
Oracle Database 11g: Develop
PL/SQL Program Units

Volume I • Student Guide

D49986GC12

Edition 1.2

April 2009

D59429

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 O

R
AC

LE
 C

O
R

PO
R

AT
IO

N
 u

se
 o

nl
y

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Copyright © 2009, Oracle. All rights reserved.

Disclaimer

This document contains proprietary information and is protected by copyright and
other intellectual property laws. You may copy and print this document solely for your
own use in an Oracle training course. The document may not be modified or altered in
any way. Except where your use constitutes "fair use" under copyright law, you may
not use, share, download, upload, copy, print, display, perform, reproduce, publish,
license, post, transmit, or distribute this document in whole or in part without the
express authorization of Oracle.

The information contained in this document is subject to change without notice. If you
find any problems in the document, please report them in writing to: Oracle University,
500 Oracle Parkway, Redwood Shores, California 94065 USA. This document is not
warranted to be error-free.

Restricted Rights Notice

If this documentation is delivered to the United States Government or anyone using
the documentation on behalf of the United States Government, the following notice is
applicable:

U.S. GOVERNMENT RIGHTS
The U.S. Government’s rights to use, modify, reproduce, release, perform, display, or
disclose these training materials are restricted by the terms of the applicable Oracle
license agreement and/or the applicable U.S. Government contract.

Trademark Notice

Oracle is a registered trademark of Oracle Corporation and/or its affiliates. Other
names may be trademarks of their respective owners.

Author
Lauran K. Serhal

Technical Contributors
and Reviewers

Don Bates
Claire Bennett
Zarko Cesljas
Purjanti Chang
Ashita Dhir
Peter Driver
Gerlinde Frenzen
Steve Friedberg
Nancy Greenberg
Thomas Hoogerwerf
Akira Kinutani
Chaitanya Koratamaddi
Timothy Leblanc
Bryn Llewellyn
Lakshmi Narapareddi
Essi Parast
Alan Paulson
Manish Pawar
Srinivas Putrevu
Bryan Roberts
Grant Spencer
Tulika Srivastava
Glenn Stokol
Jenny Tsai-Smith
Lex Van Der Werff
Ted Witiuk

Graphic Designer

Asha Thampy

Editors
Nita Pavitran
Aju Kumar

Publisher
Sheryl Domingue

Syed Ali

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 O

R
AC

LE
 C

O
R

PO
R

AT
IO

N
 u

se
 o

nl
y

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

 iii

Contents

Preface

1 Introduction

Lesson Objectives 1-2

Lesson Agenda 1-3

Course Objectives 1-4

Course Agenda 1-5

The Human Resources (HR) Schema That Is Used in This Course 1-7

Class Account Information 1-8

Appendixes Used in This Course 1-9

PL/SQL Development Environments 1-10

What Is Oracle SQL Developer? 1-11

Coding PL/SQL in SQL*Plus 1-12

Coding PL/SQL in Oracle JDeveloper 1-13

Lesson Agenda 1-14

Starting SQL Developer and Creating a Database Connection 1-15

Creating Schema Objects 1-16

Using the SQL Worksheet 1-17

Executing SQL Statements 1-19

Saving SQL Scripts 1-20

Executing Saved Script Files: Method 1 1-21

Executing Saved SQL Scripts: Method 2 1-22

Creating an Anonymous Block 1-23

Editing the PL/SQL Code 1-24

Lesson Agenda 1-25

Oracle 11g SQL and PL/SQL Documentation 1-26

Additional Resources 1-27

Summary 1-28

Practice 1 Overview: Getting Started 1-29

2 Creating Procedures

Objectives 2-2

Lesson Agenda 2-3

Creating a Modularized Subprogram Design 2-4

Creating a Layered Subprogram Design 2-5

Modularizing Development with PL/SQL Blocks 2-6

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 O

R
AC

LE
 C

O
R

PO
R

AT
IO

N
 u

se
 o

nl
y

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

 iv

Anonymous Blocks: Overview 2-7

PL/SQL Execution Environment 2-8

What Are PL/SQL Subprograms? 2-9

The Benefits of Using PL/SQL Subprograms 2-10

Differences Between Anonymous Blocks and Subprograms 2-11

Lesson Agenda 2-12

What Are Procedures? 2-13

Creating Procedures: Overview 2-14

Creating Procedures with the SQL CREATE OR REPLACE Statement 2-15

Creating Procedures Using SQL Developer 2-16

Compiling Procedures and Displaying Compilation Errors in SQL Developer 2-17

Correcting Compilation Errors in SQL Developer 2-18

Naming Conventions of PL/SQL Structures Used in This Course 2-19

What Are Parameters and Parameter Modes? 2-20

Formal and Actual Parameters 2-21

Procedural Parameter Modes 2-22

Comparing the Parameter Modes 2-23

Using the IN Parameter Mode: Example 2-24

Using the OUT Parameter Mode: Example 2-25

Using the IN OUT Parameter Mode: Example 2-26

Viewing the OUT Parameters: Using the DBMS_OUTPUT.PUT_LINE

 Subroutine 2-27

Viewing OUT Parameters: Using SQL*Plus Host Variables 2-28

Available Notations for Passing Actual Parameters 2-29

Passing Actual Parameters: Creating the add_dept Procedure 2-30

Passing Actual Parameters: Examples 2-31

Using the DEFAULT Option for the Parameters 2-32

Calling Procedures 2-34

Calling Procedures Using SQL Developer 2-35

Lesson Agenda 2-36

Handled Exceptions 2-37

Handled Exceptions: Example 2-38

Exceptions Not Handled 2-39

Exceptions Not Handled: Example 2-40

Removing Procedures: Using the DROP SQL Statement or SQL Developer 2-41

Viewing Procedure Information Using the Data Dictionary Views 2-42

Viewing Procedure Information Using SQL Developer 2-43

Quiz 2-44

Summary 2-45

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 O

R
AC

LE
 C

O
R

PO
R

AT
IO

N
 u

se
 o

nl
y

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

 v

Practice 2 Overview: Creating,

Compiling, and Calling Procedures 2-46

3 Creating Functions

Objectives 3-2

Overview of Stored Functions 3-3

Creating Functions 3-4

The Difference Between Procedures and Functions 3-5

Creating and Running Functions: Overview 3-6

Creating and Invoking a Stored Function Using the CREATE FUNCTION Statement:

 Example 3-7

Using Different Methods for Executing Functions 3-8

Creating and Compiling Functions Using SQL Developer 3-10

Executing Functions Using SQL Developer 3-11

Advantages of User-Defined Functions in SQL Statements 3-12

Using a Function in a SQL Expression: Example 3-13

Calling User-Defined Functions in SQL Statements 3-14

Restrictions When Calling Functions from SQL Expressions 3-15

Controlling Side Effects When Calling Functions from SQL Expressions 3-16

Restrictions on Calling Functions from SQL: Example 3-17

Named and Mixed Notation from SQL 3-18

Named and Mixed Notation from SQL: Example 3-19

Removing Functions: Using the DROP SQL Statement or SQL Developer 3-20

Viewing Functions Using Data Dictionary Views 3-21

Quiz 3-22

Summary 3-23

Practice 3: Overview 3-24

4 Creating Packages

Objectives 4-2

Lesson Agenda 4-3

What Are PL/SQL Packages? 4-4

Advantages of Using Packages 4-5

Components of a PL/SQL Package 4-7

The Visibility of a Package’s Components 4-8

Developing PL/SQL Packages: Overview 4-9

Lesson Agenda 4-10

Creating the Package Specification: Using the CREATE PACKAGE Statement 4-11

Creating the Package Specification: Using SQL Developer 4-12

Creating the Package Body: Using SQL Developer 4-13

Example of a Package Specification: comm_pkg 4-14

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 O

R
AC

LE
 C

O
R

PO
R

AT
IO

N
 u

se
 o

nl
y

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

 vi

Creating the Package Body 4-15

Example of a Package Body: comm_pkg 4-16

Invoking the Package Subprograms: Examples 4-17

Invoking the Package Subprograms: Using SQL Developer 4-18

Creating and Using Bodiless Packages 4-19

Removing Packages: Using SQL Developer or the SQL DROP Statement 4-20

Viewing Packages Using the Data Dictionary 4-21

Guidelines for Writing Packages 4-22

Quiz 4-23

Summary 4-24

Practice 4 Overview: Creating and Using Packages 4-25

5 Working with Packages

Objectives 5-2

Lesson Agenda 5-3

Overloading Subprograms in PL/SQL 5-4

Overloading Procedures Example: Creating the Package Specification 5-6

Overloading Procedures Example: Creating the Package Body 5-7

Overloading and the STANDARD Package 5-8

Illegal Procedure Reference 5-9

Using Forward Declarations to Solve Illegal Procedure Reference 5-10

Initializing Packages 5-11

Using Package Functions in SQL 5-12

Controlling Side Effects of PL/SQL Subprograms 5-13

Package Function in SQL: Example 5-14

Lesson Agenda 5-15

Persistent State of Packages 5-16

Persistent State of Package Variables: Example 5-18

Persistent State of a Package Cursor: Example 5-19

Executing the CURS_PKG Package 5-21

Using PL/SQL Tables of Records in Packages 5-22

Quiz 5-23

Summary 5-24

Practice 5: Overview 5-25

6 Using Oracle-Supplied Packages in Application Development

Objectives 6-2

Lesson Agenda 6-3

Using Oracle-Supplied Packages 6-4

Examples of Some Oracle-Supplied Packages 6-5

Lesson Agenda 6-6

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 O

R
AC

LE
 C

O
R

PO
R

AT
IO

N
 u

se
 o

nl
y

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

 vii

How the DBMS_OUTPUT Package Works 6-7

Using the UTL_FILE Package to Interact with Operating System Files 6-8

File Processing Using the UTL_FILE Package: Overview 6-9

Using the Available Declared Exceptions in the UTL_FILE Package 6-10

FOPEN and IS_OPEN Functions: Example 6-11

Using UTL_FILE: Example 6-13

What Is the UTL_MAIL Package? 6-15

Setting Up and Using the UTL_MAIL: Overview 6-16

Summary of UTL_MAIL Subprograms 6-17

Installing and Using UTL_MAIL 6-18

The SEND Procedure Syntax 6-19

The SEND_ATTACH_RAW Procedure 6-20

Sending Email with a Binary Attachment: Example 6-21

The SEND_ATTACH_VARCHAR2 Procedure 6-23

Sending Email with a Text Attachment: Example 6-24

Quiz 6-26

Summary 6-27

Practice 6: Overview 6-28

7 Using Dynamic SQL

Objectives 7-2

Lesson Agenda 7-3

Execution Flow of SQL 7-4

Working With Dynamic SQL 7-5

Using Dynamic SQL 7-6

Native Dynamic SQL (NDS) 7-7

Using the EXECUTE IMMEDIATE Statement 7-8

Available Methods for Using NDS 7-9

Dynamic SQL with a DDL Statement: Examples 7-11

Dynamic SQL with DML Statements 7-12

Dynamic SQL with a Single-Row Query: Example 7-13

Dynamic SQL with a Multirow Query: Example 7-14

Declaring Cursor Variables 7-15

Executing a PL/SQL Anonymous Block Dynamically 7-16

Using Native Dynamic SQL to Compile PL/SQL Code 7-17

Lesson Agenda 7-18

Using the DBMS_SQL Package 7-19

Using the DBMS_SQL Package Subprograms 7-20

Using DBMS_SQL with a DML Statement: Deleting Rows 7-22

Using DBMS_SQL with a Parameterized DML Statement 7-23

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 O

R
AC

LE
 C

O
R

PO
R

AT
IO

N
 u

se
 o

nl
y

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

 viii

Dynamic SQL Functional Completeness 7-24

Quiz 7-25

Summary 7-26

Practice 7 Overview: Using Native Dynamic SQL 7-27

8 Design Considerations for PL/SQL Code

Objectives 8-2

Lesson Agenda 8-3

Standardizing Constants and Exceptions 8-4

Standardizing Exceptions 8-5

Standardizing Exception Handling 8-6

Standardizing Constants 8-7

Local Subprograms 8-8

Definer’s Rights Versus Invoker’s Rights 8-9

Specifying Invoker’s Rights: Setting AUTHID to CURRENT_USER 8-10

Autonomous Transactions 8-11

Features of Autonomous Transactions 8-12

Using Autonomous Transactions: Example 8-13

Lesson Agenda 8-15

Using the NOCOPY Hint 8-16

Effects of the NOCOPY Hint 8-17

When Does the PL/SQL Compiler Ignore the NOCOPY Hint? 8-18

Using the PARALLEL_ENABLE Hint 8-19

Using the Cross-Session PL/SQL Function Result Cache 8-20

Enabling Result-Caching for a Function 8-21

Declaring and Defining a Result-Cached Function: Example 8-22

Using the DETERMINISTIC Clause with Functions 8-24

Lesson Agenda 8-25

Bulk Binding 8-26

Using Bulk Binding: Syntax and Keywords 8-27

Bulk Binding FORALL: Example 8-29

Using BULK COLLECT INTO with Queries 8-31

Using BULK COLLECT INTO with Cursors 8-32

Using BULK COLLECT INTO with a RETURNING Clause 8-33

FORALL Support for Sparse Collections 8-34

Using Bulk Binds in Sparse Collections 8-35

Using Bulk Bind with Index Array 8-36

Using the RETURNING Clause 8-37

Quiz 8-38

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 O

R
AC

LE
 C

O
R

PO
R

AT
IO

N
 u

se
 o

nl
y

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

 ix

Summary 8-39

Practice 8: Overview 8-40

9 Creating Triggers

Objectives 9-2

What Are Triggers? 9-3

Defining Triggers 9-4

Trigger Event Types 9-5

Application and Database Triggers 9-6

Business Application Scenarios for Implementing Triggers 9-7

Available Trigger Types 9-8

Trigger Event Types and Body 9-9

Creating DML Triggers Using the CREATE TRIGGER Statement 9-10

Specifying the Trigger Firing (Timing) 9-11

Statement-Level Triggers Versus Row-Level Triggers 9-12

Creating DML Triggers Using SQL Developer 9-13

Trigger-Firing Sequence: Single-Row Manipulation 9-14

Trigger-Firing Sequence: Multirow Manipulation 9-15

Creating a DML Statement Trigger Example: SECURE_EMP 9-16

Testing Trigger SECURE_EMP 9-17

Using Conditional Predicates 9-18

Creating a DML Row Trigger 9-19

Using OLD and NEW Qualifiers 9-20

Using OLD and NEW Qualifiers: Example 9-21

Using OLD and NEW Qualifiers: Example Using AUDIT_EMP 9-22

Using the WHEN Clause to Fire a Row Trigger Based on a Condition 9-23

Summary of the Trigger Execution Model 9-24

Implementing an Integrity Constraint with an After Trigger 9-25

INSTEAD OF Triggers 9-26

Creating an INSTEAD OF Trigger: Example 9-27

Creating an INSTEAD OF Trigger to Perform DML on Complex Views 9-28

The Status of a Trigger 9-30

Creating a Disabled Trigger 9-31

Managing Triggers Using the ALTER and DROP SQL Statements 9-32

Managing Triggers Using SQL Developer 9-33

Testing Triggers 9-34

Viewing Trigger Information 9-35

Using USER_TRIGGERS 9-36

Quiz 9-37

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 O

R
AC

LE
 C

O
R

PO
R

AT
IO

N
 u

se
 o

nl
y

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

 x

Summary 9-38

Practice 9 Overview: Creating Statement and Row Triggers 9-39

10 Creating Compound, DDL, and Event Database Triggers

Objectives 10-2

What Is a Compound Trigger? 10-3

Working with Compound Triggers 10-4

The Benefits of Using a Compound Trigger 10-5

Timing-Point Sections of a Table Compound Trigger 10-6

Compound Trigger Structure for Tables 10-7

Compound Trigger Structure for Views 10-8

Compound Trigger Restrictions 10-9

Trigger Restrictions on Mutating Tables 10-10

Mutating Table: Example 10-11

Using a Compound Trigger to Resolve the Mutating Table Error 10-13

Using a Compound Trigger to Resolve the Mutating Table Error 10-14

Comparing Database Triggers to Stored Procedures 10-15

Comparing Database Triggers to Oracle Forms Triggers 10-16

Creating Triggers on DDL Statements 10-17

Creating Database-Event Triggers 10-18

Creating Triggers on System Events 10-19

LOGON and LOGOFF Triggers: Example 10-20

CALL Statements in Triggers 10-21

Benefits of Database-Event Triggers 10-22

System Privileges Required to Manage Triggers 10-23

Guidelines for Designing Triggers 10-24

Quiz 10-25

Summary 10-26

Practice 10: Overview 10-27

11 Using the PL/SQL Compiler

Objectives 11-2

Lesson Agenda 11-3

Using the PL/SQL Compiler 11-4

Changes in the PL/SQL Compiler 11-5

Lesson Agenda 11-6

Initialization Parameters for PL/SQL Compilation 11-7

Using the Initialization Parameters for PL/SQL Compilation 11-8

The New Compiler Settings Since Oracle 10g 11-11

Displaying the PL/SQL Initialization Parameters 11-12

Displaying and Setting the PL/SQL Initialization Parameters 11-13

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 O

R
AC

LE
 C

O
R

PO
R

AT
IO

N
 u

se
 o

nl
y

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

 xi

Changing PL/SQL Initialization Parameters: Example 11-14

Lesson Agenda 11-15

Overview of PL/SQL Compile-Time Warnings for Subprograms 11-16

Benefits of Compiler Warnings 11-18

Categories of PL/SQL Compile-Time Warning Messages 11-19

Setting the Warning Messages Levels 11-20

Setting Compiler Warning Levels: Using PLSQL_WARNINGS 11-21

Setting Compiler Warning Levels: Using PLSQL_WARNINGS, Examples 11-22

Setting Compiler Warning Levels: Using PLSQL_WARNINGS in SQL

 Developer 11-23

Viewing the Current Setting of PLSQL_WARNINGS 11-24

Viewing the Compiler Warnings: Using SQL Developer, SQL*Plus, or Data Dictionary

 Views 11-25

SQL*Plus Warning Messages: Example 11-26

Guidelines for Using PLSQL_WARNINGS 11-27

Lesson Agenda 11-28

Setting Compiler Warning Levels: Using the DBMS_WARNING Package 11-29

Using the DBMS_WARNING Package Subprograms 11-31

The DBMS_WARNING Procedures: Syntax, Parameters, and Allowed

 Values 11-32

The DBMS_WARNING Procedures: Example 11-33

The DBMS_WARNING Functions: Syntax, Parameters, and Allowed Values 11-34

The DBMS_WARNING Functions: Example 11-35

Using DBMS_WARNING: Example 11-36

Using the New PLW 06009 Warning Message 11-38

The New PLW 06009 Warning: Example 11-39

Quiz 11-40

Summary 11-41

Practice 11: Overview 11-42

12 Managing PL/SQL Code

Objectives 12-2

Lesson Agenda 12-3

What Is Conditional Compilation? 12-4

How Does Conditional Compilation Work? 12-5

Using Selection Directives 12-6

Using Predefined and User-Defined Inquiry Directives 12-7

The PLSQL_CCFLAGS Parameter and the Inquiry Directive 12-8

Displaying the PLSQL_CCFLAGS Initialization Parameter Setting 12-9

The PLSQL_CCFLAGS Parameter and the Inquiry Directive: Example 12-10

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 O

R
AC

LE
 C

O
R

PO
R

AT
IO

N
 u

se
 o

nl
y

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

 xii

Using Conditional Compilation Error Directives to Raise User-Defined Errors 12-11

Using Static Expressions with Conditional Compilation 12-12

The DBMS_DB_VERSION Package: Boolean Constants 12-13

The DBMS_DB_VERSION Package Constants 12-14

Using Conditional Compilation with Database Versions: Example 12-15

Using DBMS_PREPROCESSOR Procedures to Print or Retrieve Source Text 12-17

Lesson Agenda 12-18

What Is Obfuscation? 12-19

Benefits of Obfuscating 12-20

What’s New in Dynamic Obfuscating Since Oracle 10g? 12-21

Nonobfuscated PL/SQL Code: Example 12-22

Obfuscated PL/SQL Code: Example 12-23

Dynamic Obfuscation: Example 12-24

The PL/SQL Wrapper Utility 12-25

Running the Wrapper Utility 12-26

Results of Wrapping 12-27

Guidelines for Wrapping 12-28

DBMS_DDL Package Versus the Wrap Utility 12-29

Quiz 12-30

Summary 12-31

Practice 12: Overview 12-32

13 Managing Dependencies

Objectives 13-2

Overview of Schema Object Dependencies 13-3

Dependencies 13-4

Direct Local Dependencies 13-5

Querying Direct Object Dependencies: Using the USER_DEPENDENCIES

 View 13-6

Querying an Object’s Status 13-7

Invalidation of Dependent Objects 13-8

Schema Object Change That Invalidates Some Dependents: Example 13-9

Schema Object Change That Invalidates Some Dependents: Example 13-10

Displaying Direct and Indirect Dependencies 13-11

Displaying Dependencies Using the DEPTREE View 13-12

More Precise Dependency Metadata in Oracle Database 11g 13-13

Fine-Grained Dependency Management 13-14

Fine-Grained Dependency Management: Example 1 13-15

Fine-Grained Dependency Management: Example 2 13-17

Impact of Redefining Synonyms Before Oracle Database 10g 13-18

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 O

R
AC

LE
 C

O
R

PO
R

AT
IO

N
 u

se
 o

nl
y

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

 xiii

Changes to Synonym Dependencies Starting with Oracle Database 10g 13-19

Maintaining Valid PL/SQL Program Units and Views 13-20

Another Scenario of Local Dependencies 13-21

Guidelines for Reducing Invalidation 13-22

Object Revalidation 13-23

Remote Dependencies 13-24

Concepts of Remote Dependencies 13-25

Setting the REMOTE_DEPENDENCIES_MODE Parameter 13-26

Remote Procedure B Compiles at 8:00 AM 13-27

Local Procedure A Compiles at 9:00 AM 13-28

Execute Procedure A 13-29

Remote Procedure B Recompiled at 11:00 AM 13-30

Execute Procedure A 13-31

Signature Mode 13-32

Recompiling a PL/SQL Program Unit 13-33

Unsuccessful Recompilation 13-34

Successful Recompilation 13-35

Recompiling Procedures 13-36

Packages and Dependencies: Subprogram References the Package 13-37

Packages and Dependencies: Package Subprogram References Procedure 13-38

Quiz 13-39

Summary 13-40

Practice 13 Overview: Managing Dependencies in Your Schema 13-41

Appendix A: Practice Solutions

Appendix B: Table Descriptions

Appendix C: Using SQL Developer

Objectives C-2

What Is Oracle SQL Developer? C-3

Specifications of SQL Developer C-4

Installing SQL Developer C-5

SQL Developer 1.2 Interface C-6

Creating a Database Connection C-7

Browsing Database Objects C-10

Creating a Schema Object C-11

Creating a New Table: Example C-12

Using the SQL Worksheet C-13

Executing SQL Statements C-16

Saving SQL Scripts C-17

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 O

R
AC

LE
 C

O
R

PO
R

AT
IO

N
 u

se
 o

nl
y

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

 xiv

Executing Saved Script Files: Method 1 C-18

Executing Saved Script Files: Method 2 C-19

Executing SQL Statements C-20

Formatting the SQL Code C-21

Using Snippets C-22

Using Snippets: Example C-23

Using SQL*Plus C-24

Debugging Procedures and Functions C-25

Database Reporting C-26

Creating a User-Defined Report C-27

Search Engines and External Tools C-28

Setting Preferences C-29

Specifications of SQL Developer 1.5.3 C-30

Installing SQL Developer 1.5.3 C-31

SQL Developer 1.5.3 Interface C-32

Summary C-34

Appendix D: Review of PL/SQL

Block Structure for AnonymousPL/SQL Blocks D-2

Declaring PL/SQL Variables D-3

Declaring Variables with the %TYPE Attribute: Examples D-4

Creating a PL/SQL Record D-5

%ROWTYPE Attribute: Examples D-6

Creating a PL/SQL Table D-7

SELECT Statements in PL/SQL: Example D-8

Inserting Data: Example D-9

Updating Data: Example D-10

Deleting Data: Example D-11

COMMIT and ROLLBACK Statements D-12

SQL Cursor Attributes D-13

IF, THEN, and ELSIF Statements: Example D-14

Basic Loop: Example D-15

FOR Loop: Example D-16

WHILE Loop: Example D-17

Controlling Explicit Cursors D-18

Declaring the Cursor: Example D-19

Opening the Cursor D-20

Fetching Data from the Cursor: Examples D-21

Closing the Cursor D-22

Explicit Cursor Attributes D-23

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 O

R
AC

LE
 C

O
R

PO
R

AT
IO

N
 u

se
 o

nl
y

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

 xv

Cursor FOR Loops: Example D-24

FOR UPDATE Clause: Example D-25

WHERE CURRENT OF Clause: Example D-26

Trapping Predefined Oracle Server Errors D-27

Trapping Predefined Oracle Server Errors: Example D-28

Non-Predefined Error D-29

User-Defined Exceptions: Example D-30

RAISE_APPLICATION_ERROR Procedure D-31

Appendix E: Using SQL*Plus

Objectives E-2

SQL and SQL*Plus Interaction E-3

SQL Statements Versus SQL*Plus Commands E-4

Overview of SQL*Plus E-5

Logging In to SQL*Plus: Available Methods E-6

Customizing the SQL*Plus Environment E-7

Displaying Table Structure E-8

SQL*Plus Editing Commands E-10

Using LIST, n, and APPEND E-12

Using the CHANGE Command E-13

SQL*Plus File Commands E-14

Using the SAVE, START, and EDIT Commands E-15

SQL*Plus Enhancements Since Oracle Database 10g E-17

Changes to the SERVEROUTPUT Command E-18

White Space Support in File and Path Names in Windows E-19

Predefined SQL*Plus Variables E-20

Using the New Predefined SQL*Plus Variables: Examples E-21

The SHOW Command and the New RECYCLEBIN Clause E-22

The SHOW Command and the RECYCLEBIN Clause: Example E-23

Using the SQL*Plus SPOOL Command E-24

Using the SQL*Plus SPOOL Command: Examples E-25

The COPY Command: New Error Messages E-26

Change in the DESCRIBE Command Behavior E-29

The SET PAGES[IZE] Command E-30

The SQLPLUS Program and the Compatibility Option E-31

Using the AUTOTRACE Command E-32

Displaying a Plan Table Using the DBMS_XPLAN.DISPLAY Package

 Function E-33

Summary E-34

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 O

R
AC

LE
 C

O
R

PO
R

AT
IO

N
 u

se
 o

nl
y

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

 xvi

Appendix F: Studies for Implementing Triggers

Objectives F-2

Controlling Security Within the Server F-3

Controlling Security with a Database Trigger F-4

Enforcing Data Integrity Within the Server F-5

Protecting Data Integrity with a Trigger F-6

Enforcing Referential Integrity Within the Server F-7

Protecting Referential Integrity with a Trigger F-8

Replicating a Table Within the Server F-9

Replicating a Table with a Trigger F-10

Computing Derived Data Within the Server F-11

Computing Derived Values with a Trigger F-12

Logging Events with a Trigger F-13

Summary F-15

Appendix G: Using the DBMS_SCHEDULER and HTP Packages

Objectives G-2

Generating Web Pages with the HTP Package G-3

Using the HTP Package Procedures G-4

Creating an HTML File with SQL*Plus G-5

The DBMS_SCHEDULER Package G-6

Creating a Job G-8

Creating a Job with Inline Parameters G-9

Creating a Job Using a Program G-10

Creating a Job for a Program with Arguments G-11

Creating a Job Using a Schedule G-12

Setting the Repeat Interval for a Job G-13

Creating a Job Using a Named Program and Schedule G-14

Managing Jobs G-15

Data Dictionary Views G-16

Summary G-17

Appendix H: Review of JDeveloper

JDeveloper H-2

Connection Navigator H-3

Application Navigator H-4

Structure Window H-5

Editor Window H-6

Deploying Java Stored Procedures H-7

Publishing Java to PL/SQL H-8

Creating Program Units H-9

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 O

R
AC

LE
 C

O
R

PO
R

AT
IO

N
 u

se
 o

nl
y

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

 xvii

Compiling H-10

Running a Program Unit H-11

Dropping a Program Unit H-12

Debugging PL/SQL Programs H-13

Setting Breakpoints H-16

Stepping Through Code H-17

Examining and Modifying Variables H-18

Index

Additional Practices

Additional Practice: Solutions

Additional Practices: Table Descriptions and Data

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 O

R
AC

LE
 C

O
R

PO
R

AT
IO

N
 u

se
 o

nl
y

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

 xviii

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 O

R
AC

LE
 C

O
R

PO
R

AT
IO

N
 u

se
 o

nl
y

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Preface

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 O

R
AC

LE
 C

O
R

PO
R

AT
IO

N
 u

se
 o

nl
y

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 O

R
AC

LE
 C

O
R

PO
R

AT
IO

N
 u

se
 o

nl
y

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Preface - 3

Profile

Before You Begin This Course

Before you begin this course, you should have thorough knowledge of SQL and SQL*Developer or
SQL*Plus, as well as working experience in developing applications.

Prerequisites

Prerequisites are any of the following Oracle University courses or combinations of courses:

• Oracle Database 11g: PL/SQL Fundamentals

• Oracle Database 11g: Introduction to SQL

• Oracle Database 11g: SQL Fundamentals I and Oracle Database 11g: SQL Fundamentals II

• Oracle Database 11g: SQL and PL/SQL Fundamentals

How This Course Is Organized

Oracle Database 11g: Develop PL/SQL Program Units is an instructor-led course featuring lectures and
hands-on exercises. Online demonstrations and practice sessions reinforce the concepts and skills that are
introduced.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 O

R
AC

LE
 C

O
R

PO
R

AT
IO

N
 u

se
 o

nl
y

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Preface - 4

Related Publications

Oracle Publications

Title Part Number

Oracle® Database Reference 11g Release 1 (11.1) B28320-01

Oracle® Database SQL Language Reference 11g Release 1 (11.1) B28286-01

Oracle® Database Concepts 11g Release 1 (11.1) B28318-01

Oracle® Database Advanced Application Developer's Guide –
11g Release 1 (11.1) B28424-01

SQL*Plus® User's Guide and Reference Release 11.1 B31189-01

Oracle Database SQL Developer User's Guide Release 1.2 B10406-01

Oracle® Database PL/SQL Language Reference B28370-01

11g Release 1 (11.1)

Oracle® Database PL/SQL Packages and Types Reference B28419-01
11g Release 1 (11.1)

Additional Publications

• System release bulletins

• Installation and user’s guides

• Read-me files

• International Oracle User’s Group (IOUG) articles

• Oracle Magazine

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 O

R
AC

LE
 C

O
R

PO
R

AT
IO

N
 u

se
 o

nl
y

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Preface - 5

Typographic Conventions

Typographic Conventions In Text

Convention Element Example

Bold Emphasized words and phrases
in Web content only

To navigate within this application, do
not click the Back and Forward buttons.

Bold italic

Glossary terms (if there is a
glossary)

The algorithm inserts the new key.

Brackets

Key names

Press [Enter].

Caps and
lowercase

Buttons,
check boxes,
triggers,
windows

Click the Executable button.

Select the Registration Required check
box.

Assign a When-Validate-Item trigger.

Open the Master Schedule window.

Carets

Menu paths

Select File > Save.

Commas

Key sequences

Press and release these keys one at a
time:
[Alt], [F], [D]

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 O

R
AC

LE
 C

O
R

PO
R

AT
IO

N
 u

se
 o

nl
y

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Preface - 6

Typographic Conventions (continued)

Typographic Conventions In Text (continued)

Convention Object or Term Example

Courier New,
case sensitive

Code output,
SQL and PL/SQL
code elements, Java
code elements,
directory names,
filenames,
passwords,
pathnames, URLs,
user input,
usernames

Code output: debug.seti (‘I’,300);

SQL code elements: Use the SELECT command to view
information stored in the last_name column of the emp
table.

Java code elements: Java programming involves the
String and StringBuffer classes.

Directory names: bin (DOS), $FMHOME (UNIX)

Filenames: Locate the init.ora file.

Passwords: Use tiger as your password.

Pathnames: Open c:\my_docs\projects.

URLs: Go to http://www.oracle.com.

User input: Enter 300.

Usernames: Log on as scott.

Initial cap Graphics labels
(unless the term is a
proper noun)

Customer address (but Oracle Payables)

Italic Emphasized words
and phrases in print
publications, titles of
books and courses,
variables

Do not save changes to the database.

For further information, see Oracle7 Server SQL
Language Reference Manual.

Enter user_id@us.oracle.com, where user_id is
the name of the user.

Plus signs Key combinations Press and hold these keys simultaneously:
[Control] + [Alt] + [Delete]

Quotation
marks

Lesson and chapter
titles in cross
references, interface
elements with long
names that have only
initial caps

This subject is covered in Unit II, Lesson 3, “Working with
Objects.”

Select the “Include a reusable module component” and
click Finish.

Use the “WHERE clause of query” property.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 O

R
AC

LE
 C

O
R

PO
R

AT
IO

N
 u

se
 o

nl
y

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Preface - 7

Typographic Conventions (continued)

Typographic Conventions in Navigation Paths

This course uses simplified navigation paths, such as the following example, to direct you through Oracle
Applications.

Example:

Invoice Batch Summary

(N) Invoice > Entry > Invoice Batches Summary (M) Query > Find (B) Approve

This simplified path translates to the following:

1. (N) From the Navigator window, select Invoice > Entry > Invoice Batches Summary.

2. (M) From the menu, select Query > Find.

3. (B) Click the Approve button.

Notation:

(N) = Navigator (I) = Icon

(M) = Menu (H) = Hyperlink

(T) = Tab (B) = Button

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 O

R
AC

LE
 C

O
R

PO
R

AT
IO

N
 u

se
 o

nl
y

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 O

R
AC

LE
 C

O
R

PO
R

AT
IO

N
 u

se
 o

nl
y

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Copyright © 2009, Oracle. All rights reserved.

Introduction

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 O

R
AC

LE
 C

O
R

PO
R

AT
IO

N
 u

se
 o

nl
y

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Oracle Database 11g: Develop PL/SQL Program Units 1 - 2

Copyright © 2009, Oracle. All rights reserved.

Lesson Objectives

After completing this lesson, you should be able to do the
following:

• Discuss the goals of the course

• Identify the available environments that can be used in this
course

• Describe the database schema and tables that are used in
the course

• List the available documentation and resources

Lesson Aim

PL/SQL supports many program constructs. In this lesson, you review program units in the form
of anonymous blocks, and you are introduced to named PL/SQL blocks. The named PL/SQL
blocks are also referred to as subprograms. The named PL/SQL blocks include procedures and
functions.

The tables from the Human Resources (HR) schema (which is used for the practices in this
course) are briefly discussed. The development tools for writing, testing, and debugging PL/SQL
are listed.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 O

R
AC

LE
 C

O
R

PO
R

AT
IO

N
 u

se
 o

nl
y

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Oracle Database 11g: Develop PL/SQL Program Units 1 - 3

Copyright © 2009, Oracle. All rights reserved.

Lesson Agenda

• Course objectives and course agenda

• The schema and appendixes used in this course and the
available PL/SQL development in this course

• Overview of Oracle SQL Developer

• Oracle 11g documentation and additional resources

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 O

R
AC

LE
 C

O
R

PO
R

AT
IO

N
 u

se
 o

nl
y

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Oracle Database 11g: Develop PL/SQL Program Units 1 - 4

Copyright © 2009, Oracle. All rights reserved.

Course Objectives

After completing this course, you should be able to do the
following:

• Create, execute, and maintain:
– Procedures and functions with OUT parameters

– Package constructs

– Database triggers

• Manage PL/SQL subprograms and triggers

• Use a subset of Oracle-supplied packages to:
– Generate screen and file output

Course Objectives

You can develop modularized applications with database procedures by using database objects
such as the following:

• Procedures and functions
• Packages
• Database triggers

Modular applications improve:
• Functionality
• Security
• Overall performance

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 O

R
AC

LE
 C

O
R

PO
R

AT
IO

N
 u

se
 o

nl
y

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Oracle Database 11g: Develop PL/SQL Program Units 1 - 5

Copyright © 2009, Oracle. All rights reserved.

Course Agenda

Day 1:

• Introduction

• Creating Procedures

• Creating Functions

• Creating Packages

• Working with Packages

Day 2:

• Using Oracle-Supplied Packages in Application
Development

• Using Dynamic SQL

• Design Considerations for PL/SQL Code

• Creating Triggers

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 O

R
AC

LE
 C

O
R

PO
R

AT
IO

N
 u

se
 o

nl
y

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Oracle Database 11g: Develop PL/SQL Program Units 1 - 6

Copyright © 2009, Oracle. All rights reserved.

Course Agenda

Day 3:

• Creating Compound, DDL, and Event Database Triggers

• Using the PL/SQL Compiler

• Managing PL/SQL Code

• Managing Dependencies

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 O

R
AC

LE
 C

O
R

PO
R

AT
IO

N
 u

se
 o

nl
y

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Oracle Database 11g: Develop PL/SQL Program Units 1 - 7

Copyright © 2009, Oracle. All rights reserved.

The Human Resources (HR) Schema
That Is Used in This Course

DEPARTMENTS
department_id

department_name
manager_id
location_id

LOCATIONS
location_id

street_address
postal_code

city
state_province

country_id

COUNTRIES
country_id

country_name
region_id

REGIONS
region_id

region_name

EMPLOYEES
employee_id

first_name
last_name

email
phone_number

hire_date
job_id
salary

commission_pct
manager_id

department_id
JOBS

job_id
job_title

min_salary
max_salary

JOB_HISTORY
employee_id
start_date
end_date

job_id
department_id

The Human Resources (HR) Schema Description

The Human Resources (HR) schema is part of the Oracle Sample Schemas that can be installed
in an Oracle database. The practice sessions in this course use data from the HR schema.

Table Descriptions
• REGIONS contains rows that represent a region such as Americas, Asia, and so on.
• COUNTRIES contains rows for countries, each of which is associated with a region.
• LOCATIONS contains the specific address of a specific office, warehouse, or production

site of a company in a particular country.
• DEPARTMENTS shows details about the departments in which employees work. Each

department may have a relationship representing the department manager in the
EMPLOYEES table.

• EMPLOYEES contains details about each employee working for a department. Some
employees may not be assigned to any department.

• JOBS contains the job types that can be held by each employee.
• JOB_HISTORY contains the job history of the employees. If an employee changes

departments within a job or changes jobs within a department, a new row is inserted into
this table with the old job information of the employee.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 O

R
AC

LE
 C

O
R

PO
R

AT
IO

N
 u

se
 o

nl
y

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Oracle Database 11g: Develop PL/SQL Program Units 1 - 8

Copyright © 2009, Oracle. All rights reserved.

Class Account Information

• Cloned HR account IDs are set up for you.

• Your account IDs are ora61 – ora80.

• The password matches your account ID.

• Each machine is assigned one account.

• The instructor has a separate ID.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 O

R
AC

LE
 C

O
R

PO
R

AT
IO

N
 u

se
 o

nl
y

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Oracle Database 11g: Develop PL/SQL Program Units 1 - 9

Copyright © 2009, Oracle. All rights reserved.

Appendixes Used in This Course

• Appendix A: Practices and Solutions

• Appendix APS: Additional Practice: Solutions

• Appendix B: Table Descriptions

• Appendix C: Using SQL Developer

• Appendix D: Review of PL/SQL

• Appendix E: Using SQL*Plus

• Appendix F: Studies for Implementing Triggers
• Appendix G: Using the DBMS_SCHEDULER and HTP

Packages

• Appendix H: Review of JDeveloper

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 O

R
AC

LE
 C

O
R

PO
R

AT
IO

N
 u

se
 o

nl
y

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Oracle Database 11g: Develop PL/SQL Program Units 1 - 10

Copyright © 2009, Oracle. All rights reserved.

PL/SQL Development Environments

This course setup provides the following tools for developing
PL/SQL code:

• Oracle SQL Developer (used in this course)

• Oracle SQL*Plus

• Oracle JDeveloper IDE

PL/SQL Development Environments

There are many tools that provide an environment for developing PL/SQL code. Oracle provides
several tools that can be used to write PL/SQL code. Some of the development tools that are
available for use in this course are:

• Oracle SQL Developer: A graphical tool
• Oracle SQL*Plus: A window or command-line application
• Oracle JDeveloper: A window-based integrated development environment (IDE)

Note: The code and screen examples presented in the course notes were generated from output
in the SQL Developer environment.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 O

R
AC

LE
 C

O
R

PO
R

AT
IO

N
 u

se
 o

nl
y

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Oracle Database 11g: Develop PL/SQL Program Units 1 - 11

Copyright © 2009, Oracle. All rights reserved.

What Is Oracle SQL Developer?

• Oracle SQL Developer is a free graphical tool that
enhances productivity and simplifies database
development tasks.

• You can connect to any target Oracle database schema
using standard Oracle database authentication.

• You use SQL Developer in this course.

SQL Developer

What Is Oracle SQL Developer?

Oracle SQL Developer is a free graphical tool designed to improve your productivity and
simplify the development of everyday database tasks. With just a few clicks, you can easily
create and maintain stored procedures, test SQL statements, and view optimizer plans.

SQL Developer, the visual tool for database development, simplifies the following tasks:
• Browsing and managing database objects
• Executing SQL statements and scripts
• Editing and debugging PL/SQL statements
• Creating reports

You can connect to any target Oracle database schema using standard Oracle database
authentication. When connected, you can perform operations on objects in the database.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 O

R
AC

LE
 C

O
R

PO
R

AT
IO

N
 u

se
 o

nl
y

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Oracle Database 11g: Develop PL/SQL Program Units 1 - 12

Copyright © 2009, Oracle. All rights reserved.

Coding PL/SQL in SQL*Plus

Coding PL/SQL in SQL*Plus

Oracle SQL*Plus is a graphical user interface (GUI) or command-line application that enables
you to submit SQL statements and PL/SQL blocks for execution and receive the results in an
application or command window.

SQL*Plus is:
• Shipped with the database
• Installed on a client and on the database server system
• Accessed from an icon or the command line

When coding PL/SQL subprograms using SQL*Plus, remember the following:
• You create subprograms by using the CREATE SQL statement.
• You execute subprograms by using either an anonymous PL/SQL block or the EXECUTE

command.
• If you use the DBMS_OUTPUT package procedures to print text to the screen, you must

first execute the SET SERVEROUTPUT ON command in your session.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 O

R
AC

LE
 C

O
R

PO
R

AT
IO

N
 u

se
 o

nl
y

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Oracle Database 11g: Develop PL/SQL Program Units 1 - 13

Copyright © 2009, Oracle. All rights reserved.

Coding PL/SQL in Oracle JDeveloper

Edit

Run

Coding PL/SQL in Oracle JDeveloper

Oracle JDeveloper allows developers to create, edit, test, and debug PL/SQL code by using a
sophisticated GUI. Oracle JDeveloper is a part of Oracle Developer Suite and is also available as
a separate product.

When coding PL/SQL in JDeveloper, consider the following:
• You first create a database connection to enable JDeveloper to access a database schema

owner for the subprograms.
• You can then use the JDeveloper context menus on the Database connection to create a

new subprogram construct using the built-in JDeveloper Code Editor. The JDeveloper
Code Editor provides an excellent environment for PL/SQL development, with features
such as the following:

- Different colors for syntactical components of the PL/SQL language
- Code insight to rapidly locate procedures and functions in supplied packages

• You invoke a subprogram by using a Run command on the context menu for the named
subprogram. The output appears in the JDeveloper Log Message window, as shown in the
lower portion of the screenshot.

Note: JDeveloper provides color-coding syntax in the JDeveloper Code Editor and is sensitive to
PL/SQL language constructs and statements.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 O

R
AC

LE
 C

O
R

PO
R

AT
IO

N
 u

se
 o

nl
y

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Oracle Database 11g: Develop PL/SQL Program Units 1 - 14

Copyright © 2009, Oracle. All rights reserved.

Lesson Agenda

• Course objectives and course agenda

• The schema and appendixes used in this course and the
available PL/SQL development in this course

• Overview of Oracle SQL Developer

• Oracle 11g documentation and additional resources

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 O

R
AC

LE
 C

O
R

PO
R

AT
IO

N
 u

se
 o

nl
y

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Oracle Database 11g: Develop PL/SQL Program Units 1 - 15

Copyright © 2009, Oracle. All rights reserved.

Starting SQL Developer and
Creating a Database Connection

1

2

3

4 5

Creating a Database Connection

To create a database connection, perform the following steps:
1. Double-click <your_path>\sqldeveloper\sqldeveloper.exe.
2. On the Connections tabbed page, right-click Connections and select New Database

Connection.
3. Enter the connection name, username, password, host name, and SID for the database you

want to connect to.
4. Click Test to make sure that the connection has been set correctly.
5. Click Connect.

On the basic tabbed page, at the bottom, enter the following options:
• Hostname: Host system for the Oracle database
• Port: Listener port
• SID: Database name
• Service Name: Network service name for a remote database connection

If you select the Save Password check box, the password is saved to an XML file. So, after you
close the SQL Developer connection and open it again, you will not be prompted for the
password.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 O

R
AC

LE
 C

O
R

PO
R

AT
IO

N
 u

se
 o

nl
y

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Oracle Database 11g: Develop PL/SQL Program Units 1 - 16

Copyright © 2009, Oracle. All rights reserved.

Creating Schema Objects

• You can create any schema object in SQL Developer
using one of the following methods:
– Executing a SQL statement in the SQL Worksheet

– Using the context menu

• Edit the objects using an edit dialog box or one of the
many context-sensitive menus.

• View the DDL for adjustments such as creating a new
object or editing an existing schema object.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 O

R
AC

LE
 C

O
R

PO
R

AT
IO

N
 u

se
 o

nl
y

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Oracle Database 11g: Develop PL/SQL Program Units 1 - 17

Copyright © 2009, Oracle. All rights reserved.

Using the SQL Worksheet

• Use the SQL Worksheet to enter and execute SQL,
PL/SQL, and SQL *Plus statements.

• Specify any actions that can be processed by the database
connection associated with the worksheet.

Click the Open SQL
Worksheet icon.

Select SQL
Worksheet from the
Tools menu, or

Using the SQL Worksheet

When you connect to a database, a SQL Worksheet window for that connection is automatically
opened. You can use the SQL Worksheet to enter and execute SQL, PL/SQL, and SQL*Plus
statements. The SQL Worksheet supports SQL*Plus statements to a certain extent. SQL*Plus
statements that are not supported by the SQL Worksheet are ignored and not passed to the
database.

You can specify any actions that can be processed by the database connection associated with
the worksheet, such as:

• Creating a table
• Inserting data
• Creating and editing a trigger
• Selecting data from a table
• Saving the selected data to a file

You can display a SQL Worksheet by using any of the following two options:
• Select Tools > SQL Worksheet.
• Click the Open SQL Worksheet icon.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 O

R
AC

LE
 C

O
R

PO
R

AT
IO

N
 u

se
 o

nl
y

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Oracle Database 11g: Develop PL/SQL Program Units 1 - 18

Copyright © 2009, Oracle. All rights reserved.

Using the SQL Worksheet

1

2

3

4

5

6

7

8

9

Using the SQL Worksheet (continued)

You may want to use the shortcut keys or icons to perform certain tasks such as executing a SQL
statement, running a script, and viewing the history of SQL statements that you have executed.
You can use the SQL Worksheet toolbar that contains icons to perform the following tasks:

1. Execute Statement: Executes the statement at the cursor in the Enter SQL Statement box.
You can use bind variables in the SQL statements but not substitution variables.

2. Run Script: Executes all statements in the Enter SQL Statement box using the Script
Runner. You can use substitution variables in the SQL statements but not bind variables.

3. Commit: Writes any changes to the database and ends the transaction
4. Rollback: Discards any changes to the database, without writing them to the database, and

ends the transaction
5. Cancel: Stops the execution of any statements currently being executed
6. SQL History: Displays a dialog box with information about SQL statements that you have

executed
7. Execute Explain Plan: Generates the execution plan, which you can see by clicking the

Explain tab
8. Autotrace: Generates trace information for the statement
9. Clear: Erases the statement or statements in the Enter SQL Statement box

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 O

R
AC

LE
 C

O
R

PO
R

AT
IO

N
 u

se
 o

nl
y

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Oracle Database 11g: Develop PL/SQL Program Units 1 - 19

Copyright © 2009, Oracle. All rights reserved.

Executing SQL Statements

Use the Enter SQL Statement box to enter single or multiple
SQL statements.

Use the Enter SQL
Statement box to
enter single or
multiple SQL
statements.

View the results on
the Script Output
tabbed page.

Executing SQL Statements

In the SQL Worksheet, you can use the Enter SQL Statement box to enter a single or multiple
SQL statements. For a single statement, the semicolon at the end is optional.

When you enter the statement, the SQL keywords are automatically highlighted. To execute a
SQL statement, ensure that your cursor is within the statement and click the Execute Statement
icon. Alternatively, you can press the F9 key.

To execute multiple SQL statements and see the results, click the Run Script icon.
Alternatively, you can press the F5 key.

In the example in the slide, because there are multiple SQL statements, the first statement is
terminated with a semicolon. The cursor is in the first statement, and therefore, when the
statement is executed, results corresponding to the first statement are displayed in the Results
box.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 O

R
AC

LE
 C

O
R

PO
R

AT
IO

N
 u

se
 o

nl
y

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Oracle Database 11g: Develop PL/SQL Program Units 1 - 20

Copyright © 2009, Oracle. All rights reserved.

Saving SQL Scripts

Click the Save icon to
save your SQL
statement to a file.

The contents of the
saved file are visible
and editable in your
SQL Worksheet
window.

Enter a file name and
identify a location to
save the file, and
then click Save.

Saving SQL Scripts

You can save your SQL statements from the SQL Worksheet into a text file. To save the
contents of the Enter SQL Statement box, follow these steps:

1. Click the Save icon or use the File > Save menu item.
2. In the Windows Save dialog box, enter a file name and the location where you want the

file saved.
3. Click Save.

After you save the contents to a file, the Enter SQL Statement window displays a tabbed page of
your file contents. You can have multiple files open simultaneously. Each file displays as a
tabbed page.

Script Pathing

You can select a default path to look for scripts and to save scripts. Under Tools >
Preferences > Database > Worksheet Parameters, enter a value in the Select default path to
look for scripts field.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 O

R
AC

LE
 C

O
R

PO
R

AT
IO

N
 u

se
 o

nl
y

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Oracle Database 11g: Develop PL/SQL Program Units 1 - 21

Copyright © 2009, Oracle. All rights reserved.

Executing Saved Script Files: Method 1

Right-click in the SQL
Worksheet area, and then
select Open File from the
shortcut menu.

Select (or navigate
to) the script file that
you want to open.

Click Open.

To run the code, click
the Run Script (F5)
icon.

Executing Saved Script Files: Method 1

You can open and execute a script file in the SQL Worksheet area as follows:
1. Right-click in the SQL Worksheet area, and then select Open File from the pop-up menu.

The Open dialog box is displayed.
2. In the Open dialog box, select (or navigate to) the script file that you want to open.
3. Click Open. The code of the script file is displayed in the SQL Worksheet area.
4. To run the code, click Run Script (F5) from the SQL Worksheet toolbar. O

ra
cl

e
U

ni
ve

rs
ity

 a
nd

 O
R

AC
LE

 C
O

R
PO

R
AT

IO
N

 u
se

 o
nl

y

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Oracle Database 11g: Develop PL/SQL Program Units 1 - 22

Copyright © 2009, Oracle. All rights reserved.

Executing Saved SQL Scripts: Method 2

Use the @ command
followed by the location and
name of the file you want to
execute, and then click the
Run Script icon.

The output from the
script is displayed on
the Script Output
tabbed page.

Executing Saved Script Files: Method 2

To run a saved SQL script, follow these steps:
1. In the Enter SQL Statement window, use the @ command, followed by the location and

name of the file you want to run.
2. Click the Run Script icon.

The results from running the file are displayed on the Script Output tabbed page. You can also
save the script output by clicking the Save icon on the Script Output tabbed page. The Windows
File Save dialog box appears and you can identify a name and location for your file.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 O

R
AC

LE
 C

O
R

PO
R

AT
IO

N
 u

se
 o

nl
y

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Oracle Database 11g: Develop PL/SQL Program Units 1 - 23

Copyright © 2009, Oracle. All rights reserved.

Creating an Anonymous Block

Create an anonymous block and display the output of the
DBMS_OUTPUT package.

Creating an Anonymous Block

You can create an anonymous block and display the output of the DBMS_OUTPUT package. To
create an anonymous block and view the results, perform the following steps:

1. Enter the PL/SQL code in the Enter SQL Statement box.
2. Click the DBMS Output pane. Then click the Enable DBMS Output icon to set the

server output ON.
3. Click the Execute Statement icon above the Enter SQL Statement box. Then click the

DBMS Output pane to see the results.
O

ra
cl

e
U

ni
ve

rs
ity

 a
nd

 O
R

AC
LE

 C
O

R
PO

R
AT

IO
N

 u
se

 o
nl

y

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Oracle Database 11g: Develop PL/SQL Program Units 1 - 24

Copyright © 2009, Oracle. All rights reserved.

Editing the PL/SQL Code

Use the full-featured editor for PL/SQL program units.

Editing the PL/SQL Code

You may want to make changes to your PL/SQL code. SQL Developer includes a
full-featured editor for PL/SQL program units. It includes customizable PL/SQL syntax
highlighting in addition to common editor functions such as:

• Bookmarks
• Code Completion
• Code Folding
• Search and Replace

To edit the PL/SQL code, click the object name in the Connections Navigator, and then click the
Edit icon. Optionally, double-click the object name to invoke the Object Definition page with its
tabs and the Edit page. You can perform an update only if you are on the Edit tabbed page.

The Code Insight feature is shown in the slide. For example, if you enter DBMS_OUTPUT.and
then press Ctrl + Spacebar, you can select from a list of members of that package. Note that, by
default, Code Insight is invoked automatically if you pause after entering a period (“.”) for more
than one second.

When using the Code Editor to edit PL/SQL code, you can use Compile or Compile for Debug.
Use the Compile for Debug option if you plan on using the SQL Developer Debugger. This
option adds some debugging directives. Debugging is covered in the appendix titled “Using SQL
Developer.”

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 O

R
AC

LE
 C

O
R

PO
R

AT
IO

N
 u

se
 o

nl
y

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Oracle Database 11g: Develop PL/SQL Program Units 1 - 25

Copyright © 2009, Oracle. All rights reserved.

Lesson Agenda

• Course objectives and course agenda

• The schema and appendices used in this course and the
available PL/SQL development in this course

• Overview of Oracle SQL Developer

• Oracle 11g documentation and additional resources

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 O

R
AC

LE
 C

O
R

PO
R

AT
IO

N
 u

se
 o

nl
y

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Oracle Database 11g: Develop PL/SQL Program Units 1 - 26

Copyright © 2009, Oracle. All rights reserved.

