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Abstract — In recent years the industry of quadcopters has experimented a boost. The appearance

of inexpensive drones has led to the growth of the recreational use of this vehicles, which opens

the door to the creation of new applications and technologies. This thesis presents a vision-based

autonomous control system for an AR.Drone 2.0. A tracking algorithm is developed using onboard

vision systems without relying on additional external inputs. In particular, the tracking algorithm is

the combination of a trained MobileNet-SSD object detector and a KCF tracker. The noise induced

by the tracker is decreased with a Kalman filter. Furthermore, PID controllers are implemented for

the motion control of the quadcopter, which process the output of the tracking algorithm to move

the drone to the desired position. The final implementation was tested indoors and the system yields

acceptable results.
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Introduction

Motivation

Every year the industry of automation and robots is increasing and the business of UAV (Unmanned

aerial vehicles) provides less expensive and better models. In particular, quadcopters or, as popu-

larly said, drones, are becoming more readily available, smaller and lighter. At the same time, the

industry of cameras is also inflating, thanks to applications like Instagram people create images and

videos for the sole purpose of sharing them to the social media. Because of this, quadcopters are

being used for the creation of spectacular aerial images and videos that could not be made before.

But drones with high quality cameras are much more expensive than regular drones. Although now,

some of these cheap quadcopters allow a camera to be inserted on top, which makes the overall

price less expensive. Another technology that has been booming for two years now is the follow-me

drones: quadcopters programmed to automatically follow a target around, giving the opportunity

to film unique aerial shots. This technology can be created with the use of a GPS device along with

a transmitter, or by using sensors and object recognition on the target. If we combine the follow-me

technology, plus the cheap quadcopter, plus an inserted good camera, we get a not very expensive

and useful device, that can create high resolution videos while following you around.

The motivation of this project is to create a follow-me quadcopter implementation, able to track

a target through daily activities, like running, climbing, swimming, etc. by only using the images

obtained from the drone, with the help of computer vision algorithms.

Objectives

The objectives of this thesis are three. First, to implement a tracking algorithm in the three-dimen-

sional space from two-dimensional video frames, this is, an algorithm able to follow the movement

of the person through the height, width and depth planes using consecutive frames from a video.

Second, to control an AR.Drone 2.0 so that it follows the observations given by the tracking algo-

rithm, creating a follow-me implementation of the AR.Drone 2.0. Third, to run the implementation

in a low speed processor: the CPU of a laptop, or even a smartphone or tablet, allowing the target

to send, in real time, commands to the quadcopter.

Next a brief explanation of the main technologies will be introduced.
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INTRODUCTION

MobileNet and Single Shot Multibox Detector (SSD)

In general, the input of an object tracker is the bounding box containing the object to track. To obtain

this bounding box an already trained object detector network can be used. In this case we use an

implementation of the MobileNet-SSD detection network.

On one hand, MobileNet, [HZC+17], is an efficient network architecture especially designed for

mobile and embedded vision applications. MobileNets are small, low-power, low-latency models

effective across a wide range of applications and use cases including object detection, classification,

face attributes and large scale geo-localization. The accuracy of MobileNets is surprisingly high and

good enough for many applications, although not as good as a full-fledged neural network.

On the other hand, SSD, [LAE+15], is a method for detecting objects using a single deep neural net-

work, easy to train and simple to integrate in systems that require a detection component. Moreover,

experimental results on the PASCAL VOC, COCO, and ILSVRC datasets show that SSD has competi-

tive accuracy to other slower methods. This combination of speed and accuracy make this method a

very good option to use for our purpose.

PID control

To accomplish the task of automatic control of an AR.Drone 2.0 a PID controller is required.

The proportional-integral-derivative controller, or PID controller, is the most common type of con-

troller used for UAV stabilization and autonomous control. It is a control loop feedback mechanism

that attempts to minimize the error between a measured value and a desired value. The three terms:

proportional, integral and derivative, compose the controller algorithm and try to minimize this er-

ror. The proportional corrects instances of error, the integral corrects accumulation of error, and the

derivative corrects the actual error versus the error from the last iteration. To obtain a stable PID

controller three parameters related to each of these terms have to be tuned. The goal of tuning is

to reach the point right before erratic behaviour, where the quadcopter can get to the desired state

quickly but without overshooting or oscillations. The parameters that produce the desired behaviour

depend on the dynamics of the system being controlled.
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Thesis organization

Thesis organization

This essay is organized in five chapters:

• Chapter 1 explains the preliminaries needed to start with this project. First, it explains the

different state of the art object detectors and object trackers, starting with an introduction to

neural networks. Second, it talks about the quadcopter chosen for the project: the AR Drone

2.0, and the different methods that exist to create a communication with this quadcopter.

• Chapter 2 gives an in depth explanation of the project’s framework, mostly theoretical without

entering in the coded software. It introduces the Kalman filter for smoothing the tracking

output and the PID controller for the control of the quadcopter.

• Chapter 3 describes, given the theoretical framework from Chapter 2, the implementation of

the tracking and moving algorithms.

• Chapter 4 shows the results obtained of the implementation.

• Chapter 5 concludes the thesis and talks about future work.
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1 Prior knowledge

The desired quadcopter behaviour is achieved by the interaction of two separate modules which

provide two different functionalities: the tracking of the person on one hand, and the actual control

logic of the quadcopter on the other. For the first task an object detection system is needed in order

to find the person in the first frame right after the drone startup, and a tracking system is needed

in order to follow this detected target. For the second task a control API can be made from scratch

using the quadcopter low-level commands, or an existing, off-the-shelf and ready-to-use library can

be used. The goal of this chapter is to provide a succinct introduction to the topics that have to be

addressed in order to implement a solution for both tasks, and at the same time, to review the most

relevant approaches to date and decide which are the most convenient for this thesis.

1.1 Computer vision preliminaries

The problem of human detection (embedded in the general problem of object detection) is the prob-

lem of automatically locating people in an image or video sequence, the latter case is usually referred

to object tracking. When dealing with a video feed, there are two approaches to locate the interest

object in each frame. On the one hand an object detector can be queried on every frame, so that

the video sequence object tracking is effectively reduced to multiple independent (per-frame) detec-

tions. On the other hand a time-aware system can be used so that prior information from past frames

is exploited to infer the object location in the current frame. A memoryless approach such as the

former is usually more computationally expensive because the object location must be determined

every time from scratch, while the latter approach tends to be faster but less accurate because the

prior information alone (such as the previous object location) has to be corrected by some ad hoc

hypothesis or model, which tends to produce drifted predicted locations. In this section we will focus

on the general problem of object detection and tracking, starting with a brief explanation of how do

supervised learning and neural networks work, which will help us understand the now state of the

art object detection systems.

1.1.1 Supervised learning and neural networks

Supervised learning is a statistical subject which provides the mathematical setting to learn from

example. Specifically, one has a set of training samples

D = {(xi,yi) | xi ∈ Rn, yi ∈ Rm, i = 1, ..., N}
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1. PRIOR KNOWLEDGE

drawn from the joint unknown distribution

f : Rn ×Rm −→ [0, 1]

which models a stochastic function
h: Rn −→ Rm

x 7−→ y= h(x)
(1.1)

Given a parametric model

ĥ: Rn ×Rk −→ Rm

(x,ψ) 7−→ ĥ(x,ψ)

and a cost function

L : Rm ×Rm −→ R

(a,b) 7−→ L(a,b)

the goal of supervised learning is to find

ψ̂= argmin
ψ

N
∑

i=1

L(ĥ(xi,ψ),yi) (1.2)

so that ĥ(·, ψ̂) is a good approximation of h. Supervised learning can be divided into two categories:

• Classification problems: discrete output, it includes models such as Support Vector Machines,

Artificial Neural Networks and Naïve Bayes classifiers.

• Regression problems: continuous output, it includes models such as Linear Regressors, Deci-

sion Trees and Artificial Neural Networks.

Since Artificial Neural Networks currently provide state-of-the-art results in supervised learning tasks

we will stick to these models.

Artificial neural networks are a brain-inspired system intended to replicate the way the human brain

works. They consists in a collection of interconnected units or nodes called artificial neurons that can

transmit signals from one to another and operate in parallel according to the given input. Depending

on their inputs and outputs, these neurons are generally arranged into three different layers (fig 1.1):

• Input layer: dimensioned according to the input.

• Hidden layer(s).

• Output layer: dimensioned to fit the proper output.

2



1.1. Computer vision preliminaries

Depending on the connectivity between the neurons in the hidden layer(s) the neural network can

be a feed-forward network, where the information travels in one direction, from input to output, or

a feedback network, where the information can travel in both directions.

