Oracle Database 12c: SQL
Workshop I

Student Guide - Volume |

D80194GC10
Edition 1.0
August 2013
D83185

ORACLE

Author

Dimpi Rani Sarmah

Technical Contributors
and Reviewers

Nancy Greenberg
Swarnapriya Shridhar
Bryan Roberts,
Laszlo Czinkoczki
KimSeong Loh

Brent Dayley

Jim Spiller
Christopher Wensley
Maheshwari Krishnamurthy
Daniel Milne

Michael Almeida

Diganta Choudhury

Anjulaponni Azhagulekshmi
Subbiahpillai

Manish Pawar
Clair Bennett
Yanti Chang
Joel Goodman

Gerlinde Frenzen

Publisher
Sujatha Nagendra

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

Disclaimer

This document contains proprietary information and is protected by copyright and
other intellectual property laws. You may copy and print this document solely for your
own use in an Oracle training course. The document may not be modified or altered
in any way. Except where your use constitutes "fair use" under copyright law, you
may not use, share, download, upload, copy, print, display, perform, reproduce,
publish, license, post, transmit, or distribute this document in whole or in part without
the express authorization of Oracle.

The information contained in this document is subject to change without notice. If you
find any problems in the document, please report them in writing to: Oracle University,
500 Oracle Parkway, Redwood Shores, California 94065 USA. This document is not
warranted to be error-free.

Restricted Rights Notice

If this documentation is delivered to the United States Government or anyone using
the documentation on behalf of the United States Government, the following notice is
applicable:

U.S. GOVERNMENT RIGHTS

The U.S. Government’s rights to use, modify, reproduce, release, perform, display, or
disclose these training materials are restricted by the terms of the applicable Oracle
license agreement and/or the applicable U.S. Government contract.

Trademark Notice

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names
may be trademarks of their respective owners.

Contents

1 Introduction
Lesson Objectives 1-2
Lesson Agenda 1-3
Course Objectives 1-4
Course Prerequisites 1-5
Course Agenda 1-6
Lesson Agenda 1-7
Tables Used in This Course 1-8
Appendixes and Practices Used in This Course 1-10
Development Environments 1-11
Lesson Agenda 1-12
Review of Restricting Data 1-13
Review of Sorting Data 1-14
Review of SQL Functions 1-15
Review of Single-Row Functions 1-16
Review of Types of Group Functions 1-17
Review of Using Subqueries 1-18
Review of Managing Tables Using DML Statements 1-20
Lesson Agenda 1-22
Oracle Database SQL Documentation 1-23
Additional Resources 1-24
Summary 1-25
Practice 1: Overview 1-26

2 Introduction to Data Dictionary Views
Objectives 2-2
Lesson Agenda 2-3
Data Dictionary 2-4
Data Dictionary Structure 2-5
How to Use the Dictionary Views 2-7
USER_OBJECTS and ALL_OBJECTS Views 2-8
USER_OBJECTS View 2-9
Lesson Agenda 2-10
Table Information 2-11
Column Information 2-12

Constraint Information 2-14
USER_CONSTRAINTS: Example 2-15
Querying USER_CONS_COLUMNS 2-16
Lesson Agenda 2-17

Adding Comments to a Table 2-18

Quiz 2-19

Summary 2-20

Practice 2: Overview 2-21

Creating Sequences, Synonyms, and Indexes
Objectives 3-2

Lesson Agenda 3-3

Database Objects 3-4

Referencing Another User’s Tables 3-5
Sequences 3-6

CREATE SEQUENCE Statement: Syntax 3-7
Creating a Sequence 3-9

NEXTVAL and CURRVAL Pseudocolumns 3-10
Using a Sequence 3-12

SQL Column defaulting using a Sequence 3-13
Caching Sequence Values 3-14

Modifying a Sequence 3-15

Guidelines for Modifying a Sequence 3-16
Sequence Information 3-17

Lesson Agenda 3-18

Synonyms 3-19

Creating a Synonym for an Object 3-20
Creating and Removing Synonyms 3-21
Synonym Information 3-22

Lesson Agenda 3-23

Indexes 3-24

How Are Indexes Created? 3-25

Creating an Index 3-26

CREATE INDEX with the CREATE TABLE Statement 3-27
Function-Based Indexes 3-29

Creating Multiple Indexes on the Same Set of Columns 3-30
Example of Creating Multiple Indexes on the Same Set Of Columns 3-31
Index Creation Guidelines 3-32

Index Information 3-33

USER _INDEXES: Examples 3-34

Querying USER_IND_COLUMNS 3-35

Removing an Index 3-36
Quiz 3-37

Summary 3-38

Practice 3: Overview 3-39

Creating Views

Objectives 4-2

Lesson Agenda 4-3

Database Objects 4-4

What Is a View? 4-5

Advantages of Views 4-6

Simple Views and Complex Views 4-7
Creating a View 4-8

Retrieving Data from a View 4-11

Modifying a View 4-12

Creating a Complex View 4-13

View Information 4-14

Rules for Performing DML Operations on a View 4-15
Using the WITH CHECK OPTION Clause 4-18
Denying DML Operations 4-19

Removing a View 4-21

Quiz 4-22

Summary 4-23

Practice 4: Overview 4-24

Managing Schema Objects

Objectives 5-2

Lesson Agenda 5-3

Adding a Constraint Syntax 5-4

Adding a Constraint 5-5

Dropping a Constraint 5-6

Dropping a CONSTRAINT ONLINE 5-7

ON DELETE Clause 5-8

Cascading Constraints 5-9

Renaming Table Columns and Constraints 5-12
Disabling Constraints 5-13

Enabling Constraints 5-14

Deferring Constraints 5-15

Difference Between INITIALLY DEFERRED and INITIALLY IMMEDIATE 5-16
DROP TABLE ... PURGE 5-18

Lesson Agenda 5-19

Temporary Tables 5-20

Creating a Temporary Table 5-21

Lesson Agenda 5-22

External Tables 5-23

Creating a Directory for the External Table 5-24

Creating an External Table 5-26

Creating an External Table by Using ORACLE_LOADER 5-28
Querying External Tables 5-30

Creating an External Table by Using ORACLE_DATAPUMP: Example 5-31
Quiz 5-32

Summary 5-33

Practice 5: Overview 5-34

Retrieving Data by Using Subqueries
Objectives 6-2

Lesson Agenda 6-3

Retrieving Data by Using a Subquery as a Source 6-4
Lesson Agenda 6-6

Multiple-Column Subqueries 6-7
Column Comparisons 6-8

Pairwise Comparison Subquery 6-9
Nonpairwise Comparison Subquery 6-11
Lesson Agenda 6-13

Scalar Subquery Expressions 6-14
Scalar Subqueries: Examples 6-15
Lesson Agenda 6-17

Correlated Subqueries 6-18

Using Correlated Subqueries 6-20
Lesson Agenda 6-22

Using the EXISTS Operator 6-23

Find All Departments That Do Not Have Any Employees 6-25
Lesson Agenda 6-26

WITH Clause 6-27

WITH Clause: Example 6-28

Recursive WITH Clause 6-30

Recursive WITH Clause: Example 6-31
Quiz 6-32

Summary 6-33

Practice 6: Overview 6-34

Vi

7 Manipulating Data by Using Subqueries
Objectives 7-2
Lesson Agenda 7-3
Using Subqueries to Manipulate Data 7-4
Lesson Agenda 7-5
Inserting by Using a Subquery as a Target 7-6
Lesson Agenda 7-8
Using the WITH CHECK OPTION Keyword on DML Statements 7-9
Lesson Agenda 7-11
Correlated UPDATE 7-12
Using Correlated UPDATE 7-13
Correlated DELETE 7-15
Using Correlated DELETE 7-16
Summary 7-17
Practice 7: Overview 7-18

8 Controlling User Access
Objectives 8-2
Lesson Agenda 8-3
Controlling User Access 8-4
Privileges 8-5
System Privileges 8-6
Creating Users 8-7
User System Privileges 8-8
Granting System Privileges 8-10
Lesson Agenda 8-11
What Is a Role? 8-12
Creating and Granting Privileges to a Role 8-13
Changing Your Password 8-14
Lesson Agenda 8-15
Object Privileges 8-16
Granting Object Privileges 8-18
Passing On Your Privileges 8-19
Confirming Granted Privileges 8-20
Lesson Agenda 8-21
Revoking Object Privileges 8-22
Quiz 8-24
Summary 8-25
Practice 8: Overview 8-26

Vii

9 Manipulating Data
Objectives 9-2
Lesson Agenda 9-3
Explicit Default Feature: Overview 9-4
Using Explicit Default Values 9-5
Copying Rows from Another Table 9-6
Lesson Agenda 9-7
Multitable INSERT Statements: Overview 9-8
Types of Multitable INSERT Statements 9-10
Multitable INSERT Statements 9-11
Unconditional INSERT ALL 9-13
Conditional INSERT ALL: Example 9-15
Conditional INSERT ALL 9-16
Conditional INSERT FIRST: Example 9-18
Conditional INSERT FIRST 9-19
Pivoting INSERT 9-21
Lesson Agenda 9-24
MERGE Statement 9-25
MERGE Statement Syntax 9-26
Merging Rows: Example 9-27
Lesson Agenda 9-30
FLASHBACK TABLE Statement 9-31
Using the FLASHBACK TABLE Statement 9-33
Lesson Agenda 9-34
Tracking Changes in Data 9-35
Flashback Version Query: Example 9-36
VERSIONS BETWEEN Clause 9-37
Quiz 9-38
Summary 9-40
Practice 9: Overview 9-41

10 Managing Data in Different Time Zones
Objectives 10-2
Lesson Agenda 10-3
Time Zones 10-4
TIME_ZONE Session Parameter 10-5
CURRENT_DATE, CURRENT_TIMESTAMP, and LOCALTIMESTAMP 10-6
Comparing Date and Time in a Session’s Time Zone 10-7
DBTIMEZONE and SESSIONTIMEZONE 10-9
TIMESTAMP Data Types 10-10
TIMESTAMP Fields 10-11

viii

Difference Between DATE and TIMESTAMP 10-12
Comparing TIMESTAMP Data Types 10-13
Lesson Agenda 10-14

INTERVAL Data Types 10-15

INTERVAL Fields 10-17

INTERVAL YEAR TO MONTH: Example 10-18
INTERVAL DAY TO SECOND Data Type: Example 10-20
Lesson Agenda 10-21

EXTRACT 10-22

TZ _OFFSET 10-23

FROM_TZ 10-25

TO_TIMESTAMP 10-26

TO_YMINTERVAL 10-27

TO_DSINTERVAL 10-28

Daylight Saving Time (DST) 10-29

Quiz 10-31

Summary 10-32

Practice 10: Overview 10-33

Table Descriptions

Using SQL Developer

Objectives B-2

What Is Oracle SQL Developer? B-3
Specifications of SQL Developer B-4

SQL Developer 3.2 Interface B-5

Creating a Database Connection B-7
Browsing Database Objects B-10

Displaying the Table Structure B-11
Browsing Files B-12

Creating a Schema Object B-13

Creating a New Table: Example B-14

Using the SQL Worksheet B-15

Executing SQL Statements B-19

Saving SQL Scripts B-20

Executing Saved Script Files: Method 1 B-21
Executing Saved Script Files: Method 2 B-22
Formatting the SQL Code B-23

Using Snippets B-24

Using Snippets: Example B-25

Using Recycle Bin B-26

Debugging Procedures and Functions B-27
Database Reporting B-28

Creating a User-Defined Report B-29
Search Engines and External Tools B-30
Setting Preferences B-31

Resetting the SQL Developer Layout B-33
Data Modeler in SQL Developer B-34
Summary B-35

Using SQL*Plus

Objectives C-2

SQL and SQL*Plus Interaction C-3

SQL Statements Versus SQL*Plus Commands C-4
Overview of SQL*Plus C-5

Logging In to SQL*Plus C-6

Displaying the Table Structure C-7

SQL*Plus Editing Commands C-9

Using LIST, n, and APPEND C-11

Using the CHANGE Command C-12
SQL*Plus File Commands C-13

Using the SAVE, START Commands C-14
SERVEROUTPUT Command C-15

Using the SQL*Plus SPOOL Command C-16
Using the AUTOTRACE Command C-17
Summary C-18

Commonly Used SQL Commands
Objectives D-2

Basic SELECT Statement D-3
SELECT Statement D-4

WHERE Clause D-5

ORDER BY Clause D-6

GROUP BY Clause D-7

Data Definition Language D-8
CREATE TABLE Statement D-9
ALTER TABLE Statement D-10
DROP TABLE Statement D-11
GRANT Statement D-12

Privilege Types D-13

REVOKE Statement D-14
TRUNCATE TABLE Statement D-15

Data Manipulation Language D-16

INSERT Statement D-17

UPDATE Statement Syntax D-18

DELETE Statement D-19

Transaction Control Statements D-20

COMMIT Statement D-21

ROLLBACK Statement D-22

SAVEPOINT Statement D-23

Joins D-24

Types of Joins D-25

Qualifying Ambiguous Column Names D-26
Natural Join D-27

Equijoins D-28

Retrieving Records with Equijoins D-29
Additional Search Conditions Using the AND and WHERE Operators D-30
Retrieving Records with Nonequijoins D-31
Retrieving Records by Using the USING Clause D-32
Retrieving Records by Using the ON Clause D-33
Left Outer Join D-34

Right Outer Join D-35

Full Outer Join D-36

Self-Join: Example D-37

Cross Join D-38

Summary D-39

Generating Reports by Grouping Related Data
Objectives E-2

Review of Group Functions E-3

Review of the GROUP BY Clause E-4

Review of the HAVING Clause E-5

GROUP BY with ROLLUP and CUBE Operators E-6
ROLLUP Operator E-7

ROLLUP Operator: Example E-8

CUBE Operator E-9

CUBE Operator: Example E-10

GROUPING Function E-11

GROUPING Function: Example E-12
GROUPING SETS E-13

GROUPING SETS: Example E-15

Composite Columns E-17

Composite Columns: Example E-19

Xi

Concatenated Groupings E-21
Concatenated Groupings: Example E-22
Summary E-23

Hierarchical Retrieval

Objectives F-2

Sample Data from the EMPLOYEES Table F-3
Natural Tree Structure F-4

Hierarchical Queries F-5

Walking the Tree F-6

Walking the Tree: From the Bottom Up F-8

Walking the Tree: From the Top Down F-9

Ranking Rows with the LEVEL Pseudocolumn F-10
Formatting Hierarchical Reports Using LEVEL and LPAD F-11
Pruning Branches F-13

Summary F-14

Writing Advanced Scripts

Objectives G-2

Using SQL to Generate SQL G-3

Creating a Basic Script G-4

Controlling the Environment G-5

The Complete Picture G-6

Dumping the Contents of a Table to a File G-7
Generating a Dynamic Predicate G-9
Summary G-11

Oracle Database Architectural Components
Objectives H-2

Oracle Database Architecture: Overview H-3
Oracle Database Server Structures H-4
Connecting to the Database H-5

Interacting with an Oracle Database H-6
Oracle Memory Architecture H-8

Process Architecture H-10

Database Writer Process H-12

Log Writer Process H-13

Checkpoint Process H-14

System Monitor Process H-15

Process Monitor Process H-16

Oracle Database Storage Architecture H-17

Xii

Logical and Physical Database Structures H-19
Processing a SQL Statement H-21

Processing a Query H-22

Shared Pool H-23

Database Buffer Cache H-25

Program Global Area (PGA) H-26

Processing a DML Statement H-27

Redo Log Buffer H-29

Rollback Segment H-30

COMMIT Processing H-31

Summary of the Oracle Database Architecture H-33
Summary H-34

Regular Expression Support

Objectives -2

What Are Regular Expressions? 1-3

Benefits of Using Regular Expressions 1-4

Using the Regular Expressions Functions and Conditions in SQL and PL/SQL 1-5
What Are Metacharacters? 1-6

Using Metacharacters with Regular Expressions |-7

Regular Expressions Functions and Conditions: Syntax -9

Performing a Basic Search by Using the REGEXP_LIKE Condition 1-10
Replacing Patterns by Using the REGEXP_REPLACE Function [-11
Finding Patterns by Using the REGEXP_INSTR Function 1-12
Extracting Substrings by Using the REGEXP_SUBSTR Function [-13
Subexpressions 1-14

Using Subexpressions with Regular Expression Support 1-15

Why Access the nth Subexpression? 1-16

REGEXP_SUBSTR: Example [-17

Using the REGEXP_COUNT Function 1-18

Regular Expressions and Check Constraints: Examples 1-19

Quiz 1-20

Summary [-21

xiii

Ajuo asn suoin|og 1geb3 pue AlsiaAlun ajoelO

a3LigIHOdd A1LOIE1S SI d3LNdNOD SIHL INOYA STVIFTILVIN LIM® ONIAJOD "ATNO WOOHSSV1D SIHL NI 3SN dNOA d04 34V STIVIHILYIN LIMS 3SIHL

Ajuo asn suonn|og Igeb3 pue AjisiaAlun ajpoelO

ORACLE

Introduction
Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

d3119diHOdd ATLOIELS SI d3.LNdINOD SIHL INOHA STVIHALVIA LIX® ONIAJOD "ATTNO INOOHSSY1O SIHL NI 3SN dNOA J04 FHV SIVIHALVIN 1IM9 3S3HL

Lesson Objectives

After completing this lesson, you should be able to:
- Discuss the goals of the course

 Describe the database schema and tables that are used in
the course

« Identify the available environments that can be used in the
course

* Review some of the basic concepts of SQL

ORACLE

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

Oracle Database 12¢: SQL Workshop Il 1-2

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS COMPUTER IS STRICTLY PROHIBITED

Lesson Agenda

« Course objectives and course agenda

 The database schema, the appendixes and practices, and
development environments used in this course

 Review of some basic SQL concepts

 Oracle Database 12¢ documentation and additional
resources

ORACLE

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

Oracle Database 12c: SQL Workshop Il 1-3

Oracle University and Egabi Solutions use only

Course Objectives

After completing this course, you should be able to:
« Manage objects with data dictionary views
- Create schema objects
« Manage schema objects
* Write multiple-column subqueries
« Use scalar and correlated subqueries
« Control user access to specific database objects
« Add new users with different levels of access privileges

« Manipulate large data sets in the Oracle database by using
subqueries

« Manage data in different time zones

ORACLE

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

Oracle Database 12¢c: SQL Workshop Il 1 -4

Course Prerequisites

The Oracle Database: SQL Workshop | course is a prerequisite
for this course.

ORACLE

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

The Oracle Database: SQL Workshop I course offers you an introduction to Oracle Database
technology. In this course, you learn the basic concepts of relational databases and the
powerful SQL programming language. This course provides the essential SQL skills that
enable you to write queries against single and multiple tables, manipulate data in tables,
create database objects, and query metadata.

Oracle Database 12c: SQL Workshop Il 1-5

Course Agenda

« Day1:
— Introduction
— Introduction to Data Dictionary Views
— Creating Sequence, Synonyms, and Indexes
— Creating Views
— Managing Schema Objects
- Day 2:
— Retrieving Data by Using Subqueries
— Manipulating Data by Using Subqueries
— Controlling User Access
— Manipulating Data
— Managing Data in Different Time Zones

ORACLE

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

Oracle Database 12c¢: SQL Workshop Il 1-6

Lesson Agenda

« Course objectives and course agenda

 The database schema, the appendixes and practices, and
development environments used in this course

 Review of some basic SQL concepts

 Oracle Database 12c¢c documentation and additional
resources

ORACLE

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

Oracle Database 12c: SQL Workshop Il 1-7

Tables Used in This Course

DEPARTMENTS LOCATIONS
department _id location_id
________________ department_name I street_address
manager_id postal_code
location_id city
state_province
: N/ country_id
I
JOB_HISTORY A V
employee_id -
start date == 0B em—m—e-a EMPLOYEES :
end date employee_id 1
job_id IS D COUNTRIES
iy . last_name
department_id omail country_id
A4 phone_number country_n_ame
i hire_date -—- region_id
I job_id
: salary NV
commission_pct 1
JOBS = }-==--- -< manager_id !
_ Jl?bt'_t:d department_id
job_title R
min_salary REC_-.‘-IONdS
max_salary region_!
region_name
JOB_GRADES
grade_level
lowest_sal
highest_sal

ORACLE

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

This course uses data from the following tables:
Table Descriptions

+ The EMPLOYEES table contains information about all the employees, such as their first
and last names, job IDs, salaries, hire dates, department IDs, and manager IDs. This
table is a child of the DEPARTMENTS table.

« The DEPARTMENTS table contains information such as the department 1D, department
name, manager ID, and location ID. This table is the primary key table to the
EMPLOYEES table.

« The LOCATIONS table contains department location information. It contains location ID,
street address, city, state province, postal code, and country ID information. It is the
primary key table to the DEPARTMENTS table and is a child of the COUNTRIES table.

+ The COUNTRIES table contains the country names, country IDs, and region IDs. ltis a
child of the REGIONS table. This table is the primary key table to the LOCATIONS table.

+ The REGIONS table contains region IDs and region names of the various countries. It is
a primary key table to the COUNTRIES table.

Oracle Database 12¢: SQL Workshop Il 1-8

The JOB_GRADES table identifies a salary range per job grade. The salary ranges do
not overlap.

The JOB_HISTORY table stores job history of the employees.
The JOBS table contains job titles and salary ranges.

Oracle Database 12¢: SQL Workshop Il 1-9

Appendixes and Practices Used in This Course

* Appendix A: Table Descriptions

« Appendix B: Using SQL Developer

* Appendix C: Using SQL* Plus

* Appendix D: Commonly Used SQL Commands

« Appendix E: Generating Reports by Grouping Related
Data

« Appendix F: Hierarchical Retrieval

* Appendix G: Writing Advanced Scripts

« Appendix H: Oracle Database Architectural Components
« Appendix | : Regular Expression Support

« Practices and Solutions

« Additional Practices and Solutions

ORACLE

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

Oracle Database 12c¢: SQL Workshop Il 1-10

Development Environments

There are two development environments for this course:
« The primary tool is Oracle SQL Developer.
* You can also use SQL*Plus command-line interface.

Fle Edk Yew favigwe Bun Versigniog Tooks el
RoEa 9o NE0 0-0- & =3 E oracle@EDRSR25P1:~/Desktop
x| @repons x |ies x O [@onz-2 x - File Edit View Search Terminal Help

>PENYA BQ RRCAE @ o) ! sl
Worksheet Query Builder [eraclegEDRSR25P1 Desktop]$ sqlplus [~]

SOL*Plus: Release 12.1.0.8.2 Beta on Tue Aug 28 02:06:39 2812

Copyright (c) 1982, 2812, Oracle. ALl rights reserved.

SQL Developer

Enter user-name:

SQL*Plus

ORACLE

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

SQL Developer

This course has been developed using Oracle SQL Developer as the tool for running the SQL
statements discussed in the examples in the slide and the practices.

SQL*Plus

The SQL*Plus environment may also be used to run all SQL commands covered in this
course.

Note

+ See Appendix B titled “Using SQL Developer” for information about using SQL
Developer.

+ See Appendix C titled “Using SQL*PIlus” for information about using SQL*Plus.

Oracle Database 12c¢: SQL Workshop Il 1 -11

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS COMPUTER IS STRICTLY PROHIBITED

Lesson Agenda

« Course objectives and course agenda

 The database schema, the appendixes and practices, and
development environments used in this course

* Review of some basic SQL concepts

 Oracle Database 12¢ documentation and additional
resources

ORACLE

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

The next few slides provide a brief overview of some of the basic concepts that you learned in
the course titled Oracle Database: SQL Workshop I.

Oracle Database 12c: SQL Workshop Il 1 -12

Oracle University and Egabi Solutions use only

Review of Restricting Data

« Restrict the rows that are returned by using the WHERE
clause.

« Use comparison conditions to compare one expression
with another value or expression.

Operator Meaning

BETWEEN Between two values (inclusive)
..AND. ..

IN (set) Match any of a list of values

LIKE Match a character pattern

- Use logical conditions to combine the result of two
component conditions and produce a single result based
on those conditions.

ORACLE

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

You can restrict the rows that are returned from the query by using the WHERE clause. A
WHERE clause contains a condition that must be met, and it directly follows the FROM clause.

The WHERE clause can compare values in columns, literal values, arithmetic expression, or
functions. It consists of three elements:

« Column name
« Comparison condition
» Column name, constant, or list of values
You use comparison conditions in the WHERE clause in the following format:
. WHERE expr operator value
Apart from those mentioned in the slide, you use other comparison conditions such as =, <, >,
<>, <=,and >=.

Three logical operators are available in SQL:

e AND
* OR
e NOT

Oracle Database 12c¢: SQL Workshop Il 1-13

Review of Sorting Data

« Sort retrieved rows with the ORDER BY clause:
— ASC: Ascending order, default
— DESC: Descending order
 The ORDER BY clause comes last in the SELECT
statement:

SELECT last name, job_ id, department id, hire date
FROM employees

|ORDER BY hire date|;

@ vrasT_name|f] JosD | DEPARTMENTID |§ HIRE_DATE|
1 De Haan AD_VP 90 13-JAN-01
2 Gietz AC_ACCOUNT 110 07-JUN-02
3 Baer PR_REP 7007-1UN-02
4 Mavris HR_REP 40 07-1UN-02
5 Higgins AC_MGR 110 07-JUN-02
6 Faviet FI_ACCOUNT 100 16-AUG-02
7 Greenberg FI_MGR 100 17-AUG-02

ORACLE

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

The order of rows that are returned in a query result is undefined. The ORDER BY clause can
be used to sort the rows. If you use the ORDER BY clause, it must be the last clause of the
SQL statement. You can specify an expression, an alias, or a column position as the sort
condition.

Syntax
SELECT expr
FROM table
[WHERE condition(s)]

[ORDER BY {column, expr, numeric position} [ASC|DESC]];
In the syntax:

ORDER BY Specifies the order in which the retrieved rows are displayed
ASC Orders the rows in ascending order (This is the default order.)
DESC Orders the rows in descending order

If the ORDER BY clause is not used, the sort order is undefined, and the Oracle Server may not
fetch rows in the same order for the same query twice. Use the ORDER BY clause to display
the rows in a specific order.

Oracle Database 12¢: SQL Workshop Il 1-14

Review of SQL Functions

Functions
. q .
. Slngle_-row - . Mfultlplg-row
functions . unctions
Return one result Return one result
per row per set of rows

ORACLE

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

There are two types of functions:
« Single-row functions
» Multiple-row functions
Single-Row Functions

These functions operate only on single rows and return one result per row. There are different
types of single-row functions such as character, number, date, conversion, and general
functions.

Multiple-Row Functions

Functions can manipulate groups of rows to give one result per group of rows. These
functions are also known as group functions.

Oracle Database 12c¢: SQL Workshop Il 1-15

The following are different types of single-row functions:

Review of Single-Row Functions

Character

General

Single-row
functions

Conversion

Date

ORACLE

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

Character functions: Accept character input and can return both character and number
values

Number functions: Accept numeric input and return numeric values

Date functions: Operate on values of the DATE data type (All date functions return a
value of the DATE data type, except the MONTHS BETWEEN function, which returns a
number.)

Conversion functions: Convert a value from one data type to another
General functions:

NVL

NVL2
NULLIF
COALESCE
CASE
DECODE

Oracle Database 12c¢: SQL Workshop Il

1-16

Review of Types of Group Functions

o AVG
° COUNT
o MAX
o MIN —_—
Group
* STDDEV functions
° SUM

* VARIANCE

ORACLE

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

Each of the functions accepts an argument. The following table identifies the options that you
can use in the syntax:

Function Description

AVG ([DISTINCT |ALL] nn) Average value of n, ignoring null values

COUNT ({* | [DISTINCT|ALL] expr}) |Number of rows, where expr evaluates to
something other than null (count all selected rows
using *, including duplicates and rows with nulls)

MAX ([DISTINCT|ALL] expr) Maximum value of expr, ignoring null values
MIN ([DISTINCT|ALL] expr) Minimum value of expr, ignoring null values
STDDEV ([DISTINCT |ALL] n) Standard deviation of n, ignoring null values
SUM ([DISTINCT |ALL] nn) Sum values of n, ignoring null values
VARIANCE ([DISTINCT|ALL] n) Variance of n, ignoring null values

Oracle Database 12c¢: SQL Workshop Il 1 -17

Review of Using Subqueries

* A subquery is a SELECT statement nested in a clause of
another SELECT statement.

« Syntax:

SELECT select list

FROM table

WHERE expr operator
(SELECT select list
FROM table);

- Types of subqueries:

Single-row subquery Multiple-row subquery

Returns only one row Returns more than one row
Uses single-row comparison Uses multiple-row comparison
operators operators

ORACLE

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

You can build powerful statements out of simple ones by using subqueries. Subqueries are
useful when a query is based on a search criterion with unknown intermediate values.

You can place the subquery in a number of SQL clauses, including the following:

e WHERE clause

e HAVING clause

e FROM clause
The subquery (inner query) executes once before the main query (outer query). The result of
the subquery is used by the main query.

A single-row subquery uses a single-row operator such as =, >, <, >=, <=, or <>. Witha
multiple-row subquery, you use a multiple-row operator such as IN, ANY, or ALL.
Example: Display details of employees whose salary is equal to the minimum salary.
SELECT last name, salary, job id
FROM employees
WHERE salary = (SELECT MIN(salary)
FROM employees) ;

Oracle Database 12c¢: SQL Workshop Il 1-18

In the example, the MIN group function returns a single value to the outer query.

Note: In this course, you learn how to use multiple-column subqueries. Multiple-column
subqueries return more than one column from the inner SELECT statement.

Oracle Database 12¢: SQL Workshop Il 1-19

Review of Managing Tables Using DML
Statements

A data manipulation language (DML) statement is executed
when you:

« Add new rows to a table
* Modify existing rows in a table
* Remove existing rows from a table

Function Description

INSERT Adds a new row to the table

UPDATE Modifies existing rows in the table

DELETE Removes existing rows from the table

MERGE Updates, inserts, or deletes a row conditionally
into/from a table

ORACLE

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

When you want to add, update, or delete data in the database, you execute a DML statement.
A collection of DML statements that form a logical unit of work is called a transaction. You can
add new rows to a table by using the INSERT statement. With the following syntax, only one

row is inserted at a time.