Oracle 11g SQL and PL/SQL Documentation

• Oracle Database New Features Guide 11g Release 1 (11.1)
• Oracle Database Advanced Application Developer’s Guide

11g Release 1 (11.1)
• Oracle Database PL/SQL Language Reference 11g Release

1 (11.1)
• Oracle Database Reference 11g Release 1 (11.1)
• Oracle Database SQL Language Reference 11g Release 1

(11.1)
• Oracle Database Concepts 11g Release 1 (11.1)
• Oracle Database PL/SQL Packages and Types Reference

11g Release 1 (11.1)
• Oracle Database SQL Developer User’s Guide Release 1.1.2

Oracle 11g SQL and PL/SQL Documentation

Navigate to http://www.oracle.com/pls/db111/homepage and click the Master Book List link in
the left frame.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 O

R
AC

LE
 C

O
R

PO
R

AT
IO

N
 u

se
 o

nl
y

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Oracle Database 11g: Develop PL/SQL Program Units 1 - 27

Copyright © 2009, Oracle. All rights reserved.

Additional Resources

For additional information about the new Oracle 1 1g SQL and
PL/SQL new features, refer to the following:

• Oracle Database 11g: New Features eStudies

• Oracle by Example (OBE) series: Oracle Database 11g:
– http://www.oracle.com/technology/obe/11gr1_db/admin/11gr

1db.html

• What’s New in PL/SQL in Oracle Database 11g on the
Oracle Technology Network (OTN):
– http://www.oracle.com/technology/tech/pl_sql/

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 O

R
AC

LE
 C

O
R

PO
R

AT
IO

N
 u

se
 o

nl
y

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Oracle Database 11g: Develop PL/SQL Program Units 1 - 28

Copyright © 2009, Oracle. All rights reserved.

In this lesson, you should have learned how to:

• Discuss the goals of the course

• Identify the available environments that can be used in this
course

• Describe the database schema and tables that are used in
the course

• List the available documentation and resources

Summary

Summary

The PL/SQL language provides different program constructs for blocks of reusable code.
Unnamed or anonymous PL/SQL blocks can be used to invoke SQL and PL/SQL actions,
procedures, functions, and package components. Named PL/SQL blocks, otherwise known as
subprograms, include:

• Procedures
• Functions
• Package procedures and functions
• Triggers

Oracle supplies several tools to develop your PL/SQL functionality. Oracle provides a client-
side or middle-tier PL/SQL run-time environment for Oracle Forms and Oracle Reports, and
provides a PL/SQL run-time engine inside the Oracle database. Procedures and functions inside
the database can be invoked from any application code that can connect to an Oracle database
and execute PL/SQL code.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 O

R
AC

LE
 C

O
R

PO
R

AT
IO

N
 u

se
 o

nl
y

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Oracle Database 11g: Develop PL/SQL Program Units 1 - 29

Copyright © 2009, Oracle. All rights reserved.

Practice 1 Overview: Getting Started

This practice covers the following topics:

• Reviewing the available SQL Developer resources

• Starting SQL Developer and creating a new database
connection and browsing the HR tables

• Setting some SQL Developer preferences

• Executing SQL statements and an anonymous PL/SQL
block using SQL Worksheet

• Accessing and bookmarking the Oracle Database 11g
documentation and other useful Web sites

Practice 1: Overview

In this practice, you use SQL Developer to execute SQL statements to examine data in the HR
schema. You also create a simple anonymous block. Optionally, you can experiment by creating
and executing the PL/SQL code in SQL*Plus.

Note: All written practices use SQL Developer as the development environment. Although it is
recommended that you use SQL Developer, you can also use the SQL*Plus or JDeveloper
environments that are available in this course.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 O

R
AC

LE
 C

O
R

PO
R

AT
IO

N
 u

se
 o

nl
y

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Oracle Database 11g: Develop PL/SQL Program Units 1 - 30

Practice 1

This is the first of many practices in this course. The solutions (if you require them) can be
found in Appendix A. Practices are intended to cover most of the topics that are presented in the
corresponding lesson.

Identifying the Available SQL Developer Resources

1. Familiarize yourself with Oracle SQL Developer as needed using Appendix C: Using SQL
Developer.

2. Access the online SQL Developer home page available online at:
http://www.oracle.com/technology/products/database/sql_developer/index.html

3. Bookmark the page for easier future access.

4. Access the SQL Developer tutorial available online at:
http://st-curriculum.oracle.com/tutorial/SQLDeveloper/index.htm

5. Preview and experiment with the available links and demos in the tutorial as needed,
especially the Creating a Database Connection and Accessing Data links.

Creating and Using a New SQL Developer Database Connection

1. Start up SQL Developer using the user ID and password that are provided to you by the
instructor such as oraxx where xx is the number assigned to your PC.

2. Create a database connection using the following information:

a. Connection Name: MyDBConnection

b. Username: oraxx where xx is the number assigned to your PC by the instructor

c. Password: oraxx where xx is the number assigned to your PC by the instructor

d. Hostname: Enter the host name for your PC.

e. Port: 1521

f. SID: ORCL

3. Test the new connection. If the Status is Success, connect to the database using this new
connection.

a. Double-click the MyDBConnection icon on the Connections tabbed page.

b. Click the Test button in the New/Select Database Connection window. If the status is
Success, click the Connect button.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 O

R
AC

LE
 C

O
R

PO
R

AT
IO

N
 u

se
 o

nl
y

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Oracle Database 11g: Develop PL/SQL Program Units 1 - 31

Practice 1 (continued)

Browsing Your HR Schema Tables

1. Browse the structure of the EMPLOYEES table and display its data.

a. Expand the MyDBConnection connection by clicking the plus sign next to it.

b. Expand the Tables icon by clicking the plus sign next to it.

c. Display the structure of the EMPLOYEES table.

2. Browse the EMPLOYEES table and display its data.

3. Use the SQL Worksheet to select the last names and salaries of all employees whose
annual salary is greater than $10,000. Use both the Execute Statement (F9) and the Run
Script icon (F5) icons to execute the SELECT statement. Review the results of both
methods of executing the SELECT statements on the appropriate tabbed pages.

Note: Take a few minutes to familiarize yourself with the data, or consult Appendix B,
which provides the description and data for all tables in the HR schema that you use in this
course.

4. Create and execute a simple anonymous block that outputs “Hello World.”

a. Enable SET SERVEROUTPUT ON to display the output of the DBMS_OUTPUT
package statements.

b. Use the SQL Worksheet area to enter the code for your anonymous block.

c. Click the Run Script icon (F5) to run the anonymous block.

Setting Some SQL Developer Preferences

1. In the SQL Developer menu, navigate to Tools > Preferences. The Preferences window is
displayed.

2. Expand the Code Editor option, and then click the Display option. The “Code Editor:
Display” section contains general options for the appearance and behavior of the code
editor.

a. Enter 100 in the Right Margin Column text box in the Show Visible Right Margin
section. This renders a right margin that you can set to control the length of lines of
code.

b. Click the Line Gutter option. The Line Gutter option specifies options for the line
gutter (left margin of the code editor). Select the Show Line Numbers check box to
display the code line numbers.

3. Click the Worksheet Parameters option under the Database option. In the “Select default
path to look for scripts” text box, specify the D:\labs\PLPU folder. This folder
contains the solutions scripts, code examples scripts, and any labs or demos used in this
course.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 O

R
AC

LE
 C

O
R

PO
R

AT
IO

N
 u

se
 o

nl
y

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Oracle Database 11g: Develop PL/SQL Program Units 1 - 32

Practice 1 (continued)

Setting Some SQL Developer Preferences (continued)

4. Configure SQL Developer so that you can access SQL*Plus from within SQL Developer.

a. In the Preferences window, click the SQL*Plus option.

b. In the SQL*Plus Executable text box, enter the path for the SQL*Plus executable.
Note: To find the path for SQL*Plus: Right-click the SQL*Plus icon on your desktop,
select Properties from the pop-up menu, and then copy the SQL*Plus path from the
Target text box but do not include the /nolog at the end of the Target path.

c. Paste the SQL*Plus path in the SQL*Plus Executable text box.

d. Click OK to accept your changes and exit the Preferences window.

5. Test accessing SQL*Plus from within SQL Developer, and change the default background
and text colors.

a. Click your Database Connection name on the Connections tabbed page.

b. Select SQL*Plus from the Tools menu. The SQL*Plus command window is
displayed.

c. Enter your password.

d. Change the default screen background and text colors. Click the C:\ icon on the
SQL*Plus command window title bar, and then select Properties from the pop-up
menu.

e. On the Colors tabbed page, select the Screen Background option, and then click the
white color sample from the available color palettes.

f. Select the Screen Text option, and then click the black color sample from the available
color palettes.

g. Click OK. The Apply Properties window is displayed. Select the “Save properties for
future windows with same title” option, and then click OK.

h. Issue the following simple SQL command to test SQL*Plus:
SELECT *
FROM employees;

6. Familiarize yourself with the labs folder on the D:\ drive:

a. Right-click the SQL Worksheet area, and then select Open File from the shortcut
menu. The Open window is displayed.

b. Ensure that the path that you set in a previous step is the default path that is displayed
in the Open window.

c. How many subfolders do you see in the labs folder?

d. Navigate through the folders, and open a script file without executing the code.

e. Clear the displayed code in the SQL Worksheet area.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 O

R
AC

LE
 C

O
R

PO
R

AT
IO

N
 u

se
 o

nl
y

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Oracle Database 11g: Develop PL/SQL Program Units 1 - 33

Practice 1 (continued)

Accessing the Oracle Database 11g Release 1 Online Documentation Library

1. Access the Oracle Database 11g Release 1 documentation Web page at:
http://www.oracle.com/pls/db111/homepage

2. Bookmark the page for easier future access.

3. Display the complete list of books available for Oracle Database 11g Release 1.

4. Make a note of the following documentation references that you use in this course as
needed:

a. Advanced Application Developer’s Guide

b. New Features Guide

c. PL/SQL Language Reference

d. Oracle Database Reference

e. Oracle Database Concepts

f. SQL Developer User’s Guide

g. SQL Language Reference Guide

h. SQL*Plus User’s Guide and Reference

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 O

R
AC

LE
 C

O
R

PO
R

AT
IO

N
 u

se
 o

nl
y

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 O

R
AC

LE
 C

O
R

PO
R

AT
IO

N
 u

se
 o

nl
y

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Copyright © 2009, Oracle. All rights reserved.

Creating Procedures

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 O

R
AC

LE
 C

O
R

PO
R

AT
IO

N
 u

se
 o

nl
y

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Oracle Database 11g: Develop PL/SQL Program Units 2 - 2

Copyright © 2009, Oracle. All rights reserved.

Objectives

After completing this lesson, you should be able to do the
following:

• Identify the benefits of modularized and layered
subprogram design

• Create and call procedures

• Use formal and actual parameters

• Use positional, named, or mixed notation for passing
parameters

• Identify the available parameter-passing modes

• Handle exceptions in procedures

• Remove a procedure

• Display the procedures’ information

Lesson Aim

In this lesson, you learn to create, execute, and remove procedures with or without parameters.
Procedures are the foundation of modular programming in PL/SQL. To make procedures more
flexible, it is important that varying data is either calculated or passed into a procedure by using
input parameters. Calculated results can be returned to the caller of a procedure by using OUT
parameters.

To make your programs robust, you should always manage exception conditions by using the
exception-handling features of PL/SQL.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 O

R
AC

LE
 C

O
R

PO
R

AT
IO

N
 u

se
 o

nl
y

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Oracle Database 11g: Develop PL/SQL Program Units 2 - 3

Copyright © 2009, Oracle. All rights reserved.

Lesson Agenda

• Using a modularized and layered subprogram design and
identifying the benefits of subprograms

• Working with procedures:
– Creating and calling procedures

– Identifying the available parameter-passing modes

– Using formal and actual parameters

– Using positional, named, or mixed notation

• Handling exceptions in procedures, removing a procedure,
and displaying the procedures’ information

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 O

R
AC

LE
 C

O
R

PO
R

AT
IO

N
 u

se
 o

nl
y

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Oracle Database 11g: Develop PL/SQL Program Units 2 - 4

Copyright © 2009, Oracle. All rights reserved.

Creating a Modularized Subprogram Design

Modularize code into subprograms.

1. Locate code sequences repeated more than once.

2. Create subprogram P containing the repeated code

3. Modify original code to invoke the new subprogram.

xx xxx xxx
xx xxx xxx
----- --- ---
----- --- ---

xx xxx xxx
xx xxx xxx
----- --- ---

xx xxx xxx
xx xxx xxx

P
----- --- ---
----- --- ---

P
----- --- ---

P

1

2
3

Creating a Modularized and Layered Subprogram Design

The diagram illustrates the principle of modularization with subprograms: the creation of
smaller manageable pieces of flexible and reusable code. Flexibility is achieved by using
subprograms with parameters, which in turn makes the same code reusable for different input
values. To modularize existing code, perform the following steps:

1. Locate and identify repetitive sequences of code.
2. Move the repetitive code into a PL/SQL subprogram.
3. Replace the original repetitive code with calls to the new PL/SQL subprogram.

Following this modular and layered approach can help you create code that is easier to maintain,
particularly when the business rules change. In addition, keeping the SQL logic simple and free
of complex business logic can benefit from the work of Oracle Database Optimizer, which can
reuse parsed SQL statements for better use of server-side resources.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 O

R
AC

LE
 C

O
R

PO
R

AT
IO

N
 u

se
 o

nl
y

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Oracle Database 11g: Develop PL/SQL Program Units 2 - 5

Copyright © 2009, Oracle. All rights reserved.

Creating a Layered Subprogram Design

Create subprogram layers for your application.

• Data access subprogram layer with SQL logic

• Business logic subprogram layer, which may or may not
use the data access layer

Creating a Layered Subprogram Design

Because PL/SQL allows SQL statements to be seamlessly embedded into the logic, it is too easy
to have SQL statement spread all over the code. However, it is recommended that you keep the
SQL logic separate from the business logic—that is, create a layered application design with a
minimum of two layers:

• Data access layer: For subroutines to access the data by using SQL statements
• Business logic layer: For subprograms to implement the business processing rules, which

may or may not call on the data access layer routines

Following this modular and layered approach can help you create code that is easier to maintain,
particularly when the business rules change. In addition, keeping the SQL logic simple and free
of complex business logic can benefit from using the Oracle Database Optimizer. The Optimizer
can reuse parsed SQL statements for better use of server-side resources.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 O

R
AC

LE
 C

O
R

PO
R

AT
IO

N
 u

se
 o

nl
y

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Oracle Database 11g: Develop PL/SQL Program Units 2 - 6

Copyright © 2009, Oracle. All rights reserved.

Modularizing Development
with PL/SQL Blocks

• PL/SQL is a block-structured language. The PL/SQL code
block helps modularize code by using:
– Anonymous blocks

– Procedures and functions

– Packages

– Database triggers

• The benefits of using modular program constructs are:
– Easy maintenance

– Improved data security and integrity

– Improved performance

– Improved code clarity

Modularizing Development with PL/SQL Blocks

A subprogram is based on standard PL/SQL structures. It contains a declarative section, an
executable section, and an optional exception-handling section (for example, anonymous blocks,
procedures, functions, packages, and triggers). Subprograms can be compiled and stored in the
database, providing modularity, extensibility, reusability, and maintainability.

Modularization converts large blocks of code into smaller groups of code called modules. After
modularization, the modules can be reused by the same program or shared with other programs.
It is easier to maintain and debug code that comprises smaller modules than it is to maintain
code in a single large program. Modules can be easily extended for customization by
incorporating more functionality, if required, without affecting the remaining modules of the
program.
Subprograms provide easy maintenance because the code is located in one place and any
modifications required to the subprogram can, therefore, be performed in this single location.
Subprograms provide improved data integrity and security. The data objects are accessed
through the subprogram, and a user can invoke the subprogram only if the appropriate access
privilege is granted to the user.
Note: Knowing how to develop anonymous blocks is a prerequisite for this course. For detailed
information about anonymous blocks, see the course titled Oracle 11g: PL/SQL Fundamentals.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 O

R
AC

LE
 C

O
R

PO
R

AT
IO

N
 u

se
 o

nl
y

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Oracle Database 11g: Develop PL/SQL Program Units 2 - 7

Copyright © 2009, Oracle. All rights reserved.

Anonymous Blocks: Overview

Anonymous blocks:

• Form the basic PL/SQL block structure

• Initiate PL/SQL processing tasks from applications

• Can be nested within the executable section of any
PL/SQL block

[DECLARE -- Declaration Section (Optional)
variable declarations; ...]

BEGIN -- Executable Section (Mandatory)
SQL or PL/SQL statements;

[EXCEPTION -- Exception Section (Optional)
WHEN exception THEN statements;]

END; -- End of Block (Mandatory)

Anonymous Blocks: Overview

Anonymous blocks are typically used for:
• Writing trigger code for Oracle Forms components
• Initiating calls to procedures, functions, and package constructs
• Isolating exception handling within a block of code
• Nesting inside other PL/SQL blocks for managing code flow control

The DECLARE keyword is optional, but it is required if you declare variables, constants, and
exceptions to be used within the PL/SQL block.

BEGIN and END are mandatory and require at least one statement between them, either SQL,
PL/SQL, or both.

The exception section is optional and is used to handle errors that occur within the scope of the
PL/SQL block. Exceptions can be propagated to the caller of the anonymous block by excluding
an exception handler for the specific exception, thus creating what is known as an unhandled
exception.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 O

R
AC

LE
 C

O
R

PO
R

AT
IO

N
 u

se
 o

nl
y

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Oracle Database 11g: Develop PL/SQL Program Units 2 - 8

Copyright © 2009, Oracle. All rights reserved.

PL/SQL Execution Environment

The PL/SQL run-time architecture:

PL/SQL
block

PL/SQL engine

Procedural

statement

executor

PL/SQL
block

Oracle server

SQL statement executor

SQL

procedural

PL/SQL Execution Environment

The diagram shows a PL/SQL block being executed by the PL/SQL engine. The PL/SQL engine
resides in:

• The Oracle database for executing stored subprograms
• The Oracle Forms client when running client/server applications, or in the Oracle

Application Server when using Oracle Forms Services to run Forms on the Web

Irrespective of the PL/SQL run-time environment, the basic architecture remains the same.
Therefore, all PL/SQL statements are processed in the Procedural Statement Executor, and all
SQL statements must be sent to the SQL Statement Executor for processing by the Oracle server
processes.

The PL/SQL engine is a virtual machine that resides in memory and processes the PL/SQL
m-code instructions. When the PL/SQL engine encounters a SQL statement, a context switch is
made to pass the SQL statement to the Oracle server processes. The PL/SQL engine waits for the
SQL statement to complete and for the results to be returned before it continues to process
subsequent statements in the PL/SQL block.

The Oracle Forms PL/SQL engine runs in the client for the client/server implementation, and in
the application server for the Forms Services implementation. In either case, SQL statements are
typically sent over a network to an Oracle server for processing.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 O

R
AC

LE
 C

O
R

PO
R

AT
IO

N
 u

se
 o

nl
y

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Oracle Database 11g: Develop PL/SQL Program Units 2 - 9

Copyright © 2009, Oracle. All rights reserved.

What Are PL/SQL Subprograms?

• A PL/SQL subprogram is a named PL/SQL block that can
be called with a set of parameters.

• You can declare and define a subprogram within either a
PL/SQL block or another subprogram.

• A subprogram consists of a specification and a body.

• A subprogram can be a procedure or a function.

• Typically, you use a procedure to perform an action and a
function to compute and return a value.

What Are PL/SQL Subprograms?

A PL/SQL subprogram is a named PL/SQL block that can be called with a set of parameters.
You can declare and define a subprogram within either a PL/SQL block or another subprogram.

Subprogram Parts

A subprogram consists of a specification (spec) and a body. To declare a subprogram, you must
provide the spec, which includes descriptions of any parameters. To define a subprogram, you
must provide both the spec and the body. You can either declare a subprogram first and define it
later in the same block or subprogram, or declare and define it at the same time.

Subprogram Types

PL/SQL has two types of subprograms: procedures and functions. Typically, you use a
procedure to perform an action and a function to compute and return a value.

A procedure and a function have the same structure, except that only a function has some
additional items such as the RETURN clause or the RETURN statement.

The RETURN clause specifies the data type of the return value (required). A RETURN statement
specifies the return value (required). Functions are covered in more detail in the next lesson
titled “Creating Functions.”

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 O

R
AC

LE
 C

O
R

PO
R

AT
IO

N
 u

se
 o

nl
y

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Oracle Database 11g: Develop PL/SQL Program Units 2 - 10

Copyright © 2009, Oracle. All rights reserved.

The Benefits of Using PL/SQL Subprograms

Easy maintenance

Improved performance

Improved data
security and integrity

Improved code clarity

Subprograms:
Stored procedures

and functions

Benefits of Subprograms

Procedures and functions have many benefits due to the modularizing of the code:
• Easy maintenance is realized because subprograms are located in one place.

Modifications need to be done in only one place to affect multiple applications and
minimize excessive testing.

• Improved data security can be achieved by controlling indirect access to database objects
from nonprivileged users with security privileges. The subprograms are by default
executed with definer’s right. The execute privilege does not allow a calling user direct
access to objects that are accessible to the subprogram.

• Data integrity is managed by having related actions performed together or not at all.
• Improved performance can be realized from reuse of parsed PL/SQL code that becomes

available in the shared SQL area of the server. Subsequent calls to the subprogram avoid
parsing the code again. Because PL/SQL code is parsed at compile time, the parsing
overhead of SQL statements is avoided at run time. Code can be written to reduce the
number of network calls to the database, and therefore, decrease network traffic.

• Improved code clarity can be attained by using appropriate names and conventions to
describe the action of the routines, thereby reducing the need for comments and enhancing
the clarity of the code.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 O

R
AC

LE
 C

O
R

PO
R

AT
IO

N
 u

se
 o

nl
y

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Oracle Database 11g: Develop PL/SQL Program Units 2 - 11

Copyright © 2009, Oracle. All rights reserved.

Differences Between Anonymous
Blocks and Subprograms

Named and, therefore, can be invoked by
other applications

Cannot be invoked by other
applications

Stored in the databaseNot stored in the database

Subprograms called functions must return
values.

Do not return values

Named PL/SQL blocksUnnamed PL/SQL blocks

Can take parametersCannot take parameters

Compiled every time

Anonymous Blocks

Compiled only once

Subprograms

Differences Between Anonymous Blocks and Subprograms

The table in the slide not only shows the differences between anonymous blocks and
subprograms, but also highlights the general benefits of subprograms.

Anonymous blocks are not persistent database objects. They are compiled and executed
only once. They are not stored in the database for reuse. If you want to reuse, you must rerun the
script that creates the anonymous block, which causes recompilation and execution.
Procedures and functions are compiled and stored in the database in a compiled form.
They are recompiled only when they are modified. Because they are stored in the database, any
application can make use of these subprograms based on appropriate permissions. The calling
application can pass parameters to the procedures if the procedure is designed to accept
parameters. Similarly, a calling application can retrieve a value if it invokes a function or a
procedure.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 O

R
AC

LE
 C

O
R

PO
R

AT
IO

N
 u

se
 o

nl
y

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Oracle Database 11g: Develop PL/SQL Program Units 2 - 12

Copyright © 2009, Oracle. All rights reserved.

Lesson Agenda

• Using a modularized and layered subprogram design and
identifying the benefits of subprograms

• Working with procedures:
– Creating and calling procedures

– Identifying the available parameter-passing modes

– Using formal and actual parameters

– Using positional, named, or mixed notation

• Handling exceptions in procedures, removing a procedure,
and displaying the procedures’ information

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 O

R
AC

LE
 C

O
R

PO
R

AT
IO

N
 u

se
 o

nl
y

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Oracle Database 11g: Develop PL/SQL Program Units 2 - 13

Copyright © 2009, Oracle. All rights reserved.

What Are Procedures?

• Are a type of subprogram that perform an action

• Can be stored in the database as a schema object

• Promote reusability and maintainability

Procedures

Definition of a Procedure

A procedure is a named PL/SQL block that can accept parameters (sometimes referred to as
arguments). Generally, you use a procedure to perform an action. It has a header, a declaration
section, an executable section, and an optional exception-handling section. A procedure is
invoked by using the procedure name in the execution section of another PL/SQL block.

A procedure is compiled and stored in the database as a schema object. If you are using the
procedures with Oracle Forms and Reports, then they can be compiled within the Oracle Forms
or Oracle Reports executables.

Procedures promote reusability and maintainability. When validated, they can be used in any
number of applications. If the requirements change, only the procedure needs to be updated.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 O

R
AC

LE
 C

O
R

PO
R

AT
IO

N
 u

se
 o

nl
y

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Oracle Database 11g: Develop PL/SQL Program Units 2 - 14

Copyright © 2009, Oracle. All rights reserved.

Creating Procedures: Overview

Create/edit
procedure

Execute procedure

Compiler
warnings/errors?

NO

YES
Use SHOW ERRORS

command in SQL*Plus

Use USER/ALL/DBA_
ERRORS views

View errors/warnings
in SQL Developer

View compiler
warnings/errors

Creating Procedures: Overview

To develop a procedure using a tool such as SQL Developer, perform the following steps:
1. Create the procedure using SQL Developer’s Object Navigator tree or the SQL Worksheet

area.
2. Compile the procedure. The procedure is created in the database. The CREATE

PROCEDURE statement creates and stores source code and the compiled m-code in the
database. To compile the procedure, right-click the procedure’s name in the Object
Navigator tree, and then click Compile.

3. If compilation errors exist, then the m-code is not stored and you must edit the source code
to make corrections. You cannot invoke a procedure that contains compilation errors. You
can view the compilation errors in SQL Developer, SQL*Plus, or the appropriate data
dictionary views as shown in the slide.

4. After successful compilation, execute the procedure to perform the desired action. You can
run the procedure using SQL Developer or use the EXECUTE command in SQL*Plus.

Note: If compilation errors occur, use a CREATE OR REPLACE PROCEDURE statement to
overwrite the existing code if you previously used a CREATE PROCEDURE statement.
Otherwise, drop the procedure first (using DROP) and then execute the CREATE PROCEDURE
statement.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 O

R
AC

LE
 C

O
R

PO
R

AT
IO

N
 u

se
 o

nl
y

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Oracle Database 11g: Develop PL/SQL Program Units 2 - 15

Copyright © 2009, Oracle. All rights reserved.

Creating Procedures with the SQL
CREATE OR REPLACE Statement

• Use the CREATE clause to create a stand-alone procedure
that is stored in the Oracle database.

• Use the OR REPLACE option to overwrite an existing
procedure.

CREATE [OR REPLACE] PROCEDURE procedure_name
[(parameter1 [mode] datatype1,
parameter2 [mode] datatype2, ...)]

IS|AS
[local_variable_declarations; ...]

BEGIN
-- actions;

END [procedure_name];

PL/SQL block

Creating Procedures with the SQL CREATE OR REPLACE Statement

You can use the CREATE PROCEDURE SQL statement to create stand-alone procedures that are
stored in an Oracle database. A procedure is similar to a miniature program: it performs a
specific action. You specify the name of the procedure, its parameters, its local variables, and
the BEGIN-END block that contains its code and handles any exceptions.

• PL/SQL blocks start with BEGIN, optionally preceded by the declaration of local
variables. PL/SQL blocks end with either END or END procedure_name.

• The REPLACE option indicates that if the procedure exists, it is dropped and replaced with
the new version created by the statement. The REPLACE option does not drop any of the
privileges associated with the procedure.

Other Syntactic Elements
• parameter1 represents the name of a parameter.
• The mode option defines how a parameter is used: IN (default), OUT, or IN OUT.
• datatype1 specifies the parameter data type, without any precision.

Note: Parameters can be considered as local variables. Substitution and host (bind) variables
cannot be referenced anywhere in the definition of a PL/SQL stored procedure. The OR
REPLACE option does not require any change in object security, as long as you own the object
and have the CREATE [ANY] PROCEDURE privilege.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 O

R
AC

LE
 C

O
R

PO
R

AT
IO

N
 u

se
 o

nl
y

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Oracle Database 11g: Develop PL/SQL Program Units 2 - 16

Copyright © 2009, Oracle. All rights reserved.

Creating Procedures Using SQL Developer

Creating Procedures Using SQL Developer

1. Right-click the Procedures node on the Connections tabbed page.
2. Select New Procedure from the shortcut menu. The Create PL/SQL Procedure dialog

box is displayed. Specify the information for the new procedure, and then click OK to
create the subprogram and have it displayed in the Editor window, where you can enter the
details.

The components of the Create PL/SQL Procedure dialog box are as follows:
• Schema: The database schema in which to create the PL/SQL subprogram
• Name: The name of the subprogram that must be unique within a schema
• Add New Source in Lowercase: If this option is selected, new text is entered in lowercase

regardless of the case in which you type it. This option affects only the appearance of the
code, because PL/SQL is not case-sensitive in its execution.

• Parameters tab: To add a parameter, click the Add (+) icon. For each parameter in the
procedure to be created, specify the parameter name, data type, mode, and optionally the
default Value. Use the Remove (X) icon and the arrow icons to delete and to move a
parameter up or down in the list respectively.

• DDL tab: This tab contains a read-only display of a SQL statement that reflects the current
definition of the subprogram.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 O

R
AC

LE
 C

O
R

PO
R

AT
IO

N
 u

se
 o

nl
y

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Oracle Database 11g: Develop PL/SQL Program Units 2 - 17

Copyright © 2009, Oracle. All rights reserved.

Compiling Procedures and Displaying
Compilation Errors in SQL Developer

1 2

OR

Compiling Procedures and Displaying Compilation Errors in SQL Developer

You can compile procedures using one of the following two methods:
• Navigate to the Procedures node in the Object Navigator tree. Right-click the procedure’s

name, and then select Compile from the shortcut menu. To view any compilation
messages, view the Messages subtab in the Compiler – Log tab.

• Edit the procedure using the Edit icon on the procedure’s code toolbar. Make the necessary
edits, and then click the Compile icon on the code toolbar. To view any compilation
messages, view the Messages subtab in the Compiler – Log tab.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 O

R
AC

LE
 C

O
R

PO
R

AT
IO

N
 u

se
 o

nl
y

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Oracle Database 11g: Develop PL/SQL Program Units 2 - 18

Copyright © 2009, Oracle. All rights reserved.

Correcting Compilation Errors in SQL Developer

Edit procedure Correct error

Recompile procedureRecompilation successful

Correcting Compilation Errors in SQL Developer

1. Edit the procedure using the Edit icon on the procedure’s code toolbar. A new procedure
code tab is opened in Read/Write mode.

2. Make the necessary corrections.
3. Click the Compile icon on the code toolbar.
4. To view any compilation messages, view the Messages subtab in the Compiler – Log tab.

In addition, if the procedure compiled successfully, the red X on the procedure’s name in
the Object Navigator tree is removed.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 O

R
AC

LE
 C

O
R

PO
R

AT
IO

N
 u

se
 o

nl
y

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Oracle Database 11g: Develop PL/SQL Program Units 2 - 19

Copyright © 2009, Oracle. All rights reserved.

Naming Conventions of PL/SQL
Structures Used in This Course

f_filef_file_handle_nameFile handle

e_exception_name

type_name_type

rec_record_name

cur_cursor_name

b_bind_name

p_parameter_name

c_constant_name

v_variable_name

Convention

e_products_invalidException

ename_table_typeType

rec_emp

cur_emp

b_salary

p_id

c_rate

v_rate

Example

Bind (host) variable

Subprogram
parameter

Cursor

Variable

Record

Constant

PL/SQL Structure

Naming Conventions of PL/SQL Structures Used in This Course

The slide table displays some examples of the naming conventions for PL/SQL structures that
are used in this course.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 O

R
AC

LE
 C

O
R

PO
R

AT
IO

N
 u

se
 o

nl
y

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Oracle Database 11g: Develop PL/SQL Program Units 2 - 20

Copyright © 2009, Oracle. All rights reserved.

What Are Parameters and Parameter Modes?

• Are declared after the subprogram name in the PL/SQL
header

• Pass or communicate data between the caller and the
subprogram

• Are used like local variables but are dependent on their
parameter-passing mode:
– An IN parameter mode (the default) provides values for a

subprogram to process
– An OUT parameter mode returns a value to the caller

– An IN OUT parameter mode supplies an input value, which
may be returned (output) as a modified value

What Are Parameters?

Parameters are used to transfer data values to and from the calling environment and the
procedure (or subprogram). Parameters are declared in the subprogram header, after the name
and before the declaration section for local variables.

Parameters are subject to one of the three parameter-passing modes: IN, OUT, or IN OUT.
• An IN parameter passes a constant value from the calling environment into the procedure.
• An OUT parameter passes a value from the procedure to the calling environment.
• An IN OUT parameter passes a value from the calling environment to the procedure and a

possibly different value from the procedure back to the calling environment using the same
parameter.

Parameters can be thought of as a special form of local variable, whose input values are
initialized by the calling environment when the subprogram is called, and whose output values
are returned to the calling environment when the subprogram returns control to the caller.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 O

R
AC

LE
 C

O
R

PO
R

AT
IO

N
 u

se
 o

nl
y

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Oracle Database 11g: Develop PL/SQL Program Units 2 - 21

Copyright © 2009, Oracle. All rights reserved.

Formal and Actual Parameters

• Formal parameters: Local variables declared in the
parameter list of a subprogram specification

• Actual parameters (or arguments): Literal values,
variables, and expressions used in the parameter list of the
calling subprogram

-- Procedure definition, Formal_parameters

CREATE PROCEDURE raise_sal(p_id NUMBER, p_sal NUMBER) IS
BEGIN

. . .

END raise_sal;

-- Procedure calling, Actual parameters (arguments)

v_emp_id := 100;

raise_sal(v_emp_id, 2000)

Formal and Actual Parameters

Formal parameters are local variables that are declared in the parameter list of a subprogram
specification. In the first example, in the raise_sal procedure, the variable p_id and
p_ sal identifiers represent the formal parameters.

The actual parameters can be literal values, variables, and expressions that are provided in the
parameter list of a calling subprogram. In the second example, a call is made to raise_sal,
where the v_emp_id variable provides the actual parameter value for the p_id formal
parameter and 2000 is supplied as the actual parameter value for p_sal. Actual parameters:

• Are associated with formal parameters during the subprogram call
• Can also be expressions, as in the following example:

raise_sal(v_emp_id, raise+100);

The formal and actual parameters should be of compatible data types. If necessary, before
assigning the value, PL/SQL converts the data type of the actual parameter value to that of the
formal parameter.

Note: Actual parameters are also referred to as actual arguments.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 O

R
AC

LE
 C

O
R

PO
R

AT
IO

N
 u

se
 o

nl
y

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Oracle Database 11g: Develop PL/SQL Program Units 2 - 22

Copyright © 2009, Oracle. All rights reserved.

Procedural Parameter Modes

• Parameter modes are specified in the formal parameter
declaration, after the parameter name and before its data
type.

• The IN mode is the default if no mode is specified.

Modes

IN (default)

OUT

IN OUT

CREATE PROCEDURE proc_name(param_name [mode] datatype)
...

Procedure

Calling
environment

Procedural Parameter Modes

When you create a procedure, the formal parameter defines a variable name whose value is used
in the executable section of the PL/SQL block. The actual parameter is used when invoking the
procedure to provide input values or receive output results.

The parameter mode IN is the default passing mode—that is, if no mode is specified with a
parameter declaration, the parameter is considered to be an IN parameter. The parameter modes
OUT and IN OUT must be explicitly specified in their parameter declarations.

The datatype parameter is specified without a size specification. It can be specified:
• As an explicit data type
• Using the %TYPE definition
• Using the %ROWTYPE definition

Note: One or more formal parameters can be declared, each separated by a comma.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 O

R
AC

LE
 C

O
R

PO
R

AT
IO

N
 u

se
 o

nl
y

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Oracle Database 11g: Develop PL/SQL Program Units 2 - 23

Copyright © 2009, Oracle. All rights reserved.

Comparing the Parameter Modes

Cannot be assigned

a default value

Cannot be assigned

a default value

Can be assigned a default
value

Must be a variableMust be a variableActual parameter can be a
literal, expression, constant, or
initialized variable

Initialized variableUninitialized variableFormal parameter acts as a
constant

Value is passed into
subprogram

Default mode

IN

Must be specifiedMust be specified

Passed into subprogram;
returned to calling
environment

IN OUT

Returned to calling
environment

OUT

Comparing the Parameter Modes

The IN parameter mode is the default mode if no mode is specified in the declaration. The OUT
and IN OUT parameter modes must be explicitly specified with the parameter declaration.

A formal parameter of IN mode cannot be assigned a value and cannot be modified in the body
of the procedure. By default, the IN parameter is passed by reference. An IN parameter can be
assigned a default value in the formal parameter declaration, in which case the caller need not
provide a value for the parameter if the default applies.

An OUT or IN OUT parameter must be assigned a value before returning to the calling
environment. The OUT and IN OUT parameters cannot be assigned default values. To improve
performance with OUT and IN OUT parameters, the NOCOPY compiler hint can be used to
request to pass by reference.

Note: Using NOCOPY is discussed later in this course.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 O

R
AC

LE
 C

O
R

PO
R

AT
IO

N
 u

se
 o

nl
y

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Oracle Database 11g: Develop PL/SQL Program Units 2 - 24

Copyright © 2009, Oracle. All rights reserved.

CREATE OR REPLACE PROCEDURE raise_salary
(p_id IN employees.employee_id%TYPE,
p_percent IN NUMBER)

IS
BEGIN
UPDATE employees
SET salary = salary * (1 + p_percent/100)
WHERE employee_id = p_id;
END raise_salary;
/

EXECUTE raise_salary(176, 10)

Using the IN Parameter Mode: Example

Using IN Parameters: Example

The example shows a procedure with two IN parameters. Running the first slide example creates
the raise_salary procedure in the database. The second slide example invokes
raise_salary and provides the first parameter value of 176 for the employee ID, and a
percentage salary increase of 10 percent for the second parameter value.

To invoke a procedure by using the SQL Worksheet of SQL Developer or by using SQL*Plus,
use the following EXECUTE command:

EXECUTE raise_salary (176, 10)

To invoke a procedure from another procedure, use a direct call inside an executable section of
the calling block. At the location of calling the new procedure, enter the procedure name and
actual parameters. For example:

...
BEGIN

raise_salary (176, 10);
END;

Note: IN parameters are passed as read-only values from the calling environment into the
procedure. Attempts to change the value of an IN parameter result in a compile-time error.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 O

R
AC

LE
 C

O
R

PO
R

AT
IO

N
 u

se
 o

nl
y

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Oracle Database 11g: Develop PL/SQL Program Units 2 - 25

Copyright © 2009, Oracle. All rights reserved.

CREATE OR REPLACE PROCEDURE query_emp
(p_id IN employees.employee_id%TYPE,
p_name OUT employees.last_name%TYPE,
p_salary OUT employees.salary%TYPE) IS

BEGIN
SELECT last_name, salary INTO p_name, p_salary
FROM employees
WHERE employee_id = p_id;

END query_emp;
/

DECLARE
v_emp_name employees.last_name%TYPE;
v_emp_sal employees.salary%TYPE;

BEGIN
query_emp(171, v_emp_name, v_emp_sal);
DBMS_OUTPUT.PUT_LINE(v_emp_name||' earns '||
to_char(v_emp_sal, '$999,999.00'));

END;/

Using the OUT Parameter Mode: Example

Using the OUT Parameters: Example

In the slide example, you create a procedure with OUT parameters to retrieve information about
an employee. The procedure accepts the value 171 for employee ID and retrieves the name and
salary of the employee with ID 171 into the two OUT parameters. The query_emp procedure
has three formal parameters. Two of them are OUT parameters that return values to the calling
environment, shown in the second code box in the slide. The procedure accepts an employee ID
value through the p_id parameter. The v_emp_name and v_emp_salary variables are
populated with the information retrieved from the query into their two corresponding OUT
parameters. The following is the result of running the code in the second code example in the
slide. v_emp_name holds the value Smith and v_emp_salary holds the value 7400:

Note: Make sure that the data type for the actual parameter variables used to retrieve values
from the OUT parameters has a size sufficient to hold the data values being returned.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 O

R
AC

LE
 C

O
R

PO
R

AT
IO

N
 u

se
 o

nl
y

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Oracle Database 11g: Develop PL/SQL Program Units 2 - 26

Copyright © 2009, Oracle. All rights reserved.

Using the IN OUT Parameter Mode: Example

Calling environment

CREATE OR REPLACE PROCEDURE format_phone
(p_phone_no IN OUT VARCHAR2) IS

BEGIN
p_phone_no := '(' || SUBSTR(p_phone_no,1,3) ||

') ' || SUBSTR(p_phone_no,4,3) ||
'-' || SUBSTR(p_phone_no,7);

END format_phone;
/

p_phone_no (before the call) p_phone_no (after the call)

'(800) 633-0575''8006330575'

Using IN OUT Parameters: Example

Using an IN OUT parameter, you can pass a value into a procedure that can be updated. The
actual parameter value supplied from the calling environment can return either the original
unchanged value or a new value that is set within the procedure.

Note: An IN OUT parameter acts as an initialized variable.

The slide example creates a procedure with an IN OUT parameter to accept a 10-character string
containing digits for a phone number. The procedure returns the phone number formatted with
parentheses around the first three characters and a hyphen after the sixth digit—for example, the
phone string 8006330575 is returned as (800) 633-0575.

The following code uses the b_phone_no host variable of SQL*Plus to provide the input
value passed to the FORMAT_PHONE procedure. The procedure is executed and returns an
updated string in the b_phone_no host variable.

VARIABLE b_phone_no VARCHAR2(15)
EXECUTE :b_phone_no := '8006330575'
PRINT b_phone_no
EXECUTE format_phone (:b_phone_no)
PRINT b_phone_no

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 O

R
AC

LE
 C

O
R

PO
R

AT
IO

N
 u

se
 o

nl
y

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Oracle Database 11g: Develop PL/SQL Program Units 2 - 27

Copyright © 2009, Oracle. All rights reserved.

Viewing the OUT Parameters:
Using the DBMS_OUTPUT.PUT_LINE Subroutine

Use PL/SQL variables that are printed with calls to the
DBMS_OUTPUT.PUT_LINE procedure.

SET SERVEROUTPUT ON

DECLARE
v_emp_name employees.last_name%TYPE;
v_emp_sal employees.salary%TYPE;

BEGIN
query_emp(171, v_emp_name, v_emp_sal);
DBMS_OUTPUT.PUT_LINE('Name: ' || v_emp_name);
DBMS_OUTPUT.PUT_LINE('Salary: ' || v_emp_sal);

END;

Viewing the OUT Parameters: Using the DBMS_OUTPUT Subroutine

The slide example illustrates how to view the values returned from the OUT parameters in
SQL*Plus or the SQL Developer Worksheet.

You can use PL/SQL variables in an anonymous block to retrieve the OUT parameter values.
The DBMS_OUPUT.PUT_LINE procedure is called to print the values held in the PL/SQL
variables. The SET SERVEROUPUT must be ON. O

ra
cl

e
U

ni
ve

rs
ity

 a
nd

 O
R

AC
LE

 C
O

R
PO

R
AT

IO
N

 u
se

 o
nl

y

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Oracle Database 11g: Develop PL/SQL Program Units 2 - 28

Copyright © 2009, Oracle. All rights reserved.

Viewing OUT Parameters:
Using SQL*Plus Host Variables

1. Use SQL*Plus host variables.
2. Execute QUERY_EMP using host variables.

3. Print the host variables.

VARIABLE b_name VARCHAR2(25)
VARIABLE b_sal NUMBER
EXECUTE query_emp(171, :b_name, :b_sal)
PRINT b_name b_sal

Viewing OUT Parameters: Using SQL*Plus Host Variables

The slide example demonstrates how to use SQL*Plus host variables that are created using the
VARIABLE command. The SQL*Plus variables are external to the PL/SQL block and are
known as host or bind variables. To reference host variables from a PL/SQL block, you must
prefix their names with a colon (:). To display the values stored in the host variables, you must
use the SQL*Plus PRINT command followed by the name of the SQL*Plus variable (without
the colon because this is not a PL/SQL command or context).

Note: For details about the VARIABLE command, see the SQL*Plus Command Reference.
O

ra
cl

e
U

ni
ve

rs
ity

 a
nd

 O
R

AC
LE

 C
O

R
PO

R
AT

IO
N

 u
se

 o
nl

y

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Oracle Database 11g: Develop PL/SQL Program Units 2 - 29

Copyright © 2009, Oracle. All rights reserved.

Available Notations for
Passing Actual Parameters

When calling a subprogram, you can write the actual
parameters using the following notations:

• Positional:
– Lists the actual parameters in the same order as the formal

parameters

• Named:
– Lists the actual parameters in arbitrary order and uses the

association operator (=>) to associate a named formal
parameter with its actual parameter

• Mixed:
– Lists some of the actual parameters as positional and some

as named

Syntax for Passing Parameters

When calling a subprogram, you can write the actual parameters using the following notations:
• Positional: You list the actual parameter values in the same order in which the formal

parameters are declared. This notation is compact, but if you specify the parameters
(especially literals) in the wrong order, the error can be hard to detect. You must change
your code if the procedure’s parameter list changes.

• Named: You list the actual values in arbitrary order and use the association operator to
associate each actual parameter with its formal parameter by name. The PL/SQL
association operator is an “equal” sign followed by an “is greater than” sign, without
spaces: =>. The order of the parameters is not significant. This notation is more verbose,
but makes your code easier to read and maintain. You can sometimes avoid changing your
code if the procedure’s parameter list changes, for example, if the parameters are reordered
or a new optional parameter is added.

• Mixed: You list the first parameter values by their position and the remainder by using the
special syntax of the named method. You can use this notation to call procedures that have
some required parameters, followed by some optional parameters.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 O

R
AC

LE
 C

O
R

PO
R

AT
IO

N
 u

se
 o

nl
y

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Oracle Database 11g: Develop PL/SQL Program Units 2 - 30

Copyright © 2009, Oracle. All rights reserved.

Passing Actual Parameters:
Creating the add_dept Procedure

CREATE OR REPLACE PROCEDURE add_dept(
p_name IN departments.department_name%TYPE,
p_loc IN departments.location_id%TYPE) IS

BEGIN
INSERT INTO departments(department_id,

department_name, location_id)
VALUES (departments_seq.NEXTVAL, p_name , p_loc);

END add_dept;
/

Passing Parameters: Examples

In the slide example, the add_dept procedure declares two IN formal parameters: p_name
and p_loc. The values of these parameters are used in the INSERT statement to set the
department_name and location_id columns, respectively.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 O

R
AC

LE
 C

O
R

PO
R

AT
IO

N
 u

se
 o

nl
y

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Oracle Database 11g: Develop PL/SQL Program Units 2 - 31

Copyright © 2009, Oracle. All rights reserved.

Passing Actual Parameters: Examples

-- Passing parameters using the positional notation.
EXECUTE add_dept ('TRAINING', 2500)

-- Passing parameters using the named notation.
EXECUTE add_dept (p_loc=>2400, p_name=>'EDUCATION')

Passing Actual Parameters: Examples

Passing actual parameters by position is shown in the first call to execute add_dept in the first
code example in the slide. The first actual parameter supplies the value TRAINING for the
name formal parameter. The second actual parameter value of 2500 is assigned by position to
the loc formal parameter.

Passing parameters using the named notation is shown in the second code example in the slide.
The loc actual parameter, which is declared as the second formal parameter, is referenced by
name in the call, where it is associated with the actual value of 2400. The name parameter is
associated with the value EDUCATION. The order of the actual parameters is irrelevant if all
parameter values are specified.

Note: You must provide a value for each parameter unless the formal parameter is assigned a
default value. Specifying default values for formal parameters is discussed next.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 O

R
AC

LE
 C

O
R

PO
R

AT
IO

N
 u

se
 o

nl
y

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Oracle Database 11g: Develop PL/SQL Program Units 2 - 32

Copyright © 2009, Oracle. All rights reserved.

CREATE OR REPLACE PROCEDURE add_dept(
p_name departments.department_name%TYPE:='Unknown',
p_loc departments.location_id%TYPE DEFAULT 1700)
IS
BEGIN
INSERT INTO departments (department_id,

department_name, location_id)
VALUES (departments_seq.NEXTVAL, p_name, p_loc);

END add_dept;

Using the DEFAULT Option for the Parameters

• Defines default values for parameters.

• Provides flexibility by combining the positional and named
parameter-passing syntax.

EXECUTE add_dept
EXECUTE add_dept ('ADVERTISING', p_loc => 1200)
EXECUTE add_dept (p_loc => 1200)

Using the DEFAULT Option for Parameters

You can assign a default value to an IN parameter as follows:
• The assignment operator (:=), as shown for the name parameter in the slide
• The DEFAULT option, as shown for the loc parameter in the slide

When default values are assigned to formal parameters, you can call the procedure without
supplying an actual parameter value for the parameter. Thus, you can pass different numbers of
actual parameters to a subprogram, either by accepting or by overriding the default values as
required. It is recommended that you declare parameters without default values first. Then, you
can add formal parameters with default values without having to change every call to the
procedure.

Note: You cannot assign default values to the OUT and IN OUT parameters.

The second code box in the slide shows three ways of invoking the add_dept procedure:
• The first example assigns the default values for each parameter.
• The second example illustrates a combination of position and named notation to assign

values. In this case, using named notation is presented as an example.
• The last example uses the default value for the name parameter, Unknown, and the

supplied value for the loc parameter.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 O

R
AC

LE
 C

O
R

PO
R

AT
IO

N
 u

se
 o

nl
y

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Oracle Database 11g: Develop PL/SQL Program Units 2 - 33

Using the DEFAULT Option for Parameters (continued)

The following is the result of the second slide code example in the previous slide:

Usually, you can use named notation to override the default values of formal parameters.
However, you cannot skip providing an actual parameter if there is no default value provided for
a formal parameter.

Note: All the positional parameters should precede the named parameters in a subprogram call.
Otherwise, you receive an error message, as shown in the following example:

EXECUTE add_dept(p_name=>'new dept', 'new location')
O

ra
cl

e
U

ni
ve

rs
ity

 a
nd

 O
R

AC
LE

 C
O

R
PO

R
AT

IO
N

 u
se

 o
nl

y

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Oracle Database 11g: Develop PL/SQL Program Units 2 - 34

Copyright © 2009, Oracle. All rights reserved.

CREATE OR REPLACE PROCEDURE process_employees
IS

CURSOR cur_emp_cursor IS
SELECT employee_id
FROM employees;

BEGIN
FOR emp_rec IN cur_emp_cursor
LOOP
raise_salary(emp_rec.employee_id, 10);

END LOOP;
COMMIT;

END process_employees;
/

Calling Procedures

You can call procedures using anonymous blocks, another
procedure, or packages.

Calling Procedures

You can invoke procedures by using:
• Anonymous blocks
• Another procedure or PL/SQL subprogram

Examples on the preceding pages have illustrated how to use anonymous blocks (or the
EXECUTE command in SQL Developer or SQL*Plus).

The slide example shows you how to invoke a procedure from another stored procedure. The
PROCESS_EMPLOYEES stored procedure uses a cursor to process all the records in the
EMPLOYEES table and passes each employee’s ID to the RAISE_SALARY procedure, which
results in a 10% salary increase across the company.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 O

R
AC

LE
 C

O
R

PO
R

AT
IO

N
 u

se
 o

nl
y

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Oracle Database 11g: Develop PL/SQL Program Units 2 - 35

Copyright © 2009, Oracle. All rights reserved.

Calling Procedures Using SQL Developer

Replace ID and PERCENT
with actual values

1

2

3

4

Calling Procedures Using SQL Developer

In the slide example, the raise_salary procedure is called to raise the current salary of
employee 176 ($ 8,600) by 10 percent as follows:

1. Right-click the procedure name in the Procedures node, and then click Run. The Run
PL/SQL dialog box is displayed.

2. In the PL/SQL Block section, change the displayed formal IN and IN/OUT parameter
specifications displayed after the association operator, “=>” to the actual values that you
want to use for running or debugging the function or procedure. For example, to raise the
current salary of employee 176 from 8,600 by 10 percent, you can call the
raise_salary procedure as shown in the slide. Provide the values for the ID and
PERCENT input parameters that are specified as 176 and 10 respectively. This is done by
changing the displayed ID => ID with ID => 176 and PERCENT => PERCENT
with PERCENT => 10.

3. Click OK. SQL Developer runs the procedure. The updated salary of 9,460 is shown
below:

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 O

R
AC

LE
 C

O
R

PO
R

AT
IO

N
 u

se
 o

nl
y

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Oracle Database 11g: Develop PL/SQL Program Units 2 - 36

Copyright © 2009, Oracle. All rights reserved.

Lesson Agenda

• Using a modularized and layered subprogram design and
identifying the benefits of subprograms

• Working with procedures:

– Creating and calling procedures

– Identifying the available parameter-passing modes

– Using formal and actual parameters

– Using positional, named, or mixed notation

• Handling exceptions in procedures, removing a procedure,
and displaying the procedures’ information

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 O

R
AC

LE
 C

O
R

PO
R

AT
IO

N
 u

se
 o

nl
y

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Oracle Database 11g: Develop PL/SQL Program Units 2 - 37

Copyright © 2009, Oracle. All rights reserved.

Handled Exceptions

PROCEDURE
PROC1 ...
IS
...
BEGIN
...
PROC2(arg1);
...
EXCEPTION
...
END PROC1;

Calling procedure Called procedure

PROCEDURE
PROC2 ...
IS
...
BEGIN
...
EXCEPTION
...
END PROC2;

Exception raised

Exception handled

Control returns
to calling procedure

Handled Exceptions

When you develop procedures that are called from other procedures, you should be aware of the
effects that handled and unhandled exceptions have on the transaction and the calling procedure.

When an exception is raised in a called procedure, the control immediately goes to the exception
section of that block. An exception is considered handled if the exception section provides a
handler for the exception raised.

When an exception occurs and is handled, the following code flow takes place:
1. The exception is raised.
2. Control is transferred to the exception handler.
3. The block is terminated.
4. The calling program/block continues to execute as if nothing has happened.

If a transaction was started (that is, if any data manipulation language [DML] statements
executed before executing the procedure in which the exception was raised), then the transaction
is unaffected. A DML operation is rolled back if it was performed within the procedure before
the exception.

Note: You can explicitly end a transaction by executing a COMMIT or ROLLBACK operation in
the exception section.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 O

R
AC

LE
 C

O
R

PO
R

AT
IO

N
 u

se
 o

nl
y

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Oracle Database 11g: Develop PL/SQL Program Units 2 - 38

Copyright © 2009, Oracle. All rights reserved.

CREATE PROCEDURE create_departments IS
BEGIN
add_department('Media', 100, 1800);
add_department('Editing', 99, 1800);
add_department('Advertising', 101, 1800);

END;

Handled Exceptions: Example

CREATE PROCEDURE add_department(
p_name VARCHAR2, p_mgr NUMBER, p_loc NUMBER) IS

BEGIN
INSERT INTO DEPARTMENTS (department_id,
department_name, manager_id, location_id)

VALUES (DEPARTMENTS_SEQ.NEXTVAL, p_name, p_mgr, p_loc);
DBMS_OUTPUT.PUT_LINE('Added Dept: '|| p_name);

EXCEPTION
WHEN OTHERS THEN
DBMS_OUTPUT.PUT_LINE('Err: adding dept: '|| p_name);

END;

Handled Exceptions: Example

The two procedures in the slide are the following:
• The add_department procedure creates a new department record by allocating a new

department number from an Oracle sequence, and sets the department_name,
manager_id, and location_id column values using the p_name, p_mgr, and
p_loc parameters, respectively.