Neural networks can also be used for unsupervised learning (e.g. autoencoders, [Bal12]), but our

focus will be on the supervised neural networks, which are the most common. From now on, when

referring to neural networks we will be talking of supervised neural networks. As neural networks

are a type of supervised learning method they will have a training dataset, a parametric function

(which is the neural network) and a cost function, as explained above, and their goal will be to find

the ψ that meets (1.2). This ψ is a k-dimensional vector and their ψ1, ..,ψk components are called

weights, ω, and biases, b. A basic neural network with no hidden layers is

ĥi =
n
∑

j=1

ω ji x j + bi i = 1, ..., m; bi ,ωi j , x j ∈ R

where ωi j ’s are the weights and bi ’s are the biases, so that ωi j , bi ∈ {ψ1, ..,ψk}.

In figure 1.1 we have an example of a neural network with two hidden layers of dimensions 3 and

4, with all the corresponding weights and biases.

Figure 1.1: Fully connected 4-layer neural network.
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1. PRIOR KNOWLEDGE

Let Ml be the matrix formed by all the weights from layer l−1 of dimension v to layer l of dimension

u:

Ml =























ωl
11 ωl

21 · · · ωl
(v−1)1 ωl

v1

ωl
12 ωl

22 · · · ωl
(v−1)2 ωl

v2
...

...
. . .

...
...

ωl
1(u−1) ωl

2(u−1) · · · ω
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1u ωl
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(v−1)u ωl

vu























,

So that with no hidden layers we have:

ĥ= M x + b, (1.3)

with x ∈ Rn, b ∈ Rm, M = M1 ∈ Rm×n.

If we had one hidden layer of dimension d our output would be:

ĥ= M2(M1 x1 + b1) + b2 = (M2M1)x + (M2 b1 + b2) = M x + b, (1.4)

with b1 ∈ Rd , b2 ∈ Rm, M1 ∈ Rd×n, M2 ∈ Rm×d .

Equation (1.4) shows that, with this network architecture, and even by adding additional hidden

layers, the only functions that our network will learn are going to be linear functions. To be able to

approximate nonlinear functions we need (non-linear) activation functions. For example, if our net-

work is used to know if tomorrow is going to rain (output 1 if so, 0 if not) we could write something

like this:

ĥi =







0 i f
∑n

j=1ωi j x j ≤ ξi

1 i f
∑n

j=1ωi j x j > ξi

i = 1, ..., m ξi ,ωi j , x j ∈ R

In this case, the activation function used is called the threshold function, which generates the output

1 if the input exceeds a certain value ξi = −bi . This type of neural networks that performs binary

classification are called perceptrons.

But perceptrons are not continous (a small change in the input may produce a large change in the

output), therefore expression (1.2) cannot be solved using standard analysis techniques. To fix this,

other activation functions, which are differentiable, are used. For example the sigmoid function:

σ(x) =
1

1+ e−x
∈ (0,1)

which applied to our neural network would be:

ĥi =
1

1+ ex p(−
∑n

j=1ωi j x j − bi)
i = 1, ..., m bi ,ωi j , x j ∈ R,

the hyperbolic tangent function:

f (x) = tanh(x) ∈ (−1, 1)

4



1.1. Computer vision preliminaries

so that

ĥi = tanh

 

n
∑

j=1

ωi j x j + bi

!

i = 1, ..., m bi ,ωi j , x j ∈ R

or the Rectified Linear Unit (ReLu) function:

f (x) = max(0, x)

so that

ĥi = max(0,
n
∑

j=1

ωi j x j + bi) i = 1, ..., m bi ,ωi j , x j ∈ R.

Now that we have the equations of the neural network, we need an algorithm that learns the weights

and biases so that the output from the network approximates yi for all training inputs xi. Here is

where the cost function is introduced, a typical one is:

C(ψ)≡
1

2n

∑

x

‖ĥ(xi,ψ)− yi‖2.

C is called the quadratic cost function and is the mean squared error between the real and the de-

sired output. The aim of our training algorithm is to minimize this cost function and the algorithm

used is gradient descent, which repeatedly computes the gradient ∇ψC , normally by means of the

backpropagation algorithm [EREHJW86], and moves proportionally to it’s opposite orientation until

a local minimum is reached.

Neural networks have many architectures and classes, such as the explained feed-forward and feed-

back. This project uses neural networks to find persons in an image, for which a certain class of

neural networks is used: Convolutional Neural Networks (ConvNets or CNNs). CNNs are a category

of deep feed-forward neural networks that have proven very effective in areas such as image recog-

nition and classification.

Before explaining CNNs we will make a small introduction on Multilayer Perceptrons (MLPs), of

which CNNs are inspired from. The multilayer perceptron is a specific feed-forward neural network

architecture, with at least one fully connected layer (a part from the input and output layers) and

one non-linear activation function. MLPs use backpropagation for training the network and can dis-

tinguish data that is not linearly separable. Their multiple layers and the activation function is what

discern them from perceptrons.

Suppose now that our inputs are images, so that the pixels of the images compose the input layer,

and that our goal is to learn features from a dataset of images to classify them. If our images are

small, say 28× 28 pixels of images like the MNIST dataset [LC10], it is computationally possible to

learn weights on the entire image using fully connected layers. However, with larger images, say

96× 96 images, learning weights with fully connected layers of the entire image is very computa-

tionally expensive, ∼ 104 input pixels, and for 100 neurons in the single hidden layer the parameters

5



1. PRIOR KNOWLEDGE

to learn would be ∼ 106. The feedforward and backpropagation algorithm would also increase they

learning time approximately ∼ 102. To solve this, a plausible solution is restricting the connections

between the hidden units and the input units, see 1.1, by removing the fully-connection and allowing

each hidden unit to connect to only a small subset of the input units.

CNNs are neural networks inspired by MLPs which were developed originally to process images, and

that can obtain useful information by how the pixels are located through the image. For example,

if the input images are of 32 × 32 pixels, and they have 3 channels, the ConvNet input will be a

32× 32× 3 array of pixels. As the name suggest, all CNNs are composed of (at least) one or more

convolutional layers, which apply convolutions to the image [GBC16, LBBH98].

Figure 1.2: Convolutional layer on a 4× 4 image with 1 channel, and with a 2× 2 and a 3× 3 kernel with
stride 1. The links show how the pixels contribute to the final convolution.

Each convolutional layer applies different kernels to compute the convolutions, and this set of kernels

compose our weights. In our last example, one kernel could be of dimensions 5× 5× 3, so that its

depth matches the inputs depth. In figure 1.2 we have an example of a convolutional layer, with two

different kernels applied, although normally all kernels of a layer have the same dimensions.

In a traditional CNN architecture there are other layers besides the convolutional layers such as fully

connected layers or pooling layers.

Once obtained the weights using convolution, we could use them to classify the images, for example

with a softmax classifier [KSH12], but this can be computationally challenging due to the big number

of weights. A pooling layer is used to reduce dimensionality.

The two most common pooling functions are the average pooling, that computes the mean value of

a region of the convolved image, and the max pooling, that computes the max value of a region of

the convolved image. Figure 1.3 shows an example of a max pooling layer.

6



1.1. Computer vision preliminaries

Figure 1.3: Max pooling with a 2× 2 filter and stride 2. Image retrieved from [Com16a]

Summarizing, a convolutional neural network is comprised of one or more convolutional layers with

nonlinear activation functions, alternated with some pooling layers, and then followed by one or

more fully connected layers as in a MLP. They are designed to take advantage of the 2D structure

of an image, easy to train and have many fewer parameters than the fully connected with the same

number of hidden layers, see 1.4.

Figure 1.4: Example of a CNN architecture retrieved from [Des16].

1.1.2 Object detection

Every object has its own features that make it special or different from others (for example, all circles

are round). These features are used for classifying an object into one or many different categories.

But what if the object is not the whole image, but in a part of it? Here is where comes localization,

which finds exactly where the object is, drawing the bounding box that contains it. Finally, we find

that in the image there may be not only one object but many, and we want to classify and locate all

of them. The problem of finding and classifying a variable number of objects in an image is what

we will call object detection1. While the field of classification is practically solved, object detection

has problems and challenges that have been tackled for the past years with the use of deep learning,

and different approaches have been implemented to find the balance between accuracy and speed.

1Some communities use the term object recognition as the problem of classifying the detected objects and define
object detection as only the technique of localizing the object in the image

7
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We can say that the problem of locating and classifying multiple objects in an image, called object de-

tection, is nowadays best solved with neural networks. But before the arrival of deep learning there

existed other methods to tackle this problem, the two most popular ones were the Viola-Jones frame-

work [VJ01] and the Histogram Of Gradients (HOG) [DT05]. The first method is fast and simple,

implemented in point-and-shoot cameras. It works by generating different simple binary classifiers

using Haar features. Even though it offers real-time performance and scale/location invariance, it

has a few disadvantages like intolerance to rotation, sensitivity to illumination variations, etc. The

second method counts occurrences of gradient orientation in localized portions of the image (cells)

and groups them into a number of orientation bins, so stronger gradients contribute more weights

to their bins and effects of small random orientations due to noice are reduced. HOG is used for

extracting the features of the images, and is normally paired with a Linear Support Vector Machine2

to classify them. Even though this method is superior than Viola-Jones, it is also much slower.

