
examples

July 1, 2021

0.1 Basics
First, import the package and everything from the enums module. cgt includes enums for every
set of options so that your editor can provide you with the options available

[1]: import cgt
from cgt.enums import *

We can define a PositionParadigmFramework under which we will model genomes. Choose to
model oriented, circular genomes with five regions

[2]: framework = cgt.PositionParadigmFramework(5, oriented=True, symmetry=SYMMETRY.
↪→circular)

print(framework)

Framework for circular genomes with 5 oriented regions

Right away, we can look at the kinds of genomes we can represent

[3]: genome = framework.random_genome()
print(genome)

1/10*(3,-4,-5)(4,5,-3) + 1/10*(1,2,3,-5,4)(5,-4,-1,-2,-3) +
1/10*(1,3,-1,-3)(2,4)(5,-5)(-4,-2) + 1/10*(1,4,3,-2,-5)(2,5,-1,-4,-3) +
1/10*(1,5,-2,-1,-5,2)(3,-3) + 1/10*(1,-5,-3,-2,4,-1,5,3,2,-4) +
1/10*(1,-4,5,2,-3,-1,4,-5,-2,3) + 1/10*(1,-3,-5,-1,3,5)(2,-2)(4,-4) +
1/10*(1,-2)(2,-1)(3,4,-3,-4) + 1/10*(1,-1)(2,-5,-4)(4,-2,5)

We can view the genome in other ways, too. Select a random permutation representing the above
genome. These are referred to as genome instances

[4]: instance = framework.random_instance(genome)
print(instance)

(1,5,-2,-1,-5,2)(3,-3)

Each genome has a canonical instance. Here canonical means the instance which maps region 1 to
position 1. It is returned in one_row notation:

[5]: canonical_instance = framework.canonical_instance(instance)
print(canonical_instance)

[1, 2, -4, 5, -3]

1



…but can be convered back to cycle notation easily.

[6]: canonical_instance = framework.cycles(canonical_instance)
print(canonical_instance)

(3,-4,-5)(4,5,-3)

We can obtain the genome from a given instace, canonical or otherwise.

[7]: new_genome = framework.genome(instance, format=cgt.FORMAT.formal_sum)
print(genome == new_genome)

True

2


	Basics