INSERT INTO table [(column [, column..])]
VALUES (value[, value...]l);

You can use the INSERT statement to add rows to a table where the values are derived from
existing tables. In place of the VALUES clause, you use a subquery. The number of columns
and their data types in the column list of the INSERT clause must match the number of values
and their data types in the subquery.
The UPDATE statement modifies specific rows if you specify the WHERE clause.

UPDATE table

SET column = value [, column = value, ...]

[WHERE condition] ;

Oracle Database 12c¢: SQL Workshop Il 1 -20

You can remove existing rows by using the DELETE statement. You can delete specific rows
by specifying the WHERE clause in the DELETE statement.

DELETE [FROM] table
[WHERE condition] ;

You learn about the MERGE statement in the lesson titled “Manipulating Data.”

Oracle Database 12c¢: SQL Workshop Il 1 -21

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS COMPUTER IS STRICTLY PROHIBITED

Lesson Agenda

« Course objectives and course agenda

 The database schema, the appendixes and practices, and
development environments used in this course

 Review of some basic SQL concepts

* Oracle Database 12¢c documentation and additional
resources

ORACLE

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

Oracle Database 12c: SQL Workshop Il 1 -22

Oracle University and Egabi Solutions use only

Oracle Database SQL Documentation

* Oracle Database New Features Guide

* Oracle Database Reference

* Oracle Database SQL Language Reference

* Oracle Database Concepts

* Oracle Database SQL Developer User’s Guide Release 3.2

ORACLE

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

Navigate to http://www.oracle.com/pls/db102/homepage to access the Oracle Database 10g
documentation library.

Navigate to http://www.oracle.com/pls/db112/homepage to access the Oracle Database 11g
Release 2 documentation library.

Oracle Database 12c¢: SQL Workshop Il 1 -23

Additional Resources

For additional information about the new Oracle 12¢c SQL, refer
to the following:

* Oracle Database 12c: New Features Self Studies
* Oracle by Example series (OBE): Oracle Database 12c

* Oracle Learning Library:
— http://www.oracle.com/goto/oll

ORACLE

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

Oracle Database 12¢c: SQL Workshop Il 1 -24

Summary

In this lesson, you should have learned how to:
- Discuss the goals of the course

 Describe the database schema and tables that are used in
the course

« Identify the available environments that can be used in the
course

* Recall some of the basic concepts of SQL

ORACLE

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

Oracle Database 12c¢: SQL Workshop Il 1 -25

Practice 1: Overview

This practice covers the following topics:
* Running the SQL Developer online tutorial

- Starting SQL Developer and creating a new database
connection and browsing the tables

« Executing SQL statements using the SQL Worksheet
* Running some basic SQL commands

ORACLE

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

In this practice, you use SQL Developer to execute SQL statements.

Note: All written practices use SQL Developer as the development environment. Although it is
recommended that you use SQL Developer, you can also use the SQL*Plus environment that
is available in this course.

Oracle Database 12c¢: SQL Workshop Il 1 -26

Introduction to Data Dictionary Views

ORACLE

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

Objectives

After completing this lesson, you should be able to:

« Use the data dictionary views to research data on your
objects

* Query various data dictionary views

ORACLE

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

In this lesson, you are introduced to the data dictionary views. You learn that the dictionary
views can be used to retrieve metadata and create reports about your schema objects.

Oracle Database 12c¢: SQL Workshop Il 2 -2

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS COMPUTER IS STRICTLY PROHIBITED

Lesson Agenda

* Introduction to data dictionary

* Querying the dictionary views for the following:
— Table information
— Column information
— Constraint information

« Adding a comment to a table and querying the dictionary
views for comment information

ORACLE

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

Oracle Database 12c: SQL Workshop Il 2 -3

Oracle University and Egabi Solutions use only

Data Dictionary

Oracle Server

Tables containing Data dictionary

business data: views:
EMPLOYEES DICTIONARY
DEPARTMENTS USER_OBJECTS
LOCATIONS USER_TABLES

JOB HISTORY USER TAB COLUMNS

ORACLE

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

User tables are tables created by the user and contain business data, such as EMPLOYEES.
There is another collection of tables and views in the Oracle database known as the data
dictionary. This collection is created and maintained by the Oracle Server and contains
information about the database. The data dictionary is structured in tables and views, just like
other database data. Not only is the data dictionary central to every Oracle database, but it is
also an important tool for all users, from end users to application designers and database
administrators.

You use SQL statements to access the data dictionary. Because the data dictionary is read-
only, you can issue only queries against its tables and views.

You can query the dictionary views that are based on the dictionary tables to find information
such as:

« Definitions of all schema objects in the database (tables, views, indexes, synonyms,
sequences, procedures, functions, packages, triggers, and so on)

« Default values for columns

« Integrity constraintinformation

« Names of Oracle users

» Privileges and roles that each user has been granted
« Other general database information

Oracle Database 12c: SQL Workshop Il 2 -4

Data Dictionary Structure

Oracle Server

Consists of:
— Base tables
— User-accessible views

ORACLE

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

Underlying base tables store information about the associated database. Only the Oracle
Server should write to and read from these tables. You rarely access them directly.

There are several views that summarize and display the information stored in the base tables
of the data dictionary. These views decode the base table data into useful information (such
as user or table names) using joins and WHERE clauses to simplify the information. Most users

are given access to the views rather than the base tables.

The Oracle user sYS owns all base tables and user-accessible views of the data dictionary.
No Oracle user should ever alter (UPDATE, DELETE, or INSERT) any rows or schema objects
contained in the SYS schema, because such activity can compromise data integrity.

Oracle Database 12c: SQL Workshop Il 2-5

Data Dictionary Structure

View naming convention:

View Prefix Purpose

USER User’s view (what is in your schema; what you
own)

ALL Expanded user’s view (what you can access)

DBA Database administrator’s view (what is in
everyone’s schemas)

AVAS Performance-related data

ORACLE

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

The data dictionary consists of sets of views. In many cases, a set consists of three views
containing similar information and distinguished from each other by their prefixes. For
example, there is a view named USER_OBJECTS, another named ALL_OBJECTS, and a third
named DBA OBJECTS.

These three views contain similar information about objects in the database, except that the
scope is different. USER_OBJECTS contains information about objects that you own or you
created. ALL_OBJECTS contains information about all objects to which you have access.
DBA_ OBJECTS contains information about all objects that are owned by all users. For views
that are prefixed with ALL or DBA, there is usually an additional column in the view named
OWNER to identify who owns the object.

There is also a set of views that is prefixed with v$. These views are dynamic in nature and
hold information about performance. Dynamic performance tables are not true tables, and
they should not be accessed by most users. However, database administrators can query and
create views on the tables and grant access to those views to other users. This course does
not go into details about these views.

Oracle Database 12c¢: SQL Workshop Il 2-6

How to Use the Dictionary Views

Start with DICTIONARY. It contains the names and descriptions
of the dictionary tables and views.

DESCRIBE DICTIONARY

DESCRIBE dictionary

Name Hu1l Type
TABLE_NAME WVARCHARZ (128)
COMMENTS VARCHARZ (4000)

SELECT *
FROM dictionary
WHERE table name = 'USER OBJECTS';

B TasLE_NAME|f COMMENTS _
1 USER_OBJECTS Objects owned by the user

ORACLE

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

To familiarize yourself with the dictionary views, you can use the dictionary view named
DICTIONARY. It contains the name and short description of each dictionary view to which you
have access.

You can write queries to search for information about a particular view name, or you can
search the COMMENTS column for a word or phrase. In the example shown, the DICTIONARY
view is described. It has two columns. The SELECT statement retrieves information about the
dictionary view named USER_OBJECTS. The USER_OBJECTS view contains information about
all the objects that you own.

You can write queries to search the COMMENTS column for a word or phrase. For example, the

following query returns the names of all views that you are permitted to access in which the
COMMENTS column contains the word columns:

SELECT table name
FROM dictionary
WHERE LOWER (comments) LIKE '%columns$';

Note: The names in the data dictionary are in uppercase.

Oracle Database 12c¢: SQL Workshopll 2 -7

USER_OBJECTS and ALL OBJECTS Views

USER OBJECTS:
* Query USER_OBJECTS to see all the objects that you own.

« Using USER_OBJECTS, you can obtain a listing of all object
names and types in your schema, plus the following
information:

— Date created

— Date of last modification

— Status (valid or invalid)
ALL OBJECTS:

* Query ALL OBJECTS to see all the objects to which you
have access.

ORACLE

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

You can query the USER_OBJECTS view to see the names and types of all the objects in your
schema. There are several columns in this view:

« OBJECT NAME: Name of the object

« OBJECT_ID: Dictionary object number of the object

« OBJECT TYPE: Type of object (such as TABLE, VIEW, INDEX, SEQUENCE)
« CREATED: Time stamp for the creation of the object

« LAST DDL_TIME: Time stamp for the last modification of the object resulting from a
data definition language (DDL) command

« STATUS: Status of the object (VALID, INVALID, or N/A)
« GENERATED: Was the name of this object system-generated? (Y | N)

Note: This is not a complete listing of the columns. For a complete listing, see
“USER_OBJECTS” in the Oracle Database Reference.

You can also query the ALL._OBJECTS view to see a listing of all objects to which you have
access.

Oracle Database 12c¢: SQL Workshop Il 2-8

USER OBJECTS View

SELECT object name, object type, created, status
FROM user objects
ORDER BY object type;

OBJECT_NAME | omEecT_TvPE | creaTeD || sTATUS |
1 JHIST_EMPLOYEE_IX INDEX 23-AUG-12 WALID
2 EMP_DEPARTMENT_IX INDEX 23-AUG-12 WALID
3 LOC_CITY_IX INDEX 23-AUG-12 WALID
4 LOC_STATE_PROVINCE_IX INDEX 23-8UG-12 VALID
5 LOC_COUNTRY_IX INDEX 23-AUG-12 VALID
6 JHIST_DEPARTMENT_IX INDEX 23-40G-12 WALID
7 COUNTRY_C_ID_PK INDEX 23-AUG-12 WALID
8 JHIST_EMP_ID_ST_DATE_PK INDEX 23-AUG-12 WALID

ORACLE

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

The example shows the names, types, dates of creation, and status of all objects that are
owned by this user.

The OBJECT TYPE column holds the values of either TABLE, VIEW, SEQUENCE, INDEX,
PROCEDURE, FUNCTION, PACKAGE, or TRIGGER.

The STATUS column holds a value of VALID, INVALID, or N/A. Although tables are always
valid, the views, procedures, functions, packages, and triggers may be invalid.

The CAT View

For a simplified query and output, you can query the CAT view. This view contains only two
columns: TABLE NAME and TABLE_TYPE. It provides the names of all your INDEX, TABLE,
CLUSTER, VIEW, SYNONYM, SEQUENCE, or UNDEFINED objects.

Note: CAT is a synonym for USER_ CATALOG—a view that lists tables, views, synonyms and
sequences owned by the user.

Oracle Database 12¢: SQL Workshopll 2-9

Lesson Agenda

* Introduction to data dictionary

* Querying the dictionary views for the following:
— Table information
— Column information
— Constraint information

« Adding a comment to a table and querying the dictionary
views for comment information

ORACLE

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

Oracle Database 12c: SQL Workshop Il 2-10

Table Information

USER TABLES:

DESCRIBE user tables

DESCRIEBE user_tables

Name NuT1 Type
TABLE_NAME NOT NULL VARCHAR2(128)
TABLESPACE_NAME WARCHARZ(30)
CLUSTER_NAME WVARCHAR2(128)
I0T_NAME WVARCHAR2(128)

SELECT table name
FROM user tables;

B TasLE_NAME
1 REGIONS '
2 LOCATIONS
3 DEPARTMENTS
4 10BS
S EMPLOYEES
6 J0B_HISTORY

ORACLE

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

You can use the USER_TABLES view to obtain the names of all your tables. The
USER_TABLES view contains information about your tables. In addition to providing the table
name, it contains detailed information about the storage.
The TABS view is a synonym of the USER_ TABLES view. You can query it to see a listing of
tables that you own:

SELECT table name

FROM tabs;

Note: For a complete listing of the columns in the USER_TABLES view, see “USER_TABLES”
in the Oracle Database Reference.

You can also query the ALL_TABLES view to see a listing of all tables to which you have
access.

Oracle Database 12c¢: SQL Workshop Il 2 - 11

Column Information

USER TAB COLUMNS:

DESCRIBE user tab columns

Name Null Type
TABLE_NAME NOT NULL VARCHAR2(128)
COLUMN_NAME NOT NULL WARCHARZ({128)
DATA_TYPE VARCHARZ2(128)
DATA_TYPE_MOD VARCHARZ(3)
DATA_TYPE_OWNER VARCHARZ (128)
DATA_LENGTH NOT NULL NUMBER
DATA_PRECISION NUMBER.
DATA_SCALE NUMBER
NULLABLE VARCHARZ(1)

ORACLE

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

You can query the USER_TAB COLUMNS view to find detailed information about the columns
in your tables. Although the USER_TABLES view provides information about your table names
and storage, detailed column information is found in the USER_TAB COLUMNS View.

This view contains information such as:
« Column names
+ Column data types
* Length of data types
» Precision and scale for NUMBER columns
* Whether nulls are allowed (Is there a NOT NULL constraint on the column?)
» Default value

Note: For a complete listing and description of the columns in the USER_TAB_COLUMNS view,
see “USER_TAB_COLUMNS" in the Oracle Database Reference.

Oracle Database 12c¢: SQL Workshop Il 2 -12

Column Information

SELECT column name, data type, data length,
data precision, data scale, nullable

FROM user tab columns

WHERE table name = 'EMPLOYEES';

B corumn_name |§ oaTA_TYPE|§ DATA_LENGTH |3 DATA_PREC[SlON‘_EI DATA_SCALE [{| NULLABLE
1 EMPLOYEE_ID NUMBER 22 6 on
2 FIRST_NAME VARCHAR2 20 {nu11) (nul1)y
3 LAST_NAME WARCHARZ 25 (nul1) (null) N
4 EMAIL VARCHAR2 25 {nu11) (nul1) N
S PHONE_NUMBER ~ VARCHAR2 20 {nul1) (nul1)y
6 HIRE_DATE DATE 7 (nul1) (nul1) N
7 J0B_ID VARCHAR2 10 {nu11) (nully N
8 SALARY NUMBER 22 8 2Y
9 COMMISSION_PCT NUMBER 22 2 2Y
10 MANAGER_ID NUMBER 22 6 oy
11 DEPARTMENT_ID MUMBER 22 4 ay

ORACLE

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

By querying the USER_TAB COLUMNS table, you can find details about your columns such as
the names, data types, data type lengths, null constraints, and default value for a column.

The example shown displays the columns, data types, data lengths, and null constraints for
the EMPLOYEES table. Note that this information is similar to the output from the DESCRIBE
command.

To view information about columns set as unused, you use the USER_UNUSED_COL_TABS
dictionary view.

Note: Names of the objects in Data Dictionary are in uppercase.

Oracle Database 12c¢: SQL Workshop Il 2-13

Constraint Information

* USER CONSTRAINTS describes the constraint definitions
on your tables.

 USER CONS COLUMNS describes columns that are owned
by you and that are specified in constraints.

DESCRIBE user constraints
DESCRIBE user_constraints
Name Null Type
OWNER WVARCHARZ (128)
CONSTRAINT_NAME NOT NULL WARCHARZ2(128)
CONSTRAINT_TYPE WARCHARZ (1)
TABLE_NAME NOT NULL WARCHARZ(128)
SEARCH_COMDITION LONG()
F_0OWNER. WVARCHARZ (128)
F_CONSTRAINT_MAME WARCHARZ (128)
DELETE_RULE WVARCHARZ (9)
STATUS MARCHARZ (8)

ORACLE

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

You can find out the names of your constraints, the type of constraint, the table name to which
the constraint applies, the condition for check constraints, foreign key constraintinformation,
deletion rule for foreign key constraints, the status, and many other types of information about
your constraints.

Note: For a complete listing and description of the columns in the USER _CONSTRAINTS View,
see “USER_CONSTRAINTS” in the Oracle Database Reference.

Oracle Database 12c¢: SQL Workshop Il 2 -14

USER_CONSTRAINTS: Example

SELECT constraint name, constraint type,
search condition, r constraint name,
delete rule, status

FROM user constraints

WHERE table name = 'EMPLOYEES';

@ CONSTRAINT_NAME|§ CONSTRAINT_TYPE |SEARCH_CONDITION |8 R_consTRAINT_NAME|§ DELETE_RULE|[J sTATUs|
1 ENP_MANAGER_FK R (nu11) EMP_ENP_ID_PK NO ACTION ENABLED
2 ENP_IOB_FK R (1) J0B_ID_PK NO ACTION ENABLED
3 EMP_DEPT_FK R (nu1n) DEPT_ID_PK ND ACTION ENABLED
4 ENP_ENP_ID_PK P (nu11) (nu11) (nu11) ENABLED
5 ENP_EMAIL_UK u (nu1) (nu1) () ENABLED
6 EMP_SALARY_MIN C salary > 0 (null) (hull) ENABLED
7 EMP_JOB_NN c "J0B_ID" IS NOT NULL (null) (nu11) ENABLED
8 ENP_HIRE_DATE_NN C "HIRE_DATE" IS NOT NULL (null) () ENABLED
9 EMP_EMATL_NN c "EMAIL® IS NOT NULL (null) (nu1n) ENABLED

10 EMP_LAST_NAME_NN C "LAST_NAME* IS NOT NULL (null) (nu11) ENABLED

ORACLE

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

In the example shown, the USER_CONSTRAINTS view is queried to find the names, types,
check conditions, name of the unique constraint that the foreign key references, deletion rule
for a foreign key, and status for constraints on the EMPLOYEES table.

The CONSTRAINT TYPE can be:
« C(check constraint on a table, or NOT NULL)
o P (primary key)
U (unique key)
« R (referential integrity)
vV (with check option, on a view)
« O (with read-only, on a view)
The DELETE_RULE can be:
. CASCADE: If the parent record is deleted, the child records are deleted, too.
. SET NULL: If the parent record is deleted, change the respective child record to null.
« NO ACTION: A parent record can be deleted only if no child records exist.
The STATUS can be:
. ENABLED: Constraintis active.
. DISABLED: Constraintis made not active.

Oracle Database 12c¢: SQL Workshop Il 2-15

Querying USER CONS COLUMNS

DESCRIBE user cons columns

DESCRIBE user_cons_columns

Name NUT1 Type

OWNER NOT NULL WARCHAR2(128)
CONSTRAINT_MAME NOT WULL WARCHARZ({128)
TABLE_NAME NOT MULL VARCHAR2(128)
COLUMN_NAME WARCHARZ (40007
POSITION NUMBER

SELECT constraint name, column name
FROM user cons_ columns
WHERE table name = 'EMPLOYEES';

@ COMSTRAINT_MAME g COLUMN_NAME
1 EMP_LAST_MANE_NN LAST_NAME
2 EMP_ENAIL_NN EMATL
3 EMP_HIRE_DATE_NN HIRE_DATE

4 EMP_JOE_NN JOBE_ID

S EMP_SALARY_MIN SALARY

& EMP_EWAIL_UK EMATL

7 EMP_EWP_ID_PK EMPLOYEE_ID

& EMP_DEPT_FK DEPARTHENT_ID
9 EMP_JOB_FK JoB_ID

10 EMP_MANAGER_FK MANAGER_ID

ORACLE

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

To find the names of the columns to which a constraint applies, query the
USER_CONS_COLUMNS dictionary view. This view tells you the name of the owner of a
constraint, the name of the constraint, the table that the constraintis on, the names of the
columns with the constraint, and the original position of column or attribute in the definition of
the object.

Note: A constraint may apply to more than one column.

You can also write a join between USER_CONSTRAINTS and USER_CONS_COLUMNS to create
customized output from both tables.

Oracle Database 12c¢: SQL Workshop Il 2 -16

Lesson Agenda

* Introduction to data dictionary

* Querying the dictionary views for the following:
— Table information
— Column information
— Constraint information

« Adding a comment to a table and querying the dictionary
views for comment information

ORACLE

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

Oracle Database 12c: SQL Workshop Il 2 -17

Adding Comments to a Table

* You can add comments to a table or column by using the
COMMENT statement:

COMMENT ON TABLE employees
IS 'Employee Information';

COMMENT ON COLUMN employees.first name
IS 'First name of the employee';

« Comments can be viewed through the data dictionary
views:

— ALL_COL_COMMENTS
— USER_COL_COMMENTS
— ALL_TAB COMMENTS
— USER_TAB_COMMENTS

ORACLE

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

You can add a comment of up to 4,000 bytes about a column, table, view, or snapshot by
using the COMMENT statement. The comment is stored in the data dictionary and can be
viewed in one of the following data dictionary views in the COMMENTS column:

e ALL COL_COMMENTS
e USER COL_ COMMENTS
e ALL TAB COMMENTS
e USER TAB COMMENTS

Syntax

COMMENT ON {TABLE table | COLUMN table.column}
IS 'text';

In the syntax:
table Is the name of the table
column Isthe name of the column in a table
text Is the text of the comment

You can drop a comment from the database by setting it to empty string (' '):
COMMENT ON TABLE employees IS '';

r

Oracle Database 12c¢: SQL Workshop Il 2-18

Quiz

The dictionary views that are based on the dictionary tables
contain information such as:

a. Definitions of all the schema objects in the database
Default values for the columns

Integrity constraint information

Privileges and roles that each user has been granted
All of the above

®©oooT

ORACLE

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

Answer: e

Oracle Database 12c¢: SQL Workshop Il 2-19

Summary

In this lesson, you should have learned how to find information
about your objects through the following dictionary views:

* DICTIONARY

* USER OBJECTS

* USER TABLES

* USER TAB COLUMNS
* USER CONSTRAINTS
* USER CONS COLUMNS

ORACLE

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

In this lesson, you learned about some of the dictionary views that are available to you. You
can use these dictionary views to find information about your tables, constraints, views,
sequences, and synonyms.

Oracle Database 12c¢: SQL Workshop Il 2 -20

Practice 2: Overview

This practice covers the following topics:

* Querying the dictionary views for table and column
information

* Querying the dictionary views for constraint information

« Adding a comment to a table and querying the dictionary
views for comment information

ORACLE

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

In this practice, you query the dictionary views to find information about objects in your
schema.

Oracle Database 12c¢: SQL Workshop Il 2 - 21

Ajuo asn suoin|og 1geb3 pue AlsiaAlun ajoelO

a3LigIHOdd A1LOIE1S SI d3LNdNOD SIHL INOYA STVIFTILVIN LIM® ONIAJOD "ATNO WOOHSSV1D SIHL NI 3SN dNOA d04 34V STIVIHILYIN LIMS 3SIHL

Creating Sequences, Synonyms, and Indexes

ORACLE

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

Objectives

After completing this lesson, you should be able to:
« Create, maintain, and use sequences
« Create private and public synonyms
« Create and maintain indexes

* Query various data dictionary views to find information for
seguences, synonyms, and indexes

ORACLE

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

In this lesson, you are introduced to the sequence, synonyms, and index objects. You learn
the basics of creating and using sequences, synonyms and indexes.

Oracle Database 12¢: SQL Workshop Il 3 -2

Lesson Agenda

- Overview of sequences:
— Creating, using, and modifying a sequence
— Cache sequence values
— NEXTVAL and CURRVAL pseudocolumns

— SQL column defaulting using a sequence
« Overview of synonyms

— Creating, dropping synonyms
* Overview of indexes

— Creating indexes
— Using the CREATE TABLE statement

— Creating function-based indexes
— Creating multiple indexes on the same set of columns
— Removing indexes

ORACLE

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

Oracle Database 12¢: SQL Workshopll 3 -3

Database Objects

Object Description

Table Basic unit of storage; composed of rows

View Logically represents subsets of data from one or
more tables

Sequence Generates numeric values

Index Improves the performance of data retrieval
queries

Synonym Gives alternative names to objects

ORACLE

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

There are several other objects in a database in addition to tables.
With views, you can present and hide data from the tables.

Many applications require the use of unique numbers as primary key values. You can either
build code into the application to handle this requirement or use a sequence to generate
unique numbers.

If you want to improve the performance of data retrieval queries, you should consider creating
an index. You can also use indexes to enforce uniqueness on a column or a collection of
columns.

You can provide alternative names for objects by using synonyms.

Oracle Database 12c¢: SQL Workshop Il 3 -4

Referencing Another User’s Tables

- Tables belonging to other users are not in the user’'s

schema.
* You should use the owner’'s name as a prefix to those
tables.
L €
[» -) ‘ » B
USERA USERB
SELECT * SELECT *
FROM userB.employees; FROM userA.employees;

ORACLE

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

A schema is a collection of logical structures of data or schema objects. A schema is owned
by a database user and has the same name as that user. Each user owns a single schema.
Schema objects can be created and manipulated with SQL and include tables, views,
synonyms, sequences, stored procedures, indexes, clusters, and database links.
If a table does not belong to the user, the owner’s name must be prefixed to the table. For
example, if there are schemas named USERA and USERB, and both have an EMPLOYEES
table, then if USERA wants to access the EMPLOYEES table that belongs to USERB, USERA
must prefix the table name with the schema name:

SELECT *

FROM userb.employees;
If USERB wants to access the EMPLOYEES table that is owned by USERA, USERB must prefix
the table name with the schema name:

SELECT *

FROM usera.employees;

Oracle Database 12c¢: SQL Workshop Il 3 -5

Sequences

A sequence:

Can automatically generate unique numbers
Is a shareable object

Can be used to create a primary key value
Replaces application code

Speeds up the efficiency of accessing sequence values
when cached in memory

| ® 00 0 @
s YooNMoMoNo

Q\

ORACLE
Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

A sequence is a user-created database object that can be shared by multiple users to
generate integers.

You can define a sequence to generate unique values or to recycle and use the same
numbers again.

A typical usage for sequences is to create a primary key value, which must be unique for each
row. A sequence is generated and incremented (or decremented) by an internal Oracle
routine. This can be a time-saving object, because it can reduce the amount of application
code needed to write a sequence-generating routine.

Sequence numbers are stored and generated independent of tables. Therefore, the same
sequence can be used for multiple tables.

Oracle Database 12c¢: SQL Workshop Il 3 -6

CREATE SEQUENCE Statement: Syntax

Define a sequence to generate sequential numbers
automatically:

CREATE SEQUENCE [schema.] sequence
[{ INCREMENT BY | START WITH } integer
{ MAXVALUE integer | NOMAXVALUE }
{ MINVALUE integer | NOMINVALUE }
{ CYCLE | NOCYCLE }
{ CACHE integer | NOCACHE }
{ ORDER | NOORDER }

ORACLE

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

Automatically generate sequential numbers by using the CREATE SEQUENCE statement.

In the syntax:
sequence Is the name of the sequence generator

INCREMENT BY n Specifies the interval between sequence numbers, where
nis an integer (If this clause is omitted, the sequence
increments by 1.)

START WITH n Specifies the first sequence number to be generated (If
this clause is omitted, the sequence starts with 1.)

MAXVALUE n Specifies the maximum value the sequence can generate

NOMAXVALUE Specifies a maximum value of 10727 for an ascending

sequence and —1 for a descending sequence (This is the
default option.)

MINVALUE n Specifies the minimum sequence value

NOMINVALUE Specifies a minimum value of 1 for an ascending
sequence and —(10726) for a descending sequence (This
is the default option.)

Oracle Database 12c¢: SQL Workshop Il 3 -7

ORDER

NOORDER

CYCLE | NOCYCLE

CACHE n | NOCACHE

Specify ORDER to guarantee that sequence numbers are
generated in order of request. This clause is useful if you
are using the sequence numbers as timestamps.

Specify NOORDER if you do not want to guarantee that
sequence numbers are generated in order of request.

This is the default.

Specifies whether the sequence continues to generate
values after reaching its maximum or minimum value
(NocyCLE is the default option.)

Specifies how many values the Oracle Server pre-
allocates and keeps in memory (By default, the Oracle
server caches 20 values.)

Oracle Database 12c¢: SQL Workshop Il 3-8

Creating a Sequence

« Create a sequence named DEPT DEPTID SEQ to be used
for the primary key of the DEPARTMENTS table.

* Do not use the CYCLE option.

CREATE SEQUENCE dept deptid seq
INCREMENT BY 10
START WITH 280
MAXVALUE 9999
NOCACHE
NOCYCLE;

sequence DEPT_DEFTID_SEQ created.‘

ORACLE

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

The example in the slide creates a sequence named DEPT DEPTID SEQ to be used for the
DEPARTMENT ID column of the DEPARTMENTS table. The sequence starts at 280, does not
allow caching, and does not cycle.

Do not use the CYCLE option if the sequence is used to generate primary key values, unless
you have a reliable mechanism that purges old rows faster than the sequence cycles.

For more information, see the “CREATE SEQUENCE” section in the Oracle Database SQL
Language Reference for Oracle Database 12c.

Note: The sequence is not tied to a table. Generally, you should name the sequence after its
intended use. However, the sequence can be used anywhere, regardless of its name.

Oracle Database 12c¢: SQL Workshop Il 3 -9

NEXTVAL and CURRVAL Pseudocolumns

* NEXTVAL returns the next available sequence value. It

returns a unique value every time it is referenced, even for
different users.

* CURRVAL obtains the current sequence value.

* NEXTVAL must be issued for that sequence before
CURRVAL contains a value.

ORACLE

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

After you create your sequence, it generates sequential numbers for use in your tables.
Reference the sequence values by using the NEXTVAL and CURRVAL pseudocolumns.

The NEXTVAL pseudocolumn is used to extract successive sequence numbers from a
specified sequence. You must qualify NEXTVAL with the sequence name. When you
reference sequence.NEXTVAL, a hew sequence number is generated and the current
sequence number is placed in CURRVAL.

The CURRVAL pseudocolumn is used to refer to a sequence number that the current user has
just generated. However, NEXTVAL must be used to generate a sequence number in the
current user’s session before CURRVAL can be referenced. You must qualify CURRVAL with
the sequence name. When you reference sequence . CURRVAL, the last value returned to
that user’s process is displayed.

Oracle Database 12c¢: SQL Workshop Il 3 -10

Rules for Using NEXTVAL and CURRVAL
You can use NEXTVAL and CURRVAL in the following contexts:
+ The SELECT list of a SELECT statement that is not part of a subquery
+ The SELECT list of a subquery in an INSERT statement
* The VALUES clause of an INSERT statement
* The SET clause of an UPDATE statement
You cannot use NEXTVAL and CURRVAL in the following contexts:
+ The SELECT list of a view
* A SELECT statement with the DISTINCT keyword
* A SELECT statement with GROUP BY, HAVING, or ORDER BY clauses
* A subqueryina SELECT, DELETE, or UPDATE statement

For more information, see the “Pseudocolumns” and “CREATE SEQUENCE” sections in Oracle
Database SQL Language Reference for Oracle Database 12c.