• The create_departments procedure creates more than one department by using calls
to the add_department procedure.

The add_department procedure catches all raised exceptions in its own handler. When
create_departments is executed, the following output is generated:

The Editing department with a manager_id of 99 is not inserted because a foreign key
integrity constraint violation on manager_id ensures that no manager has an ID of 99.
Because the exception was handled in the add_department procedure, the
create_department procedure continues to execute. A query on the DEPARTMENTS table
where the location_id is 1800 shows that Media and Advertising are added but the
Editing record is not.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 O

R
AC

LE
 C

O
R

PO
R

AT
IO

N
 u

se
 o

nl
y

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Oracle Database 11g: Develop PL/SQL Program Units 2 - 39

Copyright © 2009, Oracle. All rights reserved.

Exceptions Not Handled

PROCEDURE
PROC1 ...
IS
...
BEGIN
...
PROC2(arg1);
...
EXCEPTION
...
END PROC1;

Calling procedure

Control returned
to exception section of
calling procedure

Called procedure

PROCEDURE
PROC2 ...
IS
...
BEGIN
...
EXCEPTION
...
END PROC2;

Exception raised

Exception not
handled

Exceptions Not Handled

As discussed earlier, when an exception is raised in a called procedure, control immediately goes
to the exception section of that block. If the exception section does not provide a handler for the
raised exception, then it is not handled. The following code flow occurs:

1. The exception is raised.
2. The block terminates because no exception handler exists; any DML operations performed

within the procedure are rolled back.
3. The exception propagates to the exception section of the calling procedure—that is, control

is returned to the exception section of the calling block, if one exists.

If an exception is not handled, then all the DML statements in the calling procedure and the
called procedure are rolled back along with any changes to any host variables. The DML
statements that are not affected are statements that were executed before calling the PL/SQL
code whose exceptions are not handled.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 O

R
AC

LE
 C

O
R

PO
R

AT
IO

N
 u

se
 o

nl
y

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Oracle Database 11g: Develop PL/SQL Program Units 2 - 40

Copyright © 2009, Oracle. All rights reserved.

Exceptions Not Handled: Example

CREATE PROCEDURE create_departments_noex IS
BEGIN
add_department_noex('Media', 100, 1800);
add_department_noex('Editing', 99, 1800);
add_department_noex('Advertising', 101, 1800);

END;

SET SERVEROUTPUT ON
CREATE PROCEDURE add_department_noex(

p_name VARCHAR2, p_mgr NUMBER, p_loc NUMBER) IS
BEGIN
INSERT INTO DEPARTMENTS (department_id,
department_name, manager_id, location_id)

VALUES (DEPARTMENTS_SEQ.NEXTVAL, p_name, p_mgr, p_loc);
DBMS_OUTPUT.PUT_LINE('Added Dept: '|| p_name);
END;

Exceptions Not Handled: Example
The code example in the slide shows add_department_noex, which does not have an
exception section. In this case, the exception occurs when the Editing department is added.
Because of the lack of exception handling in either of the subprograms, no new department
records are added into the DEPARTMENTS table. Executing the
create_departments_noex procedure produces a result that is similar to the following:

Although the results show that the Media department was added, its operation is rolled back
because the exception was not handled in either of the subprograms invoked.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 O

R
AC

LE
 C

O
R

PO
R

AT
IO

N
 u

se
 o

nl
y

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Oracle Database 11g: Develop PL/SQL Program Units 2 - 41

Copyright © 2009, Oracle. All rights reserved.

Removing Procedures: Using the DROP
SQL Statement or SQL Developer

• Using the DROP statement:

• Using SQL Developer:

DROP PROCEDURE raise_salary;

1

2

3

Removing Procedures: Using the DROP SQL Statement or SQL Developer

When a stored procedure is no longer required, you can use the DROP PROCEDURE SQL
statement followed by the procedure’s name to remove it as follows:

DROP PROCEDURE procedure_name

You can also use SQL Developer to drop a stored procedure as follows:
1. Right-click the procedure name in the Procedures node, and then click Drop. The Drop

dialog box is displayed.
2. Click Apply to drop the procedure.

Note
• Whether successful or not, executing a data definition language (DDL) command such as

DROP PROCEDURE commits any pending transactions that cannot be rolled back.
• You might have to refresh the Procedures node before you can see the results of the drop

operation. To refresh the Procedures node, right-click the procedure name in the
Procedures node, and then click Refresh.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 O

R
AC

LE
 C

O
R

PO
R

AT
IO

N
 u

se
 o

nl
y

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Oracle Database 11g: Develop PL/SQL Program Units 2 - 42

Copyright © 2009, Oracle. All rights reserved.

Viewing Procedure Information
Using the Data Dictionary Views

SELECT text
FROM user_source
WHERE name = 'ADD_DEPT' AND type = 'PROCEDURE'
ORDER BY line;

DESCRIBE user_source

Viewing Procedure in the Data Dictionary

The source code for PL/SQL subprograms is stored in the data dictionary tables. The source
code is accessible to PL/SQL procedures that are successfully or unsuccessfully compiled. To
view the PL/SQL source code stored in the data dictionary, execute a SELECT statement on the
following tables:

• The USER_SOURCE table to display PL/SQL code that you own
• The ALL_SOURCE table to display PL/SQL code to which you have been granted the

EXECUTE right by the owner of that subprogram code

The query example shows all the columns provided by the USER_SOURCE table:
• The TEXT column holds a line of PL/SQL source code.
• The NAME column holds the name of the subprogram in uppercase text.
• The TYPE column holds the subprogram type, such as PROCEDURE or FUNCTION.
• The LINE column stores the line number for each source code line.

The ALL_SOURCE table provides an OWNER column in addition to the preceding columns.

Note: You cannot display the source code for Oracle PL/SQL built-in packages, or PL/SQL
whose source code has been wrapped by using a WRAP utility. The WRAP utility converts the
PL/SQL source code into a form that cannot be deciphered by humans.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 O

R
AC

LE
 C

O
R

PO
R

AT
IO

N
 u

se
 o

nl
y

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Oracle Database 11g: Develop PL/SQL Program Units 2 - 43

Copyright © 2009, Oracle. All rights reserved.

Viewing Procedure Information
Using SQL Developer

Viewing Procedure Information Using SQL Developer

To view a procedure’s code in SQL Developer, use the following steps:
1. Right-click the procedure’s name in the Procedures node.
2. The procedure code is displayed in the Code tab as shown in the slide.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 O

R
AC

LE
 C

O
R

PO
R

AT
IO

N
 u

se
 o

nl
y

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Oracle Database 11g: Develop PL/SQL Program Units 2 - 44

Copyright © 2009, Oracle. All rights reserved.

Quiz

Formal parameters are literal values, variables, and
expressions used in the parameter list of the calling
subprogram

1. True

2. False

Answer: 2

Formal and Actual (or arguments) Parameters

Formal parameters: Local variables declared in the parameter list of a subprogram
specification.

Actual parameters: Literal values, variables, and expressions used in the parameter list of the
calling subprogram. O

ra
cl

e
U

ni
ve

rs
ity

 a
nd

 O
R

AC
LE

 C
O

R
PO

R
AT

IO
N

 u
se

 o
nl

y

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Oracle Database 11g: Develop PL/SQL Program Units 2 - 45

Copyright © 2009, Oracle. All rights reserved.

Summary

In this lesson, you should have learned how to:

• Identify the benefits of modularized and layered
subprogram design

• Create and call procedures

• Use formal and actual parameters

• Use positional, named, or mixed notation for passing
parameters

• Identify the available parameter-passing modes

• Handle exceptions in procedures

• Remove a procedure

• Display the procedures’ information

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 O

R
AC

LE
 C

O
R

PO
R

AT
IO

N
 u

se
 o

nl
y

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Oracle Database 11g: Develop PL/SQL Program Units 2 - 46

Copyright © 2009, Oracle. All rights reserved.

Practice 2 Overview: Creating,
Compiling, and Calling Procedures

This practice covers the following topics:

• Creating stored procedures to:
– Insert new rows into a table using the supplied parameter

values

– Update data in a table for rows that match the supplied
parameter values

– Delete rows from a table that match the supplied parameter
values

– Query a table and retrieve data based on supplied parameter
values

• Handling exceptions in procedures

• Compiling and invoking procedures

Practice 2: Overview

In this practice, you create, compile, and invoke procedures that issue DML and query
commands. You also learn how to handle exceptions in procedures.

If you encounter compilation errors when you execute procedures, you can use the Compiler-
Log tab in SQL Developer.

Note: It is recommended to use SQL Developer for this practice.

Important

All practices in this course and the practice solutions assume that you create objects such as
procedures, functions, and so on using the SQL Worksheet area in SQL Developer. When you
create an object in the SQL Worksheet area, you need to refresh the object node in order for the
new object to be displayed in the Navigator tree. To compile the newly created object, you can
right-click the object name in the Navigator tree, and then select Compile from the shortcut
menu. For example, after you enter the code to create a procedure in the SQL Worksheet area,
you click the Run Script icon (or press [F5]) to run the code. This creates and compiles the
procedure.

Alternatively, you can create objects such as procedures using the PROCEDURES node in the
Navigator tree, and then compile the procedure. Creating objects using the Navigator tree,
automatically display the newly created object.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 O

R
AC

LE
 C

O
R

PO
R

AT
IO

N
 u

se
 o

nl
y

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Oracle Database 11g: Develop PL/SQL Program Units 2 - 47

Practice 2

1. Create, compile, and invoke the ADD_JOB procedure and review the results.

a. Create a procedure called ADD_JOB to insert a new job into the JOBS table. Provide
the ID and job title using two parameters.
Note: You can create the procedure (and other objects) by entering the code in the
SQL Worksheet area, and then click the Run Script (F5) icon. This creates and
compiles the procedure. To find out whether or not the procedure has any errors,
right-click the procedure name in the Procedures node, and then select Compile from
the pop-up menu.

b. Compile the code, and then invoke the procedure with IT_DBA as the job ID and
Database Administrator as the job title. Query the JOBS table and view the
results.

c. Invoke your procedure again, passing a job ID of ST_MAN and a job title of Stock
Manager. What happens and why?

2. Create a procedure called UPD_JOB to modify a job in the JOBS table.

a. Create a procedure called UPD_JOB to update the job title. Provide the job ID and a
new title using two parameters. Include the necessary exception handling if no update
occurs.

b. Compile the procedure. Invoke the procedure to change the job title of the job ID
IT_DBA to Data Administrator. Query the JOBS table and view the results.

c. Test the exception handling section of the procedure by trying to update a job that
does not exist. You can use the job ID IT_WEB and the job title Web Master.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 O

R
AC

LE
 C

O
R

PO
R

AT
IO

N
 u

se
 o

nl
y

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Oracle Database 11g: Develop PL/SQL Program Units 2 - 48

Practice 2 (continued)

3. Create a procedure called DEL_JOB to delete a job from the JOBS table.

a. Create a procedure called DEL_JOB to delete a job. Include the necessary exception
handling code if no job is deleted.

b. Compile the code; invoke the procedure using the job ID IT_DBA. Query the JOBS
table and view the results.

c. Test the exception handling section of the procedure by trying to delete a job that
does not exist. Use the IT_WEB as the job ID. You should get the message that you
included in the exception handling section of the procedure as the output.

4. Create a procedure called GET_EMPLOYEE to query the EMPLOYEES table, retrieving the
salary and job ID for an employee when provided with the employee ID.

a. Create a procedure that returns a value from the SALARY and JOB_ID columns for a
specified employee ID. Compile the code and remove syntax errors, if any.

b. Execute the procedure using host variables for the two OUT parameters—one for the
salary and the other for the job ID. Display the salary and job ID for employee ID
120.

c. Invoke the procedure again, passing an EMPLOYEE_ID of 300. What happens and
why?

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 O

R
AC

LE
 C

O
R

PO
R

AT
IO

N
 u

se
 o

nl
y

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Copyright © 2009, Oracle. All rights reserved.

Creating Functions

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 O

R
AC

LE
 C

O
R

PO
R

AT
IO

N
 u

se
 o

nl
y

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Oracle Database 11g: Develop PL/SQL Program Units 3 - 2

Copyright © 2009, Oracle. All rights reserved.

Objectives

After completing this lesson, you should be able to do the
following:

• Differentiate between a procedure and a function

• Describe the uses of functions

• Create stored functions

• Invoke a function

• Remove a function

Lesson Aim

In this lesson, you learn how to create, invoke, and maintain functions.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 O

R
AC

LE
 C

O
R

PO
R

AT
IO

N
 u

se
 o

nl
y

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Oracle Database 11g: Develop PL/SQL Program Units 3 - 3

Copyright © 2009, Oracle. All rights reserved.

Overview of Stored Functions

A function:

• Is a named PL/SQL block that returns a value

• Can be stored in the database as a schema object for
repeated execution

• Is called as part of an expression or is used to provide a
parameter value

Overview of Stored Functions

A function is a named PL/SQL block that can accept parameters, be invoked, and return a value.
In general, you use a function to compute a value. Functions and procedures are structured alike.
A function must return a value to the calling environment, whereas a procedure returns zero or
more values to its calling environment. Like a procedure, a function has a header, a declarative
section, an executable section, and an optional exception-handling section. A function must have
a RETURN clause in the header and at least one RETURN statement in the executable section.

Functions can be stored in the database as schema objects for repeated execution. A function that
is stored in the database is referred to as a stored function. Functions can also be created on
client-side applications.

Functions promote reusability and maintainability. When validated, they can be used in any
number of applications. If the processing requirements change, only the function needs to be
updated.

A function may also be called as part of a SQL expression or as part of a PL/SQL expression. In
the context of a SQL expression, a function must obey specific rules to control side effects. In a
PL/SQL expression, the function identifier acts like a variable whose value depends on the
parameters passed to it.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 O

R
AC

LE
 C

O
R

PO
R

AT
IO

N
 u

se
 o

nl
y

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Oracle Database 11g: Develop PL/SQL Program Units 3 - 4

Copyright © 2009, Oracle. All rights reserved.

CREATE [OR REPLACE] FUNCTION function_name
[(parameter1 [mode1] datatype1, . . .)]
RETURN datatype IS|AS
[local_variable_declarations;
. . .]

BEGIN
-- actions;
RETURN expression;

END [function_name];

Creating Functions

The PL/SQL block must have at least one RETURN statement.

PL/SQL Block

Syntax for Creating Functions

A function is a PL/SQL block that returns a value. A RETURN statement must be provided to
return a value with a data type that is consistent with the function declaration.

You create new functions with the CREATE FUNCTION statement, which may declare a list of
parameters, must return one value, and must define the actions to be performed by the standard
PL/SQL block.

You should consider the following points about the CREATE FUNCTION statement:
• The REPLACE option indicates that if the function exists, it is dropped and replaced with

the new version that is created by the statement.
• The RETURN data type must not include a size specification.
• The PL/SQL block starts with a BEGIN after the declaration of any local variables and

ends with an END, optionally followed by the function_name.
• There must be at least one RETURN expression statement.
• You cannot reference host or bind variables in the PL/SQL block of a stored function.

Note: Although the OUT and IN OUT parameter modes can be used with functions, it is not good
programming practice to use them with functions. However, if you need to return more than one
value from a function, consider returning the values in a composite data structure such as a
PL/SQL record or a PL/SQL table.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 O

R
AC

LE
 C

O
R

PO
R

AT
IO

N
 u

se
 o

nl
y

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Oracle Database 11g: Develop PL/SQL Program Units 3 - 5

Copyright © 2009, Oracle. All rights reserved.

The Difference Between
Procedures and Functions

Must contain at least one RETURN statementCan contain a RETURN statement
without a value

Must return a single valueCan pass values (if any) using output
parameters

Invoke as part of an expressionExecute as a PL/SQL statement

Do not contain RETURN clause in the
header

Procedures

Must contain a RETURN clause in the header

Functions

The Difference Between Procedures and Functions

You create a procedure to store a series of actions for later execution. A procedure can contain
zero or more parameters that can be transferred to and from the calling environment, but a
procedure does not have to return a value. A procedure can call a function to assist with its
actions.

Note: A procedure containing a single OUT parameter would be better rewritten as a function
returning the value.

You create a function when you want to compute a value that must be returned to the calling
environment. A function can contain zero or more parameters that are transferred from the
calling environment. Functions typically return only a single value, and the value is returned
through a RETURN statement. The functions used in SQL statements should not use OUT or IN
OUT mode parameters. Although a function using output parameters can be used in a PL/SQL
procedure or block, it cannot be used in SQL statements.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 O

R
AC

LE
 C

O
R

PO
R

AT
IO

N
 u

se
 o

nl
y

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Oracle Database 11g: Develop PL/SQL Program Units 3 - 6

Copyright © 2009, Oracle. All rights reserved.

Creating and Running Functions: Overview

Create/edit
function

Invoke function

Compiler
warnings/errors?

NO

YES
Use SHOW ERRORS

command in SQL*Plus

Use USER/ALL/DBA_
ERRORS views

View errors/warnings
in SQL Developer

View compiler
warnings/errors

Creating and Running Functions: Overview

The diagram in the slide illustrates the basic steps involved in creating and running a function:
1. Create the function using SQL Developer’s Object Navigator tree or the SQL Worksheet

area.
2. Compile the function. The function is created in the database. The CREATE FUNCTION

statement creates and stores source code and the compiled m-code in the database. To
compile the function, right-click the function’s name in the Object Navigator tree, and then
click Compile.

3. If there are compilation warning or errors, you can view (and then correct) the warnings or
errors using one of the following methods:

Using the SQL Developer interface (the Compiler – Log tab)

Using the SHOW ERRORS SQL*Plus command

Using the USER/ALL/DBA_ERRORS views

4. After successful compilation, invoke the function to return the desired value.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 O

R
AC

LE
 C

O
R

PO
R

AT
IO

N
 u

se
 o

nl
y

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Oracle Database 11g: Develop PL/SQL Program Units 3 - 7

Copyright © 2009, Oracle. All rights reserved.

Creating and Invoking a Stored Function Using
the CREATE FUNCTION Statement: Example

CREATE OR REPLACE FUNCTION get_sal
(p_id employees.employee_id%TYPE) RETURN NUMBER IS
v_sal employees.salary%TYPE := 0;

BEGIN
SELECT salary
INTO v_sal
FROM employees
WHERE employee_id = p_id;
RETURN v_sal;

END get_sal; /

-- Invoke the function as an expression or as
-- a parameter value.

EXECUTE dbms_output.put_line(get_sal(100))

Stored Function: Example

The get_sal function is created with a single input parameter and returns the salary as a
number. Execute the command as shown, or save it in a script file and run the script to create the
get_sal function.

The get_sal function follows a common programming practice of using a single RETURN
statement that returns a value assigned to a local variable. If your function has an exception
section, then it may also contain a RETURN statement.

Invoke a function as part of a PL/SQL expression because the function will return a value to the
calling environment. The second code box uses the SQL*Plus EXECUTE command to call the
DBMS_OUTPUT.PUT_LINE procedure whose argument is the return value from the function
get_sal. In this case, get_sal is invoked first to calculate the salary of the employee with
ID 100. The salary value returned is supplied as the value of the DBMS_OUTPUT.PUT_LINE
parameter, which displays the result (if you have executed a SET SERVEROUTPUT ON).

Note: A function must always return a value. The example does not return a value if a row is not
found for a given id. Ideally, create an exception handler to return a value as well.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 O

R
AC

LE
 C

O
R

PO
R

AT
IO

N
 u

se
 o

nl
y

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Oracle Database 11g: Develop PL/SQL Program Units 3 - 8

Copyright © 2009, Oracle. All rights reserved.

Using Different Methods for Executing Functions

-- As a PL/SQL expression, get the results using host variables

VARIABLE b_salary NUMBER
EXECUTE :b_salary := get_sal(100)

-- As a PL/SQL expression, get the results using a local
-- variable

DECLARE
sal employees.salary%type;

BEGIN
sal := get_sal(100);
DBMS_OUTPUT.PUT_LINE('The salary is: '|| sal);

END;/

Using Different Methods for Executing Functions

If functions are well designed, they can be powerful constructs. Functions can be invoked in the
following ways:

• As part of PL/SQL expressions: You can use host or local variables to hold the returned
value from a function. The first example in the slide uses a host variable and the second
example uses a local variable in an anonymous block.

Note: The benefits and restrictions that apply to functions when used in a SQL statement are
discussed on the next few pages.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 O

R
AC

LE
 C

O
R

PO
R

AT
IO

N
 u

se
 o

nl
y

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Oracle Database 11g: Develop PL/SQL Program Units 3 - 9

Copyright © 2009, Oracle. All rights reserved.

Using Different Methods for Executing Functions

-- Use as a parameter to another subprogram

EXECUTE dbms_output.put_line(get_sal(100))

-- Use in a SQL statement (subject to restrictions)

SELECT job_id, get_sal(employee_id) FROM employees;

. . .

Using Different Methods for Executing Functions (continued)

• As a parameter to another subprogram: The third example in the slide demonstrates this
usage. The get_sal function with all its arguments is nested in the parameter required by
the DBMS_OUTPUT.PUT_LINE procedure. This comes from the concept of nesting
functions as discussed in the course titled Oracle Database 11g: SQL Fundamentals I.

• As an expression in a SQL statement: The last example shows how a function can be
used as a single-row function in a SQL statement. O

ra
cl

e
U

ni
ve

rs
ity

 a
nd

 O
R

AC
LE

 C
O

R
PO

R
AT

IO
N

 u
se

 o
nl

y

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Oracle Database 11g: Develop PL/SQL Program Units 3 - 10

Copyright © 2009, Oracle. All rights reserved.

Creating and Compiling
Functions Using SQL Developer

1 2 3

4

Creating and Compiling Functions Using SQL Developer

You can create a new function in SQL Developer using the following steps:
1. Right-click the Functions node, and then select New Function. The Create PL/SQL

Function dialog box is displayed.
2. Select the schema, function name, and the parameters list (using the + icon), and then click

OK. The code editor for the function is displayed.
3. Enter the function’s code.
4. To compile the function, click the Compile icon.

Note
• To create a new function in SQL Developer, you can also enter the code in the SQL

Worksheet, and then click the Run Script icon.
• For additional information about creating functions in SQL Developer, access the

appropriate online help topic titled “Create PL/SQL Subprogram Function or Procedure.”

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 O

R
AC

LE
 C

O
R

PO
R

AT
IO

N
 u

se
 o

nl
y

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Oracle Database 11g: Develop PL/SQL Program Units 3 - 11

Copyright © 2009, Oracle. All rights reserved.

Executing Functions Using SQL Developer

1

2

Replace ID with
the actual value`

3`

Executing Functions Using SQL Developer

You can execute a function in SQL Developer using the following steps:
1. Right-click the Functions node.
2. Right-click the function’s name, and then select Run. The Run PL/SQL dialog box is

displayed.
3. Replace the second parameter name with the actual parameter value as shown in the slide

example, and then click OK.

Note: For additional information about running functions in SQL Developer, access the online
help topic titled “Running and Debugging Functions and Procedures.”

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 O

R
AC

LE
 C

O
R

PO
R

AT
IO

N
 u

se
 o

nl
y

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Oracle Database 11g: Develop PL/SQL Program Units 3 - 12

Copyright © 2009, Oracle. All rights reserved.

Advantages of User-Defined
Functions in SQL Statements

• Can extend SQL where activities are too complex, too
awkward, or unavailable with SQL

• Can increase efficiency when used in the WHERE clause to
filter data, as opposed to filtering the data in the application

• Can manipulate data values

Advantages of User-Defined Functions in SQL Statements

SQL statements can reference PL/SQL user-defined functions anywhere a SQL expression is
allowed. For example, a user-defined function can be used anywhere that a built-in SQL
function, such as UPPER(), can be placed.

Advantages
• Permits calculations that are too complex, awkward, or unavailable with SQL
• Increases data independence by processing complex data analysis within the Oracle server,

rather than by retrieving the data into an application
• Increases efficiency of queries by performing functions in the query rather than in the

application
• Manipulates new types of data (for example, latitude and longitude) by encoding character

strings and using functions to operate on the strings

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 O

R
AC

LE
 C

O
R

PO
R

AT
IO

N
 u

se
 o

nl
y

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Oracle Database 11g: Develop PL/SQL Program Units 3 - 13

Copyright © 2009, Oracle. All rights reserved.

Using a Function in a SQL Expression: Example

CREATE OR REPLACE FUNCTION tax(p_value IN NUMBER)
RETURN NUMBER IS
BEGIN

RETURN (p_value * 0.08);
END tax;
/
SELECT employee_id, last_name, salary, tax(salary)
FROM employees
WHERE department_id = 100;

Function in SQL Expressions: Example

The example in the slide shows how to create a tax function to calculate income tax. The
function accepts a NUMBER parameter and returns the calculated income tax based on a simple
flat tax rate of 8%.

To execute the code shown in the slide example in SQL Developer, enter the code in the SQL
Worksheet, and then click the Run Script icon. The tax function is invoked as an expression in
the SELECT clause along with the employee ID, last name, and salary for employees in a
department with ID 100. The return result from the tax function is displayed with the regular
output from the query.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 O

R
AC

LE
 C

O
R

PO
R

AT
IO

N
 u

se
 o

nl
y

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Oracle Database 11g: Develop PL/SQL Program Units 3 - 14

Copyright © 2009, Oracle. All rights reserved.

Calling User-Defined Functions
in SQL Statements

User-defined functions act like built-in single-row functions and
can be used in:
• The SELECT list or clause of a query

• Conditional expressions of the WHERE and HAVING
clauses

• The CONNECT BY, START WITH, ORDER BY, and GROUP BY
clauses of a query

• The VALUES clause of the INSERT statement

• The SET clause of the UPDATE statement

Calling User-Defined Functions in SQL Statements

A PL/SQL user-defined function can be called from any SQL expression where a built-in single-
row function can be called as shown in the following example:

SELECT employee_id, tax(salary)
FROM employees

WHERE tax(salary) > (SELECT MAX(tax(salary))

FROM employees

WHERE department_id = 30)

ORDER BY tax(salary) DESC;
O

ra
cl

e
U

ni
ve

rs
ity

 a
nd

 O
R

AC
LE

 C
O

R
PO

R
AT

IO
N

 u
se

 o
nl

y

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Oracle Database 11g: Develop PL/SQL Program Units 3 - 15

Copyright © 2009, Oracle. All rights reserved.

Restrictions When Calling Functions
from SQL Expressions

• User-defined functions that are callable from SQL
expressions must:
– Be stored in the database
– Accept only IN parameters with valid SQL data types, not

PL/SQL-specific types

– Return valid SQL data types, not PL/SQL-specific types

• When calling functions in SQL statements:
– You must own the function or have the EXECUTE privilege

Restrictions When Calling Functions from SQL Expressions

The user-defined PL/SQL functions that are callable from SQL expressions must meet the
following requirements:

• The function must be stored in the database.
• The function parameters must be IN and of valid SQL data types.
• The functions must return data types that are valid SQL data types. They cannot be

PL/SQL-specific data types such as BOOLEAN, RECORD, or TABLE. The same restriction
applies to the parameters of the function.

The following restrictions apply when calling a function in a SQL statement:
• Parameters must use positional notation. Named notation is not supported.
• You must own or have the EXECUTE privilege on the function.

Other restrictions on a user-defined function include the following:
• It cannot be called from the CHECK constraint clause of a CREATE TABLE or ALTER

TABLE statement.
• It cannot be used to specify a default value for a column.

Note: Only stored functions are callable from SQL statements. Stored procedures cannot be
called unless invoked from a function that meets the preceding requirements.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 O

R
AC

LE
 C

O
R

PO
R

AT
IO

N
 u

se
 o

nl
y

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Oracle Database 11g: Develop PL/SQL Program Units 3 - 16

Copyright © 2009, Oracle. All rights reserved.

Controlling Side Effects When
Calling Functions from SQL Expressions

Functions called from:
• A SELECT statement cannot contain DML statements

• An UPDATE or DELETE statement on a table T cannot
query or contain DML on the same table T

• SQL statements cannot end transactions (that is, cannot
execute COMMIT or ROLLBACK operations)

Note: Calls to subprograms that break these restrictions are
also not allowed in the function.

Controlling Side Effects When Calling Functions from SQL Expressions

To execute a SQL statement that calls a stored function, the Oracle server must know whether
the function is free of specific side effects. The side effects are unacceptable changes to database
tables.

Additional restrictions apply when a function is called in expressions of SQL statements:
• When a function is called from a SELECT statement or a parallel UPDATE or DELETE

statement, the function cannot modify database tables.
• When a function is called from an UPDATE or DELETE statement, the function cannot

query or modify database tables modified by that statement.
• When a function is called from a SELECT, INSERT, UPDATE, or DELETE statement, the

function cannot execute directly or indirectly through another subprogram or SQL
transaction control statements such as:

- A COMMIT or ROLLBACK statement
- A session control statement (such as SET ROLE)
- A system control statement (such as ALTER SYSTEM)
- Any DDL statements (such as CREATE) because they are followed by an automatic

commit

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 O

R
AC

LE
 C

O
R

PO
R

AT
IO

N
 u

se
 o

nl
y

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Oracle Database 11g: Develop PL/SQL Program Units 3 - 17

Copyright © 2009, Oracle. All rights reserved.

Restrictions on Calling Functions
from SQL: Example

CREATE OR REPLACE FUNCTION dml_call_sql(p_sal NUMBER)
RETURN NUMBER IS

BEGIN
INSERT INTO employees(employee_id, last_name,

email, hire_date, job_id, salary)
VALUES(1, 'Frost', 'jfrost@company.com',

SYSDATE, 'SA_MAN', p_sal);
RETURN (p_sal + 100);

END;

UPDATE employees
SET salary = dml_call_sql(2000)

WHERE employee_id = 170;

Restrictions on Calling Functions from SQL: Example

The dml_call_sql function in the slide contains an INSERT statement that inserts a new
record into the EMPLOYEES table and returns the input salary value incremented by 100. This
function is invoked in the UPDATE statement that modifies the salary of employee 170 to the
amount returned from the function. The UPDATE statement fails with an error indicating that the
table is mutating (that is, changes are already in progress in the same table). In the following
example, the query_call_sql function queries the SALARY column of the EMPLOYEES
table:

CREATE OR REPLACE FUNCTION query_call_sql(p_a NUMBER)
RETURN NUMBER IS
v_s NUMBER;

BEGIN
SELECT salary INTO v_s FROM employees
WHERE employee_id = 170;
RETURN (v_s + p_a);

END;
When invoked from the following UPDATE statement, it returns the error message similar to the
error message shown in the slide:

UPDATE employees SET salary = query_call_sql(100)
WHERE employee_id = 170;

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 O

R
AC

LE
 C

O
R

PO
R

AT
IO

N
 u

se
 o

nl
y

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Oracle Database 11g: Develop PL/SQL Program Units 3 - 18

Copyright © 2009, Oracle. All rights reserved.

Named and Mixed Notation from SQL

• PL/SQL allows arguments in a subroutine call to be
specified using positional, named, or mixed notation

• Prior to Oracle Database 11g, only the positional notation
is supported in calls from SQL

• Starting in Oracle Database 11g, named and mixed
notation can be used for specifying arguments in calls to
PL/SQL subroutines from SQL statements

• For long parameter lists, with most having default values,
you can omit values from the optional parameters

• You can avoid duplicating the default value of the optional
parameter at each call site

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 O

R
AC

LE
 C

O
R

PO
R

AT
IO

N
 u

se
 o

nl
y

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Oracle Database 11g: Develop PL/SQL Program Units 3 - 19

Copyright © 2009, Oracle. All rights reserved.

Named and Mixed Notation from SQL: Example

CREATE OR REPLACE FUNCTION f(
p_parameter_1 IN NUMBER DEFAULT 1,
p_parameter_5 IN NUMBER DEFAULT 5)

RETURN NUMBER
IS
v_var number;
BEGIN
v_var := p_parameter_1 + (p_parameter_5 * 2);
RETURN v_var;

END f;
/

SELECT f(p_parameter_5 => 10) FROM DUAL;

Example of Using Named and Mixed Notation from a SQL Statement

In the slide example, the call to the function f within the SQL SELECT statement uses the
named notation. Before Oracle Database 11g, you could not use the named or mixed notation
when passing parameters to a function from within a SQL statement. Before Oracle Database
11g, you received the following error:

SELECT f(p_parameter_5 => 10) FROM DUAL;

ORA-00907: missing right parenthesis
O

ra
cl

e
U

ni
ve

rs
ity

 a
nd

 O
R

AC
LE

 C
O

R
PO

R
AT

IO
N

 u
se

 o
nl

y

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Oracle Database 11g: Develop PL/SQL Program Units 3 - 20

Copyright © 2009, Oracle. All rights reserved.

Removing Functions: Using the DROP
SQL Statement or SQL Developer

• Using the DROP statement:

• Using SQL Developer:

DROP FUNCTION f;

1
2

3

Removing Functions

Using the DROP statement

When a stored function is no longer required, you can use a SQL statement in SQL*Plus to drop
it. To remove a stored function by using SQL*Plus, execute the DROP FUNCTION SQL
command.

Using CREATE OR REPLACE Versus DROP and CREATE

The REPLACE clause in the CREATE OR REPLACE syntax is equivalent to dropping a
function and re-creating it. When you use the CREATE OR REPLACE syntax, the privileges
granted on this object to other users remain the same. When you DROP a function and then re-
create it, all the privileges granted on this function are automatically revoked.

Using SQL Developer

To drop a function in SQL Developer, right-click the function name in the Functions node, and
then select Drop. The Drop dialog box is displayed. To drop the function, click Apply.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 O

R
AC

LE
 C

O
R

PO
R

AT
IO

N
 u

se
 o

nl
y

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Oracle Database 11g: Develop PL/SQL Program Units 3 - 21

Copyright © 2009, Oracle. All rights reserved.

Viewing Functions
Using Data Dictionary Views

SELECT text
FROM user_source
WHERE type = 'FUNCTION'
ORDER BY line;

DESCRIBE USER_SOURCE

. . .

Viewing Functions Using Data Dictionary Views

The source code for PL/SQL functions is stored in the data dictionary tables. The source code is
accessible for PL/SQL functions that are successfully or unsuccessfully compiled. To view the
PL/SQL function code stored in the data dictionary, execute a SELECT statement on the
following tables where the TYPE column value is FUNCTION:

• The USER_SOURCE table to display the PL/SQL code that you own
• The ALL_SOURCE table to display the PL/SQL code to which you have been granted the

EXECUTE right by the owner of that subprogram code

The second slide example uses the USER_SOURCE table to display the source code for all the
functions in your schema.

You can also use the USER_OBJECTS data dictionary view to display a list of your function
names.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 O

R
AC

LE
 C

O
R

PO
R

AT
IO

N
 u

se
 o

nl
y

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Oracle Database 11g: Develop PL/SQL Program Units 3 - 22

Copyright © 2009, Oracle. All rights reserved.

Quiz

A PL/SQL function:

1. Can be invoked as part of an expression
2. Must contain a RETURN clause in the header

3. Must return a single value
4. Must contain at least one RETURN statement

5. Does not contain a RETURN clause in the header

Answers: 1, 2, 3, 4

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 O

R
AC

LE
 C

O
R

PO
R

AT
IO

N
 u

se
 o

nl
y

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Oracle Database 11g: Develop PL/SQL Program Units 3 - 23

Copyright © 2009, Oracle. All rights reserved.

Summary

In this lesson, you should have learned how to:

• Differentiate between a procedure and a function

• Describe the uses of functions

• Create stored functions

• Invoke a function

• Remove a function

Summary

A function is a named PL/SQL block that must return a value. Generally, you create a function
to compute and return a value, and you create a procedure to perform an action.

A function can be created or dropped.

A function is invoked as a part of an expression.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 O

R
AC

LE
 C

O
R

PO
R

AT
IO

N
 u

se
 o

nl
y

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Oracle Database 11g: Develop PL/SQL Program Units 3 - 24

Copyright © 2009, Oracle. All rights reserved.

Practice 3: Overview

This practice covers the following topics:

• Creating stored functions:
– To query a database table and return specific values

– To be used in a SQL statement

– To insert a new row, with specified parameter values, into a
database table

– Using default parameter values

• Invoking a stored function from a SQL statement

• Invoking a stored function from a stored procedure

Practice 3: Overview

It is recommended to use SQL Developer for this practice.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 O

R
AC

LE
 C

O
R

PO
R

AT
IO

N
 u

se
 o

nl
y

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Oracle Database 11g: Develop PL/SQL Program Units 3 - 25

Practice 3
1. Create and invoke the GET_JOB function to return a job title.

a. Create and compile a function called GET_JOB to return a job title.

b. Create a VARCHAR2 host variable called b_title, allowing a length of 35
characters. Invoke the function with the SA_REP job ID to return the value in the
host variable, and then print the host variable to view the result.

2. Create a function called GET_ANNUAL_COMP to return the annual salary computed from
an employee’s monthly salary and commission passed as parameters.

a. Create the GET_ANNUAL_COMP function, which accepts parameter values for the
monthly salary and commission. Either or both values passed can be NULL, but the
function should still return a non-NULL annual salary. Use the following basic
formula to calculate the annual salary:

(salary*12) + (commission_pct*salary*12)

b. Use the function in a SELECT statement against the EMPLOYEES table for
employees in department 30.

3. Create a procedure, ADD_EMPLOYEE, to insert a new employee into the EMPLOYEES
table. The procedure should call a VALID_DEPTID function to check whether the
department ID specified for the new employee exists in the DEPARTMENTS table.

a. Create a function called VALID_DEPTID to validate a specified department ID and
return a BOOLEAN value of TRUE if the department exists.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 O

R
AC

LE
 C

O
R

PO
R

AT
IO

N
 u

se
 o

nl
y

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Oracle Database 11g: Develop PL/SQL Program Units 3 - 26

Practice 3 (continued)

b. Create the ADD_EMPLOYEE procedure to add an employee to the EMPLOYEES table.
The row should be added to the EMPLOYEES table if the VALID_DEPTID function
returns TRUE; otherwise, alert the user with an appropriate message. Provide the
following parameters:
- first_name

- last_name

- email

- job: Use ‘SA_REP’ as the default

- mgr: Use 145 as the default

- sal: Use 1000 as the default

- comm: Use 0 as the default

- deptid: Use 30 as the default

- Use the EMPLOYEES_SEQ sequence to set the employee_id column

- Set the hire_date column to TRUNC(SYSDATE)

c. Call ADD_EMPLOYEE for the name Jane Harris in department 15, leaving other
parameters with their default values. What is the result?

d. Add another employee named Joe Harris in department 80, leaving remaining
parameters with their default values. What is the result?

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 O

R
AC

LE
 C

O
R

PO
R

AT
IO

N
 u

se
 o

nl
y

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Copyright © 2009, Oracle. All rights reserved.

Creating Packages

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 O

R
AC

LE
 C

O
R

PO
R

AT
IO

N
 u

se
 o

nl
y

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Oracle Database 11g: Develop PL/SQL Program Units 4 - 2

Copyright © 2009, Oracle. All rights reserved.

Objectives

After completing this lesson, you should be able to do the
following:

• Describe packages and list their components

• Create a package to group together related variables,
cursors, constants, exceptions, procedures, and functions

• Designate a package construct as either public or private

• Invoke a package construct

• Describe the use of a bodiless package

Lesson Aim

In this lesson, you learn what a package is and what its components are. You also learn how to
create and use packages.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 O

R
AC

LE
 C

O
R

PO
R

AT
IO

N
 u

se
 o

nl
y

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Oracle Database 11g: Develop PL/SQL Program Units 4 - 3

Copyright © 2009, Oracle. All rights reserved.

Lesson Agenda

• Identifying the benefits and the components of packages

• Working with packages:
– Creating the package specification and body

– Invoking the package subprograms

– Removing a package

– Displaying the package information

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 O

R
AC

LE
 C

O
R

PO
R

AT
IO

N
 u

se
 o

nl
y

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Oracle Database 11g: Develop PL/SQL Program Units 4 - 4

Copyright © 2009, Oracle. All rights reserved.

What Are PL/SQL Packages?

• A package is a schema object that groups logically related
PL/SQL types, variables, and subprograms.

• Packages usually have two parts:
– A specification (spec)

– A body

• The specification is the interface to the package. It
declares the types, variables, constants, exceptions,
cursors, and subprograms that can be referenced from
outside the package.

• The body defines the queries for the cursors and the code
for the subprograms.

• Enable the Oracle server to read multiple objects into
memory at once.

PL/SQL Packages: Overview

PL/SQL packages enable you to bundle related PL/SQL types, variables, data structures,
exceptions, and subprograms into one container. For example, a Human Resources package can
contain hiring and firing procedures, commission and bonus functions, and tax exemption
variables.

A package usually consists of two parts stored separately in the database:
• A specification
• A body (optional)

The package itself cannot be called, parameterized, or nested. After writing and compiling, the
contents can be shared with many applications.

When a PL/SQL-packaged construct is referenced for the first time, the whole package is loaded
into memory. Subsequent access to constructs in the same package does not require disk
input/output (I/O).

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 O

R
AC

LE
 C

O
R

PO
R

AT
IO

N
 u

se
 o

nl
y

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Oracle Database 11g: Develop PL/SQL Program Units 4 - 5

Copyright © 2009, Oracle. All rights reserved.

Advantages of Using Packages

• Modularity: Encapsulating related constructs

• Easier maintenance: Keeping logically related functionality
together

• Easier application design: Coding and compiling the
specification and body separately

• Hiding information:
– Only the declarations in the package specification are visible

and accessible to applications

– Private constructs in the package body are hidden and
inaccessible

– All coding is hidden in the package body

Advantages of Using Packages

Packages provide an alternative to creating procedures and functions as stand-alone schema
objects, and they offer several benefits.

Modularity and easier maintenance: You encapsulate logically related programming
structures in a named module. Each package is easy to understand, and the interface between
packages is simple, clear, and well defined.

Easier application design: All you need initially is the interface information in the package
specification. You can code and compile a specification without its body. Thereafter, stored
subprograms that reference the package can compile as well. You need not define the package
body fully until you are ready to complete the application.

Hiding information: You decide which constructs are public (visible and accessible) and which
are private (hidden and inaccessible). Declarations in the package specification are visible and
accessible to applications. The package body hides the definition of the private constructs, so
that only the package is affected (not your application or any calling programs) if the definition
changes. This enables you to change the implementation without having to recompile the calling
programs. Also, by hiding implementation details from users, you protect the integrity of the
package.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 O

R
AC

LE
 C

O
R

PO
R

AT
IO

N
 u

se
 o

nl
y

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Oracle Database 11g: Develop PL/SQL Program Units 4 - 6

Copyright © 2009, Oracle. All rights reserved.

Advantages of Using Packages

• Added functionality: Persistency of public variables and
cursors

• Better performance:
– The entire package is loaded into memory when the package

is first referenced.

– There is only one copy in memory for all users.

– The dependency hierarchy is simplified.

• Overloading: Multiple subprograms of the same name

Advantages of Using Packages (continued)

Added functionality: Packaged public variables and cursors persist for the duration of a session.
Thus, they can be shared by all subprograms that execute in the environment. They also enable
you to maintain data across transactions without having to store it in the database. Private
constructs also persist for the duration of the session but can be accessed only within the
package.

Better performance: When you call a packaged subprogram the first time, the entire package is
loaded into memory. Later calls to related subprograms in the package, therefore, require no
further disk I/O. Packaged subprograms also stop cascading dependencies and thus avoid
unnecessary compilation.

Overloading: With packages, you can overload procedures and functions, which means you can
create multiple subprograms with the same name in the same package, each taking parameters of
different number or data type.

Note: Dependencies are covered in detail in the lesson titled “Managing Dependencies.”

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 O

R
AC

LE
 C

O
R

PO
R

AT
IO

N
 u

se
 o

nl
y

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Oracle Database 11g: Develop PL/SQL Program Units 4 - 7

Copyright © 2009, Oracle. All rights reserved.

Components of a PL/SQL Package

Procedure A declaration;

variable

Procedure A definition

BEGIN
…
END;

Procedure B definition …

variable

variable

Public

Private

Package
specification

Package
body

Components of a PL/SQL Package

You create a package in two parts:
• The package specification is the interface to your applications. It declares the public

types, variables, constants, exceptions, cursors, and subprograms available for use. The
package specification may also include PRAGMAs, which are directives to the compiler.

• The package body defines its own subprograms and must fully implement subprograms
declared in the specification part. The package body may also define PL/SQL constructs,
such as types, variables, constants, exceptions, and cursors.

Public components are declared in the package specification. The specification defines a public
application programming interface (API) for users of package features and functionality—that
is, public components can be referenced from any Oracle server environment that is external to
the package.

Private components are placed in the package body and can be referenced only by other
constructs within the same package body. Private components can reference the package public
components.

Note: If a package specification does not contain subprogram declarations, then there is no
requirement for a package body.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 O

R
AC

LE
 C

O
R

PO
R

AT
IO

N
 u

se
 o

nl
y

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Oracle Database 11g: Develop PL/SQL Program Units 4 - 8

Copyright © 2009, Oracle. All rights reserved.

The Visibility of a Package’s Components

Package
specification

Package
body

Procedure A;

public_var

Procedure A IS

BEGIN
…
END;

Procedure B IS
BEGIN … END;

local_var

private_var

External
code

Visibility of Package Components

The visibility of a component describes whether that component can be seen, that is, referenced
and used by other components or objects. The visibility of components depends on whether they
are locally or globally declared.

Local components are visible within the structure in which they are declared, such as:
• Variables defined in a subprogram can be referenced within that subprogram, and are not

visible to external components—for example, local_var can be used in procedure A.
• Private package variables, which are declared in a package body, can be referenced by

other components in the same package body. They are not visible to any subprograms or
objects that are outside the package. For example, private_var can be used by
procedures A and B within the package body, but not outside the package.

Globally declared components are visible internally and externally to the package, such as:
• A public variable, which is declared in a package specification, can be referenced and

changed outside the package (for example, public_var can be referenced externally).
• A package subprogram in the specification can be called from external code sources (for

example, procedure A can be called from an environment external to the package).

Note: Private subprograms, such as procedure B, can be invoked only with public subprograms,
such as procedure A, or other private package constructs.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 O

R
AC

LE
 C

O
R

PO
R

AT
IO

N
 u

se
 o

nl
y

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Oracle Database 11g: Develop PL/SQL Program Units 4 - 9

Copyright © 2009, Oracle. All rights reserved.

Developing PL/SQL Packages: Overview

Create/edit
package body

and spec

Invoke package
subprograms

Compiler
warnings/errors?

NO

YES
Use SHOW ERRORS

command in SQL*Plus

Use USER/ALL/DBA_
ERRORS views

View errors/warnings
in SQL Developer

View compiler
warnings/errors

Developing PL/SQL Packages

The diagram in the slide illustrates the basic steps involved in developing and using a package:
1. Create the procedure using SQL Developer’s Object Navigator tree or the SQL Worksheet

area.
2. Compile the package. The package is created in the database. The CREATE PACKAGE

statement creates and stores source code and the compiled m-code in the database. To
compile the package, right-click the package’s name in the Object Navigator tree, and then
click Compile.

3. If there are no compilation warnings or errors, you execute any public construct within the
package specification from an Oracle Server environment.

4. If there are compilation warning or errors, you can view (and then correct) the warnings or
errors using one of the following methods:
a. Using the SQL Developer interface (the Compiler – Log tab)
b. Using the SHOW ERRORS SQL*Plus command
c. Using the USER/ALL/DBA_ERRORS views

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 O

R
AC

LE
 C

O
R

PO
R

AT
IO

N
 u

se
 o

nl
y

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Oracle Database 11g: Develop PL/SQL Program Units 4 - 10

Copyright © 2009, Oracle. All rights reserved.

Lesson Agenda

• Identifying the benefits and the components of packages

• Working with packages:

– Creating the package specification and body

– Invoking the package subprograms

– Removing a package

– Displaying the package information

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 O

R
AC

LE
 C

O
R

PO
R

AT
IO

N
 u

se
 o

nl
y

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Oracle Database 11g: Develop PL/SQL Program Units 4 - 11

Copyright © 2009, Oracle. All rights reserved.

Creating the Package Specification:
Using the CREATE PACKAGE Statement

• The OR REPLACE option drops and re-creates the package
specification.

• Variables declared in the package specification are
initialized to NULL by default.

• All the constructs declared in a package specification are
visible to users who are granted privileges on the package.

CREATE [OR REPLACE] PACKAGE package_name IS|AS
public type and variable declarations
subprogram specifications

END [package_name];

Creating the Package Specification

To create packages, you declare all public constructs within the package specification.
• Specify the OR REPLACE option if overwriting an existing package specification.
• Initialize a variable with a constant value or formula within the declaration, if required;

otherwise, the variable is initialized implicitly to NULL.

The following are definitions of items in the package syntax:
• package_name specifies a name for the package that must be unique among objects

within the owning schema. Including the package name after the END keyword is optional.
• public type and variable declarations declares public variables,

constants, cursors, exceptions, user-defined types, and subtypes.
• subprogram specification specifies the public procedure or function

declarations.

The package specification should contain procedure and function headings terminated by a
semicolon, without the IS (or AS) keyword and its PL/SQL block. The implementation of a
procedure or function that is declared in a package specification is done in the package body.

The Oracle database stores the specification and body of a package separately. This enables you
to change the implementation of a program construct in the package body without invalidating
other schema objects that call or reference the program construct.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 O

R
AC

LE
 C

O
R

PO
R

AT
IO

N
 u

se
 o

nl
y

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Oracle Database 11g: Develop PL/SQL Program Units 4 - 12

Copyright © 2009, Oracle. All rights reserved.

Creating the Package Specification:
Using SQL Developer

1
2

3

4

5

Creating the Package Specification: Using SQL Developer

You can use SQL Developer to create the package specification as follows:
1. Right-click the Packages node in the Connections navigation tree.
2. Select New Package from the shortcut menu. In the Create PL/SQL Package window

(not shown in the slide), select the schema name, enter the name for the new package, and
then click OK. A tab for the new package is displayed along with the shell for the new
package.

3. Enter the code for the new package.
4. Compile or save the new package.
5. The Messages – Log tab displays whether or not the compilation was successful.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 O

R
AC

LE
 C

O
R

PO
R

AT
IO

N
 u

se
 o

nl
y

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Oracle Database 11g: Develop PL/SQL Program Units 4 - 13

Copyright © 2009, Oracle. All rights reserved.

Creating the Package Body:
Using SQL Developer

1

2

3

4

5

Creating the Package Body: Using SQL Developer

You can use SQL Developer to create the package body as follows:
1. Right-click the package name for which you are creating a body in the Packages node in

the Connections navigation tree.
2. Select Create Body from the shortcut menu. A tab for the new package body is displayed

along with the shell for the new package body.
3. Enter the code for the new package body.
4. Compile or save the package body.
5. The Messages – Log tab displays whether or not the compilation was successful.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 O

R
AC

LE
 C

O
R

PO
R

AT
IO

N
 u

se
 o

nl
y

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Oracle Database 11g: Develop PL/SQL Program Units 4 - 14

Copyright © 2009, Oracle. All rights reserved.

Example of a Package Specification: comm_pkg

• V_STD_COMM is a public global variable initialized to
0.10.

• RESET_COMM is a public procedure used to reset the
standard commission based on some business rules.
It is implemented in the package body.

-- The package spec with a public variable and a
-- public procedure that are accessible from
-- outside the package.

CREATE OR REPLACE PACKAGE comm_pkg IS
v_std_comm NUMBER := 0.10; --initialized to 0.10
PROCEDURE reset_comm(p_new_comm NUMBER);

END comm_pkg;
/

Example of Package Specification: comm_pkg

The example in the slide creates a package called comm_pkg used to manage business
processing rules for commission calculations.

The v_std_comm public (global) variable is declared to hold a maximum allowable percentage
commission for the user session, and it is initialized to 0.10 (that is, 10%).

The reset_comm public procedure is declared to accept a new commission percentage that
updates the standard commission percentage if the commission validation rules are accepted.
The validation rules for resetting the commission are not made public and do not appear in the
package specification. The validation rules are managed by using a private function in the
package body.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 O

R
AC

LE
 C

O
R

PO
R

AT
IO

N
 u

se
 o

nl
y

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Oracle Database 11g: Develop PL/SQL Program Units 4 - 15

Copyright © 2009, Oracle. All rights reserved.

Creating the Package Body

• The OR REPLACE option drops and re-creates the
package body.

• Identifiers defined in the package body are private and
not visible outside the package body.

• All private constructs must be declared before they are
referenced.

• Public constructs are visible to the package body.

CREATE [OR REPLACE] PACKAGE BODY package_name IS|AS
private type and variable declarations
subprogram bodies

[BEGIN initialization statements]
END [package_name];

Creating the Package Body

Create a package body to define and implement all public subprograms and supporting private
constructs. When creating a package body, perform the following steps:

• Specify the OR REPLACE option to overwrite an existing package body.
• Define the subprograms in an appropriate order. The basic principle is that you must

declare a variable or subprogram before it can be referenced by other components in the
same package body. It is common to see all private variables and subprograms defined first
and the public subprograms defined last in the package body.

• Complete the implementation for all procedures or functions declared in the package
specification within the package body.

The following are definitions of items in the package body syntax:
• package_name specifies a name for the package that must be the same as its package

specification. Using the package name after the END keyword is optional.
• private type and variable declarations declares private variables,

constants, cursors, exceptions, user-defined types, and subtypes.
• subprogram specification specifies the full implementation of any private and/or

public procedures or functions.
• [BEGIN initialization statements] is an optional block of initialization code

that executes when the package is first referenced.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 O

R
AC

LE
 C

O
R

PO
R

AT
IO

N
 u

se
 o

nl
y

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Oracle Database 11g: Develop PL/SQL Program Units 4 - 16

Copyright © 2009, Oracle. All rights reserved.

Example of a Package Body: comm_pkg

CREATE OR REPLACE PACKAGE BODY comm_pkg IS
FUNCTION validate(p_comm NUMBER) RETURN BOOLEAN IS
v_max_comm employees.commission_pct%type;

BEGIN
SELECT MAX(commission_pct) INTO v_max_comm
FROM employees;
RETURN (p_comm BETWEEN 0.0 AND v_max_comm);

END validate;

PROCEDURE reset_comm (p_new_comm NUMBER) IS BEGIN
IF validate(p_new_comm) THEN
v_std_comm := p_new_comm; -- reset public var

ELSE RAISE_APPLICATION_ERROR(
-20210, 'Bad Commission');

END IF;
END reset_comm;

END comm_pkg;

Example of a Package Body: comm_pkg

The slide shows the complete package body for comm_pkg, with a private function called
validate to check for a valid commission. The validation requires that the commission be
positive and less than the highest commission among existing employees. The reset_comm
procedure invokes the private validation function before changing the standard commission in
v_std_comm. In the example, note the following:
• The v_std_comm variable referenced in the reset_comm procedure is a public

variable. Variables declared in the package specification, such as v_std_comm, can be
directly referenced without qualification.

• The reset_comm procedure implements the public definition in the specification.
• In the comm_pkg body, the validate function is private and is directly referenced from

the reset_comm procedure without qualification.

Note: The validate function appears before the reset_comm procedure because the
reset_comm procedure references the validate function. It is possible to create forward
declarations for subprograms in the package body if their order of appearance needs to be
changed. If a package specification declares only types, constants, variables, and exceptions
without any subprogram specifications, then the package body is unnecessary. However, the
body can be used to initialize items declared in the package specification.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 O

R
AC

LE
 C

O
R

PO
R

AT
IO

N
 u

se
 o

nl
y

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Oracle Database 11g: Develop PL/SQL Program Units 4 - 17

Copyright © 2009, Oracle. All rights reserved.

