Oracle Database 12c: SQL
Workshop I

Student Guide - Volume |l

D80194GC10
Edition 1.0
August 2013
D83186

ORACLE

Author

Dimpi Rani Sarmah

Technical Contributors
and Reviewers

Nancy Greenberg
Swarnapriya Shridhar
Bryan Roberts,
Laszlo Czinkoczki
KimSeong Loh

Brent Dayley

Jim Spiller
Christopher Wensley
Maheshwari Krishnamurthy
Daniel Milne

Michael Almeida

Diganta Choudhury

Anjulaponni Azhagulekshmi
Subbiahpillai

Manish Pawar
Clair Bennett
Yanti Chang
Joel Goodman

Gerlinde Frenzen

Publisher
Sujatha Nagendra

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

Disclaimer

This document contains proprietary information and is protected by copyright and
other intellectual property laws. You may copy and print this document solely for your
own use in an Oracle training course. The document may not be modified or altered
in any way. Except where your use constitutes "fair use" under copyright law, you
may not use, share, download, upload, copy, print, display, perform, reproduce,
publish, license, post, transmit, or distribute this document in whole or in part without
the express authorization of Oracle.

The information contained in this document is subject to change without notice. If you
find any problems in the document, please report them in writing to: Oracle University,
500 Oracle Parkway, Redwood Shores, California 94065 USA. This document is not
warranted to be error-free.

Restricted Rights Notice

If this documentation is delivered to the United States Government or anyone using
the documentation on behalf of the United States Government, the following notice is
applicable:

U.S. GOVERNMENT RIGHTS

The U.S. Government’s rights to use, modify, reproduce, release, perform, display, or
disclose these training materials are restricted by the terms of the applicable Oracle
license agreement and/or the applicable U.S. Government contract.

Trademark Notice

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names
may be trademarks of their respective owners.

Contents

1 Introduction
Lesson Objectives 1-2
Lesson Agenda 1-3
Course Objectives 1-4
Course Prerequisites 1-5
Course Agenda 1-6
Lesson Agenda 1-7
Tables Used in This Course 1-8
Appendixes and Practices Used in This Course 1-10
Development Environments 1-11
Lesson Agenda 1-12
Review of Restricting Data 1-13
Review of Sorting Data 1-14
Review of SQL Functions 1-15
Review of Single-Row Functions 1-16
Review of Types of Group Functions 1-17
Review of Using Subqueries 1-18
Review of Managing Tables Using DML Statements 1-20
Lesson Agenda 1-22
Oracle Database SQL Documentation 1-23
Additional Resources 1-24
Summary 1-25
Practice 1: Overview 1-26

2 Introduction to Data Dictionary Views
Objectives 2-2
Lesson Agenda 2-3
Data Dictionary 2-4
Data Dictionary Structure 2-5
How to Use the Dictionary Views 2-7
USER_OBJECTS and ALL_OBJECTS Views 2-8
USER_OBJECTS View 2-9
Lesson Agenda 2-10
Table Information 2-11
Column Information 2-12

Constraint Information 2-14
USER_CONSTRAINTS: Example 2-15
Querying USER_CONS_COLUMNS 2-16
Lesson Agenda 2-17

Adding Comments to a Table 2-18

Quiz 2-19

Summary 2-20

Practice 2: Overview 2-21

Creating Sequences, Synonyms, and Indexes
Objectives 3-2

Lesson Agenda 3-3

Database Objects 3-4

Referencing Another User’s Tables 3-5
Sequences 3-6

CREATE SEQUENCE Statement: Syntax 3-7
Creating a Sequence 3-9

NEXTVAL and CURRVAL Pseudocolumns 3-10
Using a Sequence 3-12

SQL Column defaulting using a Sequence 3-13
Caching Sequence Values 3-14

Modifying a Sequence 3-15

Guidelines for Modifying a Sequence 3-16
Sequence Information 3-17

Lesson Agenda 3-18

Synonyms 3-19

Creating a Synonym for an Object 3-20
Creating and Removing Synonyms 3-21
Synonym Information 3-22

Lesson Agenda 3-23

Indexes 3-24

How Are Indexes Created? 3-25

Creating an Index 3-26

CREATE INDEX with the CREATE TABLE Statement 3-27
Function-Based Indexes 3-29

Creating Multiple Indexes on the Same Set of Columns 3-30
Example of Creating Multiple Indexes on the Same Set Of Columns 3-31
Index Creation Guidelines 3-32

Index Information 3-33

USER _INDEXES: Examples 3-34

Querying USER_IND_COLUMNS 3-35

Removing an Index 3-36
Quiz 3-37

Summary 3-38

Practice 3: Overview 3-39

Creating Views

Objectives 4-2

Lesson Agenda 4-3

Database Objects 4-4

What Is a View? 4-5

Advantages of Views 4-6

Simple Views and Complex Views 4-7
Creating a View 4-8

Retrieving Data from a View 4-11

Modifying a View 4-12

Creating a Complex View 4-13

View Information 4-14

Rules for Performing DML Operations on a View 4-15
Using the WITH CHECK OPTION Clause 4-18
Denying DML Operations 4-19

Removing a View 4-21

Quiz 4-22

Summary 4-23

Practice 4: Overview 4-24

Managing Schema Objects

Objectives 5-2

Lesson Agenda 5-3

Adding a Constraint Syntax 5-4

Adding a Constraint 5-5

Dropping a Constraint 5-6

Dropping a CONSTRAINT ONLINE 5-7

ON DELETE Clause 5-8

Cascading Constraints 5-9

Renaming Table Columns and Constraints 5-12
Disabling Constraints 5-13

Enabling Constraints 5-14

Deferring Constraints 5-15

Difference Between INITIALLY DEFERRED and INITIALLY IMMEDIATE 5-16
DROP TABLE ... PURGE 5-18

Lesson Agenda 5-19

Temporary Tables 5-20

Creating a Temporary Table 5-21

Lesson Agenda 5-22

External Tables 5-23

Creating a Directory for the External Table 5-24

Creating an External Table 5-26

Creating an External Table by Using ORACLE_LOADER 5-28
Querying External Tables 5-30

Creating an External Table by Using ORACLE_DATAPUMP: Example 5-31
Quiz 5-32

Summary 5-33

Practice 5: Overview 5-34

Retrieving Data by Using Subqueries
Objectives 6-2

Lesson Agenda 6-3

Retrieving Data by Using a Subquery as a Source 6-4
Lesson Agenda 6-6

Multiple-Column Subqueries 6-7
Column Comparisons 6-8

Pairwise Comparison Subquery 6-9
Nonpairwise Comparison Subquery 6-11
Lesson Agenda 6-13

Scalar Subquery Expressions 6-14
Scalar Subqueries: Examples 6-15
Lesson Agenda 6-17

Correlated Subqueries 6-18

Using Correlated Subqueries 6-20
Lesson Agenda 6-22

Using the EXISTS Operator 6-23

Find All Departments That Do Not Have Any Employees 6-25
Lesson Agenda 6-26

WITH Clause 6-27

WITH Clause: Example 6-28

Recursive WITH Clause 6-30

Recursive WITH Clause: Example 6-31
Quiz 6-32

Summary 6-33

Practice 6: Overview 6-34

Vi

7 Manipulating Data by Using Subqueries
Objectives 7-2
Lesson Agenda 7-3
Using Subqueries to Manipulate Data 7-4
Lesson Agenda 7-5
Inserting by Using a Subquery as a Target 7-6
Lesson Agenda 7-8
Using the WITH CHECK OPTION Keyword on DML Statements 7-9
Lesson Agenda 7-11
Correlated UPDATE 7-12
Using Correlated UPDATE 7-13
Correlated DELETE 7-15
Using Correlated DELETE 7-16
Summary 7-17
Practice 7: Overview 7-18

8 Controlling User Access
Objectives 8-2
Lesson Agenda 8-3
Controlling User Access 8-4
Privileges 8-5
System Privileges 8-6
Creating Users 8-7
User System Privileges 8-8
Granting System Privileges 8-10
Lesson Agenda 8-11
What Is a Role? 8-12
Creating and Granting Privileges to a Role 8-13
Changing Your Password 8-14
Lesson Agenda 8-15
Object Privileges 8-16
Granting Object Privileges 8-18
Passing On Your Privileges 8-19
Confirming Granted Privileges 8-20
Lesson Agenda 8-21
Revoking Object Privileges 8-22
Quiz 8-24
Summary 8-25
Practice 8: Overview 8-26

Vii

9 Manipulating Data
Objectives 9-2
Lesson Agenda 9-3
Explicit Default Feature: Overview 9-4
Using Explicit Default Values 9-5
Copying Rows from Another Table 9-6
Lesson Agenda 9-7
Multitable INSERT Statements: Overview 9-8
Types of Multitable INSERT Statements 9-10
Multitable INSERT Statements 9-11
Unconditional INSERT ALL 9-13
Conditional INSERT ALL: Example 9-15
Conditional INSERT ALL 9-16
Conditional INSERT FIRST: Example 9-18
Conditional INSERT FIRST 9-19
Pivoting INSERT 9-21
Lesson Agenda 9-24
MERGE Statement 9-25
MERGE Statement Syntax 9-26
Merging Rows: Example 9-27
Lesson Agenda 9-30
FLASHBACK TABLE Statement 9-31
Using the FLASHBACK TABLE Statement 9-33
Lesson Agenda 9-34
Tracking Changes in Data 9-35
Flashback Version Query: Example 9-36
VERSIONS BETWEEN Clause 9-37
Quiz 9-38
Summary 9-40
Practice 9: Overview 9-41

10 Managing Data in Different Time Zones
Objectives 10-2
Lesson Agenda 10-3
Time Zones 10-4
TIME_ZONE Session Parameter 10-5
CURRENT_DATE, CURRENT_TIMESTAMP, and LOCALTIMESTAMP 10-6
Comparing Date and Time in a Session’s Time Zone 10-7
DBTIMEZONE and SESSIONTIMEZONE 10-9
TIMESTAMP Data Types 10-10
TIMESTAMP Fields 10-11

viii

Difference Between DATE and TIMESTAMP 10-12
Comparing TIMESTAMP Data Types 10-13
Lesson Agenda 10-14

INTERVAL Data Types 10-15

INTERVAL Fields 10-17

INTERVAL YEAR TO MONTH: Example 10-18
INTERVAL DAY TO SECOND Data Type: Example 10-20
Lesson Agenda 10-21

EXTRACT 10-22

TZ _OFFSET 10-23

FROM_TZ 10-25

TO_TIMESTAMP 10-26

TO_YMINTERVAL 10-27

TO_DSINTERVAL 10-28

Daylight Saving Time (DST) 10-29

Quiz 10-31

Summary 10-32

Practice 10: Overview 10-33

Table Descriptions

Using SQL Developer

Objectives B-2

What Is Oracle SQL Developer? B-3
Specifications of SQL Developer B-4

SQL Developer 3.2 Interface B-5

Creating a Database Connection B-7
Browsing Database Objects B-10

Displaying the Table Structure B-11
Browsing Files B-12

Creating a Schema Object B-13

Creating a New Table: Example B-14

Using the SQL Worksheet B-15

Executing SQL Statements B-19

Saving SQL Scripts B-20

Executing Saved Script Files: Method 1 B-21
Executing Saved Script Files: Method 2 B-22
Formatting the SQL Code B-23

Using Snippets B-24

Using Snippets: Example B-25

Using Recycle Bin B-26

Debugging Procedures and Functions B-27
Database Reporting B-28

Creating a User-Defined Report B-29
Search Engines and External Tools B-30
Setting Preferences B-31

Resetting the SQL Developer Layout B-33
Data Modeler in SQL Developer B-34
Summary B-35

Using SQL*Plus

Objectives C-2

SQL and SQL*Plus Interaction C-3

SQL Statements Versus SQL*Plus Commands C-4
Overview of SQL*Plus C-5

Logging In to SQL*Plus C-6

Displaying the Table Structure C-7

SQL*Plus Editing Commands C-9

Using LIST, n, and APPEND C-11

Using the CHANGE Command C-12
SQL*Plus File Commands C-13

Using the SAVE, START Commands C-14
SERVEROUTPUT Command C-15

Using the SQL*Plus SPOOL Command C-16
Using the AUTOTRACE Command C-17
Summary C-18

Commonly Used SQL Commands
Objectives D-2

Basic SELECT Statement D-3
SELECT Statement D-4

WHERE Clause D-5

ORDER BY Clause D-6

GROUP BY Clause D-7

Data Definition Language D-8
CREATE TABLE Statement D-9
ALTER TABLE Statement D-10
DROP TABLE Statement D-11
GRANT Statement D-12

Privilege Types D-13

REVOKE Statement D-14
TRUNCATE TABLE Statement D-15

Data Manipulation Language D-16

INSERT Statement D-17

UPDATE Statement Syntax D-18

DELETE Statement D-19

Transaction Control Statements D-20

COMMIT Statement D-21

ROLLBACK Statement D-22

SAVEPOINT Statement D-23

Joins D-24

Types of Joins D-25

Qualifying Ambiguous Column Names D-26
Natural Join D-27

Equijoins D-28

Retrieving Records with Equijoins D-29
Additional Search Conditions Using the AND and WHERE Operators D-30
Retrieving Records with Nonequijoins D-31
Retrieving Records by Using the USING Clause D-32
Retrieving Records by Using the ON Clause D-33
Left Outer Join D-34

Right Outer Join D-35

Full Outer Join D-36

Self-Join: Example D-37

Cross Join D-38

Summary D-39

Generating Reports by Grouping Related Data
Objectives E-2

Review of Group Functions E-3

Review of the GROUP BY Clause E-4

Review of the HAVING Clause E-5

GROUP BY with ROLLUP and CUBE Operators E-6
ROLLUP Operator E-7

ROLLUP Operator: Example E-8

CUBE Operator E-9

CUBE Operator: Example E-10

GROUPING Function E-11

GROUPING Function: Example E-12
GROUPING SETS E-13

GROUPING SETS: Example E-15

Composite Columns E-17

Composite Columns: Example E-19

Xi

Concatenated Groupings E-21
Concatenated Groupings: Example E-22
Summary E-23

Hierarchical Retrieval

Objectives F-2

Sample Data from the EMPLOYEES Table F-3
Natural Tree Structure F-4

Hierarchical Queries F-5

Walking the Tree F-6

Walking the Tree: From the Bottom Up F-8

Walking the Tree: From the Top Down F-9

Ranking Rows with the LEVEL Pseudocolumn F-10
Formatting Hierarchical Reports Using LEVEL and LPAD F-11
Pruning Branches F-13

Summary F-14

Writing Advanced Scripts

Objectives G-2

Using SQL to Generate SQL G-3

Creating a Basic Script G-4

Controlling the Environment G-5

The Complete Picture G-6

Dumping the Contents of a Table to a File G-7
Generating a Dynamic Predicate G-9
Summary G-11

Oracle Database Architectural Components
Objectives H-2

Oracle Database Architecture: Overview H-3
Oracle Database Server Structures H-4
Connecting to the Database H-5

Interacting with an Oracle Database H-6
Oracle Memory Architecture H-8

Process Architecture H-10

Database Writer Process H-12

Log Writer Process H-13

Checkpoint Process H-14

System Monitor Process H-15

Process Monitor Process H-16

Oracle Database Storage Architecture H-17

Xii

Logical and Physical Database Structures H-19
Processing a SQL Statement H-21

Processing a Query H-22

Shared Pool H-23

Database Buffer Cache H-25

Program Global Area (PGA) H-26

Processing a DML Statement H-27

Redo Log Buffer H-29

Rollback Segment H-30

COMMIT Processing H-31

Summary of the Oracle Database Architecture H-33
Summary H-34

Regular Expression Support

Objectives -2

What Are Regular Expressions? 1-3

Benefits of Using Regular Expressions 1-4

Using the Regular Expressions Functions and Conditions in SQL and PL/SQL 1-5
What Are Metacharacters? 1-6

Using Metacharacters with Regular Expressions |-7

Regular Expressions Functions and Conditions: Syntax -9

Performing a Basic Search by Using the REGEXP_LIKE Condition 1-10
Replacing Patterns by Using the REGEXP_REPLACE Function [-11
Finding Patterns by Using the REGEXP_INSTR Function 1-12
Extracting Substrings by Using the REGEXP_SUBSTR Function [-13
Subexpressions 1-14

Using Subexpressions with Regular Expression Support 1-15

Why Access the nth Subexpression? 1-16

REGEXP_SUBSTR: Example [-17

Using the REGEXP_COUNT Function 1-18

Regular Expressions and Check Constraints: Examples 1-19

Quiz 1-20

Summary [-21

xiii

Ajuo asn suoin|og 1geb3 pue AlsiaAlun ajoelO

a3LigIHOdd A1LOIE1S SI d3LNdNOD SIHL INOYA STVIFTILVIN LIM® ONIAJOD "ATNO WOOHSSV1D SIHL NI 3SN dNOA d04 34V STIVIHILYIN LIMS 3SIHL

Managing Data in Different Time Zones

ORACLE

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

Objectives

After completing this lesson, you should be able to:

- Use data types similar to DATE that store fractional
seconds and track time zones

- Use data types that store the difference between two
datetime values

« Use the following datetime functions:

— CURRENT DATE — TZ OFFSET

— CURRENT TIMESTAMP — FROM TZ

— LOCALTIMESTAMP — TO_TIMESTAMP
— DBTIMEZONE — TO_YMINTERVAL
— SESSIONTIMEZONE — TO_DSINTERVAL
— EXTRACT

ORACLE

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

In this lesson, you learn how to use data types similar to DATE that store fractional seconds
and track time zones. This lesson addresses some of the datetime functions available in the
Oracle database.

Oracle Database 12c¢: SQL Workshop Il 10 -2

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS COMPUTER IS STRICTLY PROHIBITED

Lesson Agenda

* CURRENT DATE, CURRENT TIMESTAMP,
and LOCALTIMESTAMP

 INTERVAL data types
» Using the following functions:
— EXTRACT
— TZ OFFSET
— FROM TZ
— TO_ TIMESTAMP
— TO_YMINTERVAL
— TO DSINTERVAL

ORACLE

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

Oracle Database 12¢: SQL Workshop Il 10-3

Oracle University and Egabi Solutions use only

Time Zones

00:00 +02:00 +04:00 +06:00 +08:00 +10:00 +12:00 +14:00 +16:00 +18:00 +20:00 +22:00

-08:00

| Internatjonal
| Dante Line

The image represents the time for
each time zone when Greenwich
time is 12:00.

ORACLE

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

The hours of the day are measured by the turning of the earth. The time of day at any
particular moment depends on where you are. Whenit is noon in Greenwich, England, it is
midnight along the International Date Line. The earth is divided into 24 time zones, one for
each hour of the day. The time along the prime meridian in Greenwich, England, is known as
Greenwich Mean Time (GMT). GMT is now known as Coordinated Universal Time (UTC).
UTC is the time standard against which all other time zones in the world are referenced. It is
the same all year round and is not affected by summer time or daylight saving time. The
meridian line is an imaginary line that runs from the North Pole to the South Pole. It is known
as zero longitude and it is the line from which all other lines of longitude are measured. All
time is measured relative to UTC and all places have a latitude (their distance north or south
of the equator) and a longitude (their distance east or west of the Greenwich meridian).

Oracle Database 12c¢: SQL Workshop Il 10 -4

TIME ZONE Session Parameter

TIME ZONE may be set to:
* An absolute offset
« Database time zone
* OS local time zone
* A named region

ALTER SESSION SET TIME ZONE = '-05:00"';

ALTER SESSION SET TIME ZONE = dbtimezone;

ALTER SESSION SET TIME ZONE = local;

ALTER SESSION SET TIME ZONE = 'America/New York';

ORACLE

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

The Oracle database supports storing the time zone in your date and time data, as well as
fractional seconds. The ALTER SESSION command can be used to change time zone values

in a user’s session. The time zone values can be set to an absolute offset, a named time
zone, a database time zone, or the local time zone.

Oracle Database 12c¢: SQL Workshop Il 10 -5

CURRENT DATE, CURRENT TIMESTAMP,
and LOCALTIMESTAMP

* CURRENT DATE:

— Returns the current date from the user session
— Has a data type of DATE

* CURRENT TIMESTAMP:

— Returns the current date and time from the user session
— Has a data type of TIMESTAMP WITH TIME ZONE

° LOCALTIMESTAMP:

— Returns the current date and time from the user session
— Has a data type of TIMESTAMP

ORACLE

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

The CURRENT DATE and CURRENT TIMESTAMP functions return the current date and current
time stamp, respectively. The data type of CURRENT DATE is DATE. The data type of
CURRENT TIMESTAMP iS TIMESTAMP WITH TIME ZONE. The values returned display the
time zone displacement of the SQL session executing the functions. The time zone
displacementis the difference (in hours and minutes) between local time and UTC. The
TIMESTAMP WITH TIME ZONE data type has the format:

TIMESTAMP [(fractional seconds precision)] WITH TIME ZONE

where fractional seconds precision optionally specifies the number of digits in the
fractional part of the SECOND datetime field and can be a number in the range 0 through 9.
The default is 6.

The LOCALTIMESTAMP function returns the current date and time in the session time zone.
The difference between LOCALTIMESTAMP and CURRENT TIMESTAMP is that
LOCALTIMESTAMP returns a TIMESTAMP value, whereas CURRENT TIMESTAMP returns a
TIMESTAMP WITH TIME ZONE value.

These functions are national language support (NLS)—sensitive—that is, the results will be in
the current NLS calendar and datetime formats.

Note: The SYSDATE function returns the current date and time as a DATE data type. You
learned how to use the SYSDATE function in the course titled Oracle Database: SQL
Workshop I.

Oracle Database 12c¢: SQL Workshop Il 10 -6

Comparing Date and Time
in a Session’s Time Zone

The TIME ZONE parameter is setto -5:00 and then SELECT

statements for each date and time are executed to compare
differences.

ALTER SESSION

SET NLS DATE FORMAT = 'DD-MON-YYYY HH24:MI:SS';
ALTER SESSION SET TIME ZONE = '-5:00';
SELECT SESSIONTIMEZONE, CURRENT DATE FROM DUAL; (:)

SELECT SESSIONTIMEZONE, CURRENT TIMESTAMP FROM DUAL;(:)

SELECT SESSIONTIMEZONE, LOCALTIMESTAMP FROM DUAL; (:)

ORACLE

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

The ALTER SESSION command sets the date format of the session to
'DD-MON-YYYY HH24 :MI:SS'—thatis, day of month (1-31)-abbreviated name of month-4-
digit year hour of day (0—23):minute (0-59):second (0-59).

The example in the slide illustrates that the session is altered to set the TIME ZONE
parameter to —5:00. Then the SELECT statement for CURRENT DATE, CURRENT TIMESTAMP,
and LOCALTIMESTAMP is executed to observe the differences in format.

Note: The TIME ZONE parameter specifies the default local time zone displacement for the
current SQL session. TIME_ZONE is a session parameter only, not an initialization parameter.
The TIME ZONE parameter is set as follows:

TIME ZONE = '[+ | -] hh:mm'
The format mask ([+ | -1 hh:mm)indicates the hours and minutes before or after UTC.

Oracle Database 12c¢: SQL Workshop Il 10 -7

Comparing Date and Time
in a Session’s Time Zone

Results of queries:

|sess1an SET altered.
f SESSIONTIMEZONE § CURRENT_DATE
1 -05:00 10-SEP-2012 23:08:16
@ SESSIONTlMEZONE_ CURREMT_TIMESTAMP
1 -05:00 10-SEP-12 11.10.21.183775000 PM -05:00

fl SESSIONTIMEZONE | LOCALTIMESTAMP
1 -05:00 10-SEP-12 11.10.43.871626000 PM @

ORACLE

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

In this case, the CURRENT DATE function returns the current date in the session’s time zone,
the CURRENT TIMESTAMP function returns the current date and time in the session’s time
zone as a value of the data type TIMESTAMP WITH TIME ZONE, and the LOCALTIMESTAMP

function returns the current date and time in the session’s time zone.
Note: The code example output may vary depending on when the command is run.

Oracle Database 12c¢: SQL Workshop Il 10 -8

DBTIMEZONE and SESSIONTIMEZONE

« Display the value of the database time zone:

SELECT DBTIMEZONE FROM DUAL;

@ oeTiMEZONE
1 +00:00

« Display the value of the session’s time zone:

SELECT SESSIONTIMEZONE FROM DUAL;

§ SESSIONTIMEZONE |
1 -05:00

ORACLE

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

The DBA sets the database’s default time zone by specifying the SET TIME ZONE clause of
the CREATE DATABASE statement. If omitted, the default database time zone is the operating
system time zone. The database time zone cannot be changed for a session with an ALTER
SESSION statement.

The DBTIMEZONE function returns the value of the database time zone. The return type is a
time zone offset (a character type in the format: ' [+|-1TZzH:TZM') or a time zone region

name, depending on how the user specified the database time zone value in the most recent
CREATE DATABASE or ALTER DATABASE statement. The example in the slide shows that the

database time zone is set to “~05:00,” as the TIME ZONE parameter is in the format:
TIME ZONE = '[+ | -] hh:mm'

The SESSIONTIMEZONE function returns the value of the current session’s time zone. The
return type is a time zone offset (a character type in the format ' [+ | -] TZH:TZM') or a time
zone region name, depending on how the user specified the session time zone value in the
most recent ALTER SESSION statement. The example in the slide shows that the session

time zone is offset to UTC by —5 hours. Observe that the database time zone is different from
the current session’s time zone.

Oracle Database 12c¢: SQL Workshop Il 10-9

TIMESTAMP Data Types

Data Type Fields

Year, Month, Day, Hour, Minute, Second

TIMESTAMP ; .
with fractional seconds

TIMESTAMP WITH TIME ZONE Same as the TIMESTAMP data type; also
includes:

TIMEZONE_HOUR, and
TIMEZONE MINUTE or
TIMEZONE REGION

TIMESTAMP WITH LOCAL Same as the TIMESTAMP data type; also
TIME ZONE includes a time zone offset in its value

ORACLE

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

The TIMESTAMP data type is an extension of the DATE data type.

TIMESTAMP (fractional seconds precision)

This data type contains the year, month, and day values of date, as well as hour, minute, and
second values of time, where significant fractional seconds precision is the number of digits in
the fractional part of the SECOND datetime field. The accepted values of significant
fractional seconds precisionare 0 through 9. The defaultis 6.

TIMESTAMP (fractional seconds precision) WITH TIME ZONE

This data type contains all values of TIMESTAMP as well as time zone displacement value.
TIMESTAMP (fractional seconds precision) WITH LOCAL TIME ZONE

This data type contains all values of TIMESTAMP, with the following exceptions:
« Data is normalized to the database time zone when it is stored in the database.
« When the data is retrieved, users see the data in the session time zone.

Oracle Database 12¢c: SQL Workshop Il 10 -10

TIMESTAMP Fields

Datetime Field Valid Values

YEAR —4712 to 9999 (excluding year 0)
MONTH 01 to 12

DAY 01 to 31

HOUR 00 to 23

MINUTE 00 to 59

SECOND 00 to 59.9(N) where 9(N) is precision
TIMEZONE HOUR -12to 14

TIMEZONE MINUTE 00 to 59

ORACLE

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

Each datetime data type is composed of several of these fields. Datetimes are mutually
comparable and assignable only if they have the same datetime fields.

Oracle Database 12c¢: SQL Workshop Il 10 - 11

Difference Between DATE and TIMESTAMP

-- when hire date is | |ALTER TABLE emp4
of type DATE MODIFY hire date
TIMESTAMP (7) ;
SELECT hire date SELECT hire date
FROM emp4; FROM emp4;
B HIRe_DATE @ HIRe_DATE

1 17-1UN-03 1 17-JUN-03 12.00.00.000000000 AM
2 21-SEP-05 2 21-SEP-05 12.00.00.000000000 AN
3 13-1AN-01 3 13-JAN-01 12.00.00.000000000 AN
4 03-1AN-06 4 03-18N-06 12.00.00.000000000 AM
S 21_MAY-07 5 21-MAY-07 12.00.00.000000000 AN
6 25-1UN-05 6 25-JUN-05 12.00.00.000000000 AN
7 0S-FEB-06 7 05-FEB-06 12.00.00.000000000 AM
8 07-FEB-07 8 07-FEB-07 12.00.00.000000000 AM
9 17-8UG-02 9 17-AUG-02 12.00.00.000000000 AN
10 16-21G-02 10 16-AUG-02 12.00.00.000000000 AM

ORACLE

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

TIMESTAMP Data Type: Example

In the slide, example A shows the data from the hire date column of the EMP4 table when
the data type of the column is DATE. In example B, the table is altered and the data type of the
hire date columnis made into TIMESTAMP. The output shows the differences in display.
You can convert from DATE to TIMESTAMP when the column has data, but you cannot convert
from DATE or TIMESTAMP to TIMESTAMP WITH TIME ZONE unless the column is empty.

You can specify the fractional seconds precision for time stamp. If none is specified, as in this
example, it defaults to 6.
For example, the following statement sets the fractional seconds precision as 7:

ALTER TABLE emp4

MODIFY hire date TIMESTAMP (7) ;
Note: The Oracle DATE data type by default looks like what is shown in this example.
However, the date data type also contains additional information such as hours, minutes,

seconds, AM, and PM. To obtain the date in this format, you can apply a format mask or a
function to the date value.

Oracle Database 12¢: SQL Workshop Il 10 -12

Comparing TIMESTAMP Data Types

CREATE TABLE web orders
(order date TIMESTAMP WITH TIME ZONE,
delivery time TIMESTAMP WITH LOCAL TIME ZONE) ;

INSERT INTO web orders values
(current date, current timestamp + 2);

SELECT * FROM web orders;

B ORDER_DATE |# oELvERY_TIME |
1 10-SEP-12 11.30.20.000000000 PH -05:00 12-SEP-12 11.30.20.000000000 PM

ORACLE

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

In the example in the slide, a new table web_orders is created with a column of data type
TIMESTAMP WITH TIME ZONE and a column of data type TIMESTAMP WITH LOCAL TIME
ZONE. This table is populated whenever a web_order is placed. The time stamp and time
zone for the user placing the order are inserted based on the CURRENT DATE value. The

local time stamp and time zone are populated by inserting two days from the
CURRENT TIMESTAMP value into it every time an order is placed. When a web-based

company guarantees shipping, it can estimate its delivery time based on the time zone of the
person placing the order.

Note: The code example output may vary as per the time of run of the command.

Oracle Database 12¢c: SQL Workshop Il 10 -13

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS COMPUTER IS STRICTLY PROHIBITED

Lesson Agenda

* CURRENT DATE, CURRENT TIMESTAMP,
and LOCALTIMESTAMP

* INTERVAL data types
» Using the following functions:
— EXTRACT
— TZ OFFSET
— FROM TZ
— TO_ TIMESTAMP
— TO_ YMINTERVAL
— TO DSINTERVAL

ORACLE

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

Oracle Database 12c: SQL Workshop Il 10 - 14

Oracle University and Egabi Solutions use only

INTERVAL Data Types

 INTERVAL data types are used to store the difference
between two datetime values.
* There are two classes of intervals:
— Year-month
— Day-time
« The precision of the interval is:
— The actual subset of fields that constitutes an interval
— Specified in the interval qualifier

Data Type Fields

INTERVAL YEAR TO MONTH | Year, Month

Days, Hour, Minute, Second with

INTERVAL DAY TO SECOND X
fractional seconds

ORACLE

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

INTERVAL data types are used to store the difference between two datetime values. There
are two classes of intervals: year-month intervals and day-time intervals. A year-month
interval is made up of a contiguous subset of fields of YEAR and MONTH, whereas a day-time
interval is made up of a contiguous subset of fields consisting of DAY, HOUR, MINUTE, and
SECOND. The actual subset of fields that constitute an interval is called the precision of the
interval and is specified in the interval qualifier. Because the number of days in a year is
calendar-dependent, the year-month interval is NLS-dependent, whereas day-time interval is
NLS-independent.

The interval qualifier may also specify the leading field precision, which is the number of digits
in the leading or only field, and in case the trailing field is SECOND, it may also specify the
fractional seconds precision, which is the number of digits in the fractional part of the SECOND
value. If not specified, the default value for leading field precision is 2 digits, and the default
value for fractional seconds precision is 6 digits.

Oracle Database 12¢c: SQL Workshop Il 10 -15

INTERVAL YEAR (year precision) TO MONTH

This data type stores a period of time in years and months, where year precisionis the
number of digits in the YEAR datetime field. The accepted values are 0 through 9. The default
is 6.

INTERVAL DAY (day precision) TO SECOND (fractional seconds precision)

This data type stores a period of time in days, hours, minutes, and seconds, where

day precisionis the maximum number of digits in the DAY datetime field (accepted values
are 0 through 9; the defaultis 2), and fractional seconds precision is the number of
digits in the fractional part of the SECOND field. The accepted values are 0 through 9. The default
is 6.

Oracle Database 12¢: SQL Workshop Il 10 -16

INTERVAL Fields

INTERVAL Field | Valid Values for Interval

YEAR Any positive or negative integer
MONTH 00to 11

DAY Any positive or negative integer
HOUR 00 to 23

MINUTE 00 to 59

SECOND 00 to 59.9(N) where 9(N) is precision

ORACLE

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

INTERVAL YEAR TO MONTH can have fields of YEAR and MONTH.
INTERVAL DAY TO SECOND can have fields of DAY, HOUR, MINUTE, and SECOND.

The actual subset of fields that constitute an item of either type of interval is defined by an
interval qualifier, and this subset is known as the precision of the item.

Year-month intervals are mutually comparable and assignable only with other year-month
intervals, and day-time intervals are mutually comparable and assignable only with other day-
time intervals.

Oracle Database 12¢c: SQL Workshop Il 10 -17

INTERVAL YEAR TO MONTH: Example

CREATE TABLE warranty
(prod id number, warranty time INTERVAL YEAR(3) TO
MONTH) ;

INSERT INTO warranty VALUES (123, INTERVAL '8' MONTH) ;

INSERT INTO warranty VALUES (155, INTERVAL '200'
YEAR(3)) ;

INSERT INTO warranty VALUES (678, '200-11');
SELECT * FROM warranty;

f ProD_ID [WARRANTY_TIME
1 1230-8
2 155 200-0
3 678 200-11

ORACLE

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

Oracle Database 12¢: SQL Workshop Il 10 -18

Oracle Database 12¢c: SQL Workshop Il 10 -18

The Oracle database supports two interval data types: INTERVAL YEAR TO MONTH and
INTERVAL DAY TO SECOND; the column type, PL/SQL argument, variable, and return type must
be one of the two. However, for interval literals, the system recognizes other American National
Standards Institute (ANSI) interval types such as INTERVAL '2' YEAR or INTERVAL '10"
HOUR. In these cases, each interval is converted to one of the two supported types.

