

E[‖∆w(∞)‖2] = lim
n→∞

E[‖∆w(n)‖2] = lim
n→∞

E[‖c(n)‖2] (B.84)

= lim
n→∞

{
cT (0)S(n)c(0) + µ2Jmin

n−1∑

i=0
tr(S(i)Λ)

}
(B.85)

= lim
n→∞

cT (0)S(n)c(0) + lim
n→∞

µ2Jmin

n−1∑

i=0
tr(S(i)Λ) . (B.86)

with S(0) = I. If we select the step-size µ such that the LMS algorithm converges in the
mean-square, the first term equals zero. Thus, we have that

E[‖∆w(∞)‖2] = lim
n→∞

µ2Jmin

n−1∑

i=0
tr(S(i)Λ) = µ2Jmin

∞∑

i=0
tr(S(i)Λ) . (B.87)

The matrices S(i) and Λ are both diagonal, and we therefore use Eq. (B.47) to obtain

E[‖∆w(∞)‖2] = µ2Jmin

∞∑

i=0
1TΛS(i)1 (B.88)

= µ2Jmin

∞∑

i=0
1TΛDi1 (B.89)

= µ2Jmin1TΛ
∞∑

i=0

[
Di
]
1 (B.90)

where the second equality follows from Eq. (B.53) with S(0) = I and D defined in Eq. (B.50).
Since all the eigenvalues of D have a magnitude smaller than 1, we have from the geometric
series of matrices that [12, p. 58]

∞∑

i=0
Di = (I −D)−1 . (B.91)

Thus, we obtain that

E[‖∆w(∞)‖2] = µ2Jmin1TΛ(I −D)−11 (B.92)
= µ2Jmin1TΛ(2µΛ− µ2(Λ11TΛ + 2Λ2))−11 (B.93)
= µ2Jmin1TΛ[(2µ−1I − 2Λ−Λ11T)µ2Λ]−11 (B.94)
= Jmin1T (2µ−1I − 2Λ−Λ11T)−11 . (B.95)

Now, by defining
G = µ−1I −Λ (B.96)

60 Appendix B. Transient and Steady-State Analysis of the LMS Adaptive Filter

and using the matrix inversion lemma from Eq. (4.5), we obtain
E[‖∆w(∞)‖2] = Jmin1T (2G−Λ11T)−11 (B.97)

= Jmin1T
[

1
2G
−1 + 1

2G
−1Λ1

(
1− 1

21TG−1Λ1
)−1

1TG−1 1
2

]
1 (B.98)

= Jmin
1
21TG−11

[
1 +

(
1− 1

21TG−1Λ1
)−1 1

21TG−1Λ1
]

(B.99)

= Jmin
1
21TG−11

(
1− 1

21TG−1Λ1
)−1

. (B.100)

Finally, from Eq. (B.72), we have that

f(µ) = 1
21TΛG−11 = 1

21TG−1Λ1 (B.101)

which leads to

E[‖∆w(∞)‖2] = Jmin
1− f(µ)

µ

2

M∑

m=1

1
1− µλm

. (B.102)

Excess Mean-Square Error
The derivation of the EMSE is done in the same way as the MSE was derived. The EMSE is
given by the limit

EMSE: lim
n→∞

J1(w(n))− Jmin , (B.103)

and we denote it by Jex. Inserting the expression for the learning curve from Eq. (B.80) in this
limit yields

Jex = lim
n→∞

{
cT (0)S(n)c(0) + µ2Jmin

n−1∑

i=0
tr(S(i)Λ)

}
(B.104)

= lim
n→∞

cT (0)S(n)c(0) + lim
n→∞

µ2Jmin

n−1∑

i=0
tr(S(i)Λ) (B.105)

where S(0) = Λ and c(n) = XT∆w(n). If we select the step-size µ such that the LMS algorithm
converges in the mean-square, the first term equals zero. Thus, we have that

Jex = lim
n→∞

µ2Jmin

n−1∑

i=0
tr(S(i)Λ) = µ2Jmin

∞∑

i=0
tr(S(i)Λ) . (B.106)

Note that the expression for the EMSE is the same as for the MSD, except for the value of S(0).
The matrices S(i) and Λ are both diagonal, and we therefore use Eq. (B.47) to obtain

Jex = µ2Jmin

∞∑

i=0
1TΛS(i)1 (B.107)

= µ2Jmin

∞∑

i=0
1TΛDiΛ1 (B.108)

= µ2Jmin1TΛ
∞∑

i=0

[
Di
]
Λ1 (B.109)

B.4. Steady-State Analysis 61

where the second equality follows from Eq. (B.53) with S(0) = Λ and D defined in Eq. (B.50).
Since all the eigenvalues of D have a magnitude smaller than 1, we have from the geometric
series of matrices that [12, p. 58]