A few years ago, with the introduction of CNNs, researchers started developing methods for object

detection using deep learning which lead to much more successful results than when using classi-

cal methods. Deep learning is a class of machine learning that uses a cascade of multiple layers

with nonlinear functions for feature extraction and transformation. After having introduced neu-

ral networks and, particulary, CNNs in section 1.1.1, we will do an overview of the different state

of the art approaches for object detection with the use of deep learning, and decide our best fit

for this project. One of the first good methods developed for object detection using deep learning

was Overfeat [SEZ+13], published in 2013, where they proposed a multi-scale sliding window al-

gorithm using CNNs. Shortly after Overfeat, Regions of CNN features or R-CNN were introduced

[GDDM13], which used a region proposal method (like selective search [UvdSGS13]) for extracting

possible objects, then extracted features from each region with CNNs, and finally made the classi-

fication with SVMs. Although with great results, the training had a lot of problems. That is why a

year later the same author published Fast R-CNN [Gir15]. Instead of applying CNNs independently

in each region proposed by selective search and classifying with SVMs, the latter applied the CNN

on the complete image and then used a region of interest (RoI) pooling layer [Gir15] with a final

feed-forward network for classification and regression. This approach was faster, and with the RoI

pooling layer and the fully connected layers the model became end-to-end differentiable and eas-

ier to train, but it still relied on selective search which was a problem when using it for inference.

Shortly, You Only Look Once: Unified, Real-Time Object Detection (YOLO) paper by Joseph Redmon

[RDGF15]was introduced, which proposed a simple CNN approach with great results and high speed

allowing, for the first time, real time object detection. Instead of applying the model to an image at

multiple locations and scales, they applied a single neural network to the full image, which divides

the image into regions and predicts bounding boxes and probabilities for each region. Making pre-

dictions with a single network evaluation made it extremely fast, 1000x faster than R-CNN and 100x

2Support vector machines or SVMs [HDO+98] are supervised learning models for classifying that, given the labeled
training data, the algorithm outputs a separating hyperplane that categorizes new examples

8



1.1. Computer vision preliminaries

faster than Fast R-CNN. Later on, Faster R-CNN by Shaoqing Ren was published [RHGS15], which,

following on the work of [GDDM13] and [Gir15], added a Region Proposal Network (RPN) to get

rid of selective search and to make the model completely trainable, from end to end. RPN ranks

region boxes (anchors) and proposes the ones most likely containing objects, so that the time cost

of generating region proposals is much smaller with this method than with selective search. Finally,

we have two notable methods: Single Shot Detector (SSD) which takes on YOLO by using multiple

sized convolutional feature maps, achieving better results and speed [LAE+15], and Region-based

Fully Convolutional Networks (R-FCN) [DLHS16] which follows on R-CNN methods but replacing

the fully connected layers for fully convolutional ones and building strong region-based position-

sensitive classifiers, which increase speed and achieve the same accuracy as Faster R-CNN.

For this project we need a detector that is able to detect a person rapidly in a simple CPU, and maybe

in a smartphone or tablet. Each of these object detection techniques use a base network architec-

ture at the early network layers, called feature extractor. These feature extractors change the final

behaviour of the detector in terms of speed and accuracy.

Figure 1.5 shows the performance of some of the mentioned state of the art object detectors when

using different feature extractors.

Figure 1.5: Object detectors comparision trained with MS COCO dataset retrieved from [HRS+16a]

While Faster R-CNN with Inception Resnet-based architecture [RHGS15, SIV16] is top 1 in accu-

racy, it implies a big loss of speed. For our purpose the best approach is using SSDs with MobileNet

[HZC+17] or with Inception V2 [IS15], which still have a 20 mAP (mean average precision) of ac-

curacy and their GPU time is a lot less than the others.

MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Application was presented in

9
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2017 as an innovative class of efficient models created to be used in mobile and embbeded vision

applications. The MobileNet architecture is based on depthwise separable convolutions, which are

a form of factorized convolutions, [WLF16], that factorize a standard convolution into a depthwise

convolution and a 1×1 convolution (pointwise convolution). In a depthwise convolution the kernels

of each filter are applied separately to each channel and the outputs are concatenated.

The MobileNet structure is built on depthwise separable convolutions, except for the first layer which

is a full convolution. All layers are followed by a batchnorm [IS15] and a ReLu nonlinearity, except

for the final fully connected layer which has no nonlinearity and feeds into a softmax layer for classi-

fication. Figure 1.6 compares a standard convolutional layer to the factorized layer with depthwise

and pointwise convolutions.

Figure 1.6: Left: a standard convolutional layer. Right: Depthwise Separable convolutions. Retrieved from
[WLF16].

SSD: Single Shot Multibox Detector paper [LAE+15] was released at the end of November 2016 and

reached new records in terms of performance and precision for object detection, scoring over 74 %

mAP at 59 fps on standard datasets such as PascalVOC and COCO. The name Single Shot means that,

like in YOLO, the tasks of object localization and classification are done in a single forward pass of

the network, simultaneously predicting the bounding box and the class as it processes the image.

Figure 1.7: SSD architecture retrieved from [LAE+15]

10



1.1. Computer vision preliminaries

The SSD approach, shown in figure 1.7, is based on a feed-forward convolutional network that pro-

duces a fixed number of bounding boxes and scores for the presence of object class instances in those

boxes, finishing with a non-maximum suppression step to group together highly-overlapping boxes

into a single box [HBS17, NG06]. The early network layers are based on a standard architecture

used for high-quality image classification (truncated before any classification layers). In this project

the base architecture is MobileNet, but in the original paper they use VGG-16. After the base archi-

tecture, a set of convolutional feature layers is added, which decrease progressively in size. Instead

of only using each feature map as input for the next feature layer, they reshape this feature map into

a vector, making the output be the join of all these vectors. This allows predictions of detections at

multiple scales, for each feature map has information in a different, each time bigger, region of the

image.

Figure 1.8: Matching of default boxes with ground truth boxes retrieved from [LAE+15]

During training, the ground truth information needs to be assigned to specific outputs in the fixed

set of detector outputs. This means that some of the default bounding boxes have to be assigned to

their corresponding ground truth detection, and the network has to be trained accordingly, see 1.8.

Here is where they use Multibox, by matching each ground truth box to the default box (which vary

over location, aspect ratio, and scale) with the best jaccard overlap [Jac01]. Unlike Multibox, they

match default boxes to any ground truth with jaccard overlap higher than a threshold, simplifying the

learning problem by allowing the network to predict higher scores for multiple overlapping boxes.

The SSD training objective is derived from the Multibox objective but extended to handle multiple

object categories. They use Smooth L1 location loss, which measures how the network predicted

bounding boxes and the ground truth ones differ, between the predicted box and the ground truth

box parameters, and a softmax loss for the confidence loss, which measures the reliance of the

network to have an object inside a bounding box, so that the overall objective loss function is a

weighted sum of the localization loss and the confidence loss:

L(x , c, l, g) =
1
N
(Lcon f (x , c) +αLloc(x , l, g)),

where N is the number of matched default boxes, l the predicted box, g the ground truth parameters,

and c the set of classes confidences.

When training, as most bounding boxes will have a low jaccard overlap, they will be interpreted as
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negative training examples. This imbalance between the number of positive and negative examples

is improved by using only a part of the negative examples (sorted using the highest confidence loss

for each default box) so that the ratio between positive and negative examples is 3:1. Finally, to

make the model more robust to various input object sizes and shapes, they randomly sample each

training image, augmenting the training data. The non-maximum suppression applied at the end of

the network is essential to prune the large number of boxes generated: filtering by the confidence

loss and the jaccard overlap ensures that only the most likely predictions are retained by the network.

1.1.3 Object tracking

Object tracking is mainly the process of detecting an object in successive frames from a video. Track-

ing multiple objects in videos is an important problem in computer vision, applied in various video

analysis scenarios, such as visual surveillance, sports analysis, robot navigation and autonomous

driving. We have already talked about object detection, and one may wonder where are the differ-

ences between tracking and detection.

First of all, normally, tracking is faster, due to the fact that in each frame you have information about

the object from the previous frames such as appearance, speed and direction. Second, tracking can

handle some occlusions and preserve the identity of the object. Object detection can be a preceding

step to object tracking, performed to check existence of objects in a frame and to precisely locate

and classify the object.

Once the object is found, object tracking is used to follow the object through the consecutive frames.

