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Abstract

SLM Lab1 is a modular deep reinforcement learning framework built using PyTorch. It implements a
number of canonical algorithms using modular and reusable components, provides an automated experi-
ment and analytics framework focusing on reproducibility, introduces a multi-dimensional fitness metric,
and integrates with OpenAI Gym and Unity ML-Agents. This whitepaper discusses the features and
design principles of SLM Lab.

1 Introduction

Reinforcement learning (RL) is a subfield of artificial intelligence that grew out of optimal control theory
and Markov decision processes (MDP). RL is concerned with sequential decision making in the context of
an unknown objective function. Unlike supervised learning, algorithms which try to solve RL problems do
not have access to the “correct answer” during the learning phase. Instead, an RL system consists of an
agent and an environment, subject to alternating interactions in succession. The environment provides a
signal, known as the state, to the agent, who then observes it, deliberates, and performs an action. The
environment receives the action, transitions into the next state, and provides feedback to the agent in the
form of a reward and the next state. The cycle then repeats until the environment terminates. The objective
or goal for the agent in this system is to maximize the discounted sum of rewards received over time. For
this reason, RL has been referred to as “learning with a critic” (the rewards received) in contrast to the
supervised learning setup of “learning with a teacher” (the correct action to take in every state) [34].

Deep learning is a method for approximating highly complex non-linear functions by learning from data.
Recently, deep learning has been combined with RL to great effect. It is being applied in a number of areas
including robotics [1, 8, 25], navigation [26], datacenter cooling [10], and natural language understanding
[21]. It has also led to expert level or superhuman play in a number of games: Backgammon [32], Atari video
games [14, 13], Go [30, 31], Dota [17, 18, 19], and Chess [29]. However a number of challenges remain.

It is well known that deep RL (DRL) algorithms are often sample inefficient[6], struggle to generalize
beyond the specific task they were trained on[6], can be unstable [5, 6], and results are hard to reproduce [23,
5, 6]. The combination of three factors makes learning difficult: complex non-linear function approximation
with neural networks; non-stationary, potentially stochastic, environments with unknown dynamics; and
inherent randomness in agent policies[5]. Consequently, for DRL to work effectively, many tricks are needed
along with extensive hyperparameter tuning. This contributes to the challenge of reproducibility and also
makes DRL hard to learn.

1https://github.com/kengz/SLM-Lab
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SLM Lab[9] is a modular DRL framework built using PyTorch[22] created for DRL research and appli-
cations. It emerged from the authors facing these problems and wanting to make a contribution towards
solving them. The design was guided by four principles: modularity, simplicity, analytical clarity, and
reproducibility.

Modularity: component design in SLM Lab is modular. For example, an agent consists of an algorithm,
network(s), policy, and memory, which interact through a common API. Consequently, many components
are re-used by different agents. Algorithms also share many functions. All algorithms are derived from one of
two base classes, SARSA[24] or REINFORCE[35], and only the necessary incremental code is implemented
for each new algorithm. This structure makes research easier and more accessible by enabling users to focus
only on the relevant work when implementing new algorithms. It also makes it easier to learn DRL by
breaking down the complex DRL algorithms into more manageable, digestible components. Moreover, when
components are maximally reused, there is less code, fewer bugs, and more test coverage.

Simplicity: the lab components are designed to closely correspond to the way papers or books discuss RL.
This reduces the burden of understanding ideas, or translating ideas to implementations . We understand
that a modular library is not necessarily simple. Simplicity serves to balance modularity to prevent overly
complex abstractions that are difficult to understand and use.

Analytical clarity: experiment results are automatically analyzed and presented hierarchically in in-
creasingly granular detail. A big experiment with multiple trials contains a lot of data. With hierarchical
results, one can quickly look at the experiment graph (Figure 2) to determine if it was a success overall, then
pick the best trials and drill down to their trial (Figure 1b) and session (Figure 1a) graphs, which contains
lower level details such as reward and loss.

Reproducibility: a long term aspiration in DRL is that all research is reproducible. To do so, one needs
the source code, hyperparameters, and result data. Using SLM Lab, an experiment can be fully reproduced
using a spec file, which exposes all the hyperparameters, and a git SHA, which allows one to checkout the
version of the code used to run it. These and the experiment results are submitted to the lab via a Pull
Request. The complete experiment data is uploaded to a public cloud storage for open access, and the result
is tracked in the lab’s benchmark page.