Invoking the Package Subprograms: Examples

-- Invoke a function within the same packages:
CREATE OR REPLACE PACKAGE BODY comm_pkg IS ...
PROCEDURE reset_comm(p_new_comm NUMBER) IS
BEGIN
IF validate(p_new_comm) THEN
v_std_comm := p_new_comm;

ELSE ...
END IF;

END reset_comm;
END comm_pkg;

-- Invoke a package procedure from SQL*Plus:

EXECUTE comm_pkg.reset_comm(0.15)

-- Invoke a package procedure in a different schema:

EXECUTE scott.comm_pkg.reset_comm(0.15)

Invoking Package Subprograms

After the package is stored in the database, you can invoke public or private subprograms within
the same package, or public subprograms if external to the package. Fully qualify the
subprogram with its package name when invoked externally from the package. Use the
package_name.subprogram syntax.

Fully qualifying a subprogram when invoked within the same package is optional.

Example 1: Invokes the validate function from the reset_comm procedure within the
same package. The package name prefix is not required; it is optional.

Example 2: Calls the reset_comm procedure from SQL*Plus (an environment external to the
package) to reset the prevailing commission to 0.15 for the user session.

Example 3: Calls the reset_comm procedure that is owned in a schema user called SCOTT.
Using SQL*Plus, the qualified package procedure is prefixed with the schema name. This can be
simplified by using a synonym that references the schema.package_name.

Assume that a database link named NY has been created for a remote database in which the
reset_comm package procedure is created. To invoke the remote procedure, use:

EXECUTE comm_pkg.reset_comm@NY(0.15)

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 O

R
AC

LE
 C

O
R

PO
R

AT
IO

N
 u

se
 o

nl
y

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Oracle Database 11g: Develop PL/SQL Program Units 4 - 18

Copyright © 2009, Oracle. All rights reserved.

Invoking the Package Subprograms:
Using SQL Developer

Invoking the Package Subprograms: Using SQL Developer

Use the Run PL/SQL window to specify parameter values for running a PL/SQL function or
procedure. (If you specify a package, select a function or procedure in the package.) Specify the
following:

Target: Select the name of the function or procedure to run.

Parameters: This section lists each parameter for the specified target. The mode of each
parameter can be IN (the value is passed in), OUT (the value is returned), or IN/OUT (the value
is passed in, and the result of the function or procedure's action is stored in the parameter).

PL/SQL Block: This is a block of PL/SQL code created by SQL Developer. You should change
the formal IN and IN/OUT parameter specifications in this block to actual values that you want
to use for running the function or procedure. For example, to specify 10 as the value for an input
parameter named DEPT_ID, change DEPT_ID => DEPT_ID to DEPT_ID => 10. When you
click OK, SQL Developer runs the function or procedure.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 O

R
AC

LE
 C

O
R

PO
R

AT
IO

N
 u

se
 o

nl
y

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Oracle Database 11g: Develop PL/SQL Program Units 4 - 19

Copyright © 2009, Oracle. All rights reserved.

Creating and Using Bodiless Packages

CREATE OR REPLACE PACKAGE global_consts IS
c_mile_2_kilo CONSTANT NUMBER := 1.6093;
c_kilo_2_mile CONSTANT NUMBER := 0.6214;
c_yard_2_meter CONSTANT NUMBER := 0.9144;
c_meter_2_yard CONSTANT NUMBER := 1.0936;

END global_consts;

BEGIN DBMS_OUTPUT.PUT_LINE('20 miles = ' ||
20 * global_consts.c_mile_2_kilo || ' km');

END;

CREATE FUNCTION mtr2yrd(p_m NUMBER) RETURN NUMBER IS
BEGIN
RETURN (p_m * global_consts.c_meter_2_yard);

END mtr2yrd;
/
EXECUTE DBMS_OUTPUT.PUT_LINE(mtr2yrd(1))

Creating and Using Bodiless Packages

The variables and constants declared within stand-alone subprograms exist only for the duration
that the subprogram executes. To provide data that exists for the duration of the user session,
create a package specification containing public (global) variables and constant declarations. In
this case, create a package specification without a package body, known as a bodiless package.
As discussed earlier in this lesson, if a specification declares only types, constants, variables, and
exceptions, then the package body is unnecessary.
Examples
The first code box in the slide creates a bodiless package specification with several constants to
be used for conversion rates. A package body is not required to support this package
specification.

The second code box references the c_mile_2_kilo constant in the global_consts
package by prefixing the package name to the identifier of the constant.
The third example creates a stand-alone function c_mtr2yrd to convert meters to yards, and
uses the constant conversion rate c_meter_2_yard declared in the global_consts
package. The function is invoked in a DBMS_OUTPUT.PUT_LINE parameter.

Rule to be followed: When referencing a variable, cursor, constant, or exception from outside
the package, you must qualify it with the name of the package.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 O

R
AC

LE
 C

O
R

PO
R

AT
IO

N
 u

se
 o

nl
y

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Oracle Database 11g: Develop PL/SQL Program Units 4 - 20

Copyright © 2009, Oracle. All rights reserved.

Removing Packages: Using SQL Developer
or the SQL DROP Statement

Drop package specification and body Drop package body only

-- Remove the package specification and body
DROP PACKAGE package_name;

-- Remove the package body only
DROP PACKAGE BODY package_name;

Removing Packages

When a package is no longer required, you can use a SQL statement in SQL Developer to
remove it. A package has two parts; therefore, you can remove the whole package, or you can
remove only the package body and retain the package specification.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 O

R
AC

LE
 C

O
R

PO
R

AT
IO

N
 u

se
 o

nl
y

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Oracle Database 11g: Develop PL/SQL Program Units 4 - 21

Copyright © 2009, Oracle. All rights reserved.

Viewing Packages Using the Data Dictionary

-- View the package specification.
SELECT text
FROM user_source
WHERE name = 'COMM_PKG' AND type = 'PACKAGE';

-- View the package body.
SELECT text
FROM user_source
WHERE name = 'COMM_PKG' AND type = 'PACKAGE BODY';

Viewing Packages in the Data Dictionary

The source code for PL/SQL packages is also stored in the USER_SOURCE and ALL_SOURCE
data dictionary views. The USER_SOURCE table is used to display PL/SQL code that you own.
The ALL_SOURCE table is used to display PL/SQL code to which you have been granted the
EXECUTE right by the owner of that subprogram code and provides an OWNER column in
addition to the preceding columns.

When querying the package, use a condition in which the TYPE column is:
• Equal to 'PACKAGE' to display the source code for the package specification
• Equal to 'PACKAGE BODY' to display the source code for the package body

You can also view the package specification and body in SQL Developer using the package
name in the Packages node.

Note: You cannot display the source code for Oracle PL/SQL built-in packages, or PL/SQL
whose source code has been wrapped by using a WRAP utility or obfuscation. Obfuscating and
wrapping PL/SQL source code is covered in a later lesson. Clicking the Execute Statement (F9)
icon (instead of the Run Script icon) in the SQL Worksheet toolbar, sometimes displays a better
formatted output in the Results tab as shown in the slide examples.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 O

R
AC

LE
 C

O
R

PO
R

AT
IO

N
 u

se
 o

nl
y

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Oracle Database 11g: Develop PL/SQL Program Units 4 - 22

Copyright © 2009, Oracle. All rights reserved.

Guidelines for Writing Packages

• Develop packages for general use.

• Define the package specification before the body.

• The package specification should contain only those
constructs that you want to be public.

• Place items in the declaration part of the package body
when you must maintain them throughout
a session or across transactions.

• The fine-grain dependency management reduces the need
to recompile referencing subprograms when a package
specification changes.

• The package specification should contain as few
constructs as possible.

Guidelines for Writing Packages

Keep your packages as general as possible, so that they can be reused in future applications.
Also, avoid writing packages that duplicate features provided by the Oracle server.

Package specifications reflect the design of your application, so define them before defining the
package bodies. The package specification should contain only those constructs that must be
visible to the users of the package. Thus, other developers cannot misuse the package by basing
code on irrelevant details.

Place items in the declaration part of the package body when you must maintain them
throughout a session or across transactions. For example, declare a variable called
NUMBER_EMPLOYED as a private variable if each call to a procedure that uses the variable
needs to be maintained. When declared as a global variable in the package specification, the
value of that global variable is initialized in a session the first time a construct from the package
is invoked.

Before Oracle Database 11g, changes to the package body did not require recompilation of
dependent constructs, whereas changes to the package specification required the recompilation
of every stored subprogram that references the package. Oracle Database 11g reduces this
dependency. Dependencies are now tracked at the level of element within unit. Fine-Grain
Dependency Management is covered in a later lesson.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 O

R
AC

LE
 C

O
R

PO
R

AT
IO

N
 u

se
 o

nl
y

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Oracle Database 11g: Develop PL/SQL Program Units 4 - 23

Copyright © 2009, Oracle. All rights reserved.

Quiz

The package specification is the interface to your
applications. It declares the public types, variables,
constants, exceptions, cursors, and subprograms
available for use. The package specification may also
include PRAGMAs, which are directives to the compiler.
1. True
2. False

Answer: 1

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 O

R
AC

LE
 C

O
R

PO
R

AT
IO

N
 u

se
 o

nl
y

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Oracle Database 11g: Develop PL/SQL Program Units 4 - 24

Copyright © 2009, Oracle. All rights reserved.

Summary

In this lesson, you should have learned how to:

• Describe packages and list their components

• Create a package to group related variables, cursors,
constants, exceptions, procedures, and functions

• Designate a package construct as either public or private

• Invoke a package construct

• Describe the use of a bodiless package

Summary

You group related procedures and functions in a package. Packages improve organization,
management, security, and performance.

A package consists of a package specification and a package body. You can change a package
body without affecting its package specification.

Packages enable you to hide source code from users. When you invoke a package for the first
time, the entire package is loaded into memory. This reduces the disk access for subsequent
calls.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 O

R
AC

LE
 C

O
R

PO
R

AT
IO

N
 u

se
 o

nl
y

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Oracle Database 11g: Develop PL/SQL Program Units 4 - 25

Copyright © 2009, Oracle. All rights reserved.

Practice 4 Overview:
Creating and Using Packages

This practice covers the following topics:

• Creating packages

• Invoking package program units

Practice 4: Overview

In this practice, you create package specifications and package bodies. You then invoke the
constructs in the packages by using sample data.

Note: If you are using SQL Developer, your compile time errors are displayed in the Message
Log tab. If you are using SQL*Plus to create your stored code, use SHOW ERRORS to view
compile errors. O

ra
cl

e
U

ni
ve

rs
ity

 a
nd

 O
R

AC
LE

 C
O

R
PO

R
AT

IO
N

 u
se

 o
nl

y

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Oracle Database 11g: Develop PL/SQL Program Units 4 - 26

Practice 4

1. Create a package specification and body called JOB_PKG, containing a copy of your
ADD_JOB, UPD_JOB, and DEL_JOB procedures as well as your GET_JOB function.

Note: Use the code from your previously saved procedures and functions when creating
the package. You can copy the code in a procedure or function, and then paste the code
into the appropriate section of the package.

a. Create the package specification including the procedures and function headings as
public constructs.

b. Create the package body with the implementations for each of the subprograms.

c. Delete the following stand-alone procedures and function you just packaged using the
Procedures and Functions nodes in the Object Navigation tree:

i. The ADD_JOB, UPD_JOB, and DEL_JOB procedures

ii. The GET_JOB function

d. Invoke your ADD_JOB package procedure by passing the values IT_SYSAN and
SYSTEMS ANALYST as parameters.

e. Query the JOBS table to see the result.

2. Create and invoke a package that contains private and public constructs.

a. Create a package specification and a package body called EMP_PKG that contains the
following procedures and function that you created earlier:

- ADD_EMPLOYEE procedure as a public construct

- GET_EMPLOYEE procedure as a public construct

- VALID_DEPTID function as a private construct

b. Invoke the EMP_PKG.ADD_EMPLOYEE procedure, using department ID 15 for the
employee Jane Harris with the email ID JAHARRIS. Because department ID 15
does not exist, you should get an error message as specified in the exception handler
of your procedure.

c. Invoke the ADD_EMPLOYEE package procedure by using department ID 80 for
employee David Smith with the email ID DASMITH.

d. Query the EMPLOYEES table to verify that the new employee was added.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 O

R
AC

LE
 C

O
R

PO
R

AT
IO

N
 u

se
 o

nl
y

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Copyright © 2009, Oracle. All rights reserved.

Working with Packages

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 O

R
AC

LE
 C

O
R

PO
R

AT
IO

N
 u

se
 o

nl
y

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Oracle Database 11g: Develop PL/SQL Program Units 5 - 2

Copyright © 2009, Oracle. All rights reserved.

Objectives

After completing this lesson, you should be able to do the
following:

• Overload package procedures and functions

• Use forward declarations

• Create an initialization block in a package body

• Manage persistent package data states for the life of a
session

• Use PL/SQL tables and records in packages

Lesson Aim

This lesson introduces the more advanced features of PL/SQL, including overloading, forward
referencing, one-time-only procedures, and the persistency of variables, constants, exceptions,
and cursors. It also explains the effect of packaging functions that are used in SQL statements.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 O

R
AC

LE
 C

O
R

PO
R

AT
IO

N
 u

se
 o

nl
y

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Oracle Database 11g: Develop PL/SQL Program Units 5 - 3

Copyright © 2009, Oracle. All rights reserved.

Lesson Agenda

• Overloading package subprograms, using forward
declarations, and creating an initialization block in a
package body

• Managing persistent package data states for the life of a
session and using PL/SQL tables and records in packages

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 O

R
AC

LE
 C

O
R

PO
R

AT
IO

N
 u

se
 o

nl
y

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Oracle Database 11g: Develop PL/SQL Program Units 5 - 4

Copyright © 2009, Oracle. All rights reserved.

Overloading Subprograms in PL/SQL

• Enables you to create two or more subprograms with the
same name

• Requires that the subprogram’s formal parameters differ in
number, order, or data type family

• Enables you to build flexible ways for invoking
subprograms with different data

• Provides a way to extend functionality without loss of
existing code; that is, adding new parameters to existing
subprograms

• Provides a way to overload local subprograms, package
subprograms, and type methods, but not stand-alone
subprograms

Overloading Subprograms

The overloading feature in PL/SQL enables you to develop two or more packaged subprograms
with the same name. Overloading is useful when you want a subprogram to accept similar sets of
parameters that have different data types. For example, the TO_CHAR function has more than
one way to be called, enabling you to convert a number or a date to a character string.

PL/SQL allows overloading of package subprogram names and object type methods.

The key rule is that you can use the same name for different subprograms as long as their formal
parameters differ in number, order, or data type family.

Consider using overloading when:

• Processing rules for two or more subprograms are similar, but the type or number of
parameters used varies

• Providing alternative ways for finding different data with varying search criteria. For
example, you may want to find employees by their employee ID and also provide a way to
find employees by their last name. The logic is intrinsically the same, but the parameters or
search criteria differ.

• Extending functionality when you do not want to replace existing code
Note: Stand-alone subprograms cannot be overloaded. Writing local subprograms in object type
methods is not discussed in this course.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 O

R
AC

LE
 C

O
R

PO
R

AT
IO

N
 u

se
 o

nl
y

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Oracle Database 11g: Develop PL/SQL Program Units 5 - 5

Overloading Subprograms (continued)

Restrictions

You cannot overload:
• Two subprograms if their formal parameters differ only in data type and the different data

types are in the same family (NUMBER and DECIMAL belong to the same family.)
• Two subprograms if their formal parameters differ only in subtype and the different

subtypes are based on types in the same family (VARCHAR and STRING are PL/SQL
subtypes of VARCHAR2.)

• Two functions that differ only in return type, even if the types are in different families

You get a run-time error when you overload subprograms with the preceding features.

Note: The preceding restrictions apply if the names of the parameters are also the same.
If you use different names for the parameters, you can invoke the subprograms by using named
notation for the parameters.

Resolving Calls

The compiler tries to find a declaration that matches the call. It searches first in the current scope
and then, if necessary, in successive enclosing scopes. The compiler stops searching if it finds
one or more subprogram declarations in which the name matches the name of the called
subprogram. For similarly named subprograms at the same level of scope, the compiler needs an
exact match in number, order, and data type between the actual and formal parameters.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 O

R
AC

LE
 C

O
R

PO
R

AT
IO

N
 u

se
 o

nl
y

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Oracle Database 11g: Develop PL/SQL Program Units 5 - 6

Copyright © 2009, Oracle. All rights reserved.

CREATE OR REPLACE PACKAGE dept_pkg IS
PROCEDURE add_department
(p_deptno departments.department_id%TYPE,
p_name departments.department_name%TYPE :='unknown',
p_loc departments.location_id%TYPE := 1700);

PROCEDURE add_department
(p_name departments.department_name%TYPE := 'unknown',
p_loc departments.location_id%TYPE := 1700);

END dept_pkg;
/

Overloading Procedures Example:
Creating the Package Specification

Overloading: Example

The slide shows the dept_pkg package specification with an overloaded procedure called
add_department. The first declaration takes three parameters that are used to provide data
for a new department record inserted into the department table. The second declaration takes
only two parameters because this version internally generates the department ID through an
Oracle sequence.

It is better to specify data types using the %TYPE attribute for variables that are used to populate
columns in database tables, as shown in the slide example; however, you can also specify the
data types as follows:

CREATE OR REPLACE PACKAGE dept_pkg IS
PROCEDURE add_department(p_deptno NUMBER,
p_name VARCHAR2 := 'unknown', p_loc NUMBER := 1700);
PROCEDURE add_department(

p_name VARCHAR2 := 'unknown', p_loc NUMBER := 1700);
END dept_pkg;
/

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 O

R
AC

LE
 C

O
R

PO
R

AT
IO

N
 u

se
 o

nl
y

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Oracle Database 11g: Develop PL/SQL Program Units 5 - 7

Copyright © 2009, Oracle. All rights reserved.

CREATE OR REPLACE PACKAGE BODY dept_pkg IS
PROCEDURE add_department –- First procedure’s declaration

(p_deptno departments.department_id%TYPE,
p_name departments.department_name%TYPE := 'unknown',
p_loc departments.location_id%TYPE := 1700) IS

BEGIN
INSERT INTO departments(department_id,

department_name, location_id)
VALUES (p_deptno, p_name, p_loc);

END add_department;

PROCEDURE add_department –- Second procedure’s declaration
(p_name departments.department_name%TYPE := 'unknown',
p_loc departments.location_id%TYPE := 1700) IS

BEGIN
INSERT INTO departments (department_id,

department_name, location_id)
VALUES (departments_seq.NEXTVAL, p_name, p_loc);

END add_department;
END dept_pkg; /

Overloading Procedures Example:
Creating the Package Body

Overloading: Example (continued)

If you call add_department with an explicitly provided department ID, then PL/SQL uses
the first version of the procedure. Consider the following example:

EXECUTE dept_pkg.add_department(980,'Education',2500)
SELECT * FROM departments
WHERE department_id = 980;

If you call add_department with no department ID, PL/SQL uses the second version:
EXECUTE dept_pkg.add_department ('Training', 2400)
SELECT * FROM departments
WHERE department_name = 'Training';

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 O

R
AC

LE
 C

O
R

PO
R

AT
IO

N
 u

se
 o

nl
y

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Oracle Database 11g: Develop PL/SQL Program Units 5 - 8

Copyright © 2009, Oracle. All rights reserved.

Overloading and the STANDARD Package

• A package named STANDARD defines the PL/SQL
environment and built-in functions.

• Most built-in functions are overloaded. An example is the
TO_CHAR function:

• A PL/SQL subprogram with the same name as a built-in
subprogram overrides the standard declaration in the local
context, unless qualified by the package name.

FUNCTION TO_CHAR (p1 DATE) RETURN VARCHAR2;
FUNCTION TO_CHAR (p2 NUMBER) RETURN VARCHAR2;
FUNCTION TO_CHAR (p1 DATE, P2 VARCHAR2) RETURN VARCHAR2;
FUNCTION TO_CHAR (p1 NUMBER, P2 VARCHAR2) RETURN

VARCHAR2;
. . .

Overloading and the STANDARD Package

A package named STANDARD defines the PL/SQL environment and globally declares types,
exceptions, and subprograms that are available automatically to PL/SQL programs. Most of the
built-in functions that are found in the STANDARD package are overloaded. For example, the
TO_CHAR function has four different declarations, as shown in the slide. The TO_CHAR
function can take either the DATE or the NUMBER data type and convert it to the character data
type. The format to which the date or number has to be converted can also be specified in the
function call.

If you re-declare a built-in subprogram in another PL/SQL program, then your local declaration
overrides the standard or built-in subprogram. To be able to access the built-in subprogram, you
must qualify it with its package name. For example, if you re-declare the TO_CHAR function to
access the built-in function, you refer to it as STANDARD.TO_CHAR.

If you re-declare a built-in subprogram as a stand-alone subprogram, then, to access your
subprogram, you must qualify it with your schema name: for example, SCOTT.TO_CHAR.

In the slide example, PL/SQL resolves a call to TO_CHAR by matching the number and data
types of the formal and actual parameters.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 O

R
AC

LE
 C

O
R

PO
R

AT
IO

N
 u

se
 o

nl
y

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Oracle Database 11g: Develop PL/SQL Program Units 5 - 9

Copyright © 2009, Oracle. All rights reserved.

Illegal Procedure Reference

• Block-structured languages such as PL/SQL must declare
identifiers before referencing them.

• Example of a referencing problem:

CREATE OR REPLACE PACKAGE BODY forward_pkg IS
PROCEDURE award_bonus(. . .) IS
BEGIN
calc_rating (. . .); --illegal reference

END;

PROCEDURE calc_rating (. . .) IS
BEGIN
...

END;
END forward_pkg;
/

Using Forward Declarations

In general, PL/SQL is like other block-structured languages and does not allow forward
references. You must declare an identifier before using it. For example, a subprogram must be
declared before you can call it.

Coding standards often require that subprograms be kept in alphabetical sequence to make them
easy to find. In this case, you may encounter problems, as shown in the slide example, where the
calc_rating procedure cannot be referenced because it has not yet been declared.

You can solve the illegal reference problem by reversing the order of the two procedures.
However, this easy solution does not work if the coding rules require subprograms to be declared
in alphabetical order.

The solution in this case is to use forward declarations provided in PL/SQL. A forward
declaration enables you to declare the heading of a subprogram, that is, the subprogram
specification terminated by a semicolon.

Note: The compilation error for calc_rating occurs only if calc_rating is a private
packaged procedure. If calc_rating is declared in the package specification, it is already
declared as if it is a forward declaration, and its reference can be resolved by the compiler.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 O

R
AC

LE
 C

O
R

PO
R

AT
IO

N
 u

se
 o

nl
y

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Oracle Database 11g: Develop PL/SQL Program Units 5 - 10

Copyright © 2009, Oracle. All rights reserved.

CREATE OR REPLACE PACKAGE BODY forward_pkg IS
PROCEDURE calc_rating (...);-- forward declaration

-- Subprograms defined in alphabetical order

PROCEDURE award_bonus(...) IS
BEGIN
calc_rating (...); -- reference resolved!
. . .

END;

PROCEDURE calc_rating (...) IS -- implementation
BEGIN
. . .

END;
END forward_pkg;

Using Forward Declarations to
Solve Illegal Procedure Reference

In the package body, a forward declaration is a private
subprogram specification terminated by a semicolon.

Using Forward Declarations (continued)

As previously mentioned, PL/SQL enables you to create a special subprogram declaration called
a forward declaration. A forward declaration may be required for private subprograms in the
package body, and consists of the subprogram specification terminated by a semicolon. Forward
declarations help to:

• Define subprograms in logical or alphabetical order
• Define mutually recursive subprograms. Mutually recursive programs are programs that

call each other directly or indirectly.
• Group and logically organize subprograms in a package body

When creating a forward declaration:
• The formal parameters must appear in both the forward declaration and the subprogram

body
• The subprogram body can appear anywhere after the forward declaration, but both must

appear in the same program unit

Forward Declarations and Packages

Typically, the subprogram specifications go in the package specification, and the subprogram
bodies go in the package body. The public subprogram declarations in the package specification
do not require forward declarations.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 O

R
AC

LE
 C

O
R

PO
R

AT
IO

N
 u

se
 o

nl
y

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Oracle Database 11g: Develop PL/SQL Program Units 5 - 11

Copyright © 2009, Oracle. All rights reserved.

CREATE OR REPLACE PACKAGE taxes IS
v_tax NUMBER;
... -- declare all public procedures/functions

END taxes;
/
CREATE OR REPLACE PACKAGE BODY taxes IS
... -- declare all private variables
... -- define public/private procedures/functions
BEGIN
SELECT rate_value INTO v_tax
FROM tax_rates
WHERE rate_name = 'TAX';

END taxes;
/

Initializing Packages

The block at the end of the package body executes once and is
used to initialize public and private package variables.

Package Initialization Block

The first time a component in a package is referenced, the entire package is loaded into memory
for the user session. By default, the initial value of variables is NULL (if not explicitly
initialized). To initialize package variables, you can:

• Use assignment operations in their declarations for simple initialization tasks
• Add code block to the end of a package body for more complex initialization tasks

Consider the block of code at the end of a package body as a package initialization block that
executes once, when the package is first invoked within the user session.

The example in the slide shows the v_tax public variable being initialized to the value in the
tax_rates table the first time the taxes package is referenced.

Note: If you initialize the variable in the declaration by using an assignment operation, it is
overwritten by the code in the initialization block at the end of the package body. The
initialization block is terminated by the END keyword for the package body.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 O

R
AC

LE
 C

O
R

PO
R

AT
IO

N
 u

se
 o

nl
y

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Oracle Database 11g: Develop PL/SQL Program Units 5 - 12

Copyright © 2009, Oracle. All rights reserved.

Using Package Functions in SQL

• You use package functions in SQL statements.

• To execute a SQL statement that calls a member function,
the Oracle database must know the function’s purity level.

• Purity level is the extent to which the function is free of
side effects, which refers to accessing database tables,
package variables, and so on, for reading or writing.

• It is important to control side effects because they can:
– Prevent the proper parallelization of a query

– Produce order-dependent and, therefore, indeterminate
results

– Require impermissible actions such as the maintenance of
package state across user sessions

Using Package Functions in SQL and Restrictions

To execute a SQL statement that calls a stored function, the Oracle Server must know the purity
level of the function, or the extent to which the function is free of side effects. The term side
effect refers to accessing database tables, package variables, and so forth for reading or writing.
It is important to control side effects because they can prevent the proper parallelization of a
query, produce order-dependent and therefore indeterminate results, or require impermissible
actions such as the maintenance of package state across user sessions.

In general, restrictions are changes to database tables or public package variables (those declared
in a package specification). Restrictions can delay the execution of a query, yield order-
dependent (therefore indeterminate) results, or require that the package state variables be
maintained across user sessions. Various restrictions are not allowed when a function is called
from a SQL query or a DML statement.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 O

R
AC

LE
 C

O
R

PO
R

AT
IO

N
 u

se
 o

nl
y

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Oracle Database 11g: Develop PL/SQL Program Units 5 - 13

Copyright © 2009, Oracle. All rights reserved.

Controlling Side Effects of PL/SQL Subprograms

To be callable from SQL statements, a stored function must
obey the following purity rules to control side effects:
• When called from a SELECT or a parallelized DML

statement, the function cannot modify any database tables.

• When called from a DML statement, the function cannot
query or modify any database tables modified by that
statement.

• When called from a SELECT or DML statement, the
function cannot execute SQL transaction control, session
control, or system control statements.

Controlling Side Effects of PL/SQL Subprograms

The fewer side effects a function has, the better it can be optimized within a query, particularly
when the PARALLEL_ENABLE or DETERMINISTIC hints are used.

To be callable from SQL statements, a stored function (and any subprograms that it calls) must
obey the purity rules listed in the slide. The purpose of those rules is to control side effects.

If any SQL statement inside the function body violates a rule, you get an error at run time (when
the statement is parsed).

To check for purity rule violations at compile time, use the RESTRICT_REFERENCES pragma
to assert that a function does not read or write database tables or package variables.

Note

• In the slide, a DML statement refers to an INSERT, UPDATE, or DELETE statement.

• For information about using the RESTRICT_REFERENCES pragma, refer to the Oracle
Database PL/SQL Language Reference 11g Release 1 (11.1).

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 O

R
AC

LE
 C

O
R

PO
R

AT
IO

N
 u

se
 o

nl
y

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Oracle Database 11g: Develop PL/SQL Program Units 5 - 14

Copyright © 2009, Oracle. All rights reserved.

SELECT taxes_pkg.tax(salary), salary, last_name
FROM employees;

Package Function in SQL: Example

CREATE OR REPLACE PACKAGE taxes_pkg IS
FUNCTION tax (p_value IN NUMBER) RETURN NUMBER;

END taxes_pkg;
/
CREATE OR REPLACE PACKAGE BODY taxes_pkg IS
FUNCTION tax (p_value IN NUMBER) RETURN NUMBER IS
v_rate NUMBER := 0.08;

BEGIN
RETURN (p_value * v_rate);

END tax;
END taxes_pkg;
/

Package Function in SQL: Example

The first code example in the slide shows how to create the package specification and the body
encapsulating the tax function in the taxes_pkg package. The second code example shows
how to call the packaged tax function in the SELECT statement. The results are as follows:

. . .

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 O

R
AC

LE
 C

O
R

PO
R

AT
IO

N
 u

se
 o

nl
y

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Oracle Database 11g: Develop PL/SQL Program Units 5 - 15

Copyright © 2009, Oracle. All rights reserved.

Lesson Agenda

• Overloading package subprograms, using forward
declarations, and creating an initialization block in a
package body

• Managing persistent package data states for the life of a
session and using PL/SQL tables and records in packages

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 O

R
AC

LE
 C

O
R

PO
R

AT
IO

N
 u

se
 o

nl
y

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Oracle Database 11g: Develop PL/SQL Program Units 5 - 16

Copyright © 2009, Oracle. All rights reserved.

Persistent State of Packages

The collection of package variables and the values define the
package state. The package state is:

• Initialized when the package is first loaded

• Persistent (by default) for the life of the session:
– Stored in the User Global Area (UGA)

– Unique to each session

– Subject to change when package subprograms are called or
public variables are modified

• Not persistent for the session but persistent for the life of a
subprogram call when using PRAGMA
SERIALLY_REUSABLE in the package specification

Persistent State of Packages

The collection of public and private package variables represents the package state for the user
session. That is, the package state is the set of values stored in all the package variables at a
given point in time. In general, the package state exists for the life of the user session.

Package variables are initialized the first time a package is loaded into memory for a user
session. The package variables are, by default, unique to each session and hold their values until
the user session is terminated. In other words, the variables are stored in the User Global Area
(UGA) memory allocated by the database for each user session. The package state changes when
a package subprogram is invoked and its logic modifies the variable state. Public package state
can be directly modified by operations appropriate to its type.

PRAGMA signifies that the statement is a compiler directive. PRAGMAs are processed at compile
time, not at run time. They do not affect the meaning of a program; they simply convey
information to the compiler. If you add PRAGMA SERIALLY_RESUABLE to the package
specification, then the database stores package variables in the System Global Area (SGA)
shared across user sessions. In this case, the package state is maintained for the life of a
subprogram call or a single reference to a package construct. The SERIALLY_REUSABLE
directive is useful if you want to conserve memory and if the package state does not need to
persist for each user session.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 O

R
AC

LE
 C

O
R

PO
R

AT
IO

N
 u

se
 o

nl
y

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Oracle Database 11g: Develop PL/SQL Program Units 5 - 17

Persistent State of Packages (continued)

This PRAGMA is appropriate for packages that declare large temporary work areas that are used
once and not needed during subsequent database calls in the same session.

You can mark a bodiless package as serially reusable. If a package has a spec and body, you
must mark both. You cannot mark only the body.

The global memory for serially reusable packages is pooled in the System Global Area (SGA),
not allocated to individual users in the User Global Area (UGA). That way, the package work
area can be reused. When the call to the server ends, the memory is returned to the pool. Each
time the package is reused, its public variables are initialized to their default values or to NULL.

Note: Serially reusable packages cannot be accessed from database triggers or other PL/SQL
subprograms that are called from SQL statements. If you try, the Oracle server generates an
error.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 O

R
AC

LE
 C

O
R

PO
R

AT
IO

N
 u

se
 o

nl
y

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Oracle Database 11g: Develop PL/SQL Program Units 5 - 18

Copyright © 2009, Oracle. All rights reserved.

Persistent State of Package Variables: Example

0.4
0.4
0.4

0.8

0.8

0.8

0.4

MAX

(comm_pc)

[Column]

0.4
0.4
0.4

0.4

0.4

0.4

0.4

MAX
(comm_pc)

[column]

0.5
-
0.2

0.5

0.1
0.5

-

v_std_
commission

[variable]

Jones> ROLLBACK;
EXIT ...
EXEC comm_pkg.reset_comm(0.2)

Scott> EXECUTE
comm_pkg.reset_comm(0.6)

Err –20210 'Bad Commission'

Jones> EXECUTE
comm_pkg.reset_comm (0.5)

Jones> INSERT INTO
employees(last_name,
commission_pct)
VALUES('Madonna', 0.8);

Scott> EXECUTE
comm_pkg.reset_comm(0.25)

Events

0.25
0.25
0.25

0.25

0.25

0.25

0.10
0.25

v_std_
commission

[variable]

10:00

9:35

11:00
11:01
12:00

9:00

9:30

Time

State for Scott State for Jones

Persistent State of Package Variables: Example

The slide sequence is based on two different users, Scott and Jones, executing comm_pkg
(covered in the lesson titled “Creating Packages”), in which the reset_comm procedure
invokes the validate function to check the new commission. The example shows how the
persistent state of the v_std_comm package variable is maintained in each user session.

At 9:00: Scott calls reset_comm with a new commission value of 0.25, the package state for
v_std_comm is initialized to 0.10 and then set to 0.25, which is validated because it is less
than the database maximum value of 0.4.
At 9:30: Jones inserts a new row into the EMPLOYEES table with a new maximum
v_commission_pct value of 0.8. This is not committed, so it is visible to Jones only. Scott’s
state is unaffected.
At 9:35: Jones calls reset_comm with a new commission value of 0.5. The state for Jones’s
v_std_comm is first initialized to 0.10 and then set to the new value 0.5 that is valid for his
session with the database maximum value of 0.8.
At 10:00: Scott calls with reset_comm with a new commission value of 0.6, which is greater
than the maximum database commission visible to his session, that is, 0.4. (Jones did not commit
the 0.8 value.)

Between 11:00 and 12:00: Jones rolls back the transaction and exits the session. Jones logs in at
11:45 and successfully executes the procedure, setting his state to 0.2.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 O

R
AC

LE
 C

O
R

PO
R

AT
IO

N
 u

se
 o

nl
y

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Oracle Database 11g: Develop PL/SQL Program Units 5 - 19

Copyright © 2009, Oracle. All rights reserved.

Persistent State of a Package Cursor: Example

CREATE OR REPLACE PACKAGE curs_pkg IS –- Package spec
PROCEDURE open;
FUNCTION next(p_n NUMBER := 1) RETURN BOOLEAN;
PROCEDURE close;

END curs_pkg;

CREATE OR REPLACE PACKAGE BODY curs_pkg IS
–- Package body

CURSOR cur_c IS
SELECT employee_id FROM employees;

PROCEDURE open IS
BEGIN

IF NOT cur_c%ISOPEN THEN
OPEN cur_c;

END IF;
END open;

. . . -- code continued on next slide

Persistent State of a Package Cursor: Example

The example in the slide shows the CURS_PKG package specification and body. The body
declaration is continued in the next slide.

To use this package, perform the following steps to process the rows:

1. Call the open procedure to open the cursor.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 O

R
AC

LE
 C

O
R

PO
R

AT
IO

N
 u

se
 o

nl
y

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Oracle Database 11g: Develop PL/SQL Program Units 5 - 20

Copyright © 2009, Oracle. All rights reserved.

Persistent State of a Package Cursor: Example

. . .
FUNCTION next(p_n NUMBER := 1) RETURN BOOLEAN IS

v_emp_id employees.employee_id%TYPE;
BEGIN

FOR count IN 1 .. p_n LOOP
FETCH cur_c INTO v_emp_id;
EXIT WHEN cur_c%NOTFOUND;
DBMS_OUTPUT.PUT_LINE('Id: ' ||(v_emp_id));

END LOOP;
RETURN cur_c%FOUND;

END next;
PROCEDURE close IS

BEGIN
IF cur_c%ISOPEN THEN

CLOSE cur_c;
END IF;

END close;
END curs_pkg;

Persistent State of a Package Cursor: Example (continued)

2. Call the next procedure to fetch one or a specified number of rows. If you request more
rows than actually exist, the procedure successfully handles termination.
It returns TRUE if more rows need to be processed; otherwise it returns FALSE.

3. Call the close procedure to close the cursor, before or at the end of processing the rows.

Note: The cursor declaration is private to the package. Therefore, the cursor state can be
influenced by invoking the package procedure and functions listed in the slide.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 O

R
AC

LE
 C

O
R

PO
R

AT
IO

N
 u

se
 o

nl
y

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Oracle Database 11g: Develop PL/SQL Program Units 5 - 21

Copyright © 2009, Oracle. All rights reserved.

Executing the CURS_PKG Package

Executing CURS_PKG

Recall that the state of a package variable or cursor persists across transactions within a session.
However, the state does not persist across different sessions for the same user. The database
tables hold data that persists across sessions and users. The call to curs_pkg.open opens the
cursor, which remains open until the session is terminated, or the cursor is explicitly closed. The
anonymous block executes the next function in the Declaration section, initializing the
BOOLEAN variable b_more to TRUE, as there are more than three rows in the EMPLOYEES
table. The block checks for the end of the result set and closes the cursor, if appropriate. When
the block executes, it displays the first three rows:

Id :100
Id :101
Id :102

If you click the Run Script (F5) icon again, the next three rows are displayed:
Id :103
Id :104
Id :105

To close the cursor, you can issue the following command to close the cursor in the package, or
exit the session:

EXECUTE curs_pkg.close

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 O

R
AC

LE
 C

O
R

PO
R

AT
IO

N
 u

se
 o

nl
y

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Oracle Database 11g: Develop PL/SQL Program Units 5 - 22

Copyright © 2009, Oracle. All rights reserved.

Using PL/SQL Tables
of Records in Packages

CREATE OR REPLACE PACKAGE emp_pkg IS
TYPE emp_table_type IS TABLE OF employees%ROWTYPE

INDEX BY BINARY_INTEGER;
PROCEDURE get_employees(p_emps OUT emp_table_type);

END emp_pkg;

CREATE OR REPLACE PACKAGE BODY emp_pkg IS
PROCEDURE get_employees(p_emps OUT emp_table_type) IS

v_i BINARY_INTEGER := 0;
BEGIN

FOR emp_record IN (SELECT * FROM employees)
LOOP

emps(v_i) := emp_record;
v_i:= v_i + 1;

END LOOP;
END get_employees;

END emp_pkg;

Using Tables of Records of Procedures or Functions in Packages
The emp_pkg package contains a get_employees procedure that reads rows from the
EMPLOYEES table and returns the rows using the OUT parameter, which is a PL/SQL table of
records. The key points include the following:
• employee_table_type is declared as a public type.
• employee_table_type is used for a formal output parameter in the procedure, and

the employees variable in the calling block (shown below).

In SQL Developer, you can invoke the get_employees procedure in an anonymous PL/SQL
block by using the v_employees variable, as shown in the following example:

DECLARE
v_employees emp_pkg.emp_table_type;
BEGIN

emp_pkg.get_employees(v_employees);
DBMS_OUTPUT.PUT_LINE('Emp 4: '||v_employees(4).last_name);

END;

This results in the following output:

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 O

R
AC

LE
 C

O
R

PO
R

AT
IO

N
 u

se
 o

nl
y

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Oracle Database 11g: Develop PL/SQL Program Units 5 - 23

Copyright © 2009, Oracle. All rights reserved.

Quiz

Overloading subprograms in PL/SQL:

1. Enables you to create two or more subprograms with the
same name

2. Requires that the subprogram’s formal parameters differ in
number, order, or data type family

3. Enables you to build flexible ways for invoking
subprograms with different data

4. Provides a way to extend functionality without loss of
existing code; that is, adding new parameters to existing
subprograms

Answer: 1, 2, 3, 4

The overloading feature in PL/SQL enables you to develop two or more packaged subprograms
with the same name. Overloading is useful when you want a subprogram to accept similar sets of
parameters that have different data types. For example, the TO_CHAR function has more than
one way to be called, enabling you to convert a number or a date to a character string.

PL/SQL allows overloading of package subprogram names and object type methods.

The key rule is that you can use the same name for different subprograms as long as their formal
parameters differ in number, order, or data type family.

Consider using overloading when:

• Processing rules for two or more subprograms are similar, but the type or number of
parameters used varies

• Providing alternative ways for finding different data with varying search criteria. For
example, you may want to find employees by their employee ID and also provide a way to
find employees by their last name. The logic is intrinsically the same, but the parameters or
search criteria differ.

• Extending functionality when you do not want to replace existing code

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 O

R
AC

LE
 C

O
R

PO
R

AT
IO

N
 u

se
 o

nl
y

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Oracle Database 11g: Develop PL/SQL Program Units 5 - 24

Copyright © 2009, Oracle. All rights reserved.

Summary

In this lesson, you should have learned how to:

• Create and call overloaded subprograms

• Use forward declarations for subprograms

• Write package initialization blocks

• Maintain persistent package state

Summary

Overloading is a feature that enables you to define different subprograms with the same name. It
is logical to give two subprograms the same name when the processing in both the subprograms
is the same but the parameters passed to them vary.

PL/SQL permits a special subprogram declaration called a forward declaration. A forward
declaration enables you to define subprograms in logical or alphabetical order, define mutually
recursive subprograms, and group subprograms in a package.

A package initialization block is executed only when the package is first invoked within the
other user session. You can use this feature to initialize variables only once per session.

You can keep track of the state of a package variable or cursor, which persists throughout the
user session, from the time the user first references the variable or cursor to the time the user
disconnects.

Using the PL/SQL wrapper, you can obscure the source code stored in the database to protect
your intellectual property.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 O

R
AC

LE
 C

O
R

PO
R

AT
IO

N
 u

se
 o

nl
y

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Oracle Database 11g: Develop PL/SQL Program Units 5 - 25

Copyright © 2009, Oracle. All rights reserved.

Practice 5: Overview

This practice covers the following topics:

• Using overloaded subprograms

• Creating a package initialization block

• Using a forward declaration

Practice 5: Overview

In this practice, you modify an existing package to contain overloaded subprograms and you use
forward declarations. You also create a package initialization block within a package body to
populate a PL/SQL table.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 O

R
AC

LE
 C

O
R

PO
R

AT
IO

N
 u

se
 o

nl
y

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Oracle Database 11g: Develop PL/SQL Program Units 5 - 26

Practice 5

1. Modify the code for the EMP_PKG package that you created in Practice 4 step 2, and
overload the ADD_EMPLOYEE procedure.

a. In the package specification, add a new procedure called ADD_EMPLOYEE that accepts
the following three parameters:

i. First name

ii. Last name

iii. Department ID

b. Click Run Script to create the package. Compile the package.

c. Implement the new ADD_EMPLOYEE procedure in the package body as follows:

i. Format the email address in uppercase characters, using the first letter of the first
name concatenated with the first seven letters of the last name.

ii. The procedure should call the existing ADD_EMPLOYEE procedure to perform
the actual INSERT operation using its parameters and formatted email to supply
the values.

iii. Click Run Script to create the package. Compile the package.

d. Invoke the new ADD_EMPLOYEE procedure using the name Samuel Joplin to be
added to department 30.

e. Confirm that the new employee was added to the EMPLOYEES table.

2. In the EMP_PKG package, create two overloaded functions called GET_EMPLOYEE:

a. In the package specification, add the following functions:

i. The GET_EMPLOYEE function that accepts the parameter called p_emp_id
based on the employees.employee_id%TYPE type. This function should
return an EMPLOYEES%ROWTYPE.

ii. The GET_EMPLOYEE function that accepts the parameter called
p_family_name of type employees.last_name%TYPE. This function
should return an EMPLOYEES%ROWTYPE.

b. Click the Run Script (F5) icon to re-create the package. Compile the package.

c. In the package body:

i. Implement the first GET_EMPLOYEE function to query an employee using the
employee’s ID.

ii. Implement the second GET_EMPLOYEE function to use the equality operator on
the value supplied in the p_ family_name parameter.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 O

R
AC

LE
 C

O
R

PO
R

AT
IO

N
 u

se
 o

nl
y

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Oracle Database 11g: Develop PL/SQL Program Units 5 - 27

Practice 5 (continued)

d. Click Run Script to re-create the package. Compile the package.
e. Add a utility procedure PRINT_EMPLOYEE to the EMP_PKG package as follows:

i. The procedure accepts an EMPLOYEES%ROWTYPE as a parameter.

ii. The procedure displays the following for an employee on one line, using the
DBMS_OUTPUT package:

- department_id

- employee_id

- first_name

- last_name

- job_id

- salary

f. Click Run Script to re-create the package. Compile the package.

g. Use an anonymous block to invoke the EMP_PKG.GET_EMPLOYEE function with an
employee ID of 100 and family name of 'Joplin'. Use the PRINT_EMPLOYEE
procedure to display the results for each row returned.

3. Because the company does not frequently change its departmental data, you can improve the
performance of your EMP_PKG by adding a public procedure, INIT_DEPARTMENTS, to
populate a private PL/SQL table of valid department IDs. Modify the VALID_DEPTID
function to use the private PL/SQL table contents to validate department ID values.

Note: The sol_05_03.sql solution file script contains the code for steps a, b, and c.

a. In the package specification, create a procedure called INIT_DEPARTMENTS with no
parameters by adding the following to the package specification section before the
PRINT_EMPLOYEES specification:

PROCEDURE init_departments;

b. In the package body, implement the INIT_DEPARTMENTS procedure to store all
department IDs in a private PL/SQL index-by table named valid_departments
containing BOOLEAN values.

i. Declare the valid_departments variable and its type definition
boolean_tab_type before all procedures in the body. Enter the following at
the beginning of the package body:

TYPE boolean_tab_type IS TABLE OF BOOLEAN

INDEX BY BINARY_INTEGER;

valid_departments boolean_tab_type;

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 O

R
AC

LE
 C

O
R

PO
R

AT
IO

N
 u

se
 o

nl
y

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Oracle Database 11g: Develop PL/SQL Program Units 5 - 28

Practice 5 (continued)

ii. Use the department_id column value as the index to create the entry in the
index-by table to indicate its presence, and assign the entry a value of TRUE.
Enter the INIT_DEPARTMENTS procedure declaration at the end of the package
body (right after the print_employees procedure) as follows:

PROCEDURE init_departments IS

BEGIN

FOR rec IN (SELECT department_id FROM departments)

LOOP

valid_departments(rec.department_id) := TRUE;

END LOOP;

END;

c. In the body, create an initialization block that calls the INIT_DEPARTMENTS
procedure to initialize the table as follows:

BEGIN
init_departments;

END;

d. Click Run Script to create the package. Compile the package.

4. Change the VALID_DEPTID validation processing function to use the private PL/SQL table
of department IDs.

a. Modify the VALID_DEPTID function to perform its validation by using the PL/SQL
table of department ID values. Click Run Script to create the package. Compile the
package.

b. Test your code by calling ADD_EMPLOYEE using the name James Bond in
department 15. What happens?

c. Insert a new department. Specify 15 for the department ID and Security for the
department name. Commit and verify the changes.

d. Test your code again, by calling ADD_EMPLOYEE using the name James Bond in
department 15. What happens?

e. Execute the EMP_PKG.INIT_DEPARTMENTS procedure to update the internal
PL/SQL table with the latest departmental data.

f. Test your code by calling ADD_EMPLOYEE using the employee name James Bond,
who works in department 15. What happens?

g. Delete employee James Bond and department 15 from their respective tables,
commit the changes, and refresh the department data by invoking the

EMP_PKG.INIT_DEPARTMENTS procedure.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 O

R
AC

LE
 C

O
R

PO
R

AT
IO

N
 u

se
 o

nl
y

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Oracle Database 11g: Develop PL/SQL Program Units 5 - 29

Practice 5 (continued)

5. Reorganize the subprograms in the package specification and the body so that they are in
alphabetical sequence.

a. Edit the package specification and reorganize subprograms alphabetically. Click Run
Script to re-create the package specification. Compile the package specification. What
happens?

b. Edit the package body and reorganize all subprograms alphabetically. Click Run Script
to re-create the package specification. Recompile the package specification. What
happens?

c. Correct the compilation error using a forward declaration in the body for the
appropriate subprogram reference. Click Run Script to re-create the package, and then
recompile the package. What happens?

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 O

R
AC

LE
 C

O
R

PO
R

AT
IO

N
 u

se
 o

nl
y

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 O

R
AC

LE
 C

O
R

PO
R

AT
IO

N
 u

se
 o

nl
y

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Copyright © 2009, Oracle. All rights reserved.

Using Oracle-Supplied Packages
in Application Development

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 O

R
AC

LE
 C

O
R

PO
R

AT
IO

N
 u

se
 o

nl
y

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Oracle Database 11g: Develop PL/SQL Program Units 6 - 2

Copyright © 2009, Oracle. All rights reserved.

Objectives

After completing this lesson, you should be able to do the
following:
• Describe how the DBMS_OUTPUT package works

• Use UTL_FILE to direct output to operating system files

• Describe the main features of UTL_MAIL

Lesson Aim

In this lesson, you learn how to use some of the Oracle-supplied packages and their capabilities.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 O

R
AC

LE
 C

O
R

PO
R

AT
IO

N
 u

se
 o

nl
y

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Oracle Database 11g: Develop PL/SQL Program Units 6 - 3

Copyright © 2009, Oracle. All rights reserved.

Lesson Agenda

• Identifying the benefits of using the Oracle-supplied
packages and listing some of those packages

• Using the following Oracle-supplied packages:
– DBMS_OUTPUT

– UTL_FILE

– UTL_MAIL

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 O

R
AC

LE
 C

O
R

PO
R

AT
IO

N
 u

se
 o

nl
y

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Oracle Database 11g: Develop PL/SQL Program Units 6 - 4

Copyright © 2009, Oracle. All rights reserved.

Using Oracle-Supplied Packages

• The Oracle-supplied packages:
– Are provided with the Oracle server

– Extend the functionality of the database

– Enable access to certain SQL features that are normally
restricted for PL/SQL

• For example, the DBMS_OUTPUT package was originally
designed to debug PL/SQL programs.

Using Oracle-Supplied Packages

Packages are provided with the Oracle server to allow either of the following:
• PL/SQL access to certain SQL features
• The extension of the functionality of the database

You can use the functionality provided by these packages when creating your application, or you
may simply want to use these packages as ideas when you create your own stored procedures.

Most of the standard packages are created by running catproc.sql. The DBMS_OUTPUT
package is the one that you will be most familiar with during this course. You should already be
familiar with this package if you attended the Oracle Database 11g: PL/SQL Fundamentals
course.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 O

R
AC

LE
 C

O
R

PO
R

AT
IO

N
 u

se
 o

nl
y

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Oracle Database 11g: Develop PL/SQL Program Units 6 - 5

Copyright © 2009, Oracle. All rights reserved.

Examples of Some Oracle-Supplied Packages

Here is an abbreviated list of some Oracle-supplied packages:
• DBMS_OUTPUT

• UTL_FILE

• UTL_MAIL

• DBMS_ALERT

• DBMS_LOCK

• DBMS_SESSION

• HTP

• DBMS_SCHEDULER

List of Some Oracle-Supplied Packages

The list of PL/SQL packages provided with an Oracle database grows with the release of new
versions. It would be impossible to cover the exhaustive set of packages and their functionality
in this course. For more information, refer to the Oracle Database PL/SQL Packages and Types
Reference 11g Release 1 (11.1). This lesson covers the first three packages in the slide.

The following is a brief description about all the listed packages:
• DBMS_ALERT supports asynchronous notification of database events. Messages or alerts

are sent on a COMMIT command.
• DBMS_LOCK is used to request, convert, and release locks through Oracle Lock

Management services.
• DBMS_SESSION enables programmatic use of the ALTER SESSION SQL statement and

other session-level commands.
• DBMS_OUTPUT provides debugging and buffering of text data.
• HTP package writes HTML-tagged data into database buffers.
• UTL_FILE enables reading and writing of operating system text files.
• UTL_MAIL enables composing and sending of email messages.
• DBMS_SCHEDULER enables scheduling and automated execution of PL/SQL blocks,

stored procedures, and external procedures and executables (covered in Appendix G).

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 O

R
AC

LE
 C

O
R

PO
R

AT
IO

N
 u

se
 o

nl
y

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Oracle Database 11g: Develop PL/SQL Program Units 6 - 6

Copyright © 2009, Oracle. All rights reserved.

Lesson Agenda

• Identifying the benefits of using the Oracle-supplied
packages and listing some of those packages

• Using the following Oracle-supplied packages:
– DBMS_OUTPUT

– UTL_FILE

– UTL_MAIL

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 O

R
AC

LE
 C

O
R

PO
R

AT
IO

N
 u

se
 o

nl
y

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Oracle Database 11g: Develop PL/SQL Program Units 6 - 7

Copyright © 2009, Oracle. All rights reserved.

How the DBMS_OUTPUT Package Works

The DBMS_OUTPUT package enables you to send messages
from stored subprograms and triggers.
• PUT and PUT_LINE place text in the buffer.

• GET_LINE and GET_LINES read the buffer.

• Messages are not sent until the sending subprogram or
trigger completes.

• Use SET SERVEROUTPUT ON to display messages in SQL
Developer and SQL*Plus.

PUT_LINE

GET_LINE

PUT
NEW_LINE

GET_LINES
SET SERVEROUT ON [SIZE n]
EXEC proc

Buffer

Output

How the DBMS_OUTPUT Package Works

The DBMS_OUTPUT package sends textual messages from any PL/SQL block into a buffer in
the database. Procedures provided by the package include the following:
• PUT appends text from the procedure to the current line of the line output buffer.
• NEW_LINE places an end-of-line marker in the output buffer.
• PUT_LINE combines the action of PUT and NEW_LINE (to trim leading spaces).
• GET_LINE retrieves the current line from the buffer into a procedure variable.
• GET_LINES retrieves an array of lines into a procedure-array variable.
• ENABLE/DISABLE enables and disables calls to DBMS_OUTPUT procedures.

The buffer size can be set by using:
• The SIZE n option appended to the SET SERVEROUTPUT ON command where n is the

number of characters. The minimum is 2,000 and the maximum is unlimited. The default is
20,000.

• An integer parameter between 2,000 and 1,000,000 in the ENABLE procedure

You can output results to the window for debugging purposes. You can trace a code execution
path for a function or procedure. You can send messages between subprograms and triggers.

Note: There is no mechanism to flush output during the execution of a procedure.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 O

R
AC

LE
 C

O
R

PO
R

AT
IO

N
 u

se
 o

nl
y

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Oracle Database 11g: Develop PL/SQL Program Units 6 - 8

Copyright © 2009, Oracle. All rights reserved.

