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0.1 Basics
First, import the package and everything from the enums module. cgt includes enums for every
set of options so that your editor can provide you with the options available

[1]: import cgt
from cgt.enums import *

We can define a PositionParadigmFramework under which we will model genomes. Choose to
model oriented, circular genomes with five regions

[2]: framework = cgt.PositionParadigmFramework(5, oriented=True, symmetry=SYMMETRY.
↪→circular)

print(framework)

Framework for circular genomes with 5 oriented regions

Right away, we can look at the kinds of genomes we can represent

[3]: genome = framework.random_genome()
print(genome)

1/10*(3,-4,-5)(4,5,-3) + 1/10*(1,2,3,-5,4)(5,-4,-1,-2,-3) +
1/10*(1,3,-1,-3)(2,4)(5,-5)(-4,-2) + 1/10*(1,4,3,-2,-5)(2,5,-1,-4,-3) +
1/10*(1,5,-2,-1,-5,2)(3,-3) + 1/10*(1,-5,-3,-2,4,-1,5,3,2,-4) +
1/10*(1,-4,5,2,-3,-1,4,-5,-2,3) + 1/10*(1,-3,-5,-1,3,5)(2,-2)(4,-4) +
1/10*(1,-2)(2,-1)(3,4,-3,-4) + 1/10*(1,-1)(2,-5,-4)(4,-2,5)

We can view the genome in other ways, too. Select a random permutation representing the above
genome. These are referred to as genome instances

[4]: instance = framework.random_instance(genome)
print(instance)

(1,5,-2,-1,-5,2)(3,-3)

Each genome has a canonical instance. Here canonical means the instance which maps region 1 to
position 1. It is returned in one_row notation:

[5]: canonical_instance = framework.canonical_instance(instance)
print(canonical_instance)

[1, 2, -4, 5, -3]
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…but can be convered back to cycle notation easily.

[6]: canonical_instance = framework.cycles(canonical_instance)
print(canonical_instance)

(3,-4,-5)(4,5,-3)

We can obtain the genome from a given instace, canonical or otherwise.

[7]: new_genome = framework.genome(instance, format=cgt.FORMAT.formal_sum)
print(genome == new_genome)

True
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