In the example in the slide, a WARRANTY table is created, which contains a warranty time
column that takes the INTERVAL YEAR (3) TO MONTH data type. Different values are inserted

into it to indicate years and months for various products. When these rows are retrieved from
the table, you see a year value separated from the month value by a (-).

Oracle Database 12c¢: SQL Workshop Il 10 -19

INTERVAL DAY TO SECOND Data Type: Example

CREATE TABLE lab
(exp id number, test time INTERVAL DAY (2) TO SECOND) ;
INSERT INTO lab VALUES (100012, 'S0 00:00:00');

INSERT INTO lab VALUES (56098,
INTERVAL '6 03:30:16' DAY TO SECOND) ;

SELECT * FROM lab;

B ecio|f TEST_TIME|
1 10001290 0:0:0.0
2 560986 3:30:16.0

ORACLE

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

In the example in the slide, you create the 1ab table with a test time column of the
INTERVAL DAY TO SECOND data type. You then insert into it the value '90 00:00:00' to
indicate 90 days and 0 hours, 0 minutes, and 0 seconds, and INTERVAL '6 03:30:16"
DAY TO SECOND to indicate 6 days, 3 hours, 30 minutes, and 16 seconds. The SELECT

statement shows how this data is displayed in the database.

Oracle Database 12¢: SQL Workshop Il 10 - 20

Lesson Agenda

* CURRENT DATE, CURRENT TIMESTAMP,
and LOCALTIMESTAMP

« INTERVAL data types
« Using the following functions:
— EXTRACT
— TZ OFFSET
— FROM_TZ
— TO_TIMESTAMP
— TO_YMINTERVAL
— TO_DSINTERVAL

ORACLE

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

Oracle Database 12c¢: SQL Workshop Il 10 - 21

EXTRACT

« Display all employees who were hired after 2007.

SELECT last name, employee id, hire date
FROM employees
WHERE‘ EXTRACT (YEAR FROM TO DATE (hire date, 'DD-MON-RR')) > 2007 I
ORDER BY hire date;

« Display the MONTH component from the HIRE DATE for
those employees whose MANAGER ID is 100.

SELECT last name, hire date,

| EXTRACT (MONTH FROM HIRE DATE) |
FROM employees
WHERE manager id = 100;

[l rasT_mamME |l HIRE_DATE # EXTRACT{MONTHFROMHIRE_DATE)
1 Kochhar 21-5EP-05 9
2 De Haan 13-AN-01 1

3 Raphaely 07-DEC-02 12
4 Weiss 18-2UL-04 T
S Fripp 10-APR-05 4
6 Kaufling 01-MaY-03 5

ORACLE

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

The EXTRACT expression extracts and returns the value of a specified datetime field from a
datetime or interval value expression. You can extract any of the components mentioned in
the following syntax using the EXTRACT function. The syntax of the EXTRACT function is:
SELECT EXTRACT({ YEAR | MONTH | DAY | HOUR | MINUTE |
SECOND
| TIMEZONE_HOUR
| TIMEZONE MINUTE
| TIMEZONE REGION
| TIMEZONE ABBR }
FROM { expr })

When you extract a TIMEZONE_REGION or TIMEZONE ABBR (abbreviation), the value
returned is a string containing the appropriate time zone name or abbreviation. When you
extract any of the other values, the value returned is a date in the Gregorian calendar. When
extracting from a datetime with a time zone value, the value returned is in UTC.

In the first example in the slide, the EXTRACT function is used to select all employees who
were hired after 2007. In the second example in the slide, the EXTRACT function is used to
extract the MONTH from the HIRE DATE column of the EMPLOYEES table for those employees
who report to the manager whose EMPLOYEE IDis 100.

Oracle Database 12c¢: SQL Workshop Il 10 - 22

TZ OFFSET

Display the time zone offset for the 'us/Eastern?,
'Canada/Yukon' and 'Europe/London' time zones:

SELECT TZ OFFSET ('UsS/Eastern'),
TZ OFFSET ('Canada/Yukon'),
TZ OFFSET ('Europe/London')
FROM DUAL;

La TZ_OFFSET{'USfEASTERN') Lﬂ TZ_OFFSET{ CANADA fYUKON' [ﬂ TZ_OFFSET('EUROPE/LONDON') |
1 -04:00 -07:00 +01:00

ORACLE

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

The TZ_ OFFSET function returns the time zone offset corresponding to the value entered. The
return value is dependent on the date when the statement is executed. For example, if the
TZ_ OFFSET function returns a value —08:00, this value indicates that the time zone where the
command was executed is eight hours behind UTC. You can enter a valid time zone name, a
time zone offset from UTC (which simply returns itself), or the keyword SESSIONTIMEZONE or
DBTIMEZONE. The syntax of the TZ OFFSET functionis:
TZ OFFSET({ 'time zone name'| '{ + | - } hh : mi’
| SESSIONTIMEZONE
| DBTMEZONE

1)

The Fold Motor Company has its headquarters in Michigan, USA, which is in the US/Eastern
time zone. The company president, Mr. Fold, wants to conduct a conference call with the vice
president of the Canadian operations and the vice president of European operations, who are
in the Canada/Yukon and Europe/London time zones, respectively. Mr. Fold wants to find out
the time in each of these places to make sure that his senior management will be available to
attend the meeting. His secretary, Mr. Scott, helps by issuing the queries shown in the
example and gets the following results:

« The 'US/Eastern' time zone is four hours behind UTC.
« The 'Canada/Yukon' time zone is seven hours behind UTC.
* The 'Europe/London' time zone is one hour ahead of UTC.

Oracle Database 12¢c: SQL Workshop Il 10 - 23

For a listing of valid time zone name values, you can query the VSTIMEZONE NAMES dynamic
performance view.

SELECT * FROM VS$TIMEZONE NAMES;

TZNAME 8 Tzeeerev |l conip]
1 Africasdhidian LMT 0]
2 Africasabidjan GMT 4]
3 Africasaccra LMT 0
4 ATricasAccra GMT 0]
5 AfricasAccra GHET 4]

Oracle Database 12c¢: SQL Workshop Il 10 - 24

FROM TZ

Display the TIMESTAMP value '2000-07-12 08:00:00' as a
TIMESTAMP WITH TIME ZONE value for the
'Australia/North' time zone region.

SELECT FROM TZ (TIMESTAMP
'2000-07-12 08:00:00', 'Australia/North!')
FROM DUAL;

[l FROM_TZ(TIMESTAMP'2000-07-1208:00:00','AUSTRALIA/NORTHY) |
1 12-JUL-00 08.00.00.000000000 AM AUSTRALIA/NORTH

ORACLE

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

The FROM_TZ function converts a TIMESTAMP value to a TIMESTAMP WITH TIME ZONE
value.
The syntax of the FROM_TZ function is as follows:

FROM TZ (timestamp value, time zone value)
where time zone value is a character string in the format ' TZH: TZM' or a character
expression that returns a string in TZR (time zone region) with an optional TzD format. TZD is
an abbreviated time zone string with daylight saving information. TZR represents the time
zone region in datetime input strings. Examples are 'Australia/North', 'PST' for
US/Pacific standard time, ' DT for US/Pacific daylight time, and so on.

The example in the slide converts a TIMESTAMP value to TIMESTAMP WITH TIME ZONE.

Note: To see a listing of valid values for the TZR and TzD format elements, query the
VSTIMEZONE NAMES dynamic performance view.

Oracle Database 12¢c: SQL Workshop Il 10 - 25

TO TIMESTAMP

Display the character string '2007-03-06 11:00:00"
as a TIMESTAMP value:

SELECT TO TIMESTAMP ('2007-03-06 11:00:00"',
'YYYY-MM-DD HH:MI:SS')
FROM DUAL;

L'z_'l TO_TIMESTAMP('2007-03-0611:00:00',YYYY-MM-DDHH:MI:S5) |
1 06-MAR-07 11.00.00.000000000 AM

ORACLE

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

The TO_TIMESTAMP function converts a string of CHAR, VARCHAR2, NCHAR, Oor NVARCHAR2
data type to a value of the TIMESTAMP data type. The syntax of the TO TIMESTAMP function
is:
TO_TIMESTAMP (char [, fmt [, 'nlsparam']])
The optional £mt specifies the format of char. If you omit £mt, the string must be in the
default format of the TIMESTAMP data type. The optional nlsparam specifies the language in
which month and day names, and abbreviations, are returned. This argument can have this
form:
'"NLS DATE LANGUAGE = language'

If you omit nlsparams, this function uses the default date language for your session.
The example in the slide converts a character string to a value of TIMESTAMP.

Note: You use the TO TIMESTAMP TZ function to convert a string of CHAR, VARCHAR2,
NCHAR, or NVARCHAR?2 data type to a value of the TIMESTAMP WITH TIME ZONE data type.
For more information about this function, see Oracle Database SQL Language Reference for
Oracle Database 12c.

Oracle Database 12c: SQL Workshop Il 10 - 26

TO YMINTERVAL

Display a date that is one year and two months after the hire
date for the employees working in the department with the
DEPARTMENT ID 20.

SELECT hire date,
hire date + TO YMINTERVAL('01-02') AS
HIRE DATE YMININTERVAL

FROM employees

WHERE department id = 20;

] HREDATE|E HIRE_DATE YMININTERVAL |
117-FEB-04 17-APR-05
2 17-AUG-05 17-0CT-06

ORACLE

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

The TO_YMINTERVAL function converts a character string of CHAR, VARCHAR2, NCHAR, Or
NVARCHAR?2 data type to an INTERVAL YEAR TO MONTH data type. The INTERVAL YEAR TO
MONTH data type stores a period of time using the YEAR and MONTH datetime fields. The
format of INTERVAL YEAR TO MONTH is as follows:

INTERVAL YEAR [(year precision)] TO MONTH

where year precisionis the number of digits in the YEAR datetime field. The default value
of year precisionis 2.
The syntax of the TO_ YMINTERVAL function is:
TO_YMINTERVAL (char)
where char is the character string to be converted.

The example in the slide calculates a date that is one year and two months after the hire date
for the employees working in the department 20 of the EMPLOYEES table.

Oracle Database 12c: SQL Workshop Il 10 - 27

TO DSINTERVAL

Display a date that is 100 days and 10 hours after the hire date
for all the employees.

SELECT last name,
TO CHAR (hire date, 'mm-dd-yy:hh:mi:ss') hire date,
TO CHAR (hire date +
TO DSINTERVAL('100 10:00:00"'),
'mm-dd-yy:hh:mi:ss') hiredate2
FROM employees;

LasT_name|§ HIRE_DATE @ HIREDATEZ
1 King 06—1]'—03:12:00:00.09-25—03:10:00:00
2 Kochhar 09-21-05:12:00:00 12-30-05:10:00:00
3 De Haan 01-13-01:12:00:00 04-23-01:10:00:00
4 Hunold 01-03-06:12:00:00 04-13-06:10:00:00
5 Ernst 05-21-07:12:00:00 08-29-07:10:00:00
6 Austin 06-25-05:12:00:00 10-03-05:10:00:00
7 Pataballa 02-05-06:12:00:00 05-16-06:10:00:00
& Lorentz 02=07=07:12:00:00 05=18-07:10:00:00
9 Greenberg 08-17-02:12:00:00 11-25-02:10:00:00
10 Faviet 08-16-02:12:00:00 11-24-02:10:00:00
11 Chen 09-28-05:12:00:00 01-06-06:10:00:00

ORACLE

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

TO_DSINTERVAL converts a character string of the CHAR, VARCHAR2, NCHAR, Or NVARCHAR?2
data type to an INTERVAL DAY TO SECOND data type.

In the example in the slide, the date 100 days and 10 hours after the hire date is obtained.

Oracle Database 12¢c: SQL Workshop Il 10 - 28

Daylight Saving Time (DST)

- Start of Daylight Saving:
— Time jumps from 01:59:59 AM to 03:00:00 AM.
— Values from 02:00:00 AM to 02:59:59 AM are not valid.

- End of Daylight Saving:
— Time jumps from 02:00:00 AM to 01:00:01 AM.

— Values from 01:00:01 AM to 02:00:00 AM are ambiguous
because they are visited twice.

ORACLE

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

Most western nations advance the clock ahead one hour during the summer months. This
period is called daylight saving time. Daylight saving time lasts from the start of Daylight
Saving to the end of Daylight Saving in the most of the United States, Mexico, and Canada.
The nations of the European Union observe daylight saving time, but they call it the summer
time period. Europe’s summer time period begins a week earlier than its North American
counterpart, but ends at the same time.

The Oracle database automatically determines, for any given time zone region, whether
daylight saving time is in effect and returns local time values accordingly. The datetime value
is sufficient for the Oracle database to determine whether daylight saving time is in effect for a
given region in all cases except boundary cases. A boundary case occurs during the period
when daylight saving time goes into or out of effect. For example, in the US/Eastern region,
when daylight saving time goes into effect, the time changes from 01:59:59 AM to 03:00:00
AM. The one-hour interval between 02:00:00 AM and 02:59:59 AM. does not exist. When
daylight saving time goes out of effect, the time changes from 02:00:00 AM back to 01:00:01
AM, and the one-hour interval between 01:00:01 AM and 02:00:00 AM is repeated.

Oracle Database 12c¢: SQL Workshop Il 10 - 29

ERROR ON OVERLAP TIME

The ERROR_ON OVERLAP_TIME is a session parameter to notify the system to issue an error
when it encounters a datetime that occurs in the overlapped period and no time zone
abbreviation was specified to distinguish the period.

For example, daylight saving time ends on October 31, at 02:00:01 AM. The overlapped periods
are:

« 10/31/2004 01:00:01 AM to 10/31/2004 02:00:00 AM (EDT)
« 10/31/2004 01:00:01 AM to 10/31/2004 02:00:00 AM (EST)

If you input a datetime string that occurs in one of these two periods, you need to specify the
time zone abbreviation (for example, EDT or EST) in the input string for the system to determine
the period. Without this time zone abbreviation, the system does the following:

If the ERROR_ON_OVERLAP TIME parameter is FALSE, it assumes that the input time is
standard time (for example, EST). Otherwise, an error is raised.

Oracle Database 12¢: SQL Workshop Il 10 - 30

Quiz

The TIME ZONE session parameter may be set to:
a. Arelative offset
b. Database time zone
c. OS local time zone
d. A named region

ORACLE

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

Answer: b, c, d

Oracle Database 12c¢: SQL Workshop Il 10 - 31

Summary

In this lesson, you should have learned how to:

- Use data types similar to DATE that store fractional
seconds and track time zones

- Use data types that store the difference between two
datetime values

« Use the following datetime functions:

— CURRENT DATE — TZ OFFSET

— CURRENT TIMESTAMP — FROM TZ

— LOCALTIMESTAMP — TO _TIMESTAMP
— DBTIMEZONE — TO_YMINTERVAL
— SESSIONTIMEZONE — TO DSINTERVAL
— EXTRACT

ORACLE

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

This lesson addressed some of the datetime functions available in the Oracle database.

Oracle Database 12c¢: SQL Workshop Il 10 - 32

Practice 10: Overview

This practice covers using the datetime functions.

ORACLE

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

In this practice, you display time zone offsets, CURRENT DATE, CURRENT TIMESTAMP, and
LOCALTIMESTAMP. You also set time zones and use the EXTRACT function.

Oracle Database 12c¢: SQL Workshop Il 10 - 33

Ajuo asn suoin|og 1geb3 pue AlsiaAlun ajoelO

a3LigIHOdd A1LOIE1S SI d3LNdNOD SIHL INOYA STVIFTILVIN LIM® ONIAJOD "ATNO WOOHSSV1D SIHL NI 3SN dNOA d04 34V STIVIHILYIN LIMS 3SIHL

Table Descriptions

ORACLE

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

Schema Description
Overall Description

The Oracle Database sample schemas portray a sample company that operates worldwide to
fill orders for several different products. The company has three divisions:

+ Human Resources: Tracks information about the employees and facilities
» Order Entry: Tracks product inventories and sales through various channels
» Sales History: Tracks business statistics to facilitate business decisions

Each of these divisions is represented by a schema. In this course, you have access to the
objects in all the schemas. However, the emphasis of the examples, demonstrations, and
practices is on the Human Resources (HR) schema.

All scripts necessary to create the sample schemas reside in the
SORACLE_HOME/demo/schema/ folder.

Human Resources (HR)

This is the schema that is used in this course. In the Human Resource (HR) records, each
employee has an identification number, email address, job identification code, salary, and
manager. Some employees earn commissions in addition to their salary.

The company also tracks information about jobs within the organization. Each job has an
identification code, job title, and a minimum and maximum salary range for the job. Some
employees have been with the company for a long time and have held different positions
within the company. When an employee resigns, the duration the employee was working for,
the job identification number, and the department are recorded.

The sample company is regionally diverse, so it tracks the locations of its warehouses and
departments. Each employee is assigned to a department, and each department is identified
either by a unique department number or a short name. Each department is associated with
one location, and each location has a full address that includes the street name, postal code,
city, state or province, and the country code.

In places where the departments and warehouses are located, the company records details
such as the country name, currency symbol, currency name, and the region where the country
is located geographically.

Oracle Database 12c¢: SQL Workshop Il A -2

HR Entity Relationship Diagram

HR

JOB_HISTORY)

DEPARTMENTS
department_id
department_name
manager _id
location_id

employee_id |
start_date b_ — —f EMPLOYEES
end_date employee_id
job_id first_name
department_id last_name
email
phone_number
I hire_date
: job_id
JOBS — salary
; JOb-—Id commission_pct
rrfi?mb_st:::ry manager_id
max_salary \department_ld)

(LOCATIONS)
location_id
street_address
postal_code
city

state_province

%7_)

I
|
COUNTRIES

country_id
country_name
region_id

N\ 4

I
l
REGIONS

region_id
region_name

Oracle Database 12c: SQL Workshop Il A -3

Human Resources (HR) Table Descriptions
DESCRIBE countries

Name NLTT Tvhe

COUNTEY _ID MOT MULL CHAE(2)
COUNTEY _NAME WARCHARZ (407
EEGION_ID NIIMEEE.

SELECT * FROM countries

COUNTRY_ID || COUNTRY_NAME [recioNID
1 CA Canada 2
£ DE GErmany 1
3 Uk United Kingdom 1
415 United 3tates of America 2

Oracle Database 12c: SQL Workshop Il A -4

DESCRIBE departments

MOT MULL MWUMBER.(4)

MOT MULL WARCHARZ{30)
NUMEBEE.(6G]
MUMEBEE.(4]

DEFARTHMENT_ID
DEFARTHENT_NAME
MANAGER_ID
LOCATION_ID

SELECT * FROM departments

L o o L LR LN B

E DEPARTMEMT_ID E DEPARTMEMT_MAME

B mMamNACER_ID

H LGCAﬂONJD"

10 Administration
20 Marketing

S50 Shipping

B0 IT

B0 5ales

00 Executive
110 Accounting
190 Contracting

200
201
124
103
1459
100
205
nultd

1700
1500
1500
1400
2500
1700
1700
1700

Oracle Database 12c: SQL Workshop Il A-5

DESCRIBE employees

Wame M1l Twhpe
EMPLOYEE_ID MOT MULL WUMBER(GE)
FIEST_NAME WARCHARZ (207
LAST_MNAMWE MOT MULL WARCHAEZ(25)
EMATL MOT MULL WARCHAEZ(25)
PHOWE_MUMBER, WARCHARZ 207
HIKE_DATE MOT NULL DATE

10e_1ID MOT NULL WARCHAEZ(10)
SALARY NUMBEE(E, &)
COMMISSTION_PCT MUMBEE (2, &)
MANAGER_ID MUMBEE. (&)
DEPAETMENT_ID MUMBEE. {4

SELECT * FROM employees

g emroveeio |§ rrst_mame|§ Last_mame|§ emsic [§ prowe_mumesr |§ Hire_DaTE|H job_iD |8 saiery |l commission_pcT [ManaceriD [DEPARTMENTID

100 Steven King SKING 515.123.4567 17-JUN-03 AD_PRES 24000 (hully (nully 90
101 Neena Kochhar NKOCHHAR 515.123.4568 21-5EP-05 AD_WP 17000 (hull) 100 =)
102 Lex De Haan LDEHAAN 515.123.4569 13-1AN-01 AD_WP 17000 (hull) 100 =)
103 Alexander Hunold AHUNOLD 590.423.4567 03-18N-06 IT_PROG 9000 (hull) 102 60
104 Bruce Ernst BERNST 590.423.4568 21-MAY-07F IT_PROG G000 (hull) 103 60
107 Diana Lorentz DLORENTZ 590.423.5567 07-FEB-O7 IT_PROG 4200 (hull) 103 60
124 Kewin Hourgos KMOURGOS 650.123.5234 16-HO0W-07F ST_MAN SE00 (hull) 100 50
141 Trenna Eajs TRAIS 650.121.8009 17-0CT-03 ST_CLERK 3500 (hull) 124 50
142 Curtis Davies CDAVIES 650.121.2094 29-1AN-05 ST_CLERK 3100 (hull) 124 50
143 Randall Hatos EMATOS 650.121.2874 15-HAR-06 ST_CLERK 2600 Chull) 124 50
144 Peter “argas PWARGAS B50.121, 2004 09-JUL-06 ST_CLERK 2500) 124 50
148 Eleni Zlotkey EZLOTKEY 011.44.1344, 420018 20-1AN-08 SA_MAN 10500 0.2 100 B0
174 Ellen Ahel EABEL 011,44, 1644, 420267 11-HaY-04 SA_REP 11000 0.3 149 B0
176 Jonathon Taylor ITAYLOR 011.44.1644, 420265 24-WAR-0OS SA_REP BAO0 0.2 149 B0
178 Kinherely Grant KGRANT - 011.44.1644, 420263 24-HAY-0OF SA_REP 000 (.15 149 {nully
200 Jenni fer Whalen JWHALEN 515.123.4444 17-5EP-02 AD_ASST 4400) 101 10
201 Michael Hartstein MHARTSTE 515.123,5555 17-FER-0O4 MI_MAN 13000) 100 20
202 Pat Fay PF&Y 603,123, 6666 17-AUG-05 MIK_REP G000) 201 20
205 Shelley Higgins SHIGGINS 515.123.8080 O7-JUN-0Z2 AC_MGR 12008) 101 110
206 Wi1T1am Gietz WGIETZ 515.123.8181 O7-JUN-02 AC_ACCOUNT 8300) 205 110

Oracle Database 12c: SQL Workshop Il A -6

DESCRIBE job history

MOT MULL MUMEER(E]

EMPLOYEE_ID

START_DATE MOT MULL DATE

END_DATE MOT MULL DATE

10e_1ID MOT MULL WARCHARZ(10Y

DEPAETMENT_ID MUMBEE. (4]

SELECT * FROM job history

EMPLOVEE_ID ([{ sTART_DATE|E EnD_DaTE|F JoBID DEPARTMENT_ID

1 102 13-18N-01 24-1UL-06 IT_PROG &y,
2 101 21-SEP-97 27-0CT-01 AC_ACCOUNT 110
3 101 28-0CT-01 15-M8R-05 AC_MGR 110
4 201 17-FEB-04 19-DEC-0F7 MK_REF 20
5 114 24-MAR-0G 31-DEC-07 ST_CLERK 50
& 122 01-18N-07F 31-DEC-07 ST_CLERK 50
7 200 17-3EP-95 17-JUN-01 AD_ASST o)
3 176 24-MAR-0G 31-DEC-0A SA_REFP B0
3 176 01-18N-07F 31-DEC-07 SA_MAN B0
10 200 01-1UL-02 31-DEC-0A AC_ACCOUNT =Y

Oracle Database 12c¢: SQL Workshop Il A -7

DESCRIBE jobs

JOB_ID
JOB_TITLE
MIN_SALAEY
MAX_SALARY

MOT MULL
MOT MULL

WARCHARZ (107
WARCHARZ (357
NUMEBEE.(6G]
MUMEEE.(G]

SELECT * FROM jobs

JOB_ID JOB_TITLE MIM_S A LA R MAX_SAL&R‘TE
1 AD_PRES President 200180 0000
£ A0_WP Administration YWice President 15000 30000
3 AD_ASST Administration Assistant 3000 GO0
4 AC_MOE ACcounting Manager 8200 1a000
S AC_ACCOUNT Public ACcoduntant 4200 Q000
6 50 MAn Sales Manager 10000 20080
7 56 REF Sales Representatiwe R0 12008
g S5T_MAN Stock Manager 5500 S500
9 ST_CLERK Stock Clerk 2008 SO0
10 IT_PROG Programmer 4000 10000
11 ME_MAN Marketing Manager S0 15000
12 ME_REP Marketing Representatiwve 4000 Q00

Oracle Database 12c: SQL Workshop Il A -8

DESCRIBE locations

Mame MUl Twpe
LOCATION_ID NOT MULL WUMBER(4)
STREEET_&ADDRESS WARCHARZ (4070
POSTAL_CODE WARCHARZ (120
CITY NOT MULL “WARCHARZ(30)
STATE_PROVINCE WARCHARZ (250
COUNTREY_ID CHAE (2D

SELECT * FROM locations

LoCATION_ID [§ STREET_ADDRESS POSTAL_CODE || crTy STATE_PROVINE ([COUNTRY_ID
1 1400 2014 Jabherwocky Rd 20192 Southlake Texas U5
z 1500 2011 Interiors Blvd 958236 South San Francisco Califarnia U5
3 1700 2004 Charade Rd §5199 Seattle Washingtan 15
4 1800460 Bloor ST, W, ON M35 1X8 Toranto Ontario A
5 2500 Mapdalen Centre, The Oxford Science Park 0x9 970 Oxford Ouford K.

Oracle Database 12c¢: SQL Workshop Il A -9

DESCRIBE regions

Mame M1l Twpe
REGION_ID MOT MULL WUMEEE
REGION_WAME VARCHARZ (257

SELECT * FROM regions

RECION_ID ([REGION_MAME
1 Europe

2Americas
FAs5ia
4 Middle East and Africa

PN T T T

Oracle Database 12c¢: SQL Workshop Il A -10

Using SQL Developer

ORACLE

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

Objectives

After completing this appendix, you should be able to:
« List the key features of Oracle SQL Developer
« Identify the menu items of Oracle SQL Developer
« Create a database connection
« Manage database objects
« Use SQL Worksheet
- Save and run SQL scripts
« Create and save reports
- Browse the Data Modeling options in SQL Developer

ORACLE

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

In this appendix, you are introduced to the graphical tool called SQL Developer. You learn
how to use SQL Developer for your database development tasks. You learn how to use SQL
Worksheet to execute SQL statements and SQL scripts.

Oracle Database 12¢: SQL Workshop Il B -2

What Is Oracle SQL Developer?

- Oracle SQL Developer is a graphical tool that enhances
productivity and simplifies database development tasks.

* You can connect to any target Oracle database schema by
using standard Oracle database authentication.

SQL Developer

ORACLE
Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

Oracle SQL Developer is a free graphical tool designed to improve your productivity and
simplify the development of everyday database tasks. With just a few clicks, you can easily
create and debug stored procedures, test SQL statements, and view optimizer plans.

SQL Developer, which is the visual tool for database development, simplifies the following
tasks:

« Browsing and managing database objects

« Executing SQL statements and scripts

« Editing and debugging PL/SQL statements

» Creating reports

You can connect to any target Oracle database schema by using standard Oracle database
authentication. When connected, you can perform operations on objects in the database.

SQL Developer is the interface to administer the Oracle Application Express Listener. The
new interface enables you to specify global settings and multiple database settings with
different database connections for the Application Express Listener. SQL Developer provides
the option to drag and drop objects by table or column name onto the worksheet. It provides
improved DB Diff comparison options, GRANT statements support in the SQL editor, and DB
Doc reporting. Additionally, SQL Developer includes support for Oracle Database 12¢
features.

Oracle Database 12c¢: SQL Workshop Il B -3

Specifications of SQL Developer

« Is shipped along with Oracle Database 12c Release 1

* Is developed in Java

« Supports Windows, Linux, and Mac OS X platforms

« Enables default connectivity using the JDBC Thin driver
« Connects to Oracle Database version 9.2.0.1 and later

ORACLE

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

Oracle SQL Developer is shipped along with Oracle Database 12c¢ Release 1 by default. SQL
Developeris developed in Java, leveraging the Oracle JDeveloper integrated development
environment (IDE). Therefore, it is a cross-platform tool. The tool runs on Windows, Linux,
and Mac operating system (OS) X platforms.

The default connectivity to the database is through the Java Database Connectivity (JDBC)
Thin driver, and therefore, no Oracle Home is required. SQL Developer does not require an
installer and you need to simply unzip the downloaded file. With SQL Developer, users can
connect to Oracle Databases 9.2.0.1 and later, and all Oracle database editions, including
Express Edition.

Note

For Oracle Database 12¢ Release 1, you will have to download and install SQL Developer.
SQL Developer is freely downloadable from the following link:

http://www.oracle.com/technetwork/developer-tools/sql-developer/downloads/index.html
Forinstructions on how to install SQL Developer, see the website at:
http://www.oracle.com/technetwork/developer-tools/sqgl-developer/overview/index.html

Oracle Database 12c¢: SQL Workshop Il B -4

SQL Developer 3.2 Interface

i Oracle SQL Developer o Jalb

File Edit View Navigate Run Versioning Tools Help

FREG 90 XEMO0 -0 & o
(2, connections tm ZLReports jil JFiles X IE]

You must define a
connection to start
using SQL Developer
for running SQL
queries on a
database schema.

Messages - Log X 8]

ORACLE

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

The SQL Developer interface contains three main navigation tabs, from left to right:

« Connections tab: By using this tab, you can browse database objects and users to
which you have access.

* Reports tab: |dentified by the Reports icon, this tab enables you to run predefined
reports or create and add your own reports.

» Files tab: Identified by the Files folder icon, this tab enables you to access files from
your local machine without having to use the File > Open menu.

General Navigation and Use

SQL Developer uses the left side for navigation to find and select objects, and the right side to
display information about selected objects. You can customize many aspects of the
appearance and behavior of SQL Developer by setting preferences.

Note: You need to define at least one connection to be able to connect to a database schema
and issue SQL queries or run procedures and functions.

Oracle Database 12c¢: SQL Workshop Il B -5

Menus

The following menus contain standard entries, plus entries for features that are specific to
SQL Developer:

View: Contains options that affect what is displayed in the SQL Developer interface
Navigate: Contains options for navigating to panes and for executing subprograms

Run: Contains the Run File and Execution Profile options that are relevant when a
function or procedure is selected, and also debugging options

Versioning: Provides integrated support for the following versioning and source control
systems — Concurrent Versions System (CVS) and Subversion

Tools: Invokes SQL Developer tools such as SQL*Plus, Preferences, and SQL
Worksheet. It also contains options related to migrating third-party databases to Oracle.

Note: The Run menu also contains options that are relevant when a function or procedure is
selected for debugging.

Oracle Database 12c¢: SQL Workshop Il B -6

Creating a Database Connection

* You must have at least one database connection to use
SQL Developer.

* You can create and test connections for:
— Multiple databases
— Multiple schemas

« SQL Developer automatically imports any connections
defined in the tnsnames. ora file on your system.

* You can export connections to an Extensible Markup
Language (XML) file.

- Each additional database connection created is listed in
the Connections Navigator hierarchy.

ORACLE

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

A connection is a SQL Developer object that specifies the necessary information for
connecting to a specific database as a specific user of that database. To use SQL Developer,
you must have at least one database connection, which may be existing, created, or imported.

You can create and test connections for multiple databases and for multiple schemas.

By default, the tnsnames . ora file is located in the SORACLE_HOME /network/admin
directory, but it can also be in the directory specified by the TNS_ADMIN environment variable

or registry value. When you start SQL Developer and open the Database Connections dialog
box, SQL Developer automatically imports any connections defined in the tnsnames . ora file
on your system.

Note: On Windows, if the tnsnames . ora file exists, but its connections are not being used
by SQL Developer, define TNS_ADMIN as a system environment variable.

You can export connections to an XML file so that you can reuse it.

You can create additional connections as different users to the same database or to connect
to the different databases.

Oracle Database 12¢: SQL Workshop Il B -7

Creating a Database Connection

+-QTD

@& Connections @
R evconeeion__ |
Import Connections...

Create Local Connections

aomnmiuns x| :_'.Repons x | x

[A Connections = | | | Reports = |
F-0T7H
@ Connections
= a
+- k5 Tables (Filtered)
+- (B Views
+ (B4 Editioning Views
(o Indexes
L Packages
& L¥] Procedures
o138 Functions
e Queues
4l Queues Tables
#-#® Triggers
& #® Crossedition Triggers
5@ Types
+ [14 Sequences
+ [Materialized Views
& (7 Materialized Views Logs
@ synonyms
{L@ Public Synonyms
L& Darabase Links
|&l Public Database Links

Connection Name

New / Select Database Connection

Connection Details | Connection Name |myconnection

Username oral

Password [oess
[#] Saye Password

Oracle

I Connection Type | Basic VEI Role |defaul =

Hostname localhost

Port [1521

%) SID [orcL

3 Egr\uce name

{2 Directories
® Editions

=4 ["] 05 Authentication || Kerberos Authentication [| Proxy Connection
] Application Express

(5] Java

¥ [[5] XML Schemas

g XML DB Repository
®-[8 Scheduler

@[Recycle Bin

&g Other Users

ORACLE

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

B0

| Status : Success i

Help | Sawe Clear Test Connect | Cancel

To create a database connection, perform the following steps:
1. On the Connections tabbed page, right-click Connections and select New Connection.
2. Inthe New/Select Database Connection window, enter the connection name. Enter the
username and password of the schema that you want to connect to.

a. Fromthe Role drop-down list, you can select either default or SYSDBA. (You
choose SYSDBA for the sys user or any user with database administrator
privileges.)

b. You can select the connection type as:

Basic: In this type, enter host name and SID for the database that you want to
connectto. Port is already set to 1521. You can also choose to enter the Service
name directly if you use a remote database connection.

TNS: You can select any one of the database aliases imported from the
tnsnames . orafile.