In each frame the movement of the object is computed by means of the motion model and the aspect

by means of the appearance model. With the motion model we can predict a region that contains the

object in the next frame, and with the appearance model we can use this region to find a more ac-

curate position. As the appearance of the object can change drastically, a classifier that categorizes a

region of the image as either an object or background is used. In image classification we have online

and offline classifiers. Online classifiers are the ones trained at runtime, using very few examples

at a time, while offline classifiers are trained using thousand of examples. The image classification

used on trackers is created in an online manner, due to the fact that the results are needed at runtime.

Just like object detection, object tracking has different state of the art methodologies. While there

exist different ideas studied under object tracking, such as optical flow, Kalman filter (which we will

talk about in the next chapter) and meanshift and camshift, we will focus on those that can track a

single object located first by an object detection algorithm. One of the first "trackers by detection",

already obsolete, is the Boosting tracker [GGB06]. This tracker is based on an online version of

Adaboost [FS97], the algorithm used in the Viola-Jones framework for detecting faces, trained at

runtime with positive and negative examples of the object. For each frame, the classifier runs on every

pixel in the neighborhood of the previous location, recording the maximum score where the location
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of the object is. One of the problems of this tracker is that one does not know when the tracking

has failed, as it always shows a location for the object. Another tracker is the Multiple Instance

Learning (MIL) tracker [BYB09], based on the boosting tracker but instead of considering only the

location of the object as a positive example when training, it looks in a neighborhood around the

object and generates several positive examples. This tracker does not drift as much as the boosting

tracker, and works well under partial occlusion, but still has the problem of the little reliability of the

tracking failure reporting. Another tracker is the Kernelized Correlation Filters (KCF) tracker, based

on [HCMB14], from the previous two trackers uses the fact that the multiple positive samples in the

MIL tracker have large overlapping regions. This tracker is faster and more accurate than MIL and it

reports tracking failure better, its only problem is that it does not recover from full occlusion. Now

we have the Tracking, Learning and Detection (TLD) tracker from [KMM12], which, as the name

says, tracks, learns and detects the object frame to frame. The detector localizes all appearances

that have been observed so far and corrects the tracker, if necessary, and the learning estimates

detector’s errors and updates it to avoid them in the future. TLD works very well in occlusions over

multiple frames and keeps track on scale changes, but it can have a lot of false positives. Finally, in

2015 the now state of the art tracker Clustering of Static-Adaptive Correspondences for Deformable

Object Tracking (CMT), [NP15], appeared. Its main idea is to break down the object of interest into

tiny parts (keypoints) and in each frame try to find these keypoints. First, they track the keypoints

from the previous frame to the current frame by estimating its optical flow, and then they match the

keypoints by comparing their descriptors. After this, every keypoint votes for the object center, so

that the keypoints in the current frame that do not match the center are removed. The new bounding

box is computed based on the remaining keypoints.

1.2 Quadcopter control

In the last few years there has been a growing interest in robotics, in concrete in Unmanned Aerial

Vehicles (UAV). The advances in technologies like microcomputers and aerodynamics have made

possible the appearance of small, low cost and easy to manage UAVs. Navigation is more challenging

in flying robots than in ground robots, due to the fact that they require feedback to stabilize. For this

reason, interest in tracking objects is increased when it is made with a flying robot. In particular, our

focus will be on a small Vertical take-off and landing UAV, the quadcopter. Quadcopters have low

dimensionality, good maneuverability, payload capability, and also a high energy consumption. Our

need is for a low cost, easy to manage, that can be programmed quadcopter, and for this we chose

the AR.Drone 2.0.

1.2.1 AR.Drone 2.0

A quadcopter is a multirotor helicopter with four actuators (propellers), each providing a force in the

body-fixed z-direction and a torque to the body. The AR.Drone 2.0 is a quadcopter in x-configuration,
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which means that the rotors are not aligned on the principal axes of the body-fixed coordinate-system,

as in the +-configuration, see 1.9.

Figure 1.9: Quadcopter with x-configuration representation, with body-fixed coordinates frame B

Movements are obtained by changing the pitch, yaw and roll angles, and by changing the vertical

speed, 1.10. To hover, all rotors may speed at the same velocity such that the global force of the

quadcopter cancels the gravity force. For moving forward (backward) both front (rear) rotors have

to decrease their velocity while the rear (front) ones increase them. The same applies for left/right

moves and rotors.

Figure 1.10: Roll, pitch, yaw and throttle movements

All quadrotors have two coordinate frames: the inertial frame (earth-fixed frame) and the base frame

(body-fixed frame). This implies a system of six degrees of freedom (x, y, z, pitch, roll, yaw), con-

trolled by adjusting the rotational speeds of the four rotors. With this, our system has four inputs
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and six outputs, so some assumptions are made in order to control it: pretending the quadcopter to

be a rigid body and the structure to be symmetric (no ground effect).

Without entering in depth in the explanation of the AR.Drone’s hardware we will talk about the main

sensors and actuators in the drone and how does its communication work. The engines have three

current phases controlled by a micro-controller that makes sure all the engines work in coordination

and stop if any obstacle is found. The drone uses 1000 mAh, 11.1V LiPo batteries to fly, and lands

when it detects a low battery voltage. It has many motion sensors, located below the central hull: an

inertial measurement unit, used for automatic pitch, roll and yaw stabilization and tilting control;

an ultrasound telemeter, for automatic altitude stabilization and assisted vertical speed control; a

camera aiming towards the ground, for automatic hovering and trimming; a 3-axis magnetometer

and a pressure sensor. Finally, the AR.Drone 2.0 has a frontal camera, a CMOS sensor with a 90

degrees angle lens, that provides 360p or 720p image resolutions (also used for the ground camera),

with a frame rate between 15Hz and 30Hz. The connection with the drone is made via a WiFi

network:

Figure 1.11: AR.Drone 2.0 Wifi connection

Once the connection is established we have 4 main services for communication:

• The control and configuration of the drone is done by sending AT commands on UDP port

5556. These commands are to be sent on a regular basis (30 times per second).

• Information about the drone (status, position, speed, etc.) - navdata - is sent on UDP port

5554.

• Video stream is sent by the drone to the client device on TCP port 5555.
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• A fourth communication channel (control port) can be established on TCP port 5559 to transfer

critical data.

1.2.2 Available open-source libraries

Any client device supporting WiFi can control the AR.Drone 2.0. But what are the commands that

the drone understands? And how can we make it fly?

Parrot created a documentation [PBED12] that explains the format of the text strings that can be

sent to the drone to control its actions (AT commands). According to this documentation: These

strings are encoded as 8-bit ASCII characters with a Carriage Return character as a new line delimiter.

One command consists in the three characters AT* followed by a command name, an equal sign, a

sequence number, and optionally a list of comma separated arguments. An AT command must reside

in a single UDP packet, and the maximum length of the total command can’t exceed 1024 characters.

With this documentation and these AT commands, we could be able to create our own framework

for controlling the drone, but that would take time, and in this project our main objective is not to

create a framework to control the drone, but to be able to make the drone follow a person. There

exist open-source libraries that can ease our work:

• Parrot also created an SDK that simplifies the work of writing an application to remotely control

the drone. This SDK is divided into two libraries: ARDroneLIB and ARDroneTool. With these

two libraries the work of controlling the drone is much more easier. But it is still hard to

understand, the documentation is outdated and the few examples on Linux only work on 32-

bit computers.

• Another famously used library for controlling the AR.Drone 2.0 is ardrone_autonomy, a ROS

driver based on the Parrot SDK. ROS (Robot Operating System) is a set of utilities and libraries

for implementing all different kinds of functionality on robots. The problem of using ROS is

that some time is needed to get familiar with its structure.

• If you are familiar with node.js the node-ar-drone is your module. NodeJS is a popular plugin-

based JavaScript server platform, which runs locally.

• For Python we have several open-source libraries, but they have basically the same format: a

python document where several functions that create AT commands sent to the quadcopter are

written, and with some low-level functions that manage the navdata received from the quad-

copter. PS-Drone is one of these libraries, it is designed to also run on really slow computers,

has a blog where bugs or question can be asked and are pretty quickly answered, and there

exists a documentation with all the functions explained and some easy examples shown.
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In the previous chapter we discussed the different available techniques that can be used for the pur-

pose of controlling a quadcopter by following a person with the use of computer vision, in particular

object detection and object tracking, and introduced the AR.Drone 2.0 hardware specifications to-

gether with a series of open-source libraries created for the quadcopter’s easy control. In this chapter

we use the object detection and tracking methods from sections 1.1.2 and 1.1.3 to create a software

able to keep track of a person through the quadcopter’s movement, recover from tracking failure, and

move the quadcopter accordingly to the person’s movements, with the use of one of the open-source

libraries introduced in 1.2.2 to easily send the commands to the drone.

In figure 2.1 a flux diagram of our implementation is shown, with the introduction of some new

elements of which we will talk about in the next sections, like the Kalman filter or the PID algorithm.

Figure 2.1: Schematic representation of the software structure.