2 Features

The main contributions of SLM Lab can be grouped into three parts. First, it implements most of the
canonical algorithms in DRL. This is enabled by a standardized modular design with well-tested, reusable
components. Second, SLM Lab provides an automated experiment and analytics framework. The frame-
work is organized into three tiers: experiment, trial, and session. It incorporates hyperparameter search,
distributed training, replication with random seeds, automated analysis, and introduces a fitness metric.
Third, it integrates with OpenAI gym and Unity ML-Agents2, and has an API for adding environments
from other sources.

2.1 Algorithms

SLM Lab implements many reinforcement learning algorithms, listed below:

2Pre-built binaries for a number of Unity ML-Agents environments are packaged with SLM Lab.
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• SARSA[24], DQN[14], DDQN[3], DuelingDQN[33], and their asynchronous versions[12]

• Prioritized Experience Replay[27], Combined Experience Replay[36]

• REINFORCE[35], A2C, PPO[28], and their asynchronous versions including A3C[12] and DPPO[4]

• (A2C)SIL and PPOSIL[16]

Implementations are organized into standardized modular components that closely correspond to how
they are discussed in DRL papers and books: algorithm, network, replay memory, and policy. The modular
design does not compromise simplicity, making it efficient to translate between the code and theory.

These components are grouped under an Agent class, which handles interaction with the environments.
Primarily, the Algorithm class controls the other components and their interactions, computes the algorithm-
specific loss functions, and runs the training step. Under it, Net class serves as the function approximators for
the algorithm, while the Memory class provides the necessary data storage and retrieval for training. Policy
is a generalized abstraction which takes a network output layer to construct a probability distribution used
for sampling actions and calculating log probabilities and entropies.

The implemented Net classes are MLPNet, HydraMLPNet, DuelingMLPNet, RecurrentNet, ConvNet,

DuelingConvNet. There are two types of Memory classes: Replay, SeqReplay, SILReplay, SILSeqRe-

play, ConcatReplay, AtariReplay, PrioritizedReplay, AtariPrioritizedReplay for off-policy replay,
and OnPolicyReplay, OnPolicySeqReplay, OnPolicyBatchReplay, OnPolicySeqBatchReplay, OnPol-

icyAtariReplay for on-policy replay. The policy module handles discrete and continuous controls, with
exploration methods like epsilon-greedy and Boltzmann.

Most of the above are implemented concisely using class inheritance. Furthermore, the lab provides a
standard API for them to interact and integrate. These together make it easy to implement a new component
and have it immediately apply to all relevant algorithms. As a result, components are maximally reused and
enjoy the benefits of shorter code, fewer bugs, and more test coverage. With this, the workflow becomes
lightweight and fast with the lab, as one can use the existing components and focus only on those under
research or development.

To illustrate, the hogwild asynchronous training of A3C[12] is implemented by constructing and updating
the global networks using the Net API, so it applies to all the algorithms in the lab. For example, one can
turn A2C into A3C with by specifying "distributed": true in the spec file, as shown in appendix listing
2. PPO + SIL is implemented using multi-inheritance by symbolically calling the parent classes SIL and
PPO without any newly written code. Likewise, listing 1 shows how AtariPrioritizedReplay inherits from
the existing PrioritizedReplay and AtariReplay, again without new code.

Listing 1 AtariPrioritizedReplay is implemented without new code from the existing PrioritizedReplay and
AtariReplay classes.

# source: slm_lab/agent/memory/prioritized.py

from slm_lab.agent.memory.replay import Replay, AtariReplay

class AtariPrioritizedReplay(PrioritizedReplay, AtariReplay):

’’’Make a Prioritized AtariReplay via nice multi-inheritance’’’

pass

Such implementation techniques have saved significant time and effort when developing with SLM Lab,
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and have maximized the benefits of existing reliable components. This has been the main enabling factor
for expanding SLM Lab to include many algorithms.