LDAP: You can look up database services in Oracle Internet Directory, which is a
component of Oracle ldentity Management.

Advanced: You can define a custom Java Database Connectivity (JDBC) URL to
connect to the database.

Oracle Database 12c¢: SQL Workshop Il B -8

Local/Bequeath: If the client and database exist on the same computer, a client
connection can be passed directly to a dedicated server process without going
through the listener.

c. Click Test to ensure that the connection has been set correctly.

d. Click Connect.
If you select the Save Password check box, the password is saved to an XML file.
So, after you close the SQL Developer connection and open it again, you are not
prompted for the password.

3. The connection gets added in the Connections Navigator. You can expand the
connection to view the database objects and view object definitions (dependencies,
details, statistics, and so on).

Note: From the same New/Select Database Connection window, you can define connections

to non-Oracle data sources using the Access, MySQL, and SQL Server tabs. However, these
connections are read-only connections that enable you to browse objects and data in that

data source.

Oracle Database 12c¢: SQL Workshop Il B -9

Browsing Database Objects

Use the Connections Navigator to:
« Browse through many objects in a database schema
« Review the definitions of objects at a glance

=, Oracle SQL Developer

File Edit View Navigate Run Versioning Tools Help

RoEE@ 90 XBm O O &- Rz
ra-ﬁmneﬂlms x| F Reports X | x () fmvconnection * | S mvionpection=1 x FHEMPLOYEES x [=
E-BT D Columns Data | Constraints | Grants | Statistics | Triggers | Flashback | |l

fa Connections 171 R on== |
=@ myconnection B coumn_wame|f paTa_Tvre |8 muLLasLE [paTs
=i Tables (Filtered) 1 EMPLOYEE_ID NUMBER(6,0) No (nul |
@ counTRIES < >
; % EEERTMENTS Meszages - Log * E]
] EMPLOYEE_ID
[l FIRST_NAME
EH LAST_NAME
R EmaIL
EH PHOME_MUMBER
i HRE_DATE
EH jo8_1D
-l SALARY
[l COMMISSION_PCT
] MANAGER_ID
] DEPARTMENT_ID
FC L HIRE DX
able ORAL EMPLOYEES@myconnection

ORACLE

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

After you create a database connection, you can use the Connections Navigator to browse
through many objects in a database schema, including Tables, Views, Indexes, Packages,
Procedures, Triggers, and Types.

SQL Developer uses the left side for navigation to find and select objects, and the right side to
display information about the selected objects. You can customize many aspects of the
appearance of SQL Developer by setting preferences.
You can see the definition of the objects broken into tabs of information that is pulled out of
the data dictionary. For example, if you select a table in the Navigator, details about columns,
constraints, grants, statistics, triggers, and so on are displayed on an easy-to-read tabbed
page.
If you want to see the definition of the EMPLOYEES table as shown in the slide, perform the
following steps:

1. Expand the Connections node in the Connections Navigator.

2. Expand Tables.

3. Click EMPLOYEES. By default, the Columns tab is selected. It shows the column
description of the table. Using the Data tab, you can view the table data and also enter
new rows, update data, and commit these changes to the database.

Oracle Database 12c: SQL Workshop Il B -10

Displaying the Table Structure

Use the DESCRIBE command to display the structure of a table:

myconnecﬁon x

®
PEDYR 28 A2 @ & | 0.35699999 seconds EQ

Worksheet Query Builder
DESC EMPLOYEES |

. 4
[l script output x

,f & B & El Task completed in 0.357 seconds

Name Null Type
EMPLOYEE_ID NOT NULL NUMBER(G)
FIRST_NAME VARCHARZ(20)
LAST_NAME NOT NULL WARCHAR2({25)
EMAIL NOT NULL WARCHER2({25)
PHONE_NUMBER WARCHARZ(20)
HIRE_DATE NOT NULL DATE

JoB_ID NOT NULL VARCHARZ(10)
SALARY NUMBER(8, 2)
COMMISSION_PCT NUMBER(2, 2)
MANAGER_ID NUMBER.(6)
DEPARTMENT_ID NUMBER.(4)

ORACLE

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

In SQL Developer, you can also display the structure of a table using the DESCRIBE
command. The result of the command is a display of column names and data types, as well
as an indication of whether a column must contain data.

Oracle Database 12c¢: SQL Workshop Il B - 11

Browsing Files

Use the File Navigator to explore the file system and open
system files.

5, Oracle SQL Developer S
File Edit View Navigate Run Versioning Tools Help
FeEag 9@ Xam O0-0- & o
[Connections % |[{lReports x =] I@Cunfidence.sql x I =
@ X PUREA B3 8XOE (B muwmaon]
L'.tl {{5‘ +sh “ || worksheet Query Builder [
$ o [:“"::‘" =N SELECT count(*) FROM tab; &
o LAERap SELECT count(*) FROM employees;
B[Documents SELECT count(*) FROM countries;
[Downloads SELECT count{*) FROM regions;
=] 1abs
w2 sq1
¥ Connaence sal
{7 Music
@[] Pictures
@[] Public
—Fr—

fhomeforacleflabs fConfidence.sql

ORACLE

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

Browsing Database Objects
You can use the File Navigator to browse and open system files.
« To view the File Navigator, click the View tab and select Files, or select View > Files.

« To view the contents of a file, double-click a file name to display its contents in the SQL
Worksheet area.

Oracle Database 12c: SQL Workshop Il B -12

Creating a Schema Object

- SQL Developer supports the creation of any schema
object by:
— Executing a SQL statement in SQL Worksheet
— Using the context menu

- Edit the objects by using an edit dialog box or one of the
many context-sensitive menus.

« View the data definition language (DDL) for adjustments
such as creating a new object or editing an existing
schema object. [myeonmection

= {7 Tables (Filtered)

o & AT
w68 ¢

Open
| Import Data...

| T Apply Filter...
Clear Filter

= E’:}

B
EE@ Refresh Ctrl-R
i
i
i

ORACLE

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

Help

SQL Developer supports the creation of any schema object by executing a SQL statement in
SQL Worksheet. Alternatively, you can create objects by using the context menus. When
created, you can edit objects using an edit dialog box or one of the many context-sensitive
menus.

As new objects are created or existing objects are edited, the DDL for those adjustments is
available for review. An Export DDL option is available if you want to create the full DDL for
one or more objects in the schema.

The slide shows how to create a table using the context menu. To open a dialog box for
creating a new table, right-click Tables and select New Table. The dialog boxes to create and
edit database objects have multiple tabs, each reflecting a logical grouping of properties for
that type of object.

Oracle Database 12c¢: SQL Workshop Il B -13

Creating a New Table: Example

Create Table

Schema: ORAL '| [v] Advanced Eg
Name: [TABLEL |
Table Type: (5) Normal () External () Index Organized () Temporary {Transaction) () Temporary (Session)
“ | Columns: Column Properties
B B COLUMNL | Name |COLUMNL
Primary Key :
< Unique Constraints .58_ WEEGE aS!mpIg JeolBIeX -
Foreign Keys Type: |NUMBER -
< Check Constraints b r 1
Precision:
Indexes L
~ Column Sequences = Scale:
Table Properties "
< Lob Parameters S
= Partitioning gefault:'
Partition Definitions -
Subpartition Templates [[] Cannot pe NULL
~ Comment Comment:
DDL -
Help ! | 0K J Cancel

ORACLE

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

In the Create Table dialog box, if you do not select the Advanced check box, you can create a
table quickly by specifying columns and some frequently used features.

If you select the Advanced check box, the Create Table dialog box changes to one with
multiple options, in which you can specify an extended set of features while you create the
table.

The example in the slide shows how to create the DEPENDENTS table by selecting the
Advanced check box.
To create a new table, perform the following steps:

1. In the Connections Navigator, right-click Tables and select Create TABLE.

2. Inthe Create Table dialog box, select Advanced.

3. Specify the column information.

4. Click OK.

Although it is not required, you should also specify a primary key by using the Primary Key tab
in the dialog box. Sometimes, you may want to edit the table that you have created; to do so,
right-click the table in the Connections Navigator and select Edit.

Oracle Database 12c¢: SQL Workshop Il B - 14

Using the SQL Worksheet

 Use the SQL Worksheet to enter and execute SQL,
PL/SQL, and SQL *Plus statements.

- Specify any actions that can be processed by the database
connection associated with the worksheet.

Oracle S5QL Developer

File Edit View Navigate Run Versioning Help
Remg 90 XEBR O-O Dara Modeler 9 - —
[Pt B2 10085 L 4 S
F-BTS - ted [Bn
| G Data Miner (W —_—
a Connections “‘E'j
=l la myconnec: tion l_.}
= -ﬁ'l'jbles(FInereu) l‘:‘ ot jees;
5] COUNTRIES ies; Or, dlick the Open

& EE DEPARTMENTS monftorgd hs;

+ 1:] DEPT ®, oo

= 3 EMPLOYEES Iezil SOL Worksheet I SQL Worksheet
FH) EMPLOYEE_ID ‘ External Tools... Icon.
EE] FIRST_NAME

[LAST_MAME ‘ ferences... |
) EmMAIL
[PHONE_NUMBER. “ 8

Select SQL Worksheet File Edit View Navigate Run Versioning Tools Help
from the Tools menu. RoEg 9e XEm O O |&Hw ssk

ORACLE

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

When you connect to a database, a SQL Worksheet window for that connection automatically
opens. You can use the SQL Worksheet to enter and execute SQL, PL/SQL, and SQL*Plus
statements. The SQL Worksheet supports SQL*Plus statements to a certain extent. SQL*Plus
statements that are not supported by the SQL Worksheet are ignored and not passed to the
database.

You can specify the actions that can be processed by the database connection associated
with the worksheet, such as:

+ Creatinga table
* Inserting data
« Creating and editing a trigger
» Selecting data from a table
« Saving the selected data to a file
You can display a SQL Worksheet by using one of the following:
+ Select Tools > SQL Worksheet.
« Click the Open SQL Worksheeticon.

Oracle Database 12c: SQL Workshop Il B -15

Using the SQL Worksheet

0000@

necthon~2 x| =
PEESA r‘a' a (E_E_‘B R é ia mycunnectionv|

orkshee] | Qubry buis
7117

| Line 1 Column 1 | Insert | | Unix/Mac:LF Editing

ORACLE

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

You may want to use the shortcut keys or icons to perform certain tasks such as executing a
SQL statement, running a script, and viewing the history of the SQL statements that you have
executed. You can use the SQL Worksheet toolbar that contains icons to perform the
following tasks:

1. Run Statement: Executes the statement where the cursor is located in the Enter SQL
Statement box. You can use bind variables in the SQL statements, but not substitution
variables.

2. Run Script: Executes all the statements in the Enter SQL Statement box by using the
Script Runner. You can use substitution variables in the SQL statements, but not bind
variables.

3. Autotrace: Generates trace information for the statement

4. Explain Plan: Generates the execution plan, which you can see by clicking the Explain
tab

5. SQL Tuning Advisory: Analyzes high-volume SQL statements and offers tuning
recommendations

6. Commit: Writes any changes to the database and ends the transaction

7. Rollback: Discards any changes to the database, without writing them to the database,
and ends the transaction

Oracle Database 12c¢: SQL Workshop Il B -16

10.
11.

Unshared SQL Worksheet: Creates a separate unshared SQL Worksheet for a
connection

To Upper/Lower/InitCap: Changes the selected text to uppercase, lowercase, or
initcap, respectively

Clear: Erases the statement or statements in the Enter SQL Statement box

SQL History: Displays a dialog box with information about the SQL statements that you
have executed

Oracle Database 12c¢: SQL Workshop Il B -17

Using the SQL Worksheet

 Use the SQL Worksheet to enter and execute SQL,
PL/SQL, and SQL*Plus statements.

- Specify any actions that can be processed by the database
connection associated with the worksheet.

> myconnection =
PEEAESG WE ¢ _myconnect_ion b
Enter SQL
statements.
> Results [script Output |) Explain | S Autotrace |'ADBM$.. | |
Results:
Results are
shown here.

ORACLE

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

When you connect to a database, a SQL Worksheet window for that connection automatically
opens. You can use the SQL Worksheet to enter and execute SQL, PL/SQL, and SQL*Plus
statements. All SQL and PL/SQL commands are supported as they are passed directly from
the SQL Worksheet to the Oracle database. The SQL*Plus commands that are used in SQL
Developer must be interpreted by the SQL Worksheet before being passed to the database.

The SQL Worksheet currently supports a number of SQL*Plus commands. Commands that
are not supported by the SQL Worksheet are ignored and not sent to the Oracle database.
Through the SQL Worksheet, you can execute the SQL statements and some of the
SQL*Plus commands.

Oracle Database 12c¢: SQL Workshop Il B -18

Executing SQL Statements

Use the Enter SQL Statement box to enter single or multiple
SQL statements.

V“' a ;f,ﬁ "}& é @ 0.01 seconds

Query Builder
SELECT employee_id, last_name from employees;

®

PN aicrip‘t Qutput % |
@ ¢ 8 B E | Taskcompleted in 0.01 seconds
[Query Result x EWPLOYEE_ID LAST_NAME
g % E‘Q E SQL | All Rows Fetched: ZjJ in0.007 seconds | | ;;; ;;;; _____________________
EMPLOYEE_ID [@ LAST_NAME | 142 Davies
4 174 Ahel 102 De Haan
2 . 104 Ernst
142 Davies 202 Fay
3 102 De Haan 206 Gietz
4 104 Ernst
5 202 Fay

ORACLE

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

The example in the slide shows the difference in output for the same query when the F9 key
or Execute Statement is used versus the output when F5 or Run Script is used.

Oracle Database 12c¢: SQL Workshop Il B -19

Saving SQL Scripts

@ Click the Save icon to
save your SQL

statement to a file.

File gdh/gm/w Navigate Run Versioning Tools Help

13@9 HEe XER O-O- &~

Location: ﬁﬁ!om eforacle/ saldeveloper - O™ ERA
-' J sqiHistory |
- 3 system3.2.09.23

The contents of the saved ey |[E

file are visible and editable Identify a location,

in your SQL Worksheet K enter a file name,

. oCUments j

window. @ and click Save.

Home @

isaiary_repan.sql XI =
PERYRA RQ Nega
.W.arksheet Query Builder

SELECT LAST_MAME< SALARY FROM
EMPLOYEES WHERE SALARY > 10000;

Eile name: salary_report_sqi
File type: |SQL Script (".sql) '

Help | Save | Cancel

ORACLE

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

You can save your SQL statements from the SQL Worksheet to a text file. To save the
contents of the Enter SQL Statement box, perform the following steps:

1. Click the Save icon or use the File > Save menu item.
2. Inthe Save dialog box, enter a file name and the location where you want the file saved.
3. Click Save.

After you save the contents to a file, the Enter SQL Statement window displays a tabbed page
of your file contents. You can have multiple files open at the same time. Each file displays as
a tabbed page.

Script Pathing

You can select a default path to look for scripts and to save scripts. Under Tools >
Preferences > Database > Worksheet Parameters, enter a value in the “Select default path to
look for scripts” field.

Oracle Database 12c: SQL Workshop Il B -20

Executing Saved Script Files: Method 1

" Connections * | lpep. x 4 x) | 1. Usethe Files tab to locate the script
B X file that you want to open.
poy— . 2. Double-click the script to display the
il - bk code in the SQL Worksheet.
#-{_] Deskiop

#_] Documents

he (3 Downloads @
il To run the code, click either: @
- Execute Script (F9), or

u Music « Run Script (F5) Select a connectlon from
&[] Pictures the drop-down list.
@] Public
&[] Templates T]
&[] Videos | feneesalay \,é
8] bash_history SUL Worksheet History
[bash_logout | Slaemg B & An
D bash_profile .[} B -'-] -5] = L ra\ [1T] 'in & '@ |ﬁ
[] bashre Worksheet | Query Builder
] emacs BELECT count(*) FROM tab;
] esd_auth SELECT count(*) FROM employees;
E ‘gtk-bookmarks SELECT count(*) FROM countries;
H-'CE“”‘”“Y SELECT count(*) FROM regions;
| imsettings.log
D pulse-cookie
= . .

ORACLE
Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

To open a script file and display the code in the SQL Worksheet area, perform the following
steps:

1. In the files navigator, select (or navigate to) the script file that you want to open.

2. Double-click the file to open it. The code of the script file is displayed in the SQL
Worksheet area.

3. Select a connection from the connection drop-down list.

4. To run the code, click the Run Script (F5) icon on the SQL Worksheet toolbar. If you
have not selected a connection from the connection drop-down list, a connection dialog
box will appear. Select the connection that you want to use for the script execution.

Alternatively, you can also do the following:

1. Select File > Open. The Open dialog box is displayed.
In the Open dialog box, select (or navigate to) the script file that you want to open.
Click Open. The code of the script file is displayed in the SQL Worksheet area.
Select a connection from the connection drop-down list.

To run the code, click the Run Script (F5) icon on the SQL Worksheet toolbar. If you
have not selected a connection from the connection drop-down list, a connection dialog
box will appear. Select the connection that you want to use for the script execution.

Al

Oracle Database 12c¢: SQL Workshop Il B - 21

Executing Saved Script Files: Method 2

Use the @ command
followed by the location and
name of the file that you
want to execute and click

Eycomection s the Run Script icon.
D g E @ @ a & ‘ie é @ O-E'T:-_Sy / L]

‘Worksheet Query Builder
| B/homesoracle 1abs/Confidence. sql 4/

The OUtpUt from the E Script Output X I

script is displayed on ¢ B & B | Taskcompleted in 0.043 seconds
the Script Output .

tabbed page. Seabhit

4
i COUNT(*)

ORACLE

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

To run a saved SQL script, perform the following steps:
1. Use the @ command followed by the location and the name of the file that you want to
run in the Enter SQL Statement window.
2. Click the Run Scripticon.
The results from running the file are displayed on the Script Output tabbed page. You can

also save the script output by clicking the Save icon on the Script Output tabbed page. The
File Save dialog box appears and you can identify a name and location for your file.

Oracle Database 12c¢: SQL Workshop Il B -22

Formatting the SQL Code

select emplovee_id, Tirst_name,salary from employees e, departments d
where e, department_id-d.department_id and e.salary>3000;
|> Run Statement F3
e| Run Script]
Before . - iy
: a
formattlng ﬂ Auytotrace... F&
3 Explain Plan.. F10
a 5QL Tuning Advisor.., Corl-F12
@ commit Fi1
@ Roliback F12
A48 To Upper/Lower/InitCap Ctri+Quote
| @ Clear Cirl-D |
e & saLHistory f8 |
B 8 B soL | Exec b Cut cl-x YEES ...
& copy cr-C !
Ej Paste Ctrl-v
Select All Corl-A
&
Refactoring ¥
E Format I Ctr-F7 1
Advapced Format... Ctrl+Shift-F7
Code Template
Popup Describe Shift-Fa
Open Declaratjon
SELECT employee_id,
first_name,
After »| salary
. FROM enployees e,
formattlng departments d
WHERE e.department_id-d.department_id
AND e.salary>3000;

ORACLE

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

You may want to format the indentation, spacing, capitalization, and line separation of the
SQL code. SQL Developer has a feature for formatting SQL code.

To format the SQL code, right-click in the statement area and select Format.

In the example in the slide, before formatting, the SQL code has the keywords not capitalized
and the statement not properly indented. After formatting, the SQL code is beautified with the
keywords capitalized and the statement properly indented.

Oracle Database 12c¢: SQL Workshop Il B -23

Using Snippets

Snippets are code fragments that may be just syntax or

examples.
§, Oracle SQL Developer : myconnection
File Edit Navigate Run Versioning Tools Help
3= @ | DaaModeler v & - sk
2 connecu °F Breakpoints cnasnng | = “r When you place your cursor here, it
BRI 0 B0 @M Q6 soewmee Onpi| shows the Snippets window. From the
Log Coteshit-l et Query Builder 2 drop_down |ist’ you can select the
[B] run panager [home/oracle/1abs,/Contidence. sql .
? ;w-w— = functions category that you want.
eam L]
1 APEX Listener
g E:\:nﬂt Management Iy E] SI‘IIDI‘J ELs .
Iy Connections 1 |
iy opa _ IE el
g o ' | Aggregate Functions -
i‘ ::::;Dmblm Jpt Output % | f ([COUNT™
@ map view B & E | Taskcompleted in 0.043 seconds | COUNT{[ALL | DISTINCT] expr)
B owmommn - ' MAX{expr)
@ Recent Objects EZE MEDIAM{expr)
@ Repg:s‘ 4 MIN{expr}
(") STDDEV (expr)
- ;:tl_!:::tgrcss I SUM{expr)
v ShowStatus Bar n VARIANCE{Expr}
@ e Tootiary (| Line 1 Column 34 | insent | Modified| Unix/Mac:LF Editing

ORACLE

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

You may want to use certain code fragments when you use the SQL Worksheet or create or
edit a PL/SQL function or procedure. SQL Developer has a feature called Snippets. Snippets
are code fragments such as SQL functions, optimizer hints, and miscellaneous PL/SQL
programming techniques. You can drag snippets to the Editor window.

To display Snippets, select View > Snippets.

The Snippets window is displayed on the right. You can use the drop-down list to select a
group. A Snippets button is placed in the right window margin, so that you can display the
Snippets window if it becomes hidden.

Oracle Database 12c¢: SQL Workshop Il B -24

Using Snippets: Example

;mmmmitm XlL =] & snippets x =)
PEHBYA RR &ued @2
Worksheet Query Builder [Character Functions "I
SELECT CONCAT(charl, char2) | |CHR{n)
CONCAT(charl, char2)
0 HINITCAP{char)
Inse_rtlng a ‘ ||LowER(char)
Snlppet 7 LPAD(exprl, n, expr2)
LTRIM({char, set)
MLS_INITCAP(char, '"MLS_SORT =1
NLS_LOWER{char, '"NLS_SORT = la
‘ MLS_UPPER{char, 'NLS_SORT = lar
MLSSORT{char, 'MLS_SORT = lang ‘
Famyconnection 1€|) | & snippets * &)
" PEHBYA BRR &8ed w2
Editing the o] Worksheet | Query Builder | Character Functions ~|
snlppet SELECT CONCAT(first_name, last_name)|'||{CHR(M
FROM employees;
INITCAP{char)
LOWER({char)

LPAD(exprl, n, exprz)
LTRIM{char, set)
MLS_INITCAP{char, '"NLS_SORT =1
MLS_LOWER{char, '"MLS_SORT = la
MLS_UPPER{char, 'NLS_SORT = lan
NLSSORT(char, '"NLS_SORT = lang

ORACLE

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

To insert a Snippet into your code in a SQL Worksheet or in a PL/SQL function or procedure,
drag the snippet from the Snippets window to the desired place in your code. Then you can
edit the syntax so that the SQL function is valid in the current context. To see a brief
description of a SQL function in a tool tip, place the cursor over the function name.

The example in the slide shows that CONCAT (charl, char2)is dragged from the Character
Functions group in the Snippets window. Then the CONCAT function syntax is edited and the
rest of the statement is added as in the following:

SELECT CONCAT (first name, last name)

FROM employees;

Oracle Database 12c¢: SQL Workshop Il B -25

Using Recycle Bin

The Recycle bin holds objects that have been dropped.
m&m

7-| Re.. x |3 x

RAa

Select the operations

+-@7E

a Connections

=@ MyDBConnection

- Tables (Filtered)
(B Views

#-{F Editioning Views
(58 Indexes

® (g Packages

-z XML DB Repository
T SCTTEaEr

<& Cloud Connections

tecycle Bin ORAGL. null@MyDEConnection

| from the drop-down
Actions list.

i View Navigate Run Versioning

De XEm O -O- &

alue
1 0BJECT_NAME BIN$Z3HXzBgVXR3gQ303uYsdlg==50
2 ORIGINAL_NAME DEPTREE_TEMPTAB

3 OPERATION DROP

4 TYPE TABLE

5 TS_NAME USERS

6 CREATETIME 2012-11-30:01:14:37

7 DROPTIHE 2012-11-30:01:17:57

8 DROPSCN 3398921

9 PARTITION_NAME (nul1)

YES

YES

10 CAN_UNDROP
11 CAN_PURGE
12 RELATED 94960
13 BASE_OBJECT 94960
| 14 PURGE_OBJECT 94960
15 SPACE o

e Run Versioning Tools Help

KEn OO &
x @z] [L‘j DEPTREE.TEMPTAB * |
'@Yk Purge
\ Flashback to Before Drop..

L_NAME DEPTREE_TEMPTAB
3 ON DROP

33 juYsdlg==50

from the Recycle bin and
deletes it.

Purge: Removes the object

Flashback to Before Drop:
Moves the object from the
Recycle bin back to its
appropriate place in the
Connections navigator display.

TN |

k @ [§ DEPTREE_TEMPTAE
@ [EMPLOYEE_NAMES
@[svs_coo10295
& TEMP B

#- [Other Users

&6 VvideoCompany

<& Cloud Connections

Recycle Bin ORAG1 DEFTREE_TEMFTAB@MyDBConnecti ion

Recycle Bin ORAGL. null@MyDEConnection

ORACLE

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

The recycle bin is a data dictionary table containing information about dropped objects.
Dropped tables and any associated objects such as indexes, constraints, nested tables, and
the likes are not removed and still occupy space. They continue to count against user space
quotas, until specifically purged from the recycle bin or the unlikely situation where they must
be purged by the database because of tablespace space constraints.

To use the Recycle Bin, perform the following steps:
1. In the Connections navigator, select (or navigate to) the Recycle Bin.

2. Expand Recycle Bin and click the object name. The object details are displayed in the
SQL Worksheet area.

3. Click the Actions drop-down list and select the operation you want to perform on the
object.

Oracle Database 12c: SQL Workshop Il B -26

Debugging Procedures and Functions

- Use SQL Developer to debug &‘j“gg‘.‘.j’f"%‘ ol =
PL/SQL functions and Bucsnens
= myconnection
procedures. e
* Use the Compile for Debug . Ed -
option to perform a PL/SQL B —
compilation so that the PR o | =
procedure can be debugged. o o e [— 5
. * @Crossedition? ebu PR
* Use the Debug menu options to| & @me o

[Materialized i 4 Compile for Debug Ctrl+Shift-F& ||

set breakpoints, and to perform | : @ vcraiar D 0
step into, step over tasks. R

#-| g Database Links
@48 Public Databas
+ ‘Q Directories
@[Editions

H 1‘_‘“ Application Ex

pracedure ORALADD_|O5_ I bt * l

ORACLE

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

Crant...

Reyoke...

Drop...

Compile Dependants...

In SQL Developer, you can debug PL/SQL procedures and functions. Using the Debug menu
options, you can perform the following debugging tasks:

+ Find Execution Point goes to the next execution point.

« Resume continues execution.

+ Step Over bypasses the next method and goes to the next statement after the method.
« Step Into goes to the first statement in the next method.

» Step Out leaves the current method and goes to the next statement.

+ Step to End of Method goes to the last statement of the current method.

« Pause halts execution, but does not exit, thus allowing you to resume execution.

« Terminate halts and exits the execution. You cannot resume execution from this point;
instead, to start running or debugging from the beginning of the function or procedure,
click the Run or Debug icon on the Source tab toolbar.

» Garbage Collection removes invalid objects from the cache in favor of more frequently
accessed and more valid objects.

These options are also available as icons on the Debugging tab of the output window.

Oracle Database 12c¢: SQL Workshop Il B - 27

Database Reporting

SQL Developer provides a number of predefined reports about

the database and its objects.

&Connect...)l L’ﬁ KI x [0 Ehmyconnection % |U ADD_JOB_HISTORY X ;[:ﬂ Dependencies * |_ =
[AN Reports &> Rerresh:!E| o |) myconnection=|
%@ Daa Dictlonary Reports @ owner |8 name B e @ Referenceu_omgrj@ Referenced_Name B Referenced_
i g :ﬁf:;j:t‘:roa'abm APEX_040100 APEX PROCEDURE APEX_040100 Woh/_FLOW PACKAGE
@& All Objects APEX_040100 APEX PROCEDURE APEX_040100 W _FLOW_TSC PACKAGE
(B Collection Types APEX_040100 APEX PROCEDURE APEX_040100 Weh/_FLOW_SECURITY PACKAGE
{5 Dependencies APEX_040100 APEX PROCEDURE S¥5 STANDARD PACKAGE
{8 Invalid Objects APEX_040100 APEX PROCEDURE S¥5 SYS_STUB_FOR_PURITY_AMALYSIS PACKAGE
@ Object Count by Type
(@ object Dizwrioution | [PEX040100 APEXS PACKAGE SYS STANDARD PACKAGE
(@ Public Database Links ||APEX_040100 APEX_ADHIN PROCEDURE APEX_040100 F PROCEDURE
@ Public Synonyms APEX_040100 APEX_ADHIN PROCEDURE S5 STANDARD PACKAGE
- Application Express APEX_040100 APEX_ADMIN PROCEDURE S¥5 SYS_STUB_FOR_PURITY_ANALYSIS PACKAGE
#-E ASH and AWR APEX_040100 APEX_APPLICATIONS VIEW APEX_040100 N FUNCTION
(2 Database Administration appy 040100 APEX_APPLICATIONS VIEW APEX_040100 lh/_FLOWS TABLE
: g Ef;z,ef"“'""a” APEX_040100 APEX_APPLICATIONS VIEW APEX_040100 Wi_FLOW_APPLICATION_GROUPS TABLE
d-@ Scheduler APEX_040100 APEX_APPLICATIONS VIEW APEX_040100 WM _FLOW_SUTHENTICATIONS TABLE
BB Security APEX_040100 APEX_APPLICATIONS VIEW APEX_040100 W _FLOW_COMPANTES TABLE
® (2 Streams JAPEX_040100 APEX_APPLICATIONS VIEW APEX_040100 WM/_FLOW_COMPANY_SCHEMAS TEBLE
@ (2 Table APEX_040100 APEX_APPLICATIONS VIEW APEX_040100 W _FLOW_COMPUTATIONS TABLE
| @ APEX_040100 APEX_APPLICATIONS VIEW APEX_040100 W/_FLOW_TCON_BAR TABLE
& B 3::;‘:: ::: ::;::: APEX_040100 APEX_APPLICATIONS VIEW APEX_040100 WV_FLOW_INSTALL_SCRIPTS TABLE
APEX_040100 APEX_APPLICATIONS VIEW APEX_040100 W_FLOW_TTEMS TABLE
APEX_040100 APEX_APPLICATIONS VIEW APEX_040100 Weh/_F L OW_LANGUAGE _MAP TABLE

ORACLE

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

SQL Developer provides many reports about the database and its objects. These reports can
be grouped into the following categories:

« About Your Database reports
« Database Administration reports
« Tablereports

« PL/SQL reports

» Security reports

« XML reports

« Jobsreports

« Streams reports

» All Objects reports

« Data Dictionary reports

» User-Defined reports

To display reports, click the Reports tab on the left of the window. Individual reports are
displayed in tabbed panes on the right of the window; and for each report, you can select
(using a drop-down list) the database connection for which to display the report. For reports
about objects, the objects shown are only those visible to the database user associated with
the selected database connection, and the rows are usually ordered by Owner. You can also
create your own user-defined reports.

Oracle Database 12c¢: SQL Workshop Il B -28

Creating a User-Defined Report

Create and save user-defined reports for repeated use.

2L Connect... X |L§ x] = 2 ¥, Create Report %

[Al Repons Hame: emp_sal
#-4= Data Dictionary Reports '
F-4= Data Modeler Reports
- User Defined Repors

Style: |Table -
0L
Mew Folder, — =] ‘? :'Ek [_;;

Copy select employee_id, first_name, salary
Paste from employees where salary > 10000;

Cpen Report...

ShConnect.. X ffEox (™ =]
g All Reports |
#-{& Data Dictionary Reports

= Data Modeler Reports
ERE U ser Defined Reports

(@ emp_sal — Organize reports in folders.

ORACLE

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

Help Apply [Cancel

User-defined reports are reports created by SQL Developer users. To create a user-defined
report, perform the following steps:

1. Right-click the User Defined Reports node under Reports and select Add Report.

2. Inthe Create Report dialog box, specify the report name and the SQL query to retrieve
information for the report. Then click Apply.

In the example in the slide, the report name is specified as emp sal. An optional description
is provided indicating that the report contains details of employees with salary >=10000.
The complete SQL statement for retrieving the information to be displayed in the user-defined
report is specified in the SQL box. You can also include an optional tool tip to be displayed
when the cursor stays briefly over the report name in the Reports navigator display.

You can organize user-defined reports in folders and you can create a hierarchy of folders
and subfolders. To create a folder for user-defined reports, right-click the User Defined
Reports node or any folder name under that node and select Add Folder. Information about
user-defined reports, including any folders for these reports, is stored in a file named
UserReports.xml in the directory for user-specific information.

Oracle Database 12c¢: SQL Workshop Il B -29

Search Engines and External Tools

m Help
Data Modeler v |
-'fj Migration 3
E E 9, Uniit Test 3
@ Data Miner »
E Docs = g
'ia':# AskTom ﬁ mvcanneclionfi 8 Z‘:::::SSZLD@
E search.oracle. g * Monitor Sessions -
& saL Worksheet Ar-FLO
E 9.2 docs
E Metalink . Preferences...
[E]) 11.1 docs -
E 10.2 docs Shortcut to SW'tCh External Tools:
-] between connections @

Links to popular search
engines and discussion
forums

Hew s

ORACLE

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

To enhance the productivity of developers, SQL Developer has added quick links to popular
search engines and discussion forums such as AskTom, Google, and so on. Also, you have
shortcut icons to some of the frequently used tools such as Notepad, Microsoft Word, and
Dreamweaver, available to you.
You can add external tools to the existing list or even delete shortcuts to the tools that you do
not use frequently. To do so, perform the following steps:

1. From the Tools menu, select External Tools.

2. Inthe External Tools dialog box, select New to add new tools. Select Delete to remove

any tool from the list.

