1 Style Representation

Using the autoencoder network presented in this work, a natural question to ask is
how style is represented in the encoder network. Therefore, a method to invert the
networks layer activations is utilized. The activations of style images are inverted
with different summary statistics and evaluated.

1.1 Inverting Feature Responses

To visualize, what a specific layer of the encoder network captures, the features at
this layer are inverted with a method by Mahendran et al. [MV15].

Their idea is to firstly extract features from the input image x. In a second step a
spatial summary statistic is computed on the features to get a description of the
image. Finally, a random noise image n is adjusted to match the summary statistic of
x. In this process the characteristics captured by the summary statistic are transferred
from the input image to the noise image. The noise image is adjusted by performing
gradient descent on it. The summary statistic computed on x and n is utilized as
loss function. Figure|1.1|schematically shows the architecture of the network and
how the feature responses are extracted.
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Figure 1.1: Feature extraction from an encoder network. {¢; }%_; represent subsequent
sets of network layers.
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1.2 Style Loss

A style loss function is a summary statistic used to capture the style of an input
image. The noise image is transformed according to this statistic. The choice of the
style loss function heavily influences the style that is captured. Figure[I.2|shows a
visualization of the loss.

1.2.1 Gram Matrix Loss

In their work on texture synthesis [GEB15] Gatys et al. introduce the first style loss
function that is computed on the activations of a CNN. They argue, that a summary
statistic that ignores spatial information is given by the correlations between feature
maps. The Gram matrix ;G € R“*“ represents the feature correlations at layer [ up
to a constant of proportionality.

The entry ;G;; of the Gram matrix is defined as the inner product between feature
map ¢ and j at layer /.

G = () ) (L.1)

The Gram matrix loss given below measures the element-wise difference between
the Gram matrix of each feature map of s and each corresponding feature map of n.
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1.2.2 Moment Loss

The moment loss is utilized as described in Section ??.
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1.2.3 Maximum Mean Discrepancy Loss

Also, the MMD loss is utilized as described in Section ??.
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Figure 1.2: Loss visualization of inverting style features. Parts that are colored red rep-
resent where the loss is computed on. Bordered red parts represent which
weights are changed by gradient descent. {¢; }}_, represent subsequent
sets of network layers.

1.3 Training

Every noise image n is trained by performing gradient descent on its pixels with a
particular style loss function.

Each image is optimized with the Adam optimizer [KB15]. Adam is used with a
learning rate of n = 1073 and 81 = 0.9, 82 = 0.999.

To get comparable results, each image starts with the same random seed 0 of the

PyTorch framework .

The number of training iterations ¢ depends on the loss used as well as on the layer
where features are inverted from. Table [T lists the number of iterations.

l ['Gram

EMMDQ £m0m Emom Lmom Emom
(N=1) (N=2) (N=3) (N =4)

relu_1_1 100,000
relu_1_2 150,000
relu_2_1 200,000
relu_2_2 250,000

100,000 20,000 40,000 60,000 100,000
150,000 40,000 80,000 120,000 200,000
200,000 60,000 120,000 180,000 300,000
250,000 80,000 160,000 240,000 400,000

Table 1.1: Number of iterations ¢ the style representation visualizations are trained

for.
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Additionally, the optimization is stopped when the loss value defined by the style loss
drops below # = 10~ since in this case the images already have the desired structure
and are stylized sufficiently. If in the final iteration, the loss still is larger than 6 each
image is trained for another 1000 iterations. If necessary, this step is repeated up to
240 times which results in the maximal number of iterations ¢y« = ¢ + 240 - 1000.

1.4 Experiments

Figure[I.3]shows the result images produced with Gram matrix loss. While the first
layers of the networks capture the color of the input image, deeper layers focus in
greater extend on the actual style patterns and structures. In particular, the deeper
the layer the features are extracted from, the larger the style structures tend to get.
This is explained by the size of the receptive fields that grows with the depth of the
network.
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Figure 1.3: Visualization of style images passing through a VGG network with Gram
matrix loss.
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Figure Figure [1.5| and Figure [1.6] show images with N € {1,2,3,4} moments
aligned at layers | € R. There clearly is an improvement in style by aligning more
moments. In particular, the improvement in style is given by the increasing size
of the style structures and the degree of similarity between the colormaps of the
images.

R={relu_1_1,relu_1_2relu_2_1,relu_2_2,} (1.7)

Comparing the Gram matrix loss to the moment loss as visualized in the figures,
it can be detected that the moment loss captures slightly larger style structures by
approximately the same loss magnitude. Also, the colormaps of the style images
seem to be better preserved by using the moment loss.

Empirically, the Gram matrix loss converges with about the same number of iterations
as the moment loss for IV = 2. Additionally, the Gram matrix loss converges almost
every time to a good minimum which is visible by an artefact-free result image. In
contrary, the moment loss for N > 2 moments often has difficulties in finding a good
minimum and converges towards a local minimum which is noisy and does not
reflect the style structure appropriately. Furthermore, for NV > 2 the moment loss
needs a larger number of iterations than the Gram matrix loss. Both can be explained
by the much higher complexity of the moment loss function with each additional
moment that is minimized.

Besides the increased time the generation task takes, the number and size of artifacts
which stay in the produced images also increase with the number of moments
aligned. On the one hand, this can be explained by the increasing complexity of the
loss function as stated above. On the other hand, the artifacts also depend on the
initial random seed used. By changing the seed, the artifacts appear with different
sizes and at different locations. Thus, one can conclude that the loss landscape of
the moment loss prevents the Adam optimizer from finding the optimal solution.
Using an optimizer that also uses the second derivative like L-BFGS [MN11], does
not bring any benefit but instead produces worse images.

Figure[1.7|shows result images produced with MMD loss. Evidently, the loss only
reconstructs the styleimage and does not capture any style structure. This is explained
by the fact that the MMD loss minimizes the error between all moments of the noise
feature map and the style feature map. Since all moments of the noise feature map
are aligned to those of the style feature map the style image gets reconstructed.

Note that in other works that actually manage to capture the style structure with a
MMD loss like [LW]JH17], the loss is defined in a different way. In those works, the
MMD loss aligns the distributions of feature maps element-wise for every element
between all the feature maps. It would not fit into the concept of this work to
align the distributions of all feature maps element-wise since the goal is to align
corresponding pairs of feature maps.
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Figure 1.4: Visualization of style images at layer relu_1_1, relu_1_2, relu_2_1,
relu_2_2 from top to bottom. Note how style structures get larger by
aligning more moments.



1.4. Experiments

Style »Cmom ’ »Cmom ) »Cmoma »Cmom ; »CGram
image N=1 N=2 N=3 N=4

Figure 1.5: Visualization of style images at layer relu_1_1, relu_1_2, relu_2_1,
relu_2_2 from top to bottom. Note how style structures get larger by
aligning more moments.
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Figure 1.6: Visualization of style images at layer relu_1_1, relu_1_2, relu_2_1,
relu_2_2 from top to bottom. Note how style structures get larger by
aligning more moments.
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Figure 1.7: Visualization of style images passing through a VGG network with MMD
loss.
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