2.2 Experimentation and analysis

SLM Lab provides an automated experimentation and analytics framework. The main features include:

• hyperparameter search using Ray Tune[15, 11]

• distributed training which automatically scales to the available CPU and GPU resources

• automatic replication of training with different random seeds for the same hyperparameter settings

• automatic analysis and plotting of results. These are presented at multiple levels of granularity. Sum-
marizing results in this way makes it easy and fast to get an overview of an experiment and drill down
into detailed results if desired

• agent fitness metric. Instead of considering just the total reward, the lab also measures the convergence
speed, stability and consistency to provide a richer set of metrics

Framework components The experiment framework is organized hierarchically into three components:

1. Session: A session is the lowest level of SLM Lab. It initializes the agents and environments, and
runs the control loop in a single process. Each session runs for some defined maximum episodes; each
episode runs for some maximum number of timesteps before resetting the environments. A session is
associated with an algorithm plus a particular set of hyperparameter values and a distinct random seed.
The output of a session is an instance of a trained agent, with a particular set of learned parameters.

2. Trial: A trial holds a fixed configuration (a spec) which is an algorithm plus a particular set of
hyperparameter values. A trial uses its spec to run multiple sessions with different random seeds to
measure reproducibility. It then analyzes the sessions and takes the average. If a trial’s configuration
is a stable solution, then all the sessions should solve the environment with similar performance. This
is the basic idea behind the “consistency” aspect of the fitness score.

3. Experiment: An experiment is the highest level of SLM Lab’s experiment framework. It can be
thought of as a study, e.g. “what values of gamma and learning rate provide the fastest, most stable
solution, while the other variables are held constant?” The input variables are encoded as the hyper-
parameters, and the outcome is measured by the fitness vector. An experiment runs a trial for every
set of parameters generated by a hyperparameter search algorithm (random search for example), and
a trial runs multiple replicated, seeded sessions to average the results. Then, the search is to find the
hyperparameters that yield maximum fitness for a given experiment. The hyperparameters to search
over, their range, and sampling method, are specified in a spec file.

The organization above, when combined with the standard modular component design, helps expose all
the hyperparameters of an algorithm using a JSON spec file. This allows for wider search options, as well as
reducing the number of hidden hyperparameters, which has contributed to the problem of reproducibility.
As a result, an experiment can be fully reproduced in SLM Lab using just the JSON spec file and the correct
git commit of the code repository, which is specified with the git SHA that recorded automatically in the
generated spec during an experiment.



2 FEATURES 5

Experiment data Experiments generate data which is automatically saved to the data/<experiment -

id> folder. Each session generates a plot of the rewards and loss per episode, a table of metrics per episode
(e.g, reward, loss, exploration variable value, episode length), a session’s fitness, and checkpoints of the
algorithm models. See Figure 1a for an example.

(a) Session graph (b) Trial graph

Figure 1: Session and Trial graphs
A2C in Cartpole-v0[2] environment

Each trial generates a plot of the average reward per episode plus error bars, a spec file detailing the
specific hyperparameter values, and a trial’s fitness. See Figure 1b for an example.

Each experiment generates a summary plot of each trial’s fitness for each of the different hyperparameters
searched over. This plot makes it clear which parameters an algorithm is sensitive to, and which values
work best. The multi-dimensional fitness metric also allows one to measure the effect on convergence speed,
stability and consistency. It is immediately clear from this graph whether any trials succeeded. See Figure
2 for an example.

The experiment df CSV file contains a summary of each trial sorted from highest to lowest fitness. It is
intended to clearly show the hyperparameter value ranges and combinations from the most successful to the
least. Finally, each experiment saves a spec file detailing the search specifications and other hyperparameter
settings, along with the SHA of the git commit used to run it. They encapsulates all the information needed
to reproduce an experiment.

All of these reproduction instructions and experiment data can be contributed back to the SLM Lab via
a Github Pull Request, which follows the format of a scientific report to encourage reproducibility. The
complete experiment data is uploaded to a public cloud storage for open access, and the result is tracked in
the lab’s benchmark page. Both of them are linked from the SLM Lab website.
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Figure 2: Experiment graph: A2C performance on Cartpole-v0[2], with a high level view of the effects of
the searched hyperparameters on various fitness metrics.