Oracle Database 12c¢: SQL Workshop Il 3 - 11

Using a Sequence

* Insert a new department named “Support” in location ID
2500:

INSERT INTO departments (department id,
department name, location id)

VALUES (dept deptid seq.NEXTVAL,
'Support', 2500) ;

I l rows inserted

« View the current value for the DEPT DEPTID SEQ
sequence:

SELECT dept deptid seqg.CURRVAL
FROM dual ;

ORACLE

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

The example in the slide inserts a new department in the DEPARTMENTS table. It uses the
DEPT DEPTID SEQ sequence to generate a new department number as follows.

You can view the current value of the sequence using the sequence_name.CURRVAL, as
shown in the second example in the slide. The output of the query is shown below:

CURRVAL
1 280

Suppose that you now want to hire employees to staff the new department. The INSERT
statement to be executed for all new employees can include the following code:

INSERT INTO employees (employee id, department id, ...)

VALUES (employees seq.NEXTVAL, dept deptid seq .CURRVAL, ...);

Note: The preceding example assumes that a sequence called EMPLOYEE SEQ has already
been created to generate new employee numbers.

Oracle Database 12c¢: SQL Workshop Il 3 -12

SQL Column defaulting using a Sequence

« SQL syntax for column defaults allow
<sequences>.nextval, <sequences>.currval asa
SQL column defaulting expression for numeric columns,
where <sequence> is an Oracle database sequence.

« The DEFAULT expression can include the sequence
pseudocolumns CURRVAL and NEXTVAL, as long as the

sequence exists and you have the privileges necessary to

access it.

CREATE SEQUENCE sl START WITH 1; Sequence S1 created.
CREATE TABLE emp (al NUMBER DEFAULT sl.NEXTVAL NOT > E"":;:EE:’E[::;E”
NULL, a2 VARCHAR2(10)) ; 1 rows inserted.
INSERT INTO emp (a2) VALUES (‘john'); Al A2

INSERT INTO emp (a2) VALUES (‘mark'); 14ohn
SELECT * FROM emp; 2 mark

ORACLE

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

SQL syntax for column defaults has been enhanced so that it allows
<sequences>.nextval, <sequence>.currval asa SQL column defaulting expression

for numeric columns, where <sequence> is an Oracle database sequence.

The DEFAULT expression can include the sequence pseudocolumns CURRVAL and NEXTVAL,
as long as the sequence exists and you have the privileges necessary to access it. The user
inserting into a table must have access privileges to the sequence. If the sequence is
dropped, subsequent insert DMLs where expr is used for defaulting will result in a compilation
error.

In the slide example, sequence s1 is created, which starts from 1.

Oracle Database 12c¢: SQL Workshop Il 3 -13

Caching Sequence Values

- Caching sequence values in memory gives faster access
to those values.

* Gaps in sequence values can occur when:
— Arollback occurs
— The system crashes
— Asequence is used in another table

ORACLE

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

You can cache sequences in memory to provide faster access to those sequence values. The
cache is populated the first time you refer to the sequence. Each request for the next
sequence value is retrieved from the cached sequence. After the last sequence value is used,
the next request for the sequence pulls another cache of sequences into memory.

Gaps in the Sequence

Although sequence generators issue sequential numbers without gaps, this action occurs
independently of a commit or rollback. Therefore, if you roll back a statement containing a
sequence, the number is lost.

Another event that can cause gaps in the sequence is a system crash. If the sequence
caches values in memory, those values are lost if the system crashes.

Because sequences are not tied directly to tables, the same sequence can be used for
multiple tables. However, if you do so, each table can contain gaps in the sequential numbers.

Oracle Database 12¢: SQL Workshop Il 3 -14

Modifying a Sequence

Change the increment value, maximum value, minimum value,
cycle option, or cache option:

ALTER SEQUENCE dept deptid seq
INCREMENT BY 20
MAXVALUE 999999
NOCACHE
NOCYCLE;

lsequence DEPT_DEPTID_SEQ altered.

ORACLE

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

If you reach the MAXVALUE limit for your sequence, no additional values from the sequence
are allocated and you will receive an error indicating that the sequence exceeds the
MAXVALUE. To continue to use the sequence, you can modify it by using the ALTER
SEQUENCE statement.

Syntax
ALTER SEQUENCE sequence
[INCREMENT BY n]
[{MAXVALUE n | NOMAXVALUE}]
[{MINVALUE n | NOMINVALUE}]
[{CYCLE | NOCYCLE}]
[{CACHE n | NOCACHE}] ;

In the syntax, sequence is the name of the sequence generator.

For more information, see the section on “ALTER SEQUENCE” in Oracle Database SQL
Language Reference for Oracle Database 12c.

Oracle Database 12c¢: SQL Workshop Il 3 -15

Guidelines for Modifying a Sequence

* You must be the owner or have the ALTER privilege for the
sequence.

* Only future sequence numbers are affected.

« The sequence must be dropped and re-created to restart
the sequence at a different number.

- Some validation is performed.
« Toremove a sequence, use the DROP statement:

DROP SEQUENCE dept deptid seq;
|sequence DEPT_DEPTID_SEQ dropped.

ORACLE

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

* You must be the owner or have the ALTER privilege for the sequence to modify it. You
must be the owner or have the DROP ANY SEQUENCE privilege to remove it.
» Only future sequence numbers are affected by the ALTER SEQUENCE statement.
 The START WITH option cannot be changed using ALTER SEQUENCE. The sequence
must be dropped and re-created to restart the sequence at a different number.
+ Some validationis performed. For example, a new MAXVALUE that is less than the
current sequence number cannot be imposed.
ALTER SEQUENCE dept deptid seq
INCREMENT BY 20
MAXVALUE 90
NOCACHE
NOCYCLE;

» The error:

SQL Error: ORA-04009:MAXVALUE cannot be made to be less than the current value
04009. 00000 - "MAXVALUE cannot be made to be less than the current value"
*Cause: the current value exceeds the given MAXVALUE

*Action: make sure that the new MAXVALUE is larger than the current value

Oracle Database 12c¢: SQL Workshop Il 3 -16

Sequence Information

 The USER_SEQUENCES view describes all sequences that
you own.

DESCRIBE user sequences

DESCRIBE wser_sequences
Name Null Type
SEQUENCE_MAME NOT NULL VARCHARZ(128)
MIN_VALUE NUMEER
MAX_VALUE NUMBER
INCREMENT_BY NOT NULL NUNBER
CYCLE_FLAG WARCHARZ(1)
ORDER_FLAG WARCHARZ(1)
CACHE_SIZE NOT NULL NUMBER
LAST_HUMBER NOT HULL NUMBER
PARTITION_COUNT NUMEER
SESSION_FLAG WARCHARZ(1)
KEEP_VALLUE WARCHARZ(1)

« Verify your sequence values in the USER SEQUENCES
data dictionary table.

SELECT sequence name, min value, max value,
increment by, last number
FROM user sequences;

ORACLE

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

The USER_SEQUENCES view describes all sequences that you own. When you create the
sequence, you specify criteria that are stored in the USER_ SEQUENCES view. The columns in
this view are:

e SEQUENCE_NAME: Name of the sequence

e MIN VALUE: Minimum value of the sequence

e MAX VALUE: Maximum value of the sequence

e INCREMENT BY: Value by which the sequence is incremented

e CYCLE_FLAG: Whether sequence wraps around on reaching the limit
e ORDER_FLAG: Whether sequence numbers are generated in order

e CACHE SIZE: Number of sequence numbers to cache

e LAST NUMBER: Last sequence number written to disk. If a sequence uses caching, the

number written to disk is the last number placed in the sequence cache. This number is
likely to be greater than the last sequence number that was used. The LAST NUMBER
column displays the next available sequence number if NOCACHE is specified.

After creating your sequence, it is documented in the data dictionary. Because a sequence is
a database object, you can identify it in the USER_OBJECTS data dictionary table.

You can also confirm the settings of the sequence by selecting from the USER_ SEQUENCES
data dictionary view.

Oracle Database 12c¢: SQL Workshop Il 3 -17

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS COMPUTER IS STRICTLY PROHIBITED

Lesson Agenda

 Overview of sequences:

Creating, using, and modifying a sequence
Cache sequence values

— NEXTVAL and CURRVAL pseudocolumns

SQL column defaulting using a sequence

* Overview of synonyms

Creating, dropping synonyms

« Qverview of indexes

ORACLE

Creating indexes

Using the CREATE TABLE statement

Creating function-based indexes

Creating multiple indexes on the same set of columns
Removing indexes

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

Oracle Database 12c: SQL Workshop Il 3 -18

Oracle University and Egabi Solutions use only

Synonyms

A synonym
* Is a database object

« Can be created to give an alternative name to a table or to
an other database object

* Requires no storage other than its definition in the data
dictionary

« Is useful for hiding the identity and location of an
underlying schema object

ORACLE

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

Synonyms are database object that enable you to call a table by another name.

You can create synonyms to give an alternative name to a table or to an other database
object. For example, you can create a synonym for a table or view, sequence, PL/SQL
program unit, user-defined object type, or another synonym.

Because a synonym is simply an alias, it requires no storage other than its definition in the
data dictionary.

Synonyms can simplify SQL statements for database users. Synonyms are also useful for
hiding the identity and location of an underlying schema object.

Oracle Database 12c¢: SQL Workshop Il 3 -19

Creating a Synonym for an Object

Simplify access to objects by creating a synonym (another
name for an object). With synonyms, you can:

- Create an easier reference to a table that is owned by
another user

- Shorten lengthy object names

CREATE [PUBLIC] SYNONYM synonym
FOR object;

ORACLE

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

To refer to a table that is owned by another user, you need to prefix the table name with the
name of the user who created it, followed by a period. Creating a synonym eliminates the
need to qualify the object name with the schema and provides you with an alternative name
for a table, view, sequence, procedure, or other objects. This method can be especially useful
with lengthy object names, such as views.

In the syntax:

PUBLIC Creates a synonym that is accessible to all users

Synonym Is the name of the synonym to be created

object |dentifies the object for which the synonym is created
Guidelines

» The object cannot be contained in a package.

» A private synonym name must be distinct from all other objects that are owned by the
same user.

* Tocreate a PUBLIC synonym, you must have the CREATE PUBLIC SYNONYM system
privilege.
For more information, see the section on “CREATE SYNONYM” in Oracle Database SQL
Language Reference for Oracle Database 12c.

Oracle Database 12c¢: SQL Workshop Il 3 - 20

Creating and Removing Synonyms

« Create a shortened name for the DEPT SUM VU view:

CREATE SYNONYM d_ sum
FOR dept sum vu;

Isynu:un)rm D_SUM created. ‘

« Drop a synonym:

DROP SYNONYM d sum;
IS}“I‘IDH:(I D_SUM drupped.|

ORACLE

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

Creating a Synonym
The slide example creates a synonym for the DEPT SUM_VU view for quicker reference.

The database administrator can create a public synonym that is accessible to all users. The
following example creates a public synonym named DEPT for Alice’s DEPARTMENTS table:

CREATE PUBLIC SYNONYM dept

FOR alice.departments;

|pub11c syhomym DEPT created.

Removing a Synonym
To remove a synonym, use the DROP SYNONYM statement. Only the database administrator
can drop a public synonym.

DROP PUBLIC SYNONYM dept;
For more information, see the section on “DROP SYNONYM” in Oracle Database SQL
Language Reference for Oracle Database 12c.

Oracle Database 12c¢: SQL Workshop Il 3 - 21

Synonym Information

DESCRIBE user synonyms

DESCRIBE user_synonyms

Name Nu11 Type

SYNONYM_NAME NOT NULL VARCHAR2(128)

TABLE_OWHER WARCHARZ (128)

TABLE_NAME NOT NULL WVARCHARZ{128)

DE_LINK WVARCHARZ2(128)
SELECT *

FROM user synonyms;

§ synonvM_NAME [J TABLE_OwNER [TABLE_NAME [§ DB_LINK|
1 D_SUM 0R&21 DEPT_SUM_VU (nul1)

ORACLE

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

The USER_SYNONYMS dictionary view describes private synonyms (synonyms that you own).

You can query this view to find your synonyms. You can query ALL_SYNONYMS to find out the
name of all the synonyms that are available to you and the objects on which these synonyms

apply.
The columns in this view are:
e SYNONYM NAME: Name of the synonym
e TABLE_ OWNER: Owner of the object that is referenced by the synonym
e TABLE NAME: Name of the table or view that is referenced by the synonym
e DB _LINK: Name of the database link reference (if any)

Oracle Database 12c¢: SQL Workshop Il 3 - 22

Lesson Agenda

« Overview of sequences:
— Creating, using, and modifying a sequence
— Cache sequence values
— NEXTVAL and CURRVAL pseudocolumns
— SQL column defaulting using a sequence
« Overview of synonyms
— Creating, dropping synonyms
« Overview of indexes
— Creating indexes
— Using the CREATE TABLE statement
— Creating function-based indexes
— Creating multiple indexes on the same set of columns
— Removing indexes

ORACLE

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

Oracle Database 12c: SQL Workshop Il 3 - 23

Indexes

An index:
* |s a schema object

« Can be used by the Oracle Server to speed up the retrieval
of rows by using a pointer

« Can reduce disk input/output (I/0) by using a rapid path
access method to locate data quickly

* Is dependent on the table that it indexes
* Is used and maintained automatically by the Oracle Server

72
ie

ORACLE
Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

An Oracle Server index is a schema object that can speed up the retrieval of rows by using a
pointer and improves the performance of some queries. Indexes can be created explicitly or
automatically. If you do not have an index on the column, a full table scan occurs.

An index provides direct and fast access to rows in a table. Its purpose is to reduce the disk
I/O by using an indexed path to locate data quickly. An index is used and maintained
automatically by the Oracle Server. After an index is created, no direct activity is required by
the user.

Indexes are logically and physically independent of the data in the objects with which they are
associated. This means that they can be created or dropped at any time, and have no effect
on the base tables or other indexes.

Note: When you drop a table, the corresponding indexes are also dropped.

For more information, see the section on “Schema Objects: Indexes” in Oracle Database
Concepts for Oracle Database 12c.

Oracle Database 12c¢: SQL Workshop Il 3 -24

How Are Indexes Created?

« Automatically: A unique index is created automatically
when you define a PRIMARY KEY or UNIQUE constraint in
a table definition.
IK"{; :‘ﬁﬁ 2

v

L

LT

« Manually: You can create unique or nonunique index on
columns to speed up access to the rows.

. %
D S

ORACLE
Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

You can create two types of indexes.

» Unique index: The Oracle Server automatically creates this index when you define a
column in a table to have a PRIMARY KEY or a UNIQUE constraint. The name of the
index is the name that is given to the constraint.

* Nonunique index: This is an index that a user can create. For example, you can create
the FOREIGN KEY column index for a join in a query to improve the speed of retrieval.

Note: You can manually create a unique index, but it is recommended that you create a
unique constraint, which implicitly creates a unique index.

Oracle Database 12c: SQL Workshop Il 3 -25

Creating an Index

« Create an index on one or more columns:

CREATE [UNIQUE] [BITMAP] INDEX index
ON table (column[, column]...);

« Improve the speed of query access to the LAST NAME
column in the EMPLOYEES table:

CREATE INDEX emp last name idx
ON employees (last name) ;

|1‘ ndex EWP_LAST_MAME_IDX created,

ORACLE

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

Create an index on one or more columns by issuing the CREATE INDEX statement.
In the syntax:

e index Is the name of the index
e table Is the name of the table
e Column Is the name of the column in the table to be indexed

Specify UNIQUE to indicate that the value of the column (or columns) upon which the index is
based must be unique. Specify BITMAP to indicate that the index is to be created with a
bitmap for each distinct key, rather than indexing each row separately. Bitmap indexes store
the rowids associated with a key value as a bitmap.

For more information, see the section on “CREATE INDEX” in Oracle Database SQL
Language Reference for Oracle Database 12c.

Oracle Database 12c¢: SQL Workshop Il 3 - 26

CREATE INDEX with the CREATE TABLE Statement

CREATE TABLE NEW EMP

(employee id NUMBER (6)

PRIMARY KEY USING INDEX
(CREATE INDEX emp id idx ON
NEW EMP (employee id)),
first name VARCHAR2(20),
last name VARCHAR2 (25)) ;

[table NEW_EMP created.|

SELECT INDEX NAME, TABLE NAME
FROM USER INDEXES
WHERE TABLE NAME = 'NEW EMP';

B moex_name | TABLE_MamE
1 EMP_ID_IDX NEVY_EMP

ORACLE

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

In the example in the slide, the CREATE INDEX clause is used with the CREATE TABLE
statement to create a PRIMARY KEY index explicitly. You can name your indexes at the time
of PRIMARY KEY creation to be different from the name of the PRIMARY KEY constraint.

You can query the USER_INDEXES data dictionary view for information about your indexes.

The following example illustrates the database behavior if the index is not explicitly named:
CREATE TABLE EMP UNNAMED INDEX
(employee id NUMBER(6) PRIMARY KEY ,
first name VARCHAR2 (20),
last name VARCHAR2 (25)) ;

[rable EMP_UNNAMED_INDEX created. |

SELECT INDEX NAME, TABLE NAME
FROM USER INDEXES
WHERE TABLE NAME = 'EMP UNNAMED INDEX';

INDEX_MAME || TABLE_MAME
1 SYS_CO010972 EMP_LINNAMED_INDEX

Oracle Database 12c¢: SQL Workshop Il 3 - 27

Observe that the Oracle Server gives a generic name to the index that is created for the
PRIMARY KEY column.

You can also use an existing index for your PRIMARY KEY column—for example, when you
are expecting a large data load and want to speed up the operation. You may want to disable
the constraints while performing the load and then enable them, in which case having a
unique index on the PRIMARY KEY will still cause the data to be verified during the load.
Therefore, you can first create a nonunique index on the column designated as PRIMARY
KEY, and then create the PRIMARY KEY column and specify that it should use the existing
index. The following examples illustrate this process:

Step 1: Create the table:
CREATE TABLE NEW EMP2
first name VARCHAR2

last name VARCHAR2
)i

(employee id NUMBER(6),
(20),
(25)

Step 2: Create the index:

CREATE INDEX emp id idx2 ON
new emp2 (employee id) ;

Step 3: Create the PRIMARY KEY:

ALTER TABLE new emp2 ADD PRIMARY KEY (employee id) USING INDEX
emp_ id idx2;

Oracle Database 12c¢: SQL Workshop Il 3 - 28

Function-Based Indexes

« A function-based index is based on expressions.

* The index expression is built from table columns,
constants, SQL functions, and user-defined functions.

CREATE INDEX upper dept name idx
ON dept2 (UPPER (department name)) ;

[index UPPER_DEPT_NAME_IDX created.|

SELECT *
FROM dept2
WHERE UPPER (department name) = 'SALES';

| DEPARTMENT_ID || DEPARTMENT_NAME | MANAGER.ID [§ LOCATION_ID |
1 80 Sales 145 2500

ORACLE

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

Function-based indexes defined with the UPPER (column name) or LOWER (column name)
keywords allow non-case-sensitive searches. For example, consider the following index:

CREATE INDEX upper last name_ idx ON emp2 (UPPER (last name)) ;
This facilitates processing queries such as:
SELECT * FROM emp2 WHERE UPPER (last name) = 'KING';

The Oracle Server uses the index only when that particular function is used in a query. For
example, the following statement may use the index, but without the WHERE clause, the

Oracle Server may perform a full table scan:

SELECT *
FROM employees
WHERE UPPER (last name) IS NOT NULL

ORDER BY UPPER (last name) ;

Note: For creating a function-based index, you need the QUERY REWRITE system privilege.
The QUERY REWRITE ENABLED initialization parameter must be set to TRUE for a function-
based index to be used.

The Oracle Server treats indexes with columns marked DESC as function-based indexes. The
columns marked DESC are sorted in descending order.

Oracle Database 12c¢: SQL Workshop Il 3 -29

Creating Multiple Indexes on the Same Set of

Columns
* You can create multiple indexes on the same set of
columns.
« Multiple indexes can be created on the same set of
columns if:

— The indexes are of different types
— The indexes uses different partitioning
— The indexes have different uniqueness properties

ORACLE
Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

You can create multiple indexes on the same set of columns if the indexes are of different
types, use different partitioning, or have different uniqueness properties. For example, you
can create a B-tree index and a bitmap index on the same set of columns.

Similarly, you can create both a unique and non-unique index on the same set of columns

When you have multiple indexes on the same set of columns, only one of these indexes can
be visible at a time.

Note: Invisible Index — An invisible index is maintained by DML operations. To create an
invisible index, you can use the CREATE INDEX statement with the INVISIBLE keyword.

Oracle Database 12c¢: SQL Workshop Il 3 - 30

Example of Creating Multiple Indexes on the
Same Set Of Columns

CREATE |INDEX emp id name ixl1
ON employees (employee 1d, first name) ;

|1ndex EMP_ID_NAME_IX1 created. |

ALTER INDEX emp id name ix1|INVISIBLE;

Imaex EMP_ID_NAME_IX1 altered. ‘

CREATE| BITMAP INDEX emp id name ix2
ON employees (employee 1d, first name) ;

|b1tmap index EMP_ID_MNAME_IX2 created. |

ORACLE

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

The code example shows the creation of a B-tree index, emp id name 1ix1, on the
employee idand first name column of the employees table in the HR schema. After the
creation of the index, it is altered to make it invisible. Then a bitmap index is created on the
employee idand first name column of the employees table in the HR schema. The
bitmap index, emp id name 1ix2, is visible by default.

Oracle Database 12c¢: SQL Workshop Il 3 - 31

Index Creation Guidelines

Create an index when:

/ A column contains a wide range of values

/‘ A column contains a large number of null values

/ One or more columns are frequently used together in a WHERE clause or
a join condition

/ The table is large and most queries are expected to retrieve less than 2%
to 4% of the rows in the table

Do not create an index when:

X | The columns are not often used as a condition in the query

The table is small or most queries are expected to retrieve more than 2%
to 4% of the rows in the table

X
X | The table is updated frequently
X

The indexed columns are referenced as part of an expression

ORACLE

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

More Is Not Always Better

Having more indexes on a table does not produce faster queries. Each DML operation that is
committed on a table with indexes means that the indexes must be updated. The more
indexes that you have associated with a table, the more effort the Oracle Server must make to
update all the indexes after a DML operation.

When to Create an Index
Therefore, you should create indexes only if:
* The column contains a wide range of values

* The column contains a large number of null values
* One or more columns are frequently used together in a WHERE clause or join condition

« Thetable is large and most queries are expected to retrieve less than 2% to 4% of the
rows

Remember that if you want to enforce uniqueness, you should define a unique constraintin
the table definition. A unique index is then created automatically.

Oracle Database 12c¢: SQL Workshop Il 3 - 32

Index Information

* USER _INDEXES provides information about your indexes.

 USER IND COLUMNS describes columns of indexes
owned by you and columns of indexes on your tables.

DESCRIBE user indexes

DESCRIBE user_indexes

Name Hull Type
INDEX_NAME NOT NULL WARCHARZ(128)
INDEX_TYPE VARCHARZ(27)
TABLE_OWNER. NOT NULL WARCHARZ(128)
(TABLE_NAME NOT WULL VARCHARZ(128)
TABLE_TYPE WARCHARZ(11)
UNIQUENESS VARCHARZ(9)

ORACLE

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

You query the USER_ INDEXES view to find out the names of your indexes, the table name on
which the index is created, and whether the index is unique.

Note: For a complete listing and description of the columns in the USER_ INDEXES view, see
“USER_INDEXES”in the Oracle Database Reference for Oracle Database 12c.

Oracle Database 12c¢: SQL Workshop Il 3 - 33

USER_INDEXES: Examples

(Ei)SELECT index name, table name, uniqueness
FROM user indexes
WHERE table name = 'EMPLOYEES';

B INDEX_NAME |@ TasLE_MAME | UNIQUENESS
1 EMP_NAME_IX EMPLOYEES NONUNIQUE
2 EMP_MANAGER_IX EMPLOYEES NONUNIQUE
3 EMP_J0B_IX EMPLOYEES NONUNIQUE
4 EMP_DEPARTMENT_IX EMPLOYEES NONUNIQUE
S EMP_EMP_ID_PK EMPLOYEES UNIQUE
6 EMP_EMAIL_UK EMPLOYEES UNIQUE

b)seLEcT index name, table name
FROM user indexes
WHERE table name = 'EMP LIB';

g INDEX_NAME_@ TABLE_NAME
1 SYS_C0010979 EMP_LIB

ORACLE

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

In slide example a, the USER_INDEXES view is queried to find the name of the index, name of
the table on which the index is created, and whether the index is unique.
In slide example b, observe that the Oracle Server gives a generic name to the index that is
created for the PRIMARY KEY column. The EMP_LIB table is created by using the following
code:

CREATE TABLE emp lib

(book id NUMBER(6) PRIMARY KEY,
title VARCHAR2 (25),

category VARCHAR2 (20)) ;

Tahle EMP_LIB created.

Oracle Database 12c¢: SQL Workshop Il 3 - 34

Querying USER IND COLUMNS

DESCRIBE user ind columns

DESCRIBE user_ind_columns

Name Null Type
INDEX_MAME WARCHAR2(128)
TABLE_NAME WARCHAR2(128)
COLUMN_NAME WARCHARZ (40007
COLUMN_POSITION NUMBER
COLUMMN_LENGTH NUMBER
CHAR_LENGTH NUMBER

DESCEND WARCHARZ2(4)

SELECT index name, column name, table name
FROM user ind columns
WHERE index name = 'LNAME IDX';

B moBCNAME |§ coLuMN_NAME [TABLE_NAME
1 LNAME_TDX LAST_NAME EMP_TEST

ORACLE

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

The USER_IND COLUMNS dictionary view provides information such as the name of the

index, name of the indexed table, name of a column within the index, and the column’s
position within the index.

For the slide example, the emp test table and LNAME IDX index are created by using the
following code:

CREATE TABLE emp test AS SELECT * FROM employees;
CREATE INDEX lname idx ON emp test (last name) ;

Oracle Database 12c¢: SQL Workshop Il 3 - 35

Removing an Index

* Remove an index from the data dictionary by using the
DROP INDEX command:

DROP INDEX index;

 Remove the emp last name idx index from the data
dictionary:
DROP INDEX emp last name idx;

index EMP_LAST_NAME_IDX dropped]

« To drop an index, you must be the owner of the index or
have the DROP ANY INDEX privilege.

ORACLE

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

You cannot modify indexes. To change an index, you must drop it and then re-create it.

Remove an index definition from the data dictionary by issuing the DROP INDEX statement. To
drop an index, you must be the owner of the index or have the DROP ANY INDEX privilege.

In the syntax, index is the name of the index.

You can drop an index using the ONLINE keyword.
DROP INDEX emp indx ONLINE;

ONLINE: Specify ONLINE to indicate that DML operations on the table are allowed while
dropping the index.

Note: If you drop a table, indexes and constraints are automatically dropped but views
remain.

Oracle Database 12c¢: SQL Workshop Il 3 - 36

Quiz

Indexes must be created manually and serve to speed up
access to rows in a table.

a. True
b. False

ORACLE

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

Answer: b

Note: Indexes are designed to speed up query performance. However, not all indexes are
created manually. The Oracle server automatically creates an index when you define a
columnin a table to have a PRIMARY KEY or a UNIQUE constraint.

Oracle Database 12c¢: SQL Workshop Il 3 - 37

Summary

In this lesson, you should have learned how to:

« Automatically generate sequence numbers by using a
sequence generator

« Use synonyms to provide alternative names for objects
« Create indexes to improve the speed of query retrieval

« Find information about your objects through the following
dictionary views:
— USER_VIEWS
— USER_SEQUENCES
— USER_SYNONYMS

ORACLE

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

In this lesson, you should have learned about database objects such as sequences, indexes,
and synonyms.

Oracle Database 12c¢: SQL Workshop Il 3 - 38

Practice 3: Overview

This practice covers the following topics:
- Creating sequences
« Using sequences
* Querying the dictionary views for sequence information
* Creating synonyms
* Querying the dictionary views for synonyms information
« Creating indexes
* Querying the dictionary views for indexes information

ORACLE

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

This lesson’s practice provides you with a variety of exercises in creating and using a
sequence, an index, and a synonym. You also learn how to query the data dictionary views
for sequence, synonyms and index information.

Oracle Database 12c¢: SQL Workshop Il 3 -39

Ajuo asn suoin|og 1geb3 pue AlsiaAlun ajoelO

a3LigIHOdd A1LOIE1S SI d3LNdNOD SIHL INOYA STVIFTILVIN LIM® ONIAJOD "ATNO WOOHSSV1D SIHL NI 3SN dNOA d04 34V STIVIHILYIN LIMS 3SIHL

Ajuo asn suonn|og Igeb3 pue AjisiaAlun ajpoelO

ORACLE

Creating Views

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

d3119diHOdd ATLOIELS SI d3.LNdINOD SIHL INOHA STVIHALVIA LIX® ONIAJOD "ATTNO INOOHSSY1O SIHL NI 3SN dNOA J04 FHV SIVIHALVIN 1IM9 3S3HL

Objectives

After completing this lesson, you should be able to do::
« Create simple and complex views
- Retrieve data from views
* Querying the dictionary views for the view information

ORACLE

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

In this lesson, you are introduced to views, and you learn the basics of creating and using
views.

Oracle Database 12c¢: SQL Workshop Il 4 -2

Lesson Agenda

« Overview of views

- Creating, modifying, and retrieving data from a view

* Querying the dictionary views for view information

- Data manipulation language (DML) operations on a view
« Dropping a view

ORACLE

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

Oracle Database 12c¢: SQL Workshop Il 4 -3

Database Objects

Object Description

Table Basic unit of storage; composed of rows

View Logically represents subsets of data from one or
more tables

Sequence Generates numeric values

Index Improves the performance of data retrieval
queries

Synonym Gives alternative names to objects

ORACLE

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

There are several other objects in a database in addition to tables.
With views, you can present and hide data from the tables.