∞∑

i=0
Di = (I −D)−1 . (B.110)

Thus, we obtain that

Jex = µ2Jmin1TΛ(I −D)−1Λ1 (B.111)
= µ2Jmin1TΛ(2µΛ− µ2(Λ11TΛ + 2Λ2))−1Λ1 (B.112)
= µ2Jmin1TΛ[(2µ−1I − 2Λ−Λ11T)µ2Λ]−1Λ1 (B.113)
= Jmin1T (2µ−1I − 2Λ−Λ11T)−1Λ1 . (B.114)

Now, by defining
G = µ−1I −Λ (B.115)

and using the matrix inversion lemma from Eq. (4.5), we obtain

Jex = Jmin1T (2G−Λ11T)−1Λ1 (B.116)

= Jmin1T
[

1
2G
−1 + 1

2G
−1Λ1

(
1− 1

21TG−1Λ1
)−1

1TG−1 1
2

]
Λ1 (B.117)

= Jmin
1
21TG−1Λ1

[
1 +

(
1− 1

21TG−1Λ1
)−1 1

21TG−1Λ1
]

(B.118)

= Jmin
1
21TG−1Λ1

(
1− 1

21TG−1Λ1
)−1

. (B.119)

Finally, from Eq. (B.72), we have that

f(µ) = 1
21TΛG−11 = 1

21TG−1Λ1 (B.120)

which leads to

Jex = Jmin
f(µ)

1− f(µ) . (B.121)

Misadjustment
The expression for the misadjustment is

M = Jex
Jmin

= f(µ)
1− f(µ) . (B.122)

	Contents
	Preface
	1 Introduction, Wiener-Hopf Equations, and Normal Equations
	1.1 Review of the Basics
	1.1.1 Linear Algebra
	1.1.2 Optimisation
	1.1.3 Stochastic Processes

	1.2 Block Diagram of Adaptive Filtering
	1.2.1 Mean-Squared Error and Squared Error cost functions

	1.3 The Wiener-Hopf Equations
	1.3.1 Principle of Orthogonality
	1.3.2 The Modified Yule-Walker Equations

	1.4 The Normal Equations
	1.4.1 Principle of Orthogonality
	1.4.2 Estimation of the (Cross-)Correlation
	1.4.3 Data Windowing

	2 Steepest Descent and Least-Mean-Square Adaptive Filters
	2.1 Review of the Basics
	2.1.1 The Eigenvalue Decomposition

	2.2 The Wiener-Hopf Equations
	2.3 The Method of Steepest Descent
	2.3.1 Basic Idea
	2.3.2 Transient Analysis

	2.4 Least-Mean-Square Adaptive Filters
	2.4.1 Basic Idea
	2.4.2 Transient Analysis
	2.4.3 Steady-State Analysis
	2.4.4 Computational Cost

	3 Normalised LMS and Affine Projection Algorithm
	3.1 Review of the Basics
	3.1.1 Inversion of a 2 by 2 Block Matrix
	3.1.2 The Method of Lagrange Multipliers

	3.2 Overview over Adaptive Filters based on the Mean-Squared Error Cost Function
	3.2.1 Model for the Analysis of SGMs
	3.2.2 How to Analyse Adaptive Filters

	3.3 LMS Revisited
	3.3.1 Transient Analysis
	3.3.2 Steady-State Analysis

	3.4 Normalised LMS Adaptive Filters
	3.4.1 Transient Analysis
	3.4.2 Steady-State Analysis
	3.4.3 Computational Cost
	3.4.4 Another Derivation of the NLMS Algorithm

	3.5 Affine Projection Adaptive Filters
	3.5.1 Transient Analysis
	3.5.2 Steady-State Analysis
	3.5.3 Computational Cost

	4 Recursive Least-Squares Adaptive Filters
	4.1 Review of the Basics
	4.1.1 The Matrix Inversion Lemma

	4.2 Method of Least-Squares
	4.2.1 Weighted Least-Squares
	4.2.2 Weight Functions

	4.3 The Recursive Least-Squares Algorithm with an Exponential Weight Function
	4.3.1 Selection of the Forgetting Factor
	4.3.2 Transient Analysis
	4.3.3 Steady-State Analysis
	4.3.4 Computational Cost

	Bibliography
	A Summary
	B Transient and Steady-State Analysis of the LMS Adaptive Filter
	B.1 A Special Fourth Order Moment of a Gaussian Random Vector
	B.2 The Analysis Model
	B.3 Transient Analysis
	B.3.1 Mean-Square Convergence
	B.3.2 Learning Curve

	B.4 Steady-State Analysis
	B.4.1 Mean-Square Deviation
	B.4.2 Excess Mean-Square Error
	B.4.3 Misadjustment