2.3 Fitness metric

The lab introduces a vectorial fitness metric as a richer measurement of an agent’s performance. It measures
an agent’s strength (in terms of rewards), speed (how fast it attains its strength), stability (once learned, is
the solution stable), and consistency (how reproducible is the trial result). It serves a dual purpose in the
lab:

1. provide a standard metric to compare algorithms and environments

2. provide a value for the hyperparameter optimizer to maximize

The fitness metric was motivated by the fact it is common to perform hundreds or thousands of hyperpa-
rameter searches in the course of DRL research, even when working on a single algorithm or environment3.
However it is not always straightforward to conclude which are the best set of hyperparameter values. Which
are “best” depends on what aspect of performance you are looking at. Does the agent achieve high reward?
Does it learn fast? Is learning stable? Is learning reproducible? Reinforcement learning research typically
reports on the first two metrics; the total rewards achieved, and the speed of learning (number of time steps
to achieve a result). Increasingly the variance of the rewards over time is also reported. However, it is not
common to measure the stability during training.

What then are the desirable properties of a performance, or fitness, metric? The authors propose the
following properties:

• multi-dimensional: to measure multiple metrics

• standardizable: to allow comparison among different experiments

3SLM Lab’s experiment framework is intended to make this easier to do
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• extensible, backward compatible: when new metrics are added, the old vector becomes a special
case, similar to how x,y is a restriction of x,y,z space. It is not necessary to re-run experiments when
fitness is updated.

• reducible to a single number: fitness = L2 norm of the fitness vector.

• magnification: under L2 norm, higher fitness vectors have bigger differences than lower fitness vectors.
e.g. 22 − 1.92 > 0.92 − 0.82

• easy to understand: with familiar, simple definitions, and a nice geometric interpretation

A fitness vector satisfies all of the above. Given a fitness vector, we can also ensure that every dimension
(and the resultant norm fitness) has these properties:

• the value is 0 for a random agent

• the value is 1 for a standard, universal baseline

• the value is higher for better fitness; the scale should not be too extreme

SLM Lab proposes a metric that satisfies these properties, the fitness metric. Appendix A details how
SLM Lab’s fitness vector and the resulting fitness metric are calculated.

2.4 Environments

Currently, SLM Lab integrates with environments from OpenAI gym[2] and Unity ML-Agents[7]. Even
though the interface methods of these two are different, they are standardized into the environment API
of the lab using a lightweight Env wrapper class. The same technique can also be applied to add new
environments into the lab in the future.

The lab makes use of the environment properties to automatically inference the cardinality and shape
of the state and action spaces, as well as the type of actions, such as discrete, continuous, or a hybrid
from multi-environments. This information is further used by the policy module to construct the proper
probability distribution for sampling actions.

Integrating multiple environments expands the testing ground for all the algorithms in the lab, allowing us
to study their behaviors in greater variations. An interesting consequence from standardizing the environment
APIs is that the lab can create composite environments, such as one from OpenAI gym and one from Unity
ML-Agents, to let a multitask agent solve both simultaneously. Moreover, the lab has a Body class which
handles the interface between agent and environment. This is especially useful for keeping track of the
interfaces in multi-agent, multi-environment settings, which the lab too provides.

2.5 Python package

SLM Lab is portable. Its algorithms and components can be imported and used outside of the framework.
This makes it possible to develop with SLM Lab then deploy the agent elsewhere in a software application,
with minimal effort. To do so, one simply needs to install SLM Lab as a pip module by doing a pip install

-e . at the repository root, and require any of its components as a normal Python module. This is further
detailed in the documentation of the lab.
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3 Example Results

SLM-Lab aims to provide a set of results on well known DRL environments, including the Atari suite[2]. All
data from the associated experiments are uploaded to the SLM Lab following the Pull Request procedure
discussed earlier. One advantage of providing benchmarks using SLM-Lab is that if researchers implement
algorithms using the same framework, it is easier to consistently compare the performance of algorithms.

Some example results are provided in the tables below. These examples indicate the type of information
that is available from the experiments. It includes the more typical metrics; episode reward, 100-episode
running mean reward, as well as the agent’s fitness, overall and by component.

One interesting consequence of testing algorithms using SLM-Lab is that it is easy to evaluate the effect
of a specific component; for example self imitation learning (SIL) for PPO, or combined experience replay
(CER) for DQN. Two experiments can be run with identical setups, with and without the specific component
of interest.