Many applications require the use of unique numbers as primary key values. You can either
build code into the application to handle this requirement or use a sequence to generate
unique numbers.

If you want to improve the performance of data retrieval queries, you should consider creating
an index. You can also use indexes to enforce uniqueness on a column or a collection of
columns.

You can provide alternative names for objects by using synonyms.

Oracle Database 12¢c: SQL Workshop Il 4 -4

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS COMPUTER IS STRICTLY PROHIBITED

What Is a View?

EMPLOYEES table

@ Efu'iPLOYEE_]D] FIRST_NAME] LAST_NAME [EmalL [l PHONE_NUMBER | HIRE_DATE | JoB_ID] SALARY
100 Steven King SKING 515.123.4567 17-JUN-87 AD_PRES 24000
101 Neena Kochhar NKOCHHAR 515.123.4568 21-SEP-89 AD_WP 17000
102 Lex De Haan LDEHAAN 515.123.4569 13-JAN-93 AD_VP 17000
103 Alexander Hunold AHUNOLD 590.423.4567 03-JAN-90 IT_PROG 2000
104 Br 6000
107 4200

CCOUNT 6900

5800

3500

3100

2600

eMPLOYEEID [l FIRST_NAME|§ LasT_MaME|§ saLary 2500
100 Steven King 10500
SA_REP 11000

101 Meena Kochhar A_REP s600
102 Lex Dre Haan SA_REP 7000
103 Alexander Hurnold 17-5EP-87 AD_ASST 4400
108 Bruce Ernet 17-FEB-96 ME_MAN 13000
‘‘‘‘‘‘ — T oo 17-AUG-97 MK_REP £000
205 Shelley Higgins SHIGCINS ~ 515.123.8080 07-JUN-94 AC_MGR 12000
206 William Gietz WCIETZ ~ 515.123.8181 07-JUN-94 AC_ACCOUNT 8300

ORACLE

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

You can present logical subsets or combinations of data by creating views of tables. A view is
a schema object , a stored SELECT statement based on a table or another view. A view
contains no data of its own, but is like a window through which data from tables can be
viewed or changed. The tables on which a view is based are called base tables. The view is
stored as a SELECT statement in the data dictionary.

Oracle Database 12¢c: SQL Workshop Il 4 -5

Oracle University and Egabi Solutions use only

Advantages of Views

To restrict To make complex
data access queries easy

To provide data To present different
independence views of the same
data

ORACLE

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

» Views restrict access to the data because they display selected columns from the table.

« Views can be used to make simple queries to retrieve the results of complicated queries.
For example, views can be used to query information from multiple tables without the
user knowing how to write a join statement.

» Views provide data independence for ad hoc users and application programs. One view
can be used to retrieve data from several tables.

» Views provide groups of users access to data according to their particular criteria.

For more information, see the “CREATE VIEW” section in Oracle Database SQL Language
Reference for Oracle Database 12c.

Oracle Database 12c¢: SQL Workshop Il 4 -6

Simple Views and Complex Views

Feature Simple Views Complex Views
Number of tables One One or more
Contain functions No Yes

Contain groups of data No Yes

DML operations through a Yes Not always

view

ORACLE

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

There are two classifications for views: simple and complex. The basic difference is related to
the DML (INSERT, UPDATE, and DELETE) operations.

+ Asimple view is one that:
- Derives data from only one table
- Contains no functions or groups of data
- Can perform DML operations through the view
* A complex view is one that:
- Derives data from many tables
- Contains functions or groups of data
- Does not always allow DML operations through the view

Oracle Database 12c¢: SQL Workshop Il 4-7

Creating a View

* You embed a subquery in the CREATE VIEW statement:

CREATE [OR REPLACE] [FORCE|NOFORCE] VIEW view
[(alias[, alias]...)]

AS subquery

[WITH CHECK OPTION [CONSTRAINT constraint]]

[WITH READ ONLY [CONSTRAINT constraint]];

« The subquery can contain complex SELECT syntax.

ORACLE

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

You can create a view by embedding a subquery in the CREATE VIEW statement.

In the syntax:

OR REPLACE Re-creates the view if it already exists. You can use this clause to
change the definition of an existing view without dropping,
re-creating, and regranting object privileges previously granted

oniit.
FORCE Creates the view regardless of whether or not the base tables exist
NOFORCE Creates the view only if the base tables exist (This is the default.)
view Is the name of the view
alias Specifies names for the expressions selected by the view’s query

(The number of aliases must match the number of expressions
selected by the view.)

subquery Is a complete SELECT statement (You can use aliases for the
columns in the SELECT list.)

WITH CHECK OPTION Specifies that only those rows that are accessible to the view can
be inserted or updated

Constraint Is the name assigned to the CHECK OPTION constraint

WITH READ ONLY Ensures that no DML operations can be performed on this view

Note: In SQL Developer, click the Run Scripticon or press F5 to run the data definition
language (DDL) statements. The feedback messages will be shown on the Script Output

tabbed page.
Oracle Database 12c¢: SQL Workshop Il 4 -8

Creating a View

* Create the EMPVU80 view, which contains details of the
employees in department 80:

CREATE VIEW empvu80
AS SELECT employee id, last name, salary
FROM employees
WHERE department id = 80;
view EMPVUB0O created.

« Describe the structure of the view by using the SQL*Plus
DESCRIBE command:

DESCRIBE empvu80;

ORACLE

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

The example in the slide creates a view that contains the employee number, last name, and
salary for each employee in department 80.

You can display the structure of the view by using the DESCRIBE command.

DESCREIBE empuUusSo

Mame M1l Twpe
EMPLOYEE_ID WOT MULL NUMBEE(G
LAST_MAME WOT MULL WARCHARZ {257
SALARY WUMBER(E, 23

Guidelines

» The subquery that defines a view can contain complex SELECT syntax, including joins,
groups, and subqueries.

» If you do not specify a constraint name for the view created with the WITH CHECK
OPTION, the system assigns a default name in the SYS Cn format.

* You can use the OR REPLACE option to change the definition of the view without
dropping and re-creatingit, or regranting the object privileges previously granted on it.

Oracle Database 12c¢: SQL Workshop Il 4-9

Creating a View

« Create a view by using column aliases in the subquery:

CREATE VIEW salvub0
AS SELECT employee id ID NUMBER, last name NAME,
salary*12 ANN_ SALARY
FROM employees
WHERE department id = 50;

view SALVUSO created.

- Select the columns from this view by the given alias
names.

ORACLE

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

You can control the column names by including column aliases in the subquery.

The example in the slide creates a view containing the employee number (EMPLOYEE ID)
with the alias ID NUMBER, name (LAST_ NAME) with the alias NAME, and annual salary
(SALARY) with the alias ANN _SALARY for every employee in department 50.

Alternatively, you can use an alias after the CREATE statement and before the SELECT
subquery. The number of aliases listed must match the number of expressions selected in the
subquery.

CREATE OR REPLACE VIEW salvu50 (ID NUMBER, NAME, ANN SALARY)
AS SELECT employee id, last name, salary*12
FROM employees
WHERE department id = 50;

wiew SALWUSO Created.

Oracle Database 12c¢: SQL Workshop Il 4-10

Retrieving Data from a View

SELECT *

FROM |sa1vu50;|

@ ID_NUMBER |@ NAME ANN_SALARY |
1 120 Weiss 96000
2 121 Fripp 98400
3 122 Kaufling 94800
4 123Vol1nan 78000
5 124 Hourgos 69600
6 125 Nayer 38400
7 126 Mikkilineni 32400

ORACLE

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

You can retrieve data from a view as you would from any table. You can display either the
contents of the entire view or just specific rows and columns.

Oracle Database 12c¢: SQL Workshop Il 4 - 11

Modifying a View

Modify the EMPVU80 view by using a CREATE OR REPLACE
VIEW clause. Add an alias for each column name:

CREATE OR REPLACE VIEW empvu80
(id number, name, sal, department id)
AS SELECT employee id, first name || '

| | last _name, salary, department id
FROM employees

WHERE department id = 80;
wigw EMPVUSO created.

e Column aliases in the CREATE OR REPLACE VIEW clause

are listed in the same order as the columns in the
subquery.

ORACLE
Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

With the OR REPLACE option, a view can be created even if one exists with this name already,
thus replacing the old version of the view for its owner. This means that the view can be
altered without dropping, re-creating, and regranting object privileges.

Note: When assigning column aliases in the CREATE OR REPLACE VIEW clause, remember
that the aliases are listed in the same order as the columns in the subquery.

Oracle Database 12c¢: SQL Workshop Il 4 -12

Creating a Complex View

Create a complex view that contains group functions to display
values from two tables:

CREATE OR REPLACE VIEW dept sum wvu
(name, minsal, maxsal, avgsal)
AS SELECT d.department name, MIN(e.salary),
MAX (e.salary) ,AVG(e.salary)
FROM employees e JOIN departments d
ON (e.department id = d.department id)
GROUP BY d.department name;

view DEPT_SUM_VU created. ‘

ORACLE

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

The example in the slide creates a complex view of department names, minimum salaries,
maximum salaries, and the average salaries by department. Note that alternative names have
been specified for the view. This is a requirement if any column of the view is derived from a
function or an expression.

You can view the structure of the view by using the DESCRIBE command. Display the
contents of the view by issuing a SELECT statement.

SELECT ~*
FROM dept sum wvu;
MAME B misar B maxsal [§ avasal

1 Administration 4400 4400 4400
2 ACcounting B300 12008 10154
3 Purchasing 2500 11000 4150
4 Human Resources G500 G500 G500
S IT 4200 Q000 5760
& Public Eelations 10000 10000 10000
7 Executive 17000 24000 19333, 3333333333333333333333333333333333
g Shipping 2100 8200 3475.55555555555555555555555555555555555A
9 sales 6100 14000 B955.8823529411764 7058823520411 70470588 24
10 Finance Bo00 12008 8601.333333333333333333333333333333333333
11 Marketing BO00 13000 9500

Oracle Database 12c¢: SQL Workshop Il 4-13

View Information

@ DESCRIBE user views

Name Mull Type

WVIEW NAME NOT NULL VARCHARZ(30)
TEXT_LENGTH NUMEER.

TEXT LONG)

@ SELECT view name FROM user views;

B view_NaME
1 EMP_DETAILS_VIEW
2 SALVUSO
3 EMPVUBO

4 DEPT_SUM_WU
@ SELECT text FROM user views
WHERE view name = 'EMP DETAILS VIEW';

TEXT
1 SELECT e.employee_id, ejob_id, e.manager_id, e.department_id, d.location_id, l.cq

[AnD c.region_id = r.region_id AND jjob_id = e job_idWITH READ ONLY|

ORACLE

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

After your view is created, you can query the data dictionary view called USER_VIEWS to see
the name of the view and the view definition. The text of the SELECT statement that
constitutes your view is stored in a LONG column. The LENGTH column is the number of
characters in the SELECT statement. By default, when you select from a LONG column, only

the first 80 characters of the column’s value are displayed. To see more than 80 characters in
SQL*Plus, use the SET LONG command:

SET LONG 1000
In the examples in the slide:
1. The USER_VIEWS columns are displayed. Note that this is a partial listing.

2. The names of your views are retrieved
3. The SELECT statement for the EMP_DETAILS VIEW is displayed from the dictionary

Data Access Using Views

When you access data by using a view, the Oracle Server performs the following operations:
« ltretrieves the view definition from the data dictionary table USER_VIEWS.
» It checks access privileges for the view base table.

» It converts the view query into an equivalent operation on the underlying base table or
tables. That is, data is retrieved from, or an update is made to, the base tables.

Oracle Database 12c¢: SQL Workshop Il 4 -14

Rules for Performing DML Operations on a View

* You can usually perform DML operations on
simple views.

* You cannot remove a row if the view contains the

following:
— Group functions
— A GROUP BY clause @
— The DISTINCT keyword

— The pseudocolumn ROWNUM keyword

ORACLE
Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

* You can perform DML operations on data through a view if those operations follow
certain rules.

* You can remove a row from a view unless it contains any of the following:
- Group functions
- A GROUP BY clause
- The DISTINCT keyword
- The pseudocolumn ROWNUM keyword

Oracle Database 12c¢: SQL Workshop Il 4-15

Rules for Performing DML Operations on a View

You cannot modify data in a view if it contains:
* Group functions
A GROUP BY clause
* The DISTINCT keyword
« The pseudocolumn ROWNUM keyword
« Columns defined by expressions

ORACLE

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

You can modify data through a view unless it contains any of the conditions mentioned in the
previous slide or columns defined by expressions (for example, SALARY * 12).

Oracle Database 12c: SQL Workshop Il 4 -16

Rules for Performing DML Operations on a View

You cannot add data through a view if the view includes:
* Group functions
A GROUP BY clause
* The DISTINCT keyword
« The pseudocolumn ROWNUM keyword

« Columns defined by expressions

 NOT NULL columns without default value in the base
tables that are not selected by the view

ORACLE

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

You can add data through a view unless it contains any of the items listed in the slide. You
cannot add data to a view if the view contains NOT NULL columns without default values in the

base table. All the required values must be present in the view. Remember that you are
adding values directly to the underlying table through the view.

For more information, see the “CREATE VIEW” section in Oracle Database SQL Language
Reference for Oracle Database 12c.

Oracle Database 12c¢: SQL Workshop Il 4 -17

Using the WITH CHECK OPTION Clause

* You can ensure that DML operations performed on the
view stay in the domain of the view by using the WITH
CHECK OPTION clause:

CREATE OR REPLACE VIEW empvu20

AS SELECT =3
FROM employees
WHERE department id = 20

|WITH CHECK OPTION CONSTRAINT empvu20 ck ; |

I'n ew EMPVUZ0 created.

* Any attempt to INSERT a row with a department id
other than 20 or to UPDATE the department number for any
row in the view fails because it violates the WITH CHECK
OPTION constraint.

ORACLE

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

It is possible to perform referential integrity checks through views. You can also enforce
constraints at the database level. The view can be used to protect data integrity, but the use is
very limited.

The WITH CHECK OPTION clause specifies that INSERTs and UPDATES performed through
the view cannot create rows that the view cannot select. Therefore, it enables integrity
constraints and data validation checks to be enforced on data being inserted or updated. If

there is an attempt to perform DML operations on rows that the view has not selected, an
error is displayed, along with the constraint name if that has been specified.

UPDATE empvu20

SET department id = 10

WHERE employee id = 201;
Error:

SQL Error: ORA-01402:view WITH CHECK OPTION where-clause violation
01402. 00000 - "vViewWWITH CHECK OPTION where-clause violation"
*Cause:

*Action:

Note: No rows are updated because, if the department number were to change to 10, the
view would no longer be able to see that employee. With the WITH CHECK OPTION clause,
therefore, the view can see only the employees in department 20 and does not allow the
department number for those employees to be changed through the view.

Oracle Database 12c: SQL Workshop Il 4-18

Denying DML Operations

* You can ensure that no DML operations occur by adding
the WITH READ ONLY option to your view definition.

* Any attempt to perform a DML operation on any row in the
view results in an Oracle server error.

ORACLE
Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

You can ensure that no DML operations occur on your view by creating it with the WITH READ
ONLY option. The example in the next slide modifies the EMPVU10 view to prevent any DML
operations on the view.

Oracle Database 12c¢: SQL Workshop Il 4-19

Denying DML Operations

CREATE OR REPLACE VIEW empvulO
(employee number, employee name, job title)

AS SELECT employee id, last name, job_id
FROM employees
WHERE department id = 10

| WITH READ ONLY [;
[view EMPVULO created.

ORACLE

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

Any attempt to remove a row from a view with a read-only constraint results in an error:

DELETE FROM empvulO

WHERE employee number = 200;
Similarly, any attempt to insert a row or modify a row using the view with a read-only
constraint results in the same error.

Erraor report:
SOL Error: ORA-42399: cannot perform a DML operation on a read-only wiew

Oracle Database 12c¢: SQL Workshop Il 4 -20

Removing a View

You can remove a view without losing data because a view is
based on underlying tables in the database.

DROP VIEW view;

DROP VIEW empvu80;

view EMPVUBO dropped.

ORACLE
Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

You use the DROP VIEW statement to remove a view. The statement removes the view
definition from the database. However, dropping views has no effect on the tables on which
the view was based. Alternatively, views or other applications based on the deleted views

become invalid. Only the creator or a user with the DROP ANY VIEW privilege can remove a
view.

In the syntax, viewis the name of the view.

Oracle Database 12c¢: SQL Workshop Il 4 - 21

Quiz

You cannot add data through a view if the view includes the
pseudocolumn ROWNUM keyword

a. True
b. False

ORACLE

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

Answer: a

Oracle Database 12c¢: SQL Workshop Il 4 - 22

Summary

In this lesson, you should have learned how to:
« Create, use, and remove views
* Querying the dictionary views for view information

ORACLE

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

In this lesson, you should have learned about views.

Oracle Database 12c¢: SQL Workshop Il 4 -23

Practice 4: Overview

This practice covers the following topics:

« Creating a simple view

« Creating a complex view

« Creating a view with a check constraint

« Attempting to modify data in the view

* Querying the dictionary views for view information
* Removing views

ORACLE

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

The practice provides you with a variety of exercises in creating, using, querying data
dictionary views for view information, and removing views.

Oracle Database 12c¢: SQL Workshop Il 4 -24

Managing Schema Objects

ORACLE

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

Objectives

After completing this lesson, you should be able to:
« Manage constraints
« Create and use temporary tables
- Creating and use external tables

ORACLE

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

This lesson contains information about constraints and altering existing objects. You also
learn about external tables and the provision to name the index at the time of creating a
PRIMARY KEY constraint.

Oracle Database 12c¢: SQL Workshop Il 5-2

Lesson Agenda

« Managing constraints:
— Adding and dropping a constraint
— Enabling and disabling a constraint
— Deferring constraints
« Creating and using temporary tables
« Creating and using external tables

ORACLE

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

Oracle Database 12c¢: SQL Workshop Il 5-3

Adding a Constraint Syntax

Use the ALTER TABLE statement to:
« Add or drop a constraint, but not to modify its structure

 Enable or disable constraints
* Add a NOT NULL constraint by using the MODIFY clause

ALTER TABLE <table name>
ADD [CONSTRAINT <constraint name>]
type (<column name>) ;

ORACLE

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

You can add a constraint for existing tables by using the ALTER TABLE statement with the
ADD clause.

In the syntax:

table Is the name of the table

constraint Is the name of the constraint

type Is the constraint type

column Is the name of the column affected by the constraint

The constraint name syntax is optional, although recommended. If you do not name your
constraints, the system generates constraint names.

Guidelines
* You can add, drop, enable, or disable a constraint, but you cannot modify its structure.

* You can add a NOT NULL constraintto an existing column by using the MODIFY clause
of the ALTER TABLE statement.

Note: You can define a NOT NULL column only if the table is empty or if the column has a
value for every row.

Oracle Database 12c¢: SQL Workshop Il 5-4

Adding a Constraint

Add a FOREIGN KEY constraint to the EMP2 table indicating that

a manager must already exist as a valid employee in the EMP2
table.

ALTER TABLE emp2
MODIFY| employee id PRIMARY KEY;

[tabre EMP2 aitered)

ALTER TABLE emp2

ADD| CONSTRAINT emp mgr fk
FOREIGN KEY (manager id)
REFERENCES emp2 (employee id) ;

ltabie ewp2 altered

ORACLE
Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

The first example in the slide modifies the EMP2 table to add a PRIMARY KEY constrainton
the EMPLOYEE_ID column. Note that because no constraintname is provided, the constraint
is automatically named by the Oracle Server. The second example in the slide creates a

FOREIGN KEY constraint on the EMP2 table. The constraint ensures that a manager exists as
a valid employee in the EMP2 table.

Oracle Database 12c¢: SQL Workshop Il 5-5

Dropping a Constraint

« The drop constraint clause enables you to drop an
integrity constraint from a database.

* Remove the manager constraint from the EMP2 table:

ALTER TABLE emp2
DROP CONSTRAINT emp mgr fk;

ltable EMP2 altered.)

 Remove the PRIMARY KEY constraint on the DEPT2 table
and drop the associated FOREIGN KEY constraint on the
EMP2.DEPARTMENT ID column:

ALTER TABLE emp2
DROP PRIMARY KEY CASCADE;

Table EMPZ altered.

ORACLE

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

The drop constraint clause enables you to drop an integrity constraint from a
database.

To drop a constraint, you can identify the constraint name from the USER_ CONSTRAINTS and
USER_CONS_COLUMNS data dictionary views. Then use the ALTER TABLE statement with the
DROP clause. The CASCADE option of the DROP clause causes any dependent constraints also
to be dropped.

Syntax

ALTER TABLE table
DROP PRIMARY KEY | UNIQUE (column) |
CONSTRAINT constraint [CASCADE] ;

In the syntax:
table Is the name of the table
column Is the name of the column affected by the constraint
constraint |sthe name of the constraint

When you drop an integrity constraint, that constraintis no longer enforced by the Oracle
Server and is no longer available in the data dictionary.

Oracle Database 12c¢: SQL Workshop Il 5-6

Dropping a CONSTRAINT ONLINE

You can specify the ONLINE keyword to indicate that DML
operations on the table are allowed while dropping the
constraint.

ALTER TABLE myemp2
DROP CONSTRAINT emp name pk |[ONLINE;

ORACLE

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

You can also drop a constraint using an ONLINE keyword.
ALTER TABLE myemp2
DROP CONSTRAINT emp id pk ONLINE;

Use the ALTER TABLE statement with the DROP clause. The ONLINE option of the DROP
clause indicates that DML operations on the table are allowed while dropping the constraint.

Oracle Database 12¢: SQL Workshopll 5-7

ON DELETE Clause

« Usethe ON DELETE CASCADE clause to delete child rows
when a parent key is deleted:

ALTER TABLE emp2 ADD CONSTRAINT emp dt fk
FOREIGN KEY (Department id)
REFERENCES departments (department id) ON DELETE CASCADE;

ftable EWP2 altered)

« Usethe ON DELETE SET NULL clause to set the child
rows value to null when a parent key is deleted:

ALTER TABLE emp2 ADD CONSTRAINT emp dt fk
FOREIGN KEY (Department id)
REFERENCES departments (department id) ON DELETE SET NULL;

[rabie ewp2 artered)

ORACLE

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

ON DELETE

By using the ON DELETE clause, you can determine how Oracle Database handles referential
integrity if you remove a referenced primary or unique key value.

ON DELETE CASCADE

The ON DELETE CASCADE action allows parent key data that is referenced from the child
table to be deleted, but not updated. When data in the parent key is deleted, all the rows in
the child table that depend on the deleted parent key values are also deleted. To specify this

referential action, include the ON DELETE CASCADE option in the definition of the FOREIGN
KEY constraint.

ON DELETE SET NULL

When data in the parent key is deleted, the ON DELETE SET NULL action causes all the
rows in the child table that depend on the deleted parent key value to be converted to null.

If you omit this clause, Oracle does not allow you to delete referenced key values in the
parent table that have dependent rows in the child table.

Oracle Database 12c¢: SQL Workshop Il 5-8

Cascading Constraints

« The CASCADE CONSTRAINTS clause is used along with
the DROP COLUMN clause.

 The CASCADE CONSTRAINTS clause drops all referential
integrity constraints that refer to the PRIMARY and UNIQUE
keys defined on the dropped columns.

« The CASCADE CONSTRAINTS clause also drops all
multicolumn constraints defined on the dropped columns.

ORACLE

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

This statement illustrates the usage of the CASCADE CONSTRAINTS clause. Assume that the
TEST1 table is created as follows:

CREATE TABLE testl (
coll pk NUMBER PRIMARY KEY,
col2 fk NUMBER,
coll NUMBER,
col2 NUMBER,

CONSTRAINT fk constraint FOREIGN KEY (col2 fk) REFERENCES
testl,

CONSTRAINT ckl CHECK (coll pk > 0 and coll > 0),
CONSTRAINT ck2 CHECK (col2 fk > 0));
An error is returned for the following statements:
ALTER TABLE testl DROP (coll pk); —coll pkis a parentkey.
ALTER TABLE testl DROP (coll); —coll is referenced by the multicolumn
constraint, ck1.

Oracle Database 12c¢: SQL Workshop Il 5-9

Cascading Constraints

Example:

ALTER TABLE emp2
DROP COLUMN employee id CASCADE CONSTRAINTS;

table EMP2 altered.

ALTER TABLE testl
DROP (coll pk, col2 fk, coll) CASCADE CONSTRAINTS;

[table TESTL altered. |

ORACLE

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

Submitting the following statement drops the EMPLOYEE _ID column, the PRIMARY KEY
constraint, and any FOREIGN KEY constraints referencing the PRIMARY KEY constraint for the
EMP2 table:

ALTER TABLE emp2 DROP COLUMN employee id CASCADE CONSTRAINTS;

If all columns referenced by the constraints defined on the dropped columns are also
dropped, CASCADE CONSTRAINTS is not required. For example, assuming that no other
referential constraints from other tables refer to the COL1_PK column, it is valid to submit the
following statement without the CASCADE CONSTRAINTS clause for the TEST1 table created
on the previous page:

ALTER TABLE testl DROP (coll pk, col2 fk, coll);

Oracle Database 12c¢: SQL Workshop Il 5-10

Enabling a PRIMARY KEY constraint that was disabled with the CASCADE option does not
enable any FOREIGN KEYs that are dependent on the PRIMARY KEY.

To enable a UNIQUE or PRIMARY KEY constraint, you must have the privileges necessary
to create an index on the table.

Oracle Database 12c¢: SQL Workshop Il 5 - 11

Renaming Table Columns and Constraints

e Use the RENAME COLUMN clause of the ALTER TABLE
statement to rename table columns.

ALTER TABLE marketing RENAME COLUMN team_id
TO id;

[tabre MeRKETING altered.|

* Use the RENAME CONSTRAINT clause of the ALTER TABLE
statement to rename any existing constraint for a table.
b

ALTER TABLE marketing|RENAME CONSTRAINT |mktg pk
TO new mktg pk;

‘ltah'l & MARKETING altered. |

ORACLE

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

When you rename a table column, the new name must not conflict with the name of any
existing column in the table. You cannot use any other clauses in conjunction with the
RENAME COLUMN clause.

The slide examples use the marketing table with the PRIMARY KEY mktg_ pk defined on
the 1d column.
CREATE TABLE marketing (team id NUMBER(10),
target VARCHAR2 (50),
CONSTRAINT mktg pk PRIMARY KEY (team id)) ;

CREATE TAELE succeeded.

Example a shows that the id column of the marketing table is renamed mktg id. Example b
shows that mktg_pk is renamed new _mktg pk.

When you rename any existing constraint for a table, the new name must not conflict with any
of your existing constraint names. You can use the RENAME CONSTRAINT clause to rename

system-generated constraint names.

Oracle Database 12c¢: SQL Workshop Il 5 -12

Disabling Constraints

« Execute the DISABLE clause of the ALTER TABLE
statement to deactivate an integrity constraint.

* Apply the CASCADE option to disable dependent integrity
constraints.

ALTER TABLE emp2
DISABLE CONSTRAINT emp dt fk;

ltabie EMP2 aitered.|

ORACLE

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

You can disable a constraint, without dropping it or re-creating it, by using the ALTER TABLE
statement with the DISABLE clause.

Syntax

ALTER TABLE table
DISABLE CONSTRAINT constraint [CASCADE] ;

In the syntax:

table Is the name of the table
constraint Is the name of the constraint
Guidelines

 You can use the DISABLE clause in both the CREATE TABLE statement and the ALTER
TABLE statement.

+ The CASCADE clause disables dependent integrity constraints.
» Disablinga UNIQUE or PRIMARY KEY constraint removes the unique index.

Oracle Database 12c¢: SQL Workshop Il 5-13

Enabling Constraints

« Activate an integrity constraint that is currently disabled in
the table definition by using the ENABLE clause.

ALTER TABLE emp 2
ENABLE CONSTRAINT emp dt fk;

|tabie EwP2 aitered)

A UNIQUE index is automatically created if you enable a
UNIQUE key or a PRIMARY KEY constraint.

ORACLE

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

You can enable a constraint without dropping it or re-creating it by using the ALTER TABLE
statement with the ENABLE clause.

Syntax

ALTER TABLE table
ENABLE CONSTRAINT constraint;

In the syntax:

table Is the name of the table
constraint Is the name of the constraint
Guidelines

» If you enable a constraint, that constraint applies to all the data in the table. All the data
in the table must comply with the constraint.

» If you enable a UNIQUE key or a PRIMARY KEY constraint, a UNIQUE or PRIMARY KEY
index is created automatically. If an index already exists, it can be used by these keys.

* You can use the ENABLE clause in both the CREATE TABLE statement and the ALTER
TABRLE statement.

Oracle Database 12c¢: SQL Workshop Il 5 -14

Deferring Constraints

Constraints can have the following attributes:
 DEFERRABLE Or NOT DEFERRABLE
 INITIALLY DEFERRED Or INITIALLY IMMEDIATE

ALTER TABLE dept2 Deferring constraint on
P creation

ADD CONSTRAINT dept2_id_pk
PRIMARY KEY (department id)
DEFERRABLE INITIALLY DEFERRED|;

Changing a specific

SET CONSTRAINTS dept2 id pk |IMMEDIATE[; B o

ALTER SESSION Changing all constraints for a
SET CONSTRAINTS= |IMMEDIATE|; | session

ORACLE

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

You can defer checking constraints for validity until the end of the transaction. A constraintis
deferred if the system does not check whether the constraintis satisfied, untila COMMIT
statement is submitted. If a deferred constraint is violated, the database returns an error and
the transaction is not committed and it is rolled back. If a constraint is immediate (not
deferred), it is checked at the end of each statement. If it is violated, the statement is rolled
back immediately. If a constraint causes an action (for example, DELETE CASCADE), that
action is always taken as part of the statement that caused it, whether the constraintis
deferred or immediate. Use the SET CONSTRAINTS statement to specify, for a particular
transaction, whether a deferrable constraint is checked following each data manipulation
language (DML) statement or when the transaction is committed. To create deferrable
constraints, you must create a nonunique index for that constraint.

You can define constraints as either deferrable or NOT DEFERRABLE (default), and either
initially deferred or INITIALLY IMMEDIATE (default). These attributes can be different for
each constraint.

Usage scenario: Company policy dictates that department number 40 should be changed to
45. Changing the DEPARTMENT _ID column affects employees assigned to this department.
Therefore, you make the PRIMARY KEY and FOREIGN KEYs deferrable and initially deferred.
You update both department and employee information, and at the time of commit, all the
rows are validated.