Oracle Database 12¢: SQL Workshop Il B - 30

Setting Preferences

« Customize the SQL Developer interface and environment.
* Inthe Tools menu, select Preferences.

e
§, Preferences x
) Environment
B m [] Show Splash Screen at Startup
@ Change Management Paran | || Sawe All When Deactivating or Exiting
[# Code Editor [] Automatically Reload Externally Modified Files
Compare and Merge [w] Silently Reload When File Is Unm odified
[~ Database [¥] Check for Externally Modified Files on Startup
#- Data Miner
[Data Modeler Undo Level: 0
[#- Debugger Mavigation Lewvel: '20
Extensions :
External Editar
i Look and Feel: Oracle b
File Types 4
& Migration Theme: Fusion Blue (Default) b
Mouseover Popups
Shortcut Keys Look and feel changes applied after restart
UnitTest Parameters
@ Versioning Line Terminator: | Platform Default b
Web Browser and Proxy Applies to newfiles only
HML Schemas Encoding: UTF& b

; Reset Skipped Messages

Help | OK J Cancel

ORACLE

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

You can customize many aspects of the SQL Developer interface and environment by
modifying SQL Developer preferences according to your needs. To modify SQL Developer
preferences, select Tools, and then Preferences.

The preferences are grouped into the following categories:
« Environment
+ Change Management parameter
+ Code Editors
+ Compare and Merge
» Database
» Data Miner
« Data Modeler
» Debugger
» Extensions
« External Editor
» File Types
« Migration

Oracle Database 12c¢: SQL Workshop Il B - 31

Mouseover Popups
Shortcut Keys

Unit Test Parameters
Versioning

Web Browser and Proxy
XML Schemas

Oracle Database 12c¢: SQL Workshop Il B - 32

Resetting the SQL Developer Layout

[oracle@EDRSR25P1:~/Desktop
File Edit View Search Terminal Help

[oracle@EDRSR25P1 Desktop]
Shome/oracle/.sqldeveloper/systemd. .
[oracle@EDRSR2SP1 Desktop]s

ORACLE

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

While working with SQL Developer, if the Connections Navigator disappears or if you cannot
dock the Log window in its original place, perform the following steps to fix the problem:

1. Exit SQL Developer.

2. Open a terminal window and use the locate command to find the location of
windowinglayout .xml.

3. Go to the directory that has windowinglayout .xml and delete it.
4. Restart SQL Developer.

Oracle Database 12¢: SQL Workshop Il B - 33

Data Modeler in SQL Developer

SQL Developer includes an integrated version of SQL
Developer Data Modeler.
Iﬁ Edit View Navigue Run Versioning Tools Help m Help

3 o (0o e | VST w A
. e ol Data Modeler L a2 Domains Administration
—c e |Files % | !‘3 ;-I.i.gration _75 Types Administration The TOO|S > Data
Closg All CrlaShite-£4 a Q;ﬂt Test y |8 RDEMS Site Adm nistration) Modeler menu
a @ DataMiner s £ Table To ViewWizard options provide the
@ swers 6 Darabase Copy.. & YewTo Table izard administration and
a Database DIff ... &83' Types To Domains Wizard Wizard OptionS
| open . = :}»Iata?asgs;tpoﬂ.. B name Abbreviations :
13 glose Monitor SQL... k i
Replace Wi (3 Close an Monitor Sessions... 3 Glossary Editor
:::l:: :"e‘;l’-- |8 save SQL Worksheet An-F10 Design Rules »
[savens.. External Tools... 1 Compare/Merge Models
B Impaort *
Exit 4 | Expont L4 ﬁ Navigate Run Versioning Tools Help
g Data Modeler 3 ‘Eg Browser g
The File > Data I ——— 128 Navigator The View > Data
. @ Ereakpoints Cri+Shifi-R =
{ Modeler menu options |* @ ComponentPalette crlasnince | DOL Preview Modeler menu
allow you to open, Deaner W L3 ooLFile Editor options provide
save, and print design (8] Run anager = Fenang Changes navigation and view
Status Zoom In .
models. R I s o options.
.. Change Management E Fit Screen
:,:: ﬁ;:"ec"n"s ! Default Size
P Data Miner » |88 Eind

ORACLE

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

Using the integrated version of the SQL Developer Data Modeler, you can:
» Create, open, import, and save a database design
» Create, modify, and delete Data Modeler objects

To display Data Modeler in a pane, click Tools, and then Data Modeler. The Data Modeler
menu under Tools includes additional commands, for example, that enable you to specify
design rules and preferences.

Oracle Database 12c¢: SQL Workshop Il B - 34

Summary

In this appendix, you should have learned how to use SQL
Developer to do:

* Browse, create, and edit database objects

* Execute SQL statements and scripts in SQL Worksheet
« Create and save custom reports

- Browse the Data Modeling options in SQL Developer

ORACLE

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

SQL Developer is a free graphical tool to simplify database development tasks. Using SQL
Developer, you can browse, create, and edit database objects. You can use SQL Worksheet
to run SQL statements and scripts. SQL Developer enables you to create and save your own
special set of reports for repeated use.

Oracle Database 12¢: SQL Workshop Il B - 35

Ajuo asn suoin|og 1geb3 pue AlsiaAlun ajoelO

a3LigIHOdd A1LOIE1S SI d3LNdNOD SIHL INOYA STVIFTILVIN LIM® ONIAJOD "ATNO WOOHSSV1D SIHL NI 3SN dNOA d04 34V STIVIHILYIN LIMS 3SIHL

Ajuo asn suonn|og Igeb3 pue AjisiaAlun ajpoelO

ORACLE

Using SQL*Plus

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

d3119diHOdd ATLOIELS SI d3.LNdINOD SIHL INOHA STVIHALVIA LIX® ONIAJOD "ATTNO INOOHSSY1O SIHL NI 3SN dNOA J04 FHV SIVIHALVIN 1IM9 3S3HL

Objectives

After completing this appendix, you should be able to:
* Login to SQL*Plus

 Edit SQL commands

- Format the output using SQL*Plus commands
* Interact with script files

ORACLE

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

You might want to create SELECT statements that can be used again and again. This
appendix also covers the use of SQL*Plus commands to execute SQL statements. You learn

how to format output using SQL*Plus commands, edit SQL commands, and save scripts in
SQL*Plus.

Oracle Database 12c¢: SQL Workshop Il C -2

SQL and SQL*Plus Interaction

SQL statements 1
Server
SQL*Plus 1]
T | ..
LI 1]
Query results |

Buffer <—|
| =

| =

P

K saL » QH%
scripts %

ORACLE

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

SQL and SQL*Plus

SQL is a command language used for communication with the Oracle server from any tool or
application. Oracle SQL contains many extensions. When you enter a SQL statement, it is
stored in a part of memory called the SQL buffer and remains there until you enter a new SQL
statement. SQL*Plus is an Oracle tool that recognizes and submits SQL statements to the
Oracle Server for execution. It contains its own command language.

Features of SQL
« Can be used by a range of users, including those with little or no programming
experience

* Is anonprocedural language
» Reduces the amount of time required for creating and maintaining systems
» Is an English-like language
Features of SQL*Plus
» Accepts ad hoc entry of statements
* Accepts SQL input from files
« Provides a line editor for modifying SQL statements
« Controls environmental settings
» Formats query results into basic reports
» Accesses local and remote databases

Oracle Database 12c¢: SQL Workshop Il C -3

SQL Statements Versus SQL*Plus Commands

SQL
« Alanguage
« ANSI-standard
« Keywords cannot be

SQL*Plus
* An environment
» Oracle-proprietary
« Keywords can be

abbreviated. abbreviated.

- Statements manipulate « Commands do not
data allow manipulation of
and table definitions in the values in the database.
database.

SQL SQL SQL*Plus SQL*Plus |
statements buffer J commands buffer
ORACLE

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

The following table compares SQL and SQL*Plus:

sSQL

SQL*Plus

Is a language for communicating with the
Oracle server to access data

Recognizes SQL statements and sends
them to the server

Is based on American National Standards
Institute (ANSI)—standard SQL

Is the Oracle-proprietary interface for
executing SQL statements

Manipulates data and table definitions in the
database

Does not allow manipulation of values in the
database

Is entered into the SQL buffer on one or
more lines

Is entered one line at a time, not stored in
the SQL buffer

Does not have a continuation character

Uses a dash (-) as a continuation character
if the command is longer than one line

Cannot be abbreviated

Can be abbreviated

Uses a termination character to execute
commands immediately

Does not require termination characters;
executes commands immediately

Uses functions to perform some formatting

Uses commands to format data

Oracle Database 12c¢: SQL Workshop Il C -4

Overview of SQL*Plus

* Loginto SQL*Plus.

» Describe the table structure.
- Edit your SQL statement.

« Execute SQL from SQL*Plus.

- Save SQL statements to files and append SQL statements
to files.

 Execute saved files.
« Load commands from the file to buffer to edit.

ORACLE

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

SQL*Plus
SQL*Plus is an environment in which you can:
» Execute SQL statements to retrieve, modify, add, and remove data from the database
» Format, perform calculations on, store, and print query results in the form of reports
» Create script files to store SQL statements for repeated use in the future
SQL*Plus commands can be divided into the following main categories:

Category Purpose

Environment Affect the general behavior of SQL statements for the session

Format Format query results

File manipulation | Save, load, and run script files

Execution Send SQL statements from the SQL buffer to the Oracle server

Edit Modify SQL statements in the buffer

Interaction Create and pass variables to SQL statements, print variable
values, and print messages to the screen

Miscellaneous Connect to the database, manipulate the SQL*Plus environment,
and display column definitions

Oracle Database 12c¢: SQL Workshop Il C -5

Logging In to SQL*Plus

oracle@EDRSR25P1:~/Desktop

File Edit View Search Terminal Help
[oraclegEDRSR25P1 Desktop]$ sqlplus &

SOL*Plus: Release 12.1.6.06.2 Beta on Thu Sep 13 62:00:57 2812

Copyright (c) 1982, 2012, Oracle. ALl rights reserved.
Enter user-name: oral

Enter password:

Last Successful login time: Wed Sep 2812 23:16:13 +80:88
Connected to:

Oracle Database 12c Enterprise Edition Release 12.1.8.8.2 - 64bit Beta =
With the Partitioning, OLAP, Data Mining and Real Application Testing options

SOL=

sqlplus [username[/password|[@database]]]

oracle@EDRSR25P1:~/Desktop

File Edit View Search Terminal Help
[oracle@EDRSR25P1 Desktop]$ sqlplus oral/eral

SOL*Plus: Release 12.1.6.8.2 Beta on Thu Sep 13 62:29:51 20812
Copyright (c) 1982, 2012, Oracle. All rights reserved.

Last Successful login time: Thu Sep 2012 62:01:21 +060:00

Connected to:
Oracle Database 12c Enterprise Edition Release 12.1.8.8.2 - 64bit Beta
With the Partitioning, OLAP, Data Mining and Real Application Testing options

(10

SQL>

ORACLE

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

How you invoke SQL*Plus depends on which type of operating system you are running
Oracle Database.

To log in from a Linux environment, perform the following steps:
1. Right-click your Linux desktop and select terminal.
2. Enterthe sgqlplus command shown in the slide.
3. Enter the username, password, and database name.

In the syntax:
username Your database username
password Your database password (Your password is visible if you enter it here.)
@database The database connect string

Note: To ensure the integrity of your password, do not enter it at the operating system
prompt. Instead, enter only your username. Enter your password at the password prompt.

Oracle Database 12¢: SQL Workshop Il C -6

Displaying the Table Structure

Use the SQL*Plus DESCRIBE command to display the structure
of a table:

DESC [RIBE] tablename

ORACLE

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

In SQL*Plus, you can display the structure of a table by using the DESCRIBE command. The
result of the command is a display of column names and data types as well as an indication of
whether a column must contain data.

In the syntax:
tablename The name of any existing table, view, or synonym that is accessible to
the user
To describe the DEPARTMENTS table, use this command:
SQL> DESCRIBE DEPARTMENTS

Name Null Type
DEPARTMENT ID NOT NULL NUMBER (4)
DEPARTMENT NAME NOT NULL VARCHAR2 (30)
MANAGER ID NUMBER (6)
LOCATION ID NUMBER (4)

Oracle Database 12¢: SQL Workshopll C -7

Displaying the Table Structure

DESCRIBE departments

Name Null Type
DEPARTMENT ID NOT NULL NUMBER (4)
DEPARTMENT NAME NOT NULL VARCHAR2 (30)
MANAGER ID NUMBER (6)
LOCATION_ID NUMBER (4)

ORACLE

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

The example in the slide displays the information about the structure of the DEPARTMENTS
table. In the result:

Null: Specifies whether a column must contain data (NOT NULL indicates that a column
must contain data.)
Type: Displays the data type for a column

Oracle Database 12c¢: SQL Workshop Il C -8

SQL*Plus Editing Commands

* A[PPEND] text

e C[HANGE] / old / new
e C[HANGE] / text /

* CLI[EAR] BUFF [ER]

* DEL

° DEL n

° DEL mn

ORACLE

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

SQL*Plus commands are entered one line at a time and are not stored in the SQL buffer.

Command Description
A [PPEND] text Adds text to the end of the current line
C[HANGE] / old / new Changes oldtext to newin the current line
C[HANGE] / text / Deletes text from the current line
CL[EAR] BUFF [ER] Deletes all lines from the SQL buffer
DEL Deletes current line
DEL n Deletes line n
DEL m n Deletes lines m to nn inclusive

Guidelines

» If you press Enter before completing a command, SQL*Plus prompts you with a line

number

* You terminate the SQL buffer either by entering one of the terminator characters

(semicolon or slash) or by pressing Enter twice. The SQL prompt appears.

Oracle Database 12c¢: SQL Workshop Il C -9

SQL*Plus Editing Commands

e I[NPUT]
e TI[NPUT] text
e L[IST]

* L[IST] n

* L[IST] mn
* R[UN]

° n

° n text

° 0 text

ORACLE

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

Command Description

I [NPUT] Inserts an indefinite number of lines

I [NPUT] text Inserts a line consisting of text

L[ISTI] Lists all lines in the SQL buffer

L[IST] n Lists one line (specified by n)

L[IST] m n Lists a range of lines (mto n) inclusive

R [UN] Displays and runs the current SQL statement in the buffer
n Specifies the line to make the current line

n text Replaces line n with text

0 text Inserts a line before line 1

Note: You can enter only one SQL*Plus command for each SQL prompt. SQL*Plus
commands are not stored in the buffer. To continue a SQL*Plus command on the next line,
end the first line with a hyphen (-).

Oracle Database 12c¢: SQL Workshop Il C -10

Using LIST, n, and APPEND

LIST
1 SELECT last name
2* FROM employees

1* SELECT last name

A , job_ id
1* SELECT last name, job id

LIST
1 SELECT last name, job id
2* FROM employees

ORACLE

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

+ Usethe L[IST] command to display the contents of the SQL buffer. The asterisk (*)
beside line 2 in the buffer indicates that line 2 is the current line. Any edits that you
made apply to the current line.

« Change the number of the current line by entering the number (n) of the line that you
want to edit. The new current line is displayed.

+ Usethe A[PPEND] command to add text to the current line. The newly edited line is
displayed. Verify the new contents of the buffer by using the LIST command.

Note: Many SQL*Plus commands, including LIST and APPEND, can be abbreviated to just
their first letter. LIST can be abbreviated to L; APPEND can be abbreviated to A.

Oracle Database 12c¢: SQL Workshop Il C - 11

Using the CHANGE Command

LIST
1* SELECT * from employees

c/employees/departments
1* SELECT * from departments

LIST
1* SELECT * from departments

ORACLE

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

 UseL[IST] todisplaythe contents of the buffer.

« Use the C[HANGE] command to alter the contents of the current line in the SQL buffer.
In this case, replace the employees table with the departments table. The new
current line is displayed.

+ Usethe L[IST] command to verify the new contents of the buffer.

Oracle Database 12c¢: SQL Workshop Il C -12

SQL*Plus File Commands

e SAVE filename
* GET filename

* GSTART filename
* @ filename

* EDIT filename
* SPOOL filename
e EXIT

ORACLE

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

SQL statements communicate with the Oracle server. SQL*Plus commands control the
environment, format query results, and manage files. You can use the commands described
in the following table:

Command Description

SAV[E] filename [.ext] Saves the current contents of SQL buffer to a file. Use

[REP [LACE]APP [END]] APPEND to add to an existing file; use REPLACE to
overwrite an existing file. The default extension is
.sqgql.

GET filename [.ext] Writes the contents of a previously saved file to the
SQL buffer. The default extension for the file name is
.sql.

STA [RT] filename [.ext] Runs a previously saved command file

@ filename Runs a previously saved command file (same as
START)

ED[IT] Invokes the editor and saves the buffer contents to a
file named afiedt .buf

ED[IT] [filenamel[.ext]] Invokes the editor to edit the contents of a saved file

SPO[OL] [filenamel.ext] | | Stores query results in a file. OFF closes the spool file.

OFF | OUT] oUT closes the spool file and sends the file results to
the printer.

EXIT Quits SQL*Plus

Oracle Database 12c¢: SQL Workshop Il C -13

Using the sAVE, START Commands

LIST
1 SELECT last name, manager id, department id
2* FROM employees

SAVE my query
Created file my query

START my query

LAST NAME MANAGER_ID DEPARTMENT ID
King 90
Kochhar 100 90

107 rows selected.

ORACLE

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

SAVE

Use the SAVE command to store the current contents of the buffer in a file. In this way, you
can store frequently used scripts for use in the future.

START

Use the START command to run a scriptin SQL*Plus. You can also, alternatively, use the
symbol @ to run a script.
@my query

Oracle Database 12c¢: SQL Workshop Il C - 14

SERVEROUTPUT Command

 Usethe SET SERVEROUT [PUT] command to control
whether to display the output of stored procedures or
PL/SQL blocks in SQL*Plus.

« The DBMS OUTPUT line length limit is increased from 255
bytes to 32767 bytes.

* The default size is now unlimited.

* Resources are not preallocated when SERVEROUTPUT is
set.

« Because there is no performance penalty, use UNLIMITED
unless you want to conserve physical memory.

SET SERVEROUT [PUT] {ON | OFF} [SIZE {n | UNL[IMITED] }]
[FOR [MAT] {WRA[PPED] | WOR[D WRAPPED] | TRU[NCATED] }]

ORACLE

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

Most of the PL/SQL programs perform input and output through SQL statements, to store data
in database tables or query those tables. All other PL/SQL input/outputis done through APls
that interact with other programs. For example, the DBMS OUTPUT package has procedures,
such as PUT_LINE. To see the result outside of PL/SQL requires another program, such as
SQL*Plus, to read and display the data passed to DBMS_OUTPUT.

SQL*Plus does not display DBMS OUTPUT data unless you first issue the SQL*Plus command
SET SERVEROUTPUT ON as follows:

SET SERVEROUTPUT ON

Note
* SIZE sets the number of bytes of the output that can be buffered within the Oracle
Database server. The default is UNLIMITED. n cannot be less than 2000 or greater than
1,000,000.
» For additional information about SERVEROUTPUT, see Oracle Database PL/SQL User's
Guide and Reference 12c.

Oracle Database 12c¢: SQL Workshop Il C -15

Using the SQL*Plus spooL. Command

SPO[OL] [file name[.ext] [CRE[ATE] | REP[LACE] |
APP[END]] | OFF | OUT]

Option Description

file name[.ext] Spools output to the specified file name

CRE [ATE] Creates a new file with the name specified

REP [LACE] Replaces the contents of an existing file. If the file
does not exist, REPLACE creates the file.

APP [END] Adds the contents of the buffer to the end of the file
you specify

OFF Stops spooling

ouT Stops spooling and sends the file to your computer’s

standard (default) printer

ORACLE

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

The SPOOL command stores query results in a file or optionally sends the file to a printer. The
SPOOL command has been enhanced. You can now append to, or replace an existing file,
where previously you could only use SPOOL to create (and replace) a file. REPLACE is the
default.

To spool output generated by commands in a script without displaying the output on the
screen, use SET TERMOUT OFF.SET TERMOUT OFF does not affect output from commands
that run interactively.

You must use quotation marks around file names containing white space. To create a valid
HTML file using SPOOL. APPEND commands, you must use PROMPT or a similar command to
create the HTML page header and footer. The SPOOL. APPEND command does not parse
HTML tags. SET SQLPLUSCOMPAT [IBILITY] to 9.2 or earlier to disable the CREATE,
APPEND and SAVE parameters.

Oracle Database 12c¢: SQL Workshop Il C -16

Using the AUTOTRACE Command

- |t displays a report after the successful execution of SQL
DML statements such as SELECT, INSERT, UPDATE, or

DELETE.

« The report can now include execution statistics and the
query execution path.

SET AUTOT [RACE] {ON | OFF | TRACE [ONLY]} [EXP[LAIN]]
[STAT[ISTICS]]

SET AUTOTRACE ON

-- The AUTOTRACE report includes both the optimizer
-- execution path and the SQL statement execution
-- statistics

ORACLE

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

EXPLAIN shows the query execution path by performing an EXPLAIN PLAN. STATISTICS
displays SQL statement statistics. The formatting of your AUTOTRACE report may vary
depending on the version of the server to which you are connected and the configuration of
the server. The DBMS_XPLAN package provides an easy way to display the output of the
EXPLAIN PLAN command in several predefined formats.

Note

» For additional information about the package and subprograms, refer to Oracle
Database PL/SQL Packages and Types Reference 12c.

« For additional information about the EXPLAIN PLAN, refer to Oracle Database SQL
Reference 12c.

« For additional information about Execution Plans and the statistics, refer to Oracle
Database Performance Tuning Guide 12c.

Oracle Database 12c¢: SQL Workshop Il C -17

Summary

In this appendix, you should have learned how to use SQL*Plus
as an environment to do the following:

« Execute SQL statements
- Edit SQL statements

* Format the output

* Interact with script files

ORACLE

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

SQL*Plus is an execution environment that you can use to send SQL commands to the
database server and to edit and save SQL commands. You can execute commands from the
SQL prompt or from a script file.

Oracle Database 12c¢: SQL Workshop Il C -18

Commonly Used SQL Commands

ORACLE

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

Objectives

After completing this appendix, you should be able to:
* Execute a basic SELECT statement
« Create, alter, and drop a table using the data definition
language (DDL) statements

« Insert, update, and delete rows from one or more tables
using data manipulation language (DML) statements

« Commit, roll back, and create save points using the
transaction control statements

« Perform join operations on one or more tables

ORACLE

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

This lesson explains how to obtain data from one or more tables using the SELECT statement,
how to use DDL statements to alter the structure of data objects, how to manipulate data in
the existing schema objects by using the DML statements, how to manage the changes made
by DML statements, and how to use joins to display data from multiple tables using SQL:1999
join syntax.

Oracle Database 12c¢: SQL Workshop Il D -2

Basic SELECT Statement

* Use the SELECT statement to:
« Identify the columns to be displayed

— Retrieve data from one or more tables, object tables,
views, object views, or materialized views
« A SELECT statement is also known as a query because it
queries a database.

« Syntax:
SELECT {*| [DISTINCT] column|expression [alias],...}
FROM table;

ORACLE

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

In its simplest form, a SELECT statement must include the following:
* A SELECT clause, which specifies the columns to be displayed

« A FROM clause, which identifies the table containing the columns that are listed in the
SELECT clause

In the syntax:

SELECT Is a list of one or more columns
* Selects all columns
DISTINCT Suppresses duplicates
column|expression Selects the named column or the expression
alias Gives different headings to the selected columns
FROM table Specifies the table containing the columns

Note: Throughout this course, the words keyword, clause, and statement are used as follows:

» A keyword refers to an individual SQL element—for example, SELECT and FROM are
keywords.

« Aclause is a part of a SQL statement (for example, SELECT employee 1id,
last name).

» A statementis a combination of two or more clauses (for example, SELECT * FROM
employees).

Oracle Database 12c¢: SQL Workshop Il D -3

SELECT Statement

« Select all columns:

@ emeoveeo g START_DATE|_E| END_DATE |§ JoBID | DEPARTMENT_ID
1 102 13-JAN-01 24-1UL-06 IT_PROG 60
SELECT z 101 21-SEP-97 27-0CT-01 AC_ACCOUNT 110
. . 3 101 28-0CT-01 15-MAR-05 AC_MGR 110
FROM jOb_hlStOI‘y; 4 20117-FEB-04 19-DEC-07 MK_REP 20
5 114 24-MAR-06 31-DEC-07 ST_CLERK 50
6 122 01-AN-07 31-DEC-07 ST_CLERK 50
7 200 17-SEP-95 17-JUN-01 AD_ASST 90
8 176 24-MAR-06 31-DEC-06 SA_REP 80
9 176 01-JAN-07 31-DEC-07 SA_MAN 80
10 20001-1UL-02 31-DEC-06 AC_ACCOUNT %0
manacer D | JjoB_ID
1 {nu11) AD_PRES
. . . 2 100 AD_VP
Select specific columns: : e
4 102 IT_PROG
. . . 5 103 IT_PROG
SELECT manager_ id, job_ id . 2o3ITT PROG
FROM employees; 7 100 ST_MAN
8 124 ST_CLERK
9 124 ST_CLERK
10 124 ST_CLERK

ORACLE

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

You can display all columns of data in a table by following the SELECT keyword with an
asterisk (*) or by listing all the column names after the SELECT keyword. The first example in
the slide displays all the rows from the job history table. Specific columns of the table can
be displayed by specifying the column names, separated by commas. The second example in
the slide displays the manager idand job id columns from the employees table.

In the SELECT clause, specify the columns in the order in which you want them to appear in
the output. For example, the following SQL statement displays the 1ocation id column
before displaying the department id column:

SELECT location id, department id FROM departments;

Note: You can enter your SQL statementin a SQL Worksheet and click the Run Statement
icon or press F9 to execute a statement in SQL Developer. The output displayed on the
Results tabbed page appears as shown in the slide.

Oracle Database 12c¢: SQL Workshop Il D -4

WHERE Clause

» Use the optional WHERE clause to:
— Filter rows in a query
— Produce a subset of rows

« Syntax:

SELECT * FROM table
[WHERE condition] ;

« Example:

SELECT location id from departments
WHERE department name = 'Marketing';

ORACLE

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

The WHERE clause specifies a condition to filter rows, producing a subset of the rows in the

table. A condition specifies a combination of one or more expressions and logical (Boolean)
operators. It returns a value of TRUE, FALSE, or NULL. The example in the slide retrieves the
location id of the marketing department.

The WHERE clause can also be used to update or delete data from the database.
For example:

UPDATE departments

SET department name = 'Administration'

WHERE department id = 20;

and

DELETE from departments

WHERE department id =20;

Oracle Database 12c¢: SQL Workshop Il D -5

ORDER BY Clause

« Use the optional ORDER BY clause to specify the row order.
« Syntax:

SELECT * FROM table
[WHERE condition]

[ORDER BY {<columns>|<position> } [ASC|DESC] [, ...] 1;

« Example:

SELECT last name, department id, salary
FROM employees

ORDER BY department id ASC, salary DESC;

ORACLE

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

The ORDER BY clause specifies the order in which the rows should be displayed. The rows

can be sorted in ascending or descending fashion. By default, the rows are displayed in
ascending order.

The example in the slide retrieves rows from the employees table ordered first by ascending
order of department id, and then by descending order of salary.

Oracle Database 12c¢: SQL Workshop Il D -6

GROUP BY Clause

« Use the optional GROUP BY clause to group columns that
have matching values into subsets.

- Each group has no two rows having the same value for the
grouping column or columns.

« Syntax:

SELECT <columnl, column2, ... column n>
FROM table
[WHERE condition]

[GROUP BY <column> [, ...] 1
[ORDER BY <column> [, ...] 1 ;
« Example:

SELECT department id, MIN(salary), MAX (salary)
FROM employees
GROUP BY department id ;

ORACLE

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

The GROUP BY clause is used to group selected rows based on the value of expr (s) for

each row. The clause groups rows but does not guarantee order of the result set. To order the
groupings, use the ORDER BY clause.

Any SELECT list elements that are not included in aggregation functions must be included in
the GROUP BY list of elements. This includes both columns and expressions. The database
returns a single row of summary information for each group.

The example in the slide returns the minimum and maximum salaries for each departmentin
the employees table.

Oracle Database 12¢: SQL Workshop Il D -7

Data Definition Language

- DDL statements are used to define, structurally change,
and drop schema objects.

« The commonly used DDL statements are:
— CREATE TABLE, ALTER TABLE, and DROP TABLE

— GRANT, REVOKE
— TRUNCATE

ORACLE

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

DDL statements enable you to alter the attributes of an object without altering the applications
that access the object. You can also use DDL statements to alter the structure of objects
while database users are performing work in the database. These statements are most
frequently used to:

» Create, alter, and drop schema objects and other database structures, including the
database itself and database users

» Delete all the data in schema objects without removing the structure of these objects
» Grantand revoke privileges and roles

Oracle Database implicitly commits the current transaction before and after every DDL
statement.

Oracle Database 12c¢: SQL Workshop Il D -8

CREATE TABLE Statement

e Use the CREATE TABLE statement to create a table in the
database.
« Syntax:

CREATE TABLE tablename (
{column-definition | Table-level constraint}
[, {column-definition | Table-level constraint}] *)

« Example:

CREATE TABLE teach dept (
department id NUMBER (3) PRIMARY KEY,
department name VARCHAR2 (10)) ;

ORACLE

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

Use the CREATE TABLE statement to create a table in the database. To create a table, you
must have the CREATE TABLE privilege and a storage area in which to create objects.

The table owner and the database owner automatically gain the following privileges on the
table after it is created:

* INSERT

* SELECT

* REFERENCES
* ALTER

* UPDATE

The table owner and the database owner can grant the preceding privileges to other users.

Oracle Database 12c¢: SQL Workshop Il D -9

ALTER TABLE Statement

« Use the ALTER TABLE statement to modify the definition of
an existing table in the database.

« Example1:

ALTER TABLE teach dept
ADD location id NUMBER NOT NULL;

« Example 2:

ALTER TABLE teach dept
MODIFY department name VARCHAR2 (30) NOT NULL;

ORACLE

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

The ALTER TABLE statement allows you to make changes to an existing table.
You can:

* Add a column to a table

« Add a constraintto a table

* Modify an existing column definition

« Drop a column from a table

» Drop an existing constraint from a table
* Increase the width of the VARCHAR and CHAR columns

+ Change a table to have read-only status
Example 1 in the slide adds a new column called 1location idtothe teach dept table.

Example 2 updates the existing department name column from VARCHAR2 (10) to
VARCHAR?2 (30), and adds a NOT NULL constraintto it.

Oracle Database 12c¢: SQL Workshop Il D -10

DROP TABLE Statement

e The DROP TARLE statement removes the table and all its
data from the database.

« Example:

DROP TABLE teach dept;

 DROP TABLE with the PURGE clause drops the table and
releases the space that is associated with it.

DROP TABLE teach dept PURGE;

 The CASCADE CONSTRAINTS clause drops all referential
integrity constraints from the table.

DROP TABLE teach dept CASCADE CONSTRAINTS;

ORACLE

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

The DROP TABLE statement allows you to remove a table and its contents from the database,
and pushes it to the recycle bin. Dropping a table invalidates dependent objects and removes
object privileges on the table.

Use the PURGE clause along with the DROP TABLE statement to release back to the
tablespace the space allocated for the table. You cannot roll back a DROP TABLE statement
with the PURGE clause, nor can you recover the table if you have dropped it with the PURGE
clause.

The CASCADE CONSTRAINTS clause allows you to drop the reference to the primary key and
unique keys in the dropped table.

Oracle Database 12c¢: SQL Workshop Il D - 11

GRANT Statement

- The GRANT statement assigns privilege to perform the
following operations:
— Insert or delete data

— Create a foreign key reference to the named table or to a
subset of columns from a table

— Select data, a view, or a subset of columns from a table
— Create a trigger on a table
— Execute a specified function or procedure

« Example:

GRANT SELECT any table to PUBLIC;

ORACLE

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

You can use the GRANT statement to:
» Assign privileges to a specific user or role, or to all users, to perform actions on
database objects
+ Grantarole to a user, to PUBLIC, or to another role

Before you issue a GRANT statement, check that the derby . database . sql Authorization
property is set to True. This property enables the SQL Authorization mode. You can grant
privileges on an object if you are the owner of the database.

You can grant privileges to all users by using the PUBLIC keyword. When PUBLIC is
specified, the privileges or roles affect all current and future users.

Oracle Database 12c¢: SQL Workshop Il D -12

Privilege Types

« Assign the following privileges using the GRANT statement:
— ALL PRIVILEGES
— DELETE
— INSERT
— REFERENCES
— SELECT
— UPDATE

ORACLE

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

Oracle Database provides a variety of privilege types to grant privileges to a user or role:

*+ Usethe ALL PRIVILEGES privilege type to grant all privileges to the user or role for the
specified table.

+ Usethe DELETE privilege type to grant permission to delete rows from the specified
table.

+ Usethe INSERT privilege type to grant permission to insert rows into the specified
table.

* Usethe REFERENCES privilege type to grant permission to create a foreign key
reference to the specified table.

*+ Usethe SELECT privilege type to grant permission to perform SELECT statements on a
table or view.

+ Use the UPDATE privilege type to grant permission to use the UPDATE statement on the
specified table.

Oracle Database 12c¢: SQL Workshop Il D -13

REVOKE Statement

« Use the REVOKE statement to remove privileges from a
user to perform actions on database objects.

« Revoke a system privilege from a user:

REVOKE DROP ANY TABLE
FROM hr;

- Revoke a role from a user:

REVOKE dw_manager
FROM sh;

ORACLE

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

The REVOKE statement removes privileges from a specific user (or users) or role to perform
actions on database objects. It performs the following operations:

 Revokes a role from a user, from PUBLIC, or from another role

* Revokes privileges for an object if you are the owner of the object or the database
owner

Note: To revoke a role or system privilege, you must have been granted the privilege with the
ADMIN OPTION.

Oracle Database 12c¢: SQL Workshop Il D - 14

TRUNCATE TABLE Statement

« Use the TRUNCATE TARBRLE statement to remove all the
rows from a table.

« Example:

TRUNCATE TABLE employees demo;

- By default, Oracle Database performs the following tasks:
— Deallocates space used by the removed rows

— Sets the NEXT storage parameter to the size of the last
extent removed from the segment by the truncation process

ORACLE

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

The TRUNCATE TABLE statement deletes all the rows from a specific table. Removing rows ith
the TRUNCATE TABLE statement can be more efficient than dropping and re-creating a table.
Dropping and re-creating a table:

+ Invalidates the dependent objects of the table
* Requires you to re-grant object privileges
* Requires you to re-create indexes, integrity constraints, and triggers.
* Re-specify its storage parameters
The TRUNCATE TABLE statement spares you from these efforts.
Note: You cannot roll back a TRUNCATE TABLE statement.