Using the UTL_FILE Package to
Interact with Operating System Files

The UTL_FILE package extends PL/SQL programs to read
and write operating system text files:

• Provides a restricted version of operating system stream
file I/O for text files

• Can access files in operating system directories defined by
a CREATE DIRECTORY statement

EXEC proc

Operating system fileUTL_FILE

CREATE DIRECTORY
my_dir AS '/dir'

Interacting with Operating System Files

The Oracle-supplied UTL_FILE package is used to access text files in the operating system of
the database server. The database provides read and write access to specific operating system
directories by using:

• A CREATE DIRECTORY statement that associates an alias with an operating system
directory. The database directory alias can be granted the READ and WRITE privileges to
control the type of access to files in the operating system. For example:

CREATE DIRECTORY my_dir AS '/temp/my_files';
GRANT READ, WRITE ON my_dir TO public.

• The paths specified in the utl_file_dir database initialization parameter

Oracle recommends that you use the CREATE DIRECTORY feature instead of
UTL_FILE_DIR for directory access verification. Directory objects offer more flexibility and
granular control to the UTL_FILE application administrator, can be maintained dynamically
(that is, without shutting down the database), and are consistent with other Oracle tools. The
CREATE DIRECTORY privilege is granted only to SYS and SYSTEM by default.

The operating system directories specified by using either of these techniques should be
accessible to and on the same machine as the database server processes. The path (directory)
names may be case-sensitive for some operating systems.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 O

R
AC

LE
 C

O
R

PO
R

AT
IO

N
 u

se
 o

nl
y

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Oracle Database 11g: Develop PL/SQL Program Units 6 - 9

Copyright © 2009, Oracle. All rights reserved.

Yes

No

Close the
text file

File Processing Using the
UTL_FILE Package: Overview

Get lines from
the text file

Put lines into
the text file

Open for
reading

Open for
write/append

More to
read?

Yes

No
More to
write?

f:=FOPEN(dir,file, 'R')

f:=FOPEN(dir,file,'W')

f:=FOPEN(dir,file,'A')

GET_LINE(f,buf,len)

PUT(f,buf)
PUT_LINE(f,buf) FCLOSE(f)

Reading a file

Writing or appending to a file

File Processing Using the UTL_FILE Package

You can use the procedures and functions in the UTL_FILE package to open files with the
FOPEN function. You can then either read from or write or append to the file until processing is
done. After completing processing the file, close the file by using the FCLOSE procedure. The
following are the subprograms:

• The FOPEN function opens a file in a specified directory for input/output (I/O) and returns
a file handle used in subsequent I/O operations.

• The IS_OPEN function returns a Boolean value whenever a file handle refers to an open
file. Use IS_OPEN to check whether the file is already open before opening the file.

• The GET_LINE procedure reads a line of text from the file into an output buffer
parameter. (The maximum input record size is 1,023 bytes unless you specify a larger size
in the overloaded version of FOPEN.)

• The PUT and PUT_LINE procedures write text to the opened file.
• The PUTF procedure provides formatted output with two format specifiers: %s to

substitute a value into the output string and \n for a new line character.
• The NEW_LINE procedure terminates a line in an output file.
• The FFLUSH procedure writes all data buffered in memory to a file.
• The FCLOSE procedure closes an opened file.
• The FCLOSE_ALL procedure closes all opened file handles for the session.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 O

R
AC

LE
 C

O
R

PO
R

AT
IO

N
 u

se
 o

nl
y

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Oracle Database 11g: Develop PL/SQL Program Units 6 - 10

Copyright © 2009, Oracle. All rights reserved.

Using the Available Declared
Exceptions in the UTL_FILE Package

Unspecified PL/SQL errorINTERNAL_ERROR

File could not be opened or operated on as requestedINVALID_OPERATION

File handle invalid INVALID_FILEHANDLE

Operating system error occurred during the read
operation

READ_ERROR

File location invalid INVALID_PATH

Operating system error occurred during the write
operation

WRITE_ERROR

INVALID_MODE

Exception Name

The open_mode parameter in FOPEN is invalid

Description

Exceptions in the UTL_FILE Package

The UTL_FILE package declares fifteen exceptions that indicate an error condition in the
operating system file processing. You may have to handle one of these exceptions when using
UTL_FILE subprograms.

A subset of the exceptions are displayed in the slide. For additional information about the
remaining exceptions, refer to the Oracle Database PL/SQL Packages and Types Reference 11g
Release 1 guide.

Note: These exceptions must always be prefixed with the package name. UTL_FILE
procedures can also raise predefined PL/SQL exceptions such as NO_DATA_FOUND or
VALUE_ERROR.

The NO_DATA_FOUND exception is raised when reading past the end of a file by using
UTL_FILE.GET_LINE or UTL_FILE.GET_LINES.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 O

R
AC

LE
 C

O
R

PO
R

AT
IO

N
 u

se
 o

nl
y

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Oracle Database 11g: Develop PL/SQL Program Units 6 - 11

Copyright © 2009, Oracle. All rights reserved.

FUNCTION FOPEN (p_location IN VARCHAR2,
p_filename IN VARCHAR2,
p_open_mode IN VARCHAR2)

RETURN UTL_FILE.FILE_TYPE;

FUNCTION IS_OPEN (p_file IN FILE_TYPE)
RETURN BOOLEAN;

FOPEN and IS_OPEN Functions: Example

• This FOPEN function opens a file for input or output.

• The IS_OPEN function determines whether a file handle
refers to an open file.

FOPEN and IS_OPEN Function Parameters: Example

The parameters include the following:
• p_location parameter: Specifies the name of a directory alias defined by a CREATE

DIRECTORY statement, or an operating system–specific path specified by using the
utl_file_dir database parameter

• p_filename parameter: Specifies the name of the file, including the extension, without
any path information

• open_mode string: Specifies how the file is to be opened. Values are:
'R' for reading text (use GET_LINE)
'W' for writing text (PUT, PUT_LINE, NEW_LINE, PUTF, FFLUSH)
'A' for appending text (PUT, PUT_LINE, NEW_LINE, PUTF, FFLUSH)

The return value from FOPEN is a file handle whose type is UTL_FILE.FILE_TYPE. The
handle must be used on subsequent calls to routines that operate on the opened file.

The IS_OPEN function parameter is the file handle. The IS_OPEN function tests a file handle
to see whether it identifies an opened file. It returns a Boolean value of TRUE if the file has been
opened; otherwise it returns a value of FALSE indicating that the file has not been opened. The
slide example shows how to combine the use of the two subprograms. For the full syntax, refer
to the Oracle Database PL/SQL Packages and Types Reference 11g Release 1 (11.1) guide.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 O

R
AC

LE
 C

O
R

PO
R

AT
IO

N
 u

se
 o

nl
y

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Oracle Database 11g: Develop PL/SQL Program Units 6 - 12

FOPEN and IS_OPEN Function Parameters: Example (continued)
CREATE OR REPLACE PROCEDURE read_file(p_dir VARCHAR2,
p_filename VARCHAR2) IS

f_file UTL_FILE.FILE_TYPE;
v_buffer VARCHAR2(200);
v_lines PLS_INTEGER := 0;

BEGIN
DBMS_OUTPUT.PUT_LINE(' Start ');
IF NOT UTL_FILE.IS_OPEN(f_file) THEN

DBMS_OUTPUT.PUT_LINE(' Open ');
f_file := UTL_FILE.FOPEN (p_dir, p_filename, 'R');
DBMS_OUTPUT.PUT_LINE(' Opened ');

BEGIN
LOOP

UTL_FILE.GET_LINE(f_file, v_buffer);
v_lines := v_lines + 1;
DBMS_OUTPUT.PUT_LINE(TO_CHAR(v_lines, '099')||'
'||buffer);

END LOOP;
EXCEPTION

WHEN NO_DATA_FOUND THEN
DBMS_OUTPUT.PUT_LINE(' ** End of File **');

END; -- ends Begin
DBMS_OUTPUT.PUT_LINE(v_lines||' lines read from file');
UTL_FILE.FCLOSE(f_file);

END IF;
END read_file;
/
SHOW ERRORS
EXECUTE read_file('UTL_FILE', 'instructor.txt')

The partial output of the above code is as follows:

. . .

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 O

R
AC

LE
 C

O
R

PO
R

AT
IO

N
 u

se
 o

nl
y

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Oracle Database 11g: Develop PL/SQL Program Units 6 - 13

Copyright © 2009, Oracle. All rights reserved.

CREATE OR REPLACE PROCEDURE sal_status(

p_dir IN VARCHAR2, p_filename IN VARCHAR2) IS

f_file UTL_FILE.FILE_TYPE;

CURSOR cur_emp IS

SELECT last_name, salary, department_id

FROM employees ORDER BY department_id;

v_newdeptno employees.department_id%TYPE;

v_olddeptno employees.department_id%TYPE := 0;

BEGIN

f_file:= UTL_FILE.FOPEN (p_dir, p_filename, 'W');

UTL_FILE.PUT_LINE(f_file,

'REPORT: GENERATED ON ' || SYSDATE);

UTL_FILE.NEW_LINE (f_file);

. . .

Using UTL_FILE: Example

Using UTL_FILE: Example

In the slide example, the sal_status procedure creates a report of employees for each
department, along with their salaries. The data is written to a text file by using the UTL_FILE
package. In the code example, the file variable is declared as UTL_FILE.FILE_TYPE, a
package type that is a record with a field called ID of the BINARY_INTEGER data type. For
example:

TYPE file_type IS RECORD (id BINARY_INTEGER);

The field of FILE_TYPE record is private to the UTL_FILE package and should never be
referenced or changed. The sal_status procedure accepts two parameters:

• The p_dir parameter for the name of the directory in which to write the text file
• The p_filename parameter to specify the name of the file

For example, to call the procedure, use the following:
EXECUTE sal_status('UTL_FILE', 'salreport.txt')

Note: The directory location used (UTL_FILE) must be in uppercase characters if it is a
directory alias created by a CREATE DIRECTORY statement. When reading a file in a loop, the
loop should exit when it detects the NO_DATA_FOUND exception. The UTL_FILE output is
sent synchronously. A DBMS_OUTPUT procedure does not produce an output until the
procedure is completed.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 O

R
AC

LE
 C

O
R

PO
R

AT
IO

N
 u

se
 o

nl
y

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Oracle Database 11g: Develop PL/SQL Program Units 6 - 14

Copyright © 2009, Oracle. All rights reserved.

Using UTL_FILE: Example

. . .
FOR emp_rec IN cur_emp LOOP

IF emp_rec.department_id <> v_olddeptno THEN
UTL_FILE.PUT_LINE (f_file,
'DEPARTMENT: ' || emp_rec.department_id);

UTL_FILE.NEW_LINE (f_file);
END IF;
UTL_FILE.PUT_LINE (f_file,

' EMPLOYEE: ' || emp_rec.last_name ||
' earns: ' || emp_rec.salary);

v_olddeptno := emp_rec.department_id;
UTL_FILE.NEW_LINE (f_file);

END LOOP;
UTL_FILE.PUT_LINE(f_file,'*** END OF REPORT ***');
UTL_FILE.FCLOSE (f_file);

EXCEPTION
WHEN UTL_FILE.INVALID_FILEHANDLE THEN
RAISE_APPLICATION_ERROR(-20001,'Invalid File.');
WHEN UTL_FILE.WRITE_ERROR THEN
RAISE_APPLICATION_ERROR (-20002, 'Unable to write to file');

END sal_status;/

Using UTL_FILE: Example (continued)

The following is a sample of the salreport.txt output file:

. . .

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 O

R
AC

LE
 C

O
R

PO
R

AT
IO

N
 u

se
 o

nl
y

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Oracle Database 11g: Develop PL/SQL Program Units 6 - 15

Copyright © 2009, Oracle. All rights reserved.

What Is the UTL_MAIL Package?

• A utility for managing email
• Requires the setting of the SMTP_OUT_SERVER database

initialization parameter

• Provides the following procedures:
– SEND for messages without attachments

– SEND_ATTACH_RAW for messages with binary attachments

– SEND_ATTACH_VARCHAR2 for messages with text
attachments

Using UTL_MAIL

The UTL_MAIL package is a utility for managing email that includes commonly used email
features such as attachments, CC, BCC, and return receipt.
The UTL_MAIL package is not installed by default because of the SMTP_OUT_SERVER
configuration requirement and the security exposure this involves. When installing UTL_MAIL,
you should take steps to prevent the port defined by SMTP_OUT_SERVER being swamped by
data transmissions. To install UTL_MAIL, log in as a DBA user in SQL*Plus and execute the
following scripts:

@$ORACLE_HOME/rdbms/admin/utlmail.sql
@$ORACLE_HOME/rdbms/admin/prvtmail.plb

You should define the SMTP_OUT_SERVER parameter in the init.ora file database
initialization file:

SMTP_OUT_SERVER=mystmpserver.mydomain.com

The SMTP_OUT_SERVER parameter specifies the SMTP host and port to which UTL_MAIL
delivers outbound email. Multiple servers can be specified, separated by commas. If the first
server in the list is unavailable, then UTL_MAIL tries the second server, and so on. If
SMTP_OUT_SERVER is not defined, then this invokes a default setting derived from
DB_DOMAIN, which is a database initialization parameter specifying the logical location of the
database within the network structure. For example:

db_domain=mydomain.com

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 O

R
AC

LE
 C

O
R

PO
R

AT
IO

N
 u

se
 o

nl
y

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Oracle Database 11g: Develop PL/SQL Program Units 6 - 16

Copyright © 2009, Oracle. All rights reserved.

Setting Up and Using the UTL_MAIL: Overview

Install the
UTL_MAIL
package.

Define the
SMTP_OUT_SERVER

initialization parameter.

Grant user the
required privilege.

Invoke a UTL_MAIL
subprogram.

Send an email.

Setting Up and Using the UTL_MAIL: Overview

In Oracle Database 11g, the UTL_MAIL package is now an invoker’s rights package and the
invoking user will need the connect privilege granted in the access control list assigned to the
remote network host to which he wants to connect. The Security Administrator performs this
task.

Note
• For information about how a user with SYSDBA capabilities grants a user the required fine-

grained privileges required for using this package, refer to the “Managing Fine-Grained
Access to External Network Services” topic in the Oracle Database Security Guide 11g
Release 1 (11.1) guide and the Oracle Database 11g Advanced PL/SQL instructor-led
training course.

• Due to firewall restrictions, the UTL_MAIL examples in this lesson cannot be
demonstrated; therefore, no labs were designed to use UTL_MAIL.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 O

R
AC

LE
 C

O
R

PO
R

AT
IO

N
 u

se
 o

nl
y

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Oracle Database 11g: Develop PL/SQL Program Units 6 - 17

Copyright © 2009, Oracle. All rights reserved.

Summary of UTL_MAIL Subprograms

Represents the SEND procedure overloaded for
VARCHAR2 attachments

SEND_ATTACH_VARCHAR2
Procedure

Packages an email message, locates SMTP
information, and delivers the message to the SMTP
server for forwarding to the recipients

SEND procedure

SEND_ATTACH_RAW
Procedure

Subprogram

Represents the SEND procedure overloaded for RAW
attachments

Description

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 O

R
AC

LE
 C

O
R

PO
R

AT
IO

N
 u

se
 o

nl
y

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Oracle Database 11g: Develop PL/SQL Program Units 6 - 18

Copyright © 2009, Oracle. All rights reserved.

Installing and Using UTL_MAIL

• As SYSDBA, using SQL Developer or SQL*Plus:
– Install the UTL_MAIL package

– Set the SMTP_OUT_SERVER

• As a developer, invoke a UTL_MAIL procedure:

ALTER SYSTEM SET SMTP_OUT_SERVER='smtp.server.com'
SCOPE=SPFILE

@?/rdbms/admin/utlmail.sql
@?/rdbms/admin/prvtmail.plb

BEGIN
UTL_MAIL.SEND('otn@oracle.com','user@oracle.com',
message => 'For latest downloads visit OTN',
subject => 'OTN Newsletter');

END;

Installing and Using UTL_MAIL

The slide shows how to configure the SMTP_OUT_SERVER parameter to the name of the SMTP
host in your network, and how to install the UTL_MAIL package that is not installed by default.
Changing the SMTP_OUT_SERVER parameter requires restarting the database instance. These
tasks are performed by a user with SYSDBA capabilities.

The last example in the slide shows the simplest way to send a text message by using the
UTL_MAIL.SEND procedure with at least a subject and a message. The first two required
parameters are the following :

• The sender email address (in this case, otn@oracle.com)
• The recipients email address (for example, user@oracle.com). The value can be

a comma-separated list of addresses.

The UTL_MAIL.SEND procedure provides several other parameters, such as cc, bcc, and
priority with default values, if not specified. In the example, the message parameter
specifies the text for the email, and the subject parameter contains the text for the subject line.
To send an HTML message with HTML tags, add the mime_type parameter (for example,
mime_type=>'text/html').

Note: For details about all the UTL_MAIL procedure parameters, refer to the Oracle Database
PL/SQL Packages and Types Reference 11g Release 1 (11.1) guide.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 O

R
AC

LE
 C

O
R

PO
R

AT
IO

N
 u

se
 o

nl
y

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Oracle Database 11g: Develop PL/SQL Program Units 6 - 19

Copyright © 2009, Oracle. All rights reserved.

The SEND Procedure Syntax

Packages an email message into the appropriate format,
locates SMTP information, and delivers the message to the
SMTP server for forwarding to the recipients.

UTL_MAIL.SEND (
sender IN VARCHAR2 CHARACTER SET ANY_CS,
recipients IN VARCHAR2 CHARACTER SET ANY_CS,
cc IN VARCHAR2 CHARACTER SET ANY_CS

DEFAULT NULL,
bcc IN VARCHAR2 CHARACTER SET ANY_CS

DEFAULT NULL,
subject IN VARCHAR2 CHARACTER SET ANY_CS

DEFAULT NULL,
message IN VARCHAR2 CHARACTER SET ANY_CS,
mime_type IN VARCHAR2

DEFAULT 'text/plain; charset=us-ascii',
priority IN PLS_INTEGER DEFAULT NULL);

The SEND Procedure

This procedure packages an email message into the appropriate format, locates SMTP
information, and delivers the message to the SMTP server for forwarding to the recipients. It
hides the SMTP API and exposes a one-line email facility for ease of use.

The SEND Procedure Parameters
• sender: The email address of the sender.
• recipients: The email addresses of the recipient(s), separated by commas.
• cc: The email addresses of the CC recipient(s), separated by commas. The default is

NULL.
• bcc: The email addresses of the BCC recipient(s), separated by commas. The default is

NULL.
• subject: A string to be included as email subject string. The default is NULL.
• message: A text message body.
• mime_type: The mime type of the message, default is 'text/plain;

charset=us-ascii'.
• priority: The message priority. The default is NULL.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 O

R
AC

LE
 C

O
R

PO
R

AT
IO

N
 u

se
 o

nl
y

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Oracle Database 11g: Develop PL/SQL Program Units 6 - 20

Copyright © 2009, Oracle. All rights reserved.

The SEND_ATTACH_RAW Procedure

This procedure is the SEND procedure overloaded for RAW
attachments.

UTL_MAIL.SEND_ATTACH_RAW (
sender IN VARCHAR2 CHARACTER SET ANY_CS,
recipients IN VARCHAR2 CHARACTER SET ANY_CS,
cc IN VARCHAR2 CHARACTER SET ANY_CS DEFAULT NULL,
bcc IN VARCHAR2 CHARACTER SET ANY_CS DEFAULT NULL,
subject IN VARCHAR2 CHARACTER SET ANY_CS DEFAULT NULL,
message IN VARCHAR2 CHARACTER SET ANY_CS DEFAULT NULL,
mime_type IN VARCHAR2 DEFAULT CHARACTER SET ANY_CS

DEFAULT 'text/plain; charset=us-ascii',
priority IN PLS_INTEGER DEFAULT 3,
attachment IN RAW,
att_inline IN BOOLEAN DEFAULT TRUE,
att_mime_type IN VARCHAR2 CHARACTER SET ANY_CS

DEFAULT 'text/plain; charset=us-ascii',
att_filename IN VARCHAR2 CHARACTER SET ANY_CS DEFAULT NULL);

The SEND_ATTACH_RAW Procedure Parameters

• sender: The email address of the sender.
• recipients: The email addresses of the recipient(s), separated by commas.
• cc: The email addresses of the CC recipient(s), separated by commas. The default is

NULL.
• bcc: The email addresses of the BCC recipient(s), separated by commas. The default is

NULL.
• subject: A string to be included as email subject string. The default is NULL.
• message: A text message body.
• mime_type: The mime type of the message, default is 'text/plain;

charset=us-ascii'.
• priority: The message priority. The default is NULL.
• attachment: A RAW attachment.
• att_inline: Specifies whether the attachment is viewable inline with the message

body. The default is TRUE.
• att_mime_type: The mime type of the attachment, default is

'application/octet'.
• att_filename: The string specifying a file name containing the attachment. The

default is NULL.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 O

R
AC

LE
 C

O
R

PO
R

AT
IO

N
 u

se
 o

nl
y

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Oracle Database 11g: Develop PL/SQL Program Units 6 - 21

Copyright © 2009, Oracle. All rights reserved.

Sending Email with a
Binary Attachment: Example

CREATE OR REPLACE PROCEDURE send_mail_logo IS
BEGIN
UTL_MAIL.SEND_ATTACH_RAW(
sender => 'me@oracle.com',
recipients => 'you@somewhere.net',
message =>
'<HTML><BODY>See attachment</BODY></HTML>',

subject => 'Oracle Logo',
mime_type => 'text/html'
attachment => get_image('oracle.gif'),
att_inline => true,
att_mime_type => 'image/gif',
att_filename => 'oralogo.gif');

END;
/

Sending Email with a Binary Attachment: Example

The slide shows a procedure calling the UTL_MAIL.SEND_ATTACH_RAW procedure to send a
textual or an HTML message with a binary attachment. In addition to the sender,
recipients, message, subject, and mime_type parameters that provide values for the
main part of the email message, the SEND_ATTACH_RAW procedure has the following
highlighted parameters:

• The attachment parameter (required) accepts a RAW data type, with a maximum size of
32,767 binary characters.

• The att_inline parameter (optional) is Boolean (default TRUE) to indicate that the
attachment is viewable with the message body.

• The att_mime_type parameter (optional) specifies the format of the attachment. If not
provided, it is set to application/octet.

• The att_filename parameter (optional) assigns any file name to the attachment. It is
NULL by default, in which case, the name is assigned a default name.

The get_image function in the example uses a BFILE to read the image data. Using a BFILE
requires creating a logical directory name in the database by using the CREATE DIRECTORY
statement. The code for get_image is shown on the following page.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 O

R
AC

LE
 C

O
R

PO
R

AT
IO

N
 u

se
 o

nl
y

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Oracle Database 11g: Develop PL/SQL Program Units 6 - 22

Sending Email with a Binary Attachment: Example (continued)

The get_image function uses the DBMS_LOB package to read a binary file from the operating
system:

CREATE OR REPLACE FUNCTION get_image(
filename VARCHAR2, dir VARCHAR2 := 'TEMP')

RETURN RAW IS
image RAW(32767);
file BFILE := BFILENAME(dir, filename);

BEGIN
DBMS_LOB.FILEOPEN(file, DBMS_LOB.FILE_READONLY);
image := DBMS_LOB.SUBSTR(file);
DBMS_LOB.CLOSE(file);
RETURN image;

END;
/

To create the directory called TEMP, execute the following statement in SQL Developer or
SQL*Plus:

CREATE DIRECTORY temp AS 'd:\temp';

Note
• You need the CREATE ANY DIRECTORY system privilege to execute this statement.
• Due to firewall restrictions at the Oracle Education Center, the examples on this page and

the previous page are not available for demonstration.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 O

R
AC

LE
 C

O
R

PO
R

AT
IO

N
 u

se
 o

nl
y

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Oracle Database 11g: Develop PL/SQL Program Units 6 - 23

Copyright © 2009, Oracle. All rights reserved.

The SEND_ATTACH_VARCHAR2 Procedure

This procedure is the SEND procedure overloaded for
VARCHAR2 attachments.

UTL_MAIL.SEND_ATTACH_VARCHAR2 (
sender IN VARCHAR2 CHARACTER SET ANY_CS,
recipients IN VARCHAR2 CHARACTER SET ANY_CS,
cc IN VARCHAR2 CHARACTER SET ANY_CS DEFAULT NULL,
bcc IN VARCHAR2 CHARACTER SET ANY_CS DEFAULT NULL,
subject IN VARCHAR2 CHARACTER SET ANY_CS DEFAULT NULL,
message IN VARCHAR2 CHARACTER SET ANY_CS DEFAULT NULL,
mime_type IN VARCHAR2 CHARACTER SET ANY_CS

DEFAULT 'text/plain; charset=us-ascii',
priority IN PLS_INTEGER DEFAULT 3,
attachment IN VARCHAR2 CHARACTER SET ANY_CS,
att_inline IN BOOLEAN DEFAULT TRUE,
att_mime_type IN VARCHAR2 CHARACTER SET ANY_CS

DEFAULT 'text/plain; charset=us-ascii',
att_filename IN VARCHAR2CHARACTER SET ANY_CS DEFAULT NULL);

The SEND_ATTACH_VARCHAR2 Procedure Parameters

• sender: The email address of the sender.
• recipients: The email addresses of the recipient(s), separated by commas.
• cc: The email addresses of the CC recipient(s), separated by commas. The default is

NULL.
• bcc: The email addresses of the BCC recipient(s), separated by commas. The default is

NULL.
• subject: A string to be included as email subject string. The default is NULL.
• Message: A text message body.
• mime_type: The mime type of the message, default is 'text/plain;

charset=us-ascii'.
• priority: The message priority. The default is NULL.
• attachment: A text attachment.
• att_inline: Specifies whether the attachment is inline. The default is TRUE.
• att_mime_type: The mime type of the attachment, default is 'text/plain;

charset=us-ascii'.
• att_filename: The string specifying a file name containing the attachment. The

default is NULL.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 O

R
AC

LE
 C

O
R

PO
R

AT
IO

N
 u

se
 o

nl
y

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Oracle Database 11g: Develop PL/SQL Program Units 6 - 24

Copyright © 2009, Oracle. All rights reserved.

Sending Email with a Text Attachment: Example

CREATE OR REPLACE PROCEDURE send_mail_file IS
BEGIN
UTL_MAIL.SEND_ATTACH_VARCHAR2(
sender => 'me@oracle.com',
recipients => 'you@somewhere.net',
message =>
'<HTML><BODY>See attachment</BODY></HTML>',

subject => 'Oracle Notes',
mime_type => 'text/html'
attachment => get_file('notes.txt'),
att_inline => false,
att_mime_type => 'text/plain',
att_filename => 'notes.txt');

END;
/

Sending Email with a Text Attachment

The slide shows a procedure that calls the UTL_MAIL.SEND_ATTACH_VARCHAR2 procedure
to send a textual or an HTML message with a text attachment. In addition to the sender,
recipients, message, subject, and mime_type parameters that provide values for the
main part of the e-mail message, the SEND_ATTACH_VARCHAR2 procedure has the following
parameters highlighted:

• The attachment parameter (required) accepts a VARCHAR2 data type with a maximum
size of 32,767 binary characters.

• The att_inline parameter (optional) is a Boolean (default TRUE) to indicate that the
attachment is viewable with the message body.

• The att_mime_type parameter (optional) specifies the format of the attachment. If not
provided, it is set to application/octet.

• The att_filename parameter (optional) assigns any file name to the attachment. It is
NULL by default, in which case, the name is assigned a default name.

The get_file function in the example uses a BFILE to read a text file from the operating
system directories for the value of the attachment parameter, which could simply be
populated from a VARCHAR2 variable. The code for get_file is shown on the following
page.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 O

R
AC

LE
 C

O
R

PO
R

AT
IO

N
 u

se
 o

nl
y

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Oracle Database 11g: Develop PL/SQL Program Units 6 - 25

Sending Email with a Text Attachment (continued)

The get_file function uses the DBMS_LOB package to read a binary file from the operating
system, and uses the UTL_RAW package to convert the RAW binary data into readable text data in
the form of a VARCHAR2 data type:

CREATE OR REPLACE FUNCTION get_file(
filename VARCHAR2, dir VARCHAR2 := 'TEMP')

RETURN VARCHAR2 IS
contents VARCHAR2(32767);
file BFILE := BFILENAME(dir, filename);

BEGIN
DBMS_LOB.FILEOPEN(file, DBMS_LOB.FILE_READONLY);
contents := UTL_RAW.CAST_TO_VARCHAR2(

DBMS_LOB.SUBSTR(file));
DBMS_LOB.CLOSE(file);
RETURN contents;

END;
/

Note: Alternatively, you could read the contents of the text file into a VARCHAR2 variable by
using the UTL_FILE package functionality.

The preceding example requires the TEMP directory to be created similar to the following
statement in SQL*Plus:

CREATE DIRECTORY temp AS 'd:\temp';

Note
• The CREATE ANY DIRECTORY system privilege is required to execute this statement.
• Due to firewall restrictions at the Oracle Education Center, the examples on this page and

the previous page are not available for demonstration.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 O

R
AC

LE
 C

O
R

PO
R

AT
IO

N
 u

se
 o

nl
y

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Oracle Database 11g: Develop PL/SQL Program Units 6 - 26

Copyright © 2009, Oracle. All rights reserved.

Quiz

The Oracle-supplied UTL_FILE package is used to access
text files in the operating system of the database server.
The database provides read and write access to specific
operating system directories.
1. True
2. False

Answer: 1

The Oracle-supplied UTL_FILE package is used to access text files in the operating system of
the database server. The database provides read and write access to specific operating system
directories by using:

• A CREATE DIRECTORY statement that associates an alias with an operating system
directory. The database directory alias can be granted the READ and WRITE privileges to
control the type of access to files in the operating system.

• The paths specified in the utl_file_dir database initialization parameter
O

ra
cl

e
U

ni
ve

rs
ity

 a
nd

 O
R

AC
LE

 C
O

R
PO

R
AT

IO
N

 u
se

 o
nl

y

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Oracle Database 11g: Develop PL/SQL Program Units 6 - 27

Copyright © 2009, Oracle. All rights reserved.

Summary

In this lesson, you should have learned:
• How the DBMS_OUTPUT package works

• How to use UTL_FILE to direct output to operating system
files

• About the main features of UTL_MAIL

Summary

This lesson covers a small subset of packages provided with the Oracle database. You have
extensively used DBMS_OUTPUT for debugging purposes and displaying procedurally generated
information on the screen in SQL*Plus.

In this lesson, you should have learned how to use the power features provided by the database
to create text files in the operating system by using UTL_FILE. You also learned how to send
email with or without binary or text attachments by using the UTL_MAIL package.

Note: For more information about all PL/SQL packages and types, refer to PL/SQL
Packages and Types Reference.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 O

R
AC

LE
 C

O
R

PO
R

AT
IO

N
 u

se
 o

nl
y

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Oracle Database 11g: Develop PL/SQL Program Units 6 - 28

Copyright © 2009, Oracle. All rights reserved.

Practice 6: Overview

This practice covers how to use UTL_FILE to generate a text
report.

Practice 6: Overview

In this practice, you use UTL_FILE to generate a text file report of employees in each
department.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 O

R
AC

LE
 C

O
R

PO
R

AT
IO

N
 u

se
 o

nl
y

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Oracle Database 11g: Develop PL/SQL Program Units 6 - 29

Practice 6

1. By using the UTL_FILE package, create a procedure called EMPLOYEE_REPORT that
generates an employee report in a file in the operating system. The report should generate a
list of employees who have exceeded the average salary of their departments.

a. Your program should accept two parameters. The first parameter is the output
directory. The second parameter is the name of the text file that is written.

Note: Use the directory location value UTL_FILE. Add an exception-handling
section to handle errors that may be encountered when using the UTL_FILE
package.

b. Click Run Script (F5) to create the package. Compile the package.

2. Invoke the program, using the second parameter with a name such as sal_rptxx.txt,
where xx represents your user number (for example, 61, 62, …, 80 and so on).

3. Transfer the generated output text file from the host to your client machine as follows:

a. Double-click the Putty-SFTP icon on your desktop. The Putty SFTP command
window is displayed.

b. At the psftp> prompt, enter the following command substituting host_name
with the host name provided to you by your instructor:
open host_name

For example, if you are connecting to a host named vx0114.us.oracle.com,
enter the following at the prompt:
open vx0114.us.oracle.com

c. Enter oracle as both your username and password.

Note: After you enter the username, if you get a message about the host key not
being cached in, enter y at the following prompt: “Store key in cache? <y/n> _”.

c. To display the list of folders and files in the current directory, issue the ls command.

d. Change your directory to UTL_FILE by using the cd UTL_FILE command.

e. List the contents of the current directory using the ls command.

f. Transfer the output file from the host to your client machine by issuing the following
command (for a user account ora61, for example):

get sal_rpt61.txt

h. Exit Putty-SFTP by entering bye at the command line or by clicking the close
control on title bar.

i. Open the transferred file, such as sal_rpt61.txt, which you can find in the
D:\Other\putty folder using WordPad.
Note: The data displays the employee’s last name, department ID, and salary. Ask
your instructor to provide instructions on how to obtain the report file from the server
using the Putty PSFTP utility.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 O

R
AC

LE
 C

O
R

PO
R

AT
IO

N
 u

se
 o

nl
y

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 O

R
AC

LE
 C

O
R

PO
R

AT
IO

N
 u

se
 o

nl
y

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Copyright © 2009, Oracle. All rights reserved.

Using Dynamic SQL

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 O

R
AC

LE
 C

O
R

PO
R

AT
IO

N
 u

se
 o

nl
y

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Oracle Database 11g: Develop PL/SQL Program Units 7 - 2

Copyright © 2009, Oracle. All rights reserved.

Objectives

After completing this lesson, you should be able to do the
following:

• Describe the execution flow of SQL statements

• Build and execute SQL statements dynamically using
Native Dynamic SQL (NDS)

• Identify situations when you must use the DBMS_SQL
package instead of NDS to build and execute SQL
statements dynamically

Lesson Aim

In this lesson, you learn to construct and execute SQL statements dynamically—that is, at run
time using the Native Dynamic SQL statements in PL/SQL.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 O

R
AC

LE
 C

O
R

PO
R

AT
IO

N
 u

se
 o

nl
y

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Oracle Database 11g: Develop PL/SQL Program Units 7 - 3

Copyright © 2009, Oracle. All rights reserved.

Lesson Agenda

• Using Native Dynamic SQL (NDS)
• Using the DBMS_SQL package

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 O

R
AC

LE
 C

O
R

PO
R

AT
IO

N
 u

se
 o

nl
y

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Oracle Database 11g: Develop PL/SQL Program Units 7 - 4

Copyright © 2009, Oracle. All rights reserved.

Execution Flow of SQL

• All SQL statements go through some or all of the following
stages:
– Parse

– Bind

– Execute

– Fetch

• Some stages may not be relevant for all statements:
– The fetch phase is applicable to queries.
– For embedded SQL statements such as SELECT, DML,

MERGE, COMMIT, SAVEPOINT, and ROLLBACK, the parse and
bind phases are done at compile time.

– For dynamic SQL statements, all phases are performed at
run time.

Steps to Process SQL Statements

All SQL statements have to go through various stages. However, some stages may not be
relevant for all statements. The following are the key stages:

• Parse: Every SQL statement must be parsed. Parsing the statement includes checking the
statement’s syntax and validating the statement, ensuring that all references to objects are
correct and that the relevant privileges to those objects exist.

• Bind: After parsing, the Oracle server may need values from or for any bind variable in the
statement. The process of obtaining these values is called binding variables. This stage
may be skipped if the statement does not contain bind variables.

• Execute: At this point, the Oracle server has all necessary information and resources, and
the statement is executed. For non-query statements, this is the last phase.

• Fetch: In the fetch stage, which is applicable to queries, the rows are selected and ordered
(if requested by the query), and each successive fetch retrieves another row of the result,
until the last row has been fetched.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 O

R
AC

LE
 C

O
R

PO
R

AT
IO

N
 u

se
 o

nl
y

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Oracle Database 11g: Develop PL/SQL Program Units 7 - 5

Copyright © 2009, Oracle. All rights reserved.

Working With Dynamic SQL

Use dynamic SQL to create a SQL statement whose structure
may change during run time. Dynamic SQL:

• Is constructed and stored as a character string, string
variable, or string expression within the application.

• Is a SQL statement with varying column data, or different
conditions with or without placeholders (bind variables).

• Enables DDL, DCL, or session-control statements to be
written and executed from PL/SQL.

• Is executed with Native Dynamic SQL statements or the
DBMS_SQL package.

Dynamic SQL

The embedded SQL statements available in PL/SQL are limited to SELECT, INSERT,
UPDATE, DELETE, MERGE, COMMIT, and ROLLBACK, all of which are parsed at compile
time—that is, they have a fixed structure. You need to use dynamic SQL functionality if you
require:

• The structure of a SQL statement to be altered at run time
• Access to data definition language (DDL) statements and other SQL functionality in

PL/SQL

To perform these kinds of tasks in PL/SQL, you must construct SQL statements dynamically in
character strings and execute them using either of the following:

• Native Dynamic SQL statements with EXECUTE IMMEDIATE
• The DBMS_SQL package

The process of using SQL statements that are not embedded in your source program and are
constructed in strings and executed at run time is known as “dynamic SQL.” The SQL
statements are created dynamically at run time and can access and use PL/SQL variables. For
example, you create a procedure that uses dynamic SQL to operate on a table whose name is not
known until run time, or execute a DDL statement (such as CREATE TABLE), a data control
statement (such as GRANT), or a session control statement (such as ALTER SESSION).

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 O

R
AC

LE
 C

O
R

PO
R

AT
IO

N
 u

se
 o

nl
y

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Oracle Database 11g: Develop PL/SQL Program Units 7 - 6

Copyright © 2009, Oracle. All rights reserved.

Using Dynamic SQL

• Use dynamic SQL when the full text of the dynamic SQL
statement is unknown until run time; therefore, its syntax is
checked at run time rather than at compile time.

• Use dynamic SQL when one of the following items is
unknown at precompile time:
– Text of the SQL statement such as commands, clauses, and

so on

– The number and data types of host variables

– References to database objects such as tables, columns,
indexes, sequences, usernames, and views

• Use dynamic SQL to make your PL/SQL programs more
general and flexible.

Using Dynamic SQL

In PL/SQL, you need dynamic SQL to execute the following SQL statements where the full text
is unknown at compile time such as:

• A SELECT statement that includes an identifier that is unknown at compile time (such as a
table name)

• A WHERE clause in which the column name is unknown at compile time

Note

For additional information about dynamic SQL, see the following resources:
• Pro*C/C++ Programmer’s Guide 11g Release 1 (11.1) documentation guide

- Lesson 13, Oracle Dynamic SQL, covers the four available methods that you can use
to define dynamic SQL statements. It briefly describes the capabilities and limitations
of each method, and then offers guidelines for choosing the right method. Later
sections in the same guide show you how to use the methods, and include example
programs that you can study.

- Lesson 15, Oracle Dynamic SQL: Method 4, contains very detailed information about
Method 4 when defining dynamic SQL statements.

• Oracle PL/SQL Programming book by Steven Feuerstein and Bill Pribyl. Lesson 16,
Dynamic SQL and Dynamic PL/SQL, contains additional information about dynamic SQL.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 O

R
AC

LE
 C

O
R

PO
R

AT
IO

N
 u

se
 o

nl
y

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Oracle Database 11g: Develop PL/SQL Program Units 7 - 7

Copyright © 2009, Oracle. All rights reserved.

Native Dynamic SQL (NDS)

• Provides native support for dynamic SQL directly in the
PL/SQL language.

• Provides the ability to execute SQL statements whose
structure is unknown until execution time.

• If the dynamic SQL statement is a SELECT statement that
returns multiple rows, NDS gives you the following
choices:
– Use the EXECUTE IMMEDIATE statement with the BULK

COLLECT INTO clause

– Use the OPEN-FOR, FETCH, and CLOSE statements

• In Oracle Database 11g, NDS supports statements larger
than 32 KB by accepting a CLOB argument.

Native Dynamic SQL

Native Dynamic SQL provides the ability to dynamically execute SQL statements whose
structure is constructed at execution time. The following statements have been added or
extended in PL/SQL to support Native Dynamic SQL:
• EXECUTE IMMEDIATE: Prepares a statement, executes it, returns variables, and then

deallocates resources
• OPEN-FOR: Prepares and executes a statement using a cursor variable
• FETCH: Retrieves the results of an opened statement by using the cursor variable
• CLOSE: Closes the cursor used by the cursor variable and deallocates resources

You can use bind variables in the dynamic parameters in the EXECUTE IMMEDIATE and OPEN
statements. Native Dynamic SQL includes the following capabilities:

• Define a dynamic SQL statement.
• Handle IN, IN OUT, and OUT bind variables that are bound by position, not by name.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 O

R
AC

LE
 C

O
R

PO
R

AT
IO

N
 u

se
 o

nl
y

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Oracle Database 11g: Develop PL/SQL Program Units 7 - 8

Copyright © 2009, Oracle. All rights reserved.

Using the EXECUTE IMMEDIATE Statement

Use the EXECUTE IMMEDIATE statement for NDS or PL/SQL
anonymous blocks:

• INTO is used for single-row queries and specifies the
variables or records into which column values are
retrieved.

• USING is used to hold all bind arguments. The default
parameter mode is IN.

EXECUTE IMMEDIATE dynamic_string
[INTO {define_variable

[, define_variable] ... | record}]
[USING [IN|OUT|IN OUT] bind_argument

[, [IN|OUT|IN OUT] bind_argument] ...];

Using the EXECUTE IMMEDIATE Statement

The EXECUTE IMMEDIATE statement can be used to execute SQL statements or PL/SQL
anonymous blocks. The syntactical elements include the following:
• dynamic_string is a string expression that represents a dynamic SQL statement

(without terminator) or a PL/SQL block (with terminator).
• define_variable is a PL/SQL variable that stores the selected column value.
• record is a user-defined or %ROWTYPE record that stores a selected row.
• bind_argument is an expression whose value is passed to the dynamic SQL statement

or PL/SQL block.
• The INTO clause specifies the variables or record into which column values are retrieved.

It is used only for single-row queries. For each value retrieved by the query, there must be
a corresponding, type-compatible variable or field in the INTO clause.

• The USING clause holds all bind arguments. The default parameter mode is IN.

You can use numeric, character, and string literals as bind arguments, but you cannot use
Boolean literals (TRUE, FALSE, and NULL).

Note: Use OPEN-FOR, FETCH, and CLOSE for a multirow query. The syntax shown in the slide
is not complete because support exists for bulk-processing operations (which is a topic that is not
covered in this course).

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 O

R
AC

LE
 C

O
R

PO
R

AT
IO

N
 u

se
 o

nl
y

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Oracle Database 11g: Develop PL/SQL Program Units 7 - 9

Copyright © 2009, Oracle. All rights reserved.

Available Methods for Using NDS

EXECUTE IMMEDIATE with the USING
and INTO clauses

Query with known number of select-list
items and input host variables

Method 3

Method 4

Method 2

Method 1

Method #

EXECUTE IMMEDIATE without the
USING and INTO clauses

Non-query without host variables

Use the DBMS_SQL packageQuery with unknown number of select-
list items or input host variables

EXECUTE IMMEDIATE with a USING
clause

NDS SQL Statements Used

Non-query with known number of input
host variables

SQL Statement Type

Available Methods for Using NDS

The four available methods for NDS that are listed in the slide are increasingly general. That is,
Method 2 encompasses Method 1, Method 3 encompasses Methods 1 and 2, and Method 4
encompasses Methods 1, 2, and 3. However, each method is most useful for handling a certain
kind of SQL statement, as follows:

Method 1:

This method lets your program accept or build a dynamic SQL statement, then immediately
execute it using the EXECUTE IMMEDIATE command. The SQL statement must not be a
query (SELECT statement) and must not contain any placeholders for input host variables. For
example, the following host strings qualify:
• DELETE FROM EMPLOYEES WHERE DEPTNO = 20
• GRANT SELECT ON EMPLOYEES TO scott

With Method 1, the SQL statement is parsed every time it is executed.

Note
• Examples of non-queries include data definition language (DDLs) statements, UPDATEs,

INSERTs, or DELETEs.
• The term select-list item includes column names and expressions such as SAL * 1.10

and MAX(SAL).

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 O

R
AC

LE
 C

O
R

PO
R

AT
IO

N
 u

se
 o

nl
y

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Oracle Database 11g: Develop PL/SQL Program Units 7 - 10

Available Methods for Using NDS (continued)
Method 2:

This method lets your program accept or build a dynamic SQL statement, then process it using
the PREPARE and EXECUTE commands. The SQL statement must not be a query. The number
of placeholders for input host variables and the data types of the input host variables must be
known at precompile time. For example, the following host strings fall into this category:
• INSERT INTO EMPLOYEES (FIRST_NAME, LAST_NAME, JOB_ID) VALUES

(:emp_first_name, :emp_last_name,:job_id)
• DELETE FROM EMPLOYEES WHERE EMPLOYEE_ID = :emp_number

With Method 2, the SQL statement is parsed just once, but can be executed many times with
different values for the host variables. SQL data definition statements such as CREATE and
GRANT are executed when they are PREPAREd.

Method 3:

This method lets your program accept or build a dynamic query, then process it using the
PREPARE command with the DECLARE, OPEN, FETCH, and CLOSE cursor commands. The
number of select-list items, the number of placeholders for input host variables, and the data
types of the input host variables must be known at precompile time. For example, the following
host strings qualify:
• SELECT DEPARTMENT_ID, MIN(SALARY), MAX(SALARY)

FROM EMPLOYEES
GROUP BY DEPARTMENT_ID

• SELECT LAST_NAME, EMPLOYEE_ID
FROM EMPLOYEES
WHERE DEPARTMENT_ID = :dept_number

Method 4:

This method lets your program accept or build a dynamic SQL statement, then process it using
descriptors. A descriptor is an area of memory used by your program and Oracle to hold a
complete description of the variables in a dynamic SQL statement.The number of select-list
items, the number of placeholders for input host variables, and the data types of the input host
variables can be unknown until run time. For example, the following host strings fall into this
category:
• INSERT INTO EMPLOYEES (<unknown>) VALUES (<unknown>)
• SELECT <unknown> FROM EMPLOYEES WHERE DEPARTMENT_ID = 20

Method 4 is required for dynamic SQL statements that contain an unknown number of select-list
items or input host variables. With this method, you use the DBMS_SQL package, which is
covered later in this lesson. Situations that require using Method 4 are rare.

Note:

For additional information about the four dynamic SQL methods, see the following lessons in
the Pro*C/C++ Programmer’s Guide 11g Release 1 (11.1) documentation guide.

• Lesson 13, Oracle Dynamic SQL
• Lesson 15, Oracle Dynamic SQL: Method 4

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 O

R
AC

LE
 C

O
R

PO
R

AT
IO

N
 u

se
 o

nl
y

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Oracle Database 11g: Develop PL/SQL Program Units 7 - 11

Copyright © 2009, Oracle. All rights reserved.

Dynamic SQL with a DDL Statement: Examples

-- Create a table using dynamic SQL

CREATE OR REPLACE PROCEDURE create_table(
p_table_name VARCHAR2, p_col_specs VARCHAR2) IS

BEGIN
EXECUTE IMMEDIATE 'CREATE TABLE ' || p_table_name ||

' (' || p_col_specs || ')';
END;
/

-- Call the procedure

BEGIN
create_table('EMPLOYEE_NAMES',

'id NUMBER(4) PRIMARY KEY, name VARCHAR2(40)');
END;
/

Dynamic SQL with a DDL Statement
The code examples show the creation of a create_table procedure that accepts the table
name and column definitions (specifications) as parameters.
The procedure call shows the creation of a table called EMPLOYEE_NAMES with two columns:

• An ID column with a NUMBER data type used as a primary key
• A name column of up to 40 characters for the employee name

Any DDL statement can be executed by using the syntax shown in the slide, whether the
statement is dynamically constructed or specified as a literal string. You can create and execute
a statement that is stored in a PL/SQL string variable, as in the following example:

CREATE OR REPLACE PROCEDURE add_col(p_table_name VARCHAR2,
p_col_spec VARCHAR2) IS

v_stmt VARCHAR2(100) := 'ALTER TABLE ' || p_table_name ||
' ADD '|| p_col_spec;

BEGIN
EXECUTE IMMEDIATE v_stmt;

END;
/

To add a new column to a table, enter the following:
EXECUTE add_col('employee_names', 'salary number(8,2)')

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 O

R
AC

LE
 C

O
R

PO
R

AT
IO

N
 u

se
 o

nl
y

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Oracle Database 11g: Develop PL/SQL Program Units 7 - 12

Copyright © 2009, Oracle. All rights reserved.

Dynamic SQL with DML Statements

-- Delete rows from any table:
CREATE FUNCTION del_rows(p_table_name VARCHAR2)
RETURN NUMBER IS
BEGIN

EXECUTE IMMEDIATE 'DELETE FROM '|| p_table_name;
RETURN SQL%ROWCOUNT;

END;
/
BEGIN DBMS_OUTPUT.PUT_LINE(

del_rows('EMPLOYEE_NAMES')|| ' rows deleted.');
END;
/

-- Insert a row into a table with two columns:
CREATE PROCEDURE add_row(p_table_name VARCHAR2,

p_id NUMBER, p_name VARCHAR2) IS
BEGIN

EXECUTE IMMEDIATE 'INSERT INTO '|| p_table_name ||
' VALUES (:1, :2)' USING p_id, p_name;

END;

Dynamic SQL with DML Statements

The first slide code example defines a dynamic SQL statement using Method 1—that is,
nonquery without host variables. The examples in the slide demonstrate the following:

• The del_rows function deletes rows from a specified table and returns the number of
rows deleted by using the implicit SQL cursor %ROWCOUNT attribute. Executing the
function is shown below the example for creating a function.

• The add_row procedure shows how to provide input values to a dynamic SQL statement
with the USING clause. The bind variable names :1 and :2 are not important; however,
the order of the parameter names (p_id and p_name) in the USING clause is associated
with the bind variables by position, in the order of their respective appearance. Therefore,
the PL/SQL parameter p_id is assigned to the :1 placeholder, and the p_name
parameter is assigned to the :2 placeholder. Placeholder or bind variable names can be
alphanumeric but must be preceded with a colon.

Note: The EXECUTE IMMEDIATE statement prepares (parses) and immediately executes the
dynamic SQL statement. Dynamic SQL statements are always parsed.

Also, note that a COMMIT operation is not performed in either of the examples. Therefore, the
operations can be undone with a ROLLBACK statement.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 O

R
AC

LE
 C

O
R

PO
R

AT
IO

N
 u

se
 o

nl
y

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Oracle Database 11g: Develop PL/SQL Program Units 7 - 13

Copyright © 2009, Oracle. All rights reserved.

Dynamic SQL with a
Single-Row Query: Example

CREATE FUNCTION get_emp(p_emp_id NUMBER)
RETURN employees%ROWTYPE IS
v_stmt VARCHAR2(200);
v_emprec employees%ROWTYPE;

BEGIN
v_stmt := 'SELECT * FROM employees ' ||

'WHERE employee_id = :p_emp_id';
EXECUTE IMMEDIATE v_stmt INTO v_emprec USING p_emp_id;
RETURN v_emprec;

END;
/
DECLARE
v_emprec employees%ROWTYPE := get_emp(100);

BEGIN
DBMS_OUTPUT.PUT_LINE('Emp: '|| v_emprec.last_name);

END;
/

Dynamic SQL with a Single-Row Query

The code example in the slide is an example of defining a dynamic SQL statement using Method
3 with a single row queried—that is, query with a known number of select-list items and input
host variables.

The single-row query example demonstrates the get_emp function that retrieves an
EMPLOYEES record into a variable specified in the INTO clause. It also shows how to provide
input values for the WHERE clause.

The anonymous block is used to execute the get_emp function and return the result into a local
EMPLOYEES record variable.

The example could be enhanced to provide alternative WHERE clauses depending on input
parameter values, making it more suitable for dynamic SQL processing.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 O

R
AC

LE
 C

O
R

PO
R

AT
IO

N
 u

se
 o

nl
y

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Oracle Database 11g: Develop PL/SQL Program Units 7 - 14

Copyright © 2009, Oracle. All rights reserved.

Dynamic SQL with a
Multirow Query: Example

-- Use OPEN-FOR, FETCH, and CLOSE processing:

CREATE PROCEDURE list_employees(p_deptid NUMBER) IS
TYPE emp_refcsr_type IS REF CURSOR;
cur_emp emp_refcsr_type;
rec_emp employees%ROWTYPE;
v_stmt varchar2(200) := 'SELECT * FROM employees';

BEGIN
IF p_deptid IS NULL THEN OPEN cur_emp FOR v_stmt;
ELSE
v_stmt := v_stmt || ' WHERE department_id = :id';
OPEN cur_emp FOR v_stmt USING p_deptid;

END IF;
LOOP
FETCH cur_emp INTO rec_emp;
EXIT WHEN cur_emp%NOTFOUND;
DBMS_OUTPUT.PUT_LINE(rec_emp.department_id||

' ' || rec_emp.last_name);
END LOOP;
CLOSE cur_emp;

END;

1

2

Dynamic SQL with a Multirow Query

The code example in the slide is an example of using Method 3 with multiple rows queried. The
example shows how to execute a multirow query by performing the following programming
steps:

• Declaring a REF CURSOR type
• Declaring a cursor variable based on the REF CURSOR type name that you declare
• Executing an OPEN-FOR statement that uses the cursor variable
• Using a FETCH statement referencing the cursor variable until all records are processed
• Executing the CLOSE statement by using the cursor variable

This process is the same as using static cursor definitions. However, the OPEN-FOR syntax
accepts a string literal or variable specifying the SELECT statement, which can be dynamically
constructed.

Note: The next page provides a brief introduction to the REF CURSOR type and cursor
variables. An alternative to this is using the BULK COLLECT syntax supported by native
dynamic SQL statements (a topic that is not covered in this course).

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 O

R
AC

LE
 C

O
R

PO
R

AT
IO

N
 u

se
 o

nl
y

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Oracle Database 11g: Develop PL/SQL Program Units 7 - 15

Copyright © 2009, Oracle. All rights reserved.

Declaring Cursor Variables

-- Declare two cursor types as REF CURSORs:

CREATE OR REPLACE FUNCTION process_data
RETURN employees%ROWTYPE IS

TYPE cur_ref_type IS REF CURSOR; -- weak ref. cursor
TYPE cur_ref_emp_type IS REF CURSOR; -- weak ref. cursor

. . .

-- Declare a cursor variable using the cursor type:
v_dept_csr cur_ref_type;
v_emp_csr cur_ref_emp_type;

BEGIN
OPEN v_dept_csr FOR SELECT * FROM departments;
OPEN v_emp_csr FOR SELECT * FROM employees;

-- Then use as normal cursors
. . .