The AR.Drone 2.0 sends every few milliseconds a frame captured from its camera to our device, and

with the processing of each of these frames we will be able to send the commands to the drone that

will make it go to a certain position. To simplify, we fix this position to be, in each frame:

• x so that the person’s bounding box horizontal center corresponds to the horizontal center of

our frame.

• y so that the person’s bounding box vertical center corresponds to the vertical center of our

frame.
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• z so that the person’s bounding box height is close to the person’s bounding box height at the

starting frame.

With these requirements a quadcopter controller is created, to find the best combination between

the drone’s stability and movement.

In the next sections we will thoroughly explain the different approaches used in each step of the

implementation.

2.1 Detection and tracking of the person

Once the drone takes off, and after a few seconds to let it stabilize, the processing of the frame starts

and an object detector is used to find persons in the image. As no interaction with the program is

needed, it is required that only the person to be followed stands in front of the drone, otherwise it

could detect another person to track. The object detector used is based on the SSD approach and

has as feature extractor the MobileNet architecture [LAE+15, HZC+17]. This approach was chosen

for its high speed (it can be computed in a smartphone CPU), and its great accuracy given the cir-

cumstances.

Figure 2.2: Object detection and tracking implementation.
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The object detector is used to find the person in the first frames. Once detected, the corresponding

bounding box is used to keep the detection through the following frames with an object tracker. In

section 1.1.3 we explained several object trackers and introduced the state of the art: CMT [NP15],

but the software used in the detection, explained in 3.2.2, forces us to use the OpenCV implemen-

tation of KCF [HCMB14]. This tracker is able to obtain the x and y center positions of our person

in the frame. This is, in each frame the initial bounding box is moved through the image to wrap

around the person. But this bounding box does not change in area, it always has the same width

and height, which makes impossible to know the distance between the drone and the person by only

using the tracker. To solve this, a combination between our detector and our tracker has been devel-

oped in this project, to try to find the best balance between speed and the accuracy of the person’s

bounding box. In figure 2.2 we observe a schematic representation of how this balance is obtained.

The distance between the quadcopter and the person is updated every half second, also preventing

the tracker from drifting, by using the object detector with only a part of the image that contains the

person. With each of these new detections a new tracker is created, initializing it with the bounding

box obtained by the detector.

2.2 Kalman filter and error computation

The AR.Drone 2.0 is not the best quadcopter in the market, and when flying or hovering there exists

a trembling in the quadcopter that entails a trembling in the frames. Also, the tracker used does not

produce a fluid trajectory of the detected bounding box between frames. This noise can be reduced

with the help of the Kalman filter. The Kalman filter is an algorithm that uses a series of observations

over time and a predictive model, considering that none of them are perfect, and tries to find the

best balance between them, creating a detection that is more accurate that with only using each

observation alone.

Next we will explain the setup from which we will create our Kalman filter:

Let xk be the state vector that describes our person’s position and velocity at detection k

xk =

















xk

yk

ẋk

ẏk

















where (x , y) is the position in pixels of the person in the frame, and ( ẋ , ẏ) is the velocity (the deriva-

tive of position with respect to time).

The model
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We assume now that between the detections k − 1 and k there is a constant stochastic accelera-

tion ak = [ak
x , ak

y] normally distributed with mean 0 and standard deviation σa. We know, from

kinematics, that with initial state [x0, y0, ẋ0, ẏ0], we have:






ẋ(t) = ẋ0 + ax t

ẏ(t) = ẏ0 + ay t

so that






x(t) = x0 + ẋ0 t + 1
2 ax t2

y(t) = y0 + ẏ0 t + 1
2 ay t2

.

From this, we observe that our state in detection k is


























xk = xk−1 + ẋk−1∆tk +
1
2 ak

x∆t2

yk = yk−1 + ẏk−1∆tk +
1
2 ak

y∆t2

ẋk = ẋk−1 + ak
x∆tk

ẏk = ẏk−1 + ak
y∆tk

which concludes that

















xk

yk

ẋk

ẏk

















=
















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0 1 0 ∆tk
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


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
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











xk−1

yk−1
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



+
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










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k 0

0 1
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










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
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y





that can be expressed as

xk = Fkxk−1 +Gkak

with

Fk =

















1 0 ∆tk 0

0 1 0 ∆tk

0 0 1 0
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
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








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, Gk =

















1
2∆t2

k 0

0 1
2∆t2

k

∆tk 0
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















.

Setting wk = Gkak and knowing that ak is a stochastic variable we can assume that wk ∼ N(0,Qk)

is the zero mean Gaussian distributed process noise, with Qk being the covariance matrix from time

20



2.2. Kalman filter and error computation

step k− 1 to time step k:

Qk = GkGT
kσ

2
a =






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


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The observations

At each time step k a noisy measurement zk of the true position of the person is made. Let us suppose

this noise vk is also normally distributed with mean 0 and standard deviation σz = [σzx
σzy
]:

zk = Hkxk + vk

As our observation is of the person’s position, and not its velocity, we have that Hk = [1 1 0 0] and

the covariance matrix of the observation is

Rk =





σ2
zx

0

0 σ2
zy



 ,

for all time steps k.

Initial state

The filter is not initialized until an observation is made. The initial state is composed by the first

observation for the position and [0, 0] for the velocity. As this initial state is not know perfectly, we

set as initial covariance matrix

P=

















σ2
x 0 0 0

0 σ2
y 0 0

0 0 σ2
ẋ 0

0 0 0 σ2
ẏ

















.

After preparing the settings needed to create the filter, we can explain how does it work and how is

the previous setup used for the computation of an estimated position.

The Kalman filter is a recursive estimator, which means that only the estimated state from the pre-

vious time step and the current measurement are needed to compute the estimate for the current

state. At every time step the algorithm has two stages:

• The Predict step. Uses the estimated state from the previous time step to produce an estimate

at the current time step. This predicted state is also know as the a priori state estimate because

no measurement information has been incorporated in the estimation.

• The Update step. The current a priori prediction is combined with the current observation to

refine the state estimate. The updated step is also known as the a posteriori state estimate.
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The state of the filter is represented by two variables: the x̂m|n is the state estimate at time step m

given n ≤ m measurements, and the Pm|n is the error covariance matrix at state estimate x̂m|n. The

equations of the Kalman filter for the predicted step are

x̂k|k−1 = Fkx̂k−1|k−1 (2.1)

Pk|k−1 = FkPk−1|k−1FT
k +Qk (2.2)

and for the updated step are

Sk = Rk +HkPk|k−1HT
k (2.3)

Kk = Pk|k−1HT
k S−1

k (2.4)

x̂k|k = x̂k|k−1 +Kk(zk −Hkx̂k|k−1) (2.5)

Pk|k = (I−KkHk)Pk|k−1(I−KkHk)
T +KkRkKT

k (2.6)

where Sk is the innovation covariance, Kk the Optimal Kalman gain, x̂k|k the a posteriori state esti-

mate, and Pk|k the a posteriori state estimate covariance.

At each iteration the tracker updates the position of the person, and this position is improved by

using these equations of the Kalman filter. The filtered position returned by the Kalman filter is the

a posteriori state estimate computed in (2.5).

As we explained in the introduction of this chapter, the quadcopter’s 3D desired position depends

on the bounding box created by the tracker. With the Kalman filter, the (x , y) center point of the

bounding box has been improved, but our objective is to minimize the difference between the center

of the AR.Drone captured frame and this filtered position. Moreover, the quadcopter distance from

the person has to be computed and controlled, we have to obtain the distance between the person

and the quadcopter at startup and try to maintain this same distance during all the iterations. For this

reason, we use the height of the bounding box at the first detection and compare it with the actual

height. These differences compose an error that we will try to minimize by sending the correct

commands to the drone. This 3-dimensional error is














ex = fx −
w f
2

ey =
h f
2 − f y

ez = hk − h0

where fx , f y is the filtered position, w f , h f is the resolution of the quadcopter’s front camera, h0 is

the height of the person’s bounding box at the first detection and hk is the height of the person’s

bounding box at the actual iteration.

Knowing that in the roll movement the quadcopter goes right when the ex error is positive, to go

right the horizontal center of the frame has to be smaller than the x coordinate of the observation,

and to go left it has to be bigger. However, OpenCV reads images vertical axis from top to bottom,
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for this reason, and knowing that the throttle movements goes up when the ey error is positive, the

quadcopter goes up when the vertical center of the frame is bigger than the y coordinate of the

observation, and goes down when it is smaller.

2.3 PID controller

Once the position of the person is obtained, its noise is removed with the Kalman filter and the er-

ror between person and quadcopter is computed, we can move the quadcopter to correct this error.

But to do this we need a controller that helps us create a fluid trajectory, to avoid changes in the

orientation at every frame. In this section we will explain the controller used, called Proportional-

Integral-Derivative or PID controller.