Oracle Database 12c¢: SQL Workshop Il D -15

Data Manipulation Language

« DML statements query or manipulate data in the existing
schema objects.

« A DML statement is executed when:
— New rows are added to a table by using the INSERT
statement
— Existing rows in a table are modified using the UPDATE
statement
— Existing rows are deleted from a table by using the DELETE
statement

* A transaction consists of a collection of DML statements
that form a logical unit of work.

ORACLE

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

Data Manipulation Language (DML) statements enable you to query or change the contents
of an existing schema object. These statements are most frequently used to:

« Add new rows of data to a table or view by specifying a list of column values or using a
subquery to select and manipulate existing data

« Change column values in the existing rows of a table or view
» Remove rows from tables or views

A collection of DML statements that forms a logical unit of work is called a transaction. Unlike
DDL statements, DML statements do not implicitly commit the current transaction.

Oracle Database 12c¢: SQL Workshop Il D -16

INSERT Statement

« Use the INSERT statement to add new rows to a table.

« Syntax:
INSERT INTO table [(column [, column...])]
VALUES (value [, value...l);
« Example:
INSERT INTO departments
VALUES (200, 'Development',104,1400) ;
1 rows 'Ir‘ISEI"l:Eﬁ._

>
a”’
|

v

ORACLE

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

The INSERT statement adds rows to a table. Make sure to insert a new row containing values
for each column and to list the values in the default order of the columns in the table.
Optionally, you can also list the columns in the INSERT statement.
For example:
INSERT INTO job history (employee id, start date, end date,
job_id)
VALUES (120, '25-JUL-06','12-FEB 08', 'AC_ACCOUNT') ;

The syntax discussed in the slide allows you to insert a single row at a time. The VALUES
keyword assigns the values of expressions to the corresponding columns in the column list.

Oracle Database 12c¢: SQL Workshop Il D -17

UPDATE Statement Syntax

* Use the UPDATE statement to modify the existing rows in a
table.

« Update more than one row at a time (if required).

UPDATE table
SET column = value [, column = value, ...]
[WHERE condition] ;
« Example:
UPDATE copy emp
SET
22 rows updated

. ’f' -
* Specify SET column name= NULL to update l_,-"'
|

a column value to NULL. P
W

ORACLE

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

The UPDATE statement modifies the existing values in a table. Confirm the update operation

by querying the table to display the updated rows. You can modify a specific row or rows by
specifying the WHERE clause.

For example:
UPDATE employees
SET salary = 17500

WHERE employee id = 102;

In general, use the primary key column in the WHERE clause to identify the row to update. For
example, to update a specific row in the employees table, use employee id to identify the
row instead of employee name, because more than one employee may have the same
name.

Note: Typically, the condition keyword is composed of column names, expressions,
constants, subqueries, and comparison operators.

Oracle Database 12c¢: SQL Workshop Il D -18

DELETE Statement

* Use the DELETE statement to delete the existing rows from

a table.
* Syntax:
DELETE [FROM] table
[WHERE condition] ;

* Write the DELETE statement using the WHERE clause to
delete specific rows from a table.

DELETE FROM departments
WHERE department name = 'Finance';

1 rows deleted |

”
P
.-
P -~

ORACLE

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

The DELETE statement removes existing rows from a table. You must use the WHERE clause
to delete a specific row or rows from a table based on the condition. The condition
identifies the rows to be deleted. It may contain column names, expressions, constants,
subqueries, and comparison operators.

The first example in the slide deletes the finance department from the departments table.
You can confirm the delete operation by using the SELECT statement to query the table.

SELECT ~*
FROM departments
WHERE department name = 'Finance';

If you omit the WHERE clause, all rows in the table are deleted. For example:
DELETE FROM copy emp;
The preceding example deletes all the rows from the copy emp table.

Oracle Database 12c¢: SQL Workshop Il D -19

Transaction Control Statements

« Transaction control statements are used to manage the
changes made by DML statements.

« The DML statements are grouped into transactions.
« Transaction control statements include:

— COMMIT

— ROLLBACK

— SAVEPOINT

ORACLE

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

A transaction is a sequence of SQL statements that Oracle Database treats as a single unit.
Transaction control statements are used in a database to manage the changes made by DML
statements and to group these statements into transactions.

Each transaction is assigned a unique transaction_id and it groups SQL statements so
that they are either all committed, which means they are applied to the database, or all rolled
back, which means they are undone from the database.

Oracle Database 12c¢: SQL Workshop Il D -20

COMMIT Statement

« Use the COMMIT statement to:

— Permanently save the changes made to the database during
the current transaction

— Erase all savepoints in the transaction
— Release transaction locks

« Example:
INSERT INTO departments
VALUES (201, 'Engineering', 106, 1400) ;
COMMIT;

1 rows inserted.
commited.

ORACLE

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

The coMMIT statement ends the current transaction by making all the pending data changes

permanent. It releases all row and table locks, and erases any savepoints that you may have
marked since the last commit or rollback. The changes made using the COMMIT statement are

visible to all users.

Oracle recommends that you explicitly end every transaction in your application programs
with a COMMIT or ROLLBACK statement, including the last transaction, before disconnecting
from Oracle Database. If you do not explicitly commit the transaction and the program
terminates abnormally, the last uncommitted transaction is automatically rolled back.

Note: Oracle Database issues an implicit COMMIT before and after any data definition
language (DDL) statement.

Oracle Database 12c¢: SQL Workshop Il D - 21

ROLLBACK Statement

« Use the ROLLBACK statement to undo changes made to the
database during the current transaction.

« Use the TO SAVEPOINT clause to undo a part of the
transaction after the savepoint.

« Example:
UPDATE employees
SET salary = 7000
WHERE last name = 'Ernst';
SAVEPOINT Ernst_sal;
UPDATE employees
SET salary = 12000
WHERE last name = 'Mourgos';
ROLLBACK TO SAVEPOINT Ersnt sal;

ORACLE

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

The ROLLBACK statement undoes work done in the current transaction. To roll back the
current transaction, no privileges are necessary.

Using ROLLBACK with the TO SAVEPOINT clause performs the following operations:
* Rolls back only the portion of the transaction after the savepoint

» Erases all savepoints created after that savepoint. The named savepoint is retained, so
you can roll back to the same savepoint multiple times.

Using ROLLBACK without the TO SAVEPOINT clause performs the following operations:
* Ends the transaction
* Undoes all the changes in the current transaction
+ Erases all savepointsin the transaction

Oracle Database 12c¢: SQL Workshop Il D -22

SAVEPOINT Statement

 Use the SAVEPOINT statement to name and mark the
current point in the processing of a transaction.

- Specify a name to each savepoint.

« Use distinct savepoint names within a transaction to avoid
overriding.

« Syntax:

SAVEPOINT savepoint;

ORACLE

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

The SAVEPOINT statement identifies a point in a transaction to which you can later roll back.
You must specify a distinct name for each savepoint. If you create a second savepoint with
the same identifier as an earlier savepoint, the earlier savepoint is erased.

After a savepoint has been created, you can either continue processing, commit your work,
roll back the entire transaction, or roll back to the savepoint.

A simple rollback or commit erases all savepoints. When you roll back to a savepoint, any
savepoints marked after that savepoint are erased. The savepoint to which you have rolled
back is retained.

When savepoint names are reused within a transaction, the Oracle Database moves
(overrides) the save point from its old position to the current point in the transaction.

Oracle Database 12c¢: SQL Workshop Il D -23

Joins

Use a join to query data from more than one table:

SELECT tablel.column, table2.column
FROM tablel, table2
WHERE tablel.columnl = table2.column2;

« Write the join condition in the WHERE clause.

* Prefix the column name with the table name when the
same column name appears in more than one table.

ORACLE

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

When data from more than one table in the database is required, a join condition is used.
Rows in one table can be joined to rows in another table according to common values that
exist in the corresponding columns (usually primary and foreign key columns).

To display data from two or more related tables, write a simple join condition in the WHERE
clause.

In the syntax:
tablel.column Denotes the table and column from which data is retrieved

tablel.columnl = Is the condition that joins (or relates) the tables together
table2.column2

Guidelines

« When writing a SELECT statement that joins tables, precede the column name with the
table name for clarity and to enhance database access.

» Ifthe same column name appears in more than one table, the column name must be
prefixed with the table name.

» Tojoin n tables together, you need a minimum of n-1 join conditions. For example, to
join four tables, a minimum of three joins is required. This rule may not apply if your

table has a concatenated primary key, in which case more than one column is required
to uniquely identify each row.

Oracle Database 12c¢: SQL Workshop Il D -24

Types of Joins

« Natural join
« Equijoin

« Nonequijoin
« OQuter join

« Self-join

« Crossjoin

ORACLE

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

To join tables, you can use Oracle’s join syntax.

Note: Before the Oracle9irelease, the join syntax was proprietary. The SQL:1999-compliant
join syntax does not offer any performance benefits over the Oracle-proprietary join syntax.

Oracle Database 12c¢: SQL Workshop Il D -25

Qualifying Ambiguous Column Names

- Use table prefixes to qualify column names that are in
multiple tables.

« Use table prefixes to improve performance.
- Use table aliases, instead of full table name prefixes.

- Table aliases give a table a shorter name.
— This keeps SQL code smaller and uses less memory.

« Use column aliases to distinguish columns that have
identical names, but reside in different tables.

ORACLE

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

When joining two or more tables, you need to qualify the names of the columns with the table
name to avoid ambiguity. Without the table prefixes, the DEPARTMENT ID column inthe
SELECT list could be from either the DEPARTMENTS table or the EMPLOYEES table. Therefore,
it is necessary to add the table prefix to execute your query. If there are no common column
names between the two tables, there is no need to qualify the columns. However, using a
table prefix improves performance, because you tell the Oracle server exactly where to find
the columns.

Qualifying column names with table names can be very time consuming, particularly if table
names are lengthy. Therefore, you can use table aliases, instead of table names. Just as a

column alias gives a column another name, a table alias gives a table another name. Table
aliases help to keep SQL code smaller, thereby using less memory.

The table name is specified in full, followed by a space, and then the table alias. For example,
the EMPLOYEES table can be given an alias of e, and the DEPARTMENTS table an alias of d.

Guidelines
« Table aliases can be up to 30 characters in length, but shorter aliases are better than
longer ones.
« Ifatable alias is used for a particulartable name in the FROM clause, that table alias
must be substituted for the table name throughout the SELECT statement.
« Table aliases should be meaningful.
« Atable alias is valid only for the current SELECT statement.

Oracle Database 12c¢: SQL Workshop Il D - 26

Natural Join

e The NATURAL JOIN clause is based on all the columns in
the two tables that have the same name.

* |t selects rows from tables that have the same names and
data values of columns.

« Example:

SELECT country id, location id, country name,city
FROM countries [NATURAL JOIN |locations;

@ countrv_D |§ LocaTionD [§ COUNTRY_NAME @ cry
1Us 1400 United States of America Southlake
2 Us 1500 United States of America South San Francisco
3Us 1700 United States of America Seattle
4 Ca 1800 Canada Toronto
S UK 2500 United Kingdom Dxford

ORACLE
Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

You can join tables automatically based on the columns in the two tables that have matching
data types and names. You do this by using the NATURAL JOIN keywords.

Note: The join can happen only on those columns that have the same names and data types
in both tables. If the columns have the same name but different data types, the NATURAL
JOIN syntax causes an error.

In the example in the slide, the COUNTRIES table is joined to the LOCATIONS table by the
COUNTRY _ID column, which is the only column of the same name in both tables. If other
common columns were present, the join would have used them all.

Oracle Database 12c¢: SQL Workshop Il D - 27

Equijoins

EMPLOYEES DEPARTMENTS
B emroveeD|l DEPARTMENT_ID @ DEPARTMENTID |[§ DEPARTMENT_NAME

1 200f 10 1 10 Administration
2 201 20 —I = > 20 Marketing
3 202 20 3 50 Shipping
4 205) 110 T > G0IT
5 206 110 5 80 Sales
3 100 =11} [90 Executive
7 101 a0 7 110 Accounting
] 103 a0 il 190 Contracting
g 103 &0

10 104) &0

Primary key
Foreign key

ORACLE

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

An equijoin is a join with a join condition containing an equality operator. An equijoin
combines rows that have equivalent values for the specified columns. To determine an
employee’s department name, you compare the values in the DEPARTMENT ID column in the
EMPLOYEES table with the DEPARTMENT _ID values in the DEPARTMENTS table. The
relationship between the EMPLOYEES and DEPARTMENTS tables is an equijoin; that is, values
in the DEPARTMENT _ID column in both tables must be equal. Often, this type of join involves
primary and foreign key complements.

Note: Equijoins are also called simple joins.

Oracle Database 12c¢: SQL Workshop Il D -28

Retrieving Records with Equijoins

SELECT e.employee id, e.last name, e.department id,
d.department id, d.location_id
FROM employees e JOIN departments d

ON e.department id = d.department id;

EMPLOYEE_ID | LAST_MAME DEP‘&RTHENT_ID' DEPARTMENT_ID_1JLOCATION_ID

1 2I]D.Whalen 10 10 1700
2 201 Hartstein 20 20 1800
3 202 Fay Z0 20 1a00
4 144 Vargas 50 50 1500
= 143 Matos 50 0 1500
& 142 Davies 50 S0 1500
7 141 Rais 50 S0 1500
8 124 Mourgos 50 50 1500
9 103 Hunold &0 B0 1400
10 104 Ernst &0 [1400
11 107 Lorentz &0 [1400

ORACLE

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

In the example in the slide:
» The SELECT clause specifies the column names to retrieve:

- Employee last name, employee ID, and department ID, which are columns in the
EMPLOYEES table

- Department ID and location ID, which are columns in the DEPARTMENTS table
« The FROM clause specifies the two tables that the database must access:
- EMPLOYEES table
- DEPARTMENTS table
 The WHERE clause specifies how the tables are to be joined:
e.department id = d.department id

Because the DEPARTMENT _ID column is common to both tables, it must be prefixed with the
table alias to avoid ambiguity. Other columns that are not present in both the tables need not
be qualified by a table alias, but it is recommended for better performance.

Note: When you use the Execute Statement icon to run the query, SQL Developer suffixes a
“_1"to differentiate between the two DEPARTMENT IDS.

Oracle Database 12c¢: SQL Workshop Il D -29

Additional Search Conditions
Using the AND and WHERE Operators

SELECT d.department id, d.department name, 1l.city
FROM departments d JOIN locations 1
ON d.location id = l.location id

IAND d.department_id IN (20, 50)|;

v
] DEPARTMENTID | DEPARTMENT_NAME [cITy
1 20 Marketing Toronto
2 S0 Shipping South San Francisco
a

SELECT d.department id, d.department name, 1l.city
FROM departments d JOIN locations 1

ON d.location id = l.location_ id

WHERE d.department id IN (20, 50) ;|

ORACLE

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

In addition to the join, you may have criteria for your WHERE clause to restrict the rows in
consideration for one or more tables in the join. The example in the slide performs a join on
the DEPARTMENTS and LOCATIONS tables and, in addition, displays only those departments
with ID equal to 20 or 50. To add additional conditions to the ON clause, you can add AND
clauses. Alternatively, you can use a WHERE clause to apply additional conditions.

Both queries produce the same output.

B LasT_MaME | DEPARTMENT_ID || DERARTMENT_MAME
1 Matos 50 Shipping

Oracle Database 12¢: SQL Workshop Il D - 30

Retrieving Records with Nonequijoins

SELECT e.last name, e.salary, j.grade level
FROM employees e JOIN job grades j

ON e.galary

BETWEEN j.lowest sal AND j.highest salj;

B rasTnamg [saLarv @ CRADE_LEVEL
1 Yargas 2500 A
2 Matos 2800 A,
3 Dawies 31008
4 Rajs 3500 B
S Lorentz 4200 B
6 Whalen 4400 B
7 Fay 000 ¢

ORACLE

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

The example in the slide creates a nonequijoin to evaluate an employee’s salary grade. The
salary must be between any pair of the low and high salary ranges.

It is important to note that all employees appear exactly once when this query is executed. No
employee is repeated in the list. There are two reasons for this:

« None of the rows in the job grade table contain grades that overlap. That is, the salary
value for an employee can lie only between the low salary and high salary values of one
of the rows in the salary grade table.

» All of the employees’ salaries lie within the limits that are provided by the job grade
table. That is, no employee earns less than the lowest value contained in the
LOWEST SAL column or more than the highest value contained in the HIGHEST SAL
column.

Note: Other conditions (such as <= and >=) can be used, but BETWEEN is the simplest.
Remember to specify the low value first and the high value last when using the BETWEEN
condition. The Oracle server translates the BETWEEN condition to a pair of AND conditions.
Therefore, using BETWEEN has no performance benefits, but should be used only for logical
simplicity.

Table aliases have been specified in the example in the slide for performance reasons, not
because of possible ambiguity.

Oracle Database 12c¢: SQL Workshop Il D - 31

Retrieving Records by Using the USING Clause

* You can use the USING clause to match only one column
when more than one column matches.

* You cannot specify this clause with a NATURAL join.

* Do not qualify the column name with a table name or table
alias.

« Example:

SELECT country id, country name, location id, city
FROM countries JOIN locations
USING |(country id) ;

) counTRY_ID|f COUNTRY_NAME |8 rocamiono|g crmy
1Us United States of America 1400 Southlake
2 Us United States of America 1500 South San Francisco
3us United States of America 1700 Seattle
4CA Canada 1800 Toronto
5 UK United Kingdon 2500 Oxford

ORACLE

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

In the example in the slide, the COUNTRY ID columns in the COUNTRIES and LOCATIONS
tables are joined and thus the LOCATION ID of the location where an employee works is
shown.

Oracle Database 12c¢: SQL Workshop Il D - 32

Retrieving Records by Using the ON Clause

« The join condition for the natural join is basically an
equijoin of all columns with the same name.

- Use the ON clause to specify arbitrary conditions or specify
columns to join.

* The ON clause makes code easy to understand.

SELECT e.employee id, e.last name, j.department id,
FROM employees e JOIN job history j
ON (e.employee id = j.employee id) ;

@ ewmpLovee D [LasT_naME |l DEPARTMENT_ID
101 Kochhar 119
101 Kochhar 119
102 De Haan &0

176 Taylor B0
176 Taylor 80|
200 Whalen a0
200 Whalen [=1s]

W o~ ®mWm s W N

201 Hartstein 20

ORACLE

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

Use the ON clause to specify a join condition. With this, you can specify join conditions
separate from any search or filter conditions in the WHERE clause.

In this example, the EMPLOYEE_ID columns in the EMPLOYEES and JOB_HISTORY tables are
joined using the ON clause. Wherever an employee ID in the EMPLOYEES table equals an
employee ID in the JOB_HISTORY table, the row is returned. The table alias is necessary to
qualify the matching column names.

You can also use the ON clause to join columns that have different names. The parentheses
around the joined columns, as in the example in the slide, (e.employee id =
j.employee 1id), is optional. So, even ON e.employee id = j.employee id will work.

Note: When you use the Execute Statement icon to run the query, SQL Developer suffixes a
‘_1"to differentiate between the two employee ids.

Oracle Database 12¢: SQL Workshop Il D - 33

Left Outer Join

« Ajoin between two tables that returns all matched rows, as

well as the unmatched rows from the left table is called a
LEFT OUTER JOIN.

« Example:

SELECT c.country id, c.country name, l.location id, l.city
FROM countries c LEFT OUTER JOIN| locations 1
ON (c.country id = l.country id) ;

[counTRY_ID|f COUNTRY_NAME |8 rocamonio|f cmy
1CA Canada 1800 Toronto
2 DE Germany (nu11) (null)
3 UK United Kingdom 2500 0xfTord
4 s United States of America 1400 Southlake
5UsS United 5tates of America 1500 South San Francisco
6 s United 5tates of America 1700 Seattle

ORACLE

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

This query retrieves all the rows in the COUNTRIES table, which is the left table, even if there
is no match in the LOCATIONS table.

Oracle Database 12¢: SQL Workshop Il D - 34

Right Outer Join

« Ajoin between two tables that returns all matched rows, as
well as the unmatched rows from the right table is called a
RIGHT OUTER JOIN.

« Example:

SELECT e.last name, d.department id, d.department name
FROM employees e |RIGHT OUTER JOIN|departments d

ON (e.department id = d.department id) ;
() LasT_NAME| DEPARTMENTID | DEPARTMENT_NAME |
1 Whalen 10 Administration
2 Hartstein 20 Marketing
3 Fay 20 Marketing
4 Davies 50 Shipping
18 Higgins 110 Accounting
19 Gietz 110 Accounting
20 (nu11) 190 Contracting

ORACLE

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

This query retrieves all the rows in the DEPARTMENTS table, which is the table at the right,
even if there is no match in the EMPLOYEES table.

Oracle Database 12¢: SQL Workshop Il D - 35

Full Outer Join

* Ajoin between two tables that returns all matched rows, as

well as the unmatched rows from both tables is called a
FULL OUTER JOIN.

« Example:

SELECT e.last name, d.department id, d.manager id,
d.department name

FROM employees e |FULL OUTER JOIN| departments d

ON (e.manager id = d.manager id) ;
@ vrasT_name|f DePARTMENTID |§ MANAGERID |§ DEPARTMENT_NAME

1 King | 1y (nu11) (null)
2 Kochhar 90 100 Executive
3 De Haan 90 100 Executive
4 Hunold (nu11) (u11) (nu11)

19 Higgins (nu11) (nu11) (nu11)

20 Gietz 110 205 Accounting

21 (null) 190 (nu11) Contracting

22 (nul1) 10 200 Administration

ORACLE
Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

This query retrieves all the rows in the EMPLOYEES table, even if there is no match in the

DEPARTMENTS table. It also retrieves all the rows in the DEPARTMENTS table, even if there is
no match in the EMPLOYEES table.

Oracle Database 12¢: SQL Workshop Il D - 36

Self-Join: Example

SELECT worker.last name || ' works for '
| | manager.last name

FROM employees worker JOIN employees manager

ON worker.manager 1d = manager.employee 1d
ORDER BY worker.last name;

WORKER LAST_NAME|| 'WORKSFOR'|[MANAGER.LAST_NAME |
1 Abel works for Zlotkey
2 Davies works for Mourgos
3 De Haan works for King
4 Ernst works for Hunold
5 Fay works for Hartstein
6 Gietz works for Higgins
7 Grant works for Zlotkey
8 Hartstein works for King
9 Higgins works for Kochhar

ORACLE

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

Sometimes you need to join a table to itself. To find the name of each employee’s manager,
you need to join the EMPLOYEES table to itself, or perform a self-join. The example in the slide
joins the EMPLOYEES table to itself. To simulate two tables in the FROM clause, there are two
aliases, namely worker and manager, for the same table, EMPLOYEES.

In this example, the WHERE clause contains the join that means “where a worker’'s manager ID
matches the employee ID for the manager.”

Oracle Database 12c¢: SQL Workshop Il D - 37

Cross Join

« A CROSS JOIN is a JOIN operation that produces the
Cartesian product of two tables.

« Example:

SELECT department name, city
FROM department [CROSS JOIN| location;

DEPARTMENT_NAME ||| Ty
1 Administration 'Dxford
2 Administration Seattle
3 Administration South San Francisco
4 Administration Southlake
S Administration Toronto
& Marketing Oxford
7 Marketing Seattle
8 Marketing South San Francisco
9 Marketing Southlake
10 Marketing Toronto

ORACLE

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

The CROSS JOIN syntax specifies the cross product. It is also known as a Cartesian product.
A cross join produces the cross product of two relations, and is essentially the same as the
comma-delimited Oracle Database notation.

You do not specify any WHERE condition between the two tables in the CROSS JOIN.

Oracle Database 12¢: SQL Workshop Il D - 38

Summary

In this appendix, you should have learned how to use:

e The SELECT statement to retrieve rows from one or more
tables

- DDL statements to alter the structure of objects

« DML statements to manipulate data in the existing schema
objects

« Transaction control statements to manage the changes
made by DML statements

- Joins to display data from multiple tables

ORACLE

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

There are many commonly used commands and statements in SQL. It includes the DDL
statements, DML statements, transaction control statements, and joins.

Oracle Database 12¢: SQL Workshop Il D -39

Ajuo asn suoin|og 1geb3 pue AlsiaAlun ajoelO

a3LigIHOdd A1LOIE1S SI d3LNdNOD SIHL INOYA STVIFTILVIN LIM® ONIAJOD "ATNO WOOHSSV1D SIHL NI 3SN dNOA d04 34V STIVIHILYIN LIMS 3SIHL

Generating Reports by Grouping
Related Data

ORACLE

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

Objectives

After completing this appendix, you should be able to use the:
 ROLLUP operation to produce subtotal values
* CUBE operation to produce cross-tabulation values

* GROUPING function to identify the row values created by
ROLLUP or CUBE

* GROUPING SETS to produce a single result set

ORACLE

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

In this appendix, you learn how to:
» Group data to obtain subtotal values by using the ROLLUP operator
» Group data to obtain cross-tabulation values by using the CUBE operator

+ Use the GROUPING function to identify the level of aggregation in the result set produced
by a ROLLUP or CUBE operator

+ Use GROUPING SETS to produce a single result set that is equivalentto a UNION ALL

Oracle Database 12c¢: SQL Workshop Il E -2

Review of Group Functions

« Group functions operate on sets of rows to give one result

per group.
SELECT [column,]| group function (column).
FROM table
[WHERE condition]
[GROUP BY group by expression]
[ORDER BY column] ;
« Example:

SELECT AVG(salary), STDDEV(salary),

COUNT (commission pct) ,MAX(hire date)
FROM employees
WHERE job id LIKE 'SA%';

ORACLE

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

You can use the GROUP BY clause to divide the rows in a table into groups. You can then use

group functions to return summary information for each group. Group functions can appear in
select lists and in ORDER BY and HAVING clauses. The Oracle server applies the group

functions to each group of rows and returns a single result row for each group.

Types of group functions: Each of the group functions—AVG, SUM, MAX, MIN, COUNT,
STDDEV, and VARIANCE—accepts one argument. The AVG, SUM, STDDEV, and VARIANCE
functions operate only on numeric values. MAX and MIN can operate on numeric, character, or
date data values. COUNT returns the number of non-NULL rows for the given expression. The
example in the slide calculates the average salary, standard deviation on the salary, number

of employees earning a commission, and the maximum hire date for those employees whose
JOB_ID begins with SA.

Guidelines for Using Group Functions
» The data types for the arguments can be CHAR, VARCHAR2, NUMBER, Or DATE.

» All group functions except COUNT (*) ignore null values. To substitute a value for null
values, use the NVL function. COUNT returns either a number or zero.

« The Oracle server implicitly sorts the result set in ascending order of the grouping
columns specified, when you use a GROUP BY clause. To override this default ordering,
you can use DESC in an ORDER BY clause.

Oracle Database 12¢: SQL Workshop Il E -3

Review of the GROUP BY Clause

« Syntax:
SELECT [column,] group function(column).
FROM table
[WHERE condition]
[GROUP BY group by expression]
[ORDER BY column] ;
« Example:

SELECT department id, job id, SUM(salary),
COUNT (employee id)

FROM employees

GROUP BY department id, job id|;

ORACLE

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

The example illustrated in the slide is evaluated by the Oracle server as follows:
» The SELECT clause specifies that the following columns be retrieved:
- Department ID and job ID columns from the EMPLOYEES table
The sum of all the salaries and the number of employees in each group that you
have specified in the GROUP BY clause
+ The GROUP BY clause specifies how the rows should be grouped in the table. The total

salary and the number of employees are calculated for each job ID within each
department. The rows are grouped by department ID and then grouped by job within

each department.

Oracle Database 12c: SQL Workshop Il E -4

Review of the HAVING Clause

« Use the HAVING clause to specify which groups are to be

displayed.
* You further restrict the groups on the basis of a limiting
condition.
SELECT [column,] group function(column)...
FROM table
[WHERE condition]
[GROUP BY group by expression]
| [HAVING having expression]
ORDER BY column] ;

ORACLE

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

HAVING Clause
Groups are formed and group functions are calculated before the HAVING clause is applied to
the groups. The HAVING clause can precede the GROUP BY clause, but it is recommended
that you place the GROUP BY clause first, because the GROUP BY clause it is more logical
than the HAVING clause.
The Oracle server performs the following steps when you use the HAVING clause:

1. It groups rows.
2. ltapplies the group functions to the groups and displays the groups that match the
criteria in the HAVING clause.

Oracle Database 12c¢: SQL Workshop Il E -5

GROUP BY with ROLLUP and
CUBE Operators

« Use ROLLUP or CUBE with GROUP BY to produce
superaggregate rows by cross-referencing columns.

* ROLLUP grouping produces a result set containing the
regular grouped rows and the subtotal values.

* CUBE grouping produces a result set containing the rows
from ROLLUP and cross-tabulation rows.

ORACLE

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

You specify ROLLUP and CUBE operators in the GROUP BY clause of a query. ROLLUP

grouping produces a result set containing the regular grouped rows and subtotal rows. The
ROLLUP operator also calculates a grand total. The CUBE operation in the GROUP BY clause

groups the selected rows based on the values of all possible combinations of expressions in
the specification and returns a single row of summary information for each group. You can
use the CUBE operator to produce cross-tabulation rows.

Note: When working with ROLLUP and CUBE, make sure that the columns following the
GROUP BY clause have meaningful, real-life relationships with each other; otherwise, the
operators return irrelevant information.

Oracle Database 12c¢: SQL Workshop Il E -6

ROLLUP Operator

e ROLLUP is an extension to the GROUP BY clause.

« Use the ROLLUP operation to produce cumulative
aggregates, such as subtotals.

SELECT [column,]group function(column).
FROM table

[WHERE condition]

[GROUP BY ROLLUP group by expression]
[HAVING having expression];

[ORDER BY column] ;

ORACLE

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

The ROLLUP operator delivers aggregates and superaggregates for expressions within a
GROUP BY statement. The ROLLUP operator can be used by report writers to extract statistics
and summary information from result sets. The cumulative aggregates can be used in reports,
charts, and graphs.
The ROLLUP operator creates groupings by moving in one direction, from right to left, along
the list of columns specified in the GROUP BY clause. It then applies the aggregate function to
these groupings.
Note
» To produce subtotals in n dimensions (that is, n columns in the GROUP BY clause)
without a ROLLUP operator, n+1 SELECT statements must be linked with UNION ALL.
This makes the query execution inefficient because each of the SELECT statements
causes table access. The ROLLUP operator gathers its results with just one table
access. The ROLLUP operator is useful when there are many columns involved in
producing the subtotals.
» Subtotals and totals are produced with ROLLUP. CUBE produces totals as well but
effectively rolls up in each possible direction, producing cross-tabular data.

Oracle Database 12c¢: SQL Workshop Il E -7

ROLLUP Operator: Example

SELECT department id, job id, SUM(salary)
FROM employees

WHERE department id < 60

GROUP BY ROLLUP (department id, job id);

[opeparTMENT_ID |8l JOB_ID |8l SUM(SALAR
10 AD_ASST 440 @

10 (nully 4400
20 ME_MAN 13000
20 MK_REP 6000
20 {nully 19000
30 PU_MAN 11000
30 PU_CLERK 13900
30 (null) 24900
40 HR_REP 6500

| 40 (nutly 6500
S0 ST_MAN 36400
S0 SH_CLERK 64300

50 ST_CLERK 55700
50 {nully 156400
{nully (nully | 211203

=
L = L R = I L TU I

el
B W N

-
v

ORACLE

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

In the example in the slide:

» Total salaries for every job ID within a department for those departments whose
department ID is less than 60 are displayed by the GROUP BY clause

* The ROLLUP operator displays:
- The total salary for each department whose department ID is less than 60
- The total salary for all departments whose department ID is less than 60,
irrespective of the job IDs
In this example, 1 indicates a group totaled by both DEPARTMENT _ID and JOB_ID, 2
indicates a group totaled only by DEPARTMENT _ID, and 3 indicates the grand total.
The ROLLUP operator creates subtotals that roll up from the most detailed level to a grand
total, following the grouping list specified in the GROUP BY clause. First, it calculates the
standard aggregate values for the groups specified in the GROUP BY clause (in the example,
the sum of salaries grouped on each job within a department). Then it creates progressively
higher-level subtotals, moving from right to left through the list of grouping columns. (In the
example, the sum of salaries for each department is calculated, followed by the sum of
salaries for all departments.)
« Given n expressions in the ROLLUP operator of the GROUP BY clause, the operation
resultsin n + 1 (in this case, 2 + 1 = 3) groupings.
» Rows based on the values of the first n expressions are called rows or regular rows, and
the others are called superaggregate rows.

Oracle Database 12c¢: SQL Workshop Il E -8

CUBE Operator

* CUBE is an extension to the GROUP BY clause.

* You can use the CUBE operator to produce cross-
tabulation values with a single SELECT statement.

SELECT [column,] group function(column)...
FROM table

[WHERE condition]

[GROUP BY [CUBE gtoup by expressionl]

[HAVING having expression]

[ORDER BY column] ;

ORACLE

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

The CUBE operator is an additional switch in the GROUP BY clause in a SELECT statement.
The CUBE operator can be applied to all aggregate functions, including AvG, SUM, MAX, MIN,
and COUNT. It is used to produce result sets that are typically used for cross-tabular reports.
ROLLUP produces only a fraction of possible subtotal combinations, whereas CUBE produces
subtotals for all possible combinations of groupings specified in the GROUP BY clause, and a
grand total.

The CUBE operator is used with an aggregate function to generate additional rows in a result
set. Columns included in the GROUP BY clause are cross-referenced to produce a superset of
groups. The aggregate function specified in the select list is applied to these groups to
produce summary values for the additional superaggregate rows. The number of extra groups
in the result set is determined by the number of columns included in the GROUP BY clause.

In fact, every possible combination of the columns or expressions in the GROUP BY clause is
used to produce superaggregates. If you have n columns or expressions in the GROUP BY
clause, there will be 2" possible superaggregate combinations. Mathematically, these
combinations form an n-dimensional cube, which is how the operator got its name.

By using application or programming tools, these superaggregate values can then be fed into
charts and graphs that convey results and relationships visually and effectively.