Oracle Database 12c¢: SQL Workshop Il 5-15

Difference Between INITIALLY DEFERRED
and INITIALLY IMMEDIATE

INITIALLY DEFERRED Waits until the transaction ends to
check the constraint

INITIALLY IMMEDIATE Checks the constraint at the end of
the statement execution

CREATE TABLE emp new sal (salary NUMBER
CONSTRAINT sal ck
CHECK (salary > 100)
IDEFERRABLE INITIALLY IMMEDIATE,l
bonus NUMBER
CONSTRAINT bonus ck
CHECK (bonus > 0)
|DEFERRABLE INITIALLY DEFERRED);|

|table EMP_NEW_SAL created.|

ORACLE

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

A constraint that is defined as deferrable can be specified as either INITIALLY DEFERRED
or INITIALLY IMMEDIATE. The INITIALLY IMMEDIATE clause is the default.

In the slide example:
* The sal ck constraintis created as DEFERRABLE INITIALLY IMMEDIATE
« Thebonus_ ck constraintis created as DEFERRABLE INITIALLY DEFERRED

After creating the emp_new_sal table, as shown in the slide, you attempt to insert values into
the table and observe the results. When both the sal ck and bonus_ ck constraints are
satisfied, the rows are inserted without an error.

Example 1: Insert a row that violates sal ck. Inthe CREATE TABLE statement, sal ckis

specified as an initiallyimmediate constraint. This means that the constraintis verified
immediately after the INSERT statement and you observe an error.

INSERT INTO emp new sal VALUES(90,5) ;

30L Error: 0ORA-02Z290: check constraint (0R4Z1.3AL CE) wiolated
QzZ290, 00000 - "check constraint (%s3.%s) wiolated”™

Example 2: Insert a row that violates bonus_ck. In the CREATE TABLE statement,
bonus_ck is specified as deferrable and also initially deferred. Therefore, the constraint is
not verified until you COMMIT or set the constraint state back to immediate.

Oracle Database 12c¢: SQL Workshop Il 5-16

INSERT INTO emp new sal VALUES(110, -1);

1l rows inserted |

The row insertion is successful. But you observe an error when you commit the transaction.
COMMIT;
30L Error: 0OR4-0Z09]1: transaction rolled back

OFRL-02290: check constraint (0RLZ1.BONT3 _CK) wiolated
02091, 00000 - "trawnsaction rolled back”

The commit failed due to constraint violation. Therefore, at this point, the transactionis rolled
back by the database.

Example 3: Set the DEFERRED status to all constraints that can be deferred. Note that you can
also set the DEFERRED status to a single constraint if required.

SET CONSTRAINTS ALL DEFERRED;

constraints ALL succeeded.

Now, if you attempt to insert a row that violates the sal ck constraint, the statement is
executed successfully.
INSERT INTO emp new sal VALUES(90,5) ;

|l rows inserted |
However, you observe an error when you commit the transaction. The transaction fails and is
rolled back. This is because both the constraints are checked upon COMMIT.
COMMIT;
30L Error: 0OR4-02091: transaction rolled back

OFRL-02290: check constraint (0R4=21.34L CK) wiolated
02091, 00000 - "trawnsaction rolled back”™

Example 4: Set the IMMEDIATE status to both the constraints that were set as DEFERRED in
the previous example.
SET CONSTRAINTS ALL IMMEDIATE;

constraints ALL succeeded.

You observe an error if you attempt to insert a row that violates either sal ck or bonus_ck.
INSERT INTO emp new sal VALUES(110, -1);

30L Error: 0RL&-02290: check constraint (ORAZ1.BONUS _CE) wiolated
02290, 00000 - "check conatraint [(%2.%2) wiolated™

Note: If you create a table without specifying constraint deferability, the constraintis checked
immediately at the end of each statement. For example, with the CREATE TABLE statement of
the newemp details table, if you do not specify the newemp det pk constraint deferability,
the constraintis checked immediately.

CREATE TABLE newemp details(emp id NUMBER, emp name

VARCHAR2 (20) ,

CONSTRAINT newemp det pk PRIMARY KEY (emp id)) ;
When you attempt to defer the newemp_det pk constraint that is not deferrable, you observe
the following error:

SET CONSTRAINT newemp det pk DEFERRED;

|SDL Error: 0OBA-02447: cannot defer a constraint that iz not deferrahle|

Oracle Database 12c¢: SQL Workshop Il 5 -17

DROP TABLE ... PURGE

DROP TABLE emp new sal|PURGE;

table DEPTED dropped.

ORACLE

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

Oracle Database provides a feature for dropping tables. When you drop a table, the database
does not immediately release the space associated with the table. Rather, the database
renames the table and places it in a recycle bin, where it can later be recovered with the
FLASHBACK TABLE statement if you find that you dropped the table in error. If you want to
immediately release the space associated with the table at the time you issue the DROP
TABLE statement, include the PURGE clause as shown in the statement in the slide.

Specify PURGE only if you want to drop the table and release the space associated with it in a
single step. If you specify PURGE, the database does not place the table and its dependent
objects into the recycle bin.

Using this clause is equivalent to first dropping the table and then purging it from the recycle
bin. This clause saves you one step in the process. It also provides enhanced security if you
want to prevent sensitive material from appearing in the recycle bin.

Oracle Database 12c¢: SQL Workshop Il 5-18

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS COMPUTER IS STRICTLY PROHIBITED

Lesson Agenda

« Managing constraints:
— Adding and dropping a constraint
— Enabling and disabling a constraint
— Deferring constraints
« Creating and using temporary tables
« Creating and using external tables

ORACLE

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

Oracle Database 12c: SQL Workshop Il 5-19

Oracle University and Egabi Solutions use only

Temporary Tables

When
session/transaction
completes

ORACLE

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

A temporary table is a table that holds data that exists only for the duration of a transaction or
session. Data in a temporary table is private to the session, which means that each session
can see and modify only its own data.

Temporary tables are useful in applications where a result set must be buffered. For example,
a shopping cart in an online application can be a temporary table. Each item is represented by
a row in the temporary table. While you are shopping in an online store, you can keep on
adding or removing items from your cart. During the session, this cart data is private. After you
finalize your shopping and make the payments, the application moves the row for the chosen
cart to a permanent table. At the end of the session, the data in the temporary table is
automatically dropped.

Because temporary tables are statically defined, you can create indexes for them. Indexes
created on temporary tables are also temporary. The data in the index has the same session
or transaction scope as the data in the temporary table. You can also create a view or trigger
on a temporary table.

Oracle Database 12c: SQL Workshop Il 5 -20

Creating a Temporary Table

CREATE GLOBAL TEMPORARY TABLE cart(n NUMBER,d DATE)
ON COMMIT DELETE ROWS; @

CREATE GLOBAL TEMPORARY TABLE today sales
ON COMMIT PRESERVE ROWS AS
SELECT * FROM orders
WHERE order date = SYSDATE; <:>

ORACLE

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

To create a temporary table, you can use the following command:
CREATE GLOBAL TEMPORARY TABLE tablename
ON COMMIT [PRESERVE | DELETE] ROWS

By associating one of the following settings with the ON COMMIT clause, you can decide
whether the data in the temporary table is transaction-specific (default) or session-specific.

1. DELETE ROWS: As shown in example 1 in the slide, the DELETE ROWS setting creates a
temporary table that is transaction-specific. A session becomes bound to the temporary
table with a transaction’s first insert into the table. The binding goes away at the end of
the transaction. The database truncates the table (delete all rows) after each commit.

2. PRESERVE ROWS: As shown in example 2 in the slide, the PRESERVE ROWS setting
creates a temporary table that is session-specific. Each sales representative session
can store its own sales data for the day in the table. When a salesperson performs first
inserton the today sales table, his or her session gets bound to the today sales
table. This binding goes away at the end of the session or by issuing a TRUNCATE of the
table in the session. The database truncates the table when you terminate the session.

When you create a temporary table in an Oracle database, you create a static table definition.
Like permanent tables, temporary tables are defined in the data dictionary. However,
temporary tables and their indexes do not automatically allocate a segment when created.
Instead, temporary segments are allocated when data is first inserted. Until data is loaded in a
session, the table appears empty.

Oracle Database 12c¢: SQL Workshop Il 5 - 21

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS COMPUTER IS STRICTLY PROHIBITED

Lesson Agenda

« Managing constraints:
— Adding and dropping a constraint
— Enabling and disabling a constraint
— Deferring constraints
« Creating and using temporary tables
« Creating and using external tables

ORACLE

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

Oracle Database 12c: SQL Workshop Il 5 - 22

Oracle University and Egabi Solutions use only

External Tables

ORACLE

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

An external table is a read-only table whose metadata is stored in the database but whose
data is stored outside the database. This external table definition can be thought of as a view
that is used for running any SQL query against external data without requiring that the
external data first be loaded into the database. The external table data can be queried and
joined directly and in parallel without requiring that the external data first be loaded in the
database. You can use SQL, PL/SQL, and Java to query the data in an external table.

The main difference between external tables and regular tables is that externally organized
tables are read-only. No data manipulation language (DML) operations are possible, and no
indexes can be created on them. However, you can create an external table, and thus unload
data, by using the CREATE TABLE AS SELECT command.

The Oracle Server provides two major access drivers for external tables. One, the loader
access driver (or ORACLE_LOADER) is used for reading data from external files whose format
can be interpreted by the SQL*Loader utility. Note that not all SQL*Loader functionality is
supported with external tables. The ORACLE_DATAPUMP access driver can be used to both
import and export data by using a platform-independent format. The ORACLE_DATAPUMP
access driver writes rows from a SELECT statement to be loaded into an external table as part
of a CREATE TABLE ...ORGANIZATION EXTERNAL. ..AS SELECT statement. You can
then use SELECT to read data out of that data file. You can also create an external table
definition on another system and use that data file. This allows data to be moved between
Oracle databases.

Oracle Database 12c¢: SQL Workshop Il 5 -23

Creating a Directory for the External Table

Create a DIRECTORY object that corresponds to the directory
on the file system where the external data source resides.

CREATE OR REPLACE DIRECTORY emp_dir
AS '/./emp dir';

GRANT READ ON DIRECTORY emp dir TO ora 21;

ORACLE

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

Use the CREATE DIRECTORY statement to create a directory object. A directory object
specifies an alias for a directory on the server’s file system where an external data source
resides. You can use directory names when referring to an external data source, rather than
hard code the operating system path name, for greater file management flexibility.

You must have CREATE ANY DIRECTORY system privileges to create directories. When you
create a directory, you are automatically granted the READ and WRITE object privileges and
can grant READ and WRITE privileges to other users and roles. The DBA can also grant these
privileges to other users and roles.

A user needs READ privileges for all directories used in external tables to be accessed and
WRITE privileges for the log, bad, and discard file locations being used.

In addition, a WRITE privilege is necessary when the external table framework is being used
to unload data.

Oracle also provides the ORACLE_DATAPUMP type, with which you can unload data (that is,
read data from a table in the database and insert it into an external table) and then reload it
into an Oracle database. This is a one-time operation that can be done when the table is
created. After the creation and initial population is done, you cannot update, insert, or delete
any rows.

Oracle Database 12c¢: SQL Workshop Il 5 -24

Syntax

CREATE [OR REPLACE] DIRECTORY AS 'path name';

In the syntax:
OR REPLACE

directory

'path name'

Specify OR REPLACE to re-create the directory database

object if it already exists. You can use this clause to change

the definition of an existing directory without dropping, re-creating,
and regranting database object privileges previously granted

on the directory. Users who were previously granted privileges

on a redefined directory can continue to access the directory
without requiring that the privileges be regranted.

Specify the name of the directory object to be created. The
maximum length of the directory name is 30 bytes. You
cannot qualify a directory object with a schema name.

Specify the full path name of the operating system directory
to be accessed. The path name is case-sensitive.

Oracle Database 12c¢: SQL Workshop Il 5 -25

Creating an External Table

CREATE TABLE <table name>
(<col name> <datatype>, ..)
ORGANIZATION EXTERNAL
(TYPE <access driver type>
DEFAULT DIRECTORY <directory name>
ACCESS PARAMETERS
(.))
LOCATION ('<location specifier>"')
REJECT LIMIT [0 | <number> | UNLIMITED];

ORACLE

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

You create external tables by using the ORGANIZATION EXTERNAL clause of the CREATE
TABLE statement. You are not, in fact, creating a table. Rather, you are creating metadata in
the data dictionary that you can use to access external data. You use the ORGANIZATION

clause to specify the order in which the data rows of the table are stored. By specifying
EXTERNAL in the ORGANIZATION clause, you indicate that the table is a read-only table

located outside the database. Note that the external files must already exist outside the
database.

TYPE <access driver types> indicatesthe access driver of the external table. The

access driver is the application programming interface (API) that interprets the external data
for the database. If you do not specify TYPE, Oracle uses the default access driver,
ORACLE_LOADER. The other option is ORACLE_DATAPUMP.

You use the DEFAULT DIRECTORY clause to specify one or more Oracle database directory
objects that correspond to directories on the file system where the external data sources may
reside.

The optional ACCESS PARAMETERS clause enables you to assign values to the parameters of
the specific access driver for this external table.

Oracle Database 12c: SQL Workshop Il 5 - 26

Use the LOCATION clause to specify one external locator for each external data source.
Usually, <Iocation specifiersis afile, butit need not be.

The REJECT LIMIT clause enables you to specify how many conversion errors can occur

during a query of the external data before an Oracle error is returned and the query is aborted.
The default value is 0.

The syntax for using the ORACLE_DATAPUMP access driver is as follows:
CREATE TABLE extract emps

ORGANIZATION EXTERNAL (TYPE ORACLE DATAPUMP
DEFAULT DIRECTORY ...
ACCESS PARAMETERS (..)
LOCATION (..)

PARALLEL 4

REJECT LIMIT UNLIMITED
AS

SELECT * FROM ...;

Oracle Database 12c¢: SQL Workshop Il 5 - 27

Creating an External Table
by Using ORACLE LOADER

CREATE TABLE oldemp (
fname char (25), lname CHAR(25))
ORGANIZATION EXTERNAL
(TYPE ORACLE LOADER
DEFAULT DIRECTORY emp_dir
ACCESS PARAMETERS
(RECORDS DELIMITED BY NEWLINE
NOBADFILE
NOLOGFILE
FIELDS TERMINATED BY ','
(fname POSITION (1:20) CHAR,
lname POSITION (22:41) CHAR))
LOCATION ('emp.dat'))
PARALLEL 5
REJECT LIMIT 200;

[tab1e OLDEWP created.]

ORACLE

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

Assume that there is a flat file that has records in the following format:
10,jones,11-Dec-1934
20,smith,12-Jun-1972
Records are delimited by new lines, and the fields are all terminated by a comma (,). The
name of the fileis /emp_ dir/emp.dat.
To convert this file as the data source for an external table, whose metadata will reside in the
database, you must perform the following steps:

1. Create a directory object, emp_dir, as follows:
CREATE DIRECTORY emp dir AS '/emp dir' ;

2. Run the CREATE TABLE command shown in the slide.

The example in the slide illustrates the table specification to create an external table for the
file:
/emp dir/emp.dat

Oracle Database 12c¢: SQL Workshop Il 5 -28

In the example, the TYPE specification is given only to illustrate its use. ORACLE_LOADER is the
default access driver if not specified. The ACCESS PARAMETERS option provides values to
parameters of the specific access driver, which are interpreted by the access driver, not by the
Oracle Server.

The PARALLEL clause enables five parallel execution servers to simultaneously scan the
external data sources (files) when executing the INSERT INTO TABLE statement. For example,
if PARALLEL=5 were specified, more than one parallel execution server can be working on a

data source. Because external tables can be very large, for performance reasons, it is advisable
to specify the PARALLEL clause, or a parallel hint for the query.

The REJECT LIMIT clause specifies that if more than 200 conversion errors occur during a
query of the external data, the query must be aborted and an error must be returned. These
conversion errors can arise when the access driver tries to transform the data in the data file to
match the external table definition.

After the CREATE TABLE command executes successfully, the OLDEMP external table can be
described and queried in the same way as a relational table.

Oracle Database 12c¢: SQL Workshop Il 5 -29

Querying External Tables

§ rFname LNAME
1
SELECT * 2 Harry ... Pacino
3 Manizha ... Taylor
FROM oldemp 4 Harrison .. Sutherland ..
5 Matthias ... MacGraw
6 Mark ... Hannah
~Z
z==
< -
ZZZ
St it
—Z”
-
OLDEMP
emp.dat
ORACLE

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

An external table does not describe any data that is stored in the database. It does not
describe how data is stored in the external source. Instead, it describes how the external table
layer must present the data to the server. It is the responsibility of the access driver and the
external table layer to do the necessary transformations required on the data in the data file
so that it matches the external table definition.

When the database server accesses data in an external source, it calls the appropriate
access driver to get the data from an external source in a form that the database server
expects.

It is important to remember that the description of the data in the data source is separate from
the definition of the external table. The source file can contain more or fewer fields than there
are columns in the table. Also, the data types for fields in the data source can be different
from the columns in the table. The access driver takes care of ensuring that the data from the
data source is processed so that it matches the definition of the external table.

Oracle Database 12¢: SQL Workshop Il 5 -30

Creating an External Table
by Using ORACLE DATAPUMP: Example

CREATE TABLE emp ext
(employee id, first name, last name)
ORGANIZATION EXTERNAL
(

TYPElORACLE_DATAPUMP
DEFAULT DIRECTORY emp_dir
LOCATION

("empl.exp', 'emp2.exp')

)
PARALLEL
AS
SELECT employee id, first name, last name
FROM employees;

|1:ab'| e EMP_EXT created.

ORACLE

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

You can perform the unload and reload operations with external tables by using the
ORACLE_DATAPUMP access driver.

Note: In the context of external tables, loading data refers to the act of data being read from
an external table and loaded into a table in the database. Unloading data refers to the act of
reading data from a table and inserting it into an external table.

The example in the slide illustrates the table specification to create an external table by using
the ORACLE_DATAPUMP access driver. Data is then populated into the two files: emp1 . exp
and emp2 . exp.

To populate data read from the EMPLOYEES table into an external table, you must perform the
following steps:

1. Create a directory object, emp_dir, as follows:
CREATE DIRECTORY emp dir AS '/emp dir' ;

2. Runthe CREATE TABLE command shown in the slide.

Note: The emp_ dir directory is the same as created in the previous example of using
ORACLE_LOADER.

You can query the external table by executing the following code:
SELECT * FROM emp ext;

Oracle Database 12c¢: SQL Workshop Il 5 - 31

Quiz

A FOREIGN KEY constraint enforces the following action:
When the data in the parent key is deleted, all the rows in the
child table that depend on the deleted parent key values are

also deleted.
a. True
b. False

ORACLE

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

Answer: b

Oracle Database 12c¢: SQL Workshop Il 5 - 32

Summary

In this lesson, you should have learned how to:
« Manage constraints

« Create and use temporary tables

« Create and use external tables

ORACLE

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

In this lesson, you learned how to perform the following tasks for schema object management:
» Alter tables to add or modify columns or constraints.

» Usethe ORGANIZATION EXTERNAL clause of the CREATE TARLE statement to create
an external table. An external table is a read-only table whose metadata is stored in the
database but whose data is stored outside the database.

+ Use external tables to query data without first loading it into the database.

Oracle Database 12c¢: SQL Workshop Il 5 -33

Practice 5: Overview

This practice covers the following topics:
« Adding and dropping constraints
« Deferring constraints
« Creating external tables

ORACLE

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

In this practice, you use the ALTER TABLE command to add, drop and defer constraints. You
create external tables.

Oracle Database 12c¢: SQL Workshop Il 5 -34

Retrieving Data by Using Subqueries

ORACLE

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

Objectives

After completing this lesson, you should be able to:
* Write a multiple-column subquery

» Use scalar subqueries in SQL

- Solve problems with correlated subqueries

« Update and delete rows by using correlated subqueries
 Use the EXISTS and NOT EXISTS operators
 Use the WITH clause

ORACLE

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

In this lesson, you learn how to write multiple-column subqueries and subqueries in the FROM
clause of a SELECT statement. You also learn how to solve problems by using scalar,
correlated subqueries and the WITH clause.

Oracle Database 12c¢: SQL Workshop Il 6 -2

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS COMPUTER IS STRICTLY PROHIBITED

Lesson Agenda

* Retrieving data by using a subquery as a source
« Writing a multiple-column subquery

« Using scalar subqueries in SQL

« Solving problems with correlated subqueries

* Using the EXISTS and NOT EXISTS operators

« Using the WITH clause

ORACLE

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

Oracle Database 12¢: SQL Workshop Il 6 -3

Oracle University and Egabi Solutions use only

Retrieving Data by Using a Subquery as a Source

SELECT department name, city

FROM departments

NATURAL JOIN ((SELECT l.location id, l.city, l.country id
FROM locations 1

JOIN countries c

ON(l.country id = c.country id)

JOIN regions USING(region id)

WHERE region name = 'Europe');

@ oerarRTMENT_MAME | ciTY
1 Human Resources .London
2 Sales Oxford
3 Public Relations Munich

ORACLE

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

You can use a subquery in the FROM clause of a SELECT statement, which is very similar to
how views are used. A subquery in the FROM clause of a SELECT statement is also called an
inline view. A subquery in the FROM clause of a SELECT statement defines a data source for
that particular SELECT statement, and only that SELECT statement. As with a database view,
the SELECT statement in the subquery can be as simple or as complex as you like.

When a database view is created, the associated SELECT statement is stored in the data
dictionary. In situations where you do not have the necessary privileges to create database
views, or when you would like to test the suitability of a SELECT statement to become a view,
you can use an inline view.

Withinline views, you can have all the code needed to support the query in one place. This
means that you can avoid the complexity of creating a separate database view. The example
in the slide shows how to use an inline view to display the department name and the city in
Europe. The subquery in the FROM clause fetches the location ID, city name, and the country
by joining three different tables. The output of the inner query is considered as a table for the
outer query. The inner query is similar to that of a database view but does not have any
physical name.

Oracle Database 12c¢: SQL Workshop Il 6 -4

You can display the same output as in the example in the slide by performing the following
two steps:
1. Create a database view:
CREATE OR REPLACE VIEW european cities
AS
SELECT 1l.location id, l.city, l.country id
FROM locations 1
JOIN countries c
ON(l.country id = c.country id)
JOIN regions USING (region id)
WHERE region name = 'Europe';
2. Join the EUROPEAN CITIES view with the DEPARTMENTS table:
SELECT department name, city
FROM departments
NATURAL JOIN european cities;

Note: You learned how to create database views in the lesson titled Creating Views.

Oracle Database 12c¢: SQL Workshop Il 6 -5

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS COMPUTER IS STRICTLY PROHIBITED

Lesson Agenda

« Retrieving data by using a subquery as a source
* Writing a multiple-column subquery

« Using scalar subqueries in SQL

« Solving problems with correlated subqueries

* Using the EXISTS and NOT EXISTS operators

« Using the WITH clause

ORACLE

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

Oracle Database 12¢: SQL Workshop Il 6 -6

Oracle University and Egabi Solutions use only

Multiple-Column Subqueries

Main query]
B ——
WHERE (MANAGER ID, DEPARTMENT ID) IN
3 _

Subquery
100 90
102 60
124 50

Each row of the main query is compared to values from a
multiple-row and multiple-column subquery.

ORACLE

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

So far, you have written single-row subqueries and multiple-row subqueries where only one
column is returned by the inner SELECT statement and this is used to evaluate the expression
in the parent SELECT statement. If you want to compare two or more columns, you must write
a compound WHERE clause using logical operators. Using multiple-column subqueries, you
can combine duplicate WHERE conditions into a single WHERE clause.

Syntax
SELECT column, column,
FROM table
WHERE (column, column, ...) IN

(SELECT column, column,
FROM table
WHERE condition) ;
The graphic in the slide illustrates that the values of MANAGER ID and DEPARTMENT ID from
the main query are being compared with the MANAGER ID and DEPARTMENT _ID values
retrieved by the subquery. Because the number of columns that are being compared is more
than one, the example qualifies as a multiple-column subquery.

Note: Before you run the examples in the next few slides, you need to create the empl demo
table and populate data into it by using the 1ab_ 06 insert empdata.sql file.

Oracle Database 12¢: SQL Workshop Il 6 -7

Column Comparisons

Multiple-column comparisons involving subqueries can be:
* Nonpairwise comparisons
« Pairwise comparisons

ORACLE

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

Pairwise Versus Nonpairwise Comparisons

Multiple-column comparisons involving subqueries can be nonpairwise comparisons or
pairwise comparisons. If you consider the example “Display the details of the employees who
work in the same department, and have the same manager, as ‘Daniel’?,” you get the correct
result with the following statement:

SELECT first name, last name, manager id, department id
FROM empl demo
WHERE manager id IN (SELECT manager id
FROM empl demo
WHERE first name = 'Daniel')
AND department id IN (SELECT department id
FROM empl demo
WHERE first name = 'Daniel');
There is only one “Daniel” in the EMPL_DEMO table (Daniel Faviet, who is managed by
employee 108 and works in department 100). However, if the subqueries return more than
one row, the result might not be correct. For example, if you run the same query but substitute
“John” for “Daniel,” you get an incorrect result. This is because the combination of
department idand manager idisimportant. To get the correct result for this query, you
need a pairwise comparison.

Oracle Database 12c¢: SQL Workshop Il 6 -8

Pairwise Comparison Subquery

Display the details of the employees who are managed by the
same manager and work in the same department as
employees with the first name of “John.”

SELECT employee id, manager id, department id

FROM empl demo

WHERE (manager id, department id) IN

(SELECT manager id, department id
FROM empl demo

WHERE first name = 'John')

AND first name <> 'John';

ORACLE

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

The example in the slide compares the combination of values in the MANAGER _ID column
and the DEPARTMENT ID column of each row in the EMPL_DEMO table with the values in the
MANAGER_ID column and the DEPARTMENT ID column for the employees with the

FIRST NAME of “John.” First, the subquery to retrieve the MANAGER ID and
DEPARTMENT ID values for the employees with the FIRST NAME of “John” is executed. This
subquery returns the following:

MANAGER_ID ([DEPARTMENT_ID

1 108 100
2 123 S0
3 100 80

Oracle Database 12c¢: SQL Workshop Il 6 -9

These values are compared with the MANAGER ID column and the DEPARTMENT ID column of
each row in the EMPL_DEMO table. If the combination matches, the row is displayed. In the
output, the records of the employees with the FIRST NAME of “John” will not be displayed. The
following is the output of the query in the slide:

EMPLOVEE_ID | MAMAGER_ID ([DEPARTMENT_ID
1 113 108 100
2 112 108 100
3 111 108 100
4 109 108 100
5 195 123 50
& 104 123 50
7 193 123 50
8 192 123 50
9 140 123 50
10 138 123 50)
11 137 123 50)
12 149 100 80
13 148 100 80
14 147 100 80
15 146 100 80

Oracle Database 12c¢: SQL Workshop Il 6 -10

Nonpairwise Comparison Subquery

Display the details of the employees who are managed by the
same manager as the employees with the first name of “John”
and work in the same department as the employees with the
first name of “John.”

SELECT employee id, manager id, department id
FROM empl demo

WHERE manager id IN

(SELECT manager id

FROM empl demo

WHERE first name = 'John')
AND department id IN

(SELECT department id

FROM empl demo

WHERE first name = 'John')
AND first name <> 'John';

ORACLE

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

The example shows a nonpairwise comparison of the columns. First, the subquery to retrieve
the MANAGER _ID values for the employees with the FIRST NAME of “John” is executed.
Similarly, the second subquery to retrieve the DEPARTMENT _ID values for the employees with
the FIRST NAME of “John” is executed. The retrieved values of the MANAGER ID and
DEPARTMENT ID columns are compared with the MANAGER ID and DEPARTMENT ID
columns for each row in the EMPL_DEMO table. If the MANAGER ID column of the row in the
EMPL_DEMO table matches with any of the values of MANAGER ID retrieved by the inner
subquery, and if the DEPARTMENT _ID column of the row in the EMPL_DEMO table matches
with any of the values of DEPARTMENT ID retrieved by the second subquery, the record is

displayed.

Oracle Database 12c¢: SQL Workshop Il 6 - 11

The following is the output of the query in the slide:

EMPLOYEE_ID | MANAGER_ID | DEPARTMENT_ID

1 109 108 100
2 111 108 100
3 112 108 100
4 113 108 100
5 120 100 a0
é 121 100 5
7 122 100 50
] 123 100 a0
9 124 100 5
10 137 123 50
11 138 123 a0
12 140 123 5
13 192 123 50
14 193 123 a0
15 194 123 56
16 195 123 50
17 146 100 =]
13 147 100 B0
19 148 100 g0
20 149 100 B0

This query retrieves more rows than the pairwise comparison (those with the combination of
manager 1id=100and department 1d=50 or 80, although no employee named “John” has
such a combination).

Oracle Database 12c¢: SQL Workshop Il 6 -12

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS COMPUTER IS STRICTLY PROHIBITED

Lesson Agenda

« Retrieving data by using a subquery as a source
* Writing a multiple-column subquery

» Using scalar subqueries in SQL

« Solving problems with correlated subqueries

* Using the EXISTS and NOT EXISTS operators

« Using the WITH clause

ORACLE

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

Oracle Database 12c: SQL Workshop Il 6 -13

Oracle University and Egabi Solutions use only

Scalar Subquery Expressions

« A scalar subquery expression is a subquery that
returns exactly one column value from one row.

« Scalar subqueries can be used in:
— The condition and expression part of DECODE and CASE
— All clauses of SELECT except GROUP BY
— The SET clause and WHERE clause of an UPDATE statement

ORACLE

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

A subquery that returns exactly one column value from one row is also referred to as a scalar

subquery. Multiple-column subqueries that are written to compare two or more columns, using
a compound WHERE clause and logical operators, do not qualify as scalar subqueries.