The PID controller is the most common control algorithm used in the industry of automation. It is a

control loop feedback mechanism which computes the deviation between a given value (measured

process value) and a desired value (set point) and corrects it based on the proportional, derivative

and integral terms (giving the controller its name). In figure 2.3 we have a block diagram that shows

how a PID works.

Figure 2.3: PID algorithm [Com16b].

The r(t) value represents the set point and the y(t) value the measured process value. The u(t)

value is the control signal and is described by the sum of the three terms: the P-term (proportional

to the error), the I-term (proportional to the integral of the error), and the D-term (proportional to

the derivative of the error). The equation of the PID controller is described by:

u(t) = Kpe(t) + Ki

∫ t

0

e(t)d t + Kd
de(t)

d t
(2.7)

The controller has to be tuned in order to suit the dynamics of the process to be controlled. Giving the

controller the wrong Kp, Ki and Kd parameters will lead to instability and slow control performances.

There exist different types of tuning methods that can be used:
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• Trial and Error method. With this simple method first we have to start with both Kiand Kd

parameters to zero and increase Kp until the system reaches an oscillating behaviour. Then,

we adjust the Ki parameter to stop the oscillation and finally adjut Kd for faster response.

• Process reaction curve technique. This method produces response when a step input is

applied to the system. At first we apply some control output to reach a steady state (close

one), then, in open loop, we generate a small disturbance and the reaction of the process value

is recorded. This process curve is then used to calculate the K ′s parameters. The method is

performed in open loop so no control action occurs and the process response can be isolated.

• Zeigler-Nichols method [ZN93]. In this method, as in trial and error, the Ki and Kd param-

eters start at zero. The proportional gain is increased until reached the ultimate gain, Ku, at

which the output of the loop starts to oscillate. The term Ku and the oscillation period Tu are

used to set the gains as showed in figure 2.4.

Figure 2.4: Table showing the Ziegler-Nichols method

But to tune a quadcopter, and without entering into more complicated algorithms, the best of these

tuning methods is Trial and Error. Also, although for other systems the integral term is adjusted

before the derivative one, in quadcopters is best to tune first the derivative one, and the integral has

to be very small to avoid oscillations.

2.4 Drone movement

As explained in section 1.2.1, the AR.Drone 2.0 has four movements: roll, pitch, yaw and throttle.

To control the quadcopter, a PID controller has to be created for each of these movements. Because

of this, in this project we will have four controllers, each of which has to be tuned independently to

find the correct parameters that will led to a smooth movement in its direction. The roll movement

is modified by looking at the x-error filtered with the Kalman filter. After being computed, this error

is then passed to the x-PID controller, which returns the velocity that has to be passed to the quad-

copter. Equally, the throttle movement is modified by looking at the y-error filtered with the Kalman

filter and then computing its velocity with the y-PID controller. For the pitch movement the velocities

are obtained with the z component, when comparing, every half second, the difference between the

original height of the person and the actual height. Finally, we have the yaw movement, that we did

not implement for this project.
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2.4. Drone movement

In section 1.2.2 we introduced different ways of sending to the quadcopter the commands needed to

produce these movements. Although a few of them are valid to meet with our objectives, we chose

the one that uses Python as programming language: the PS-Drone API. In the next chapter we will

explain how this library is structured and how the commands are sent to the quadcopter.
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3 Software implementation

In this chapter we will explain how the theoretical framework from the previous chapter has been

implemented.

3.1 Source code organization

The software created for this project is written in Python 2.7 and uses OpenCV 3.4.0 to obtain the

pre-trained model for the detection. The computer used is a Dell XPS 13 with an Intel(R) Core(TM)

i7-7560U CPU @ 2.40GHz. All the computations, including the detection of the person with a neural

network, are made in this computer. All the source code can be found in the Github repository1

Figure 3.1 shows the project’s class diagram with the structure of the system.

Figure 3.1: Class diagram of the implemenation.

The program is composed of the following files:

• main.py The main file initializes the quadcopter with the PS-Drone API, and creates a frame

grabber that is passed to the tracker. The PID parameters are initialized here and the network

used for the detection is extracted from a file in the containing folder.

1https://github.com/juliiaa28/ARPET.git
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3. SOFTWARE IMPLEMENTATION

• tracker.py This is the most important file of the program. For every frame, the detector and the

tracker work together to keep the bounding box of the person, then the Kalman filter obtains

an improved position and the controller moves the drone. Finally, the parameters for the next

iteration are updated.

• kalman_filter.py Implements the equations explained in section 2.2.

• pid.py This file contains a class to modify and set the parameters of the pid controller.

• ps_drone.py This is an external file and contains the PS-Drone API retrieved from

www.playsheep.de/drone.

• move_drone.py This file contains all the necessary commands to move the drone. It also con-

tains functionalities to change the desired velocities that will be used by the PID controller.

3.2 Software explanation in depth

In this section we will explain how the classes from figure 3.1 are implemented.

3.2.1 Initialization

In figure 3.2 we have a flux diagram of the drone startup. Once the program is started, the first thing

to do is check whether the quadcopter has enough battery to take off or not. With low battery the

AR.Drone 2.0 can show video images but does not take off.

Figure 3.2: Flux diagram of the startup implementation
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3.2.2 Tracking algorithm

Figure 3.3: Flux diagram of the tracking implemenation.

In figure 3.3 we have a flux diagram showing how the tracking algorithm is used in the software, after

the startup of the system (showed in diagram 3.2), and followed by the correction of the position

with the Kalman filter and the move of the quadcopter using the PID controller. The tracking keeps in
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the loop until the user stops the quadcopter by clicking the Esc keyboard button, which automatically

makes the drone land.

Detection and tracking configuration

As explained in section 2.1, both detector 1.1.2 and tracker 1.1.3 are combined to obtain a robust

tracking of the person. The detector is created using the dnn module of the OpenCV library. In

paticular, a Caffe [JSD+14] pre-trained model is used to create the object detector, which is a version

of the original Tensorflow implementation from [AAB+16]. This pre-trained model allows us to use

an implementation of the MobileNet-SSD network, trained with datasets such as COCO and PASCAL

VOC, without wasting time doing it ourselves, and obtaining a model that detects 20 objects in

images (dogs, cats, people, sofas, etc.). To use a pre-trained Caffe model with the dnn module of

OpenCV we need two files that can be retrieved from the Caffe website:

• A Caffe prototxt file that defines the structure of the neural network.

• A binary .caffemodel file that includes the pre-trained model.

Now that we understand how the network is created and used to detect the person at each frame,

let’s explain how the tracker works. OpenCV 3.0 comes with a tracking API with 6 different trackers,

some of which were explained in 1.1.3. Our choice was the KCF tracker which has the best accuracy,

although it does not recover from full occlusion. The tracker is initialized using the bounding box

retrieved from the detector and it is updated with every frame.

But, as explained in section 2.1, the tracker update does not change the dimensions of the bounding

box, so the distance from the quadcopter to the person cannot be computed with only this solution.

That is why we created a combination between detection and tracking showed in figure 2.2 , which

finds a balance between speed and accuracy.

Filtering the position

In section 2.2 we explained in depth the equations used to create the Kalman filter for this partic-

ular case. Basically, we assumed a constant velocity model with an acceleration of the pixel with a

diagonal covariance. The Kalman filter class is initialized with 8 parameters:

• ax, ay: The standard deviation of the pixel acceleration (x,y respectively).

• rx, ry: The standard deviation of the pixel position observation (x,y respectively).

• px0, py0: The standard deviation of the pixel initial position (x,y respectively).

• pv0, pu0: The standard deviation of the pixel initial velocity (x,y respectively).
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The initial state vector x0|0(position and velocity) is assumed to be zero, and with the (px0, p y0,

pv0, pu0) parameters the initial state covariance matrix P0|0 can be created.

At each iteration k the Kalman algorithm follows the steps observed in the diagram from figure 3.4

which is based on the equations and matrices explained in section 2.2. The new observation and

the time of the observation are passed to the filter. Using the difference between the time of the

last observation and this observation time, the F,H,Q,R matrices are computed. Then, the linear

model prediction is fused with the observation using the Predict-Update steps, and the new state is

returned.

Figure 3.4: Flux diagram of the Kalman filter

PS-Drone

Before talking about the PID controller and how the velocities are computed, let’s first explain how

the used library works, and which parameters it needs in order to send the correct commands to the

quadcopter, that make it move as desired.

PS-Drone is created in a single file, called ps_drone.py, and has a complete documentation found

in www.playsheep.de/drone. For this project we only use the functions to configure the drone, to

obtain video images, and to move the drone in the desired direction. Here is the list of functions

used:

• startup(): to connect to the drone.

• reset(): initiates a soft reset of the drone.
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• trim(): the drone sets the reference on the horizontal plane.

• getSelfRotation(): the drone measures out the yaw gyrometers self spinning.