Oracle Database 12c¢: SQL Workshop Il E -9

CUBE Operator: Example

SELECT department id, job id, SUM(salary)
FROM employees
WHERE department id < 60

|GROUP BY CUBE (department id, job_id)l;
@ opeparTMENT_ID |§ JoB_iD [E SUM(SALARY) |
o o

{null) HR_REP 6500
(null) ME_MAN 13000
{null) ME_REP 6000
(null) PU_MAN 11000

(null) ST_MAN 36400
(null) AD_ASST 4400
{null) PU_CLERK 135200

{nully SH_CLERK 64300
{null) ST_CLERK 55700
10 (nu_ll‘) 4400 @
1080 BSST :mnnl
20 (null) 19000

20 ME_MAN 13000
20 ME_REP 6000

S0 ol dm

ORACLE

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

LE I R - T L U e

[=3
o

=
[

=
=

= = e
m & W

[=3
o

The output of the SELECT statement in the example can be interpreted as follows:

» The total salary for every job within a department (for those departments whose
department ID is less than 60)

» The total salary for each department whose department ID is less than 60
» The total salary for each job irrespective of the department

» The total salary for those departments whose department ID is less than 60, irrespective
of the job titles

In this example, 1 indicates the grand total, 2 indicates the rows totaled by JOB_ID alone, 3
indicates some of the rows totaled by DEPARTMENT ID and JOB_ID, and 4 indicates some of
the rows totaled by DEPARTMENT ID alone.

The CUBE operator has also performed the ROLLUP operation to display the subtotals for
those departments whose department ID is less than 60 and the total salary for those
departments whose department ID is less than 60, irrespective of the job titles. Further, the
CUBE operator displays the total salary for every job irrespective of the department.

Note: Similar to the ROLLUP operator, producing subtotals in n dimensions (that is, n columns
in the GROUP BY clause) without a CUBE operator requires that 2” SELECT statements be
linked with UNION ALL. Thus, a report with three dimensions requires 23 = 8 SELECT
statements to be linked with UNION ALL.

Oracle Database 12c¢: SQL Workshop Il E -10

GROUPING Function

The GROUPING function:
* Is used with either the CUBE or ROLLUP operator

* Is used to find the groups forming the subtotal in a row

* |s used to differentiate stored NULL values from NULL
values created by ROLLUP or CUBE

 Returnsoori1

SELECT [column,] group function(column) .. ,
GROUPING (expr)

FROM table

[WHERE condition]

[GROUP BY [ROLLUP] [CUBE] group by expression]
[HAVING having expression]
[ORDER BY column] ;

ORACLE

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

The GROUPING function can be used with either the CUBE or ROLLUP operator to help you
understand how a summary value has been obtained.

The GROUPING function uses a single column as its argument. The expr in the GROUPING
function must match one of the expressions in the GROUP BY clause. The function returns a
value of 0 or 1.

The values returned by the GROUPING function are useful to:
« Determine the level of aggregation of a given subtotal (that is, the group or groups on
which the subtotal is based)
» l|dentify whether a NULL value in the expression column of a row of the result set
indicates:

- A NULL value from the base table (stored NULL value)
- ANULL value created by ROLLUP or CUBE (as a result of a group function on that
expression)

A value of 0 returned by the GROUPING function based on an expression indicates one of the

following: _
« The expression has been used to calculate the aggregate value.
* The NULL value in the expression column is a stored NULL value.

A value of 1 returned by the GROUPING function based on an expression indicates one of the
following: _

» The expression has not been used to calculate the aggregate value.

* The NULL value in the expression column is created by ROLLUP or CUBE as a result of

grouping.
Oracle Database 12c¢: SQL Workshop Il E - 11

GROUPING Function: Example

SELECT department id DEPTID, job id JOB,
SUM (salary) ,

GROUPING (department id) GRP_DEPT,
GROUPING (job id) GRP_JOB

FROM employees

WHERE department id < 50

GROUP BY ROLLUP (department id, job id);

@ oeemio § jor | sumcalaryy |[{ cRP_DEPT |[§ GRPIOE |
10 AD_ASST 4400
10 (nulny 4400

20 ME_MAN 13000
20 MK_REP 6000
20 {nully 18000
30 PU_MAN 11000
30 PU_CLERK 13900
30 {nully 24900
40 HR_REP 6500
40 {nully 6500
(null) {null) 54800

ORACLE

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

WO s ™ s W NP

=]
o

» O O O O O O O O O O
H = O+ O 0O+ O O = O

®

=
=

In the example in the slide, consider the summary value 4400 in the first row (labeled 1). This
summary value is the total salary for the job ID of AD_ASST within department 10. To
calculate this summary value, both the DEPARTMENT ID and JOB_ID columns have been
taken into account. Thus, a value of 0 is returned for both the

GROUPING (department id)and GROUPING (job_1id)expressions.

Consider the summary value 4400 in the second row (labeled 2). This value is the total salary
for department 10 and has been calculated by taking into account the DEPARTMENT _ID
column; thus, a value of 0 has been returned by GROUPING (department id).Because the
JOB_ID column has not been taken into account to calculate this value, a value of 1 has been
returned for GROUPING (job id). You can observe similar output in the fifth row.

In the last row, consider the summary value 54800 (labeled 3). This is the total salary for
those departments whose department ID is less than 50 and all job titles. To calculate this
summary value, neither of the DEPARTMENT _ID and JOB_ID columns have been taken into
account. Thus, a value of 1 is returned for both the GROUPING (department id)and
GROUPING (job_1id)expressions.

Oracle Database 12c¢: SQL Workshop Il E -12

GROUPING SETS

« The GROUPING SETS syntax is used to define multiple
groupings in the same query.
« All groupings specified in the GROUPING SETS clause are

computed and the results of individual groupings are
combined with a UNION ALL operation.

« Grouping set efficiency:
— Only one pass over the base table is required.
— There is no need to write complex UNION statements.

— The more elements GROUPING SETS has, the greater is the
performance benefit.

ORACLE

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

GROUPING SETS is a further extension of the GROUP BY clause that you can use to specify
multiple groupings of data. Doing so facilitates efficient aggregation and, therefore, facilitates
analysis of data across multiple dimensions.

A single SELECT statement can now be written using GROUPING SETS to specify various
groupings (which can also include ROLLUP or CUBE operators), rather than multiple SELECT
statements combined by UNION ALL operators. For example:
SELECT department id, job id, manager id, AVG(salary)
FROM employees
GROUP BY
GROUPING SETS
((department id, job id, manager id),
(department id, manager id), (job_id, manager id));

This statement calculates aggregates over three groupings:
(department id, job id, manager id), (department id,
manager id)and (job_id, manager id)
Without this feature, multiple queries combined together with UNION ALL are required to
obtain the output of the preceding SELECT statement. A multiquery approach is inefficient
because it requires multiple scans of the same data.

Oracle Database 12c¢: SQL Workshop Il E -13

Compare the previous example with the following alternative:
SELECT department id, job id, manager id, AVG(salary)
FROM employees
GROUP BY CUBE (department id, job_id, manager id);

This statement computes all the 8 (2 *2 *2) groupings, though only the (department id,
job_id, manager id), (department id, manager id),and (job id,
manager_ id) groups are of interest to you.

Another alternative is the following statement:
SELECT department id, job id, manager id, AVG(salary)
FROM employees
GROUP BY department id, job id, manager id
UNION ALL
SELECT department id, NULL, manager id, AVG(salary)
FROM employees
GROUP BY department id, manager id
UNION ALL
SELECT NULL, job_id, manager_ id, AVG(salary)
FROM employees
GROUP BY job id, manager id;

This statement requires three scans of the base table, which makes it inefficient.

CUBE and ROLLUP can be thought of as grouping sets with very specific semantics and results.
The following equivalencies show this fact:

CUBE (a, b, c) GROUPING SETS

is equivalentto ((a, b, ¢), (a, b),
(a), (b), (c), ()

ROLLUP (a, b,c) GROUPING SETS ((a, b, c), (a, b),(a), 0O)

(a, ¢), (b, <),

is equivalentto

Oracle Database 12c¢: SQL Workshop Il E -14

GROUPING SETS: Example

SELECT department id, job id,
manager id,AVG(salary)
FROM employees
GROUP BY |GROUPING SETS |
((department id,job id), (job id,manager id)) ;

@ oeparTMeNTD [§ joBiD I MANAGERID [AVGGALARY)

1 (null) SH_CLERK 122 5200

2 (null) AC_MGR 101 1200c4_®
3 (null) ST_MAN 100 7284

4 (null) ST_CLERK 121 2679

~;| DEPARTMENT_lD@ |OB_ID g MANAGER_ID '|§] AVG(SALARY)
39

110 AC_MGR (rually 12000

40 90 AD_PRES (rully 24000
41 60 IT_PROG {rully 5760 4—@
42 100 FI_MGR (rually 12000

ORACLE

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

The query in the slide calculates aggregates over two groupings. The table is divided into the
following groups:

« Department ID, Job ID
« Job ID, Manager ID

The average salaries for each of these groups are calculated. The result set displays the
average salary for each of the two groups.

In the output, the group marked as 1 can be interpreted as the following:

« The average salary of all employees with the SH _CLERK job ID under manager 122 is
3,200.

« The average salary of all employees with the AC_MGR job ID under manager 101 is
12,000, and so on.

The group marked as 2 in the output is interpreted as the following:

« The average salary of all employees with the AC_MGR job ID in department 110 is
12,000.

« The average salary of all employees with the AD PRES job ID in department 90 is
24,000, and so on.

Oracle Database 12c¢: SQL Workshop Il E -15

The example in the slide can also be written as:

SELECT department id, job_id, NULL as manager id,
AVG (salary) as AVGSAL

FROM employees
GROUP BY department id, job_ id
UNION ALL
SELECT NULL, job_ id, manager id, avg(salary) as AVGSAL
FROM employees
GROUP BY job id, manager id;
In the absence of an optimizer that looks across query blocks to generate the execution plan,

the preceding query would need two scans of the base table, EMPLOYEES. This could be very
inefficient. Therefore, the usage of the GROUPING SETS statement is recommended.

Oracle Database 12c¢: SQL Workshop Il E -16

Composite Columns

« A composite column is a collection of columns that are
treated as a unit.

ROLLUP (a,|(b, c)|, d)

« Use parentheses within the GROUP BY clause to group
columns, so that they are treated as a unit while computing
ROLLUP or CUBE operations.

* When used with ROLLUP or CUBE, composite columns
would require skipping aggregation across certain levels.

ORACLE

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

A composite column is a collection of columns that are treated as a unit during the

computation of groupings. You specify the columns in parentheses as in the following
statement: ROLLUP (a, (b, c¢), d)

Here, (b, <) forms a composite column and is treated as a unit. In general, composite
columns are useful in ROLLUP, CUBE, and GROUPING SETS. For example, in CUBE or
ROLLUP, composite columns would require skipping aggregation across certain levels.
Thatis, GROUP BY ROLLUP(a, (b, c))isequivalentto:

GROUP BY a, b, c UNION ALL

GROUP BY a UNION ALL

GROUP BY ()
Here, (b, c) istreated as a unitand ROLLUP is not applied across (b, c). Itis as though

you have an alias—for example, z as an alias for (b, c¢), and the GROUP BY expression
reduces to: GROUP BY ROLLUP (a, z).

Note: GROUP BY () istypically a SELECT statement with NULL values for the columns a and
b and only the aggregate function. It is generally used for generating grand totals.

SELECT NULL, NULL, aggregate col

FROM <table name>

GROUP BY ();

Oracle Database 12c¢: SQL Workshop Il E -17

Compare this with the normal ROLLUP as in:
GROUP BY ROLLUP(a, b, c)
This would be:
GROUP BY a, b, c UNION ALL
GROUP BY a, b UNION ALL
GROUP BY a UNION ALL
GROUP BY ()
Similarly:
GROUP BY CUBE((a, b), c)
This would be equivalent to:
GROUP BY a, b, c UNION ALL
GROUP BY a, b UNION ALL
GROUP BY c UNION ALL
GROUP By ()

The following table shows the GROUPING SETS specification and the equivalent GROUP BY
specification.

GROUPING SETS Statements Equivalent GROUP BY Statements

GROUP BY GROUPING SETS(a, b, c) GROUP BY a UNION ALL
GROUP BY b UNION ALL
GROUP BY c

GROUP BY GROUPING SETS(a, b, (b, <)) GROUP BY a UNION ALL

(The GROUPING SETS expression has a GROUP BY b UNION ALL

composite column.) GROUP BY b, c

GROUP BY GROUPING SETS((a, b, c¢)) GROUP BY a, b, c

GROUP BY GROUPING SETS(a, (b), ()) GROUP BY a UNION ALL
GROUP BY b UNION ALL
GROUP BY ()

GROUP BY GROUPING SETS GROUP BY a UNION ALL

(a,ROLLUP (b, c)) GROUP BY ROLLUP (b, c)

(The GROUPING SETS expression has a

composite column.)

Oracle Database 12c¢: SQL Workshop Il E -18

Composite Columns: Example

SELECT department id, job id, manager id,
SUM (salary)
FROM employees
GROUP BY ROLLUP(department id, (job id, manager id));

] opeparTMENT_ID (B JoBD | manaGERID [sumgsaLarRv
{null) SA_REP 149 ?unul
GG LG 7000

1
4
3 10 AD_ASST 101 4400
4 10 (null) {null)y 4400
5 20 MK_MAN 100 13000
] 20 ME_REP 201 6000
7 20 {rully {rull) 19000
@ oeParTMENTID [§ JoBD [§ MANAGERID [suM(saLARY)
40 100 FILMCR 101 12000
41 100 FI_ACCOUNT 108 39600
42 100 {nully null 5160['
43 110 AC_MCR 101 12000
44 110 AC_ACCOUNT 205 8300
45 110 {null) (rully 20300
46 {nully {null) (rully 69140C|

ORACLE

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

Consider the example:
SELECT department id, job_ id,manager id, SUM(salary)
FROM employees
GROUP BY ROLLUP(department id,job id, manager id);
This query results in the Oracle server computing the following groupings:
* (job_id, manager_ id)
* (department id, job_id, manager id)
* (department id)
« Grand total
If you are interested only in specific groups, you cannot limit the calculation to those
groupings without using composite columns. With composite columns, this is possible by
treating JOB_ID and MANAGER ID columns as a single unit while rolling up. Columns
enclosed in parentheses are treated as a unit while computing ROLLUP and CUBE. This is
illustrated in the example in the slide. By enclosing the JOB_ID and MANAGER ID columns in

parentheses, you indicate to the Oracle server to treat JOB_ID and MANAGER ID as a single
unit—thatis, a composite column.

Oracle Database 12c¢: SQL Workshop Il E -19

The example in the slide computes the following groupings:
* (department id, job_id, manager id)
* (department id)
c ()
The example in the slide displays the following:
» Total salary for every job and manager (labeled 1)
« Total salary for every department, job, and manager (labeled 2)
» Total salary for every department (labeled 3)
+ Grand total (labeled 4)
The example in the slide can also be written as:

SELECT department id, job id, manager id, SUM(salary)

FROM employees

GROUP BY department id, job_id, manager id

UNION ALL

SELECT department id, TO_ CHAR (NULL) , TO NUMBER (NULL) ,
SUM (salary)

FROM employees

GROUP BY department id

UNION ALL

SELECT TO_NUMBER (NULL), TO_CHAR (NULL), TO NUMBER (NULL), SUM(salary)

FROM employees

GROUP BY () ;

In the absence of an optimizer that looks across query blocks to generate the execution plan,
the preceding query would need three scans of the base table, EMPLOYEES. This could be very

inefficient. Therefore, the use of composite columns is recommended.

Oracle Database 12c¢: SQL Workshop Il E -20

Concatenated Groupings

- Concatenated groupings offer a concise way to generate
useful combinations of groupings.

- To specify concatenated grouping sets, you separate
multiple grouping sets, ROLLUP, and CUBE operations with
commas so that the Oracle server combines them into a
single GROUP BY clause.

« The result is a cross-product of groupings from each
GROUPING SET.

GROUP BY GROUPING SETS(a, b), GROUPING SETS(c, d)

ORACLE

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

Concatenated groupings offer a concise way to generate useful combinations of groupings.
The concatenated groupings are specified by listing multiple grouping sets, CUBEs, and
ROLLUPs, and separating them with commas. The following is an example of concatenated

grouping sets:
GROUP BY GROUPING SETS(a, b), GROUPING SETS(c, d)
This SQL example defines the following groupings:
(a,), (a, d), (b,), (b, 4d)
Concatenation of grouping sets is very helpful for these reasons:
+ Ease of query development: You need not manually enumerate all groupings.

* Use by applications: SQL generated by online analytical processing (OLAP)
applications often involves concatenation of grouping sets, with each GROUPING SET

defining groupings needed for a dimension.

Oracle Database 12c¢: SQL Workshop Il E - 21

Concatenated Groupings: Example

SELECT department id, job id, manager id,
SUM (salary)

FROM employees

GROUP BY department id,
ROLLUP (job_id),
CUBE (manager id) ;

B oeparTMENT_ID [§ JoBp B MaNAGERID [l SUM(SALARY)
1 {null) SA_REP 149 7000
2 10 AD_ASST 101 4400
3 20 ME_MAN 100 13000
4 20 MK_REP 201 6000

90 AD_VP 100 34000
90 AD_PRES {null) 24000

(null) SA_REP (rull) 7000
10 AD_ASST (nully 4400

110 (nully 101 12000
110 {rully 205 8300
110 {ruall) (nully 20300

ORACLE

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

The example in the slide results in the following groupings:
« (department id,job_id,) (1)
+ (department id,manager_ id) (2)
e (department id) (3)
The total salary for each of these groups is calculated.
The following is another example of a concatenated grouping.
SELECT department id, job id, manager id, SUM(salary) totsal
FROM employees
WHERE department 1id<60
GROUP BY GROUPING SETS (department id),
GROUPING SETS (job_id, manager id);

Oracle Database 12c¢: SQL Workshop Il E -22

Summary

In this appendix, you should have learned how to use the:
* ROLLUP operation to produce subtotal values
* CUBE operation to produce cross-tabulation values

* GROUPING function to identify the row values created by
ROLLUP or CUBE

* GROUPING SETS syntax to define multiple groupings in the
same query
* GROUP BY clause to combine expressions in various ways:

— Composite columns
— Concatenated grouping sets

ORACLE

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

e ROLLUP and CUBE are extensions of the GROUP BY clause.
e ROLLUP is used to display subtotal and grand total values.
e CUBE is used to display cross-tabulation values.
+ The GROUPING function enables you to determine whether a row is an aggregate
produced by a CUBE or ROLLUP operator.
+ Withthe GROUPING SETS syntax, you can define multiple groupings in the same query.
GROUP BY computes all the groupings specified and combines them with UNION ALL.
« Withinthe GROUP BY clause, you can combine expressions in various ways:
- To specify composite columns, you group columns within parentheses so that the
Oracle server treats them as a unit while computing ROLLUP or CUBE operations.

- To specify concatenated grouping sets, you separate multiple grouping sets,
ROLLUP, and CUBE operations with commas so that the Oracle server combines

them into a single GROUP BY clause. The result is a cross-product of groupings
from each grouping set.

Oracle Database 12c¢: SQL Workshop Il E -23

Ajuo asn suoin|og 1geb3 pue AlsiaAlun ajoelO

a3LigIHOdd A1LOIE1S SI d3LNdNOD SIHL INOYA STVIFTILVIN LIM® ONIAJOD "ATNO WOOHSSV1D SIHL NI 3SN dNOA d04 34V STIVIHILYIN LIMS 3SIHL

Hierarchical Retrieval

ORACLE

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

Objectives

After completing this appendix, you should be able to:
* Interpret the concept of a hierarchical query
« Create a tree-structured report
* Format hierarchical data
« Exclude branches from the tree structure

ORACLE

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

In this appendix, you learn how to use hierarchical queries to create tree-structured reports.

Oracle Database 12c¢: SQL Workshop Il F -2

Sample Data from the EMPLOYEES Table

B ewerovee o |l LasT mame | s | meamacER ID

1 100 King AD_PRES (riudl])
2 101 Kochhar AD_VP 100
3 102 De Haan AD_VP 100
4 103 Hunold IT_PROG 102
5 104 Ernst IT_PROG 103
=] 107 Loventz IT_PROG 103
16 200 Wihalen AD_ASST 10
17 201 Hartstein B _MAN 100
1 202 Fay WK _REP 2
19 205 Higgins AC_MGR 1
20 206 Gletz AC_ACCOUNT 205

ORACLE

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

Using hierarchical queries, you can retrieve data based on a natural hierarchical relationship
between the rows in a table. A relational database does not store records in a hierarchical
way. However, where a hierarchical relationship exists between the rows of a single table, a
process called free walking enables the hierarchy to be constructed. A hierarchical query is a
method of reporting, with the branches of a tree in a specific order.

Imagine a family tree with the eldest members of the family found close to the base or trunk of
the tree and the youngest members representing branches of the tree. Branches can have
their own branches, and so on.

A hierarchical query is possible when a relationship exists between rows in a table. For
example, in the slide, you see that Kochhar, De Haan, and Hartstein report to MANAGER ID
100, which is King’'s EMPLOYEE_ID.

Note: Hierarchical trees are used in various fields such as human genealogy (family trees),
livestock (breeding purposes), corporate management (management hierarchies),
manufacturing (product assembly), evolutionary research (species development), and
scientific research.

Oracle Database 12c¢: SQL Workshop Il F -3

Natural Tree Structure

EMPLOYEE ID = 100 (Parent)

King

MANAGER ID = 100 (Child)

Kochhar De Haan Mourgos Zlotkey Hartstein

Whalen Higgins Hunold Rajs Davies Matos Vargas

[] | | ™

Gietz Ernst Lorentz Abel Taylor Grant

ORACLE

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

The EMPLOYEES table has a tree structure representing the management reporting line. The
hierarchy can be created by looking at the relationship between equivalent values in the
EMPLOYEE ID and MANAGER ID columns. This relationship can be exploited by joining the
table to itself. The MANAGER _ID column contains the employee number of the employee’s
manager.

The parent-child relationship of a tree structure enables you to control:
» The direction in which the hierarchy is walked
« The starting point inside the hierarchy

Note: The slide displays an inverted tree structure of the management hierarchy of the
employees in the EMPLOYEES table.

Oracle Database 12c¢: SQL Workshop Il F -4

Hierarchical Queries

SELECT [LEVEL], column, expr...
FROM table

[WHERE condition(s)]

[START WITH condition (s)]
[CONNECT BY PRIOR condition(s)] |;

condition:

expr comparison operator expr

ORACLE

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

Keywords and Clauses
Hierarchical queries can be identified by the presence of the CONNECT BY and START WITH
clauses.

In the syntax:

SELECT Is the standard SELECT clause

LEVEL For each row returned by a hierarchical query, the LEVEL
pseudocolumn returns 1 for a root row, 2 for a child of a root, and so on.

FROM table Specifies the table, view, or snapshot containing the columns. You can
select from only one table.

WHERE Restricts the rows returned by the query without affecting other rows of
the hierarchy

condition Is a comparison with expressions

START WITH Specifies the root rows of the hierarchy (where to start). This clause is
required for a true hierarchical query.

CONNECT BY Specifies the columns in which the relationship between parent and

PRIOR child PRIOR rows exist. This clause is required for a hierarchical query.

Oracle Database 12c¢: SQL Workshop Il F -5

Walking the Tree

Starting Point

« Specifies the condition that must be met
* Accepts any valid condition

START WITH columnl = value

Using the EMPLOYEES table, start with the employee whose
last name is Kochhar.

...START WITH last name = 'Kochhar'

ORACLE

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

The row or rows to be used as the root of the tree are determined by the START WITH clause.
The START WITH clause can contain any valid condition.

Examples
Using the EMPLOYEES table, start with King, the president of the company.
. START WITH manager_ id IS NULL

Using the EMPLOYEES table, start with employee Kochhar. A START WITH condition can
contain a subquery.

. START WITH employee id = (SELECT employee id
FROM employees
WHERE last name = 'Kochhar')

If the START WITH clause is omitted, the tree walk is started with all the rows in the table as
root rows.

Note: The CONNECT BY and START WITH clauses are not American National Standards
Institute (ANSI) SQL standard.

Oracle Database 12c¢: SQL Workshop Il F -6

Walking the Tree

CONNECT BY PRIOR columnl = column2

Walk from the top down, using the EMPLOYEES table.

CONNECT BY PRIOR employee id = manager id

Direction

Top down —— Column1 = Parent Key
Column2 = Child Key

Bottom up —— Column1 = Child Key
Column2 = Parent Key

ORACLE

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

The direction of the query is determined by the CONNECT BY PRIOR column placement. For
top-down, the PRIOR operator refers to the parent row. For bottom-up, the PRIOR operator
refers to the child row. To find the child rows of a parent row, the Oracle server evaluates the
PRIOR expression for the parent row and the other expressions for each row in the table.
Rows for which the condition is true are the child rows of the parent. The Oracle server
always selects child rows by evaluating the CONNECT BY condition with respect to a current
parent row.

Examples

Walk from the top down using the EMPLOYEES table. Define a hierarchical relationship in
which the EMPLOYEE_ID value of the parent row is equal to the MANAGER_ID value of the
child row:

. CONNECT BY PRIOR employee id = manager id
Walk from the bottom up using the EMPLOYEES table:

. CONNECT BY PRIOR manager id = employee id

The PRIOR operator does not necessarily need to be coded immediately following CONNECT
BY. Thus, the following CONNECT BY PRIOR clause gives the same result as the one in the
preceding example:

. CONNECT BY employee id = PRIOR manager_ id

Note: The CONNECT BY clause cannot contain a subquery.

Oracle Database 12¢: SQL Workshop Il F -7

Walking the Tree: From the Bottom Up

SELECT employee id, last name, job id, manager id
FROM employees

START WITH employee id = 101
CONNECT BY PRIOR manager id = employee id|;

@ EMPLOYEEID [§ LAST_MAME || JOBID [{ MANACERID
1 101 Kochhar AD_VP 100
2 100 KEing AD_PRES {rull

ORACLE

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

The example in the slide displays a list of managers starting with the employee whose
employee ID is 101.

Oracle Database 12c¢: SQL Workshop Il F -8

Walking the Tree: From the Top Down

SELECT last name||' reports to '||

PRIOR last name "Walk Top Down"

FROM employees

START WITH last name = 'King'

CONNECT BY PRIOR employee id = manager id|;

E] Walk Top Down
1 King reports to
2 King reports to
3 Kochhar reports to King
4 Creenberg reports to Kochhar

S Fawviet reports to Greenberg

105 Crant reports to Zlotkey
106 Johnson reports to Zlotkey
107 Hartstein reports to King
108 Fay reports to Hartstein

ORACLE

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

Walking from the top down, display the names of the employees and their manager. Use
employee King as the starting point. Print only one column.
Example

In the following example, EMPLOYEE_ID values are evaluated for the parent row and
MANAGER_ID and SALARY values are evaluated for the child rows. The PRIOR operator
applies only to the EMPLOYEE _ID value.

CONNECT BY PRIOR employee id = manager id
AND salary > 15000;

To qualify as a child row, a row must have a MANAGER _ID value equal to the EMPLOYEE ID
value of the parent row and must have a SALARY value greater than $15,000.

Oracle Database 12c¢: SQL Workshop Il F -9

Ranking Rows with the LEVEL Pseudocolumn

Level 1
root/

King parent

Level 2
Kochhar De Haan Mourgos Zlotkey Hartstein parent/

child/leaf

]

Whalen Higgins Hunold Rajs Davies Matos Vargas Fay

Gietz Ernst Lorentz Abel Taylor Grant

parent/
child/leaf

Level 4
leaf

ORACLE

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

You can explicitly show the rank or level of a row in the hierarchy by using the LEVEL
pseudocolumn. This will make your report more readable. The forks where one or more
branches split away from a larger branch are called nodes, and the very end of a branch is
called a leaf or leaf node. The graphic in the slide shows the nodes of the inverted tree with
their LEVEL values. For example, employee Higgens is a parent and a child, whereas

employee Davies is a child and a leaf.
LEVEL Pseudocolumn

Value Level for Top Down Level for Bottom up

1 A root node A root node

2 A child of a root node The parent of a root node

3 A child of a child, and so on A parent of a parent, and so on

In the slide, King is the root or parent (LEVEL = 1). Kochhar, De Haan, Mourgos, Zlotkey,
Hartstein, Higgens, and Hunold are children and also parents (LEVEL = 2). Whalen, Rajs,
Davies, Matos, Vargas, Gietz, Ernst, Lorentz, Abel, Taylor, Grant, and Fay are children and
leaves (LEVEL = 3 and LEVEL = 4).

Note: A root node is the highest node within an inverted tree. A child node is any nonroot
node. A parent node is any node that has children. A leaf node is any node without children.
The number of levels returned by a hierarchical query may be limited by available user
memory.

Oracle Database 12c¢: SQL Workshop Il F -10

Formatting Hierarchical Reports Using
LEVEL and LPAD

Create a report displaying company management levels,
beginning with the highest level and indenting each of the
following levels.

COLUMN org chart FORMAT Al2

SELECT |LPAD (last name, LENGTH(last name) + (LEVEL*2)-2,' ')
AS org chart

FROM employees

START WITH first name='Steven' AND last name='King'

CONNECT BY PRIOR employee id=manager id

ORACLE

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

The nodes in a tree are assigned level numbers from the root. Use the LPAD functionin
conjunction with the LEVEL pseudocolumn to display a hierarchical report as an indented
tree.

In the example in the slide:

e LPAD(charl,n [,char2]) returns charl, left-padded to length n with the sequence
of characters in char2. The argument n is the total length of the return value as it is
displayed on your terminal screen.

« LPAD(last name, LENGTH(last name)+ (LEVEL*2) -2,
format

« charlisthe LAST NAME, n the total length of the return value, is length of the
LAST NAME + (LEVEL*2) -2, and char2 is ' '

That s, this tells SQL to take the LAST NAME and left-pad it with the ' ' character until the
length of the resultant string is equal to the value determined by
LENGTH (last_name) + (LEVEL*2) -2.

For King, LEVEL = 1. Therefore,(2*1)-2=2-2=0. So King does not get padded with
any ' ' character and is displayed in column 1.

) defines the display

Oracle Database 12c¢: SQL Workshop Il F -11

For Kochhar, LEVEL = 2. Therefore, (2 *2)—-2 =4 -2 =2. So Kochhar gets padded with 2
' ' characters and is displayed indented.

The rest of the records in the EMPLOYEES table are displayed similarly.

ORG_CHART

1 king

£ __Kochhar

3 ____ Greenberg

4 __ Fawiet

5 Chen

B ___ hciarra

¥ Urman

g Popp

9 __ Whalen
10 Mawris
11 ___ Baer
12 ____Higgins
13 dietz
14 _ De Haan
15 __ Hunold
16 Frnst
17 Austin

Oracle Database 12c¢: SQL Workshop Il F -12

Pruning Branches

Use the WHERE clause Use the CONNECT BY clause
to eliminate a node. to eliminate a branch.

WHERE last name != 'Higgins'CONNECT BY PRIOR
employee id = manager id
AND last name != 'Higgins'

Kochhar Kochhar

Whalen iggifis Whalen Higgins

Gietz Gietz

ORACLE
Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

You can use the WHERE and CONNECT BY clauses to prune the tree (that is, to control which
nodes or rows are displayed). The predicate you use acts as a Boolean condition.

Examples

Starting at the root, walk from the top down, and eliminate employee Higgins in the result, but
process the child rows.

SELECT department id, employee id,last name, job id, salary
FROM employees

WHERE last name != 'Higgins'

START WITH manager id IS NULL

CONNECT BY PRIOR employee id = manager id;

Starting at the root, walk from the top down, and eliminate employee Higgins and all child

rows.

SELECT department id, employee id,last name, job id, salary
FROM employees

START WITH manager id IS NULL

CONNECT BY PRIOR employee id = manager id

AND last name != 'Higgins';

Oracle Database 12c¢: SQL Workshop Il F -13

Summary

In this appendix, you should have learned how to:

« Use hierarchical queries to view a hierarchical relationship
between rows in a table
- Specify the direction and starting point of the query

- Eliminate nodes or branches by pruning

ORACLE

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

You can use hierarchical queries to retrieve data based on a natural hierarchical relationship
between rows in a table. The LEVEL pseudocolumn counts how far down a hierarchical tree
you have traveled. You can specify the direction of the query using the CONNECT BY PRIOR
clause. You can specify the starting point using the START WITH clause. You can use the
WHERE and CONNECT BY clauses to prune the tree branches.

Oracle Database 12c¢: SQL Workshop Il F -14

Writing Advanced Scripts

ORACLE

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

Objectives

After completing this appendix, you should be able to:

« Describe the type of problems that are solved by using
SQL to generate SQL

« Create a basic SQL script

« Capture the output in a file

- Dump the contents of a table to a file
« Generate a dynamic predicate

ORACLE

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

In this appendix, you learn how to write a SQL script to generate a SQL script.

Oracle Database 12c¢: SQL Workshop Il G -2

Using SQL to Generate SQL

« SQL can be used to generate scripts in SQL.

* The data dictionary is:

— A collection of tables and views that contain database
information

— Created and maintained by the Oracle server

sqQL Data dictionary

SQL script

ORACLE

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

SQL can be a powerful tool to generate other SQL statements. In most cases, this involves
writing a script file. You can use SQL from SQL to:

» Avoid repetitive coding

» Access information from the data dictionary

» Drop or re-create database objects

» Generate dynamic predicates that contain run-time parameters
The examples used in this appendix involve selecting information from the data dictionary.
The data dictionary is a collection of tables and views that contain information about the
database. This collection is created and maintained by the Oracle server. All data dictionary
tables are owned by the SYS user. Information stored in the data dictionary includes names of
Oracle server users, privileges granted to users, database object names, table constraints,
and audit information. There are four categories of data dictionary views. Each category has a
distinct prefix that reflects its intended use.