Algorithm

Environment DQN DDQN* A2C** A2C GAE***

Cartpole 200.0 / 126 200.0 / 219 200.0 / 110 200.0 / 176
Lunar Lander 226.5 / 296 226.6 / 406 - 191.0 / na
Mountain Car -104.6 / 1067 -101.5 / 1063 - -

Table 1: Best 100 episode average rewards during training / minimum episode to solve (first episode for
which the 100 episode average ≥ solved reward)

Solved score for each of the environments: Cartpole: 195.0, Lunar Lander: 200.0, Mountain Car: -110.0
*Double DQN **A2C with nstep forward returns ***A2C with Generalized Advantage Estimation

Algorithm

Environment DQN DDQN A2C A2C GAE

Cartpole 3.52 (4.79*) 0.85 (5.65*) 7.10 1.20 (6.26**)
Lunar Lander 1.14 1.15 - 0.57***
Mountain Car 0.92 0.81 - -

Table 2: Agent fitness

*+ Combined Experience Replay **+ Self Imitation Learning. *** Low score driven by lack of consistency,
see Table 3.

Algorithm

Environment DQN DDQN A2C A2C GAE

Cartpole 0.76 / 9.84 / 0.67
/ 0.75

0.89 / 0.55 / 0.90
/ 1.0*

1.02 / 14.13 /
0.93 / 0.75

1.01 / 1.7 / 0.91
/ 1.0

Lunar Lander 1.05 / 1.61 / 0.73
/ 1.0

1.02 / 1.66 / 0.72
/ 1.0

- 0.92 / 0.26 / 0.63
/ 0.0**

Mountain Car 1.01 / 0.98 / 0.63
/ 1.0

1.02 / 0.45 / 0.65
/ 1.0

- -

Table 3: Agent fitness components: strength / speed / stability / consistency
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*Stronger solutions but less stable solutions existed. **The strongest solution found so far, but not
consistent

4 Future work

We hope to continue work on SLM Lab in several directions:

1. Expand the benchmark results. All the algorithms will gradually be benchmarked on more environments,
including the Atari suite and robotics tasks. Providing a set of results on the Atari suite is a priority
for SLM Lab development going forward.

2. Implement new algorithms and components. For example, curiosity[20] and QT-Opt[8] are the next
algorithms we plan to implement. For more details, see the Roadmap available on SLM Lab’s GitHub
repository.

3. Research and applications. We hope the Lab will support users to publish research and deploy DRL
in industrial applications.
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A Fitness metric

Definition SLM Lab measures fitness with the following:

• strength: in terms of total rewards

• speed: how fast does it attain its strength?

• stability: once learned, is the solution stable?

• consistency: how reproducible is the trial result?

A.1 Strength

For each episode, use the total rewards to calculate the strength as

strengthepi =
rewardepi − rewardrand
rewardstd − rewardrand

which is the ratio of the current performance to the standard performance, with random offset.

Properties

• random agent has strength 0, standard agent has strength 1.

• if an agent achieve x2 rewards, the strength is x2, and so on.

• strength of learning agent always tends toward positive regardless of the sign of rewards (some envi-
ronments use negative rewards)

• scale of strength is always standard at 1 and its multiplies, regardless of the scale of actual rewards.
Strength stays invariant even as reward gets rescaled.

This allows for standard comparison between agents on the same problem using an intuitive measurement
of strength. With proper scaling by a difficulty factor, we can compare across problems of different difficulties.
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A.2 Speed

For each session, measure the moving average (MA) for strength with interval = 100 episodes.

strength maepi = MA(strengthepi, interval = 100)

The reason for using moving average is for stability: It smoothes out the noise in strength variations across
episodes; so we do not falsely consider a “lucky shot” where the agent gains high strength in one episode
and is weak for the rest.

Next, measure the total timesteps up to the first episode that first surpasses standard strength, allowing
for noise of 0.05, i.e.

Let episolved = first episode where strength maepi ≥ 1

and

timestepsolved =

{
total timesteps through episolved if ∃episolved
∞ otherwise

Finally, calculate speed as

speed =
timestepstd
timestepsolved

Properties

• random agent has speed 0, standard agent has speed 1.

• if an agent takes x2 timesteps to exceed standard strength, we can say it is 2x slower.