The value of the scalar subquery expression is the value of the select list item of the
subquery. If the subquery returns 0 rows, the value of the scalar subquery expression is
NULL. If the subquery returns more than one row, the Oracle Server returns an error. The
Oracle Server has always supported the usage of a scalar subquery in a SELECT statement.
You can use scalar subqueries in:

« The condition and expression part of DECODE and CASE
» All clauses of SELECT except GROUP BY
» The SET clause and WHERE clause of an UPDATE statement
However, scalar subqueries are not valid expressions in the following places:

» As default values for columns and hash expressions for clusters
* Inthe RETURNING clause of data manipulation language (DML) statements

» As the basis of a function-based index

* In GROUP BY clauses, CHECK constraints

* |In CONNECT BY clauses

+ In statements that are unrelated to queries, such as CREATE PROFILE

Oracle Database 12c¢: SQL Workshop Il 6 - 14

Scalar Subqueries: Examples

« Scalar subqueries in CASE expressions:

SELECT employee id, last name,
(CASE 20
WHEN department id =+
(SELECT department id
FROM departments
WHERE location id = 1800)
THEN 'Canada' ELSE 'USA' END) location
FROM employees;

« Scalar subqueries in the ORDER BY clause:

SELECT employee id, last name

FROM employees e

ORDER BY | (SELECT department name

FROM departments d

WHERE e.department id = d.department id);

ORACLE

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

Oracle Database 12¢: SQL Workshop Il 6 -15

EMPLOYEEID [LasT_mMamE|f LocaTion
1 1000 K3 i 58
2 101 Kochhar Use,
3 102 De Haan Usa
4 103 Hunold UsA
5 104 Ernst s
A 105 Austin Usa

Oracle Database 12c¢: SQL Workshop Il 6 -15

The second example in the slide demonstrates that scalar subqueries can be used in the ORDER
BY clause. The example orders the output based on the DEPARTMENT NAME by matching the
DEPARTMENT ID from the EMPLOYEES table with the DEPARTMENT ID from the
DEPARTMENTS table. This comparison is done in a scalar subquery in the ORDER BY clause.
The following is the result of the second example:

EMPLOVEEID ([LAST_NAME|
205 Higains
206 Gietz
200 Whalen
100 King
101 Kochhar
102 De Haan
109 Faviet
108 Greenberg
112 Urman
111 Sciarra

W W N s

=
]

The second example uses a correlated subquery. In a correlated subquery, the subquery
references a column from a table referred to in the parent statement. Correlated subqueries are
explained later in this lesson.

Oracle Database 12c¢: SQL Workshop Il 6 -16

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS COMPUTER IS STRICTLY PROHIBITED

Lesson Agenda

« Retrieving data by using a subquery as a source
« Writing a multiple-column subquery

« Using scalar subqueries in SQL

« Solving problems with correlated subqueries

* Using the EXISTS and NOT EXISTS operators

« Using the WITH clause

ORACLE

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

Oracle Database 12c: SQL Workshop Il 6 -17

Oracle University and Egabi Solutions use only

Correlated Subqueries

Correlated subqueries are used for row-by-row processing.
Each subquery is executed once for every row of the outer

query.

GET
candidate row from outer query

\ 4

EXECUTE
inner query using candidate row value

USE

values from inner query to qualify or
disqualify candidate row

ORACLE

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

The Oracle Server performs a correlated subquery when the subquery references a column
from a table referred to in the parent statement. A correlated subquery is evaluated once for
each row processed by the parent statement. The parent statement can be a SELECT,
UPDATE, or DELETE statement.

Nested Subqueries Versus Correlated Subqueries

With a normal nested subquery, the inner SELECT query runs first and executes once,
returning values to be used by the main query. A correlated subquery, however, executes
once for each candidate row considered by the outer query. That is, the inner query is driven
by the outer query.

Nested Subquery Execution
« The inner query executes first and finds a value.
» The outer query executes once, using the value from the inner query.
Correlated Subquery Execution
» Get a candidate row (fetched by the outer query).
» Execute the inner query by using the value of the candidate row.
» Use the values resulting from the inner query to qualify or disqualify the candidate.
* Repeat until no candidate row remains.

Oracle Database 12c¢: SQL Workshop Il 6 -18

Correlated Subqueries

The subquery references a column from a table in the parent
query.

SELECT columnl, column2, c
FROM tablel Outer;tab1e|
WHERE columnl operator
(SELECT columnl, column2
FROM table2
WHERE exprl =
|Outer;tab1e4expr2);

ORACLE

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

A correlated subquery is one way of reading every row in a table and comparing values in
each row against related data. It is used whenever a subquery must return a different result or
set of results for each candidate row considered by the main query. That is, you use a
correlated subquery to answer a multipart question whose answer depends on the value in
each row processed by the parent statement.

The Oracle Server performs a correlated subquery when the subquery references a column
from a table in the parent query.

Note: You can use the ANY and ALL operators in a correlated subquery.

Oracle Database 12c¢: SQL Workshop Il 6 -19

Using Correlated Subqueries

Find all employees who earn more than the average salary in
their department.

SELECT last name, salary, department id

FROM employees outer table

WHERE salary >
| (SELECT AVG(salary)

FROM employees inner table

WHERE inner table.department id =

outer table.department id);

Each time a row from
the outer query

is processed, the
inner query is
evaluated.

ORACLE

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

The example in the slide finds which employees earn more than the average salary of their
department. In this case, the correlated subquery specifically computes the average salary for
each department.

Because both the outer query and inner query use the EMPLOYEES table in the FROM clause,
an alias is given to EMPLOYEES in the outer SELECT statement for clarity. The alias makes the
entire SELECT statement more readable. Without the alias, the query would not work properly

because the inner statement would not be able to distinguish the inner table column from the
outer table column.

Oracle Database 12c¢: SQL Workshop Il 6 - 20

Using Correlated Subqueries

Display details of those employees who have changed
jobs at least twice.

SELECT e.employee id, last name,e.job id
FROM employees e
WHERE 2 <= (SELECT COUNT (*)
FROM job history
WHERE employee id = e.employee id);

g empLoveeD [LAST_NAME:{'{] JOB_ID |
1 101 Kochhar BD_VP
e 176 Taylor SA_REP
3 200 Whalen AD_ASST

ORACLE

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

The example in the slide displays the details of those employees who have changed jobs at
least twice. The Oracle Server evaluates a correlated subquery as follows:
1. Select a row from the table specified in the outer query. This will be the current candidate
row.

2. Store the value of the column referenced in the subquery from this candidate row. (In the
example in the slide, the column referenced in the subquery is E. EMPLOYEE ID.)

3. Perform the subquery with its condition referencing the value from the outer query’s
candidate row. (In the example in the slide, the COUNT (*) group function is evaluated
based on the value of the E. EMPLOYEE ID column obtained in step 2.)

4. Evaluate the WHERE clause of the outer query on the basis of results of the subquery
performed in step 3. This determines whether the candidate row is selected for output. (In

the example, the number of times an employee has changed jobs, evaluated by the
subquery, is compared with 2 in the WHERE clause of the outer query. If the condition is

satisfied, that employee record is displayed.)
5. Repeat the procedure for the next candidate row of the table, and so on, until all the rows
in the table have been processed.
The correlation is established by using an element from the outer query in the subquery. In
this example, you compare EMPLOYEE_ID from the table in the subquery with EMPLOYEE ID
from the table in the outer query.

Oracle Database 12c¢: SQL Workshop Il 6 - 21

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS COMPUTER IS STRICTLY PROHIBITED

Lesson Agenda

« Retrieving data by using a subquery as a source
« Writing a multiple-column subquery

« Using scalar subqueries in SQL

« Solving problems with correlated subqueries

¢ Using the EXISTS and NOT EXISTS operators

« Using the WITH clause

ORACLE

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

Oracle Database 12c: SQL Workshop Il 6 - 22

Oracle University and Egabi Solutions use only

Using the EXISTs Operator

 The EXISTS operator tests for existence of rows in the
results set of the subquery.

- |If a subquery row value is found:
— The search does not continue in the inner query
— The condition is flagged TRUE

- |If a subquery row value is not found:
— The condition is flagged FALSE

— The search continues in the inner query

ORACLE
Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

With nesting SELECT statements, all logical operators are valid. In addition, you can use the
EXISTS operator. This operator is frequently used with correlated subqueries to test whether
a value retrieved by the outer query exists in the results set of the values retrieved by the
inner query. If the subquery returns at least one row, the operator returns TRUE. If the value
does not exist, it returns FALSE. Accordingly, NOT EXISTS tests whether a value retrieved by
the outer query is not a part of the results set of the values retrieved by the inner query.

Oracle Database 12c¢: SQL Workshop Il 6 - 23

Using the EXISTsS Operator

SELECT employee id, last name, job id, department id
FROM employees outer
WHERE | EXISTS |(SELECT 'X'
FROM employees
WHERE manager id =
outer.employee id) ;

[[EMPLOYEE D[] LAST_NAME|[JOB_ID] DEPARTMENT_ID |
1 100 King AD_PRES a0
2 101 Kochhar AD_WP 90
3 102 De Haan AD_WP S0
4 103 Hunold IT_PROG 60
5 108 Greenberg FI_MGR 100
6 114 Raphaely PU_MA&N 30
7 120 Weiss ST_MAN 50
8 121 Fripp ST_MAN 50

ORACLE

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

The EXISTS operator ensures that the search in the inner query does not continue when at
least one match is found for the manager and employee number by the condition:
WHERE manager id = outer.employee id.

Note that the inner SELECT query does not need to return a specific value, so a constant can
be selected.

Oracle Database 12c¢: SQL Workshop Il 6 - 24

Find All Departments
That Do Not Have Any Employees

SELECT department id, department name
FROM departments d
WHERE| NOT EXISTS |[(SELECT 'X!'
FROM employees
WHERE department id = d.department id);

B DEPARTMENT_ID | DEPARTMENT_NAME |
120 Treasury
130 Corporate Tax
140 Control &nd Credit
150 Shareholder Services
160 Benefits
170 Manufacturing
180 Construction
190 Contracting
200 Operations
210 IT Support

WO N ;N s W N

[
=1

All Rows Fetched: 16

ORACLE

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

Using the NOT EXISTS Operator

Alternative Solution
A NOT IN construct can be used as an alternative for a NOT EXISTS operator, as shown in
the following example:
SELECT department id, department name
FROM departments
WHERE department id NOT IN (SELECT department id
FROM employees) ;

P eehed

However, NOT IN evaluatesto FALSE if any member of the set is a NULL value. Therefore,
your query will not return any rows even if there are rows in the departments table that
satisfy the WHERE condition.

Oracle Database 12c¢: SQL Workshop Il 6 - 25

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS COMPUTER IS STRICTLY PROHIBITED

Lesson Agenda

« Retrieving data by using a subquery as a source
« Writing a multiple-column subquery

« Using scalar subqueries in SQL

« Solving problems with correlated subqueries

* Using the EXISTS and NOT EXISTS operators

* Using the WITH clause

ORACLE

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

Oracle Database 12c: SQL Workshop Il 6 - 26

Oracle University and Egabi Solutions use only

WITH Clause

« Using the WITH clause, you can use the same query block
in @ SELECT statement when it occurs more than once

within a complex query.
« The WITH clause retrieves the results of a query block and
stores it in the user’s temporary tablespace.

« The WITH clause may improve performance.

ORACLE

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

Using the WITH clause, you can define a query block before using it in a query. The WITH
clause (formally known as subquery factoring clause)enables you to reuse the same
query block in a SELECT statement when it occurs more than once within a complex query.
This is particularly useful when a query has many references to the same query block and
there are joins and aggregations.
Using the WITH clause, you can reuse the same query when it is costly to evaluate the query
block and it occurs more than once within a complex query. Using the WITH clause, the
Oracle Server retrieves the results of a query block and stores it in the user’s temporary
tablespace. This can improve performance.
WITH Clause Benefits

» Makes the query easy to read

» Evaluates a clause only once, even if it appears multiple times in the query

* In most cases, may improve performance for large queries

Oracle Database 12c¢: SQL Workshop Il 6 - 27

WITH Clause: Example

Using the WITH clause, write a query to display the department
name and total salaries for those departments whose total
salary is greater than the average salary across departments.

ORACLE

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

The problem in the slide would require the following intermediate calculations:

1. Calculate the total salary for every department, and store the result using a WITH
clause.

2. Calculate the average salary across departments, and store the result using a WITH
clause.

3. Compare the total salary calculated in the first step with the average salary calculated in
the second step. If the total salary for a particular department is greater than the average
salary across departments, display the department name and the total salary for that
department.

The solution for this problem is provided on the next page.

Oracle Database 12c: SQL Workshop Il 6 - 28

WITH Clause: Example

WITH
dept costs| AS (
SELECT d.department name, SUM(e.salary) AS dept total
FROM employees e JOIN departments d

ON e.department id = d.department id
GROUP BY d.department name),
| avg_cost | AS (

SELECT SUM(dept total) /COUNT (*) AS dept_avg
FROM |dept costs)
SELECT *
FROM |dept costs|
WHERE dept total >
(SELECT dept avg
FROM| avg cost) |
ORDER BY department name;

ORACLE

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

The SQL code in the slide is an example of a situation in which you can improve performance
and write SQL more simply by using the WITH clause. The query creates the query names
DEPT COSTS and AVG_COST and then uses them in the body of the main query. Internally,
the WITH clause is resolved either as an inline view or a temporary table. The optimizer
chooses the appropriate resolution depending on the cost or benefit of temporarily storing the
results of the WITH clause.

The output generated by the SQL code in the slide is as follows:

DEPARTMENT_MAME DEPT_TOTAL
Sales 304500
Shipping 156400

WITH Clause Usage Notes
* Itis used only with SELECT statements.
* A query name is visible to all WITH element query blocks (including their subquery
blocks) defined after it and the main query block itself (including its subquery blocks).

* Whenthe query name is the same as an existing table name, the parser searches from
the inside out, and the query block name takes precedence over the table name.
 The WITH clause can hold more than one query. Each query is then separated by a

comma.
Oracle Database 12c¢: SQL Workshop Il 6 -29

Recursive WITH Clause

The Recursive WITH clause:

- Enables formulation of recursive queries
- Creates a query with a name, called the Recursive WITH
element name

« Contains two types of query block members: an anchor
and a recursive

* Is ANSI-compatible

|

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

The WITH clause has been extended to enable formulation of recursive queries.

Recursive WITH defines a recursive query with a name, the Recursive WITH element name.
The Recursive WITH element definition must contain at least two query blocks: an anchor
member and a recursive member. There can be multiple anchor members, but there can be
only a single recursive member.

Recursive WITH clause complies with the American National Standards Institute (ANSI)
standard.

Recursive WITH can be used to query hierarchical data such as organization charts.

Oracle Database 12¢: SQL Workshop Il 6 - 30

Recursive WITH Clause: Example

FLIGHTS Table 2 New York Boston 1.1

3 Los Angeles New York 5.8

@ source | DesTIN |[§ FLIGHT_TIME |
1 San Jose Los Angeles 1.3 @

WITH Reachable From| (Source, Destin, TotalFlightTime) AS<
(

SELECT Source, Destin, Flight time
FROM Flights
UNION ALL
SELECT incoming.Source, outgoing.Destin,
incoming.TotalFlightTime+outgoing.Flight time @

FROM Reachable From incoming, Flights outgoing
WHERE incoming.Destin = outgoing.Source

)
SELECT Source, Destin, TotalFlightTime 13

FROM Reachable From; B source [§ oEsTIN [TOTALFLIGHTTIME
1 5an Jose Ii.os Aﬂge'le-s. 1.3.
2 New York Boston 1.1
3 Los Angeles New York 5.8
4 Los Angeles Boston 6.9

5 5an Jose New York 7.1
6 San Jose Boston 8.2
ORACLE

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

Example 1 in the slide displays records from a FLIGHTS table describing flights between two
cities.

Using the query in example 2, you query the FLIGHTS table to display the total flight time
between any source and destination. The WITH clause in the query, which is named
Reachable From, has a UNION ALL query with two branches. The first branch is the anchor
branch, which selects all the rows from the F1ights table. The second branch is the
recursive branch. It joins the contents of Reachable Fromto the F1ights table to find
other cities that can be reached, and adds these to the content of Reachable From. The
operation will finish when no more rows are found by the recursive branch.

Example 3 displays the result of the query that selects everything from the WITH clause
element Reachable From.

For details, see:
* Oracle Database SQL Language Reference 12c Release 1.0
* Oracle Database Data Warehousing Guide 12¢ Release 1.0

Oracle Database 12c¢: SQL Workshop Il 6 - 31

Quiz

With a correlated subquery, the inner SELECT statement drives
the outer SELECT statement.

a. True
b. False

ORACLE

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

Answer: b

Oracle Database 12c¢: SQL Workshop Il 6 - 32

Summary

In this lesson, you should have learned how to:
* Write a multiple-column subquery

» Use scalar subqueries in SQL

* Solve problems with correlated subqueries

« Update and delete rows by using correlated subqueries
 Use the EXISTS and NOT EXISTS operators
 Use the WITH clause

ORACLE

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

You can use multiple-column subqueries to combine multiple WHERE conditions in a single
WHERE clause. Column comparisons in a multiple-column subquery can be pairwise
comparisons or nonpairwise comparisons.
You can use a subquery to define a table to be operated on by a containing query.
Scalar subqueries can be used in:

« The condition and expression part of DECODE and CASE

» All clauses of SELECT except GROUP BY

* A SET clause and WHERE clause of the UPDATE statement
The Oracle Server performs a correlated subquery when the subquery references a column
from a table referred to in the parent statement. A correlated subquery is evaluated once for
each row processed by the parent statement. The parent statement can be a SELECT
statement. Using the WITH clause, you can reuse the same query when it is costly to re-
evaluate the query block and it occurs more than once within a complex query.

Oracle Database 12c¢: SQL Workshop Il 6 - 33

Practice 6: Overview

This practice covers the following topics:
« Creating multiple-column subqueries
« Writing correlated subqueries
« Using the EXISTS operator

« Using scalar subqueries
* Using the WITH clause

ORACLE

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

In this practice, you write multiple-column subqueries, and correlated and scalar subqueries.
You also solve problems by writing the WITH clause.

Oracle Database 12c¢: SQL Workshop Il 6 - 34

Manipulating Data by Using Subqueries

ORACLE

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

Objectives

After completing this lesson, you should be able to:
« Use subqueries to manipulate data
* Insert by using a subquery as a target

« Usethe WITH CHECK OPTION keyword on DML
statements

« Use correlated subqueries to update and delete rows

ORACLE

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

In this lesson, you learn how to manipulate data in the Oracle database by using subqueries.
You also learn how to solve problems by using correlated subqueries.

Oracle Database 12c¢: SQL Workshop Il 7 -2

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS COMPUTER IS STRICTLY PROHIBITED

Lesson Agenda

* Using subqueries to manipulate data
« Inserting by using a subquery as a target

 Using the WITH CHECK OPTION keyword on DML
statements

« Using correlated subqueries to update and delete rows

ORACLE

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

Oracle Database 12c: SQL Workshop Il 7 -3

Oracle University and Egabi Solutions use only

Using Subqueries to Manipulate Data

You can use subqueries in data manipulation language (DML)
statements to:

* Retrieve data by using an inline view
« Copy data from one table to another

- Update data in one table based on the values of another
table

 Delete rows from one table based on rows in another table

ORACLE

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

Subqueries can be used to retrieve data from a table that you can use as input to an INSERT
into a different table. In this way, you can easily copy large volumes of data from one table to
another with one single SELECT statement. Similarly, you can use subqueries to do mass
updates and deletes by using them in the WHERE clause of the UPDATE and DELETE
statements. You can also use subqueries in the FROM clause of a SELECT statement. This is
called an inline view.

Note: You learned how to update and delete rows based on another table in the course titled
Oracle Database: SQL Workshop I.

Oracle Database 12¢c: SQL Workshop Il 7 -4

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS COMPUTER IS STRICTLY PROHIBITED

Lesson Agenda

« Using subqueries to manipulate data
* Inserting by using a subquery as a target

 Using the WITH CHECK OPTION keyword on DML
statements

« Using correlated subqueries to update and delete rows

ORACLE

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

Oracle Database 12c: SQL Workshop Il 7 -5

Oracle University and Egabi Solutions use only

Inserting by Using a Subquery as a Target

INSERT INTO (SELECT l.location id, l.city, l.country id
FROM loc 1
JOIN countries c
ON(l.country id = c.country id)
JOIN regions USING (region id)
WHERE region name = 'Europe')
VALUES (3300, 'Cardiff', 'UK');

“1 rows inserted.

ORACLE

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

You can use a subquery in place of the table name in the INTO clause of the INSERT
statement. The SELECT list of this subquery must have the same number of columns as the
column list of the VALUES clause. Any rules on the columns of the base table must be
followed in order for the INSERT statement to work successfully. For example, you cannot put
in a duplicate location ID or leave out a value for a mandatory NOT NULL column.

This use of subqueries helps you avoid having to create a view just for performing an
INSERT.

The example in the slide uses a subquery in the place of LOC to create a record for a new
European city.
Note: You can also perform the INSERT operation on the EUROPEAN CITIES view by using
the following code:

INSERT INTO european cities

VALUES (3300, 'Cardiff', 'UK');

For the example in the slide, the loc table is created by running the following statement:
CREATE TABLE loc AS SELECT * FROM locations;

Oracle Database 12c¢: SQL Workshopll 7 -6

Inserting by Using a Subquery as a Target

Verify the results.

SELECT location id, city, country id
FROM loc;

20 2900 Geneva CH
21 3000 Bern CH
22 3100 Utrecht HL
23 3200 Mexico City MX
24 3300 Cardiff UK

ORACLE

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

The example in the slide shows that the insert via the inline view created a new record in the
base table LoC.

The following example shows the results of the subquery that was used to identify the table
for the INSERT statement.

SELECT 1l.location id, l.city, l.country id

FROM loc 1

JOIN countries c

ON(l.country id = c.country id)

JOIN regions USING (region id)

WHERE region name = 'Europe';

LocaTiono [§ o [§ countRr_D|
1000 Roma IT
1100 venice IT
2400 London UK
2500 Oxford UK
2600 stretford UK
2700 Munich DE
2800 Genewa CH
3000 Bern CH
F1o0 Utrecht NL
3300 Cardiff UK

Oracle Database 12c¢: SQL Workshopll 7 -7

woom o™ N A W

=
=

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS COMPUTER IS STRICTLY PROHIBITED

Lesson Agenda

« Using subqueries to manipulate data
« Inserting by using a subquery as a target

* Using the WITH CHECK OPTION keyword on DML
statements

« Using correlated subqueries to update and delete rows

ORACLE

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

Oracle Database 12c: SQL Workshop Il 7 -8

Oracle University and Egabi Solutions use only

Using the WITH CHECK OPTION Keyword
on DML Statements

The WITH CHECK OPTION keyword prohibits you from changing
rows that are not in the subquery.

INSERT INTO (SELECT location id, city, country id
FROM loc
WHERE country id IN
(SELECT country id
FROM countries
NATURAL JOIN regions
WHERE region name = 'Europe')
| WITH CHECK OPTION |[)
VALUES (3600, 'Washington', 'US');

Error report:

SQL Error: ORA-01402: view WITH CHECK OPTION where-clause violation
01402. 00000 - "view WITH CHECK OPTION where-clause violation"
*Cause:

*Action:

ORACLE
Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

Specify the WITH CHECK OPTION keyword to indicate that if the subquery is used in place of a
table in an INSERT, UPDATE, or DELETE statement, no changes that will produce rows that
are not included in the subquery are permitted to that table.

The example in the slide shows how to use an inline view with WITH CHECK OPTION. The
INSERT statement prevents the creation of records in the LOC table for a city that is not in

Europe.
The following example executes successfully because of the changes in the VALUES list.
INSERT INTO (SELECT location_ id, city, country id
FROM loc
WHERE country id IN
(SELECT country id
FROM countries
NATURAL JOIN regions
WHERE region name = 'Europe')
WITH CHECK OPTION)
VALUES (3500, 'Berlin', 'DE');

Oracle Database 12c¢: SQL Workshopll 7 -9

The use of an inline view with the WITH CHECK OPTION provides an easy method to prevent
changes to the table.
To prevent the creation of a non-European city, you can also use a database view by
performing the following steps:
1. Create a database view:
CREATE OR REPLACE VIEW european cities
AS
SELECT location id, city, country id
FROM locations
WHERE country id in
(SELECT country id
FROM countries
NATURAL JOIN regions
WHERE region name = 'Europe')
WITH CHECK OPTION;
2. Verify the results by inserting data:
INSERT INTO european cities
VALUES (3400, 'New York','US');

The second step produces the same error as shown in the slide.

Oracle Database 12c¢: SQL Workshop Il 7 -10

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS COMPUTER IS STRICTLY PROHIBITED

Lesson Agenda

« Using subqueries to manipulate data
« Inserting by using a subquery as a target

 Using the WITH CHECK OPTION keyword on DML
statements

« Using correlated subqueries to update and delete rows

ORACLE

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

Oracle Database 12c: SQL Workshop Il 7 - 11

Oracle University and Egabi Solutions use only

Correlated UPDATE

Use a correlated subquery to update rows in one table based
on rows from another table.

UPDATE tablel aliasl
SET column = (SELECT expression
FROM table2 alias2
WHERE aliasl.column =
alias2.column) ;

ORACLE

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

In the case of the UPDATE statement, you can use a correlated subquery to update rows in
one table based on rows from another table.

Oracle Database 12c¢: SQL Workshop Il 7 -12

Using Correlated UPDATE

« Denormalize the EMPLé6 table by adding a column to store
the department name.

« Populate the table by using a correlated update.

ALTER TABLE emplé6
ADD (department name VARCHAR2 (25)) ;

UPDATE empl6 e
SET department name =
(SELECT department name
FROM departments d
WHERE e.department id = d.department id);

ORACLE

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

The example in the slide denormalizes the EMPL6 table by adding a column to store the
department name and then populates the table by using a correlated update.

Following is another example for a correlated update.
Problem Statement

The REWARDS table has a list of employees who have exceeded expectations in their
performance. Use a correlated subquery to update rows in the EMPL6 table based on rows
from the REWARDS table:
UPDATE emplé6
SET salary = (SELECT emplé6.salary + rewards.pay raise
FROM rewards
WHERE employee id =
emplé.employee id
AND payraise date =
(SELECT MAX (payraise date)
FROM rewards
WHERE employee id =empl6.employee id))
WHERE empl6.employee id
IN (SELECT employee id FROM rewards) ;

Oracle Database 12c¢: SQL Workshop Il 7 -13

This example uses the REWARDS table. The REWARDS table has the following columns:
EMPLOYEE ID, PAY RAISE, and PAYRAISE DATE. Every time an employee gets a pay
raise, a record with details such as the employee 1D, the amount of the pay raise, and the
date of receipt of the pay raise is inserted into the REWARDS table. The REWARDS table can
contain more than one record for an employee. The PAYRAISE DATE column is used to
identify the most recent pay raise received by an employee.

In the example, the SALARY column in the EMPL6 table is updated to reflect the latest pay

raise received by the employee. This is done by adding the current salary of the employee
with the corresponding pay raise from the REWARDS table.

Oracle Database 12c¢: SQL Workshop Il 7 -14

Correlated DELETE

Use a correlated subquery to delete rows in one table based on
rows from another table.

DELETE FROM tablel aliasl
WHERE column operator
(SELECT expression
FROM table2 alias2
WHERE aliasl.column = alias2.column);

ORACLE

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

In the case of a DELETE statement, you can use a correlated subquery to delete only those
rows that also exist in another table. If you decide that you will maintain only the last four job
history records in the JOB_ HISTORY table, when an employee transfers to a fifth job, you
delete the oldest JOB_ HISTORY row by looking up the JOB_HISTORY table for the
MIN (START DATE) for the employee. The following code illustrates how the preceding
operation can be performed using a correlated DELETE:
DELETE FROM job history JH
WHERE employee id =
(SELECT employee id
FROM employees E
WHERE JH.employee id = E.employee id
AND START DATE =
(SELECT MIN(start_date)
FROM job history JH
WHERE JH.employee id = E.employee id)
AND 5 > (SELECT COUNT (*)
FROM job history JH
WHERE JH.employee id = E.employee id
GROUP BY EMPLOYEE ID
HAVING COUNT (*) >= 4));

Oracle Database 12c¢: SQL Workshop Il 7 -15

Using Correlated DELETE

Use a correlated subquery to delete only those rows from the
EMPL6 table that also exist in the EMP_HISTORY table.

DELETE FROM emplé6 E
WHERE employee id =
(SELECT employee id
FROM emp history
WHERE employee id = E.employee id);

ORACLE

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

Example
Two tables are used in this example. They are:
+ The EMPL6 table, which provides details of all the current employees
« The EMP_HISTORY table, which provides details of previous employees

EMP_HISTORY contains data regarding previous employees, so it would be erroneous if the
same employee’s record existed in both the EMPL6 and EMP_HISTORY tables. You can
delete such erroneous records by using the correlated subquery shown in the slide.

Oracle Database 12c¢: SQL Workshop Il 7 -16

Summary

In this lesson, you should have learned how to:

« Manipulate data by using subqueries

* Insert by using a subquery as a target

« Usethe WITH CHECK OPTION keyword on DML
statements

« Use correlated subqueries with UPDATE and DELETE
statements

ORACLE

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

In this lesson, you should have learned how to manipulate data in the Oracle database by
using subqueries. You learn how to use the WITH CHECK OPTION keyword on DML
statements and use correlated subqueries with UPDATE and DELETE statements.

Oracle Database 12c¢: SQL Workshop Il 7 -17

Practice 7: Overview

This practice covers the following topics:
« Using subqgueries to manipulate data
« Inserting by using a subquery as a target

* Using the WITH CHECK OPTION keyword on DML
statements

« Using correlated subqueries to update and delete rows

ORACLE

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

In this practice, you learn the concepts of manipulating data by using subqueries, WITH
CHECK OPTION, and correlated subqueries to UPDATE and DELETE rows.

Oracle Database 12c¢: SQL Workshop Il 7 -18

Controlling User Access

ORACLE

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

Objectives

After completing this lesson, you should be able to do the
following:

- Differentiate system privileges from object privileges
- Grant privileges on tables

« Grant roles

« Distinguish between privileges and roles

ORACLE

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

In this lesson, you learn how to control database access to specific objects and add new
users with different levels of access privileges.

Oracle Database 12¢: SQL Workshop Il 8 -2

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS COMPUTER IS STRICTLY PROHIBITED

Lesson Agenda

« System privileges

« Creating a role

* Object privileges

« Revoking object privileges

ORACLE

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

Oracle Database 12¢: SQL Workshop Il 8 -3

Oracle University and Egabi Solutions use only

Controlling User Access

.