Prefix | Description

USER_ | Contains details of objects owned by the user

ALL_ Contains details of objects to which the user has been granted access rights, in
addition to objects owned by the user

DBA_ | Contains details of users with DBA privileges to access any object in the database

VS _ Stores information about database server performance and locking; available only to
the DBA

Oracle Database 12c¢: SQL Workshop Il G-3

Creating a Basic Script

SELECT 'CREATE TABLE ' || table name ||
' test ' || 'AS SELECT * FROM '
|| table name ||' WHERE 1=2;'

AS "Create Table Script"
FROM user tables;

@ Create Table Script
1 CREATE TABLE REGIONS_test AS SELECT * FROM REGIONS WHERE 1=2;
2 CREATE TABLE LOCATIONS_test AS SELECT * FROM LOCATIONS WHERE 1=2;
3 CREATE TABLE DEPARTMENTS_test AS SELECT * FROM DEPARTMENTS WHERE 1=2;
4 CREATE TABLE JOBS_test AS SELECT * FROM JOBS WHERE 1=2;
5 CREATE TABLE EMPLOYEES_test AS SELECT * FROM EMPLOYEES WHERE 1=2;
6 CREATE TABLE JOB_HISTORY_test AS SELECT * FROM JOB_HISTORY WHERE 1=2;

ORACLE

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

The example in the slide produces a report with CREATE TABLE statements from every table
you own. Each CREATE TABLE statement produced in the report includes the syntax to create
a table using the table name with a suffix of _test and having only the structure of the
corresponding existing table. The old table name is obtained from the TABLE_NAME column of
the data dictionary view USER_TABLES.

The next step is to enhance the report to automate the process.

Note: You can query the data dictionary tables to view various database objects that you
own. The data dictionary views frequently used include:

e USER_TABLES: Displays description of the user’s own tables

e USER_OBJECTS: Displays all the objects owned by the user

e USER_TAB PRIVS MADE: Displays all grants on objects owned by the user

e USER_COL_PRIVS MADE: Displays all grants on columns of objects owned by the user

Oracle Database 12c¢: SQL Workshop Il G -4

Controlling the Environment

SET ECHO OFF
SET FEEDBACK OFF

Set system variables
SET PAGESIZE 0

to appropriate values.

SQL statement

SET FEEDBACK ON
SET PAGESIZE 24 Set system variables
SET ECHO ON back to the default
value.

ORACLE

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

To execute the SQL statements that are generated, you must capture them in a file that can
then be run. You must also plan to clean up the output that is generated and make sure that
you suppress elements such as headings, feedback messages, top titles, and so on. In SQL
Developer, you can save these statements to a script. To save the contents of the Enter SQL
Statement box, click the Save icon or select Save from the File menu. Alternatively, you can

right-click in the Enter SQL Statement box and select the Save File option from the drop-down
menu.

Note: Some of the SQL*Plus statements are not supported by SQL Worksheet. For the
complete list of SQL*Plus statements that are supported, and not supported by SQL

Worksheet, refer to the topic titled SQL*Plus Statements Supported and Not Supported in
SQL Worksheetin the SQL Developer online Help.

Oracle Database 12c¢: SQL Workshop Il G-5

The Complete Picture

SET ECHO OFF
SET FEEDBACK OFF
SET PAGESIZE 0

SELECT 'DROP TABLE ' || object name || ';'
FROM user objects

WHERE object type = 'TABLE'

/

SET FEEDBACK ON
SET PAGESIZE 24
SET ECHO ON

ORACLE

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

The output of the command in the slide is saved into a file called dropem. sgl in SQL

Developer. To save the output into a file in SQL Developer, you use the Save File option
under the Script Output pane. The dropem. sql file contains the following data. This file can

now be started from SQL Developer by locating the script file, loading it, and executing it.

B DROPTABLENOBJIECT MAME|:
DROP TABLE REGIONS;

DROP TABLE COUNTRIES;

DROP TABLE LOCATIONS;

DROP TABLE DEPARTMENTS;
DROP TABLE JOBS;

DROP TABLE EMPLOYEES;

DROP TABLE JOB_HISTORY,

DROP TAEBLE JOB_GRADES;

—

L 1 o L I o

Oracle Database 12¢: SQL Workshop Il G -6

Dumping the Contents of a Table to a File

SET HEADING OFF ECHO OFF FEEDBACK OFF
SET PAGESIZE 0

SELECT
'INSERT INTO departments test VALUES
(' || department id || ', ''' || department name | |
111, 111 || location id || ''') ;!

AS "Insert Statements Script"
FROM departments

/

SET PAGESIZE 24
SET HEADING ON ECHO ON FEEDBACK ON

ORACLE

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

Sometimes, it is useful to have the values for the rows of a table in a text file in the format of
an INSERT INTO VALUES statement. This script can be run to populate the table in case the
table has been dropped accidentally.

The example in the slide produces INSERT statements for the DEPARTMENTS TEST table,
captured in the data . sql file using the Save File option in SQL Developer.
The contents of the data . sql scriptfile are as follows:
INSERT INTO departments test VALUES
(10, 'Administration', 1700) ;
INSERT INTO departments test VALUES
(20, 'Marketing', 1800);
INSERT INTO departments test VALUES
(50, 'Shipping', 1500);
INSERT INTO departments test VALUES
(60, 'IT', 1400);

Oracle Database 12c: SQL Workshopll G-7

Dumping the Contents of a Table to a File

Source Result

EEPSRE 1
R '

11"11| |department name||'''' | 'Administration’
EEBEEEE '

1) ') ;

ORACLE

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

You may have noticed the large number of single quotation marks in the previous slide. A set
of four single quotation marks produces one single quotation mark in the final statement. Also
remember that character and date values must be enclosed within quotation marks.

Within a string, to display one quotation mark, you need to prefix it with another single
quotation mark. For example, in the fifth example in the slide, the surrounding quotation
marks are for the entire string. The second quotation mark acts as a prefix to display the third
quotation mark. Thus, the result is a single quotation mark followed by the parenthesis,
followed by the semicolon.

Oracle Database 12c¢: SQL Workshop Il G-8

Generating a Dynamic Predicate

COLUMN my col NEW VALUE dyn where clause

SELECT DECODE ('&&deptno', null,

DECODE ('&&hiredate', null, ' ',

'WHERE hire date=TO DATE('''||'sshiredate'',''DD-MON-YYYY'')'),
DECODE ('&&hiredate', null,

'WHERE department id = ' || '&&deptno’,

'WHERE department id = ' || '&&deptno' ||

' AND hire date = TO DATE('''||'s&hiredate'', ' 'DD-MON-YYYY'')"'))

AS my col FROM dual;

SELECT last name FROM employees &dyn where clause;

ORACLE

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

The example in the slide generates a SELECT statement that retrieves data of all employees
in a department who were hired on a specific day. The script generates the WHERE clause
dynamically.

Note: After the user variable is in place, you must use the UNDEFINE command to delete it.

The first SELECT statement prompts you to enter the department number. If you do not enter
any department number, the department number is treated as null by the DECODE function,
and the user is then prompted for the hire date. If you do not enter any hire date, the hire date
is treated as null by the DECODE function and the dynamic WHERE clause that is generated is

also a null, which causes the second SELECT statement to retrieve all the rows from the
EMPLOYEES table.

Note: The NEW_V [ALUE] variable specifies a variable to hold a column value. You can
reference the variable in TTITLE commands. Use NEW_VALUE to display column values or
the date in the top title. You must include the column in a BREAK command with the SKIP
PAGE action. The variable name cannot contain a pound sign (#). NEW_VALUE is useful for
master/detail reports in which there is a new master record for each page.

Oracle Database 12c¢: SQL Workshop Il G-9

Note: Here, the hire date must be entered in the DD-MON-YYYY format.
The SELECT statement in the slide can be interpreted as follows:

IF (<<deptno>> is not entered) THEN
IF (<<hiredate>> is not entered) THEN
return empty string
ELSE
return the string ‘WHERE hire date =
TO DATE ('<<hiredate>>',6 'DD-MON-YYYY')'
ELSE

IF (<<hiredate>> is not entered) THEN
return the string ‘WHERE department id
<<deptno>> entered' N
ELSE

return the string ‘WHERE department id =
<<deptno>> entered

AND hire date =
TO DATE (' <<hiredate>>', 'DD-MON-YYYY')’
END IF

The returned string becomes the value of the DYN WHERE CLAUSE variable, which will be
used in the second SELECT statement.

Note: Use SQL*Plus for these examples.

When the first example in the slide is executed, the user is prompted for the values for
DEPTNO and HIREDATE:

Enter the values of DEPTNO and HIREDATE: 10 and 17-SEP-2007
The following value for MY COL is generated:

M _C 0L

1 WHERE department_id = 10 AND hire_date = TO_DATE('17-5EP-2007", 'DD-MON- ')

When the second example in the slide is executed, the following output is generated

|FHET_NHHE
|hhalen

Oracle Database 12c¢: SQL Workshop Il G-10

Summary

In this appendix, you should have learned how to:
« Create a basic SQL script

« Capture the output in a file

- Dump the contents of a table to a file

« Generate a dynamic predicate

ORACLE

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

SQL can be used to generate SQL scripts. These scripts can be used to avoid repetitive
coding, drop or re-create objects, get help from the data dictionary, and generate dynamic
predicates that contain run-time parameters.

Oracle Database 12c¢: SQL Workshop Il G - 11

Ajuo asn suoin|og 1geb3 pue AlsiaAlun ajoelO

a3LigIHOdd A1LOIE1S SI d3LNdNOD SIHL INOYA STVIFTILVIN LIM® ONIAJOD "ATNO WOOHSSV1D SIHL NI 3SN dNOA d04 34V STIVIHILYIN LIMS 3SIHL

Oracle Database Architectural Components

ORACLE

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

Objectives

After completing this appendix, you should be able to:
- List the major database architectural components
« Describe the background processes
« Explain the memory structures
« Correlate the logical and physical storage structures

ORACLE
Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

This appendix provides an overview of the Oracle Database architecture. You learn about the
physical and logical structures and various components of Oracle Database and their
functions.

Oracle Database 12c¢: SQL Workshop Il H -2

Oracle Database Architecture: Overview

The Oracle Relational Database Management System
(RDBMS) is a database management system that provides an
open, comprehensive, integrated approach to information
management.

ORACLE

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

A database is a collection of data treated as a unit. The purpose of a database is to store and
retrieve related information.

An Oracle database reliably manages a large amount of data in a multiuser environment so
that many users can concurrently access the same data. This is accomplished while
delivering high performance. At the same time, it prevents unauthorized access and provides
efficient solutions for failure recovery.

Oracle Database 12c¢: SQL Workshop Il H -3

Oracle Database Server Structures

Instance
Memory structures
Y e Shared pool
Library
|
h
Database Redo log cache
buffer buff
cache utter Data dictionary
User Server cache
process process

Processes CawpereDEawB) GuonEmodGReD REDGther

A\ 4

Database

.

Storage structures

Control Online redo
Data files files log files

ORACLE

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

The Oracle Database consists of two main components—the instance and the database.

» The instance consists of the System Global Area (SGA), which is a collection of memory
structures, and the background processes that perform tasks within the database. Every
time an instance is started, the SGA is allocated and the background processes are
started.

+ The database consists of both physical structures and logical structures. Because the
physical and logical structures are separate, the physical storage of data can be
managed without affecting access to logical storage structures. The physical storage
structures include:

- The control files where the database configuration is stored
- Theredo log files that have information required for database recovery
- The data files where all data is stored

An Oracle instance uses memory structures and processes to manage and access the
database storage structures. All memory structures exist in the main memory of the
computers that constitute the database server. Processes are jobs that work in the memory of
these computers. A process is defined as a “thread of control” or a mechanism in an operating
system that can run a series of steps.

Oracle Database 12c¢: SQL Workshop Il H -4

Connecting to the Database

« Connection: Communication pathway between a user
process and a database instance

« Session: A specific connection of a user to a database
instance through a user process

<

<4¢—p] SQL> Select ..
‘ User

Connection

ORACLE

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

To access information in the database, the user needs to connect to the database using a tool
(such as SQL*Plus). After the user establishes connection, a session is created for the user.
Connection and session are closely related to user process but are very different in meaning.

A connection is a communication pathway between a user process and an Oracle Database
instance. A communication pathway is established using available interprocess
communication mechanisms or network software (when different computers run the database
application and Oracle Database, and communicate through a network).

A session represents the state of a current user login to the database instance. For example,
when a user starts SQL*Plus, the user must provide a valid username and password, and
then a session is established for that user. A session lasts from the time the user connects
until the time the user disconnects or exits the database application.

In the case of a dedicated connection, the session is serviced by a permanent dedicated
process. In the case of a shared connection, the session is serviced by an available server
process selected from a pool, either by the middle tier or by Oracle shared server architecture.

Multiple sessions can be created and exist concurrently for a single Oracle Database user
using the same username, but through different applications, or multiple invocations of the
same application.

Oracle Database 12c¢: SQL Workshop Il H-5

Interacting with an Oracle Database

v Instance

/ User Server

’. 59"' 1 process process SGA Shared pool

Library

,_f;I“',rAll Database Redo log cache

” buffer buffer

cache urte Data dictionary

. cache

N TSI T BT

P
N

7

ORACLE’ 11g

DATABASE

ORACLE

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

The following example describes Oracle Database operations at the most basic level. It
illustrates an Oracle Database configuration where the user and associated server process
are on separate computers, connected through a network.

1. Aninstance has started on a node where Oracle Database is installed, often called the
host or database server.

2. A user starts an application spawning a user process. The application attempts to
establish a connection to the server. (The connection may be local, client server, or a
three-tier connection from a middle tier.)

3. The server runs a listener that has the appropriate Oracle Net Services handler. The
server detects the connection request from the application and creates a dedicated
server process on behalf of the user process.

4. The userruns a DML-type SQL statement and commits the transaction. For example,
the user changes the address of a customer in a table and commits the change.

5. The server process receives the statement and checks the shared pool (an SGA
component) for any shared SQL area that contains a similar SQL statement. If a shared
SQL area is found, the server process checks the user’s access privileges to the
requested data, and the existing shared SQL area is used to process the statement. If
not, a new shared SQL area is allocated for the statement, so it can be parsed and
processed.

Oracle Database 12c¢: SQL Workshop Il H -6

The server process retrieves any necessary data values, either from the actual data file (in
which the table is stored) or those cached in the SGA.

The server process modifies data in the SGA. Because the transaction is committed, the
log writer process (LGWR) immediately records the transaction in the redo log file. The
database writer process (DBWn) writes modified blocks permanently to disk when doing
so is efficient.

If the transaction is successful, the server process sends a message across the network to
the application. If it is not successful, an error message is transmitted.

Throughout this entire procedure, the other background processes run, watching for
conditions that require intervention. In addition, the database server manages other users’
transactions and prevents contention between transactions that request the same data.

Oracle Database 12c¢: SQL Workshop Il H -7

Oracle Database creates and uses memory structures for various purposes. For example,
memory stores program code being run, data shared among users, and private data areas for
each connected user.

Server

Oracle Memory Architecture

Server

DB structures
->Memory

- Process

- Storage

Background

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

Two basic memory structures are associated with an instance:

Oracle Database 12c¢: SQL Workshop Il

H-8

PGA PGA PGA
process 1 process 2 processes
4 D
Shared Data Dictionary SGA
H :“: :SQL area; cache
! Library Other
(n cache
Redo log Shared pool
buffer
1 111 11 Free
Database buffer I/O Buffer memory
cache)
x!_'/ »I>[> Response || Request
Java Streams queue guene
_ pool pool Large pool)
ORACLE

The System Global Area (SGA) is a group of shared memory structures, known as SGA
components, that contain data and control information for one Oracle Database
instance. The SGA is shared by all server and background processes. Examples of data
stored in the SGA include cached data blocks and shared SQL areas.

The Program Global Areas (PGA) are memory regions that contain data and control
information for a server or background process. A PGA is nonshared memory created
by Oracle Database when a server or background process is started. Access to the PGA
is exclusive to the server process. Each server process and background process has its
own PGA.

The SGA is the memory area that contains data and control information for the instance. The
SGA includes the following data structures:

Database buffer cache: Caches blocks of data retrieved from the database

Redo Log buffer: Caches redo information (used for instance recovery) until it can be
written to the physical redo log files stored on the disk

Shared pool: Caches various constructs that can be shared among users

Large pool: Is an optional area that provides large memory allocations for certain large
processes, such as Oracle backup and recovery operations, and input/output (1/0O) server
processes

Java pool: Is used for all session-specific Java code and data within the Java Virtual
Machine (JVM)

Streams pool: Is used by Oracle Streams to store information required by capture and
apply

When you start the instance by using Enterprise Manager or SQL*Plus, the amount of memory
allocated for the SGA is displayed.

With the dynamic SGA infrastructure, the size of the database buffer cache, the shared pool, the
large pool, the Java pool, and the Streams pool changes without shutting down the instance.

Oracle Database uses initialization parameters to create and configure memory structures. For
example, the SGA TARGET parameter specifies the total size of the SGA components. If you set
SGA_TARGET to 0, Automatic Shared Memory Management is disabled.

Oracle Database 12c¢: SQL Workshop Il H-9

Process Architecture DB structures
- Memory

- Process

- Storage

« User process:

— |s started when a database user or a batch process connects
to the Oracle Database

« Database processes:

— Server process: Connects to the Oracle instance and is
started when a user establishes a session

— Background processes: Are started when an Oracle instance

is started Instance
SGA
| |
| |
e Background processes
User Server
process process ---

ORACLE

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

The processes in an Oracle Database server can be categorized into two major groups:
« User processes that run the application or Oracle tool code

« Oracle Database processes that run the Oracle database server code. These include
server processes and background processes.

When a user runs an application program or an Oracle tool such as SQL*Plus, Oracle
Database creates a user process to run the user’s application. The Oracle Database also
creates a server process to execute the commands issued by the user process. In addition,
the Oracle server also has a set of background processes for an instance that interact with
each other and with the operating system to manage the memory structures and
asynchronously perform I/O to write data to disk, and perform other required tasks.

The process structure varies for different Oracle Database configurations, depending on the
operating system and the choice of Oracle Database options. The code for connected users
can be configured as a dedicated server or a shared server.

» With a dedicated server, for each user, the database application is run by a different
process (a user process) than the one that runs the Oracle server code (a dedicated
server process).

« A shared server eliminates the need for a dedicated server process for each connection.
A dispatcher directs multiple incoming network session requests to a pool of shared
server processes. A shared server process serves any client request.

Oracle Database 12c: SQL Workshop Il H-10

Server Processes

Oracle Database creates server processes to handle the requests of user processes connected
to the instance. In some situations when the application and Oracle Database operate on the
same computer, it is possible to combine the user process and the corresponding server
process into a single process to reduce system overhead. However, when the application and
Oracle Database operate on different computers, a user process always communicates with
Oracle Database through a separate server process.

Server processes created on behalf of each user’s application can perform one or more of the
following:

» Parse and run SQL statements issued through the application.

» Read necessary data blocks from data files on disk into the shared database buffers of the
SGA, if the blocks are not already present in the SGA.

* Returnresults in such a way that the application can process the information.
Background Processes

To maximize performance and accommodate many users, a multiprocess Oracle Database
system uses some additional Oracle Database processes called background processes. An
Oracle Database instance can have many background processes.

The following background processes are required for a successful startup of the database
instance:

« Database writer (DBWn)
» Log writer (LGWR)
« Checkpoint (CKPT)
« System monitor (SMON)
* Process monitor (PMON)

The following background processes are a few examples of optional background processes that
can be started if required:

* Recoverer (RECO)

« Job queue

* Archiver (ARCn)

* Queue monitor (QMNn)
Other background processes may be found in more advanced configurations such as Real
Application Clusters (RAC). See the VSBGPROCESS view for more information about the

background processes.
On many operating systems, background processes are created automatically when an
instance is started.

Oracle Database 12c¢: SQL Workshop Il H -11

Database Writer Process

Writes modified (dirty) buffers in the database buffer cache to
disk:

« Asynchronously while performing other processing
* Periodically to advance the checkpoint

a
BEs:

Database buffer Database writer Data files
cache process

ORACLE
Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

The database writer (DBWn) process writes the contents of buffers to data files. The DBWn
processes are responsible for writing modified (dirty) buffers in the database buffer cache to
disk. Although one database writer process (DBWO) is adequate for most systems, you can
configure additional processes (DBW 1 through DBW9 and DBWa through DBWj) to improve
write performance if your system modifies data heavily. These additional DBWn processes
are not useful on uniprocessor systems.

When a buffer in the database buffer cache is modified, it is marked “dirty” and is added to the
LRUW list of dirty buffers that is kept in system change number (SCN) order, thereby
matching the order of Redo corresponding to these changed buffers that is written to the
Redo logs. When the number of available buffers in the buffer cache falls below an internal
threshold such that server processes find it difficult to obtain available buffers, DBWn writes
dirty buffers to the data files in the order that they were modified by following the order of the
LRUW list.

Oracle Database 12c¢: SQL Workshop Il H -12

Log Writer Process

- Writes the redo log buffer to a redo log file on disk
« LGWR writes:
— A process commits a transaction
— When the redo log buffer is one-third full
— Before a DBWn process writes modified buffers to disk

=

Redo log buffer Log writer Redo log files
process

ORACLE
Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

The log writer (LGWR) process is responsible for redo log buffer management by writing the
redo log buffer entries to a redo log file on disk. LGWR writes all redo entries that have been
copied into the buffer since the last time it wrote.

The redo log buffer is a circular buffer. When LGWR writes redo entries from the redo log
buffer to a redo log file, server processes can then copy new entries over the entries in the
redo log buffer that have been written to disk. LGWR normally writes fast enough to ensure
that space is always available in the buffer for new entries, even when access to the redo log
is heavy.
LGWR writes one contiguous portion of the buffer to disk. LGWR writes:

* When a user process commits a transaction

» When the redo log buffer is one-third full

+ Before a DBWn process writes modified buffers to disk, if necessary

Oracle Database 12c¢: SQL Workshop Il H-13

Checkpoint Process

Records checkpoint information in:
* The control file
« Each datafile header

Control
CKPT > file

Checkpoint
process

Data files

ORACLE
Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

A checkpoint is a data structure that defines an SCN in the redo thread of a database.

Checkpoints are recorded in the control file and each data file header, and are a crucial
element of recovery.

When a checkpoint occurs, Oracle Database must update the headers of all data files to
record the details of the checkpoint. This is done by the CKPT process. The CKPT process
does not write blocks to disk; DBWn always performs that work. The SCNs recorded in the file

headers guarantee that all the changes made to database blocks before that SCN have been
written to disk.

The statistic DBWR checkpoints displayed by the SYSTEM STATISTICS monitorin Oracle
Enterprise Manager indicate the number of checkpoint requests completed.

Oracle Database 12c¢: SQL Workshop Il H -14

System Monitor Process

- Performs recovery at instance startup
« Cleans up unused temporary segments

u:gg

System monitor
process

Temporary
segment

ORACLE

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

The system monitor (SMON) process performs recovery, if necessary, at instance startup.
SMON is also responsible for cleaning up temporary segments that are no longer in use. If
any terminated transactions were skipped during instance recovery because of file-read or
offline errors, SMON recovers them when the tablespace or file is brought back online. SMON

checks regularly to see whether it is needed. Other processes can call SMON if they detect a
need for it.

Oracle Database 12c¢: SQL Workshop Il H-15

Process Monitor Process

- Performs process recovery when a user process fails:
— Cleans up the database buffer cache
— Frees resources used by the user process

* Monitors sessions for idle session timeout

« Dynamically registers database services with listeners

i

) -_!

Failed user
Process monitor process T 1111
process Database buffer
cache
ORACLE

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

The process monitor (PMON) performs process recovery when a user process fails. PMON is
responsible for cleaning up the database buffer cache and freeing resources that the user
process was using. For example, it resets the status of the active transaction table, releases
locks, and removes the process ID from the list of active processes.

PMON periodically checks the status of dispatcher and server processes, and restarts any
that have stopped running (but not any that Oracle Database has terminated intentionally).
PMON also registers information about the instance and dispatcher processes with the
network listener.

Like SMON, PMON checks regularly to see whether it is needed and can be called if another
process detects the need for it.

Oracle Database 12c¢: SQL Workshop Il H -16

Oracle Database Storage Architecture

DB structures
- Memory

- Process

-> Storage

Database

Control Online redo
Data files files Iog_; files

Parameter file
Password file
Network files

Alert and trace files Backup files Archived log files

ORACLE

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

The files that constitute an Oracle database are organized into the following:

Control files: Contain data about the database itself (that is, physical database
structure information). These files are critical to the database. Without them, you cannot
open data files to access the data within the database.

Data files: Contain the user or application data of the database, as well as metadata
and the data dictionary

Online redo log files: Allow for instance recovery of the database. If the database
server crashes and does not lose any data files, the instance can recover the database
with the information in these files.

The following additional files are important to the successful running of the database:

Backup files: Are used for database recovery. You typically restore a backup file when
a media failure or user error has damaged or deleted the original file.

Archived log files: Contain an ongoing history of the data changes (redo) that are
generated by the instance. Using these files and a backup of the database, you can
recover a lost data file. That is, archive logs enable the recovery of restored data files.

Parameter file: |Is used to define how the instance is configured when it starts up

Password file: Allows sysdba/sysoper/sysasm to connect remotely to the database
and perform administrative tasks

Oracle Database 12c¢: SQL Workshop Il H -17

Network files: Are used for starting the database listener and store information required
for user connections

Trace files: Each server and background process can write to an associated trace file.
When an internal error is detected by a process, the process dumps information about the
error to its trace file. Some of the information written to a trace file is intended for the
database administrator, whereas other information is for Oracle Support Services.

Alert log files: These are special trace entries. The alert log of a database is a
chronological log of messages and errors. Each instance has one alert log file. Oracle
recommends that you review this alert log periodically.

Oracle Database 12c¢: SQL Workshop Il H-18

Logical and Physical Database Structures

Logical Physical

Database

AN) N
[Schema] Tablespace
A

Segment

Oracle data
block

ORACLE

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

An Oracle database has logical and physical storage structures.
Tablespaces

A database is divided into logical storage units called tablespaces, which group related logical
structures together. For example, tablespaces commonly group all of an application’s objects
to simplify some administrative operations. You may have a tablespace for application data
and an additional one for application indexes.

Databases, Tablespaces, and Data Files

The relationship among databases, tablespaces, and data files is illustrated in the slide. Each
database is logically divided into one or more tablespaces. One or more data files are
explicitly created for each tablespace to physically store the data of all logical structuresin a
tablespace. If it is a TEMPORARY tablespace, instead of a data file, the tablespace has a
temporary file.

Oracle Database 12c¢: SQL Workshop Il H-19

Schemas

A schema is a collection of database objects that are owned by a database user. Schema
objects are the logical structures that directly refer to the database’s data. Schema objects
include such structures as tables, views, sequences, stored procedures, synonyms, indexes,
clusters, and database links. In general, schema objects include everything that your application
creates in the database.

Data Blocks

At the finest level of granularity, an Oracle database’s data is stored in data blocks. One data
block corresponds to a specific number of bytes of physical database space on the disk. A data
block size is specified for each tablespace when it is created. A database uses and allocates
free database space in Oracle data blocks.

Extents

The next level of logical database space is called an extent. An extent is a specific number of
contiguous data blocks (obtained in a single allocation) that are used to store specific type of
information.

Segments

The level of logical database storage above an extent is called a segment. A segment is a set of
extents allocated for a certain logical structure. For example, the different types of segments
include:

+ Data segments: Each nonclustered, non-indexed-organized table has a data segment
with the exception of external tables, global temporary tables, and partitioned tables,
where each table has one or more segments. All of the table’s data is stored in the extents
of its data segment. For a partitioned table, each partition has a data segment. Each
cluster has a data segment. The data of every table in the cluster is stored in the cluster’s
data segment.

+ Index segments: Each index has an index segment that stores all of its data. For a
partitioned index, each partition has an index segment.

+ Undo segments: One UNDO tablespace is created per database instance that contains
numerous undo segments to temporarily store undo information. The information in an
undo segment is used to generate read-consistent database information and, during
database recovery, to roll back uncommitted transactions for users.

+ Temporary segments: Temporary segments are created by the Oracle Database when a
SQL statement needs a temporary work area to complete execution. When the statement
finishes execution, the temporary segment’s extents are returned to the instance for future
use. Specify a default temporary tablespace for every user or a default temporary
tablespace, which is used databasewide.

The Oracle Database dynamically allocates space. When the existing extents of a segment are
full, additional extents are added. Because extents are allocated as needed, the extents of a
segment may or may not be contiguous on the disk.

Oracle Database 12c¢: SQL Workshop Il H -20

Processing a SQL Statement

« Connect to an instance using:
— The user process
— The server process
« The Oracle server components that are used depend on
the type of SQL statement:
— Queries return rows.
— Data manipulation language (DML) statements log changes.
— Commit ensures transaction recovery.

- Some Oracle server components do not participate in SQL
statement processing.

ORACLE

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

Not all the components of an Oracle instance are used to process SQL statements. The user
and server processes are used to connect a user to an Oracle instance. These processes are
not part of the Oracle instance, but are required to process a SQL statement.

Some of the background processes, SGA structures, and database files are used to process
SQL statements. Depending on the type of SQL statement, different components are used:

» Queries require additional processing to return rows to the user.
» DML statements require additional processing to log the changes made to the data.
« Commit processing ensures that the modified data in a transaction can be recovered.

Some required background processes do not directly participate in processing a SQL
statement, but are used to improve performance and to recover the database. For example,
the optional Archiver background process, ARCn, is used to ensure that a production
database can be recovered.

Oracle Database 12c¢: SQL Workshop Il H - 21

Processing a Query

« Parse:
— Search for an identical statement.
— Check the syntax, object names, and privileges.
— Lock the objects used during parse.
— Create and store the execution plan.
- Execute: Identify the rows selected.

* Fetch: Return the rows to the user process.

ORACLE

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

Queries are different from other types of SQL statements because, if successful, they return
data as results. Other statements simply return success or failure, whereas a query can return
one row or thousands of rows.

There are three main stages in the processing of a query:

« Parse
 Execute
« Fetch

During the parse stage, the SQL statement is passed from the user process to the server
process, and a parsed representation of the SQL statement is loaded into a shared SQL area.

During parse, the server process performs the following functions:
» Searches for an existing copy of the SQL statement in the shared pool
« Validates the SQL statement by checking its syntax
» Performs data dictionary lookups to validate table and column definitions

The execute stage executes the statement using the best optimizer approach and the fetch
retrieves the rows back to the user.

Oracle Database 12c¢: SQL Workshop Il H -22

Shared Pool

« The library cache contains the SQL statement text, parsed
code, and execution plan.

« The data dictionary cache contains table, column, and
other object definitions and privileges.

« The shared pool is sized by SHARED POOL_ SIZE.

Shared pool

Library

cache ||

Data dictionary
cache

ORACLE
Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

During the parse stage, the server process uses the area in the SGA known as the shared
pool to compile the SQL statement. The shared pool has two primary components:

» Library cache
« Datadictionary cache
Library Cache

The library cache stores information about the most recently used SQL statements in a
memory structure called a shared SQL area. The shared SQL area contains:

* The text of the SQL statement
* The parse tree, which is a compiled version of the statement
» The execution plan, with steps to be taken when executing the statement
The optimizer is the function in the Oracle server that determines the optimal execution plan.

If a SQL statement is reexecuted and a shared SQL area already contains the execution plan
for the statement, the server process does not need to parse the statement. The library cache
improves the performance of applications that reuse SQL statements by reducing parse time
and memory requirements. If the SQL statement is not reused, it is eventually aged out of the
library cache.

Oracle Database 12c¢: SQL Workshop Il H -23

Data Dictionary Cache

The data dictionary cache, also known as the dictionary cache or row cache, is a collection of
the most recently used definitions in the database. It includes information about database files,
tables, indexes, columns, users, privileges, and other database objects.

During the parse phase, the server process looks for the information in the dictionary cache to
resolve the object names specified in the SQL statement and to validate the access privileges. If
necessary, the server process initiates the loading of this information from the data files.

Sizing the Shared Pool
The size of the shared pool is specified by the SHARED POOL _SIZE initialization parameter.

Oracle Database 12c¢: SQL Workshop Il H -24

Database Buffer Cache

- The database buffer cache stores the most recently used
blocks.

« The size of a buffer is based on DB BLOCK SIZE.
« The number of buffers is defined by DB BLOCK BUFFERS.

Database buffer
cache

ORACLE
Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

When a query is processed, the server process looks in the database buffer cache for any
blocks it needs. If the block is not found in the database buffer cache, the server process
reads the block from the data file and places a copy in the buffer cache. Because subsequent
requests for the same block may find the block in memory, the requests may not require
physical reads. The Oracle server uses a least recently used algorithm to age out buffers that
have not been accessed recently to make room for new blocks in the buffer cache.

Sizing the Database Buffer Cache

The size of each buffer in the buffer cache is equal to the size of an Oracle block, and it is
specified by the DB BLOCK SIZE parameter. The number of buffers is equal to the value of
the DB BLOCK BUFFERS parameter.

Oracle Database 12c¢: SQL Workshop Il H -25

Program Global Area (PGA)

* Is not shared
« Is writable only by the server process
« Contains:

— Sort area

— Session information

— Cursor state

— Stack space

Server
process

ORACLE
Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

A Program Global Area (PGA) is a memory region that contains data and control information
for a server process. It is a nonshared memory created by Oracle when a server process is
started. Access to it is exclusive to that server process, and is read and written only by the
Oracle server code acting on behalf of it. The PGA memory allocated by each server process
attached to an Oracle instance is referred to as the aggregated PGA memory allocated by the
instance.

In a dedicated server configuration, the PGA of the server includes the following components:

» Sort area: Is used for any sorts that may be required to process the SQL statement

+ Session information: Includes user privileges and performance statistics for the
session

» Cursor state: Indicates the stage in the processing of the SQL statements that are
currently used by the session

« Stack space: Contains other session variables

The PGA is allocated when a process is created, and deallocated when the process is
terminated.

Oracle Database 12c¢: SQL Workshop Il H - 26

Processing a DML Statement

User SGA Shared pool
process
Database Redo log
buffer
buffer
cache
UPDATE - »
employees

OO

Server

process
_ Data Control Redo
files files log files
Database

ORACLE

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

A data manipulation language (DML) statement requires only two phases of processing:
» Parseis the same as the parse phase used for processing a query.
» Execute requires additional processing to make data changes.

DML Execute Phase

To execute a DML statement:

» Ifthe data and rollback blocks are not already in the buffer cache, the server process
reads them from the data files into the buffer cache.

» The server process places locks on the rows that are to be modified.

* Inthe redo log buffer, the server process records the changes to be made to the rollback
and data blocks.

« Therollback block changes record the values of the data before it is modified. The
rollback block is used to store the “before image” of the data, so that the DML
statements can be rolled back if necessary.

» The data block changes record the new values of the data.

Oracle Database 12c: SQL Workshop Il H - 27

The server process records the “before image” to the rollback block and updates the data block.
Both of these changes are done in the database buffer cache. Any changed blocks in the buffer
cache are marked as dirty buffers (that is, buffers that are not the same as the corresponding
blocks on the disk).