• the speed of learning agent always tends toward positive regardless of the shape of the rewards curve

• the scale of speed is always standard at 1 and its multiplies, regardless of the absolute timesteps.

For agent failing to achieve standard strength 1, it is meaningless to measure speed or give false interpo-
lation, so the speed is 0.

This allows an intuitive measurement of learning speed and the standard comparison between agents on
the same problem.
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Absolute timestep also measures the bits of new information given to the agent, which is a more grounded
metric. With proper scaling of timescale (or bits scale), we can compare across problems of different diffi-
culties. This is a topic for research.

A.3 Stability

Find a

baseline =


0.+ noise if solution very weak

max(strength maepi)− noise if solution partial

1.− noise if solution strong

So we get:

baselineweak = 0.+ noise

baselinestrong = min(max(strength maepi), 1.)− noise
baseline = max(baselineweak, baselinestrong)

Let epibaseline be the episode where baseline is first attained. Consider the episodes starting from
epibaseline, let #epi+ be the number of episodes, and #epi≥ the number of episodes where strength maepi
is monotonically increasing, allowing for noise of 0.05, i.e. 5% of standard strength.

Calculate stability as

stability =


#epi≥
#epi+

if ∃episolved

0 otherwise

Properties:

• stable agent has value 1, unstable agent < 1, and non-solution = 0.

• allows for drops strength MA of 5% of standard strength, which is invariant to the scale of rewards

• if strength is monotonically increasing (with 5% noise), then it is stable

• sharp gain in strength is considered stable

• monotonically increasing implies strength can keep growing and as long as it does not fall much, it is
considered stable

When an agent fails to achieve standard strength, it is meaningless to measure stability or give false
interpolation, so stability is 0.
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A.4 Consistency

Often in search, due to many interacting factors, the same setting can yield vastly different results. This
motivates a trial-level measurement of consistency - to see how similar and reproducible are different runs of
the same trial. Given multiple sessions of the same trial and their session-level fitness vectors {vs}, let {vs}in
be the set of non-outlier vectors by MAD modified z-score, calculate consistency as the ratio of non-outliers:

consistency =


|{vs}in|
|{vs}|

if ∃episolved for any session

0 otherwise

Properties

• outliers are calculated using MAD modified z-score

• if all the fitness vectors are zero or all strength are zero, consistency = 0

• works for all sorts of session fitness vectors, with the standard scale

• When an agent fails to achieve standard strength, it is meaningless to measure consistency or give false
interpolation, so consistency is 0.

A.5 Fitness as vector norm

With all the dimensions defined, we can define the fitness vector. For a session, the fitness vector and fitness
respectively are:

vs := [strength, speed, stability]

κs := normL2(vs)

For a trial of multiple sessions, obtain the mean vector vs, and the final fitness vector and fitness respec-
tively are:

v := vs ⊕ [consistency]

κ := normL2(v)

B Experiment configuration: the spec file

A spec file is used by the lab Session to construct agent and environment. Its format is standardized in
accordance with the standard modular component design. SLM Lab will read the lab config to find the
appropriate spec file and use a spec in it to construct an experiment. The documentation page elaborates
these in details. A quick overview of the spec file and two examples are presented below.

1. agent. The format is a list to accommodate multi-agents. An element in a list is an agent spec which
further contains the specs for its components:
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(a) algorithm. The main parameters specific to the algorithm, such as the policy type, coefficients,
rate decays, preprocessing.

(b) memory. Specifies which memory to use as appropriate to the algorithm and neural network,
its batch size, and memory size.

(c) net. The type of neural network, its hidden layer architecture, activations, gradient clipping, loss
function, optimizer, rate decays, update method, and CUDA usage.

2. env. The format is also a list to accommodate multi-environments. This specifies which environment
to use, an optional maximum timestep, the max episode per session, and frequency for saving the
session (agent models, etc.)

3. body. Specifies how multi-agent connects to multi-environments; leave at default for singleton case.
Refer to lab documentation for more details.

4. meta. The high level spec specifying how the lab is ran. Includes distributed mode, the number of
jobs, search algorithm, resource allocation.

5. search. The hyperparameter ranges to search over, and the distributions used to sample them. This
uses the analogous spec format enumerated above, with the distributed method append like choice,
and the values are the sampling domain.