END;

Declaring Cursor Variables

A cursor variable is a PL/SQL identifier whose type name has been declared as a REF CURSOR
type. Creating a cursor variable involves two steps:

• Declaring a type name as a REF CURSOR type
• Declaring a PL/SQL variable by using the type name declared as a REF CURSOR type

The slide examples create two reference cursor types:
• The cur_ref_type is a generic reference cursor, known as a weak reference cursor. A

weak reference cursor can be associated with any query.
• The cur_ref_emp_type is a weak reference cursor type since there is no RETURN

type clause included.
After a cursor variable is declared by using a reference cursor type name, the cursor variable that
is associated with a query is opened by using the OPEN-FOR syntax shown in the slide. The
standard FETCH, cursor attributes, and CLOSE operations used with explicit cursors are also
applicable with cursor variables. To compare cursor variables with explicit cursors:

• A cursor variable can be associated with more than one query at run time
• An explicit cursor is associated with one query at compilation time

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 O

R
AC

LE
 C

O
R

PO
R

AT
IO

N
 u

se
 o

nl
y

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Oracle Database 11g: Develop PL/SQL Program Units 7 - 16

Copyright © 2009, Oracle. All rights reserved.

Executing a PL/SQL
Anonymous Block Dynamically

CREATE FUNCTION annual_sal(p_emp_id NUMBER)
RETURN NUMBER IS
v_plsql varchar2(200) :=
'DECLARE '||
' rec_emp employees%ROWTYPE; '||
'BEGIN '||
' rec_emp := get_emp(:empid); ' ||
' :res := rec_emp.salary * 12; ' ||
'END;';

v_result NUMBER;
BEGIN
EXECUTE IMMEDIATE v_plsql

USING IN p_emp_id, OUT v_result;
RETURN v_result;

END;
/
EXECUTE DBMS_OUTPUT.PUT_LINE(annual_sal(100))

1
1

2

2

Dynamically Executing a PL/SQL Block

The annual_sal function dynamically constructs an anonymous PL/SQL block. The PL/SQL
block contains bind variables for:

• The input of the employee ID using the :empid placeholder
• The output result computing the annual employees’ salary using the placeholder called

:res

Note: This example demonstrates how to use the OUT result syntax (in the USING clause of the
EXECUTE IMMEDIATE statement) to obtain the result calculated by the PL/SQL block. The
procedure output variables and function return values can be obtained in a similar way from a
dynamically executed anonymous PL/SQL block.

The output of the slide example is as follows:

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 O

R
AC

LE
 C

O
R

PO
R

AT
IO

N
 u

se
 o

nl
y

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Oracle Database 11g: Develop PL/SQL Program Units 7 - 17

Copyright © 2009, Oracle. All rights reserved.

Using Native Dynamic SQL
to Compile PL/SQL Code

Compile PL/SQL code with the ALTER statement:

• ALTER PROCEDURE name COMPILE

• ALTER FUNCTION name COMPILE

• ALTER PACKAGE name COMPILE SPECIFICATION

• ALTER PACKAGE name COMPILE BODY

CREATE PROCEDURE compile_plsql(p_name VARCHAR2,
p_plsql_type VARCHAR2, p_options VARCHAR2 := NULL) IS
v_stmt varchar2(200) := 'ALTER '|| p_plsql_type ||

' '|| p_name || ' COMPILE';
BEGIN
IF p_options IS NOT NULL THEN
v_stmt := v_stmt || ' ' || p_options;

END IF;
EXECUTE IMMEDIATE v_stmt;
END;/

Using Native Dynamic SQL to Compile PL/SQL Code

The compile_plsql procedure in the example can be used to compile different PL/SQL
code using the ALTER DDL statement. Four basic forms of the ALTER statement are shown to
compile:

• A procedure
• A function
• A package specification
• A package body

Note: If you leave out the keyword SPECIFICATION or BODY with the ALTER PACKAGE
statement, then the specification and body are both compiled.

Here are examples of calling the procedure in the slide for each of the four cases, respectively:
EXEC compile_plsql ('list_employees', 'procedure')
EXEC compile_plsql ('get_emp', 'function')
EXEC compile_plsql ('mypack', 'package', 'specification')
EXEC compile_plsql ('mypack', 'package', 'body')

Here is an example of compiling with debug enabled for the get_emp function:
EXEC compile_plsql ('get_emp', 'function', 'debug')

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 O

R
AC

LE
 C

O
R

PO
R

AT
IO

N
 u

se
 o

nl
y

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Oracle Database 11g: Develop PL/SQL Program Units 7 - 18

Copyright © 2009, Oracle. All rights reserved.

Lesson Agenda

• Using Native Dynamic SQL (NDS)
• Using the DBMS_SQL package

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 O

R
AC

LE
 C

O
R

PO
R

AT
IO

N
 u

se
 o

nl
y

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Oracle Database 11g: Develop PL/SQL Program Units 7 - 19

Copyright © 2009, Oracle. All rights reserved.

Using the DBMS_SQL Package

• The DBMS_SQL package is used to write dynamic SQL in
stored procedures and to parse DDL statements.

• You must use the DBMS_SQL package to execute a
dynamic SQL statement that has an unknown number of
input or output variables, also known as Method 4.

• In most cases, NDS is easier to use and performs better
than DBMS_SQL except when dealing with Method 4.

• For example, you must use the DBMS_SQL package in the
following situations:
– You do not know the SELECT list at compile time

– You do not know how many columns a SELECT statement
will return, or what their data types will be

Using the DBMS_SQL Package

Using DBMS_SQL, you can write stored procedures and anonymous PL/SQL blocks that use
dynamic SQL, such as executing DDL statements in PL/SQL—for example, executing a DROP
TABLE statement. The operations provided by this package are performed under the current
user, not under the package owner SYS.

Method 4: Method 4 refers to situations where, in a dynamic SQL statement, the number of
columns selected for a query or the number of bind variables set is not known until run time. In
this case, you should use the DBMS_SQL package.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 O

R
AC

LE
 C

O
R

PO
R

AT
IO

N
 u

se
 o

nl
y

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Oracle Database 11g: Develop PL/SQL Program Units 7 - 20

Copyright © 2009, Oracle. All rights reserved.

Using the DBMS_SQL Package Subprograms

Examples of the package procedures and functions:
• OPEN_CURSOR

• PARSE

• BIND_VARIABLE

• EXECUTE

• FETCH_ROWS

• CLOSE_CURSOR

Using the DBMS_SQL Package Subprograms

The DBMS_SQL package provides the following subprograms to execute dynamic SQL:
• OPEN_CURSOR to open a new cursor and return a cursor ID number
• PARSE to parse the SQL statement. Every SQL statement must be parsed by calling the

PARSE procedures. Parsing the statement checks the statement’s syntax and associates it
with the cursor in your program. You can parse any DML or DDL statement. DDL
statements are immediately executed when parsed.

• BIND_VARIABLE to bind a given value to a bind variable identified by its name in the
statement being parsed. This is not needed if the statement does not have bind variables.

• EXECUTE to execute the SQL statement and return the number of rows processed
• FETCH_ROWS to retrieve the next row for a query (use in a loop for multiple rows)
• CLOSE_CURSOR to close the specified cursor

Note: Using the DBMS_SQL package to execute DDL statements can result in a deadlock. For
example, the most likely reason is that the package is being used to drop a procedure that you
are still using.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 O

R
AC

LE
 C

O
R

PO
R

AT
IO

N
 u

se
 o

nl
y

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Oracle Database 11g: Develop PL/SQL Program Units 7 - 21

Using the DBMS_SQL Package Subprograms (continued)

The PARSE Procedure Parameters

The LANGUAGE_FLAG parameter of the PARSE procedure determines how Oracle handles
the SQL statement—that is, using behavior associated with a specific Oracle database version.
Using NATIVE (or 1) for this parameter specifies using the normal behavior associated with
the database to which the program is connected.

If the LANGUAGE_FLAG parameter is set to V6 (or 0), that specifies version 6 behavior. If the
LANGUAGE_FLAG parameter is set to V7 (or 2), that specifies Oracle database version 7
behavior.

Note: For additional information, see the Oracle Database PL/SQL Packages and Types
Reference 11g Release 1 (11.1) guide.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 O

R
AC

LE
 C

O
R

PO
R

AT
IO

N
 u

se
 o

nl
y

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Oracle Database 11g: Develop PL/SQL Program Units 7 - 22

Copyright © 2009, Oracle. All rights reserved.

CREATE TABLE temp_emp AS SELECT * FROM employees;
BEGIN
DBMS_OUTPUT.PUT_LINE('Rows Deleted: ' ||
delete_all_rows('temp_emp'));
END;/

CREATE OR REPLACE FUNCTION delete_all_rows
(p_table_name VARCHAR2) RETURN NUMBER IS
v_cur_id INTEGER;
v_rows_del NUMBER;

BEGIN
v_cur_id := DBMS_SQL.OPEN_CURSOR;
DBMS_SQL.PARSE(v_cur_id,
'DELETE FROM '|| p_table_name, DBMS_SQL.NATIVE);

v_rows_del := DBMS_SQL.EXECUTE (v_cur_id);
DBMS_SQL.CLOSE_CURSOR(v_cur_id);
RETURN v_rows_del;

END;
/

Using DBMS_SQL with a DML Statement:
Deleting Rows

Using DBMS_SQL with a DML Statement

In the slide, the table name is passed into the delete_all_rows function. The function uses
dynamic SQL to delete rows from the specified table, and returns a count representing the
number of rows that are deleted after successful execution of the statement.

To process a DML statement dynamically, perform the following steps:
1. Use OPEN_CURSOR to establish an area in memory to process a SQL statement.
2. Use PARSE to establish the validity of the SQL statement.
3. Use the EXECUTE function to run the SQL statement. This function returns the number of

rows processed.
4. Use CLOSE_CURSOR to close the cursor.

The steps to execute a DDL statement are similar; but step 3 is optional because a DDL
statement is immediately executed when the PARSE is successfully done—that is, the statement
syntax and semantics are correct. If you use the EXECUTE function with a DDL statement, then
it does not do anything and returns a value of 0 for the number of rows processed because DDL
statements do not process rows.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 O

R
AC

LE
 C

O
R

PO
R

AT
IO

N
 u

se
 o

nl
y

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Oracle Database 11g: Develop PL/SQL Program Units 7 - 23

Copyright © 2009, Oracle. All rights reserved.

Using DBMS_SQL with a
Parameterized DML Statement

CREATE PROCEDURE insert_row (p_table_name VARCHAR2,
p_id VARCHAR2, p_name VARCHAR2, p_region NUMBER) IS
v_cur_id INTEGER;
v_stmt VARCHAR2(200);
v_rows_added NUMBER;

BEGIN
v_stmt := 'INSERT INTO '|| p_table_name ||

' VALUES (:cid, :cname, :rid)';
v_cur_id := DBMS_SQL.OPEN_CURSOR;
DBMS_SQL.PARSE(v_cur_id, v_stmt, DBMS_SQL.NATIVE);
DBMS_SQL.BIND_VARIABLE(v_cur_id, ':cid', p_id);
DBMS_SQL.BIND_VARIABLE(v_cur_id, ':cname', p_name);
DBMS_SQL.BIND_VARIABLE(v_cur_id, ':rid', p_region);
rows_added := DBMS_SQL.EXECUTE(v_cur_id);
DBMS_SQL.CLOSE_CURSOR(v_cur_id);
DBMS_OUTPUT.PUT_LINE(v_rows_added||' row added');

END;/

Using DBMS_SQL with a Parameterized DML Statement

The example in the slide performs the DML operation to insert a row into a specified table. The
example demonstrates the extra step required to associate values to bind variables that exist in
the SQL statement. For example, a call to the procedure shown in the slide is:

EXECUTE insert_row('countries', 'LB', 'Lebanon', 4)

After the statement is parsed, you must call the DBMS_SQL.BIND_VARIABLE procedure to
assign values for each bind variable that exists in the statement. The binding of values must be
done before executing the code. To process a SELECT statement dynamically, perform the
following steps after opening and before closing the cursor:

1. Execute DBMS_SQL.DEFINE_COLUMN for each column selected.
2. Execute DBMS_SQL.BIND_VARIABLE for each bind variable in the query.
3. For each row, perform the following steps:

a. Execute DBMS_SQL.FETCH_ROWS to retrieve a row and return the number of rows
fetched. Stop additional processing when a zero value is returned.

b. Execute DBMS_SQL.COLUMN_VALUE to retrieve each selected column value into
each PL/SQL variable for processing.

Although this coding process is not complex, it is more time consuming to write and is prone to
error compared with using the Native Dynamic SQL approach.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 O

R
AC

LE
 C

O
R

PO
R

AT
IO

N
 u

se
 o

nl
y

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Oracle Database 11g: Develop PL/SQL Program Units 7 - 24

Copyright © 2009, Oracle. All rights reserved.

Dynamic SQL Functional Completeness

For functional completeness, interoperability between native
dynamic SQL and DBMS_SQL is supported in Oracle Database
11g:

• SQL statements larger than 32 KB are allowed in native
dynamic SQL.

• DBMS_SQL.PARSE() is overloaded for CLOBs.

• A REF CURSOR can be converted to a DBMS_SQL cursor
and vice versa to support interoperability.

• DBMS_SQL supports the full range of data types including
collections and object types.

Dynamic SQL Functional Completeness

When generating dynamic SQL, you can either use the DBMS_SQL supplied package when
dealing with Method 4 situations, or you can use native dynamic SQL. Before Oracle Database
11g, each of these methods had functional limitations. In Oracle Database 11g, functionality is
added to both methods to make them more complete.

The features for executing dynamic SQL from PL/SQL had some restrictions in Oracle Database
10g. DBMS_SQL was needed for Method 4 scenarios but it could not handle the full range of
data types and its cursor representation was not usable by a client to the database. Native
dynamic SQL was more convenient for non–Method 4 scenarios, but it did not support
statements bigger than 32 KB. Oracle Database 11g removes these and other restrictions to make
the support of dynamic SQL from PL/SQL functionally complete.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 O

R
AC

LE
 C

O
R

PO
R

AT
IO

N
 u

se
 o

nl
y

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Oracle Database 11g: Develop PL/SQL Program Units 7 - 25

Copyright © 2009, Oracle. All rights reserved.

Quiz

The full text of the dynamic SQL statement might be
unknown until run time; therefore, its syntax is checked at
run time rather than at compile time.
1. True
2. False

Answer: 1

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 O

R
AC

LE
 C

O
R

PO
R

AT
IO

N
 u

se
 o

nl
y

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Oracle Database 11g: Develop PL/SQL Program Units 7 - 26

Copyright © 2009, Oracle. All rights reserved.

Summary

In this lesson, you should have learned how to:

• Describe the execution flow of SQL statements

• Build and execute SQL statements dynamically using
Native Dynamic SQL (NDS)

• Identify situations when you must use the DBMS_SQL
package instead of NDS to build and execute SQL
statements dynamically

Summary

In this lesson, you discovered how to dynamically create any SQL statement and execute it using
the Native Dynamic SQL statements. Dynamically executing SQL and PL/SQL code extends the
capabilities of PL/SQL beyond query and transactional operations. For earlier releases of the
database, you could achieve similar results with the DBMS_SQL package.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 O

R
AC

LE
 C

O
R

PO
R

AT
IO

N
 u

se
 o

nl
y

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Oracle Database 11g: Develop PL/SQL Program Units 7 - 27

Copyright © 2009, Oracle. All rights reserved.

Practice 7 Overview:
Using Native Dynamic SQL

This practice covers the following topics:

• Creating a package that uses Native Dynamic SQL to
create or drop a table and to populate, modify, and delete
rows from a table

• Creating a package that compiles the PL/SQL code in your
schema

Practice 7: Overview

In this practice, you write code to perform the following tasks:
• Create a package that uses Native Dynamic SQL to create or drop a table, and to populate,

modify, and delete rows from the table.
• Create a package that compiles the PL/SQL code in your schema, either all the PL/SQL

code or only code that has an INVALID status in the USER_OBJECTS table.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 O

R
AC

LE
 C

O
R

PO
R

AT
IO

N
 u

se
 o

nl
y

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Oracle Database 11g: Develop PL/SQL Program Units 7 - 28

Practice 7

1. Create a package called TABLE_PKG that uses Native Dynamic SQL to create or drop a
table, and to populate, modify, and delete rows from the table. The subprograms

should manage optional default parameters with NULL values.

a. Create a package specification with the following procedures:
PROCEDURE make(p_table_name VARCHAR2, p_col_specs
VARCHAR2)

PROCEDURE add_row(p_table_name VARCHAR2, p_col_values

VARCHAR2, p_cols VARCHAR2 := NULL)

PROCEDURE upd_row(p_table_name VARCHAR2, p_set_values

VARCHAR2, p_conditions VARCHAR2 := NULL)

PROCEDURE del_row(p_table_name VARCHAR2,
p_conditions VARCHAR2 := NULL);

PROCEDURE remove(p_table_name VARCHAR2)

b. Create the package body that accepts the parameters and dynamically constructs the
appropriate SQL statements that are executed using Native Dynamic SQL, except

for the remove procedure. This procedure should be written using the DBMS_SQL
package.

c. Execute the MAKE package procedure to create a table as follows:

make('my_contacts', 'id number(4), name varchar2(40)');

d. Describe the MY_CONTACTS table structure.

e. Execute the ADD_ROW package procedure to add the following rows:

add_row('my_contacts','1,''Lauran Serhal''','id, name');

add_row('my_contacts','2,''Nancy''','id, name');

add_row('my_contacts','3,''Sunitha Patel''','id,name');

add_row('my_contacts','4,''Valli Pataballa''','id,name');

f. Query the MY_CONTACTS table contents to verify the additions.

g. Execute the DEL_ROW package procedure to delete a contact with ID value 3.

h. Execute the UPD_ROW procedure with the following row data:

upd_row('my_contacts','name=''Nancy Greenberg''','id=2');

i. Query the MY_CONTACTS table contents to verify the changes.

j. Drop the table by using the remove procedure and describe the MY_CONTACTS
table.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 O

R
AC

LE
 C

O
R

PO
R

AT
IO

N
 u

se
 o

nl
y

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Oracle Database 11g: Develop PL/SQL Program Units 7 - 29

Practice 7 (continued)

2. Create a COMPILE_PKG package that compiles the PL/SQL code in your schema.

a. In the specification, create a package procedure called MAKE that accepts the name
of a PL/SQL program unit to be compiled.

b. In the package body, include the following:

i. The EXECUTE procedure used in the TABLE_PKG procedure in step 1 of this
practice.

ii. A private function named GET_TYPE to determine the PL/SQL object type
from the data dictionary.

- The function returns the type name (use PACKAGE for a package with a
body) if the object exists; otherwise, it should return a NULL.

- In the WHERE clause condition, add the following to the condition to ensure
only one row is returned if the name represents a PACKAGE, which may
also have a PACKAGE BODY. In this case, you can only compile the
complete package, but not the specification or body as separate

components:
rownum = 1

iii. Create the MAKE procedure using the following information:

- The MAKE procedure accepts one argument, name, which represents the
object name.

- The MAKE procedure should call the GET_TYPE function. If the object
exists, MAKE dynamically compiles it with the ALTER statement.

c. Use the COMPILE_PKG.MAKE procedure to compile the following:

- The EMPLOYEE_REPORT procedure

- The EMP_PKG package

- A nonexistent object called EMP_DATA

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 O

R
AC

LE
 C

O
R

PO
R

AT
IO

N
 u

se
 o

nl
y

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 O

R
AC

LE
 C

O
R

PO
R

AT
IO

N
 u

se
 o

nl
y

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Copyright © 2009, Oracle. All rights reserved.

Design Considerations for PL/SQL Code

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 O

R
AC

LE
 C

O
R

PO
R

AT
IO

N
 u

se
 o

nl
y

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Oracle Database 11g: Develop PL/SQL Program Units 8 - 2

Copyright © 2009, Oracle. All rights reserved.

Objectives

After completing this lesson, you should be able to do the
following:

• Create standard constants and exceptions

• Write and call local subprograms

• Control the run-time privileges of a subprogram

• Perform autonomous transactions
• Pass parameters by reference using a NOCOPY hint

• Use the PARALLEL ENABLE hint for optimization

• Use the cross-session PL/SQL function result cache
• Use the DETERMINISTIC clause with functions

• Use bulk binding and the RETURNING clause with DML

Lesson Aim

In this lesson, you learn to use package specifications to standardize names for constant values
and exceptions. You learn how to create subprograms in the Declaration section of any
PL/SQL block for using locally in the block. The AUTHID compiler directive is discussed to
show how you can manage run-time privileges of the PL/SQL code, and create independent
transactions by using the AUTONOMOUS TRANSACTION directive for subprograms.

This lesson also covers some performance considerations that can be applied to PL/SQL
applications, such as bulk binding operations with a single SQL statement, the RETURNING
clause, and the NOCOPY and PARALLEL ENABLE hints.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 O

R
AC

LE
 C

O
R

PO
R

AT
IO

N
 u

se
 o

nl
y

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Oracle Database 11g: Develop PL/SQL Program Units 8 - 3

Copyright © 2009, Oracle. All rights reserved.

Lesson Agenda

• Standardizing constants and exceptions, using local
subprograms, controlling the run-time privileges of a
subprogram, and performing autonomous transactions

• Using the NOCOPY and the PARALLEL ENABLE hints, the
cross-session PL/SQL function result cache, and the
DETERMINISTIC clause

• Using bulk binding and the RETURNING clause with DML

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 O

R
AC

LE
 C

O
R

PO
R

AT
IO

N
 u

se
 o

nl
y

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Oracle Database 11g: Develop PL/SQL Program Units 8 - 4

Copyright © 2009, Oracle. All rights reserved.

Standardizing Constants and Exceptions

Constants and exceptions are typically implemented using a
bodiless package (that is, a package specification).

• Standardizing helps to:
– Develop programs that are consistent

– Promote a higher degree of code reuse

– Ease code maintenance

– Implement company standards across entire applications

• Start with standardization of:
– Exception names

– Constant definitions

Standardizing Constants and Exceptions

When several developers are writing their own exception handlers in an application, there could
be inconsistencies in the handling of error situations. Unless certain standards are adhered to, the
situation can become confusing because of the different approaches followed in handling the
same error or because of the display of conflicting error messages that confuse users. To
overcome these, you can:

• Implement company standards that use a consistent approach to error handling across the
entire application

• Create predefined, generic exception handlers that produce consistency in the application
• Write and call programs that produce consistent error messages

All good programming environments promote naming and coding standards. In PL/SQL, a good
place to start implementing naming and coding standards is with commonly used constants and
exceptions that occur in the application domain.

The PL/SQL package specification construct is an excellent component to support
standardization because all identifiers declared in the package specification are public. They are
visible to the subprograms that are developed by the owner of the package and all code with
EXECUTE rights to the package specification.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 O

R
AC

LE
 C

O
R

PO
R

AT
IO

N
 u

se
 o

nl
y

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Oracle Database 11g: Develop PL/SQL Program Units 8 - 5

Copyright © 2009, Oracle. All rights reserved.

Standardizing Exceptions

Create a standardized error-handling package that includes all
named and programmer-defined exceptions to be used in the
application.

CREATE OR REPLACE PACKAGE error_pkg IS

e_fk_err EXCEPTION;

e_seq_nbr_errEXCEPTION;

PRAGMA EXCEPTION_INIT (e_fk_err, -2292);

PRAGMA EXCEPTION_INIT (e_seq_nbr_err, -2277);

...

END error_pkg;

/

Standardizing Exceptions

In the example in the slide, the error_pkg package is a standardized exception package. It
declares a set of programmer-defined exception identifiers. Because many of the Oracle
database predefined exceptions do not have identifying names, the example package shown in
the slide uses the PRAGMA EXCEPTION_INIT directive to associate selected exception names
with an Oracle database error number. This enables you to refer to any of the exceptions in a
standard way in your applications, as in the following example:

BEGIN
DELETE FROM departments

WHERE department_id = deptno;
...

EXCEPTION
WHEN error_pkg.e_fk_err THEN
...
WHEN OTHERS THEN
...

END;
/

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 O

R
AC

LE
 C

O
R

PO
R

AT
IO

N
 u

se
 o

nl
y

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Oracle Database 11g: Develop PL/SQL Program Units 8 - 6

Copyright © 2009, Oracle. All rights reserved.

Standardizing Exception Handling

Consider writing a subprogram for common exception handling
to:
• Display errors based on SQLCODE and SQLERRM values for

exceptions

• Track run-time errors easily by using parameters in your
code to identify:
– The procedure in which the error occurred

– The location (line number) of the error
– RAISE_APPLICATION_ERROR using stack trace

capabilities, with the third argument set to TRUE

Standardizing Exception Handling

Standardized exception handling can be implemented either as a stand-alone subprogram or a
subprogram added to the package that defines the standard exceptions. Consider creating a
package with:

• Every named exception that is to be used in the application
• All unnamed, programmer-defined exceptions that are used in the application. These are

error numbers –20000 through –20999.
• A program to call RAISE_APPLICATION_ERROR based on package exceptions
• A program to display an error based on the values of SQLCODE and SQLERRM
• Additional objects, such as error log tables, and programs to access the tables

A common practice is to use parameters that identify the name of the procedure and the location
in which the error has occurred. This enables you to keep track of run-time errors more easily.
An alternative is to use the RAISE_APPLICATION_ERROR built-in procedure to keep a stack
trace of exceptions that can be used to track the call sequence leading to the error. To do this, set
the third optional argument to TRUE. For example:

RAISE_APPLICATION_ERROR(-20001, 'My first error', TRUE);

This is meaningful when more than one exception is raised in this manner.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 O

R
AC

LE
 C

O
R

PO
R

AT
IO

N
 u

se
 o

nl
y

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Oracle Database 11g: Develop PL/SQL Program Units 8 - 7

Copyright © 2009, Oracle. All rights reserved.

Standardizing Constants

For programs that use local variables whose values should not
change:

• Convert the variables to constants to reduce maintenance
and debugging

• Create one central package specification and place all
constants in it

CREATE OR REPLACE PACKAGE constant_pkg IS

c_order_received CONSTANT VARCHAR(2) := 'OR';

c_order_shipped CONSTANT VARCHAR(2) := 'OS';

c_min_sal CONSTANT NUMBER(3) := 900;

END constant_pkg;

Standardizing Constants

By definition, a variable’s value changes, whereas a constant’s value cannot be changed. If you
have programs that use local variables whose values should not and do not change, then convert
the variables to constants. This can help with the maintenance and debugging of your code.

Consider creating a single shared package with all your constants in it. This makes maintenance
and change of the constants much easier. This procedure or package can be loaded on system
startup for better performance.

The example in the slide shows the constant_pkg package containing a few constants. Refer
to any of the package constants in your application as required. Here is an example:

BEGIN
UPDATE employees

SET salary = salary + 200
WHERE salary <= constant_pkg.c_min_sal;

END;
/

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 O

R
AC

LE
 C

O
R

PO
R

AT
IO

N
 u

se
 o

nl
y

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Oracle Database 11g: Develop PL/SQL Program Units 8 - 8

Copyright © 2009, Oracle. All rights reserved.

Local Subprograms

A local subprogram is a PROCEDURE or FUNCTION defined at
the end of the declarative section.
CREATE PROCEDURE employee_sal(p_id NUMBER) IS

v_emp employees%ROWTYPE;
FUNCTION tax(p_salary VARCHAR2) RETURN NUMBER IS
BEGIN
RETURN p_salary * 0.825;

END tax;
BEGIN

SELECT * INTO v_emp
FROM EMPLOYEES WHERE employee_id = p_id;
DBMS_OUTPUT.PUT_LINE('Tax: '|| tax(v_emp.salary));

END;
/
EXECUTE employee_sal(100)

Local Subprograms

Local subprograms can drive top-down design. They reduce the size of a module by removing
redundant code. This is one of the main reasons for creating a local subprogram. If a module
needs the same routine several times, but only this module needs the routine, then define it as a
local subprogram.

You can define a named PL/SQL block in the declarative section of any PL/SQL program,
procedure, function, or anonymous block provided that it is declared at the end of the
Declaration section. Local subprograms have the following characteristics:

• They are only accessible to the block in which they are defined.
• They are compiled as part of their enclosing blocks.

The benefits of local subprograms are:
• Reduction of repetitive code
• Improved code readability and ease of maintenance
• Less administration because there is one program to maintain instead of two

The concept is simple. The example shown in the slide illustrates this with a basic example of an
income tax calculation of an employee’s salary.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 O

R
AC

LE
 C

O
R

PO
R

AT
IO

N
 u

se
 o

nl
y

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Oracle Database 11g: Develop PL/SQL Program Units 8 - 9

Copyright © 2009, Oracle. All rights reserved.

Definer’s Rights Versus Invoker’s Rights

Definer’s rights:

• Used prior to Oracle8i
• Programs execute with the

privileges of the creating
user.

• User does not require
privileges on underlying
objects that the procedure
accesses. User requires
privilege only to execute a
procedure.

Invoker’s rights:

• Introduced in Oracle8i
• Programs execute with the

privileges of the calling user.

• User requires privileges on
the underlying objects that
the procedure accesses.

Definer’s Rights Versus Invoker’s Rights

Definer’s Rights Model

Before Oracle8i, all programs executed with the privileges of the user who created the
subprogram. This is known as the definer’s rights model, which:

• Allows a caller of the program the privilege to execute the procedure, but no privileges on
the underlying objects that the procedure accesses

• Requires the owner to have all the necessary object privileges for the objects that the
procedure references

For example, if user Scott creates a PL/SQL subprogram get_employees that is
subsequently invoked by Sarah, then the get_employees procedure runs with the privileges
of the definer Scott.

Invoker’s Rights Model

In the invoker’s rights model, which was introduced in Oracle8i, programs are executed with the
privileges of the calling user. A user of a procedure running with invoker’s rights requires
privileges on the underlying objects that the procedure references.

For example, if Scott’s PL/SQL subprogram get_employees is invoked by Sarah, then the
get_employees procedure runs with the privileges of the invoker Sarah.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 O

R
AC

LE
 C

O
R

PO
R

AT
IO

N
 u

se
 o

nl
y

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Oracle Database 11g: Develop PL/SQL Program Units 8 - 10

Copyright © 2009, Oracle. All rights reserved.

CREATE OR REPLACE PROCEDURE add_dept(
p_id NUMBER, p_name VARCHAR2) AUTHID CURRENT_USER IS

BEGIN
INSERT INTO departments
VALUES (p_id, p_name, NULL, NULL);

END;

Specifying Invoker’s Rights:
Setting AUTHID to CURRENT_USER

When used with stand-alone functions, procedures, or packages:
• Names used in queries, DML, Native Dynamic SQL, and

DBMS_SQL package are resolved in the invoker’s schema

• Calls to other packages, functions, and procedures are resolved
in the definer’s schema

Specifying Invoker’s Rights

You can set the invoker’s rights for different PL/SQL subprogram constructs as follows:
CREATE FUNCTION name RETURN type AUTHID CURRENT_USER IS...
CREATE PROCEDURE name AUTHID CURRENT_USER IS…
CREATE PACKAGE name AUTHID CURRENT_USER IS…
CREATE TYPE name AUTHID CURRENT_USER IS OBJECT…

The default is AUTHID DEFINER, which specifies that the subprogram executes with the
privileges of its owner. Most supplied PL/SQL packages such as DBMS_LOB, DBMS_ROWID,
and so on, are invoker-rights packages.

Name Resolution

For a definer’s rights procedure, all external references are resolved in the definer’s schema. For
an invoker’s rights procedure, the resolution of external references depends on the kind of
statement in which they appear:

• Names used in queries, data manipulation language (DML) statements, dynamic SQL, and
DBMS_SQL are resolved in the invoker’s schema.

• All other statements, such as calls to packages, functions, and procedures, are resolved in
the definer’s schema.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 O

R
AC

LE
 C

O
R

PO
R

AT
IO

N
 u

se
 o

nl
y

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Oracle Database 11g: Develop PL/SQL Program Units 8 - 11

Copyright © 2009, Oracle. All rights reserved.

PROCEDURE proc1 IS
emp_id NUMBER;

BEGIN
emp_id := 1234;
COMMIT;
INSERT ...
proc2;
DELETE ...
COMMIT;

END proc1;

PROCEDURE proc2 IS

PRAGMA

AUTONOMOUS_TRANSACTION;

dept_id NUMBER := 90;

BEGIN

UPDATE ...

INSERT ...

COMMIT; -- Required

END proc2;

Autonomous Transactions

• Are independent transactions started by another main
transaction

• Are specified with PRAGMA AUTONOMOUS_TRANSACTION

1
2

3

6

7

4

5

Autonomous Transactions

A transaction is a series of statements doing a logical unit of work that completes or fails as an
integrated unit. Often, one transaction starts another that may need to operate outside the scope
of the transaction that started it. That is, in an existing transaction, a required independent
transaction may need to commit or roll back changes without affecting the outcome of the
starting transaction. For example, in a stock purchase transaction, the customer’s information
must be committed regardless of whether the overall stock purchase completes. Or, while
running that same transaction, you want to log messages to a table even if the overall transaction
rolls back.

Since Oracle8i, the autonomous transactions were added to make it possible to create an
independent transaction. An autonomous transaction (AT) is an independent transaction started
by another main transaction (MT). The slide depicts the behavior of an AT:

1. The main transaction begins.
2. A proc2 procedure is called to start the autonomous transaction.
3. The main transaction is suspended.
4. The autonomous transactional operation begins.
5. The autonomous transaction ends with a commit or roll back operation.
6. The main transaction is resumed.
7. The main transaction ends.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 O

R
AC

LE
 C

O
R

PO
R

AT
IO

N
 u

se
 o

nl
y

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Oracle Database 11g: Develop PL/SQL Program Units 8 - 12

Copyright © 2009, Oracle. All rights reserved.

Features of Autonomous Transactions

• Are independent of the main transaction

• Suspend the calling transaction until the autonomous
transactions are completed

• Are not nested transactions

• Do not roll back if the main transaction rolls back

• Enable the changes to become visible to other
transactions upon a commit

• Are started and ended by individual subprograms and not
by nested or anonymous PL/SQL blocks

Features of Autonomous Transactions

Autonomous transactions exhibit the following features:
• Although called within a transaction, autonomous transactions are independent of that

transaction. That is, they are not nested transactions.
• If the main transaction rolls back, autonomous transactions do not.
• Changes made by an autonomous transaction become visible to other transactions when the

autonomous transaction commits.
• With their stack-like functionality, only the “top” transaction is accessible at any given

time. After completion, the autonomous transaction is popped, and the calling transaction
is resumed.

• There are no limits other than resource limits on how many autonomous transactions can
be recursively called.

• Autonomous transactions must be explicitly committed or rolled back; otherwise, an error
is returned when attempting to return from the autonomous block.

• You cannot use PRAGMA to mark all subprograms in a package as autonomous. Only
individual routines can be marked autonomous.

• You cannot mark a nested or anonymous PL/SQL block as autonomous.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 O

R
AC

LE
 C

O
R

PO
R

AT
IO

N
 u

se
 o

nl
y

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Oracle Database 11g: Develop PL/SQL Program Units 8 - 13

Copyright © 2009, Oracle. All rights reserved.

Using Autonomous Transactions: Example

PROCEDURE bank_trans(p_cardnbr NUMBER, p_loc NUMBER) IS
BEGIN
log_usage(p_cardnbr, p_loc);
INSERT INTO txn VALUES (9001, 1000,...);

END bank_trans;

PROCEDURE log_usage (p_card_id NUMBER, p_loc NUMBER)
IS
PRAGMA AUTONOMOUS_TRANSACTION;

BEGIN
INSERT INTO usage -- usage is an existing table
VALUES (p_card_id, p_loc);
COMMIT;

END log_usage;

Using Autonomous Transactions

To define autonomous transactions, you use PRAGMA AUTONOMOUS_TRANSACTION.
PRAGMA instructs the PL/SQL compiler to mark a routine as autonomous (independent). In this
context, the term “routine” includes top-level (not nested) anonymous PL/SQL blocks; local,
stand-alone, and packaged functions and procedures; methods of a SQL object type; and
database triggers. You can code PRAGMA anywhere in the declarative section of a routine.
However, for readability, it is best placed at the top of the Declaration section.

In the example in the slide, you track where the bankcard is used, regardless of whether the
transaction is successful. The following are the benefits of autonomous transactions:

• After starting, an autonomous transaction is fully independent. It shares no locks,
resources, or commit dependencies with the main transaction, so you can log events,
increment retry counters, and so on even if the main transaction rolls back.

• More importantly, autonomous transactions help you build modular, reusable software
components. For example, stored procedures can start and finish autonomous transactions
on their own. A calling application need not know about a procedure’s autonomous
operations, and the procedure need not know about the application’s transaction context.
That makes autonomous transactions less error-prone than regular transactions and easier
to use.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 O

R
AC

LE
 C

O
R

PO
R

AT
IO

N
 u

se
 o

nl
y

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Oracle Database 11g: Develop PL/SQL Program Units 8 - 14

Using Autonomous Transactions (continued)

The output of the previous slide examples, the TXN and USAGE tables are as follows:

Use the Data tab in the Tables node of the Object Navigator tree to display the
values in the TXN and USAGE tables as follows:

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 O

R
AC

LE
 C

O
R

PO
R

AT
IO

N
 u

se
 o

nl
y

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Oracle Database 11g: Develop PL/SQL Program Units 8 - 15

Copyright © 2009, Oracle. All rights reserved.

Lesson Agenda

• Standardizing constants and exceptions, using local
subprograms, controlling the run-time privileges of a
subprogram, and performing autonomous transactions

• Using the NOCOPY and the PARALLEL ENABLE hints, the
cross-session PL/SQL function result cache, and the
DETERMINISTIC clause

• Using bulk binding and the RETURNING clause with DML

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 O

R
AC

LE
 C

O
R

PO
R

AT
IO

N
 u

se
 o

nl
y

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Oracle Database 11g: Develop PL/SQL Program Units 8 - 16

Copyright © 2009, Oracle. All rights reserved.

Using the NOCOPY Hint

• Allows the PL/SQL compiler to pass OUT and IN OUT
parameters by reference rather than by value

• Enhances performance by reducing overhead when
passing parameters

DECLARE
TYPE rec_emp_type IS TABLE OF employees%ROWTYPE;
rec_emp rec_emp_type;
PROCEDURE populate(p_tab IN OUT NOCOPY emptabtype)IS
BEGIN
. . .
END;

BEGIN
populate(rec_emp);

END;
/

Using the NOCOPY Hint

Note that PL/SQL subprograms support three parameter-passing modes: IN, OUT, and IN OUT.
By default:

• The IN parameter is passed by reference. A pointer to the IN actual parameter is passed to
the corresponding formal parameter. So, both the parameters reference the same memory
location, which holds the value of the actual parameter.

• The OUT and IN OUT parameters are passed by value. The value of the OUT or IN OUT
actual parameter is copied into the corresponding formal parameter. Then, if the
subprogram exits normally, the values assigned to the OUT and IN OUT formal parameters
are copied into the corresponding actual parameters.

Copying parameters that represent large data structures (such as collections, records, and
instances of object types) with OUT and IN OUT parameters slows down execution and uses up
memory. To prevent this overhead, you can specify the NOCOPY hint, which enables the
PL/SQL compiler to pass OUT and IN OUT parameters by reference.

The slide shows an example of declaring an IN OUT parameter with the NOCOPY hint.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 O

R
AC

LE
 C

O
R

PO
R

AT
IO

N
 u

se
 o

nl
y

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Oracle Database 11g: Develop PL/SQL Program Units 8 - 17

Copyright © 2009, Oracle. All rights reserved.

Effects of the NOCOPY Hint

• If the subprogram exits with an exception that is not
handled:
– You cannot rely on the values of the actual parameters

passed to a NOCOPY parameter

– Any incomplete modifications are not “rolled back”

• The remote procedure call (RPC) protocol enables you to
pass parameters only by value.

Effects of the NOCOPY Hint

As a trade-off for better performance, the NOCOPY hint enables you to trade well-defined
exception semantics for better performance. Its use affects exception handling in the following
ways:

• Because NOCOPY is a hint and not a directive, the compiler can pass NOCOPY parameters
to a subprogram by value or by reference. So, if the subprogram exits with an unhandled
exception, you cannot rely on the values of the NOCOPY actual parameters.

• By default, if a subprogram exits with an unhandled exception, the values assigned to its
OUT and IN OUT formal parameters are not copied to the corresponding actual parameters,
and changes appear to roll back. However, when you specify NOCOPY, assignments to the
formal parameters immediately affect the actual parameters as well. So, if the subprogram
exits with an unhandled exception, the (possibly unfinished) changes are not “rolled back.”

• Currently, the RPC protocol enables you to pass parameters only by value. So, exception
semantics can change without notification when you partition applications. For example, if
you move a local procedure with NOCOPY parameters to a remote site, those parameters
are no longer passed by reference.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 O

R
AC

LE
 C

O
R

PO
R

AT
IO

N
 u

se
 o

nl
y

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Oracle Database 11g: Develop PL/SQL Program Units 8 - 18

Copyright © 2009, Oracle. All rights reserved.

When Does the PL/SQL
Compiler Ignore the NOCOPY Hint?

The NOCOPY hint has no effect if:

• The actual parameter:
– Is an element of an index-by table
– Is constrained (for example, by scale or NOT NULL)

– And formal parameter are records, where one or both
records were declared by using %ROWTYPE or %TYPE, and
constraints on corresponding fields in the records differ

– Requires an implicit data type conversion

• The subprogram is involved in an external or remote
procedure call

When Does the PL/SQL Compiler Ignore the NOCOPY Hint?

In the following cases, the PL/SQL compiler ignores the NOCOPY hint and uses the by-value
parameter-passing method (with no error generated):

• The actual parameter is an element of an index-by table. This restriction does not apply to
entire index-by tables.

• The actual parameter is constrained (by scale or NOT NULL). This restriction does not
extend to constrained elements or attributes. Also, it does not apply to size-constrained
character strings.

• The actual and formal parameters are records; one or both records were declared by using
%ROWTYPE or %TYPE, and constraints on corresponding fields in the records differ.

• The actual and formal parameters are records; the actual parameter was declared
(implicitly) as the index of a cursor FOR loop, and constraints on corresponding fields in
the records differ.

• Passing the actual parameter requires an implicit data type conversion.
• The subprogram is involved in an external or remote procedure call.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 O

R
AC

LE
 C

O
R

PO
R

AT
IO

N
 u

se
 o

nl
y

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Oracle Database 11g: Develop PL/SQL Program Units 8 - 19

Copyright © 2009, Oracle. All rights reserved.

Using the PARALLEL_ENABLE Hint

• Can be used in functions as an optimization hint

• Indicates that a function can be used in a parallelized
query or parallelized DML statement

CREATE OR REPLACE FUNCTION f2 (p_p1 NUMBER)
RETURN NUMBER PARALLEL_ENABLE IS

BEGIN
RETURN p_p1 * 2;

END f2;

Using the PARALLEL_ENABLE Hint

The PARALLEL_ENABLE keyword can be used in the syntax for declaring a function. It is an
optimization hint that indicates that the function can be used in a parallelized query or
parallelized DML statement. Oracle’s parallel execution feature divides the work of executing a
SQL statement across multiple processes. Functions called from a SQL statement that is run in
parallel can have a separate copy run in each of these processes, with each copy called for only
the subset of rows that are handled by that process.

For DML statements, before Oracle8i, the parallelization optimization looked to see whether a
function was noted as having all four of RNDS, WNDS, RNPS, and WNPS specified in a PRAGMA
RESTRICT_REFERENCES declaration; those functions that were marked as neither reading
nor writing to either the database or package variables could run in parallel. Again, those
functions defined with a CREATE FUNCTION statement had their code implicitly examined to
determine whether they were actually pure enough; parallelized execution might occur even
though a PRAGMA cannot be specified on these functions.

The PARALLEL_ENABLE keyword is placed after the return value type in the declaration of the
function, as shown in the example in the slide.

Note: The function should not use session state, such as package variables, because those
variables may not be shared among the parallel execution servers.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 O

R
AC

LE
 C

O
R

PO
R

AT
IO

N
 u

se
 o

nl
y

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Oracle Database 11g: Develop PL/SQL Program Units 8 - 20

Copyright © 2009, Oracle. All rights reserved.

Using the Cross-Session PL/SQL
Function Result Cache

• Each time a result-cached PL/SQL function is called with
different parameter values, those parameters and their
results are stored in cache.

• The function result cache is stored in a shared global area
(SGA), making it available to any session that runs your
application.

• Subsequent calls to the same function with the same
parameters uses the result from cache.

• Performance and scalability are improved.

• This feature is used with functions that are called
frequently and dependent on information that changes
infrequently.

Cross-Session PL/SQL Function Result Cache

Starting in Oracle Database 11g, you can use the PL/SQL cross-session function result caching
mechanism. This caching mechanism provides you with a language-supported and system-
managed means for storing the results of PL/SQL functions in a shared global area (SGA),
which is available to every session that runs your application. The caching mechanism is both
efficient and easy to use, and it relieves you of the burden of designing and developing your own
caches and cache-management policies.

Each time a result-cached PL/SQL function is called with different parameter values, those
parameters and their results are stored in the cache. Subsequently, when the same function is
called with the same parameter values, the result is retrieved from the cache, instead of being
recomputed. If a database object that was used to compute a cached result is updated, the cached
result becomes invalid and must be recomputed.

Use the result-caching feature with functions that are called frequently and are dependent on
information that never changes or changes infrequently.

Note: For additional information about Cross-Session PL/SQL Function Result Cache, refer to
the Oracle Database 11g Advanced PL/SQL course, the Oracle Database 11g SQL and PL/SQL
New Features course, or the Oracle Database PL/SQL Language Reference 11g Release 1 (11.1)
guide.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 O

R
AC

LE
 C

O
R

PO
R

AT
IO

N
 u

se
 o

nl
y

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Oracle Database 11g: Develop PL/SQL Program Units 8 - 21

Copyright © 2009, Oracle. All rights reserved.

Enabling Result-Caching for a Function

You can make a function result-cached as follows:

• Include the RESULT_CACHE clause in the following:

– The function declaration

– The function definition

• Include an optional RELIES_ON clause to specify any
tables or views on which the function results depend.

Enabling Result-Caching for a Function

To enable result-caching for a PL/SQL function, use the RESULT_CACHE clause. When a
result-cached function is called, the system checks the function result cache. If the cache
contains the result from a previous call to the function with the same parameter values, the
system returns the cached result to the caller and does not reexecute the function body. If the
cache does not contain the result, the system executes the function body and adds the result (for
these parameter values) to the cache before returning control to the caller.

The cache can accumulate many results—one result for every unique combination of parameter
values with which each result-cached function has been called. If the system needs more
memory, it ages out (deletes) one or more cached results.

Note: If function execution results in an unhandled exception, the exception result is not stored
in the cache.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 O

R
AC

LE
 C

O
R

PO
R

AT
IO

N
 u

se
 o

nl
y

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Oracle Database 11g: Develop PL/SQL Program Units 8 - 22

Copyright © 2009, Oracle. All rights reserved.

Declaring and Defining a
Result-Cached Function: Example

CREATE OR REPLACE FUNCTION emp_hire_date (p_emp_id
NUMBER) RETURN VARCHAR

RESULT_CACHE RELIES_ON (employees) IS
v_date_hired DATE;

BEGIN
SELECT hire_date INTO v_date_hired
FROM HR.Employees
WHERE Employee_ID = p_emp_ID;
RETURN to_char(v_date_hired);

END;

Declaring and Defining a Result-Cached Function: Example

If a function depends on settings that might vary from session to session such as
NLS_DATE_FORMAT and TIME ZONE, make the function result-cached only if you can
modify it to handle the various settings.

In the slide example, the emp_hire_date function uses the to_char function to convert a
DATE item to a VARCHAR item. emp_hire_date does not specify a format mask, so the
format mask defaults to the one that NLS_DATE_FORMAT specifies. If sessions that call
emp_hire_date have different NLS_DATE_FORMAT settings, cached results can have
different formats. If a cached result computed by one session ages out, and another session
recomputes it, the format might vary even for the same parameter value. If a session gets a
cached result whose format differs from its own format, that result will probably be incorrect.

Some possible solutions to this problem are:
• Change the return type of emp_hire_date to DATE and have each session call the

to_char function.
• If a common format is acceptable to all sessions, specify a format mask, removing the

dependency on NLS_DATE_FORMAT—for example, to_char(date_hired,
'mm/dd/yy');.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 O

R
AC

LE
 C

O
R

PO
R

AT
IO

N
 u

se
 o

nl
y

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Oracle Database 11g: Develop PL/SQL Program Units 8 - 23

Declaring and Defining a Result-Cached Function: Example (continued)

• Add a format mask parameter to HireDate as follows:
CREATE OR REPLACE FUNCTION emp_hire_date (p_emp_id NUMBER,
fmt VARCHAR) RETURN VARCHAR
RESULT_CACHE RELIES_ON (employees) IS
v_date_hired DATE;
BEGIN

SELECT hire_date INTO v_date_hired
FROM employees
WHERE employee_id = p_emp_id;
RETURN to_char(v_date_hired, fmt);

END;

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 O

R
AC

LE
 C

O
R

PO
R

AT
IO

N
 u

se
 o

nl
y

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Oracle Database 11g: Develop PL/SQL Program Units 8 - 24

Copyright © 2009, Oracle. All rights reserved.

Using the DETERMINISTIC Clause with Functions

• Specify DETERMINISTIC to indicate that the function
returns the same result value whenever it is called with the
same values for its arguments.

• This helps the optimizer avoid redundant function calls.

• If a function was called previously with the same
arguments, the optimizer can elect to use the previous
result.

• Do not specify DETERMINISTIC for a function whose
result depends on the state of session variables or schema
objects.

Using the DETERMINISTIC Clause with Functions

You can use the DETERMINISTIC function clause to indicate that the function returns the
same result value whenever it is called with the same values for its arguments.

You must specify this keyword if you intend to call the function in the expression of a function-
based index or from the query of a materialized view that is marked REFRESH FAST or
ENABLE QUERY REWRITE. When Oracle Database encounters a deterministic function in one
of these contexts, it attempts to use previously calculated results when possible rather than
reexecuting the function. If you subsequently change the semantics of the function, you must
manually rebuild all dependent function-based indexes and materialized views.

Do not specify this clause to define a function that uses package variables or that accesses the
database in any way that might affect the return result of the function. The results of doing so
will not be captured if Oracle Database chooses not to reexecute the function.

Note
• Do not specify DETERMINISTIC for a function whose result depends on the state of

session variables or schema objects because results might vary across calls. Instead,
consider making the function result-cached.

• For more information about the DETERMINISTIC clause, refer to the Oracle Database
SQL Language Reference 11g Release 1 (11.1) guide.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 O

R
AC

LE
 C

O
R

PO
R

AT
IO

N
 u

se
 o

nl
y

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Oracle Database 11g: Develop PL/SQL Program Units 8 - 25

Copyright © 2009, Oracle. All rights reserved.

Lesson Agenda

• Standardizing constants and exceptions, using local
subprograms, controlling the run-time privileges of a
subprogram, and performing autonomous transactions

• Using the NOCOPY and the PARALLEL ENABLE hints, the
cross-session PL/SQL function result cache, and the
DETERMINISTIC clause

• Using bulk binding and the RETURNING clause with DML

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 O

R
AC

LE
 C

O
R

PO
R

AT
IO

N
 u

se
 o

nl
y

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Oracle Database 11g: Develop PL/SQL Program Units 8 - 26

Copyright © 2009, Oracle. All rights reserved.

SQL engine

Bulk Binding

Binds whole arrays of values in a single operation, rather than
using a loop to perform a FETCH, INSERT, UPDATE, and
DELETE operation multiple times

PL/SQL run-time engine

SQL
statement
executor

Procedural
statement
executor

PL/SQL block

FORALL j IN 1..1000
INSERT (id,

dates)
VALUES (ids(j),

dates(j));
...

Bulk Binding

The Oracle server uses two engines to run PL/SQL blocks and subprograms:
• The PL/SQL run-time engine, which runs procedural statements but passes the SQL

statements to the SQL engine
• The SQL engine, which parses and executes the SQL statement and, in some cases, returns

data to the PL/SQL engine

During execution, every SQL statement causes a context switch between the two engines, which
results in a performance penalty for excessive amounts of SQL processing. This is typical of
applications that have a SQL statement in a loop that uses values from indexed collections.
Collections include nested tables, varying arrays, index-by tables, and host arrays.

Performance can be substantially improved by minimizing the number of context switches
through the use of bulk binding. Bulk binding causes an entire collection to be bound in one call,
a context switch, to the SQL engine. That is, a bulk bind process passes the entire collection of
values back and forth between the two engines in a single context switch, compared with
incurring a context switch for each collection element in an iteration of a loop. The more rows
affected by a SQL statement, the greater the performance gain with bulk binding.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 O

R
AC

LE
 C

O
R

PO
R

AT
IO

N
 u

se
 o

nl
y

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Oracle Database 11g: Develop PL/SQL Program Units 8 - 27

Copyright © 2009, Oracle. All rights reserved.

Using Bulk Binding: Syntax and Keywords

• The FORALL keyword instructs the PL/SQL engine to bulk
bind input collections before sending them to the SQL
engine.

• The BULK COLLECT keyword instructs the SQL engine to
bulk bind output collections before returning them to the
PL/SQL engine.

FORALL index IN lower_bound .. upper_bound
[SAVE EXCEPTIONS]
sql_statement;

... BULK COLLECT INTO
collection_name[,collection_name] ...

Using Bulk Binding

Use bulk binds to improve the performance of:
• DML statements that reference collection elements
• SELECT statements that reference collection elements
• Cursor FOR loops that reference collections and the RETURNING INTO clause

The FORALL keyword instructs the PL/SQL engine to bulk bind input collections before
sending them to the SQL engine. Although the FORALL statement contains an iteration scheme,
it is not a FOR loop.

The BULK COLLECT keyword instructs the SQL engine to bulk bind output collections, before
returning them to the PL/SQL engine. This enables you to bind locations into which SQL can
return the retrieved values in bulk. Thus, you can use these keywords in the SELECT INTO,
FETCH INTO, and RETURNING INTO clauses.

The SAVE EXCEPTIONS keyword is optional. However, if some of the DML operations
succeed and some fail, you would want to track or report on those that fail. Using the SAVE
EXCEPTIONS keyword causes failed operations to be stored in a cursor attribute called
%BULK_EXCEPTIONS, which is a collection of records indicating the bulk DML iteration
number and corresponding error code.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 O

R
AC

LE
 C

O
R

PO
R

AT
IO

N
 u

se
 o

nl
y

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Oracle Database 11g: Develop PL/SQL Program Units 8 - 28

Using Bulk Binding (continued)

Handling FORALL Exceptions with the %BULK_EXCEPTIONS Attribute

To manage exceptions and have the bulk bind complete despite errors, add the keywords SAVE
EXCEPTIONS to your FORALL statement after the bounds, before the DML statement.

All exceptions raised during the execution are saved in the cursor attribute
%BULK_EXCEPTIONS, which stores a collection of records. Each record has two fields:

%BULK_EXCEPTIONS(I).ERROR_INDEX holds the “iteration” of the FORALL statement
during which the exception was raised and %BULK_EXCEPTIONS(i).ERROR_CODE holds
the corresponding Oracle error code.

Values stored in %BULK_EXCEPTIONS refer to the most recently executed FORALL statement.
Its subscripts range from 1 to %BULK_EXCEPTIONS.COUNT.

Note: For additional information about bulk binding and handling bulk-binding exceptions, refer
to the Oracle Database PL/SQL User's Guide and Reference 11g Release 1 (11.1).