Database s
administrator =

Username and password
Privileges

Users

-

ORACLE

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

In a multiple-user environment, you want to maintain security of database access and use.
With Oracle Server database security, you can do the following:

« Control database access.
» Give access to specific objects in the database.
« Confirm given and received privileges with the Oracle data dictionary.

Database security can be classified into two categories: system security and data security.
System security covers access and use of the database at the system level, such as the
username and password, the disk space allocated to users, and the system operations that
users can perform. Database security covers access and use of the database objects and the
actions that those users can perform on the objects.

Oracle Database 12c¢: SQL Workshop Il 8 -4

Privileges

- Database security:
— System security
— Data security

- System privileges: Performing a particular action within the

database

« Object privileges: Manipulating the content of the database
objects

- Schemas: Collection of objects such as tables, views, and
sequences

ORACLE

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

A privilege is the right to execute particular SQL statements. The database administrator
(DBA) is a high-level user with the ability to create users and grant users access to the
database and its objects. Users require system privileges to gain access to the database and
object privileges to manipulate the content of the objects in the database. Users can also be
given the privilege to grant additional privileges to other users or to roles, which are named
groups of related privileges.

Schemas

A schema is a collection of objects such as tables, views, and sequences. The schema is
owned by a database user and has the same name as that user.

A system privilege is the right to perform a particular action, or to perform an action on any
schema objects of a particular type. An object privilege provides the user the ability to perform
a particular action on a specific schema object.

For more information, see the Oracle Database 2 Day DBA reference manual for Oracle
Database12c.

Oracle Database 12c¢: SQL Workshop Il 8 -5

System Privileges

* More than 200 privileges are available.
« The database administrator has high-level system
privileges for tasks such as:
— Creating new users
— Removing users
— Removing tables
— Backing up tables

ORACLE

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

More than 200 distinct system privileges are available for users and roles. Typically, system
privileges are provided by the database administrator (DBA).

The table SYSTEM PRIVILEGE MAP contains all the system privileges available, based on
the version release. This table is also used to map privilege type numbers to type names.

Typical DBA Privileges

System Privilege Operations Authorized

CREATE USER Grantee can create other Oracle users.

DROP USER Grantee can drop another user.

DROP ANY TABLE Grantee can drop a table in any schema.

BACKUP ANY TABLE Grantee can back up any table in any schema with

the export utility.

SELECT ANY TABLE Grantee can query tables, views, or materialized
views in any schema.

CREATE ANY TABLE Grantee can create tables in any schema.

Oracle Database 12c¢: SQL Workshop Il 8 -6

Creating Users

The DBA creates users with the CREATE USER statement.

CREATE USER user
IDENTIFIED BY password;

CREATE USER demo
IDENTIFIED BY demo;

ORACLE

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

The DBA creates the user by executing the CREATE USER statement. The user does not have

any privileges at this point. The DBA can then grant privileges to that user. These privileges
determine what the user can do at the database level.

The slide gives the abridged syntax for creating a user.
In the syntax:
user Is the name of the user to be created
Password Specifies that the user must log in with this password

For more information, see the Oracle Database SQL Language Reference for Oracle
Database12c.

Note: Starting with Oracle Database 11g, passwords are case-sensitive.

Oracle Database 12¢: SQL Workshop Il 8 -7

User System Privileges

« After a user is created, the DBA can grant specific system
privileges to that user.

GRANT privilege [, privilege...]
TO user [, user| role, PUBLIC...];

* An application developer, for example, may have the
following system privileges:
— CREATE SESSION
— CREATE TABLE
— CREATE SEQUENCE
— CREATE VIEW
— CREATE PROCEDURE

ORACLE

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

Typical User Privileges
After the DBA creates a user, the DBA can assign privileges to that user.

System Privilege Operations Authorized

CREATE SESSION Connect to the database.

CREATE TABLE Create tables in the user’s schema.

CREATE SEQUENCE Create a sequence in the user’s schema.

CREATE VIEW Create a view in the user’s schema.

CREATE PROCEDURE Create a stored procedure, function, or package in the user’s
schema.

Oracle Database 12c¢: SQL Workshop Il 8 -8

In the syntax:
privilege Is the system privilege to be granted

user | role | PUBLIC Is the name of the user, the name of the role, or PUBLIC
(which designates that every user is granted the privilege)
Note: Current system privileges can be found in the SESSION_PRIVS dictionary view. Data
dictionary is a collection of tables and views created and maintained by the Oracle Server.
They contain information about the database.

Oracle Database 12¢: SQL Workshop Il 8 -9

Granting System Privileges

The DBA can grant specific system privileges to a user.

GRANT create session, create table,

create sequence, create view
TO demo;

|GRANT succeeded. ‘

ORACLE
Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

The DBA uses the GRANT statement to allocate system privileges to the user. After the user
has been granted the privileges, the user can immediately use those privileges.

In the example in the slide, the demo user has been assigned the privileges to create
sessions, tables, sequences, and views.

Oracle Database 12c¢: SQL Workshop Il 8 -10

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS COMPUTER IS STRICTLY PROHIBITED

Lesson Agenda

« System privileges

- Creating a role

* Object privileges

« Revoking object privileges

ORACLE

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

Oracle Database 12c: SQL Workshop Il 8 - 11

Oracle University and Egabi Solutions use only

What Is a Role?

»

Privileges

Allocating privileges Allocating privileges
without a role with a role

ORACLE

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

A role is a named group of related privileges that can be granted to the user. This method
makes it easier to revoke and maintain privileges.

A user can have access to several roles, and several users can be assigned the same role.
Roles are typically created for a database application.

Creating and Assigning a Role

First, the DBA must create the role. Then the DBA can assign privileges to the role and assign
the role to users.

Syntax
CREATE ROLE role;
In the syntax:
role Isthe name of the role to be created

After the role is created, the DBA can use the GRANT statement to assign the role to users as
well as assign privileges to the role. A role is not a schema object; therefore, any user can
add privileges to a role.

Oracle Database 12c¢: SQL Workshop Il 8 -12

Creating and Granting Privileges to a Role

« Create arole;:

CREATE ROLE manager;

« Grant privileges to a role:

GRANT create table, create view
TO manager;

« Grant arole to users:

GRANT manager TO alice;

ORACLE

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

Creating a Role

The example in the slide creates a manager role and then enables the manager to create
tables and views. It then grants user alice the role of a manager. Now alice can create

tables and views.

If users have multiple roles granted to them, they receive all the privileges associated with all
the roles.

Oracle Database 12c¢: SQL Workshop Il 8 -13

Changing Your Password

« The DBA creates your user account and initializes your
password.

* You can change your password by using the ALTER USER
statement.

ALTER USER demo
IDENTIFIED BY employ;

ORACLE

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

The DBA creates an account and initializes a password for every user. You can change your
password by using the ALTER USER statement.

The slide example shows that the demo user changes the password by using the ALTER
USER statement.

Syntax
ALTER USER user IDENTIFIED BY password;
In the syntax:
user Is the name of the user
password Specifies the new password

Although this statement can be used to change your password, there are many other options.
You must have the ALTER USER privilege to change any other option.

For more information, see the Oracle Database SQL Language Reference for Oracle
Database 12c.

Note: SQL*Plus has a PASSWORD command (PASSW) that can be used to change the

password of a user when the user is logged in. This command is not available in SQL
Developer.

Oracle Database 12c¢: SQL Workshop Il 8 - 14

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS COMPUTER IS STRICTLY PROHIBITED

Lesson Agenda

« System privileges

« Creating a role

« Object privileges

« Revoking object privileges

ORACLE

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

Oracle Database 12c: SQL Workshop Il 8 -15

Oracle University and Egabi Solutions use only

Object Privileges

Object

privilege Table View Sequence
ALTER ve ve
DELETE Ve Ve

INDEX Ve

INSERT e /

REFERENCES Ve

SELECT Ve Ve Ve
UPDATE ve ve

ORACLE

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

An object privilege is a privilege or right to perform a particular action on a specific table, view,
sequence, or procedure. Each object has a particular set of grantable privileges. The table in
the slide lists the privileges for various objects. Note that the only privileges that apply to a
sequence are SELECT and ALTER. UPDATE, REFERENCES, and INSERT can be restricted by

specifying a subset of updatable columns.

A SELECT privilege can be restricted by creating a view with a subset of columns and granting
the SELECT privilege only on the view. A privilege granted on a synonym is converted to a
privilege on the base table referenced by the synonym.

Note: With the REFERENCES privilege, you can ensure that other users can create FOREIGN
KEY constraints that reference your table.

Oracle Database 12c¢: SQL Workshop Il 8 -16

Object Privileges

« Object privileges vary from object to object.
« An owner has all the privileges on the object.
« An owner can give specific privileges on that owner’s

object.
GRANT object priv [(columns)]
ON object
TO {user|role|PUBLIC}
[WITH GRANT OPTION] ;

ORACLE

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

Granting Object Privileges
Different object privileges are available for different types of schema objects. A user
automatically has all object privileges for schema objects contained in the user’s schema. A

user can grant any object privilege on any schema object that the user owns to any other user
or role. If the grantincludes WITH GRANT OPTION, the grantee can further grant the object

privilege to other users; otherwise, the grantee can use the privilege but cannot grant it to
other users.

In the syntax:

object priv Is an object privilege to be granted

ALL Specifies all object privileges

columns Specifies the column from a table or view on which
privileges are granted

ON object Is the object on which the privileges are granted

TO |dentifies to whom the privilege is granted

PUBLIC Grants object privileges to all users

WITH GRANT OPTION Enables the grantee to grant the object privileges to other
users and roles

Note: In the syntax, schema is the same as the owner’s name.
Oracle Database 12c¢: SQL Workshop Il 8 -17

Granting Object Privileges

- Grant query privileges on the EMPLOYEES table:

GRANT select
ON employees
TO demo;

« Grant privileges to update specific columns to users and
roles:

GRANT update (department name, location id)
ON departments
TO demo, manager;

ORACLE

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

Guidelines

» To grant privileges on an object, the object must be in your own schema, or you must
have been granted the object privileges WITH GRANT OPTION.

* An object owner can grant any object privilege on the object to any other user or role of
the database.
» The owner of an object automatically acquires all object privileges on that object.

The first example in the slide grants the demo user the privilege to query your EMPLOYEES
table. The second example grants UPDATE privileges on specific columns in the
DEPARTMENTS table to demo and to the manager role.

For example, if your schema is oraxx, and the demo user now wants to use a SELECT
statement to obtain data from your EMPLOYEES table, the syntax he or she must use is:
SELECT * FROM oraxx.employees;
Alternatively, the demo user can create a synonym for the table and issue a SELECT
statement from the synonym:
CREATE SYNONYM emp FOR oraxx.employees;
SELECT * FROM emp;

Note: DBAs generally allocate system privileges; any user who owns an object can grant
object privileges.

Oracle Database 12c: SQL Workshop Il 8 -18

Passing On Your Privileges

« Give a user authority to pass along privileges:

GRANT select, insert
ON departments

TO demo

WITH GRANT OPTION;

« Allow all users on the system to query data from
DEPARTMENTS table:

GRANT select
ON departments
TO PUBLIC;

ORACLE

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

WITH GRANT OPTION Keyword

A privilege that is granted with the WITH GRANT OPTION clause can be passed on to other
users and roles by the grantee. Object privileges granted with the WITH GRANT OPTION
clause are revoked when the grantor’s privilege is revoked.

The example in the slide gives the demo user access to your DEPARTMENTS table with the
privileges to query the table and add rows to the table. The example also shows that demo
can give others these privileges.

PUBLIC Keyword
An owner of a table can grant access to all users by using the PUBLIC keyword.
The second example allows all users on the system to query data from DEPARTMENTS table.

Oracle Database 12c¢: SQL Workshop Il 8 -19

Confirming Granted Privileges

Data Dictionary View Description

ROLE_SYS PRIVS System privileges granted to roles
ROLE TAB PRIVS Table privileges granted to roles
USER_ROLE_PRIVS Roles accessible by the user
USER_SYS PRIVS System privileges granted to the user

USER_TAB PRIVS MADE Object privileges granted on the user’s objects

USER_TAB PRIVS RECD |Object privileges granted to the user

USER_COL_PRIVS MADE |Object privileges granted on the columns of the user’s
objects

USER_COL_PRIVS RECD Object privileges granted to the user on specific
columns

ORACLE

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

If you attempt to perform an unauthorized operation, such as deleting a row from a table for
which you do not have the DELETE privilege, the Oracle server does not permit the operation

to take place.

If you receive the Oracle server error message “Table or view does not exist,” you have done
either of the following:

* Named a table or view that does not exist
» Attempted to perform an operation on a table or view for which you do not have the
appropriate privilege

The data dictionary is organized in tables and views and contains information about the
database. You can access the data dictionary to view the privileges that you have. The table
in the slide describes various data dictionary views.

You learn about data dictionary views in the lesson titled “Introduction to Data Dictionary
Views.”

Note: The ALL._TAB PRIVS MADE dictionary view describes all the object grants made by
the user or made on the objects owned by the user.

Oracle Database 12c¢: SQL Workshop Il 8 - 20

Lesson Agenda

« System privileges

« Creating a role

* Object privileges

« Revoking object privileges

ORACLE

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

Oracle Database 12c: SQL Workshop Il 8 - 21

Revoking Object Privileges

* You use the REVOKE statement to revoke privileges
granted to other users.

« Privileges granted to others through the WITH GRANT
OPTION clause are also revoked.

REVOKE {privilege [, privilege...] |ALL}
ON object

FROM {user[, user...]|role|PUBLIC}
[CASCADE CONSTRAINTS] ;

ORACLE

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

You can remove privileges granted to other users by using the REVOKE statement. When you
use the REVOKE statement, the privileges that you specify are revoked from the users you
name and from any other users to whom those privileges were granted by the revoked user.

In the syntax:

CASCADE Is required to remove any referential integrity constraints made to
the CONSTRAINTS object by means of the REFERENCES privilege

For more information, see the Oracle Database SQL Language Reference for Oracle
Database12c.

Note: If a user leaves the company and you revoke his or her privileges, you must regrant
any privileges that this user granted to other users. If you drop the user account without
revoking privileges from it, the system privileges granted by this user to other users are not
affected by this action.

Oracle Database 12¢c: SQL Workshop Il 8 - 22

Revoking Object Privileges

Revoke the SELECT and INSERT privileges given to the demo
user on the DEPARTMENTS table.

REVOKE select, insert
ON departments
FROM demo;

REVOKE succeeded.

ORACLE

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

The example in the slide revokes SELECT and INSERT privileges given to the demo user on
the DEPARTMENTS table.

Note: If a user is granted a privilege with the WITH GRANT OPTION clause, that user can also
grant the privilege with the WITH GRANT OPTION clause, so that a long chain of grantees is
possible, but no circular grants (granting to a grant ancestor) are permitted. If the owner
revokes a privilege from a user who granted the privilege to other users, the revoking
cascades to all the privileges granted.

For example, if user A grants a SELECT privilege on a table to user B including the WITH
GRANT OPTION clause, user B can grant to user C the SELECT privilege with the WITH GRANT
OPTION clause as well, and user C can then grant to user D the SELECT privilege. If user A
revokes privileges from user B, the privileges granted to users C and D are also revoked.

Oracle Database 12c: SQL Workshop Il 8 - 23

Quiz

Which of the following statements are true?

a. After a user creates an object, the user can pass along any

of the available object privileges to other users by using
the GRANT statement.

b. A user can create roles by using the CREATE ROLE

statement to pass along a collection of system or object
privileges to other users.

c. Users can change their own passwords.

d. Users can view the privileges granted to them and those
that are granted on their objects.

ORACLE

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

Answer: a, c, d

Oracle Database 12c¢: SQL Workshop Il 8 - 24

Summary

In this lesson, you should have learned how to:

- Differentiate system privileges from object privileges
« Grant privileges on tables

« Grant roles

- Distinguish between privileges and roles

ORACLE

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

DBAs establish initial database security for users by assigning privileges to the users.

« The DBA creates users who must have a password. The DBA is also responsible for
establishing the initial system privileges for a user.

» After the user has created an object, the user can pass along any of the available object
privileges to other users or to all users by using the GRANT statement.

« A DBA can create roles by using the CREATE ROLE statement to pass along a collection
of system or object privileges to multiple users. Roles make granting and revoking
privileges easier to maintain.

» Users can change their passwords by using the ALTER USER statement.
* You can remove privileges from users by using the REVOKE statement.

« With data dictionary views, users can view the privileges granted to them and those that
are granted on their objects.

Oracle Database 12c: SQL Workshop Il 8 - 25

Practice 8: Overview

This practice covers the following topics:
« Granting other users privileges to your table

* Modifying another user’s table through the privileges
granted to you

ORACLE

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

In this practice, you learn how to grant other users privileges to your table and modifying
another user’s table through the privileges granted to you.

Oracle Database 12c: SQL Workshop Il 8 - 26

Manipulating Data

ORACLE

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

Objectives

After completing this lesson, you should be able to:

- Specify explicit default values in the INSERT and UPDATE
statements

« Describe the features of multitable INSERTS
- Use the following types of multitable INSERTS:
— Unconditional INSERT
— Conditional INSERT ALL
— Conditional INSERT FIRST
— Pivoting INSERT
« Merge rows in a table
« Perform flashback operations
- Track the changes made to data over a period of time

ORACLE

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

In this lesson, you learn how to use the DEFAULT keyword in INSERT and UPDATE
statements to identify a default column value. You also learn about multitable INSERT
statements, the MERGE statement, performing flashback operations, and tracking changes in
the database.

Oracle Database 12c¢: SQL Workshop Il 9 -2

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS COMPUTER IS STRICTLY PROHIBITED

Lesson Agenda

« Specifying explicit default values in the INSERT and
UPDATE statements

« Using the following types of multitable INSERTS:
— Unconditional INSERT
— Conditional INSERT ALL
— Conditional INSERT FIRST
— Pivoting INSERT

« Merging rows in a table
« Performing flashback operations
« Tracking the changes to data over a period of time

ORACLE

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

Oracle Database 12¢: SQL Workshopll 9-3

Oracle University and Egabi Solutions use only

Explicit Default Feature: Overview

* Use the DEFAULT keyword as a column value where the
default column value is desired.

* This allows the user to control where and when the default
value should be applied to data.

- Explicit defaults can be used in INSERT and UPDATE
statements.

ORACLE

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

The DEFAULT keyword can be used in INSERT and UPDATE statements to identify a default
column value. If no default value exists, a null value is used.

The DEFAULT option saves you from having to hard code the default value in your programs
or query the dictionary to find it, as was done before this feature was introduced. Hard-coding
the default is a problem if the default changes, because the code consequently needs
changing. Accessing the dictionary is not usually done in an application; therefore, this is a
very important feature.

Oracle Database 12¢: SQL Workshop Il 9 -4

Using Explicit Default Values

e DEFAULT with INSERT:

INSERT INTO deptm3
(department id, department name, manager id)

VALUES (300, 'Engineering', |[DEFAULT) ;

e DEFAULT with UPDATE:

UPDATE deptm3
SET manager id = |DEFAULT
WHERE department id = 10;

ORACLE

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

Specify DEFAULT to set the column to the value previously specified as the default value for
the column. If no default value for the corresponding column has been specified, the Oracle
server sets the column to null.

In the first example in the slide, the INSERT statement uses a default value for the
MANAGER_ID column. If there is no default value defined for the column, a null value is
inserted instead.

The second example uses the UPDATE statement to set the MANAGER ID column to a default
value for department 10. If no default value is defined for the column, it changes the value to
null.

Note: When creating a table, you can specify a default value for a column. This is discussed
in SQL Workshop |.

Oracle Database 12c¢: SQL Workshop Il 9-5

Copying Rows from Another Table

« Write your INSERT statement with a subquery.

INSERT INTO sales reps(id, name, salary, commission pct
SELECT employee id, last name, salary, commission pct
FROM employees

WHERE job id LIKE 'S%REP%';

33 rows inserted. |

« Do not use the VALUES clause.

« Match the number of columns in the INSERT clause with
that in the subquery.

ORACLE

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

You can use the INSERT statement to add rows to a table where the values are derived from
existing tables. In place of the VALUES clause, you use a subquery.

Syntax
INSERT INTO table [(column , column)] subquery;

In the syntax:

table Is the table name
column Is the name of the column in the table to populate
subquery Is the subquery that returns rows into the table

The number of columns and their data types in the column list of the INSERT clause must
match the number of values and their data types in the subquery. To create a copy of the
rows of a table, use SELECT * in the subquery.
INSERT INTO EMPL3
SELECT *
FROM employees;

Note: You use the LOG ERRORS clause in your DML statement to enable the DML operation
to complete regardless of errors. Oracle writes the details of the error message to an error-
logging table that you have created. For more information, see the Oracle Database SQL
Reference for Oracle Database 12c.

Oracle Database 12c¢: SQL Workshop Il 9 -6

Lesson Agenda

« Specifying explicit default values in the INSERT and
UPDATE statements

« Using the following types of multitable INSERTS:
— Unconditional INSERT
— Conditional INSERT ALL
— Conditional INSERT FIRST
— Pivoting INSERT

« Merging rows in a table
« Performing flashback operations
« Tracking the changes to data over a period of time

ORACLE

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

Oracle Database 12c: SQL Workshop Il 9 -7

Multitable INSERT Statements: Overview

»
”
> -
f"".pl"
I:> Target_a
»
”
e
Sourcetab
INSERT ALL L I
INTO target a |VALUES (...;...,..) Target_b
INTO target b [VALUES(..,..,..) -
INTO target c |[VALUES (..,..,..) 7
.| sELECT .. |-"""II
Subquery FROM sourcetab
WHERE ...; [
Target_c

ORACLE

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

In a multitable INSERT statement, you insert computed rows derived from the rows returned
from the evaluation of a subquery into one or more tables.

Multitable INSERT statements are useful in a data warehouse scenario. You need to load
your data warehouse regularly so that it can serve its purpose of facilitating business analysis.
To do this, data from one or more operational systems must be extracted and copied into the
warehouse. The process of extracting data from the source system and bringing it into the
data warehouse is commonly called ETL, which stands for extraction, transformation, and
loading.

During extraction, the desired data must be identified and extracted from many different
sources, such as database systems and applications. After extraction, the data must be
physically transported to the target system or an intermediate system for further processing.
Depending on the chosen means of transportation, some transformations can be done during
this process. For example, a SQL statement that directly accesses a remote target through a
gateway can concatenate two columns as part of the SELECT statement.

After data is loaded into the Oracle database, data transformations can be executed using
SQL operations. A multitable INSERT statement is one of the techniques for implementing

SQL data transformations.

Oracle Database 12c¢: SQL Workshop Il 9 -8

Multitable INSERT Statements: Overview

« Use the INSERT..SELECT statement to insert rows into
multiple tables as part of a single DML statement.

« Multitable INSERT statements are used in data
warehousing systems to transfer data from one or more
operational sources to a set of target tables.

- They provide significant performance improvement over:
— Single DML versus multiple INSERT...SELECT statements

— Single DML versus a procedure to perform multiple inserts
by using the IF. . .THEN syntax

ORACLE

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

Multitable INSERT statements offer the benefits of the INSERT . . . SELECT statement when
multiple tables are involved as targets. Without multitable INSERT, you had to deal with n
independent INSERT . .. SELECT statements, thus processing the same source data n times
and increasing the transformation workload n times.

As with the existing INSERT . . . SELECT statement, the new statement can be parallelized
and used with the direct-load mechanism for faster performance.

Each record from any input stream, such as a nonrelational database table, can now be

converted into multiple records for a more relational database table environment. To
alternatively implement this functionality, you were required to write multiple INSERT

statements.

Oracle Database 12c¢: SQL Workshop Il 9-9

Types of Multitable INSERT Statements

The different types of multitable INSERT statements are:
* Unconditional INSERT

« Conditional INSERT ALL

« Conditional INSERT FIRST

* Pivoting INSERT

ORACLE

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

You use different clauses to indicate the type of INSERT to be executed. The types of
multitable INSERT statements are:
* Unconditional INSERT: For each row returned by the subquery, a row is inserted into
each of the target tables.
« Conditional INSERT ALL: For each row returned by the subquery, a row is inserted into
each target table if the specified condition is met.
+ Conditional INSERT FIRST: For each row returned by the subquery, a row is inserted
into the very first target table in which the condition is met.
» Pivoting INSERT: This is a special case of the unconditional INSERT ALL.

Oracle Database 12c¢: SQL Workshop Il 9 -10

Multitable INSERT Statements

- Syntax for multitable INSERT:

INSERT [conditional insert clause]
[insert into clause values clause] (subquery)

e conditional insert clause:

[ALL | FIRSTI]
[WHEN condition THEN] [insert into clause values clause]
[ELSE] [insert into clause values clause]

ORACLE

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

The slide displays the generic format for multitable INSERT statements.
Unconditional INSERT: ALL into_clause

Specify ALL followed by multiple insert into clauses to perform an unconditional
multitable INSERT. The Oracle Server executes each insert into_clause once for each
row returned by the subquery.

Conditional INSERT: conditional insert clause

Specify the conditional insert clause to perform a conditional multitable INSERT.
The Oracle Server filters each insert _into clause through the corresponding WHEN
condition, which determines whether that insert into clause is executed. A single
multitable INSERT statement can contain up to 127 WHEN clauses.

Conditional INSERT: ALL

If you specify ALL, the Oracle Server evaluates each WHEN clause regardless of the results of
the evaluation of any other WHEN clause. For each WHEN clause whose condition evaluates to
true, the Oracle Server executes the corresponding INTO clause list.

Oracle Database 12c¢: SQL Workshop Il 9 - 11

Conditional INSERT: FIRST

If you specify FIRST, the Oracle Server evaluates each WHEN clause in the order in which it
appears in the statement. If the first WHEN clause evaluates to true, the Oracle Server executes
the corresponding INTO clause and skips subsequent WHEN clauses for the given row.

Conditional INSERT: ELSE Clause
For a given row, if no WHEN clause evaluates to true:

 If you have specified an ELSE clause, the Oracle Server executes the INTO clause list
associated with the ELSE clause

« If you did not specify an ELSE clause, the Oracle Server takes no action for that row
Restrictions on Multitable INSERT Statements

* You can perform multitable INSERT statements only on tables, and not on views or
materialized views.

* You cannot perform a multitable INSERT on a remote table.
* You cannot specify a table collection expression when performing a multitable INSERT.

+ Inamultitable INSERT, all insert_into clauses cannot combine to specify more than
999 target columns.

Oracle Database 12c¢: SQL Workshop Il 9 -12

Unconditional INSERT ALL

« Select the EMPLOYEE ID, HIRE DATE, SALARY, and
MANAGER ID values from the EMPLOYEES table for those
employees whose EMPLOYEE_ID is greater than 200.

* Insert these values into the SAL. HISTORY and
MGR HISTORY tables by using a multitable INSERT.

INSERT | ALL
INTO sal history VALUES (EMPID,HIREDATE, SAL)
INTO mgr history VALUES (EMPID,MGR, SAL)

SELECT employee id EMPID, hire date HIREDATE,
salary SAL, manager id MGR

FROM employees

WHERE employee id > 200;

[12 rows inserted |

ORACLE

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

The example in the slide inserts rows into both the SAL. HISTORY and the MGR_ HISTORY
tables.

The SELECT statement retrieves the details of employee 1D, hire date, salary, and manager
ID of those employees whose employee ID is greaterthan 200 from the EMPLOYEES table.
The details of the employee ID, hire date, and salary are inserted into the SAL. HISTORY
table. The details of employee ID, manager ID, and salary are inserted into the
MGR_HISTORY table.

This INSERT statement is referred to as an unconditional INSERT because no further
restriction is applied to the rows that are retrieved by the SELECT statement. All the rows
retrieved by the SELECT statement are inserted into the two tables: SAL. HISTORY and
MGR_HISTORY. The VALUES clause in the INSERT statements specifies the columns from the
SELECT statement that must be inserted into each of the tables. Each row returned by the
SELECT statement results in two insertions: one for the SAL. HISTORY table and one for the
MGR_HISTORY table.

Oracle Database 12c¢: SQL Workshop Il 9 -13

A total of 12 rows were inserted:
SELECT COUNT (*) total in sal FROM sal history;

TOTAL_IN_SAL
1 &

SELECT COUNT (*) total in mgr FROM mgr history;

TOTAL_IN_MGR
1 &

Oracle Database 12¢: SQL Workshop Il 9 -14

Conditional INSERT ALL: Example

’
,f
7
7 Hired before
‘_,..# 2005 e
»
EMP HISTORY

Employees L
With sales ,.i"'

commission |ul'"

e

EMP SALES

ORACLE

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

For all employees in the employees tables, if the employee was hired before 2005, insert that

employee record into the employee history. If the employee earns a sales commission, insert
the record information into the EMP_ SALES table. The SQL statement is shown on the next

page.

Oracle Database 12c¢: SQL Workshop Il 9 -15

Conditional INSERT ALL

INSERT ALL

WHEN | HIREDATE < '01-JAN-05' |THEN

INTO emp history VALUES (EMPID,HIREDATE, SAL)

WHEN |COMM IS NOT NULL |THEN

INTO emp sales VALUES (EMPID, COMM, SAL)
SELECT employee id EMPID, hire date HIREDATE,
salary SAL, commission pct COMM

FROM employees;

59 rows inserted.

ORACLE

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

The example in the slide is similar to the example in the previous slide because it inserts rows
into both the EMP_HISTORY and the EMP_SALES tables. The SELECT statement retrieves
details such as employee ID, hire date, salary, and commission percentage for all employees
from the EMPLOYEES table. Details such as employee ID, hire date, and salary are inserted
into the EMP_HISTORY table. Details such as employee ID, commission percentage, and
salary are inserted into the EMP_SALES table.

This INSERT statement is referred to as a conditional INSERT ALL because a further
restriction is applied to the rows that are retrieved by the SELECT statement. From the rows
that are retrieved by the SELECT statement, only those rows in which the hire date was prior
to 2005 are inserted in the EMP_HISTORY table. Similarly, only those rows where the value of
commission percentage is not null are inserted in the EMP_ SALES table.