The processing of a DELETE or INSERT command uses similar steps. The “before image” for a
DELETE contains the column values in the deleted row, and the “before image” of an INSERT
contains the row location information.

Because the changes made to the blocks are only recorded in memory structures and are not
written immediately to disk, a computer failure that causes the loss of the SGA can also lose
these changes.

Oracle Database 12c: SQL Workshop Il H -28

Redo Log Buffer

« Has its size defined by LOG BUFFER

« Records changes made through the instance
* Is used sequentially

« Is a circular buffer

Redo log buffer

ORACLE
Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

The server process records most of the changes made to data file blocks in the redo log
buffer, which is a part of the SGA. The redo log buffer has the following characteristics:

+ Its size in bytes is defined by the LOG_BUFFER parameter.

» ltrecords the block that is changed, the location of the change, and the new value in a
redo entry. A redo entry makes no distinction between the types of block that is
changed; it only records which bytes are changed in the block.

+ Theredo log buffer is used sequentially, and changes made by one transaction may be
interleaved with changes made by other transactions.

» ltis acircular buffer that is reused after it is filled, but only after all the old redo entries
are recorded in the redo log files.

Oracle Database 12c¢: SQL Workshop Il H -29

Rollback Segment

Old image
o/ ’g
Rollback segment . "
New image | 4
Table
DML statement

ORACLE

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

Before making a change, the server process saves the old data value in a rollback segment.
This “before image” is used to:

* Undo the changes if the transaction is rolled back

» Provide read consistency by ensuring that other transactions do not see uncommitted
changes made by the DML statement

 Recover the database to a consistent state in case of failures

Rollback segments, such as tables and indexes, exist in data files, and rollback blocks are
broughtinto the database buffer cache as required. Rollback segments are created by the
DBA.

Changes to rollback segments are recorded in the redo log buffer.

Oracle Database 12¢: SQL Workshop Il H - 30

COMMIT Processing

@ Instance

SGA | Shared pool
Server
process >*Database Redo lo
g
_/ @ buffer buffer
cache

C_DGswp O@@O

v
Data Control Redo @
files files log files

User
process

Database

ORACLE

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

The Oracle server uses a fast COMMIT mechanism that guarantees that the committed
changes can be recovered in case of instance failure.

System Change Number

Whenever a transaction commits, the Oracle server assigns a commit SCN to the transaction.
The SCN is monotonically incremented and is unique within the database. It is used by the
Oracle server as an internal time stamp to synchronize data and to provide read consistency
when data is retrieved from the data files. Using the SCN enables the Oracle server to
perform consistency checks without depending on the date and time of the operating system.

Steps in Processing COMMITS
When a COMMIT is issued, the following steps are performed:
1. The server process places a commit record, along with the SCN, in the redo log buffer.

2. LGWR performs a contiguous write of all the redo log buffer entries up to and including
the commit record to the redo log files. After this point, the Oracle server can guarantee
that the changes will not be lost even if there is an instance failure.

Oracle Database 12c¢: SQL Workshop Il H - 31

3. The useris informed that the COMMIT is complete.
4. The server process records information to indicate that the transaction is complete and

that resource locks can be released.

Flushing of the dirty buffers to the data file is performed independently by DBWO and can occur
either before or after the commit.

Advantages of the Fast coMMIT

The fast COMMIT mechanism ensures data recovery by writing changes to the redo log buffer
instead of the data files. It has the following advantages:

Sequential writes to the log files are faster than writing to different blocks in the data file.

Only the minimal information that is necessary to record changes is written to the log files;
writing to the data files would require whole blocks of data to be written.

If multiple transactions request to commit at the same time, the instance piggybacks redo
log records into a single write.

Unless the redo log buffer is particularly full, only one synchronous write is required per
transaction. If piggybacking occurs, there can be less than one synchronous write per
transaction.

Because the redo log buffer may be flushed before the COMMIT, the size of the transaction
does not affect the amount of time needed for an actual COMMIT operation.

Note: Rolling back a transaction does not trigger LGWR to write to disk. The Oracle server
always rolls back uncommitted changes when recovering from failures. If there is a failure after
a rollback, before the rollback entries are recorded on disk, the absence of a commit record is
sufficient to ensure that the changes made by the transaction are rolled back.

Oracle Database 12c¢: SQL Workshop Il H -32

Summary of the Oracle Database Architecture

Instance
2C8 Shared pool
Library
h
Database Redo log cache
buffer
cache buffer Data dictionary
cache
PGA T -
Server Yy
(CKPT) LGWR ARC

A -~

Al

Y v
v | ; | l I v

User Archived
process Cg?trol Online redo log files
iles loq fil
Data files ogfifes
Database
ORACLE

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

An Oracle database comprises an instance and its associated database:
» Aninstance comprises the SGA and the background processes
- SGA: Database buffer cache, redo log buffer, shared pool, and so on
- Background processes: SMON, PMON, DBWn, CKPT, LGWR, and so on
« A database comprises storage structures:
- Logical: Tablespaces, schemas, segments, extents, and Oracle block
- Physical: Data files, control files, redo log files

When a user accesses the Oracle database through an application, a server process
communicates with the instance on behalf of the user process.

Oracle Database 12¢: SQL Workshop Il H - 33

Summary

In this appendix, you should have learned how to:

- List the major database architectural components

« Describe the background processes

« Explain the memory structures

- Correlate the logical and physical storage structures

ORACLE

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

Oracle Database 12c¢: SQL Workshop Il H -34

Regular Expression Support

ORACLE

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

Objectives

After completing this appendix, you should be able to:
- List the benefits of using regular expressions

« Use regular expressions to search for, match, and replace
strings

ORACLE

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

In this appendix, you learn to use the regular expression support feature. Regular expression
support is available in both SQL and PL/SQL.

Oracle Database 12¢: SQL Workshop Il 1-2

What Are Regular Expressions?

* You use regular expressions to search for (and
manipulate) simple and complex patterns in string data by
using standard syntax conventions.

* You use a set of SQL functions and conditions to search
for and manipulate strings in SQL and PL/SQL.

* You specify a regular expression by using:

— Metacharacters, which are operators that specify the search
algorithms

— Literals, which are the characters for which you are
searching

ORACLE

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

Oracle Database provides support for regular expressions. The implementation complies with
the Portable Operating System for UNIX (POSIX) standard, controlled by the Institute of
Electrical and Electronics Engineers (IEEE), for ASCII data-matching semantics and syntax.
Oracle’s multilingual capabilities extend the matching capabilities of the operators beyond the
POSIX standard. Regular expressions are a method of describing both simple and complex
patterns for searching and manipulating.

String manipulation and searching contribute to a large percentage of the logic within a
web-based application. Usage ranges from the simple, such as finding the words “San
Francisco”in a specified text, to the complex task of extracting all URLs from the text and the
more complex task of finding all words whose every second character is a vowel.

When coupled with native SQL, the use of regular expressions allows for very powerful
search and manipulation operations on any data stored in an Oracle database. You can use
this feature to easily solve problems that would otherwise involve complex programming.

Oracle Database 12c¢: SQL Workshop Il 1-3

Benefits of Using Regular Expressions

Regular expressions enable you to implement complex match
logic in the database with the following benefits:

* By centralizing match logic in Oracle Database, you avoid
intensive string processing of SQL result sets by
middle-tier applications.

« Using server-side regular expressions to enforce
constraints, you eliminate the need to code data validation
logic on the client.

* The built-in SQL and PL/SQL regular expression functions
and conditions make string manipulations more powerful
and easier than in previous releases of Oracle Database.

ORACLE

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

Regular expressions are a powerful text-processing component of programming languages
such as PERL and Java. For example, a PERL script can process each HTML file in a
directory, read its contents into a scalar variable as a single string, and then use regular
expressions to search for URLs in the string. One reason for many developers writing in
PERL is that it has a robust pattern-matching functionality. Oracle’s support of regular
expressions enables developers to implement complex match logic in the database. Regular
expressions were introduced in Oracle Database 10g.

Oracle Database 12c¢: SQL Workshop Il 1-4

Using the Regular Expressions Functions
and Conditions in SQL and PL/SQL

Function or Condition | Description

Name

REGEXP_LIKE Is similar to the LIKE operator, but performs regular
expression matching instead of simple pattern
matching (condition)

REGEXP_REPLACE Searches for a regular expression pattern and
replaces it with a replacement string

REGEXP_INSTR Searches a string for a regular expression pattern and
returns the position where the match is found

REGEXP_ SUBSTR Searches for a regular expression pattern within a
given string and extracts the matched substring

REGEXP_COUNT Returns the number of times a pattern match is found
in an input sting

ORACLE

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

Oracle Database provides a set of SQL functions that you use to search and manipulate
strings by using regular expressions. You use these functions on a text literal, bind variable,
or any column that holds character data such as CHAR, NCHAR, CLOB, NCLOB, NVARCHAR?2,
and VARCHAR?2 (but not LONG). A regular expression must be enclosed within single quotation
marks. This ensures that the entire expression is interpreted by the SQL function and can
improve the readability of your code.

« REGEXP_LIKE: This condition searches a character column for a pattern. Use this
condition in the WHERE clause of a query to return rows matching the regular expression
that you specify.

« REGEXP_REPLACE: This function searches for a pattern in a character column and
replaces each occurrence of that pattern with the pattern that you specify.

* REGEXP_INSTR: This function searches a string for a given occurrence of a regular
expression pattern. You specify which occurrence you want to find and the start position
to search from. This function returns an integer indicating the position in the string where
the match is found.

« REGEXP_SUBSTR: This function returns the actual substring matching the regular
expression pattern that you specify.

« REGEXP_COUNT: This function returns the number of times a pattern match is found in
the input string.

Oracle Database 12c¢: SQL Workshop Il 1-5

What Are Metacharacters?

* Metacharacters are special characters that have a special
meaning such as a wildcard, a repeating character, a
nonmatching character, or a range of characters.

* You can use several predefined metacharacter symbols in
the pattern matching.

* For example, the * (£ | ht) tps?:$ regular expression
searches for the following from the beginning of the string:

— The literals £ or ht

— The t literal
— The p literal, optionally followed by the s literal
— The colon “:” literal at the end of the string

ORACLE

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

The regular expression in the slide matches the http:, https:, ftp:, and ftps: strings.

Note: For a complete list of the regular expressions’ metacharacters, see the Oracle
Database Advanced Application Developer’s Guide for Oracle Database 12c.

Oracle Database 12c¢: SQL Workshop Il 1-6

Using Metacharacters with Regular Expressions

Syntax Description

Matches any character in the supported character set, except NULL

+ Matches one or more occurrences
? Matches zero or one occurrence
* Matches zero or more occurrences of the preceding subexpression
{m} Matches exactly m occurrences of the preceding expression
{m , } Matches at least m occurrences of the preceding subexpression
{m , n} Matches at least m, but not more than n, occurrences of the preceding

subexpression

[...] Matches any single character in the list within the brackets

| Matches one of the alternatives

(...) Treats the enclosed expression within the parentheses as a unit. The
subexpression can be a string of literals or a complex expression containing
operators.

ORACLE

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

Any character, “ .
One or more, “ + " : a+ matches the strings a, aa, and aaa, but does not match bbb.
Zero or one, “ ? ": ab?c matches the strings abe and ac, but does not match abbec.

' : a.b matches the strings abb, acb, and adb, but not acc.

Zero or more, “ * ”: ab*c matches the strings ac, abec, and abbe, but does not match abb.
Exact count, “ {m} ": a{3} matches the strings aaa, but does not match aa.

At least count, “ {m,} ”: a{3, } matches the strings aaa and aaaa, but not aa.

Between count, “ {m,n} ": a{3, 5} matches the strings aaa, aaaa, and aaaaa, but not aa.

Matching character list, “ [..] ”: [abc] matches the first characterin the strings all, bill,
and cold, but does not match any charactersin do11.

Or, “| ”: a|b matches character a or character b.

Subexpression, “ (..) ”: (abc) ?def matches the optional string abe, followed by def. The
expression matches abecdefghi and def, but does not match ghi. The subexpression can
be a string of literals or a complex expression containing operators.

Oracle Database 12c¢: SQL Workshop Il 1-7

Using Metacharacters with Regular Expressions

Syntax Description

A

Matches the beginning of a string

S Matches the end of a string
\ Treats the subsequent metacharacter in the expression as a literal
\n Matches the nth (1-9) preceding subexpression of whatever is grouped

within parentheses. The parentheses cause an expression to be
remembered; a backreference refers to it.

\d A digit character

[:class:] Matches any character belonging to the specified POSIX character class

[*:clasgs:] | Matches any single character not in the list within the brackets

ORACLE

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

Beginning/end of line anchor, “ * ” and “$”: “def matches def in the string defghi but
does not match def in abcdef. def$ matches def in the string abedef but does not match
def in the string defghi.

Escape character“ \ ”: \+ searches for a +. It matches the plus character in the string
abc+def, but does not match Abcdef.

Backreference, “ \n ”: (abc | def) xy\1 matches the strings abcxyabc and defxydef,
but does not match abexydef or abexy. A backreference enables you to search for a
repeated string without knowing the actual string ahead of time. For example, the expression
* (.*)\1$ matches a line consisting of two adjacent instances of the same string.

Digit character, “\d”: The expression *\ [\d{3}\] \d{3}-\d{4}$ matches [650] 555-
1212 but does not match 650-555-1212.

Characterclass, “ [:class:] ”: [[:upper:]]+ searches for one or more consecutive
uppercase characters. This matches DEF in the string abeDEFghi but does not match the
string abcdefghi.

Nonmatching character list (or class), “ [*...] ”: [*abc] matches the characterd in
the string abecdef, but not a, b, or c.

Oracle Database 12c¢: SQL Workshop Il 1-8

Regular Expressions Functions
and Conditions: Syntax

REGEXP LIKE (source char, pattern [,match option]

REGEXP INSTR (source char, pattern [, position
[, occurrence [, return option
[, match option [, subexprlll]ll)

REGEXP_ SUBSTR (source char, pattern [, position
[, occurrence [, match option
[, subexprlll])

REGEXP REPLACE (source char, pattern [,replacestr
[, position [, occurrence
[, match option]l]l])

REGEXP_ COUNT (source char, pattern [, position

[, occurrence [, match option]l]])

ORACLE

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

The syntax for the regular expressions functions and conditions is as follows:
e source_char: A character expression that serves as the search value
e pattern: A regular expression, a text literal

e occurrence: A positive integer indicating which occurrence of patternin source char
Oracle Server should search for. The defaultis 1.

e position:A positive integer indicating the character of source char where Oracle
Server should begin the search. The defaultis 1.
e return option:
- 0: Returns the position of the first character of the occurrence (default)
- 1: Returns the position of the character following the occurrence
e Replacestr: Character string replacing pattern
® match parameter:
- “c¢ 7 Uses case-sensitive matching (default)
- “1i 7 Uses non-case-sensitive matching

- “n”: Allows match-any-character operator

- “m”: Treats source string as multiple lines

e subexpr: Fragment of pattern enclosed in parentheses. You learn more about
subexpressions later in this appendix.

Oracle Database 12c¢: SQL Workshop Il 1-9

Performing a Basic Search by
Using the REGEXP_ LIKE Condition

REGEXP_ LIKE (source char, pattern [, match parameter])

SELECT first name, last name
FROM employees
WHERE REGEXP LIKE (first name, '“Ste(v|ph)en$');

B FRST_NAME|E LAST_NAME
1 Steven King
2 Steven Markle

3 Stephen Stiles

ORACLE

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

REGEXP_LIKE is similar to the LIKE condition, except that REGEXP_LIKE performs regular-
expression matching instead of the simple pattern matching performed by LIKE. This
condition evaluates strings by using characters as defined by the input character set.
Example of REGEXP LIKE
In this query, against the EMPLOYEES table, all employees with first names containing either
Steven or Stephen are displayed. In the expression used ' “Ste (v |ph) ens$ ':

« “indicates the beginning of the expression

« $indicates the end of the expression

* | indicates either/or

Oracle Database 12c¢: SQL Workshop Il 1-10

Replacing Patterns by
Using the REGEXP REPLACE Function

REGEXP REPLACE (source char, pattern [,replacestr
[, position [, occurrence [, match option]]ll])

SELECT last name, REGEXP REPLACE (phone number, '\.',6'-"')
AS phone
FROM employees;

Original Partial results

B rasT_name |l ePHONE B wasT_mname |§ PHONE
1 OConnell 650.507.9833 1 OConnell 650-507-9833
2 Grant 650.507.9844 »|2 Grant 650-507-9844
3 Whalen 515.123.4444 3 Whalen 515-123-4444
4 Hartstein 515.123.5555 4 Hartstein 515-123-5555

ORACLE

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

Using the REGEXP REPLACE function, you reformat the phone number to replace the period
(.)delimiter with a dash (-) delimiter. Here is an explanation of each of the elements used in
the regular expression example:

e phone number is the source column.
e '\.'isthe search pattern.
- Use single quotation marks (* *) to search for the literal character period (.).

- Use a backslash (\) to search for a character that is normally treated as a
metacharacter.

e '-' s the replace string.

Oracle Database 12c¢: SQL Workshop Il |-11

Finding Patterns by
Using the REGEXP INSTR Function

REGEXP_ INSTR (source char, pattern [, position [,
occurrence [, return option [, match option]]l]])

SELECT street address,

REGEXP INSTR(street address,'[[:alpha:]]"') AS
First Alpha Position

FROM locations;

@ STREET_ADDRESS B FIRST_ALPHA_POSITION
1 1297 Via Cola di Rie |
2 93091 Calle della Testa
3 2017 Shinjuku-ku
4 9450 Kamiya-cho

LR

ORACLE

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

In this example, the REGEXP_INSTR function is used to search the street address to find the

location of the first alphabetic character, regardless of whether it is in uppercase or lowercase.
Note that [:<class>:] implies a character class and matches any character from within that
class; [:alpha:] matches with any alphabetic character. The partial results are displayed.

In the expression used inthe query ' [[:alpha:]]"':

» [starts the expression

* [:alpha:] indicates alphabetic character class

*] ends the expression
Note: The POSIX character class operator enables you to search for an expression within a
character list that is a member of a specific POSIX character class. You can use this operator
to search for specific formatting, such as uppercase characters, or you can search for special

characters such as digits or punctuation characters. The full set of POSIX character classes is
supported. Use the syntax [:class:], where class is the name of the POSIX character

class to search for. The following regular expression searches for one or more consecutive
uppercase characters: [[:upper:]1]+.

Oracle Database 12c¢: SQL Workshop Il 1-12

Extracting Substrings by
Using the REGEXP SUBSTR Function

REGEXP_ SUBSTR (source char, pattern [, position

[, occurrence [, match option]l])

SELECT REGEXP SUBSTR (street address , ' [® 1+ ') AS Road

FROM locations;

[@ ROAD |
1 Via '
2 Calle

3 {nully

4 {nully

5 Jabberwocky

ORACLE

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

In this example, the road names are extracted from the LOCATIONS table. To do this, the
contents in the STREET ADDRESS column that are after the first space are returned by using
the REGEXP SUBSTR function. In the expression used in the query ' [* 1+ ':

» [starts the expression
« “indicates NOT

« ' ’indicates space

*] ends the expression
+ indicates 1 or more

Oracle Database 12c¢: SQL Workshop Il 1-13

Subexpressions

Examine this expression:

(1 2 3)(4(5 6) (7 8))

The subexpressions are:

(1L 2 3) (4(5 6)(7 8))

I_I‘—T
& @
@ @

ORACLE

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

Oracle Database provides regular expression support parameters to access a subexpression.
In the slide example, a string of digits is shown. The parentheses identify the subexpressions
within the string of digits. Reading from left to right, and from outer parentheses to the inner
parentheses, the subexpressions in the string of digits are:

1. 123
2. 45678
3. 56
4.78

You can search for any of those subexpressions with the REGEXP_INSTR and
REGEXP_ SUBSTR functions.

Oracle Database 12c¢: SQL Workshop Il |-14

Using Subexpressions with Regular
Expression Support

SELECT

REGEXP INSTR
@ ('0123456789"', -- source char or search value
@ '(123) (4(56) (78)) "', -- regular expression patterns
@1, -- position to start searching
@1, -- occurrence
®o, -- return option
@ ri', -- match option (case insensitive)
@1) -- subexpression on which to search

"Position"

FROM dual;
 Position
1 2

ORACLE

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

REGEXP INSTR and REGEXP_ SUBSTR have an optional SUBEXPR parameter that lets you
target a particular substring of the regular expression being evaluated.

In the example shown in the slide, you may want to search for the first subexpression pattern
in your list of subexpressions. The example shown identifies several parameters for the
REGEXP_INSTR function.

1. The string you are searching is identified.

2. The subexpressions are identified. The first subexpressionis 123. The second
subexpressionis 45678, the third is 56, and the fourth is 78.

3. The third parameter identifies from which position to start searching.

4. The fourth parameter identifies the occurrence of the pattern you want to find. 1 means
find the first occurrence.

5. The fifth parameter is the return option. This is the position of the first character of the
occurrence. (If you specify 1, the position of the character following the occurrence is
returned.)

6. The sixth parameter identifies whether your search should be case-sensitive or not.

7. The last parameter specifies which subexpression you want to find. In the example
shown, you are searching for the first subexpression, which is 123.

Oracle Database 12c¢: SQL Workshop Il 1-15

Why Access the nth Subexpression?

* A more realistic use: DNA sequencing

* You may need to find a specific subpattern that identifies a
protein needed for immunity in mouse DNA.

SELECT

REGEXP_ INSTR ('ccacctttccctecactcctecacgttcectcacctgtaaagegteecte
cctcatccccatgecccecttaccctgecagggtagagtaggectagaaaccagagagctccaage
tccatctgtggagaggtgccatccttgggectgcagagagaggagaatttgeccccaaagetgece
tgcagagcttcaccacccttagtctcacaaageccttgagttcatagcatttecttgagttttca
ccctgcccagcaggacactgcagcacccaaagggcttcccaggagtagggttgecctcaagag
gctcttgggtctgatggccacatcctggaattgttttcaagttgatggtcacageccectgagge
atgtaggggcgtggggatgcgctctgectectgetetecctectectgaaccectgaaccetetgge
taccccagagcacttagagccag',

' (gtc (tcac) (aaag)) ',

i, 1, o, 'i‘',

1) "Position"

FROM dual;

B Pposition ‘
1 195

ORACLE

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

In life sciences, you may need to extract the offsets of subexpression matches from a DNA
sequence for further processing. For example, you may need to find a specific protein
sequence, such as the begin offset for the DNA sequence preceded by gt c and followed by
tcac followed by aaag. To accomplish this goal, you can use the REGEXP_INSTR function,
which returns the position where a match is found.

In the slide example, the position of the first subexpression (gtc) is returned. gt c appears
starting in position 195 of the DNA string.

If you modify the slide example to search for the second subexpression (tcac), the query
results in the following output. tcac appears starting in position 198 of the DNA string.

E Position
1 185

If you modify the slide example to search for the third subexpression (aaag), the query
results in the following output. aaag appears starting in position 202 of the DNA string.

E Posttion
1 202

Oracle Database 12c: SQL Workshop Il 1-16

REGEXP SUBSTR: Example

SELECT

REGEXP SUBSTR
()('acgctgcactgca', -- source char or search value
CD 'acg(.*)gca', -- regular expression pattern

1, -- position to start searching

() 1, -- occurrence
() Jal D -- match option (case insensitive)
() 1) -- sub-expression

"Value"
FROM dual;

E Value

1 ctgcact

ORACLE

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

In the example shown in the slide:
1. acgctgcactgcais the source to be searched.

2. acg/(.*)gca isthe pattern to be searched. Find acg followed by gca with potential
characters between the acg and the gca.

Start searching at the first character of the source.
Search for the first occurrence of the pattern.
Use non-case-sensitive matching on the source.

Use a nonnegative integer value that identifies the nth subexpression to be targeted.
This is the subexpression parameter. In this example, 1 indicates the first
subexpression. You can use a value from 0-9. A zero means that no subexpression is
targeted. The default value for this parameter is 0.

o0 R W

Oracle Database 12c: SQL Workshop Il 1-17

Using the REGEXP COUNT Function

REGEXP_ COUNT (source char, pattern [, position

[, occurrence [, match option]l])

SELECT IHﬂEEXI{_COIHTT(
'ccacctttccctccactectcacgttectcacctgtaaagegtccctecctecatecccatgeccecttacectgeag
ggtagagtaggctagaaaccagagagctccaagctccatctgtggagaggtgccatcecttgggetgcagagagaggag
aatttgccccaaagctgcctgcagagecttcaccacccttagtctcacaaagecttgagttcatagecatttettgagtt
ttcaccctgcccagcaggacactgcagcacccaaagggcttcccaggagtagggttgecctcaagaggetecttgggte
tgatggccacatcctggaattgttttcaagttgatggtcacagecctgaggcatgtaggggegtggggatgegetetg

ctctgctctectetectgaaccectgaaccctetggetaccccagagecacttagagecag! 4

'gtc') AS Count
FROM dual;

B count
1 4

ORACLE

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

The REGEXP_COUNT function evaluates strings by using characters as defined by the input

character set. It returns an integer indicating the number of occurrences of the pattern. If no
match is found, the function returns O.

In the slide example, the number of occurrences for a DNA substring is determined by using
the REGEXP _COUNT function.

The following example shows that the number of times the pattern 123 occurs in the string
123123123123 is three times. The search starts from the second position of the string.

SELECT REGEXP_ COUNT

('123123123123', -- source char or search value
11231, -- regular expression pattern
2, -- position where the search should start
i) -- match option (case insensitive)
As Count
FROM dual;
COUNT
1 3

Oracle Database 12c: SQL Workshop Il 1-18

Regular Expressions and
Check Constraints: Examples

ALTER TABLE emp8
ADD CONSTRAINT email addr
CHECK (REGEXP LIKE (email, '@')) NOVALIDATE;

INSERT INTO emp8 VALUES
(500, 'Christian', 'Patel' 'ChrisP2creme.com'|,
1234567890, '12-Jan-2004"', '"HR REP',2000,null, 102,40);

Error starting at line 1 in command:
INSERT INTO empS VALUES

(500, 'Christian', 'Patel’,

'ChrisP2creme.com', 1234567890,

'12-Jan-2004', 'HR_REP', 2000, null, 102, 40)
Error report:
SOL Error: OR&-02290: check constraint (TEACH_B,EMAIL_ADDR) wiolated
02200, 00000 - “check constraint (%s.¥s) violated”
*Cause: The values being inserted do not satisfy the named check

*Action: do not insert walues that wviolate the constraint.

ORACLE

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

Regular expressions can also be used in CHECK constraints. In this example, a CHECK
constraint is added on the EMAIL column of the EMPLOYEES table. This ensures that only

strings containing an “@” symbol are accepted. The constraintis tested. The CHECK constraint

is violated because the email address does not contain the required symbol. The
NOVALIDATE clause ensures that existing data is not checked.

For the slide example, the emp8 table is created by using the following code:
CREATE TABLE emp8 AS SELECT * FROM employees;

Note: The example in the slide is executed by using the Execute Statement option in SQL
Developer. The output format differs if you use the Run Script option.

Oracle Database 12c¢: SQL Workshop Il 1-19

Quiz

With the use of regular expressions in SQL and PL/SQL, you
can:

a. Avoid intensive string processing of SQL result sets by
middle-tier applications

Avoid data validation logic on the client
c. Enforce constraints on the server

ORACLE
Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

Answer: a, b, c

Oracle Database 12c: SQL Workshop Il 1-20

Summary

In this appendix, you should have learned how to use regular
expressions to search for, match, and replace strings.

ORACLE

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

In this appendix, you have learned to use the regular expression support features. Regular
expression support is available in both SQL and PL/SQL.

Oracle Database 12c¢: SQL Workshop Il 1-21

Ajuo asn suoin|og 1geb3 pue AlsiaAlun ajoelO

a3LigIHOdd A1LOIE1S SI d3LNdNOD SIHL INOYA STVIFTILVIN LIM® ONIAJOD "ATNO WOOHSSV1D SIHL NI 3SN dNOA d04 34V STIVIHILYIN LIMS 3SIHL

	Oracle Database 12c: SQL Workshop II - (Student Guide - Volume II)
	Table of Contents
	Lesson 10: Managing Data in Different Time Zones
	Objectives
	Lesson Agenda
	Time Zones
	TIME_ZONE Session Parameter
	CURRENT_DATE
	Comparing Date and Time in a Session’s Time Zone
	DBTIMEZONE and SESSIONTIMEZONE
	TIMESTAMP Data Types
	TIMESTAMP Fields
	Difference Between DATE and TIMESTAMP
	Comparing TIMESTAMP Data Types
	Lesson Agenda
	INTERVAL Data Types
	INTERVAL Fields
	INTERVAL YEAR TO MONTH: Example
	INTERVAL DAY TO SECOND Data Type: Example
	Lesson Agenda
	EXTRACT
	TZ_OFFSET
	FROM_TZ
	TO_TIMESTAMP
	TO_YMINTERVAL
	TO_DSINTERVAL
	Daylight Saving Time (DST)
	Quiz
	Summary
	Practice 10: Overview

	Appendix A: Table Descriptions
	Appendix B: Using SQL Developer
	Objectives
	What Is Oracle SQL Developer?
	Specifications of SQL Developer
	SQL Developer 3.2 Interface
	Creating a Database Connection
	Browsing Database Objects
	Displaying the Table Structure
	Browsing Files
	Creating a Schema Object
	Creating a New Table: Example
	Using the SQL Worksheet
	Executing SQL Statements
	Saving SQL Scripts
	Executing Saved Script Files: Method 1
	Executing Saved Script Files: Method 2
	Formatting the SQL Code
	Using Snippets
	Using Snippets: Example
	Using Recycle Bin
	Debugging Procedures and Functions
	Database Reporting
	Creating a User-Defined Report
	Search Engines and External Tools
	Setting Preferences
	Resetting the SQL Developer Layout
	Data Modeler in SQL Developer
	Summary

	Appendix C: Using SQL*Plus
	Objectives
	SQL and SQL*Plus Interaction
	SQL Statements Versus SQL*Plus Commands
	Overview of SQL*Plus
	Logging In to SQL*Plus
	Displaying the Table Structure
	SQL*Plus Editing Commands
	Using LIST
	Using the CHANGE Command
	SQL*Plus File Commands
	Using the SAVE
	SERVEROUTPUT Command
	Using the SQL*Plus SPOOL Command
	Using the AUTOTRACE Command
	Summary

	Appendix D: Commonly Used SQL Commands
	Objectives
	Basic SELECT Statement
	SELECT Statement
	WHERE Clause
	ORDER BY Clause
	GROUP BY Clause
	Data Definition Language
	CREATE TABLE Statement
	ALTER TABLE Statement
	DROP TABLE Statement
	GRANT Statement
	Privilege Types
	REVOKE Statement
	TRUNCATE TABLE Statement
	Data Manipulation Language
	INSERT Statement
	UPDATE Statement Syntax
	DELETE Statement
	Transaction Control Statements
	COMMIT Statement
	ROLLBACK Statement
	SAVEPOINT Statement
	Joins
	Types of Joins
	Qualifying Ambiguous Column Names
	Natural Join
	Equijoins
	Retrieving Records with Equijoins
	Additional Search Conditions Using the AND and WHERE Operators
	Retrieving Records with Nonequijoins
	Retrieving Records by Using the USING Clause
	Retrieving Records by Using the ON Clause
	Left Outer Join
	Right Outer Join
	Full Outer Join
	Self-Join: Example
	Cross Join
	Summary

	Appendix E: Generating Reports by Grouping Related Data
	Objectives
	Review of Group Functions
	Review of the GROUP BY Clause
	Review of the HAVING Clause
	GROUP BY with ROLLUP and CUBE Operators
	ROLLUP Operator
	ROLLUP Operator: Example
	CUBE Operator
	CUBE Operator: Example
	GROUPING Function
	GROUPING Function: Example
	GROUPING SETS
	GROUPING SETS: Example
	Composite Columns
	Composite Columns: Example
	Concatenated Groupings
	Concatenated Groupings: Example
	Summary

	Appendix F: Hierarchical Retrieval
	Objectives
	Sample Data from the EMPLOYEES Table
	Natural Tree Structure
	Hierarchical Queries
	Walking the Tree
	Walking the Tree: From the Bottom Up
	Walking the Tree: From the Top Down
	Ranking Rows with the LEVEL Pseudocolumn
	Formatting Hierarchical Reports Using LEVEL and LPAD
	Pruning Branches
	Summary

	Appendix G: Writing Advanced Scripts
	Objectives
	Using SQL to Generate SQL
	Creating a Basic Script
	Controlling the Environment
	The Complete Picture
	Dumping the Contents of a Table to a File
	Generating a Dynamic Predicate
	Summary

	Appendix H: Oracle Database Architectural Components
	Objectives
	Oracle Database Architecture: Overview
	Oracle Database Server Structures
	Connecting to the Database
	Interacting with an Oracle Database
	Oracle Memory Architecture
	Process Architecture
	Database Writer Process
	Log Writer Process
	Checkpoint Process
	System Monitor Process
	Process Monitor Process
	Oracle Database Storage Architecture
	Logical and Physical Database Structures
	Processing a SQL Statement
	Processing a Query
	Shared Pool
	Database Buffer Cache
	Program Global Area (PGA)
	Processing a DML Statement
	Redo Log Buffer
	Rollback Segment
	COMMIT Processing
	Summary of the Oracle Database Architecture
	Summary

	Appendix I: Regular Expression Support
	Objectives
	What Are Regular Expressions?
	Benefits of Using Regular Expressions
	Using the Regular Expressions Functions and Conditions in SQL and PL/SQL
	What Are Metacharacters?
	Using Metacharacters with Regular Expressions
	Regular Expressions Functions and Conditions: Syntax
	Performing a Basic Search by Using the REGEXP_LIKE Condition
	Replacing Patterns by Using the REGEXP_REPLACE Function
	Finding Patterns by Using the REGEXP_INSTR Function
	Extracting Substrings by Using the REGEXP_SUBSTR Function
	Subexpressions
	Using Subexpressions with Regular Expression Support
	Why Access the nth Subexpression?
	REGEXP_SUBSTR: Example
	Using the REGEXP_COUNT Function
	Regular Expressions and Check Constraints: Examples
	Quiz
	Summary