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 O

R
AC

LE
 C

O
R

PO
R

AT
IO

N
 u

se
 o

nl
y

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Oracle Database 11g: Develop PL/SQL Program Units 8 - 29

Copyright © 2009, Oracle. All rights reserved.

Bulk Binding FORALL: Example

CREATE PROCEDURE raise_salary(p_percent NUMBER) IS
TYPE numlist_type IS TABLE OF NUMBER

INDEX BY BINARY_INTEGER;
v_id numlist_type; -- collection

BEGIN
v_id(1):= 100; v_id(2):= 102; v_id(3):= 104; v_id(4) := 110;
-- bulk-bind the PL/SQL table
FORALL i IN v_id.FIRST .. v_id.LAST
UPDATE employees

SET salary = (1 + p_percent/100) * salary
WHERE employee_id = v_id(i);

END;
/

EXECUTE raise_salary(10)

PL/SQL procedure successfully completed.

Bulk Binding FORALL: Example

Note: Before you can run the example in the slide, you must disable the
update_job_history trigger as follows:

ALTER TRIGGER update_job_history DISBALE;

In the example in the slide, the PL/SQL block increases the salary for employees with IDs 100,
102, 104, or 110. It uses the FORALL keyword to bulk bind the collection. Without bulk binding,
the PL/SQL block would have sent a SQL statement to the SQL engine for each employee
record that is updated. If there are many employee records to update, then the large number of
context switches between the PL/SQL engine and the SQL engine can affect performance.
However, the FORALL keyword bulk binds the collection to improve performance.

Note: A looping construct is no longer required when using this feature.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 O

R
AC

LE
 C

O
R

PO
R

AT
IO

N
 u

se
 o

nl
y

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Oracle Database 11g: Develop PL/SQL Program Units 8 - 30

Bulk Binding FORALL: Example (continued)

An Additional Cursor Attribute for DML Operations

Another cursor attribute added to support bulk operations is %BULK_ROWCOUNT. The
%BULK_ROWCOUNT attribute is a composite structure designed for use with the FORALL
statement. This attribute acts like an index-by table. Its ith element stores the number of rows
processed by the ith execution of an UPDATE or DELETE statement. If the ith execution affects
no rows, then %BULK_ROWCOUNT(i)returns zero.

Here is an example:
CREATE TABLE num_table (n NUMBER);
DECLARE

TYPE num_list_type IS TABLE OF NUMBER
INDEX BY BINARY_INTEGER;

v_nums num_list_type;
BEGIN
v_nums(1) := 1;
v_nums(2) := 3;
v_nums(3) := 5;
v_nums(4) := 7;
v_nums(5) := 11;
FORALL i IN v_nums.FIRST .. v_nums.LAST

INSERT INTO v_num_table (n) VALUES (v_nums(i));
FOR i IN v_nums.FIRST .. v_nums.LAST
LOOP

dbms_output.put_line('Inserted ' ||
SQL%BULK_ROWCOUNT(i) || ' row(s)'
|| ' on iteration ' || i);

END LOOP;
END;
/
DROP TABLE num_table;

The following results are produced by this example:
Inserted 1 row(s) on iteration 1
Inserted 1 row(s) on iteration 2
Inserted 1 row(s) on iteration 3
Inserted 1 row(s) on iteration 4
Inserted 1 row(s) on iteration 5

PL/SQL procedure successfully completed.
DROP TABLE num_table succeeded.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 O

R
AC

LE
 C

O
R

PO
R

AT
IO

N
 u

se
 o

nl
y

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Oracle Database 11g: Develop PL/SQL Program Units 8 - 31

Copyright © 2009, Oracle. All rights reserved.

CREATE PROCEDURE get_departments(p_loc NUMBER) IS
TYPE dept_tab_type IS
TABLE OF departments%ROWTYPE;

v_depts dept_tab_type;
BEGIN
SELECT * BULK COLLECT INTO v_depts
FROM departments
WHERE location_id = p_loc;
FOR i IN 1 .. v_depts.COUNT LOOP
DBMS_OUTPUT.PUT_LINE(v_depts(i).department_id
||' '|| v_depts(i).department_name);

END LOOP;
END;

Using BULK COLLECT INTO with Queries

The SELECT statement has been enhanced to support the
BULK COLLECT INTO syntax.

Using BULK COLLECT INTO with Queries

Starting with Oracle Database 10g, when using a SELECT statement in PL/SQL, you can use the
bulk collection syntax shown in the example in the slide. Thus, you can quickly obtain a set of
rows without using a cursor mechanism.

The example reads all the department rows for a specified region into a PL/SQL table, whose
contents are displayed with the FOR loop that follows the SELECT statement. O

ra
cl

e
U

ni
ve

rs
ity

 a
nd

 O
R

AC
LE

 C
O

R
PO

R
AT

IO
N

 u
se

 o
nl

y

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Oracle Database 11g: Develop PL/SQL Program Units 8 - 32

Copyright © 2009, Oracle. All rights reserved.

Using BULK COLLECT INTO with Cursors

The FETCH statement has been enhanced to support the BULK
COLLECT INTO syntax.

CREATE PROCEDURE get_departments(p_loc NUMBER) IS
CURSOR cur_dept IS
SELECT * FROM departments
WHERE location_id = p_loc;

TYPE dept_tab_type IS TABLE OF cur_dept%ROWTYPE;
v_depts dept_tab_type;

BEGIN
OPEN cur_dept;
FETCH cur_dept BULK COLLECT INTO v_depts;
CLOSE cur_dept;

FOR i IN 1 .. v_depts.COUNT LOOP
DBMS_OUTPUT.PUT_LINE(v_depts(i).department_id
||' '|| v_depts(i).department_name);

END LOOP;
END;

Using BULK COLLECT INTO with Cursors

In Oracle Database 10g, when using cursors in PL/SQL, you can use a form of the FETCH
statement that supports the bulk collection syntax shown in the example in the slide.

This example shows how BULK COLLECT INTO can be used with cursors.

You can also add a LIMIT clause to control the number of rows fetched in each operation. The
code example in the slide could be modified as follows:

CREATE PROCEDURE get_departments(loc NUMBER,
nrows NUMBER) IS
CURSOR dept_csr IS SELECT * FROM departments

WHERE location_id = loc;
TYPE dept_tabtype IS TABLE OF dept_csr%ROWTYPE;
depts dept_tabtype;

BEGIN
OPEN dept_csr;
FETCH dept_csr BULK COLLECT INTO depts LIMIT nrows;
CLOSE dept_csr;
DBMS_OUTPUT.PUT_LINE(depts.COUNT||' rows read');

END;

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 O

R
AC

LE
 C

O
R

PO
R

AT
IO

N
 u

se
 o

nl
y

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Oracle Database 11g: Develop PL/SQL Program Units 8 - 33

Copyright © 2009, Oracle. All rights reserved.

CREATE PROCEDURE raise_salary(p_rate NUMBER) IS
TYPE emplist_type IS TABLE OF NUMBER;
TYPE numlist_type IS TABLE OF employees.salary%TYPE
INDEX BY BINARY_INTEGER;

v_emp_ids emplist_type :=
emplist_type(100,101,102,104);
v_new_sals numlist_type;

BEGIN
FORALL i IN v_emp_ids.FIRST .. v_emp_ids.LAST
UPDATE employees
SET commission_pct = p_rate * salary

WHERE employee_id = v_emp_ids(i)
RETURNING salary BULK COLLECT INTO v_new_sals;

FOR i IN 1 .. v_new_sals.COUNT LOOP ...
END;

Using BULK COLLECT INTO
with a RETURNING Clause

Using BULK COLLECT INTO with a RETURNING Clause

Bulk binds can be used to improve the performance of FOR loops that reference collections and
return DML. If you have, or plan to have, PL/SQL code that does this, then you can use the
FORALL keyword along with the RETURNING and BULK COLLECT INTO keywords to
improve performance.

In the example shown in the slide, the salary information is retrieved from the EMPLOYEES
table and collected into the new_sals array. The new_sals collection is returned in bulk to
the PL/SQL engine.

The example in the slide shows an incomplete FOR loop that is used to iterate through the new
salary data received from the UPDATE operation and then process the results.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 O

R
AC

LE
 C

O
R

PO
R

AT
IO

N
 u

se
 o

nl
y

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Oracle Database 11g: Develop PL/SQL Program Units 8 - 34

Copyright © 2009, Oracle. All rights reserved.

FORALL Support for Sparse Collections

-- The new INDICES OF syntax allows the bound arrays
-- themselves to be sparse.

FORALL index_name IN INDICES OF sparse_array_name
BETWEEN LOWER_BOUND AND UPPER_BOUND -- optional
SAVE EXCEPTIONS -- optional, but recommended
INSERT INTO table_name VALUES

sparse_array(index_name);

-- The new VALUES OF syntax lets you indicate a subset
-- of the binding arrays.

FORALL index_name IN VALUES OF index_array_name
SAVE EXCEPTIONS -- optional,but recommended
INSERT INTO table_name VALUES

binding_array_name(index_name);

FORALL Support for Sparse Collections

In earlier releases, PL/SQL did not allow sparse collections to be used with the FORALL
statement. If SAVE EXCEPTIONS was not specified, the statement was terminated when the
first deleted element was encountered. Even when SAVE EXCEPTION was used, the PL/SQL
engine tried to iterate over all elements (existing and nonexisting). This substantially degraded
the performance of the DML operation if the relative percentage of the deleted elements was
high. In Oracle Database 10g, a new syntax was introduced with the keyword INDICES to
allow sparse collection to be used with the FORALL statement. This syntax binds sparse
collections more efficiently. The new syntax also supports a more general approach where an
index array can be specified to iterate over the collections. Using sparse collection and index
arrays in bulk operations improves performance. You use the new INDICES OF and VALUES
OF syntax with the FORALL statement. The bulk bind for sparse array syntax can be used in all
DML syntaxes. In the syntax, the index array must be dense, and the binding arrays may be
dense or sparse and the indicated elements must exist.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 O

R
AC

LE
 C

O
R

PO
R

AT
IO

N
 u

se
 o

nl
y

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Oracle Database 11g: Develop PL/SQL Program Units 8 - 35

Copyright © 2009, Oracle. All rights reserved.

Using Bulk Binds in Sparse Collections

The typical application for this feature is an order entry and
order processing system where:

• Users enter orders through the Web

• Orders are placed in a staging table before validation

• Data is later validated based on complex business rules
(usually implemented programmatically using PL/SQL)

• Invalid orders are separated from valid ones

• Valid orders are inserted into a permanent table for
processing

Using Bulk Binds in Sparse Collections

This feature can be used in any application that starts with a dense PL/SQL table of records or
table of scalar that are populated using a bulk collect. This is used as the binding array. A dense
array (pointer), whose elements denote the indices of the binding array, is made sparse based on
the application logic. This pointer array is then used in the FORALL statement to perform bulk
DML with the binding arrays. Any exceptions encountered can be saved and further processed in
the exception-handling section, perhaps by using another FORALL statement. O

ra
cl

e
U

ni
ve

rs
ity

 a
nd

 O
R

AC
LE

 C
O

R
PO

R
AT

IO
N

 u
se

 o
nl

y

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Oracle Database 11g: Develop PL/SQL Program Units 8 - 36

Copyright © 2009, Oracle. All rights reserved.

Using Bulk Bind with Index Array

CREATE OR REPLACE PROCEDURE ins_emp2 AS
TYPE emptab_type IS TABLE OF employees%ROWTYPE;
v_emp emptab_type;
TYPE values_of_tab_type IS TABLE OF PLS_INTEGER

INDEX BY PLS_INTEGER;
v_num values_of_tab_type;

. . .
BEGIN

. . .
FORALL k IN VALUES OF v_num
INSERT INTO new_employees VALUES v_emp(k);

END;

Using Bulk Bind with Index Array

Starting in Oracle Database 10g, you can use an index collection of PLS_INTEGER or
BINARY_INTEGER (or one of its subtypes) whose values are the indexes of the collections
involved in the bulk-bind DML operation using FORALL. These index collections can then be
used in a FORALL statement to process bulk DML using the VALUES OF clause.

In the example shown above, V_NUM is a collection whose type is PLS_INTEGER. In the
example, you are creating a procedure INS_EMP2, which identifies only one employee for each
occurrence of the first letter of the last name. This procedure then inserts into the
NEW_EMPLOYEES table created earlier using the FORALL..IN VALUES OF syntax.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 O

R
AC

LE
 C

O
R

PO
R

AT
IO

N
 u

se
 o

nl
y

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Oracle Database 11g: Develop PL/SQL Program Units 8 - 37

Copyright © 2009, Oracle. All rights reserved.

CREATE PROCEDURE update_salary(p_emp_id NUMBER) IS

v_name employees.last_name%TYPE;

v_new_sal employees.salary%TYPE;

BEGIN

UPDATE employees

SET salary = salary * 1.1

WHERE employee_id = p_emp_id

RETURNING last_name, salary INTO name, v_new_sal;

END update_salary;

/

Using the RETURNING Clause

• Improves performance by returning column values with
INSERT, UPDATE, and DELETE statements

• Eliminates the need for a SELECT statement

Using the RETURNING Clause

Often, applications need information about the row affected by a SQL operation—for example,
to generate a report or to take a subsequent action. The INSERT, UPDATE, and DELETE
statements can include a RETURNING clause, which returns column values from the affected
row into PL/SQL variables or host variables. This eliminates the need to SELECT the row after
an INSERT or UPDATE, or before a DELETE. As a result, fewer network round trips, less server
CPU time, fewer cursors, and less server memory are required.

The example in the slide shows how to update the salary of an employee and, at the same time,
retrieve the employee’s last name and new salary into a local PL/SQL variable.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 O

R
AC

LE
 C

O
R

PO
R

AT
IO

N
 u

se
 o

nl
y

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Oracle Database 11g: Develop PL/SQL Program Units 8 - 38

Copyright © 2009, Oracle. All rights reserved.

Quiz

The NOCOPY hint allows the PL/SQL compiler to pass OUT and
IN OUT parameters by reference rather than by value. This
enhances performance by reducing overhead when passing
parameters

1. True

2. False

Answer: 1

PL/SQL subprograms support three parameter-passing modes: IN, OUT, and IN OUT.

By default:
• The IN parameter is passed by reference. A pointer to the IN actual parameter is passed to

the corresponding formal parameter. So, both the parameters reference the same memory
location, which holds the value of the actual parameter.

• The OUT and IN OUT parameters are passed by value. The value of the OUT or IN OUT
actual parameter is copied into the corresponding formal parameter. Then, if the
subprogram exits normally, the values assigned to the OUT and IN OUT formal parameters
are copied into the corresponding actual parameters.

Copying parameters that represent large data structures (such as collections, records, and
instances of object types) with OUT and IN OUT parameters slows down execution and uses up
memory. To prevent this overhead, you can specify the NOCOPY hint, which enables the
PL/SQL compiler to pass OUT and IN OUT parameters by reference.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 O

R
AC

LE
 C

O
R

PO
R

AT
IO

N
 u

se
 o

nl
y

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Oracle Database 11g: Develop PL/SQL Program Units 8 - 39

Copyright © 2009, Oracle. All rights reserved.

Summary

In this lesson, you should have learned how to:

• Create standard constants and exceptions

• Write and call local subprograms

• Control the run-time privileges of a subprogram

• Perform autonomous transactions
• Pass parameters by reference using a NOCOPY hint

• Use the PARALLEL ENABLE hint for optimization

• Use the cross-session PL/SQL function result cache
• Use the DETERMINISTIC clause with functions

• Use bulk binding and the RETURNING clause with DML

Summary

The lesson provides insights into managing your PL/SQL code by defining constants and
exceptions in a package specification. This enables a high degree of reuse and standardization of
code.

Local subprograms can be used to simplify and modularize a block of code where the
subprogram functionality is repeatedly used in the local block.

The run-time security privileges of a subprogram can be altered by using definer’s or invoker’s
rights.

Autonomous transactions can be executed without affecting an existing main transaction.

You should understand how to obtain performance gains by using the NOCOPY hint, bulk
binding and the RETURNING clauses in SQL statements, and the PARALLEL_ENABLE hint for
optimization of functions.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 O

R
AC

LE
 C

O
R

PO
R

AT
IO

N
 u

se
 o

nl
y

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Oracle Database 11g: Develop PL/SQL Program Units 8 - 40

Copyright © 2009, Oracle. All rights reserved.

Practice 8: Overview

This practice covers the following topics:

• Creating a package that uses bulk fetch operations

• Creating a local subprogram to perform an autonomous
transaction to audit a business operation

Practice 8: Overview

In this practice, you create a package that performs a bulk fetch of employees in a specified
department. The data is stored in a PL/SQL table in the package. You also provide a procedure
to display the contents of the table.

You add an add_employee procedure to the package that inserts new employees. The
procedure uses a local autonomous subprogram to write a log record each time the
add_employee procedure is called, whether it successfully adds a record or not.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 O

R
AC

LE
 C

O
R

PO
R

AT
IO

N
 u

se
 o

nl
y

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Oracle Database 11g: Develop PL/SQL Program Units 8 - 41

Practice 8

1. Update the EMP_PKG package with a new procedure to query employees in a specified
department.

a. In the package specification:

i. Declare a get_employees procedure with a parameter called dept_id,
which is based on the employees.department_id column type

ii. Define an index-by PL/SQL type as a TABLE OF EMPLOYEES%ROWTYPE

b. In the package body:

i. Define a private variable called emp_table based on the type defined in the
specification to hold employee records

ii. Implement the get_employees procedure to bulk fetch the data into the table.

c. Create a new procedure in the specification and body, called show_employees,
that does not take arguments. The procedure displays the contents of the private
PL/SQL table variable (if any data exists). Use the print_employee procedure
that you created in an earlier practice. To view the results, click the Enable DBMS
Output icon in the DBMS Output tab in SQL Developer, if you have not already done
so.

d. Invoke the emp_pkg.get_employees procedure for department 30, and then
invoke emp_pkg.show_employees. Repeat this for department 60.

2. Your manager wants to keep a log whenever the add_employee procedure in the
package is invoked to insert a new employee into the EMPLOYEES table.

a. First, load and execute the D:\labs\PLPU\solns\sol_08_02_a.sql script
to create a log table called LOG_NEWEMP, and a sequence called
log_newemp_seq.

b. In the EMP_PKG package body, modify the add_employee procedure, which
performs the actual INSERT operation. Add a local procedure called
audit_newemp as follows:

i. The audit_newemp procedure must use an autonomous transaction to insert
a log record into the LOG_NEWEMP table.

ii. Store the USER, the current time, and the new employee name in the log table
row.

iii. Use log_newemp_seq to set the entry_id column.

Note: Remember to perform a COMMIT operation in a procedure with an
autonomous transaction.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 O

R
AC

LE
 C

O
R

PO
R

AT
IO

N
 u

se
 o

nl
y

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Oracle Database 11g: Develop PL/SQL Program Units 8 - 42

Practice 8 (continued)

c. Modify the add_employee procedure to invoke audit_emp before it performs
the insert operation.

d. Invoke the add_employee procedure for these new employees: Max Smart in
department 20 and Clark Kent in department 10. What happens?

e. Query the two EMPLOYEES records added, and the records in LOG_NEWEMP table.
How many log records are present?

f. Execute a ROLLBACK statement to undo the insert operations that have not been
committed. Use the same queries from step 2 e. as follows:

i. Use the first query to check whether the employee rows for Smart and Kent
have been removed.

ii. Use the second query to check the log records in the LOG_NEWEMP table. How
many log records are present? Why?

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 O

R
AC

LE
 C

O
R

PO
R

AT
IO

N
 u

se
 o

nl
y

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Copyright © 2009, Oracle. All rights reserved.

Creating Triggers

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 O

R
AC

LE
 C

O
R

PO
R

AT
IO

N
 u

se
 o

nl
y

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Oracle Database 11g: Develop PL/SQL Program Units 9 - 2

Copyright © 2009, Oracle. All rights reserved.

Objectives

After completing this lesson, you should be able to do the
following:

• Describe database triggers and their uses

• Describe the different types of triggers

• Create database triggers

• Describe database trigger-firing rules

• Remove database triggers

• Display trigger information

Lesson Aim

In this lesson, you learn how to create and use database triggers.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 O

R
AC

LE
 C

O
R

PO
R

AT
IO

N
 u

se
 o

nl
y

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Oracle Database 11g: Develop PL/SQL Program Units 9 - 3

Copyright © 2009, Oracle. All rights reserved.

What Are Triggers?

• A trigger is a PL/SQL block that is stored in the database
and fired (executed) in response to a specified event.

• The Oracle database automatically executes a trigger
when specified conditions occur.

Working with Triggers: Overview

Triggers are similar to stored procedures. A trigger stored in the database contains PL/SQL in
the form of an anonymous block, a call statement, or a compound trigger block. However,
procedures and triggers differ in the way that they are invoked. A procedure is explicitly run by
a user, application, or trigger. Triggers are implicitly fired by the Oracle database when a
triggering event occurs, no matter which user is connected or which application is being used.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 O

R
AC

LE
 C

O
R

PO
R

AT
IO

N
 u

se
 o

nl
y

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Oracle Database 11g: Develop PL/SQL Program Units 9 - 4

Copyright © 2009, Oracle. All rights reserved.

Defining Triggers

A trigger can be defined on the table, view, schema (schema
owner), or database (all users).

Table

View

Schema (owner)

Database (All users)

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 O

R
AC

LE
 C

O
R

PO
R

AT
IO

N
 u

se
 o

nl
y

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Oracle Database 11g: Develop PL/SQL Program Units 9 - 5

Copyright © 2009, Oracle. All rights reserved.

Trigger Event Types

You can write triggers that fire whenever one of the following
operations occurs in the database:
• A database manipulation (DML) statement (DELETE,

INSERT, or UPDATE).

• A database definition (DDL) statement (CREATE, ALTER,
or DROP).

• A database operation such as SERVERERROR, LOGON,
LOGOFF, STARTUP, or SHUTDOWN.

Triggering Event or Statement

A triggering event or statement is the SQL statement, database event, or user event that causes a
trigger to fire. A triggering event can be one or more of the following:

• An INSERT, UPDATE, or DELETE statement on a specific table (or view, in some cases)
• A CREATE, ALTER, or DROP statement on any schema object
• A database startup or instance shutdown
• A specific error message or any error message
• A user logon or logoff

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 O

R
AC

LE
 C

O
R

PO
R

AT
IO

N
 u

se
 o

nl
y

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Oracle Database 11g: Develop PL/SQL Program Units 9 - 6

Copyright © 2009, Oracle. All rights reserved.

Application and Database Triggers

• Database trigger (covered in this course):
– Fires whenever a DML, a DLL, or system event occurs on a

schema or database

• Application trigger:
– Fires whenever an event occurs within a particular

application

Application Trigger Database Trigger

Types of Triggers

Application triggers execute implicitly whenever a particular data manipulation language
(DML) event occurs within an application. An example of an application that uses triggers
extensively is an application developed with Oracle Forms Developer.

Database triggers execute implicitly when any of the following events occur:
• DML operations on a table
• DML operations on a view, with an INSTEAD OF trigger
• DDL statements, such as CREATE and ALTER

This is the case no matter which user is connected or which application is used. Database
triggers also execute implicitly when some user actions or database system actions occur (for
example, when a user logs on or the DBA shuts down the database).

Database triggers can be system triggers on a database or a schema (covered in the next lesson).
For databases, triggers fire for each event for all users; for a schema, they fire for each event for
that specific user. Oracle Forms can define, store, and run triggers of a different sort. However,
do not confuse Oracle Forms triggers with the triggers discussed in this lesson.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 O

R
AC

LE
 C

O
R

PO
R

AT
IO

N
 u

se
 o

nl
y

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Oracle Database 11g: Develop PL/SQL Program Units 9 - 7

Copyright © 2009, Oracle. All rights reserved.

Business Application Scenarios
for Implementing Triggers

You can use triggers for:

• Security

• Auditing

• Data integrity

• Referential integrity

• Table replication

• Computing derived data automatically

• Event logging

Business Application Scenarios for Implementing Triggers

Develop database triggers in order to enhance features that cannot otherwise be implemented by
the Oracle server or as alternatives to those provided by the Oracle server.

• Security: The Oracle server allows table access to users or roles. Triggers allow table
access according to data values.

• Auditing: The Oracle server tracks data operations on tables. Triggers track values for data
operations on tables.

• Data integrity: The Oracle server enforces integrity constraints. Triggers implement
complex integrity rules.

• Referential integrity: The Oracle server enforces standard referential integrity rules.
Triggers implement nonstandard functionality.

• Table replication: The Oracle server copies tables asynchronously into snapshots.
Triggers copy tables synchronously into replicas.

• Derived data: The Oracle server computes derived data values manually. Triggers
compute derived data values automatically.

• Event logging: The Oracle server logs events explicitly. Triggers log events transparently.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 O

R
AC

LE
 C

O
R

PO
R

AT
IO

N
 u

se
 o

nl
y

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Oracle Database 11g: Develop PL/SQL Program Units 9 - 8

Copyright © 2009, Oracle. All rights reserved.

Available Trigger Types

• Simple DML triggers
– BEFORE

– AFTER

– INSTEAD OF

• Compound triggers

• Non-DML triggers
– DDL event triggers

– Database event triggers

Note

In this lesson, we will discuss the BEFORE, AFTER, and INSTEAD OF triggers. The other
trigger types are discussed in the lesson titled “Creating Compound, DDL, and Event Database
Triggers.”

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 O

R
AC

LE
 C

O
R

PO
R

AT
IO

N
 u

se
 o

nl
y

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Oracle Database 11g: Develop PL/SQL Program Units 9 - 9

Copyright © 2009, Oracle. All rights reserved.

Trigger Event Types and Body

• A trigger event type determines which DML statement
causes the trigger to execute. The possible events are:
– INSERT

– UPDATE [OF column]

– DELETE

• A trigger body determines what action is performed and is
a PL/SQL block or a CALL to a procedure

Triggering Event Types

The triggering event or statement can be an INSERT, UPDATE, or DELETE statement on a
table.

• When the triggering event is an UPDATE statement, you can include a column list to
identify which columns must be changed to fire the trigger. You cannot specify a column
list for an INSERT or for a DELETE statement because it always affects entire rows.

. . . UPDATE OF salary . . .

• The triggering event can contain one, two, or all three of these DML operations.
. . . INSERT or UPDATE or DELETE
. . . INSERT or UPDATE OF job_id . . .

The trigger body defines the action—that is, what needs to be done when the triggering event is
issued. The PL/SQL block can contain SQL and PL/SQL statements, and can define PL/SQL
constructs such as variables, cursors, exceptions, and so on. You can also call a PL/SQL
procedure or a Java procedure.

Note: The size of a trigger cannot be greater than 32 KB.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 O

R
AC

LE
 C

O
R

PO
R

AT
IO

N
 u

se
 o

nl
y

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Oracle Database 11g: Develop PL/SQL Program Units 9 - 10

Copyright © 2009, Oracle. All rights reserved.

Creating DML Triggers Using the
CREATE TRIGGER Statement

CREATE [OR REPLACE] TRIGGER trigger_name
timing –- when to fire the trigger
event1 [OR event2 OR event3]
ON object_name
[REFERENCING OLD AS old | NEW AS new]
FOR EACH ROW –- default is statement level trigger
WHEN (condition)]]
DECLARE]
BEGIN
... trigger_body –- executable statements
[EXCEPTION . . .]
END [trigger_name];

timing = BEFORE | AFTER | INSTEAD OF

event = INSERT | DELETE | UPDATE | UPDATE OF column_list

Creating DML Triggers

The components of the trigger syntax are:
• trigger_name uniquely identifies the trigger.
• timing indicates when the trigger fires in relation to the triggering event. Values are

BEFORE, AFTER, and INSTEAD OF.
• event identifies the DML operation causing the trigger to fire.

Values are INSERT, UPDATE [OF column], and DELETE.
• object_name indicates the table or view associated with the trigger.
• For row triggers, you can specify:

- A REFERENCING clause to choose correlation names for referencing the old and
new values of the current row (default values are OLD and NEW)

- FOR EACH ROW to designate that the trigger is a row trigger
- A WHEN clause to apply a conditional predicate, in parentheses, which is evaluated

for each row to determine whether or not to execute the trigger body
• The trigger_body is the action performed by the trigger, implemented as either of the

following:
- An anonymous block with a DECLARE or BEGIN, and an END
- A CALL clause to invoke a stand-alone or packaged stored procedure, such as:

CALL my_procedure;

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 O

R
AC

LE
 C

O
R

PO
R

AT
IO

N
 u

se
 o

nl
y

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Oracle Database 11g: Develop PL/SQL Program Units 9 - 11

Copyright © 2009, Oracle. All rights reserved.

Specifying the Trigger Firing (Timing)

You can specify the trigger timing as to whether to run the
trigger’s action before or after the triggering statement:
• BEFORE: Executes the trigger body before the triggering

DML event on a table.
• AFTER: Execute the trigger body after the triggering DML

event on a table.
• INSTEAD OF: Execute the trigger body instead of the

triggering statement. This is used for views that are not
otherwise modifiable.

Trigger Timing

The BEFORE trigger timing is frequently used in the following situations:
• To determine whether the triggering statement should be allowed to complete (This

eliminates unnecessary processing and enables a rollback in cases where an exception is
raised in the triggering action.)

• To derive column values before completing an INSERT or UPDATE statement
• To initialize global variables or flags, and to validate complex business rules

The AFTER triggers are frequently used in the following situations:
• To complete the triggering statement before executing the triggering action
• To perform different actions on the same triggering statement if a BEFORE trigger is

already present

The INSTEAD OF triggers provide a transparent way of modifying views that cannot be
modified directly through SQL DML statements because a view is not always modifiable. You
can write appropriate DML statements inside the body of an INSTEAD OF trigger to perform
actions directly on the underlying tables of views.

If two or more triggers are defined with the same timing point, and the order in which they fire is
important, then you can control the firing order using the FOLLOWS clause. If it is practical, you
should consider replacing the set of individual triggers for a particular timing point with a single
compound trigger that explicitly codes the actions in the order you intend.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 O

R
AC

LE
 C

O
R

PO
R

AT
IO

N
 u

se
 o

nl
y

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Oracle Database 11g: Develop PL/SQL Program Units 9 - 12

Copyright © 2009, Oracle. All rights reserved.

Statement-Level Triggers
Versus Row-Level Triggers

Does not fire if the triggering event does
not affect any rows

Fires once even if no rows are affected

Use the FOR EACH ROW clause when
creating a trigger.

Is the default when creating a trigger

Fires once for the triggering event

Statement-Level Triggers

Fires once for each row affected by the
triggering event

Row-Level Triggers

Types of DML Triggers

You can specify that the trigger will be executed once for every row affected by the triggering
statement (such as a multiple row UPDATE) or once for the triggering statement, no matter how
many rows it affects.

Statement Trigger

A statement trigger is fired once on behalf of the triggering event, even if no rows are affected at
all. Statement triggers are useful if the trigger action does not depend on the data from rows that
are affected or on data provided by the triggering event itself (for example, a trigger that
performs a complex security check on the current user).

Row Trigger

A row trigger fires each time the table is affected by the triggering event. If the triggering event
affects no rows, a row trigger is not executed. Row triggers are useful if the trigger action
depends on data of rows that are affected or on data provided by the triggering event itself.

Note: Row triggers use correlation names to access the old and new column values of the row
being processed by the trigger.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 O

R
AC

LE
 C

O
R

PO
R

AT
IO

N
 u

se
 o

nl
y

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Oracle Database 11g: Develop PL/SQL Program Units 9 - 13

Copyright © 2009, Oracle. All rights reserved.

Creating DML Triggers Using SQL Developer

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 O

R
AC

LE
 C

O
R

PO
R

AT
IO

N
 u

se
 o

nl
y

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Oracle Database 11g: Develop PL/SQL Program Units 9 - 14

Copyright © 2009, Oracle. All rights reserved.

Trigger-Firing Sequence:
Single-Row Manipulation

Use the following firing sequence for a trigger on a table when
a single row is manipulated:

BEFORE statement trigger

BEFORE row trigger

AFTER row trigger

AFTER statement trigger

INSERT INTO departments
(department_id,department_name, location_id)

VALUES (400, 'CONSULTING', 2400);

. . .

Trigger-Firing Sequence: Single-Row Manipulation

Create a statement trigger or a row trigger based on the requirement that the trigger must fire
once for each row affected by the triggering statement, or just once for the triggering statement,
regardless of the number of rows affected.

When the triggering DML statement affects a single row, both the statement trigger and the row
trigger fire exactly once.

Example

The SQL statement in the slide does not differentiate statement triggers from row triggers
because exactly one row is inserted into the table using the syntax for the INSERT statement
shown in the slide.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 O

R
AC

LE
 C

O
R

PO
R

AT
IO

N
 u

se
 o

nl
y

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Oracle Database 11g: Develop PL/SQL Program Units 9 - 15

Copyright © 2009, Oracle. All rights reserved.

Trigger-Firing Sequence:
Multirow Manipulation

Use the following firing sequence for a trigger on a table when
many rows are manipulated:

BEFORE statement trigger

AFTER statement trigger

BEFORE row trigger

AFTER row trigger

. . .

BEFORE row trigger

AFTER row trigger
. . .

UPDATE employees
SET salary = salary * 1.1
WHERE department_id = 30;

Trigger-Firing Sequence: Multirow Manipulation

When the triggering DML statement affects many rows, the statement trigger fires exactly once,
and the row trigger fires once for every row affected by the statement.

Example

The SQL statement in the slide causes a row-level trigger to fire a number of times equal to the
number of rows that satisfy the WHERE clause (that is, the number of employees reporting to
department 30).

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 O

R
AC

LE
 C

O
R

PO
R

AT
IO

N
 u

se
 o

nl
y

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Oracle Database 11g: Develop PL/SQL Program Units 9 - 16

Copyright © 2009, Oracle. All rights reserved.

EMPLOYEES table

SECURE_EMP trigger

Creating a DML Statement Trigger Example:
SECURE_EMP

CREATE OR REPLACE TRIGGER secure_emp
BEFORE INSERT ON employees

BEGIN
IF (TO_CHAR(SYSDATE,'DY') IN ('SAT','SUN')) OR

(TO_CHAR(SYSDATE,'HH24:MI')
NOT BETWEEN '08:00' AND '18:00') THEN

RAISE_APPLICATION_ERROR(-20500, 'You may insert'
||' into EMPLOYEES table only during '
||' normal business hours.');

END IF;
END;

Application

INSERT INTO EMPLOYEES...;

DML statement fires trigger

Creating a DML Statement Trigger

In the slide example, the SECURE_EMP database trigger is a BEFORE statement trigger that
prevents the INSERT operation from succeeding if the business condition is violated. In this
case, the trigger restricts inserts into the EMPLOYEES table during certain business hours,
Monday through Friday.

If a user attempts to insert a row into the EMPLOYEES table on Saturday, then the user sees an
error message, the trigger fails, and the triggering statement is rolled back. Remember that the
RAISE_APPLICATION_ERROR is a server-side built-in procedure that returns an error to the
user and causes the PL/SQL block to fail.

When a database trigger fails, the triggering statement is automatically rolled back by the Oracle
server.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 O

R
AC

LE
 C

O
R

PO
R

AT
IO

N
 u

se
 o

nl
y

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Oracle Database 11g: Develop PL/SQL Program Units 9 - 17

Copyright © 2009, Oracle. All rights reserved.

Testing Trigger SECURE_EMP

INSERT INTO employees (employee_id, last_name,
first_name, email, hire_date,

job_id, salary, department_id)
VALUES (300, 'Smith', 'Rob', 'RSMITH', SYSDATE,
'IT_PROG', 4500, 60);

Testing SECURE_EMP

To test the trigger, insert a row into the EMPLOYEES table during nonbusiness hours. When the
date and time are out of the business hours specified in the trigger, you receive the error message
shown in the slide.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 O

R
AC

LE
 C

O
R

PO
R

AT
IO

N
 u

se
 o

nl
y

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Oracle Database 11g: Develop PL/SQL Program Units 9 - 18

Copyright © 2009, Oracle. All rights reserved.

Using Conditional Predicates

CREATE OR REPLACE TRIGGER secure_emp BEFORE
INSERT OR UPDATE OR DELETE ON employees

BEGIN
IF (TO_CHAR(SYSDATE,'DY') IN ('SAT','SUN')) OR

(TO_CHAR(SYSDATE,'HH24')
NOT BETWEEN '08' AND '18') THEN

IF DELETING THEN RAISE_APPLICATION_ERROR(
-20502,'You may delete from EMPLOYEES table'||
'only during normal business hours.');

ELSIF INSERTING THEN RAISE_APPLICATION_ERROR(
-20500,'You may insert into EMPLOYEES table'||
'only during normal business hours.');

ELSIF UPDATING ('SALARY') THEN
RAISE_APPLICATION_ERROR(-20503, 'You may '||
'update SALARY only normal during business hours.');

ELSE RAISE_APPLICATION_ERROR(-20504,'You may'||
' update EMPLOYEES table only during'||
' normal business hours.');

END IF;
END IF;

END;

Detecting the DML Operation that Fired a Trigger

If more than one type of DML operation can fire a trigger (for example, ON INSERT OR
DELETE OR UPDATE OF Emp_tab), the trigger body can use the conditional predicates
INSERTING, DELETING, and UPDATING to check which type of statement fired the trigger.

You can combine several triggering events into one by taking advantage of the special
conditional predicates INSERTING, UPDATING, and DELETING within the trigger body.

Example

Create one trigger to restrict all data manipulation events on the EMPLOYEES table to certain
business hours, Monday through Friday.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 O

R
AC

LE
 C

O
R

PO
R

AT
IO

N
 u

se
 o

nl
y

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Oracle Database 11g: Develop PL/SQL Program Units 9 - 19

Copyright © 2009, Oracle. All rights reserved.

Creating a DML Row Trigger

CREATE OR REPLACE TRIGGER restrict_salary
BEFORE INSERT OR UPDATE OF salary ON employees
FOR EACH ROW
BEGIN

IF NOT (:NEW.job_id IN ('AD_PRES', 'AD_VP'))
AND :NEW.salary > 15000 THEN

RAISE_APPLICATION_ERROR (-20202,
'Employee cannot earn more than $15,000.');

END IF;
END;/

UPDATE employees
SET salary = 15500
WHERE last_name = 'Russell';

Creating a DML Row Trigger

You can create a BEFORE row trigger in order to prevent the triggering operation from
succeeding if a certain condition is violated.

In the first slide example, a trigger is created to allow only employees whose job IDs are either
AD_PRES or AD_VP to earn a salary of more than 15,000. If you try to update the salary of
employee Russell whose employee id is SA_MAN, the trigger raises the exception displayed
in the slide.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 O

R
AC

LE
 C

O
R

PO
R

AT
IO

N
 u

se
 o

nl
y

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Oracle Database 11g: Develop PL/SQL Program Units 9 - 20

Copyright © 2009, Oracle. All rights reserved.

Using OLD and NEW Qualifiers

• When a row-level trigger fires, the PL/SQL run-time engine
creates and populates two data structures:
– OLD: Stores the original values of the record processed by

the trigger
– NEW: Contains the new values

• NEW and OLD have the same structure as a record
declared using the %ROWTYPE on the table to which the
trigger is attached.

NULL

Value after update

Inserted value

New Value

Value before deleteDELETE

NULLINSERT

UPDATE

Data Operations

Value before update

Old Value

Using OLD and NEW Qualifiers

Within a ROW trigger, you can reference the value of a column before and after the data change
by prefixing it with the OLD and NEW qualifiers.

Note
• The OLD and NEW qualifiers are available only in ROW triggers.
• Prefix these qualifiers with a colon (:) in every SQL and PL/SQL statement.
• There is no colon (:) prefix if the qualifiers are referenced in the WHEN restricting

condition.
• Row triggers can decrease the performance if you perform many updates on larger tables.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 O

R
AC

LE
 C

O
R

PO
R

AT
IO

N
 u

se
 o

nl
y

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Oracle Database 11g: Develop PL/SQL Program Units 9 - 21

Copyright © 2009, Oracle. All rights reserved.

Using OLD and NEW Qualifiers: Example

CREATE OR REPLACE TRIGGER audit_emp_values

AFTER DELETE OR INSERT OR UPDATE ON employees

FOR EACH ROW

BEGIN

INSERT INTO audit_emp(user_name, time_stamp, id,

old_last_name, new_last_name, old_title,

new_title, old_salary, new_salary)

VALUES (USER, SYSDATE, :OLD.employee_id,

:OLD.last_name, :NEW.last_name, :OLD.job_id,

:NEW.job_id, :OLD.salary, :NEW.salary);

END;

/

Using OLD and NEW Qualifiers: Example

In the slide example, the AUDIT_EMP_VALUES trigger is created on the EMPLOYEES table.
The trigger adds rows to a user table, AUDIT_EMP, logging a user’s activity against the
EMPLOYEES table. The trigger records the values of several columns both before and after the
data changes by using the OLD and NEW qualifiers with the respective column name.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 O

R
AC

LE
 C

O
R

PO
R

AT
IO

N
 u

se
 o

nl
y

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Oracle Database 11g: Develop PL/SQL Program Units 9 - 22

Copyright © 2009, Oracle. All rights reserved.

Using OLD and NEW Qualifiers:
Example Using AUDIT_EMP

INSERT INTO employees (employee_id, last_name, job_id,
salary, email, hire_date)
VALUES (999, 'Temp emp', 'SA_REP', 6000, 'TEMPEMP',
TRUNC(SYSDATE));
/
UPDATE employees
SET salary = 7000, last_name = 'Smith'
WHERE employee_id = 999;
/
SELECT *
FROM audit_emp;

Using OLD and NEW Qualifiers: Example Using AUDIT_EMP

Create a trigger on the EMPLOYEES table to add rows to a user table, AUDIT_EMP, logging a
user’s activity against the EMPLOYEES table. The trigger records the values of several columns
both before and after the data changes by using the OLD and NEW qualifiers with the respective
column name.

The following is the result of inserting the employee record into the EMPLOYEES table:

. . .

The following is the result of updating the salary for employee “Smith”:

. . .

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 O

R
AC

LE
 C

O
R

PO
R

AT
IO

N
 u

se
 o

nl
y

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Oracle Database 11g: Develop PL/SQL Program Units 9 - 23

Copyright © 2009, Oracle. All rights reserved.

Using the WHEN Clause to Fire a
Row Trigger Based on a Condition

CREATE OR REPLACE TRIGGER derive_commission_pct
BEFORE INSERT OR UPDATE OF salary ON employees
FOR EACH ROW
WHEN (NEW.job_id = 'SA_REP')
BEGIN
IF INSERTING THEN
:NEW.commission_pct := 0;

ELSIF :OLD.commission_pct IS NULL THEN
:NEW.commission_pct := 0;

ELSE
:NEW.commission_pct := :OLD.commission_pct+0.05;

END IF;
END;
/

Restricting a Row Trigger: Example

Optionally, you can include a trigger restriction in the definition of a row trigger by specifying a
Boolean SQL expression in a WHEN clause. If you include a WHEN clause in the trigger, then the
expression in the WHEN clause is evaluated for each row that the trigger affects.

If the expression evaluates to TRUE for a row, then the trigger body executes on behalf of that
row. However, if the expression evaluates to FALSE or NOT TRUE for a row (unknown, as with
nulls), then the trigger body does not execute for that row. The evaluation of the WHEN clause
does not have an effect on the execution of the triggering SQL statement (in other words, the
triggering statement is not rolled back if the expression in a WHEN clause evaluates to FALSE).

Note: A WHEN clause cannot be included in the definition of a statement trigger.

In the slide example, a trigger is created on the EMPLOYEES table to calculate an employee’s
commission when a row is added to the EMPLOYEES table, or when an employee’s salary is
modified.

The NEW qualifier cannot be prefixed with a colon in the WHEN clause because the WHEN clause
is outside the PL/SQL blocks.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 O

R
AC

LE
 C

O
R

PO
R

AT
IO

N
 u

se
 o

nl
y

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Oracle Database 11g: Develop PL/SQL Program Units 9 - 24

Copyright © 2009, Oracle. All rights reserved.

Summary of the Trigger Execution Model

1. Execute all BEFORE STATEMENT triggers.

2. Loop for each row affected by the SQL statement:
a. Execute all BEFORE ROW triggers for that row.

b. Execute the DML statement and perform integrity constraint
checking for that row.

c. Execute all AFTER ROW triggers for that row.

3. Execute all AFTER STATEMENT triggers.

Trigger Execution Model

A single DML statement can potentially fire up to four types of triggers:
• BEFORE and AFTER statement triggers
• BEFORE and AFTER row triggers

A triggering event or a statement within the trigger can cause one or more integrity constraints to
be checked. However, you can defer constraint checking until a COMMIT operation is
performed.

Triggers can also cause other triggers—known as cascading triggers—to fire.

All actions and checks performed as a result of a SQL statement must succeed. If an exception is
raised within a trigger and the exception is not explicitly handled, then all actions performed
because of the original SQL statement are rolled back (including actions performed by firing
triggers). This guarantees that integrity constraints can never be compromised by triggers.

When a trigger fires, the tables referenced in the trigger action may undergo changes by other
users’ transactions. In all cases, a read-consistent image is guaranteed for the modified values
that the trigger needs to read (query) or write (update).

Note: Integrity checking can be deferred until the COMMIT operation is performed.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 O

R
AC

LE
 C

O
R

PO
R

AT
IO

N
 u

se
 o

nl
y

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Oracle Database 11g: Develop PL/SQL Program Units 9 - 25

Copyright © 2009, Oracle. All rights reserved.

-- Integrity constraint violation error –2992 raised.
UPDATE employees SET department_id = 999
WHERE employee_id = 170;

Implementing an Integrity
Constraint with an After Trigger

CREATE OR REPLACE TRIGGER employee_dept_fk_trg
AFTER UPDATE OF department_id

ON employees FOR EACH ROW
BEGIN
INSERT INTO departments VALUES(:new.department_id,

'Dept '||:new.department_id, NULL, NULL);
EXCEPTION

WHEN DUP_VAL_ON_INDEX THEN
NULL; -- mask exception if department exists

END; /

-- Successful after trigger is fired
UPDATE employees SET department_id = 999
WHERE employee_id = 170;

Implementing an Integrity Constraint with an After Trigger

The example in the slide explains a situation in which the integrity constraint can be taken care
of by using an After trigger. The EMPLOYEES table has a foreign key constraint on the
DEPARTMENT_ID column of the DEPARTMENTS table.

In the first SQL statement, the DEPARTMENT_ID of the employee 170 is modified to 999.
Because department 999 does not exist in the DEPARTMENTS table, the statement raises
exception –2292 for the integrity constraint violation.

The EMPLOYEE_DEPT_FK_TRG trigger is created that inserts a new row into the
DEPARTMENTS table, using :NEW.DEPARTMENT_ID for the value of the new department’s
DEPARTMENT_ID. The trigger fires when the UPDATE statement modifies the
DEPARTMENT_ID of employee 170 to 999. When the foreign key constraint is checked, it is
successful because the trigger inserted the department 999 into the DEPARTMENTS table.
Therefore, no exception occurs unless the department already exists when the trigger attempts to
insert the new row. However, the EXCEPTION handler traps and masks the exception allowing
the operation to succeed.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 O

R
AC

LE
 C

O
R

PO
R

AT
IO

N
 u

se
 o

nl
y

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Oracle Database 11g: Develop PL/SQL Program Units 9 - 26

Copyright © 2009, Oracle. All rights reserved.

INSTEAD OF Triggers

Application

MY_VIEW

INSTEAD OF trigger

INSERT

UPDATE

INSERT INTO my_view
. . . ;

TABLE 2

TABLE 1

INSTEAD OF Triggers

Use INSTEAD OF triggers to modify data in which the DML statement has been issued against
an inherently un-updatable view. These triggers are called INSTEAD OF triggers because,
unlike other triggers, the Oracle server fires the trigger instead of executing the triggering
statement. These triggers are used to perform INSERT, UPDATE, and DELETE operations
directly on the underlying tables. You can write INSERT, UPDATE, and DELETE statements
against a view, and the INSTEAD OF trigger works invisibly in the background to make the
right actions take place. A view cannot be modified by normal DML statements if the view
query contains set operators, group functions, clauses such as GROUP BY, CONNECT BY,
START, the DISTINCT operator, or joins. For example, if a view consists of more than one
table, an insert to the view may entail an insertion into one table and an update to another. So
you write an INSTEAD OF trigger that fires when you write an insert against the view. Instead
of the original insertion, the trigger body executes, which results in an insertion of data into one
table and an update to another table.

Note: If a view is inherently updatable and has INSTEAD OF triggers, then the triggers take
precedence. INSTEAD OF triggers are row triggers. The CHECK option for views is not
enforced when insertions or updates to the view are performed by using INSTEAD OF triggers.
The INSTEAD OF trigger body must enforce the check.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 O

R
AC

LE
 C

O
R

PO
R

AT
IO

N
 u

se
 o

nl
y

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Oracle Database 11g: Develop PL/SQL Program Units 9 - 27

Copyright © 2009, Oracle. All rights reserved.

Creating an INSTEAD OF Trigger: Example

INSTEAD OF INSERT
into EMP_DETAILS

INSERT into
NEW_EMPS table

UPDATE
NEW_DEPTS table

INSERT INTO emp_details
VALUES (9001,'ABBOTT',3000, 10, 'Administration');

EMP_DETAILS view

1

2

3

Creating an INSTEAD OF Trigger

You can create an INSTEAD OF trigger in order to maintain the base tables on which a view is
based.

The slide example illustrates an employee being inserted into the view EMP_DETAILS, whose
query is based on the EMPLOYEES and DEPARTMENTS tables. The NEW_EMP_DEPT
(INSTEAD OF) trigger executes in place of the INSERT operation that causes the trigger to
fire. The INSTEAD OF trigger then issues the appropriate INSERT and UPDATE to the base
tables used by the EMP_DETAILS view. Therefore, instead of inserting the new employee
record into the EMPLOYEES table, the following actions take place:

1. The NEW_EMP_DEPT INSTEAD OF trigger fires.
2. A row is inserted into the NEW_EMPS table.
3. The DEPT_SAL column of the NEW_DEPTS table is updated. The salary value supplied

for the new employee is added to the existing total salary of the department to which the
new employee has been assigned.

Note: Before you run the slide example, you must create the required structures shown on the
next two pages.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 O

R
AC

LE
 C

O
R

PO
R

AT
IO

N
 u

se
 o

nl
y

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Oracle Database 11g: Develop PL/SQL Program Units 9 - 28

Copyright © 2009, Oracle. All rights reserved.

Creating an INSTEAD OF Trigger to
Perform DML on Complex Views

CREATE TABLE new_emps AS
SELECT employee_id,last_name,salary,department_id

FROM employees;

CREATE TABLE new_depts AS
SELECT d.department_id,d.department_name,

sum(e.salary) dept_sal
FROM employees e, departments d

WHERE e.department_id = d.department_id;

CREATE VIEW emp_details AS
SELECT e.employee_id, e.last_name, e.salary,

e.department_id, d.department_name
FROM employees e, departments d
WHERE e.department_id = d.department_id
GROUP BY d.department_id,d.department_name;

Creating an INSTEAD OF Trigger (continued)

The example in the slide creates two new tables, NEW_EMPS and NEW_DEPTS, that are based
on the EMPLOYEES and DEPARTMENTS tables, respectively. It also creates an EMP_DETAILS
view from the EMPLOYEES and DEPARTMENTS tables.

If a view has a complex query structure, then it is not always possible to perform DML directly
on the view to affect the underlying tables. The example requires creation of an INSTEAD OF
trigger, called NEW_EMP_DEPT, shown on the next page. The NEW_DEPT_EMP trigger handles
DML in the following way:

• When a row is inserted into the EMP_DETAILS view, instead of inserting the row directly
into the view, rows are added into the NEW_EMPS and NEW_DEPTS tables, using the data
values supplied with the INSERT statement.

• When a row is modified or deleted through the EMP_DETAILS view, corresponding rows
in the NEW_EMPS and NEW_DEPTS tables are affected.

Note: INSTEAD OF triggers can be written only for views, and the BEFORE and AFTER timing
options are not valid.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 O

R
AC

LE
 C

O
R

PO
R

AT
IO

N
 u

se
 o

nl
y

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Oracle Database 11g: Develop PL/SQL Program Units 9 - 29

Creating an INSTEAD OF Trigger (continued)
CREATE OR REPLACE TRIGGER new_emp_dept
INSTEAD OF INSERT OR UPDATE OR DELETE ON emp_details
FOR EACH ROW
BEGIN

IF INSERTING THEN
INSERT INTO new_emps
VALUES (:NEW.employee_id, :NEW.last_name,

:NEW.salary, :NEW.department_id);
UPDATE new_depts

SET dept_sal = dept_sal + :NEW.salary
WHERE department_id = :NEW.department_id;

ELSIF DELETING THEN
DELETE FROM new_emps

WHERE employee_id = :OLD.employee_id;
UPDATE new_depts

SET dept_sal = dept_sal - :OLD.salary
WHERE department_id = :OLD.department_id;

ELSIF UPDATING ('salary') THEN
UPDATE new_emps

SET salary = :NEW.salary
WHERE employee_id = :OLD.employee_id;

UPDATE new_depts
SET dept_sal = dept_sal +

(:NEW.salary - :OLD.salary)
WHERE department_id = :OLD.department_id;

ELSIF UPDATING ('department_id') THEN
UPDATE new_emps

SET department_id = :NEW.department_id
WHERE employee_id = :OLD.employee_id;

UPDATE new_depts
SET dept_sal = dept_sal - :OLD.salary
WHERE department_id = :OLD.department_id;

UPDATE new_depts
SET dept_sal = dept_sal + :NEW.salary
WHERE department_id = :NEW.department_id;

END IF;
END;
/

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 O

R
AC

LE
 C

O
R

PO
R

AT
IO

N
 u

se
 o

nl
y

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Oracle Database 11g: Develop PL/SQL Program Units 9 - 30

Copyright © 2009, Oracle. All rights reserved.

The Status of a Trigger

A trigger is in either of two distinct modes:

• Enabled: The trigger runs its trigger action if a triggering
statement is issued and the trigger restriction (if any)
evaluates to true (default).

• Disabled: The trigger does not run its trigger action, even if
a triggering statement is issued and the trigger restriction
(if any) would evaluate to true.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 O

R
AC

LE
 C

O
R

PO
R

AT
IO

N
 u

se
 o

nl
y

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Oracle Database 11g: Develop PL/SQL Program Units 9 - 31

Copyright © 2009, Oracle. All rights reserved.

Creating a Disabled Trigger

• Before Oracle Database 11g, if you created a trigger
whose body had a PL/SQL compilation error, then DML to
the table failed.

• In Oracle Database 11g, you can create a disabled trigger
and then enable it only when you know it will be compiled
successfully.

CREATE OR REPLACE TRIGGER mytrg
BEFORE INSERT ON mytable FOR EACH ROW
DISABLE

BEGIN
:New.ID := my_seq.Nextval;

. . .
END;
/

Creating a Disabled Trigger

Before Oracle Database 11g, if you created a trigger whose body had a PL/SQL compilation
error, then DML to the table failed. The following error message was displayed:

ORA-04098: trigger 'TRG' is invalid and failed re-validation

In Oracle Database 11g, you can create a disabled trigger, and then enable it only when you
know it will be compiled successfully.

You can also temporarily disable a trigger in the following situations:
• An object it references is not available.
• You need to perform a large data load, and you want it to proceed quickly without firing

triggers.
• You are reloading data.