{

"a3c_gae_mlp_shared_cartpole": {

"agent": [{

"name": "A3C",

"algorithm": {

"name": "ActorCritic",

"action_pdtype": "default",

"action_policy": "default",

"action_policy_update": "no_update",

"explore_var_start": null,

"explore_var_end": null,

"explore_anneal_epi": null,

"gamma": 0.99,

"use_gae": true,

"lam": 1.0,

"use_nstep": false,

"num_step_returns": 1,

"add_entropy": true,

"entropy_coef": 0.1,

"policy_loss_coef": 1.0,

"val_loss_coef": 1.0,

"training_frequency": 1,

"training_epoch": 4,

"normalize_state": false

},

"memory": {

"name": "OnPolicyReplay"

},

"net": {

"type": "MLPNet",
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"shared": true,

"hid_layers": [32],

"hid_layers_activation": "tanh",

"clip_grad": false,

"clip_grad_val": 1.0,

"use_same_optim": false,

"actor_optim_spec": {

"name": "Adam",

"lr": 0.02

},

"critic_optim_spec": {

"name": "Adam",

"lr": 0.02

},

"lr_decay": "linear_decay",

"lr_decay_frequency": 2000,

"lr_decay_min_timestep": 5000,

"lr_anneal_timestep": 100000,

"gpu": false

}

}],

"env": [{

"name": "CartPole-v0",

"max_timestep": null,

"max_episode": 400,

"save_epi_frequency": 300

}],

"body": {

"product": "outer",

"num": 1

},

"meta": {

"distributed": true,

"max_session": 16,

"max_trial": 64,

"search": "RandomSearch",

"resources": {

"num_cpus": 16

}

},

"search": {

"agent": [{

"algorithm": {

"lam__uniform": [0.9, 1.0],

"training_frequency__choice": [1, 2, 3, 5],

"entropy_coef__uniform": [0.001, 0.1],

"val_loss_coef__uniform": [0.01, 1.0]

},

"net": {

"lr_decay_frequency__choice": [1000, 2000, 4000, 6000, 8000, 10000],

"hid_layers_activation__choice": ["tanh", "relu", "selu"]
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}

}]

}

}

}

Listing 2: A3C is realized simply as A2C with distributed training enabled by a single meta config, "dis-
tributed": true.

{

"dqn_boltzmann_cartpole": {

"agent": [{

"name": "DQN",

"algorithm": {

"name": "DQN",

"action_pdtype": "Argmax",

"action_policy": "boltzmann",

"action_policy_update": "linear_decay",

"explore_var_start": 3.0,

"explore_var_end": 1.0,

"explore_anneal_epi": 20,

"gamma": 0.99,

"training_batch_epoch": 10,

"training_epoch": 4,

"training_frequency": 8,

"training_min_timestep": 32,

"normalize_state": true

},

"memory": {

"name": "Replay",

"batch_size": 32,

"max_size": 10000,

"use_cer": true

},

"net": {

"type": "MLPNet",

"hid_layers": [64],

"hid_layers_activation": "relu",

"clip_grad": false,

"clip_grad_val": 1.0,

"loss_spec": {

"name": "MSELoss"

},

"optim_spec": {

"name": "Adam",

"lr": 0.001

},

"lr_decay": "linear_decay",

"lr_decay_frequency": 2000,

"lr_decay_min_timestep": 5000,

"lr_anneal_timestep": 100000,
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"update_type": "polyak",

"update_frequency": 1,

"polyak_coef": 0,

"gpu": false

}

}],

"env": [{

"name": "CartPole-v0",

"max_timestep": null,

"max_episode": 400,

"save_epi_frequency": 300

}],

"body": {

"product": "outer",

"num": 1

},

"meta": {

"distributed": false,

"max_session": 4,

"max_trial": 64,

"search": "RandomSearch",

"resources": {

"num_cpus": 16

}

},

"search": {

"agent": [{

"algorithm": {

"explore_anneal_epi__choice": [10, 50, 100]

},

"net": {

"hid_layers_activation__choice": ["tanh", "relu", "selu"],

"optim_spec": {

"lr__uniform": [0.00001, 0.01]

}

}

}]

}

}

}

Listing 3: This DQN spec specifies a variant that uses the Boltzmann exploration policy, with Polyak network
weight update.
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