• hdVideo(): sets the drone’s video stream to H.264 encoded, with an image resolution of 1280×
720.

• frontCam(): switchs to the drone’s front camera.

• startVideo(): activates and processes drone’s video, images are available in the VideoImage

attribute.

• getBattery().

• VideoImageCount: sequential number of the decoded video images stored in VideoImage.

• VideoImage: contains the actual video-image of the drone as an OpenCV2 image-type, when

video is activated.

• VideoDecodeTimeStamp: time when the video image in VideoImage was decoded.

• VideoDecodeTime: time needed to decode the video image in VideoImage.

• move(): drone moves to all given directions in given speed. The usage is as follows: move(roll,

pitch, throttle, yaw). This is:

– roll: a float value from -1 to 1, where -1 is full speed to the left and 1 full speed to

the right. This value, called the φ-angle, is a percentage of the maximum inclination

configured for the left-right tilt.

– pitch: a float value from -1 to 1, where -1 is full speed backward and 1 is full speed

forward. This value, called the θ -angle, is a percentage of the maximum inclination

configured for the front-back tilt.

– throttle: a float value from -1 to 1, where -1 is full speed descent and 1 is full speed

ascent. This value, called gaz, is a percentage of the maximum vertical speed.

– yaw: a float value from -1 to 1, where -1 is full speed left spin and 1 is full speed right

spin. This value, called ω, is a percentage of the maximum angular speed.

• stop(): the drone stops all movements and holds position. Note: Setting the move() parameters

all to 0 would not stop movement, but stop the acceleration. To stop movement this function

has to be used.

The startup() function creates a socket that connects to the quadcopter’s IP, which is 192.168.1.1 as

default, and sends the four initial commands to the drone. Then two processes for the VideoData and

the NavData (sensor data) configuration are created. These two processes send to the quadcopter

the configuration data needed to initiate the communication through the video data and the navdata
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ports. The AR.Drone 2.0 sends its NavData at UDP port 5554, which means that the quadcopter keeps

on sending without caring if the data is being received, and its VideoData at TCP port 5555, making

sure that all the frames arrive safely.

After this, two threads are created: the first is used to receive data from the drone and the second

to send data to the drone. The first thread checks the ip of the received pipe and compares it with

the NavData pipe and the VideoData pipe, depending of which receives the sensor values from the

NavData process or the image data and feedback of the Video process. The second thread is used

for sending the configuration to the quadcopter. It is asynchronous but secure: the configuration

requests are in a queue and, after sending the first entry, the thread waits for the next NavData pack-

age to be received and then checks whether the configuration has been correctly set, if not, the value

is requeued. With this the configuration data is always received by the quadcopter, but not always

in the initial order.

The commands used to control the drone are sent inside UDP packets on port UDP-5556. These

are low level commands which are created from the basic drone commands (from functions like

takeoff(), move() or stop()) using the at() function, which receives a word (for example REF for

taking off or landing, or PCMD for moving the drone) and some parameters such as the roll, pitch,

yaw and throttle velocities, and creates another command that the drone is capable of understanding.

These commands are not sent within a thread but in the main process, for they have to be received

and implemented instantly. The commands are to be sent every 30 ms for smooth drone movement,

if the drone does not receive two consecutive commands within less than 2 seconds it can consider

the WiFi connection as lost. The port used is UDP, which means that some commands may be lost,

but as the messages are constantly sent, one lost command is not a problem.

Move the drone with the PID controllers

Now that we know the parameters needed to move the drone, we can create the controllers in order

to obtain the velocities (or movement percentages) in the required range [-1,1]. If we look at the

equation of a PID controller, 2.7, we see that, as it is a linear combination of terms, the output is not

comprised in our desired range. Because of this, we use the hyperbolic tangent function:

tanh(x) =
sinh(x)
cosh(x)

=
ex − e−x

ex + e−x

In figure 3.5 we have a plot of the hyperbolic tangent function, showing that the output is comprised

in the desired range [-1,1].

The equation used for each of the PID controllers is then:

pid(t) = tanh

�

Kpe(t) + Ki

∫ t

0

e(t)d t + Kd
de(t)

d t

�

(3.1)
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Figure 3.5: Hyperbolic tangent plot from [Com17]

This equation has to be discretized in order to be used in the controller. The discretized PID equation

at iteration k is:

pidk = tanh

�

Kpek + Ki

∑

k

ek + Kd(ek − ek−1)

�

(3.2)

The output of each of the controllers is then passed as a parameter in the move() function of the

PS-Drone library.
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4 Results

In this section we will evaluate each part of our application. First, we will start by testing the created

algorithm for detecting and tracking a person, observing how the algorithm reacts at different oc-

clusions or loss of target. Second, we will apply the Kalman filter and observe if the trajectory of the

quadcopter in the x and y coordinates is indeed smoother. Finally, we will check if, with the tuned

PID controller parameters, the quadcopter is capable of following a person.

4.1 Tracking robustness

This part of the project depends on the object detector (SSD-MobileNet) and the object tracker (KCF)

algorithm explained in 2.1. It was tested in two different parts. First, the system is tested with the

quadcopter landed, observing how the detection and tracker behave in a still camera. Second, the

test is equally done, but with the drone taken off and moving. This second test is done after the

whole system is created (Kalman filter and PID controller), but we will only test how both detector

and tracker work and not the quadcopter’s movement.

4.1.1 Landed quadcopter

The system with the landed quadcopter behaves in a clearly good way when losing the target. The

KCF tracker can sometimes lose the person, and create a tracking failure, but the designed algorithm

uses the object detector in the whole image to find again the person, and the tracking continues.

We must say that if the target is moving too fast the tracker tends to lose the person, and that if in

a tracking failure another person appears in the image (or detects a wrong person) it can begin to

track this person or object.

In figure 4.1 a series of consecutive images is shown. In the first frame the person is detected by the

tracker, in the second frame a tracking failure occurs, which is recovered later on as shown in the

third frame.

Figure 4.1: Consecutive frames showing a tracking failure recovery.
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(a) A person moving to the left. (b) A person going backwards.

Figure 4.2: Detection (green rectangles) and tracking (red rectangles) in two different frames.

In figure 4.2 we can see two frames with two bounding boxes: a green one and a red one. The green

rectangle is the detection created every half second by the object detector, while the red rectangle is

the tracker. The detector creates another bounding box, corrected from the tracking one, with which

a new tracker will be created. In frame 4.2a the green bounding box grabs the whole person, while

the red one is smaller and briefly drifted to the right. In frame 4.2b the red bounding box is much

more bigger than the person, while the green one is smaller and fitting the person better.

Let’s try how the tracker behaves when another person is in the field of vision. In figure 4.3 we

observe that the targeted person is correctly tracked while another person is walking by its side. In

this test the tracker correctly kept following the target.

Figure 4.3: Tracking algorithm correctly following the target while another person is passing.

In figure 4.4 we have three consecutive frames showing how a person walks between the quadcopter’s

camera and the target. While in the middle frame the tracker lost the target, once the person passes

and the target is again visible the KCF tracker is capable of keeping the correct track. This is because

when a tracking failure occurs, the tracker keeps looking for the person during 50 frames, if after

these frames the person is not found, the detection starts looking for another person at the whole

image. In this case, the tracker has time to recover from occlusion and to find again the person.
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Figure 4.4: Consecutive frames showing a second person occluding the target.

Finally, we will show the two errors explained before: the loss of a too fast moving target and the

wrong detection when the target is lost. In figure 4.5 we have four consecutive frames that show

how these errors occur. In the first frame the target is correctly tracked, but when it keeps running

the tracker loses it, as shown in the second frame. In the third frame the detector is trying to find a

person to track, but wrongly thinks that the column is a person as shown in the fourth frame.

Figure 4.5: Consecutive frames showing the loss of the target and the wrong detection.

4.1.2 Quadcopter in motion

The tests with the quadcopter flying showed more tracking failures than with the landed quadcopter.

This is because the movement of the quadcopter produces a faster movement of the target, and know-

ing, as shown in figure 4.5, that the tracker fails more as the target moves faster, implies that, with

a moving quadcopter and person, the tracker performance is worse.

From now on, all the images shown in this section are taken with the quadcopter flying. We will

follow the same tests as in the previous subsection, and compare the tracking observed in both videos.

In figure 4.6 we observe, like in figure 4.1, three consecutive frames showing a tracking failure due

to occlusion, but in this case the quadcopter is moving. We observe that the quadcopter is sufficiently

stable, because when the target is lost the quadcopter is told to stop. The number of seconds between
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the first frame and the third is eight.

Figure 4.6: Consecutive frames showing a tracking failure recovery with a moving quadcopter.

In figure 4.7 we have, as in figure 4.2, the two rectangles showing both detection and tracking

frames. The adjustment of the bounding box when the quadcopter is moving works as well as when

it is landed. If there is no tracking failure the detector keeps adjusting the bounding box to the per-

son’s height and width.