SELECT count (*) FROM emp history;

COUNTC*)

SELECT count (*) FROM emp sales;

COUNT %D

Oracle Database 12c¢: SQL Workshop Il 9 -16

You can also optionally use the ELSE clause with the INSERT ALL statement.
Example:

INSERT ALL

WHEN job_id IN

(select job id FROM jobs WHERE job title LIKE '$Manager%') THEN
INTO managers2 (last name,job_ id, SALARY)

VALUES (last name, job_ id, SALARY)

WHEN SALARY>10000 THEN

INTO richpeople(last name,job id, SALARY)

VALUES (last name, job_ id, SALARY)

ELSE

INTO poorpeople VALUES (last name,job_ id, SALARY)
SELECT * FROM employees;

Result:
116 rows inserted

Oracle Database 12c¢: SQL Workshop Il 9 -17

Conditional INSERT FIRST: Example

Scenario: If an employee
salary is 2,000, the

record is inserted into the < ’;J
SAL_LOW table only. Salary < 5,000 |:> l—fA

5000 <= Salary
<=10,000

= -
e
" sAL MID

EMPLOYEES

Otherwise ;>

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

For all employees in the EMPLOYEES table, insert the employee information into the first target

table that meets the condition. In the example, if an employee has a salary of 2,000, the
record is inserted into the SAL._LOW table only. The SQL statement is shown on the next

page.

Oracle Database 12c¢: SQL Workshop Il 9 -18

Conditional INSERT FIRST

INSERT |FIRST

WHEN salary < 5000 THEN
INTO sal low VALUES (employee id, last name, salary)
WHEN salary between 5000 and 10000 THEN

INTO sal mid VALUES (employee id, last name, salary)

ELSE

INTO sal high VALUES (employee id, last name, salary)
SELECT employee id, last name, salary

FROM employees;

‘ 107 rows inserted

ORACLE

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

The SELECT statement retrieves details such as employee 1D, last name, and salary for every
employee in the EMPLOYEES table. For each employee record, it is inserted into the very first
target table that meets the condition.

This INSERT statement is referred to as a conditional INSERT FIRST. The WHEN salary
< 5000 condition is evaluated first. If this first WHEN clause evaluates to true, the Oracle
Server executes the corresponding INTO clause and inserts the record into the SAL LOwW
table. It skips subsequent WHEN clauses for this row.

If the row does not satisfy the first WHEN condition (WHEN salary < 5000), the next
condition (WHEN salary between 5000 and 10000) is evaluated. If this condition
evaluates to true, the record is inserted into the SAL._MID table, and the last condition is
skipped.

If neither the first condition (WHEN salary < 5000) nor the second condition (WHEN
salary between 5000 and 10000) is evaluated to true, the Oracle Server executes the
corresponding INTO clause for the ELSE clause.

Oracle Database 12c¢: SQL Workshop Il 9 -19

A total of 107 rows were inserted:
SELECT count (*) low FROM sal low;

Ly

1 449

SELECT count (*) mid FROM sal mid;

MID

1 43

SELECT count (*) high FROM sal high;

HIGH

1 15

Oracle Database 12c¢: SQL Workshop Il 9 -20

Pivoting INSERT

Convert the set of sales records from the nonrelational
database table to relational format.

Emp_ID Week ID MON TUES WED THUR FRI

176 6 2000 3000 4000 5000 6000
Employee_ID WEEK SALES

176 6 2000

176 6 3000

176 6 4000

176 6 5000

176 6 6000

ORACLE

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

Pivoting is an operation in which you must build a transformation such that each record from
any input stream, such as a nonrelational database table, must be converted into multiple
records for a more relational database table environment.
Suppose you receive a set of sales records from a nonrelational database table:

SALES SOURCE_DATA, in the following format:

EMPLOYEE ID, WEEK ID, SALES MON, SALES TUE, SALES WED,

SALES THUR, SALES FRI
You want to store these records in the SALES_INFO table in a more typical relational format:

EMPLOYEE ID, WEEK, SALES
To solve this problem, you must build a transformation such that each record from the original

nonrelational database table, SALES SOURCE_DATA, is converted into five records for the
data warehouse’s SALES INFO table. This operation is commonly referred to as pivoting.

The solution to this problem is shown on the next page.

Oracle Database 12c¢: SQL Workshop Il 9 - 21

Pivoting INSERT

INSERT ALL
INTO| sales info|VALUES (employee id,week id, sales MON)
INTO| sales info|VALUES (employee id,week id, sales TUE)
INTO| sales info|VALUES (employee id,week id, sales WED)
INTO| sales info|VALUES (employee id,week id, sales THUR)
INTO| sales info|VALUES (employee id,week id, sales FRI)
SELECT EMPLOYEE ID, week id, sales MON, sales TUE,
sales WED, sales THUR, sales FRI
FROM sales source data;

"5 rows inserted

ORACLE

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

In the example in the slide, the sales data is received from the nonrelational database table
SALES_SOURCE_DATA, which is the details of the sales performed by a sales representative
on each day of a week, for a week with a particular week ID.

DESC SALES SOURCE DATA

DESC SALES_SOURCE_DATA

Mame Mull Twpe
EMPLOYEE_ID NUMBER(G]
WEEK_ID WUMBER. (23
SALES_MON WNUMBER.(E, 20
SALES_TUE WUMBER.(E, 20
SALES_WED NUMBER.(E, 20
SALES_THUR NUMBER.(E, 20
SALES_FRI NUMBER.(E, 20

Oracle Database 12c¢: SQL Workshop Il 9 -22

SELECT * FROM SALES SOURCE DATA;

EMPLOVEE_ID |8 wEEk_D ([salEs_mon | sales_TuE | salEs_weD | salES_THUR|E saLES_FRI
1 178 & 1750 2200 1500 1500 3000

DESC SALES INFO

desc sales_info

Wame Null Twpe
EMPLOYEE_ID HNUMBER.(&Y
WEEE NUMBERL 2
SALES NUMBER(S, 22

SELECT * FROM sales_ info;

EmPLOYEEID [week [saLes]
1 178 & 1750
Z 178 & 2200
3 178 6 1500
4 178 & 1500
5 178 & 30000

Observe in the preceding example that by using a pivoting INSERT, one row from the
SALES_SOURCE_DATA table is converted into five records for the relational table, SALES INFO.

Oracle Database 12c¢: SQL Workshop Il 9 -23

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS COMPUTER IS STRICTLY PROHIBITED

Lesson Agenda

« Specifying explicit default values in the INSERT and
UPDATE statements

« Using the following types of multitable INSERTs:
— Unconditional INSERT
— Conditional INSERT ALL
— Conditional INSERT FIRST
— Pivoting INSERT

« Merging rows in a table
« Performing flashback operations
« Tracking the changes to data over a period of time

ORACLE

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

Oracle Database 12c: SQL Workshop Il 9 - 24

Oracle University and Egabi Solutions use only

MERGE Statement

« Provides the ability to conditionally update, insert, or delete
data into a database table

* Performs an UPDATE if the row exists, and an INSERT if it
IS a new row:
— Avoids separate updates
— Increases performance and ease of use
— Is useful in data warehousing applications

ORACLE

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

The Oracle Server supports the MERGE statement for INSERT, UPDATE, and DELETE
operations. Using this statement, you can update, insert, or delete a row conditionally into a
table, thus avoiding multiple DML statements. The decision whether to update, insert, or
delete into the target table is based on a condition in the ON clause.

You must have the INSERT and UPDATE object privileges on the target table and the SELECT
object privilege on the source table. To specify the DELETE clause of

merge update clause, you must also have the DELETE object privilege on the target
table.

The MERGE statement is deterministic. You cannot update the same row of the target table
multiple times in the same MERGE statement.

An alternative approach is to use PL/SQL loops and multiple DML statements. The MERGE
statement, however, is easy to use and more simply expressed as a single SQL statement.

The MERGE statement is suitable in a number of data warehousing applications. For example,

in a data warehousing application, you may need to work with data coming from multiple
sources, some of which may be duplicates. With the MERGE statement, you can conditionally
add or modify rows.

Oracle Database 12c¢: SQL Workshop Il 9 - 25

MERGE Statement Syntax

You can conditionally insert, update, or delete rows in a table
by using the MERGE statement.

MERGE INTO table name table alias
USING (table|/view|sub query) alias
ON (join condition)

WHEN MATCHED THEN
UPDATE SET
coll coll val,
col2 col2 val
WHEN NOT MATCHED THEN
INSERT (column list)
VALUES (column values) ;

ORACLE

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

Merging Rows

You can update existing rows, and insert new rows conditionally by using the MERGE
statement. Using the MERGE statement, you can delete obsolete rows at the same time as you
update rows in a table. To do this, you include a DELETE clause with its own WHERE clause in
the syntax of the MERGE statement.

In the syntax:

INTO clause Specifies the target table you are updating or inserting into

USING clause Identifies the source of the data to be updated or inserted; can be
a table, view, or subquery

ON clause The condition on which the MERGE operation either updates or
inserts

WHEN MATCHED | Instructs the server how to respond to the results of the join
condition

WHEN NOT MATCHED

Note: For more information, see Oracle Database SQL Language Reference for Oracle
Database 12c.

Oracle Database 12c: SQL Workshop Il 9 - 26

Merging Rows: Example

Insert or update rows in the COPY EMP3 table to match the
EMPLOYEES table.

MERGE INTO copy emp3 c
USING (SELECT * FROM EMPLOYEES) e
ON (c.employee id = e.employee id)
WHEN MATCHED THEN

UPDATE SET
c.first name = e.first name,
c.last name = e.last name,

DELETE WHERE (E.COMMISSION PCT IS NOT NULL)
WHEN NOT MATCHED THEN |

[INSERT VALUES|(e.employee id, e.first name, e.last name,
e.email, e.phone number, e.hire date, e.job id,
e.salary, e.commission pct, e.manager id,
e.department id);

107 rows merged.

ORACLE

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

MERGE INTO copy emp3 c

USING (SELECT * FROM EMPLOYEES) e
ON (c.employee id = e.employee id)
WHEN MATCHED THEN

UPDATE SET

.first name = e.first name,

.last name = e.last name,

.email = e.email,

.phone number = e.phone number,
.hire date = e.hire date,

.job_id = e.job id,

.salary = e.salary*2,
.commission pct = e.commission pct,

.manager id = e.manager id,

Q. 0 a0 0 0 00 0 Q0 Q

.department id = e.department id
DELETE WHERE (E.COMMISSION PCT IS NOT NULL)
WHEN NOT MATCHED THEN

Oracle Database 12c¢: SQL Workshop Il 9 - 27

INSERT VALUES (e.employee id, e.first name, e.last name,

e.email, e.phone number, e.hire date, e.job id,

e.salary, e.commission pct, e.manager id,

e.department id);
The COPY EMP3 table is created by using the following code:

CREATE TABLE COPY EMP3 AS SELECT * FROM EMPLOYEES

WHERE SALARY<10000;
Then query the COPY EMP3 table.

SELECT employee 1id,

salary, commission pct FROM COPY EMP3;

EMPLOYEE_ID | SALARY | COMMISSION_PCT |
1 103 Q000 CnuTtd
z 104 G000 (u11)
3 105 4800 (U1
4 106 4300 Chulld
g5 107 4200 Cnu1ty
6 109 9000 (u11)
7 110 200 (U1l
a 111 7700 Chully

Observe that there are some employees with SALARY < 10000 and there are two employees

with COMMISSION PCT.

The example in the slide matches the EMPLOYEE ID inthe COPY EMP3 table to the
EMPLOYEE IDinthe EMPLOYEES table. If a match is found, the row in the COPY EMP3 table is
updated to match the row in the EMPLOYEES table and the salary of the employee is doubled.
The records of the two employees with values in the COMMISSION PCT column are deleted. If
the match is not found, rows are inserted into the COPY EMP3 table.

Oracle Database 12c¢: SQL Workshop Il 9 -28

Merging Rows: Example

TRUNCATE TABLE copy emp3;
SELECT * FROM copy emp3;
no rows selected

MERGE INTO copy emp3 c

USING (SELECT * FROM EMPLOYEES) e

ON (c.employee id = e.employee id)

WHEN MATCHED THEN

UPDATE SET

c.first name = e.first name,

c.last name = e.last name,

DELETE WHERE (E.COMMISSION PCT IS NOT NULL)
WHEN NOT MATCHED THEN

INSERT VALUES (e.employee id, e.first name, ...

SELECT * FROM copy emp3;
107 rows selected.

ORACLE

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

The examples in the slide show that the cCOPY EMP3 table is empty. The c.employee id =
e.employee id conditionis evaluated. The condition returns false—there are no matches.
The logic falls into the WHEN NOT MATCHED clause, and the MERGE command inserts the rows
of the EMPLOYEES table into the COPY EMP3 table. This means that the COPY EMP3 table
now has exactly the same data as in the EMPLOYEES table.

SELECT employee id, salary, commission pct from copy emp3;

H EMPLOYEEJD|E SALARY|E commmsmmLPCT|

1 144 2500 (rul)
2 143 2600 (rul)
3 202 £O00 (rul)
4 141 3500 (rul)
5 174 11000 0.3
15 143 10500 0.2
18 206 5300 (rul)
17 176 8500 0.2
18 124 5500 (rul)
18 205 12000 (rul)
20 178 7000 015

Oracle Database 12c¢: SQL Workshop Il 9 -29

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS COMPUTER IS STRICTLY PROHIBITED

Lesson Agenda

« Specifying explicit default values in the INSERT and
UPDATE statements

» Using the following types of multitable INSERTs:
— Unconditional INSERT
— Conditional INSERT ALL
— Conditional INSERT FIRST
— Pivoting INSERT

« Merging rows in a table
« Performing flashback operations
« Tracking the changes to data over a period of time

ORACLE

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

Oracle Database 12¢: SQL Workshop Il 9 - 30

Oracle University and Egabi Solutions use only

FLASHBACK TABLE Statement

- Enables you to recover tables to a specified point in time
with a single statement

* Restores table data along with associated indexes and
constraints

- Enables you to revert the table and its contents to a certain
point in time or system change number (SCN)

A

v

>
7

ORACLE
Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

Oracle Flashback Table enables you to recover tables to a specified point in time with a single
statement. You can restore table data along with associated indexes and constraints while the
database is online, undoing changes to only the specified tables.

The Flashback Table feature is similar to a self-service repair tool. For example, if a user
accidentally deletes important rows from a table and then wants to recover the deleted rows,
you can use the FLASHBACK TABLE statement to restore the table to the time before the

deletion and see the missing rows in the table.

When using the FLASHBACK TABLE statement, you can revert the table and its contents to a
certain time or to an SCN.

Note: The SCN is an integer value associated with each change to the database. Itis a
unique incremental number in the database. Every time you commit a transaction, a new SCN
is recorded.

Oracle Database 12c¢: SQL Workshop Il 9 - 31

FLASHBACK TABLE Statement

« Repair tool for accidental table modifications
— Restores a table to an earlier point in time
— Offers ease of use, availability, and fast execution
— Is performed in place

« Syntax:

FLASHBACK TABLE [schema.] table [, [schema.
] table]1... To { { { SCN | TIMESTAMP } expr |
RESTORE POINT restore point } [{ ENABLE |

DISABLE } TRIGGERS] | BEFORE DROP [RENAME TO

table 1 } ; ‘?fﬁ4
*r

/

ORACLE
Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

Self-Service Repair Facility

Oracle Database provides a SQL data definition language (DDL) command, FLASHBACK
TABLE, to restore the state of a table to an earlier point in time in case it is inadvertently
deleted or modified. The FLASHBACK TABLE command is a self-service repair tool to restore
data in a table along with associated attributes such as indexes or views. This is done, while
the database is online, by rolling back only the subsequent changes to the given table.
Compared to traditional recovery mechanisms, this feature offers significant benefits such as
ease of use, availability, and faster restoration. It also takes the burden off the DBA to find and
restore application-specific properties. The flashback table feature does not address physical
corruption caused because of a bad disk.

Syntax

You can invoke a FLASHBACK TABLE operation on one or more tables, even on tables in
different schemas. You specify the point in time to which you want to revert by providing a
valid time stamp. By default, database triggers are disabled during the flashback operation for
all tables involved. You can override this default behavior by specifying the ENABLE
TRIGGERS clause.

Note: For more information about recycle bin and flashback semantics, refer to Oracle
Database Administrator’s Guide for Oracle Database 12c.

Oracle Database 12c¢: SQL Workshop Il 9 - 32

Using the FLASHBACK TABLE Statement

DROP TABLE emp3;

||tab1e EMPZ dropped. |

SELECT original name, operation, droptime FROM
recyclebin;

B ORICINAL_NAME:E] OPERATION | DROPTIME
1 EWP3 DROP 2012-10-16:05:59:34

FLASHBACK TABLE emp3 TO BEFORE DROP;

table EMP3 succeeded.

ORACLE

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

Syntax and Examples
The example restores the EMP3 table to a state before a DROP statement.

The recycle bin is actually a data dictionary table containing information about dropped
objects. Dropped tables and any associated objects—such as, indexes, constraints, nested
tables, and so on—are not removed and still occupy space. They continue to count against
user space quotas until specifically purged from the recycle bin, or until they must be purged
by the database because of tablespace space constraints.

Each user can be thought of as an owner of a recycle bin because, unless a user has the
SYSDBA privilege, the only objects that the user has access to in the recycle bin are those that

the user owns. A user can view his or her objects in the recycle bin by using the following
statement:

SELECT * FROM RECYCLEBIN;

When you drop a user, any objects belonging to that user are not placed in the recycle bin
and any objects in the recycle bin are purged.

You can purge the recycle bin with the following statement:
PURGE RECYCLEBIN;

Oracle Database 12c¢: SQL Workshop Il 9 - 33

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS COMPUTER IS STRICTLY PROHIBITED

Lesson Agenda

« Specifying explicit default values in the INSERT and
UPDATE statements

» Using the following types of multitable INSERTs:
— Unconditional INSERT
— Conditional INSERT ALL
— Conditional INSERT FIRST
— Pivoting INSERT

« Merging rows in a table
« Performing flashback operations
« Tracking the changes to data over a period of time

ORACLE

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

Oracle Database 12¢: SQL Workshop Il 9 - 34

Oracle University and Egabi Solutions use only

Tracking Changes in Data

>
- Y =
Version ”’ 2 pl"“'
query " - /_,,-,3’5#
SETCT Py - %/
T P ‘
[- 2 £
|
Versions of retrieved rows

ORACLE

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

You may discover that, somehow, data in a table has been inappropriately changed. To
research this, you can use multiple flashback queries to view row data at specific points in
time. More efficiently, you can use the Flashback Version Query feature to view all changes to
a row over a period of time. This feature enables you to append a VERSIONS clause to a
SELECT statement that specifies a system change number (SCN) or the time stamp range
within which you want to view changes to row values. The query also can return associated
metadata, such as the transaction responsible for the change.

Further, after you identify an erroneous transaction, you can use the Flashback Transaction
Query feature to identify other changes that were done by the transaction. You then have the
option of using the Flashback Table feature to restore the table to a state before the changes
were made.

You can use a query on a table with a VERSIONS clause to produce all the versions of all the
rows that exist, or ever existed, between the time the query was issued and the
undo_retention seconds before the currenttime. undo retention is an initialization
parameter, which is an autotuned parameter. A query that includes a VERSIONS clause is
referred to as a version query. The results of a version query behaves as though the WHERE
clause were applied to the versions of the rows. The version query returns versions of the
rows only across transactions.

System change number (SCN): The Oracle server assigns an SCN to identify the redo
records for each committed transaction.

Oracle Database 12¢: SQL Workshop Il 9 - 35

Flashback Version Query: Example

SELECT salary FROM employees3 @
WHERE employee id = 107;

UPDATE employees3 SET salary = salary * 1.30

WHERE employee id = 107; @
COMMIT;
SELECT salary FROM emgloyees3

IVERSIONS BETWEEN SCN MINVALUE AND MAXVALUE|

WHERE employee id = 107;

d saLamrr
1 4200

@ SALARY
1 5460
2 4200

ORACLE
Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

In the example in the slide, the salary for employee 107 is retrieved (1). The salary for employee
107 is increased by 30 percent and this change is committed (2). The different versions of salary
are displayed (3).
The VERSIONS clause does not change the plan of the query. For example, if you run a query on
a table that uses the index access method, the same query on the same table with a VERSIONS
clause continues to use the index access method. The versions of the rows returned by the
version query are versions of the rows across transactions. The VERSIONS clause has no effect
on the transactional behavior of a query. This means that a query on a table with a VERSIONS
clause still inherits the query environment of the ongoing transaction.
The default VERSIONS clause can be specified as VERSIONS BETWEEN {SCN|TIMESTAMP}
MINVALUE AND MAXVALUE. The VERSIONS clause is a SQL extension only for queries. You
can have DML and DDL operations that use a VERSIONS clause within subqueries. The row
version query retrieves all the committed versions of the selected rows. Changes made by the
current active transaction are not returned. The version query retrieves all incarnations of the
rows. This essentially means that versions returned include deleted and subsequent reinserted
versions of the rows. The row access for a version query can be defined in one of the following
two categories:

+ ROWID-based row access: In case of ROWID-based access, all versions of the specified

ROWID are returned irrespective of the row content. This essentially means that all versions
of the slot in the block indicated by the ROWID are returned.

« All other row access: For all other row access, all versions of the rows are returned.
Oracle Database 12c¢: SQL Workshop Il 9 - 36

VERSIONS BETWEEN Clause

SELECT versions starttime "START DATE",
versions endtime "END DATE",
salary

FROM employees

VERSIONS BETWEEN SCN MINVALUE

AND MAXVALUE

WHERE last name = 'Lorentz';
@ sTART_DATE | enp_paTE (@ saLary|
1 11-SEP-12 03.32.54.000000000 &M (null) 5460
2 (null) 11-5EP-12 03.38.54.000000000 AM 4200

ORACLE

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

You can use the VERSIONS BETWEEN clause to retrieve all the versions of the rows that exist
or have ever existed between the time the query was issued and a point back in time.

If the undo retention time is less than the lower bound time or the SCN of the BETWEEN

clause, the query retrieves versions up to the undo retention time only. The time interval of the
BETWEEN clause can be specified as an SCN interval or a wall-clock interval. This time

interval is closed at both the lower and the upper bounds.

In the example, Lorentz’s salary changes are retrieved. The NULL value for END_DATE for the
first version indicates that this was the existing version at the time of the query. The NULL
value for START DATE for the last version indicates that this version was created at a time
before the undo retention time.

Oracle Database 12c¢: SQL Workshop Il 9 - 37

Quiz

When you use the INSERT or UPDATE command, the DEFAULT
keyword saves you from hard-coding the default value in your
programs or querying the dictionary to find it.

a. True
b. False

ORACLE

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

Answer: a

Oracle Database 12c¢: SQL Workshop Il 9 - 38

Quiz

In all the cases, when you execute a DROP TABLE command,

the database renames the table and places it in a recycle bin,
from where it can later be recovered by using the FLASHBACK

TABLE statement.

a. True
b. False

ORACLE
Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

Answer: b

Oracle Database 12¢: SQL Workshop Il 9 - 39

Summary

In this lesson, you should have learned how to:

- Specify explicit default values in the INSERT and UPDATE
statements

 Describe the features of multitable INSERTS

- Use the following types of multitable INSERTS:
— Unconditional INSERT
— Conditional INSERT ALL
— Conditional INSERT FIRST
— Pivoting INSERT

« Merge rows in a table
« Perform flashback operations
- Tracking the changes to data over a period of time

ORACLE

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

In this lesson, you also should have learned about multitable INSERT statements, the MERGE
statement, and tracking changes in the database.

Oracle Database 12c¢: SQL Workshop Il 9 -40

Practice 9: Overview

This practice covers the following topics:
« Performing multitable INSERTS
« Performing MERGE operations
« Performing flashback operations
« Tracking row versions

ORACLE

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

In this practice, you learn how to perform multitable INSERTS, MERGE operations, flashback
operations and tracking row versions.

Oracle Database 12c¢: SQL Workshop Il 9 - 41

Ajuo asn suoin|og 1geb3 pue AlsiaAlun ajoelO

a3LigIHOdd A1LOIE1S SI d3LNdNOD SIHL INOYA STVIFTILVIN LIM® ONIAJOD "ATNO WOOHSSV1D SIHL NI 3SN dNOA d04 34V STIVIHILYIN LIMS 3SIHL

	Oracle Database 12c: SQL Workshop II - (Student Guide - Volume I)
	Table of Contents
	Lesson 1: Introduction
	Lesson Objectives
	Lesson Agenda
	Course Objectives
	Course Prerequisites
	Course Agenda
	Lesson Agenda
	Tables Used in This Course
	Appendixes and Practices Used in This Course
	Development Environments
	Lesson Agenda
	Review of Restricting Data
	Review of Sorting Data
	Review of SQL Functions
	Review of Single-Row Functions
	Review of Types of Group Functions
	Review of Using Subqueries
	Review of Managing Tables Using DML Statements
	Lesson Agenda
	Oracle Database SQL Documentation
	Additional Resources
	Summary
	Practice 1: Overview

	Lesson 2: Introduction to Data Dictionary Views
	Objectives
	Lesson Agenda
	Data Dictionary
	Data Dictionary Structure
	How to Use the Dictionary Views
	USER_OBJECTS and ALL_OBJECTS Views
	USER_OBJECTS View
	Lesson Agenda
	Table Information
	Column Information
	Constraint Information
	USER_CONSTRAINTS: Example
	Querying USER_CONS_COLUMNS
	Lesson Agenda
	Adding Comments to a Table
	Quiz
	Summary
	Practice 2: Overview

	Lesson 3: Creating Sequences, Synonyms, and Indexes
	Objectives
	Lesson Agenda
	Database Objects
	Referencing Another User’s Tables
	Sequences
	CREATE SEQUENCE Statement: Syntax
	Creating a Sequence
	NEXTVAL and CURRVAL Pseudocolumns
	Using a Sequence
	SQL Column defaulting using a Sequence
	Caching Sequence Values
	Modifying a Sequence
	Guidelines for Modifying a Sequence
	Sequence Information
	Lesson Agenda
	Synonyms
	Creating a Synonym for an Object
	Creating and Removing Synonyms
	Synonym Information
	Lesson Agenda
	Indexes
	How Are Indexes Created?
	Creating an Index
	CREATE INDEX with the CREATE TABLE Statement
	Function-Based Indexes
	Creating Multiple Indexes on the Same Set of Columns
	Example of Creating Multiple Indexes on the Same Set Of Columns
	Index Creation Guidelines
	Index Information
	USER_INDEXES: Examples
	Querying USER_IND_COLUMNS
	Removing an Index
	Quiz
	Summary
	Practice 3: Overview

	Lesson 4: Creating Views
	Objectives
	Lesson Agenda
	Database Objects
	What Is a View?
	Advantages of Views
	Simple Views and Complex Views
	Creating a View
	Retrieving Data from a View
	Modifying a View
	Creating a Complex View
	View Information
	Rules for Performing DML Operations on a View
	Using the WITH CHECK OPTION Clause
	Denying DML Operations
	Removing a View
	Quiz
	Summary
	Practice 4: Overview

	Lesson 5: Managing Schema Objects
	Objectives
	Lesson Agenda
	Adding a Constraint Syntax
	Adding a Constraint
	Dropping a Constraint
	Dropping a CONSTRAINT ONLINE
	ON DELETE Clause
	Cascading Constraints
	Renaming Table Columns and Constraints
	Disabling Constraints
	Enabling Constraints
	Deferring Constraints
	Difference Between INITIALLY DEFERRED and INITIALLY IMMEDIATE
	DROP TABLE … PURGE
	Lesson Agenda
	Temporary Tables
	Creating a Temporary Table
	Lesson Agenda
	External Tables
	Creating a Directory for the External Table
	Creating an External Table
	Creating an External Table by Using ORACLE_LOADER
	Querying External Tables
	Creating an External Table by Using ORACLE_DATAPUMP: Example
	Quiz
	Summary
	Practice 5: Overview

	Lesson 6: Retrieving Data by Using Subqueries
	Objectives
	Lesson Agenda
	Retrieving Data by Using a Subquery as a Source
	Lesson Agenda
	Multiple-Column Subqueries
	Column Comparisons
	Pairwise Comparison Subquery
	Nonpairwise Comparison Subquery
	Lesson Agenda
	Scalar Subquery Expressions
	Scalar Subqueries: Examples
	Lesson Agenda
	Correlated Subqueries
	Using Correlated Subqueries
	Lesson Agenda
	Using the EXISTS Operator
	Find All Departments That Do Not Have Any Employees
	Lesson Agenda
	WITH Clause
	WITH Clause: Example
	Recursive WITH Clause
	Recursive WITH Clause: Example
	Quiz
	Summary
	Practice 6: Overview

	Lesson 7: Manipulating Data by Using Subqueries
	Objectives
	Lesson Agenda
	Using Subqueries to Manipulate Data
	Lesson Agenda
	Inserting by Using a Subquery as a Target
	Lesson Agenda
	Using the WITH CHECK OPTION Keyword on DML Statements
	Lesson Agenda
	Correlated UPDATE
	Using Correlated UPDATE
	Correlated DELETE
	Using Correlated DELETE
	Summary
	Practice 7: Overview

	Lesson 8: Controlling User Access
	Objectives
	Lesson Agenda
	Controlling User Access
	Privileges
	System Privileges
	Creating Users
	User System Privileges
	Granting System Privileges
	Lesson Agenda
	What Is a Role?
	Creating and Granting Privileges to a Role
	Changing Your Password
	Lesson Agenda
	Object Privileges
	Granting Object Privileges
	Passing On Your Privileges
	Confirming Granted Privileges
	Lesson Agenda
	Revoking Object Privileges
	Quiz
	Summary
	Practice 8: Overview

	Lesson 9: Manipulating Data
	Objectives
	Lesson Agenda
	Explicit Default Feature: Overview
	Using Explicit Default Values
	Copying Rows from Another Table
	Lesson Agenda
	Multitable INSERT Statements: Overview
	Types of Multitable INSERT Statements
	Multitable INSERT Statements
	Unconditional INSERT ALL
	Conditional INSERT ALL: Example
	Conditional INSERT ALL
	Conditional INSERT FIRST: Example
	Conditional INSERT FIRST
	Pivoting INSERT
	Lesson Agenda
	MERGE Statement
	MERGE Statement Syntax
	Merging Rows: Example
	Lesson Agenda
	FLASHBACK TABLE Statement
	Using the FLASHBACK TABLE Statement
	Lesson Agenda
	Tracking Changes in Data
	Flashback Version Query: Example
	VERSIONS BETWEEN Clause
	Quiz
	Summary
	Practice 9: Overview