(a) The quadcopter following a target to the right. (b) The quadcopter getting closer to the target.

Figure 4.7: Detection (green rectangles) and tracking (red rectangles) in two different frames of the moving
quadcopter.

Figure 4.8 is a five-frame figure showing how the quadcopter behaves when another person enters

in the video. In the first three frames a person passes between the target and the quadcopter, and

the tracker behaves correctly. But after that, the tracker detects the other person as the target and

starts to follow it, as shown in the fourth and fifth frames. This could also have happened when

the quadcopter was not moving, because the tracker, although working pretty good, is not perfect

and can begin to track another person, although sometimes it can follow another person for a few

seconds and then come back to the original target.

Summing up, on one hand, the tracker works pretty well and is able to follow the person even when

the quadcopter is moving, but it can sometimes track another person that appears in the image. On

the other hand, the detector is capable of readjusting the person’s bounding box, and of detecting

the person when a tracking failure occurs, although in this last case it may detect another person

because the system is designed to search for a person in the whole image.
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Figure 4.8: Consecutive frames showing a tracking failure recovery with a moving quadcopter and a change
of the target.

4.2 Kalman filter evaluation

In this section we will test the implemented Kalman filter, comparing the observations given by the

tracker and the corrections made with the filter. For these tests we will use the (x , y) pixel of the

center of the bounding box of the tracker, and the filtered ( f x , f y) pixel of the Kalman filter. All

tests are created with the same initial parameters of the Kalman filter, a change in these parameters

would produce a change in the behaviour of the filter. The used parameters are:

• ax = ay = 5

• rx = ry = 10

• px0 = py0 = pu0 = pv0 = 20

Figures 4.9 and 4.10 show the trajectories, through time, of the x coordinates and the y coordinates

of the target, respectively, of both tracker and filter, with a landed quadcopter and a still target. We

observe that, even when the target is still, the tracker creates some noise that is reduced with the

Kalman filter.

In both figures, the horizontal axis is the time in seconds. In figure 4.9 the vertical axis shows the x

coordinates of the target, and its range goes from the more to the left pixel, 167, to the more to the

right pixel, 186. In figure 4.10 the vertical axis shows the y coordinates of the target, and its range

goes from the bottom pixel, 57, to the top pixel, 64.
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Figure 4.9: Filter and tracker trajectories of the x-coordinate through time with still target and quadcopter.

Figure 4.10: Filter and tracker trajectories of the y-coordinate through time with still target and quadcopter.

Figures 4.11 and 4.12 show, as the two previous figures, the trajectories, through time, of the x co-

ordinates and the y coordinates of the target, respectively, of both tracker and filter, but this time the

quadcopter and the target are moving (mostly back and forth). The filter reduces, in both figures,

most of the noise created by the tracker.

The video tracking starts when the quadcopter is taking off, which makes the first increase in the

y coordinate of the target. When the quadcopter stabilizes (at the fifth second approximately) the

range in the y coordinate (from 85 to 110) is bigger than with the quadcopter stopped, but not in a

too significant way. We can say the same about the x coordinate (range of which goes from 150 to

177 in the first 20 seconds), considering that the quadcopter is always receiving input to move left

or right, the achieved stability is pretty good.
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Figure 4.11: Filter and tracker trajectories of the x-coordinate through time with a moving target and quad-
copter.

Figure 4.12: Filter and tracker trajectories of the y-coordinate through time with a moving target and quad-
copter.

Finally, figures 4.13 and 4.14 show the correction obtained with the Kalman filter in a 85 seconds

flight. In the first figure we can see how the person is moving from left to right several times. The

filter, using our implemented model and the observation, creates a smoother movement when the

person changes orientation. In the second figure we observe that the reduced noise is considerable.

In conclusion, the Kalman filter helps to create a smoother trajectory, by reducing the noise of the

observations. This filtered observations are later on sent to the quadcopter and the smoother they

are the better the quadcopter will move and behave.
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Figure 4.13: Filter and tracker trajectories of the x-coordinate through time with a moving target and quad-
copter.

Figure 4.14: Filter and tracker trajectories of the y-coordinate through time with a moving target and quad-
copter.

4.3 Quadcopter control evaluation

Up to now, we have tested the tracking algorithm and the Kalman filter and observed that both be-

have in a good enough manner for our purposes. In this last section we will evaluate the whole

system, testing the final control of the quadcopter when tracking. As explained in section 2.3, each

PID controller has to be tuned in order to suit the dynamics of the process. The quadcopter has four

movements to be controlled: roll, pitch, yaw and throttle. In this project we have only implemented

three of them: roll, pitch and throttle. For each of these movements a tuned PID controller has been

created by means of the trial and error method. The first tests were made on the outside, but unfor-

tunately the effects of the wind made impossible the tuning, because the AR.Drone 2.0 is not stable

enough and the quadcopter kept moving from one side to the other. So the final tests, as observed
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in the above images, were made indoors.

Before tuning each PID, a maximum speed was fixed to prevent the drone from going too fast. The

final equation of the controllers is:

pidk = vmax tanh

�

Kpek + Ki

∑

k

ek + Kd(ek − ek−1)

�

(4.1)

with vmax = 0.4. The parameters tuned for each of the controllers are:

• Roll

– Kp = 0.002

– Ki = 0.

– Kd = 0.04

• Pitch

– Kp = 0.005

– Ki = 0.00001

– Kd = 0.05

• Throttle

– Kp = 0.004

– Ki = 0.

– Kd = 0.

Observing the tuned parameters we can say that for the roll movement we use a PD (Proportional-

Derivative) controller, for the pitch movement we use a full PID control, and for the throttle move-

ment we only use the Proportional part of the controller.

The drone movements are slow and unable to follow a person that is running or that rapidly walks

out of the image, the problem can be in the not perfect adjustment of the parameters. Tuning the

parameters is a very difficult task and depends a lot on the quadcopter. We could try to use these

same parameters in another AR.Drone 2.0 and the movements may worsen. Moreover, the short

time of the batteries (from 7 to 10 minutes) slowed down a lot the process.

However, a follow-me algorithm has been implemented and the tracking works pretty well: we have

been able to create a software that detects a person in a room and sends to the quadcopter the needed

commands to move and track, whenever the person is inside the visual field of the quadcopter’s front

camera, through the 3 dimensional space. The final movement of the quadcopter can be observed

in the prepared video1.

1https://youtu.be/ydnCSK7LFvU
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5 Conclusions

This chapter is divided in two different parts. First we analyse the work done and then we introduce

some improvements that can be done following the framework implemented here.

5.1 Summary and complications

This thesis has created an onboard vision system autonomous tracker for an AR.Drone 2.0 using

three PID controllers. Moreover, an implementation of the Kalman filter has been created to reduce

noise from the tracking. The tracking algorithm, combination of the MobileNet-SSD object detector

and the KCF object tracker, ensures a non-stop tracking of a person, although sometimes a change of

target can be produced. The follow-me quadcopter presented is able to track a person through the

x , y , z coordinates in an indoor space or outdoor space with very little wind.

This framework is not able to follow a person completely due to the absence of the yaw movement,

that could not be implemented. Although an important approach has been made and with some more

work a better tracker could be created. However, quadcopters can be dangerous and the outdoor

tests are very difficult: the AR.Drone 2.0 is a cheap quadcopter with limited stability and robustness

against moderate winds. Because of this, creating a controller for the AR.Drone able to safely track

a person in an outdoor space requires a lot of effort, time, and money to replace drones.

5.2 Future work

The implemented framework of this project can be improved and extended. Limitations of time,

space and money have not allowed a perfect fulfill of the initial objectives. We present several points

that can be used to carry on this work:

• The implementation of a Kalman filter for the depth movement. In this project, a Kalman

filter following a constant velocity model was implemented to reduce the noise from the x

and y coordinates of the frame. We propose a similar implementation to reduce noise in the z

coordinate, obtained using the height of the bounding box at each frame versus the height of

the bounding box at the first detection.

• The implementation of the yaw movement. The controlled movements in this project are roll

(left-right), pitch (front-backwards) and throttle (up-down), but not the yaw movement that

allows the quadcopter to turn right or left. This addition would let the quadcopter move in a

complete trajectory through the 3D space.
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• An improved tuning of the PID controllers parameters. The current controllers were tuned by

moving the quadcopters in a safe way, making sure the velocities were not too high so someone

could get hurt or the drone could break up. A better tuning can be made with more time, a

bigger indoor space and the use of threads as ground anchors to constrain the quadcopter

movement.

• The use of the CMT tracker instead of the KCF. The KCF tracker is used even though it is not the

best tracker in the market. CMT is faster, more accurate, and more consistent to occlusions.

But the only available python implementation of CMT uses OpenCV v2, while this project is

developed in OpenCV v3.
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