Note: The slide code example assumes that you have an existing sequence named my_seq.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 O

R
AC

LE
 C

O
R

PO
R

AT
IO

N
 u

se
 o

nl
y

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Oracle Database 11g: Develop PL/SQL Program Units 9 - 32

Copyright © 2009, Oracle. All rights reserved.

Managing Triggers Using the
ALTER and DROP SQL Statements

-- Disable or reenable a database trigger:

ALTER TRIGGER trigger_name DISABLE | ENABLE;

-- Disable or reenable all triggers for a table:

ALTER TABLE table_name DISABLE | ENABLE ALL TRIGGERS;

-- Recompile a trigger for a table:

ALTER TRIGGER trigger_name COMPILE;

-- Remove a trigger from the database:

DROP TRIGGER trigger_name;

Managing Triggers

A trigger has two modes or states: ENABLED and DISABLED. When a trigger is first created, it
is enabled by default. The Oracle server checks integrity constraints for enabled triggers and
guarantees that triggers cannot compromise them. In addition, the Oracle server provides read-
consistent views for queries and constraints, manages the dependencies, and provides a two-
phase commit process if a trigger updates remote tables in a distributed database.

Disabling a Trigger
Use the ALTER TRIGGER command to disable a trigger. You can also disable all triggers on a
table by using the ALTER TABLE command. You can disable triggers to improve performance
or to avoid data integrity checks when loading massive amounts of data with utilities such as
SQL*Loader. You might also disable a trigger when it references a database object that is
currently unavailable, due to a failed network connection, disk crash, offline data file, or offline
tablespace.

Recompiling a Trigger
Use the ALTER TRIGGER command to explicitly recompile a trigger that is invalid.

Removing Triggers

When a trigger is no longer required, use a SQL statement in SQL Developer or SQL*Plus to
remove it. When you remove a table, all triggers on that table are also removed.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 O

R
AC

LE
 C

O
R

PO
R

AT
IO

N
 u

se
 o

nl
y

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Oracle Database 11g: Develop PL/SQL Program Units 9 - 33

Copyright © 2009, Oracle. All rights reserved.

Managing Triggers Using SQL Developer

Managing Triggers Using SQL Developer

You can use the Triggers node in the Connections navigation tree to manage triggers. Right-
click a trigger name, and then select one of the following options:

• Edit
• Compile
• Compile for Debug
• Rename
• Drop Trigger
• Enable
• Disable

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 O

R
AC

LE
 C

O
R

PO
R

AT
IO

N
 u

se
 o

nl
y

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Oracle Database 11g: Develop PL/SQL Program Units 9 - 34

Copyright © 2009, Oracle. All rights reserved.

Testing Triggers

• Test each triggering data operation, as well as non-
triggering data operations.

• Test each case of the WHEN clause.

• Cause the trigger to fire directly from a basic data
operation, as well as indirectly from a procedure.

• Test the effect of the trigger on other triggers.

• Test the effect of other triggers on the trigger.

Testing Triggers

Testing code can be a time-consuming process. Do the following when testing triggers:
• Ensure that the trigger works properly by testing a number of cases separately:

- Test the most common success scenarios first.
- Test the most common failure conditions to see that they are properly managed.

• The more complex the trigger, the more detailed your testing is likely to be. For example,
if you have a row trigger with a WHEN clause specified, then you should ensure that the
trigger fires when the conditions are satisfied. Or, if you have cascading triggers, you need
to test the effect of one trigger on the other and ensure that you end up with the desired
results.

• Use the DBMS_OUTPUT package to debug triggers.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 O

R
AC

LE
 C

O
R

PO
R

AT
IO

N
 u

se
 o

nl
y

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Oracle Database 11g: Develop PL/SQL Program Units 9 - 35

Copyright © 2009, Oracle. All rights reserved.

Viewing Trigger Information

You can view the following trigger information:

Displays PL/SQL syntax errors for a triggerUSER_ERRORS

Displays object informationUSER_OBJECTS

USER/ALL/DBA_TRIGGERS

Data Dictionary View

Displays trigger information

Description

Viewing Trigger Information

The slide shows the data dictionary views that you can access to get information regarding the
triggers.

The USER_OBJECTS view contains the name and status of the trigger and the date and time
when the trigger was created.

The USER_ERRORS view contains the details about the compilation errors that occurred while a
trigger was compiling. The contents of these views are similar to those for subprograms.

The USER_TRIGGERS view contains details such as name, type, triggering event, the table on
which the trigger is created, and the body of the trigger.

The SELECT Username FROM USER_USERS; statement gives the name of the owner of the
trigger, not the name of the user who is updating the table.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 O

R
AC

LE
 C

O
R

PO
R

AT
IO

N
 u

se
 o

nl
y

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Oracle Database 11g: Develop PL/SQL Program Units 9 - 36

Copyright © 2009, Oracle. All rights reserved.

Using USER_TRIGGERS

DESCRIBE user_triggers

SELECT trigger_type, trigger_body
FROM user_triggers
WHERE trigger_name = 'SECURE_EMP';

Using USER_TRIGGERS

If the source file is unavailable, then you can use the SQL Worksheet in SQL Developer or
SQL*Plus to regenerate it from USER_TRIGGERS. You can also examine the
ALL_TRIGGERS and DBA_TRIGGERS views, each of which contains the additional column
OWNER, for the owner of the object. The result for the second slide example is as follows:

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 O

R
AC

LE
 C

O
R

PO
R

AT
IO

N
 u

se
 o

nl
y

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Oracle Database 11g: Develop PL/SQL Program Units 9 - 37

Copyright © 2009, Oracle. All rights reserved.

Quiz

A triggering event can be one or more of the following:
1. An INSERT, UPDATE, or DELETE statement on a specific

table (or view, in some cases)
2. A CREATE, ALTER, or DROP statement on any schema

object

3. A database startup or instance shutdown

4. A specific error message or any error message

5. A user logon or logoff

Answers: 1, 2, 3, 4, 5

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 O

R
AC

LE
 C

O
R

PO
R

AT
IO

N
 u

se
 o

nl
y

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Oracle Database 11g: Develop PL/SQL Program Units 9 - 38

Copyright © 2009, Oracle. All rights reserved.

Summary

In this lesson, you should have learned how to:

• Create database triggers that are invoked by DML
operations

• Create statement and row trigger types

• Use database trigger-firing rules

• Enable, disable, and manage database triggers

• Develop a strategy for testing triggers

• Remove database triggers

Summary

This lesson covered creating database triggers that execute before, after, or instead of a specified
DML operation. Triggers are associated with database tables or views. The BEFORE and AFTER
timings apply to DML operations on tables. The INSTEAD OF trigger is used as a way to
replace DML operations on a view with appropriate DML statements against other tables in the
database.

Triggers are enabled by default but can be disabled to suppress their operation until enabled
again. If business rules change, triggers can be removed or altered as required.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 O

R
AC

LE
 C

O
R

PO
R

AT
IO

N
 u

se
 o

nl
y

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Oracle Database 11g: Develop PL/SQL Program Units 9 - 39

Copyright © 2009, Oracle. All rights reserved.

Practice 9 Overview:
Creating Statement and Row Triggers

This practice covers the following topics:

• Creating row triggers

• Creating a statement trigger

• Calling procedures from a trigger

Practice 9: Overview

In this practice, you create statement and row triggers. You also create procedures that are
invoked from within the triggers.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 O

R
AC

LE
 C

O
R

PO
R

AT
IO

N
 u

se
 o

nl
y

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Oracle Database 11g: Develop PL/SQL Program Units 9 - 40

Practice 9

1. The rows in the JOBS table store a minimum and maximum salary allowed for different
JOB_ID values. You are asked to write code to ensure that employees’ salaries fall in the
range allowed for their job type, for insert and update operations.

a. Create a procedure called CHECK_SALARY as follows:

i. The procedure accepts two parameters, one for an employee’s job ID string and
the other for the salary.

ii. The procedure uses the job ID to determine the minimum and maximum salary
for the specified job.

iii. If the salary parameter does not fall within the salary range of the job, inclusive
of the minimum and maximum, then it should raise an application exception,
with the message “Invalid salary <sal>. Salaries for job <jobid> must be
between <min> and <max>”. Replace the various items in the message with
values supplied by parameters and variables populated by queries. Save the file.

b. Create a trigger called CHECK_SALARY_TRG on the EMPLOYEES table that fires
before an INSERT or UPDATE operation on each row:

i. The trigger must call the CHECK_SALARY procedure to carry out the business
logic.

ii. The trigger should pass the new job ID and salary to the procedure parameters.

2. Test the CHECK_SAL_TRG using the following cases:

a. Using your EMP_PKG.ADD_EMPLOYEE procedure, add employee Eleanor Beh
to department 30. What happens and why?

b. Update the salary of employee 115 to $2,000. In a separate update operation,

change the employee job ID to HR_REP. What happens in each case?

c. Update the salary of employee 115 to $2,800. What happens?

3. Update the CHECK_SALARY_TRG trigger to fire only when the job ID or salary
values have actually changed.

a. Implement the business rule using a WHEN clause to check whether the JOB_ID or
SALARY values have changed.

Note: Make sure that the condition handles the NULL in the OLD.column_name values
if an INSERT operation is performed; otherwise, an INSERT operation will fail.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 O

R
AC

LE
 C

O
R

PO
R

AT
IO

N
 u

se
 o

nl
y

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Oracle Database 11g: Develop PL/SQL Program Units 9 - 41

Practice 9 (continued)

b. Test the trigger by executing the EMP_PKG.ADD_EMPLOYEE procedure with the
following parameter values:

- p_first_name: 'Eleanor'

- p_last name: 'Beh'

- p_Email: 'EBEH'

- p_Job: 'IT_PROG'

- p_Sal: 5000

c. Update employees with the IT_PROG job by incrementing their salary by $2,000.
What happens?

d. Update the salary to $9,000 for Eleanor Beh.

Hint: Use an UPDATE statement with a subquery in the WHERE clause. What
happens?

e. Change the job of Eleanor Beh to ST_MAN using another UPDATE statement
with a subquery. What happens?

4. You are asked to prevent employees from being deleted during business hours.

a. Write a statement trigger called DELETE_EMP_TRG on the EMPLOYEES table to
prevent rows from being deleted during weekday business hours, which are from
9:00 AM through 6:00 PM.

b. Attempt to delete employees with JOB_ID of SA_REP who are not assigned to a
department.

Hint: This is employee Grant with ID 178.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 O

R
AC

LE
 C

O
R

PO
R

AT
IO

N
 u

se
 o

nl
y

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 O

R
AC

LE
 C

O
R

PO
R

AT
IO

N
 u

se
 o

nl
y

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Copyright © 2009, Oracle. All rights reserved.

Creating Compound, DDL,
and Event Database Triggers

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 O

R
AC

LE
 C

O
R

PO
R

AT
IO

N
 u

se
 o

nl
y

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Oracle Database 11g: Develop PL/SQL Program Units 10 - 2

Copyright © 2009, Oracle. All rights reserved.

Objectives

After completing this lesson, you should be able to do the
following:

• Describe compound triggers

• Describe mutating tables

• Create triggers on DDL statements

• Create triggers on system events

• Display information about triggers

Lesson Aim

In this lesson, you learn how to create and use database triggers.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 O

R
AC

LE
 C

O
R

PO
R

AT
IO

N
 u

se
 o

nl
y

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Oracle Database 11g: Develop PL/SQL Program Units 10 - 3

Copyright © 2009, Oracle. All rights reserved.

What Is a Compound Trigger?

A single trigger on a table that allows you to specify actions for
each of the following four timing points:

• Before the firing statement

• Before each row that the firing statement affects

• After each row that the firing statement affects

• After the firing statement

What Is a Compound Trigger?

Starting with Oracle Database 11g, you can use a compound trigger. A compound trigger is a
single trigger on a table that allows you to specify actions for each of the four triggering timing
points:

• Before the firing statement
• Before each row that the firing statement affects
• After each row that the firing statement affects
• After the firing statement

Note: For additional information about triggers, refer to the Oracle Database PL/SQL Language
Reference 11g Release 1 (11.1).

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 O

R
AC

LE
 C

O
R

PO
R

AT
IO

N
 u

se
 o

nl
y

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Oracle Database 11g: Develop PL/SQL Program Units 10 - 4

Copyright © 2009, Oracle. All rights reserved.

Working with Compound Triggers

• The compound trigger body supports a common PL/SQL
state that the code for each timing point can access.

• The compound trigger common state is:
– Established when the triggering statement starts

– Destroyed when the triggering statement completes

• A compound trigger has a declaration section and a
section for each of its timing points.

Working with Compound Triggers

The compound trigger body supports a common PL/SQL state that the code for each timing
point can access. The common state is automatically destroyed when the firing statement
completes, even when the firing statement causes an error. Your applications can avoid the
mutating table error by allowing rows destined for a second table (such as a history table or an
audit table) to accumulate and then bulk-inserting them.

Before Oracle Database 11g Release 1 (11.1), you needed to model the common state with an
ancillary package. This approach was both cumbersome to program and subject to memory leak
when the firing statement caused an error and the after-statement trigger did not fire. Compound
triggers make PL/SQL easier for you to use and improve run-time performance and scalability.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 O

R
AC

LE
 C

O
R

PO
R

AT
IO

N
 u

se
 o

nl
y

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Oracle Database 11g: Develop PL/SQL Program Units 10 - 5

Copyright © 2009, Oracle. All rights reserved.

The Benefits of Using a Compound Trigger

You can use compound triggers to:

• Program an approach where you want the actions you
implement for the various timing points to share common
data.

• Accumulate rows destined for a second table so that you
can periodically bulk-insert them

• Avoid the mutating-table error (ORA-04091)by allowing
rows destined for a second table to accumulate and then
bulk-inserting them

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 O

R
AC

LE
 C

O
R

PO
R

AT
IO

N
 u

se
 o

nl
y

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Oracle Database 11g: Develop PL/SQL Program Units 10 - 6

Copyright © 2009, Oracle. All rights reserved.

Timing-Point Sections of a
Table Compound Trigger

A compound trigger defined on a table has one or more of the
following timing-point sections. Timing-point sections must appear in
the order shown in the table.

BEFORE EACH ROWBefore each row that the triggering statement affects

AFTER EACH ROWAfter each row that the triggering statement affects

BEFORE statementBefore the triggering statement executes

After the triggering statement executes

Timing Point

AFTER statement

Compound Trigger Section

Timing-Point Sections of a Table Compound Trigger

Note: Timing-point sections must appear in the order shown in the slide. If a timing-point
section is absent, nothing happens at its timing point.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 O

R
AC

LE
 C

O
R

PO
R

AT
IO

N
 u

se
 o

nl
y

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Oracle Database 11g: Develop PL/SQL Program Units 10 - 7

Copyright © 2009, Oracle. All rights reserved.

Compound Trigger Structure for Tables

CREATE OR REPLACE TRIGGER schema.trigger
FOR dml_event_clause ON schema.table
COMPOUND TRIGGER

-- Initial section
-- Declarations
-- Subprograms

-- Optional section
BEFORE STATEMENT IS ...;

-- Optional section
BEFORE EACH ROW IS ...;

-- Optional section
AFTER EACH ROW IS ...;

-- Optional section
AFTER STATEMENT IS ...;

1

2

Compound Trigger Structure for Tables

A compound trigger has two main sections:
• An initial section where variables and subprograms are declared. The code in this section

executes before any of the code in the optional section.
• An optional section that defines the code for each possible trigger point. Depending on

whether you are defining a compound trigger for a table or for a view, these triggering
points are different and are listed in the image shown above and on the following page.
The code for the triggering points must follow the order shown above.

Note: For additional information about Compound Triggers, refer to the Oracle Database
PL/SQL Language Reference 11g Release 1 (11.1) guide.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 O

R
AC

LE
 C

O
R

PO
R

AT
IO

N
 u

se
 o

nl
y

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Oracle Database 11g: Develop PL/SQL Program Units 10 - 8

Copyright © 2009, Oracle. All rights reserved.

Compound Trigger Structure for Views

CREATE OR REPLACE TRIGGER
schema.trigger

FOR dml_event_clause ON schema.view

COMPOUND TRIGGER

-- Optional section (exclusive)
INSTEAD OF EACH ROW IS
...;

-- Initial section
-- Declarations
-- Subprograms

Compound Trigger Structure for Views

With views, the only allowed section is an INSTEAD OF EACH ROW clause.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 O

R
AC

LE
 C

O
R

PO
R

AT
IO

N
 u

se
 o

nl
y

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Oracle Database 11g: Develop PL/SQL Program Units 10 - 9

Copyright © 2009, Oracle. All rights reserved.

Compound Trigger Restrictions

• A compound trigger must be a DML trigger and defined on either
a table or a view.

• The body of a compound trigger must be compound trigger
block, written in PL/SQL.

• A compound trigger body cannot have an initialization block;
therefore, it cannot have an exception section.

• An exception that occurs in one section must be handled in that
section. It cannot transfer control to another section.

• :OLD and :NEW cannot appear in the declaration, BEFORE
STATEMENT, or the AFTER STATEMENT sections.

• Only the BEFORE EACH ROW section can change the value of
:NEW.

• The firing order of compound triggers is not guaranteed unless
you use the FOLLOWS clause.

Compound Trigger Restrictions

The following are some of the restrictions when working with compound triggers:
• The body of a compound trigger must compound trigger block, written in PL/SQL.
• A compound trigger must be a DML trigger.
• A compound trigger must be defined on either a table or a view.
• A compound trigger body cannot have an initialization block; therefore, it cannot have an

exception section. This is not a problem, because the BEFORE STATEMENT section
always executes exactly once before any other timing-point section executes.

• An exception that occurs in one section must be handled in that section. It cannot transfer
control to another section.

• :OLD, :NEW, and :PARENT cannot appear in the declaration section, the BEFORE
STATEMENT section, or the AFTER STATEMENT section.

• The firing order of compound triggers is not guaranteed unless you use the FOLLOWS
clause.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 O

R
AC

LE
 C

O
R

PO
R

AT
IO

N
 u

se
 o

nl
y

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Oracle Database 11g: Develop PL/SQL Program Units 10 - 10

Copyright © 2009, Oracle. All rights reserved.

Trigger Restrictions on Mutating Tables

• A mutating table is:
– A table that is being modified by an UPDATE, DELETE, or

INSERT statement, or

– A table that might be updated by the effects of a DELETE
CASCADE constraint

• The session that issued the triggering statement cannot
query or modify a mutating table.

• This restriction prevents a trigger from seeing an
inconsistent set of data.

• This restriction applies to all triggers that use the FOR
EACH ROW clause.

• Views being modified in the INSTEAD OF triggers are not
considered mutating.

Rules Governing Triggers

Reading and writing data using triggers is subject to certain rules. The restrictions apply only to
row triggers, unless a statement trigger is fired as a result of ON DELETE CASCADE.

Mutating Table

A mutating table is a table that is currently being modified by an UPDATE, DELETE, or
INSERT statement, or a table that might need to be updated by the effects of a declarative
DELETE CASCADE referential integrity action. For STATEMENT triggers, a table is not
considered a mutating table.

A mutating table error (ORA-4091) occurs when a row-level trigger attempts to change or
examine a table that is already undergoing change via a DML statement.

The triggered table itself is a mutating table, as well as any table referencing it with the
FOREIGN KEY constraint. This restriction prevents a row trigger from seeing an inconsistent set
of data.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 O

R
AC

LE
 C

O
R

PO
R

AT
IO

N
 u

se
 o

nl
y

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Oracle Database 11g: Develop PL/SQL Program Units 10 - 11

Copyright © 2009, Oracle. All rights reserved.

Mutating Table: Example

CREATE OR REPLACE TRIGGER check_salary
BEFORE INSERT OR UPDATE OF salary, job_id
ON employees
FOR EACH ROW
WHEN (NEW.job_id <> 'AD_PRES')

DECLARE
v_minsalary employees.salary%TYPE;
v_maxsalary employees.salary%TYPE;

BEGIN
SELECT MIN(salary), MAX(salary)
INTO v_minsalary, v_maxsalary
FROM employees
WHERE job_id = :NEW.job_id;

IF :NEW.salary < v_minsalary OR :NEW.salary > v_maxsalary THEN
RAISE_APPLICATION_ERROR(-20505,'Out of range');

END IF;
END;
/

Mutating Table: Example

The CHECK_SALARY trigger in the slide example attempts to guarantee that whenever a new
employee is added to the EMPLOYEES table or whenever an existing employee’s salary or job
ID is changed, the employee’s salary falls within the established salary range for the employee’s
job.

When an employee record is updated, the CHECK_SALARY trigger is fired for each row that is
updated. The trigger code queries the same table that is being updated. Therefore, it is said that
the EMPLOYEES table is a mutating table.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 O

R
AC

LE
 C

O
R

PO
R

AT
IO

N
 u

se
 o

nl
y

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Oracle Database 11g: Develop PL/SQL Program Units 10 - 12

Copyright © 2009, Oracle. All rights reserved.

Mutating Table: Example

UPDATE employees
SET salary = 3400
WHERE last_name = 'Stiles';

Mutating Table: Example (continued)

In the slide example, the trigger code tries to read or select data from a mutating table.

If you restrict the salary within a range between the minimum existing value and the maximum
existing value, then you get a run-time error. The EMPLOYEES table is mutating, or in a state of
change; therefore, the trigger cannot read from it.

Remember that functions can also cause a mutating table error when they are invoked in a DML
statement.

Possible Solutions

Possible solutions to this mutating table problem include the following:
• Use a compound trigger as described earlier in this lesson.
• Store the summary data (the minimum salaries and the maximum salaries) in another

summary table, which is kept up-to-date with other DML triggers.
• Store the summary data in a PL/SQL package, and access the data from the package. This

can be done in a BEFORE statement trigger.

Depending on the nature of the problem, a solution can become more convoluted and difficult to
solve. In this case, consider implementing the rules in the application or middle tier and avoid
using database triggers to perform overly complex business rules.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 O

R
AC

LE
 C

O
R

PO
R

AT
IO

N
 u

se
 o

nl
y

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Oracle Database 11g: Develop PL/SQL Program Units 10 - 13

Copyright © 2009, Oracle. All rights reserved.

Using a Compound Trigger to
Resolve the Mutating Table Error

CREATE OR REPLACE TRIGGER check_salary
FOR INSERT OR UPDATE OF salary, job_id
ON employees
WHEN (NEW.job_id <> 'AD_PRES')
COMPOUND TRIGGER

TYPE salaries_t IS TABLE OF employees.salary%TYPE;
min_salaries salaries_t;
max_salaries salaries_t;

TYPE department_ids_t IS TABLE OF employees.department_id%TYPE;
department_ids department_ids_t;

TYPE department_salaries_t IS TABLE OF employees.salary%TYPE
INDEX BY VARCHAR2(80);

department_min_salaries department_salaries_t;
department_max_salaries department_salaries_t;

-- example continues on next slide

Using a Compound Trigger to Resolve the Mutating Table Error

The CHECK_SALARY compound trigger resolves the mutating table error in the earlier example.
This is achieved by storing the values in PL/SQL collections, and then performing a bulk
insert/update in the “before statement” section of the compound trigger. In the slide example,
PL/SQL collections are used. The element types used are based on the SALARY and
DEPARTMENT_ID columns from the EMPLOYEES table. To create collections, you define a
collection type, and then declare variables of that type. Collections are instantiated when you
enter a block or subprogram, and cease to exist when you exit. min_salaries is used to hold
the minimum salary for each department and max_salaries is used to hold the maximum
salary for each department. department_ids is used to hold the department ids. If the
employee who earns the minimum or maximum salary does not have an assigned department,
you use the NVL function to store –1 for the department id instead of NULL. Next, you collect
the minimum salary, maximum salary, and the department id using a bulk insert into the
min_salaries, max_salaries, and department_ids respectively grouped by
department ID. The select statement returns 13 rows. The values of the department_ids are used
as an index for the department_min_salaries and department_min_salaries
tables. Therefore, the index for those two tables (VARCHAR2) represents the actual
department #s.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 O

R
AC

LE
 C

O
R

PO
R

AT
IO

N
 u

se
 o

nl
y

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Oracle Database 11g: Develop PL/SQL Program Units 10 - 14

Copyright © 2009, Oracle. All rights reserved.

Using a Compound Trigger to Resolve
the Mutating Table Error

. . .
BEFORE STATEMENT IS
BEGIN
SELECT MIN(salary), MAX(salary), NVL(department_id, -1)
BULK COLLECT INTO min_Salaries, max_salaries, department_ids
FROM employees
GROUP BY department_id;
FOR j IN 1..department_ids.COUNT() LOOP
department_min_salaries(department_ids(j)) := min_salaries(j);
department_max_salaries(department_ids(j)) := max_salaries(j);

END LOOP;
END BEFORE STATEMENT;

AFTER EACH ROW IS
BEGIN
IF :NEW.salary < department_min_salaries(:NEW.department_id)
OR :NEW.salary > department_max_salaries(:NEW.department_id) THEN
RAISE_APPLICATION_ERROR(-20505,'New Salary is out of acceptable

range');
END IF;

END AFTER EACH ROW;
END check_salary;

Using a Compound Trigger to Resolve the Mutating Table Error (continued)

After each row is added, if the new salary is less than the minimum salary for that department or
greater than the department’s maximum salary, then an error message is displayed.

To test the newly created compound trigger, issue the following statement:

UPDATE employees
SET salary = 3400
WHERE last_name = 'Stiles';

To ensure that the salary for employee Stiles was updated, issue the following query:

SELECT employee_id, first_name, last_name, job_id, department_id,
salary

FROM employees
WHERE last_name = 'Stiles';

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 O

R
AC

LE
 C

O
R

PO
R

AT
IO

N
 u

se
 o

nl
y

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Oracle Database 11g: Develop PL/SQL Program Units 10 - 15

Copyright © 2009, Oracle. All rights reserved.

Comparing Database Triggers
to Stored Procedures

Explicitly invokedImplicitly invoked by DML

Defined with CREATE PROCEDUREDefined with CREATE TRIGGER

COMMIT, SAVEPOINT, and ROLLBACK
are allowed

COMMIT, SAVEPOINT, and ROLLBACK
are not allowed

Data dictionary contains source code in
USER_TRIGGERS

Triggers

Data dictionary contains source
code in USER_SOURCE

Procedures

Comparing Database Triggers and Stored Procedures

There are differences between database triggers and stored procedures:

Database Trigger

A database is invoked implicitly. COMMIT, ROLLBACK, and SAVEPOINT statements are not
allowed within the trigger body; however, it is possible to commit or roll back indirectly by
calling a procedure, but it is not recommended because of side effects to transactions.

Stored Procedure

A stored procedure is invoked explicitly. COMMIT, ROLLBACK, and SAVEPOINT statements
are permitted within the procedure body.

Triggers are fully compiled when the CREATE TRIGGER command is issued and the executable
code is stored in the data dictionary.

Note: If errors occur during the compilation of a trigger, the trigger is still created.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 O

R
AC

LE
 C

O
R

PO
R

AT
IO

N
 u

se
 o

nl
y

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Oracle Database 11g: Develop PL/SQL Program Units 10 - 16

Copyright © 2009, Oracle. All rights reserved.

Comparing Database Triggers
to Oracle Forms Triggers

Executes under the security domain of
the Forms Builder user

Executes under the security domain of
the author of the trigger

Fires independently of, and in addition to,
database triggers

Fires independently of, and in addition
to, Forms Builder triggers

Upon failure, causes the cursor to freeze
and the entire transaction may roll back

Upon failure, causes the triggering
statement to roll back

Can be a statement or row triggerCan be a statement or row trigger

Executed only within a particular Forms
Builder application

Executed by actions from any database
tool or application

Always triggered by a SQL DML, DDL,
or a certain database event

Database Trigger

Triggered by navigating from field to field,
pressing a key, or many other actions

Forms Builder Trigger

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 O

R
AC

LE
 C

O
R

PO
R

AT
IO

N
 u

se
 o

nl
y

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Oracle Database 11g: Develop PL/SQL Program Units 10 - 17

Copyright © 2009, Oracle. All rights reserved.

Creating Triggers on DDL Statements

CREATE [OR REPLACE] TRIGGER trigger_name
BEFORE | AFTER -- Timing
[ddl_event1 [OR ddl_event2 OR ...]]
ON {DATABASE | SCHEMA}
trigger_body

Any database object is dropped using the DROP command.DROP

Any database object is created using the CREATE
command.

CREATE

ALTER

Sample DDL Events

Any database object is altered using the ALTER command.

Fires When

Creating Triggers on DDL Statements

You can specify one or more types of DDL statements that can cause the trigger to fire. You can
create triggers for these events on DATABASE or SCHEMA unless otherwise noted. You can also
specify BEFORE and AFTER for the timing of the trigger. The Oracle database fires the trigger
in the existing user transaction.

You cannot specify as a triggering event any DDL operation performed through a PL/SQL
procedure.

The trigger body in the syntax in the slide represents a complete PL/SQL block.

DDL triggers fire only if the object being created is a cluster, function, index, package,
procedure, role, sequence, synonym, table, tablespace, trigger, type, view, or user.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 O

R
AC

LE
 C

O
R

PO
R

AT
IO

N
 u

se
 o

nl
y

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Oracle Database 11g: Develop PL/SQL Program Units 10 - 18

Copyright © 2009, Oracle. All rights reserved.

Creating Database-Event Triggers

• Triggering user event:
– CREATE, ALTER, or DROP

– Logging on or off

• Triggering database or system event:
– Shutting down or starting up the database

– A specific error (or any error) being raised

Creating Database Triggers

Before coding the trigger body, decide on the components of the trigger.

Triggers on system events can be defined at the database or schema level. For example, a
database shutdown trigger is defined at the database level. Triggers on data definition language
(DDL) statements, or a user logging on or off, can also be defined at either the database level or
schema level. Triggers on data manipulation language (DML) statements are defined on a
specific table or a view.

A trigger defined at the database level fires for all users whereas a trigger defined at the schema
or table level fires only when the triggering event involves that schema or table.

Triggering events that can cause a trigger to fire:
• A data definition statement on an object in the database or schema
• A specific user (or any user) logging on or off
• A database shutdown or startup
• Any error that occurs

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 O

R
AC

LE
 C

O
R

PO
R

AT
IO

N
 u

se
 o

nl
y

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Oracle Database 11g: Develop PL/SQL Program Units 10 - 19

Copyright © 2009, Oracle. All rights reserved.

Creating Triggers on System Events

CREATE [OR REPLACE] TRIGGER trigger_name
BEFORE | AFTER -- timing
[database_event1 [OR database_event2 OR ...]]
ON {DATABASE | SCHEMA}
trigger_body

The database is shut down normallyBEFORE SHUTDOWN

The database is openedAFTER STARTUP

A user logs off the database BEFORE LOGOFF

An Oracle error is raisedAFTER SERVERERROR

AFTER LOGON

Database Event

A user logs on to the database

Triggers Fires When

Creating Triggers on System Events

You can create triggers for the events listed in the table in the slide on DATABASE or SCHEMA,
except SHUTDOWN and STARTUP, which apply only to DATABASE.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 O

R
AC

LE
 C

O
R

PO
R

AT
IO

N
 u

se
 o

nl
y

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Oracle Database 11g: Develop PL/SQL Program Units 10 - 20

Copyright © 2009, Oracle. All rights reserved.

LOGON and LOGOFF Triggers: Example

-- Create the log_trig_table shown in the notes page
-- first

CREATE OR REPLACE TRIGGER logon_trig
AFTER LOGON ON SCHEMA
BEGIN
INSERT INTO log_trig_table(user_id,log_date,action)
VALUES (USER, SYSDATE, 'Logging on');

END;
/

CREATE OR REPLACE TRIGGER logoff_trig
BEFORE LOGOFF ON SCHEMA
BEGIN
INSERT INTO log_trig_table(user_id,log_date,action)
VALUES (USER, SYSDATE, 'Logging off');

END;
/

LOGON and LOGOFF Triggers: Example

You can create these triggers to monitor how often you log on and off, or you may want to write
a report that monitors the length of time for which you are logged on. When you specify ON
SCHEMA, the trigger fires for the specific user. If you specify ON DATABASE, the trigger fires
for all users.

The definition of the log_trig_table used in the slide examples is as follows:
CREATE TABLE log_trig_table(

user_id VARCHAR2(30),
log_date DATE,
action VARCHAR2(40))
/

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 O

R
AC

LE
 C

O
R

PO
R

AT
IO

N
 u

se
 o

nl
y

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Oracle Database 11g: Develop PL/SQL Program Units 10 - 21

Copyright © 2009, Oracle. All rights reserved.

CREATE OR REPLACE PROCEDURE log_execution IS
BEGIN

DBMS_OUTPUT.PUT_LINE('log_exection: Employee Inserted');
END;
/
CREATE OR REPLACE TRIGGER log_employee
BEFORE INSERT ON EMPLOYEES
CALL log_execution –- no semicolon needed
/

CALL Statements in Triggers

CREATE [OR REPLACE] TRIGGER trigger_name
timing
event1 [OR event2 OR event3]
ON table_name
[REFERENCING OLD AS old | NEW AS new]
[FOR EACH ROW]
[WHEN condition]
CALL procedure_name
/

CALL Statements in Triggers

A CALL statement enables you to call a stored procedure, rather than code the PL/SQL body in
the trigger itself. The procedure can be implemented in PL/SQL, C, or Java.

The call can reference the trigger attributes :NEW and :OLD as parameters, as in the following
example:

CREATE OR REPLACE TRIGGER salary_check
BEFORE UPDATE OF salary, job_id ON employees
FOR EACH ROW
WHEN (NEW.job_id <> 'AD_PRES')
CALL check_salary(:NEW.job_id, :NEW.salary)

Note: There is no semicolon at the end of the CALL statement.

In the preceding example, the trigger calls a check_salary procedure. The procedure
compares the new salary with the salary range for the new job ID from the JOBS table.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 O

R
AC

LE
 C

O
R

PO
R

AT
IO

N
 u

se
 o

nl
y

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Oracle Database 11g: Develop PL/SQL Program Units 10 - 22

Copyright © 2009, Oracle. All rights reserved.

Benefits of Database-Event Triggers

• Improved data security:
– Provide enhanced and complex security checks

– Provide enhanced and complex auditing

• Improved data integrity:
– Enforce dynamic data integrity constraints

– Enforce complex referential integrity constraints

– Ensure that related operations are performed together
implicitly

Benefits of Database-Event Triggers

You can use database triggers:
• As alternatives to features provided by the Oracle server
• If your requirements are more complex or more simple than those provided by the Oracle

server
• If your requirements are not provided by the Oracle server at all

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 O

R
AC

LE
 C

O
R

PO
R

AT
IO

N
 u

se
 o

nl
y

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Oracle Database 11g: Develop PL/SQL Program Units 10 - 23

Copyright © 2009, Oracle. All rights reserved.

System Privileges Required to Manage Triggers

The following system privileges are required to manage
triggers:
• The CREATE/ALTER/DROP (ANY) TRIGGER privilege that

enables you to create a trigger in any schema
• The ADMINISTER DATABASE TRIGGER privilege that

enables you to create a trigger on DATABASE

• The EXECUTE privilege (if your trigger refers to any objects
that are not in your schema)

System Privileges Required to Manage Triggers

To create a trigger in your schema, you need the CREATE TRIGGER system privilege, and you
must own the table specified in the triggering statement, have the ALTER privilege for the table
in the triggering statement, or have the ALTER ANY TABLE system privilege. You can alter or
drop your triggers without any further privileges being required.

If the ANY keyword is used, you can create, alter, or drop your own triggers and those in another
schema and can be associated with any user’s table.

You do not need any privileges to invoke a trigger in your schema. A trigger is invoked by DML
statements that you issue. But if your trigger refers to any objects that are not in your schema,
the user creating the trigger must have the EXECUTE privilege on the referenced procedures,
functions, or packages, and not through roles.

To create a trigger on DATABASE, you must have the ADMINISTER DATABASE TRIGGER
privilege. If this privilege is later revoked, you can drop the trigger but you cannot alter it.

Note: Similar to stored procedures, statements in the trigger body use the privileges of the
trigger owner, not the privileges of the user executing the operation that fires the trigger.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 O

R
AC

LE
 C

O
R

PO
R

AT
IO

N
 u

se
 o

nl
y

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Oracle Database 11g: Develop PL/SQL Program Units 10 - 24

Copyright © 2009, Oracle. All rights reserved.

Guidelines for Designing Triggers

• You can design triggers to:
– Perform related actions

– Centralize global operations

• You must not design triggers:
– Where functionality is already built into the Oracle server

– That duplicate other triggers

• You can create stored procedures and invoke them in a
trigger, if the PL/SQL code is very lengthy.

• Excessive use of triggers can result in complex
interdependencies, which may be difficult to maintain in
large applications.

Guidelines for Designing Triggers

• Use triggers to guarantee that related actions are performed for a specific operation and for
centralized, global operations that should be fired for the triggering statement, independent
of the user or application issuing the statement.

• Do not define triggers to duplicate or replace the functionality already built into the Oracle
database. For example, implement integrity rules using declarative constraints instead of
triggers. To remember the design order for a business rule:

- Use built-in constraints in the Oracle server, such as primary key, and so on.
- Develop a database trigger or an application, such as a servlet or Enterprise

JavaBeans (EJB) on your middle tier.
- Use a presentation interface, such as Oracle Forms, HTML, JavaServer Pages (JSP)

and so on, for data presentation rules.
• Excessive use of triggers can result in complex interdependencies, which may be difficult

to maintain. Use triggers when necessary, and be aware of recursive and cascading effects.
• Avoid lengthy trigger logic by creating stored procedures or packaged procedures that are

invoked in the trigger body.
• Database triggers fire for every user each time the event occurs on the trigger that is

created.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 O

R
AC

LE
 C

O
R

PO
R

AT
IO

N
 u

se
 o

nl
y

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Oracle Database 11g: Develop PL/SQL Program Units 10 - 25

Copyright © 2009, Oracle. All rights reserved.

Quiz

A trigger:
1. Defined with a CREATE TRIGGER statement

2. Data dictionary contains source code in USER_TRIGGERS

3. Explicitly invoked

4. Implicitly invoked by DML
5. COMMIT, SAVEPOINT, and ROLLBACK are not allowed

Answers: 1, 2, 4, 5

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 O

R
AC

LE
 C

O
R

PO
R

AT
IO

N
 u

se
 o

nl
y

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Oracle Database 11g: Develop PL/SQL Program Units 10 - 26

Copyright © 2009, Oracle. All rights reserved.

Summary

In this lesson, you should have learned how to:

• Describe compound triggers

• Describe mutating tables

• Create triggers on DDL statements

• Create triggers on system events

• Display information about triggers

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 O

R
AC

LE
 C

O
R

PO
R

AT
IO

N
 u

se
 o

nl
y

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Oracle Database 11g: Develop PL/SQL Program Units 10 - 27

Copyright © 2009, Oracle. All rights reserved.

Practice 10: Overview

This practice covers the following topics:

• Creating advanced triggers to manage data integrity rules

• Creating triggers that cause a mutating table exception

• Creating triggers that use package state to solve the
mutating table problem

Practice 10: Overview

In this practice, you implement a simple business rule for ensuring data integrity of employees’
salaries with respect to the valid salary range for their job. You create a trigger for this rule.

During this process, your new triggers cause a cascading effect with triggers created in the
practice section of the previous lesson. The cascading effect results in a mutating table exception
on the JOBS table. You then create a PL/SQL package and additional triggers to solve the
mutating table issue.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 O

R
AC

LE
 C

O
R

PO
R

AT
IO

N
 u

se
 o

nl
y

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Oracle Database 11g: Develop PL/SQL Program Units 10 - 28

Practice 10

1. Employees receive an automatic increase in salary if the minimum salary for a job is
increased to a value larger than their current salary. Implement this requirement through a
package procedure called by a trigger on the JOBS table. When you attempt to update the
minimum salary in the JOBS table and try to update the employees’ salary, the
CHECK_SALARY trigger attempts to read the JOBS table, which is subject to change, and
you get a mutating table exception that is resolved by creating a new package and
additional triggers.

a. Update your EMP_PKG package (that you last updated in Practice 8) as follows:

i. Add a procedure called SET_SALARY that updates the employees’ salaries.

ii. The SET_SALARY procedure accepts the following two parameters:

- The job ID for those salaries that may have to be updated, and

- The new minimum salary for the job ID

iii. The procedure sets all the employees’ salaries to the minimum for their jobs if
their current salaries are less than the new minimum value.

b. Create a row trigger named UPD_MINSALARY_TRG on the JOBS table that invokes
the EMP_PKG.SET_SALARY procedure, when the minimum salary in the JOBS
table is updated for a specified job ID.

c. Write a query to display the employee ID, last name, job ID, current salary, and
minimum salary for employees who are programmers—that is, their JOB_ID is
'IT_PROG'. Then update the minimum salary in the JOBS table to increase it by
$1,000. What happens?

2. To resolve the mutating table issue, create a JOBS_PKG to maintain in memory a copy of
the rows in the JOBS table. Next, modify the CHECK_SALARY procedure to use the
package data rather than issue a query on a table that is mutating to avoid the exception.
However, you must create a BEFORE INSERT OR UPDATE statement trigger on the
EMPLOYEES table to initialize the JOBS_PKG package state before the CHECK_SALARY
row trigger is fired.

a. Create a new package called JOBS_PKG with the following specification:

PROCEDURE initialize;

FUNCTION get_minsalary(jobid VARCHAR2) RETURN NUMBER;

FUNCTION get_maxsalary(jobid VARCHAR2) RETURN NUMBER;

PROCEDURE set_minsalary(jobid VARCHAR2,min_salary NUMBER);

PROCEDURE set_maxsalary(jobid VARCHAR2,max_salary NUMBER);

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 O

R
AC

LE
 C

O
R

PO
R

AT
IO

N
 u

se
 o

nl
y

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Oracle Database 11g: Develop PL/SQL Program Units 10 - 29

Practice 10 (continued)

b. Implement the body of the JOBS_PKG, as follows:

i. Declare a private PL/SQL index-by table called jobs_tab_type that is
indexed by a string type based on the JOBS.JOB_ID%TYPE.

ii. Declare a private variable called jobstab based on the jobs_tab_type.

iii. The INITIALIZE procedure reads the rows in the JOBS table by using a
cursor loop, and uses the JOB_ID value for the jobstab index that is
assigned its corresponding row.

iv. The GET_MINSALARY function uses a p_jobid parameter as an index to the
jobstab and returns the min_salary for that element.

v. The GET_MAXSALARY function uses a p_jobid parameter as an index to the
jobstab and returns the max_salary for that element.

vi. The SET_MINSALARY procedure uses its p_jobid as an index to the
jobstab to set the min_salary field of its element to the value in the
min_salary parameter.

vii. The SET_MAXSALARY procedure uses its p_jobid as an index to the
jobstab to set the max_salary field of its element to the value in the
max_salary parameter.

c. Copy the CHECK_SALARY procedure from Practice 10, Exercise 1 a, and modify the
code by replacing the query on the JOBS table with statements to set the local
minsal and maxsal variables with values from the JOBS_PKG data by calling the
appropriate GET_*SALARY functions. This step should eliminate the mutating
trigger exception.

d. Implement a BEFORE INSERT OR UPDATE statement trigger called
INIT_JOBPKG_TRG that uses the CALL syntax to invoke the
JOBS_PKG.INITIALIZE procedure to ensure that the package state is current
before the DML operations are performed.

e. Test the code changes by executing the query to display the employees who are
programmers, and then issue an update statement to increase the minimum salary of
the IT_PROG job type by 1000 in the JOBS table, followed by a query on the
employees with the IT_PROG job type to check the resulting changes. Which
employees’ salaries have been set to the minimum for their jobs?

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 O

R
AC

LE
 C

O
R

PO
R

AT
IO

N
 u

se
 o

nl
y

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Oracle Database 11g: Develop PL/SQL Program Units 10 - 30

Practice 10 (continued)

3. Because the CHECK_SALARY procedure is fired by the CHECK_SALARY_TRG before
inserting or updating an employee, you must check whether this still works as expected.

a. Test this by adding a new employee using EMP_PKG.ADD_EMPLOYEE with the
following parameters: (‘Steve’, ‘Morse’, ‘SMORSE’, and
sal => 6500). What happens?

b. To correct the problem encountered when adding or updating an employee:

i. Create a BEFORE INSERT OR UPDATE statement trigger called
EMPLOYEE_INITJOBS_TRG on the EMPLOYEES table that calls the
JOBS_PKG.INITIALIZE procedure.

ii. Use the CALL syntax in the trigger body.

c. Test the trigger by adding employee Steve Morse again. Confirm the inserted
record in the EMPLOYEES table by displaying the employee ID, first and last names,
salary, job ID, and department ID.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 O

R
AC

LE
 C

O
R

PO
R

AT
IO

N
 u

se
 o

nl
y

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Copyright © 2009, Oracle. All rights reserved.

Using the PL/SQL Compiler

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 O

R
AC

LE
 C

O
R

PO
R

AT
IO

N
 u

se
 o

nl
y

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Oracle Database 11g: Develop PL/SQL Program Units 11 - 2

Copyright © 2009, Oracle. All rights reserved.

Objectives

After completing this lesson, you should be able to do the
following:

• Describe the new PL/SQL compiler and features

• Use the new PL/SQL compiler initialization parameters

• Use the new PL/SQL compile time warnings

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 O

R
AC

LE
 C

O
R

PO
R

AT
IO

N
 u

se
 o

nl
y

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Oracle Database 11g: Develop PL/SQL Program Units 11 - 3

Copyright © 2009, Oracle. All rights reserved.

Lesson Agenda

• Describing the new PL/SQL compiler and features
• Using the new PLSQL_CODE_TYPE, PLSQL_DEBUG, and

PLSQL_OPTIMIZE_LEVEL PL/SQL compilation
initialization parameters

• Using the new PL/SQL compile time warnings:
– Using the PLSQL_WARNING initialization parameter

– Using the DBMS_WARNING package routines

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 O

R
AC

LE
 C

O
R

PO
R

AT
IO

N
 u

se
 o

nl
y

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Oracle Database 11g: Develop PL/SQL Program Units 11 - 4

Copyright © 2009, Oracle. All rights reserved.

Using the PL/SQL Compiler

• PL/SQL uses a new optimizing compiler that can rearrange
code for better performance.

• PL/SQL performance is improved across the board.

• Most improvements are automatic.

• The default optimization level improves performance for a
broad range of PL/SQL operations.

Using the PL/SQL Compiler in Oracle Database 11g
Starting with Oracle Database 10g, the PL/SQL compiler back end was completely redesigned
and re-implemented which featured code optimization. The new PL/SQL compiler replaced the
old compiler and all modern and current industry compiler techniques have been incorporated. It
has the following purposes:

• An immediate improvement in the quality of the code generated by the PL/SQL compiler
and thus improvement in the execution performance of PL/SQL programs

• A foundation for global optimization to improve PL/SQL execution

What Is New for PL/SQL Performance Starting with Oracle Database 10g?
• PL/SQL performance is improved across the board.
• Most improvements are automatic.
• The new PL/SQL compiler ensures optimized code generation.
• Global optimization of PL/SQL code is controlled by the PLSQL_OPTIMIZE_LEVEL

initialization parameter.
• The default optimization level improves performance for a broad range of PL/SQL

operations.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 O

R
AC

LE
 C

O
R

PO
R

AT
IO

N
 u

se
 o

nl
y

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Oracle Database 11g: Develop PL/SQL Program Units 11 - 5

Copyright © 2009, Oracle. All rights reserved.

Changes in the PL/SQL Compiler

• Elimination of compiler-generated temporary operands

• Computation of some operations during compilation

• Reuse of some expression values

• Simplification or elimination of some branches and dead
code elimination

• Avoidance of library calls by direct execution in the
PL/SQL virtual machine of some operations

• All cursors correctly finalized upon exit from a cursor loop
or a declare block

• Elimination of computations whose only effect is, as a side
effect, to raise an exception

Changes in the PL/SQL Compiler

The new PL/SQL compiler provides the same execution for PL/SQL programs as the previous
PL/SQL compiler. The behavior of a program is intended to remain the same. Some of the
implicit changes that may happen to compiled code are the following:

• Elimination of temporary operands generated by the PL/SQL compiler. Such elimination
causes less storage to be used and speeds up the process of initializing temporary values.

• Computation of some operations during compilation rather that during execution
• Reuse of some expression values. For example, if the expression A + B occurs twice and

the values of A and B are not changed, the second occurrence may be removed by the
optimizer.

• Simplification or elimination of some branches
• Avoidance of library calls by direct execution in the PL/SQL virtual machine of some

operations
• All cursors correctly finalized upon exit from a cursor loop or a declare block
• Elimination of computations whose only effect is, as a side effect, to raise an exception. If

there are no other side effects of the conditional expression besides the possible exception,
the PL/SQL compiler optimization eliminates the entire computation.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 O

R
AC

LE
 C

O
R

PO
R

AT
IO

N
 u

se
 o

nl
y

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Oracle Database 11g: Develop PL/SQL Program Units 11 - 6

Copyright © 2009, Oracle. All rights reserved.

Lesson Agenda

• Describing the new PL/SQL compiler and features
• Using the new PLSQL_CODE_TYPE, PLSQL_DEBUG, and

PLSQL_OPTIMIZE_LEVEL PL/SQL compilation
initialization parameters

• Using the new PL/SQL compile time warnings:
– Using the PLSQL_WARNING initialization parameter

– Using the DBMS_WARNING package routines

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 O

R
AC

LE
 C

O
R

PO
R

AT
IO

N
 u

se
 o

nl
y

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Oracle Database 11g: Develop PL/SQL Program Units 11 - 7

Copyright © 2009, Oracle. All rights reserved.

Initialization Parameters
for PL/SQL Compilation

• PLSQL_CODE_TYPE

• PLSQL_OPTIMIZE_LEVEL

• PLSQL_CCFLAGS

• PLSQL_WARNINGS

Initialization Parameters for PL/SQL Compilation

In releases before Oracle Database 10g, the PL/SQL compiler translated your code to machine
code without applying many changes for performance. Now, PL/SQL uses an optimizing
compiler that can rearrange code for better performance. You do not need to do anything to get
the benefits of this new optimizer; it is enabled by default.

Note
• The PLSQL_CCFLAGS initialization parameter is covered in the lesson titled “Managing

PL/SQL Code.”
• The PLSQL_WARNINGS initialization parameter is covered later in this lesson.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 O

R
AC

LE
 C

O
R

PO
R

AT
IO

N
 u

se
 o

nl
y

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Oracle Database 11g: Develop PL/SQL Program Units 11 - 8

Copyright © 2009, Oracle. All rights reserved.

Using the Initialization Parameters
for PL/SQL Compilation

• PLSQL_CODE_TYPE: Specifies the compilation mode for
PL/SQL library units

• PLSQL_OPTIMIZE_LEVEL: Specifies the optimization
level to be used to compile PL/SQL library units

PLSQL_CODE_TYPE = { INTERPRETED | NATIVE }

PLSQL_OPTIMIZE_LEVEL = { 0 | 1 | 2 | 3}

Using the Initialization Parameters for PL/SQL Compilation

The PLSQL_CODE_TYPE Parameter

This parameter specifies the compilation mode for PL/SQL library units. If you choose
INTERPRETED, PL/SQL library units will be compiled to PL/SQL bytecode format. Such
modules are executed by the PL/SQL interpreter engine. If you choose NATIVE, PL/SQL library
units (with the possible exception of top-level anonymous PL/SQL blocks) will be compiled to
native (machine) code. Such modules will be executed natively without incurring any interpreter
overhead. When the value of this parameter is changed, it has no effect on PL/SQL library units
that have already been compiled. The value of this parameter is stored persistently with each
library unit. If a PL/SQL library unit is compiled natively, all subsequent automatic
recompilations of that library unit will use native compilation. In Oracle Database 11g, native
compilation is easier and more integrated, with fewer initialization parameters to set.

In rare cases, if the overhead of the optimizer makes compilation of very large applications take
too long, you might lower the optimization level by setting the initialization parameter
PLSQL_OPTIMIZE_LEVEL to 1 instead of its default value 2. In even rarer cases, you might
see a change in exception behavior—either an exception that is not raised at all or one that is
raised earlier than expected. Setting PLSQL_OPTIMIZE_LEVEL to 0 prevents the code from
being rearranged at all.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 O

R
AC

LE
 C

O
R

PO
R

AT
IO

N
 u

se
 o

nl
y

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Oracle Database 11g: Develop PL/SQL Program Units 11 - 9

Using the PL/SQL Initialization Parameters (continued)

The PLSQL_OPTIMIZE_LEVEL Parameter

This parameter specifies the optimization level that will be used to compile PL/SQL library
units. The higher the setting of this parameter, the more effort the compiler makes to optimize
PL/SQL library units. The available values are (0, 1, and 2 were available starting with Oracle
10g release 2):

0: Maintains the evaluation order and hence the pattern of side effects, exceptions, and package
initializations of Oracle9i and earlier releases. Also removes the new semantic identity of
BINARY_INTEGER and PLS_INTEGER and restores the earlier rules for the evaluation of
integer expressions. Although code will run somewhat faster than it did in Oracle9i, use of level
0 will forfeit most of the performance gains of PL/SQL starting with Oracle Database 10g.

1: Applies a wide range of optimizations to PL/SQL programs including the elimination of
unnecessary computations and exceptions, but generally does not move source code out of its
original source order

2: Applies a wide range of modern optimization techniques beyond those of level 1 including
changes which may move source code relatively far from its original location

3: This value is new in Oracle Database 11g. It applies a wide range of optimization techniques
beyond those of level 2, automatically including techniques not specifically requested. This
enables procedure inlining, which is an optimization process that replaces procedure calls with a
copy of the body of the procedure to be called. The copied procedure almost always runs faster
than the original call. To allow subprogram inlining, either accept the default value of the
PLSQL_OPTIMIZE_LEVEL initialization parameter (which is 2) or set it to 3. With
PLSQL_OPTIMIZE_LEVEL = 2, you must specify each subprogram to be inlined. With
PLSQL_OPTIMIZE_LEVEL = 3, the PL/SQL compiler seeks opportunities to inline
subprograms beyond those that you specify.

Note: For additional information about inlining, refer to the Oracle Database PL/SQL Language
Reference 11g Release 1 (11.1) guide and the Oracle Database 11g Advanced PL/SQL
instructor-led course.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 O

R
AC

LE
 C

O
R

PO
R

AT
IO

N
 u

se
 o

nl
y

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Oracle Database 11g: Develop PL/SQL Program Units 11 - 10

Using the PL/SQL Initialization Parameters (continued)

The PLSQL_OPTIMIZE_LEVEL Parameter (continued)

Generally, setting this parameter to 2 pays off in terms of better execution performance. If,
however, the compiler runs slowly on a particular source module or if optimization does not
make sense for some reason (for example, during rapid turnaround development), then setting
this parameter to 1 results in almost as good a compilation with less use of compile-time
resources. The value of this parameter is stored persistently with the library unit.

Note:

The PLSQL_CODE_TYPE parameter in Oracle Database 10g replaced the following obsolete
parameters:
• PLSQL_NATIVE_C_COMPILER
• PLSQL_NATIVE_MAKE_FILE_NAME
• PLSQL_NATIVE_C_COMPILER
• PLSQL_NATIVE_MAKE_UTILITY
• PLSQL_NATIVE_LINKER

The PLSQL_DEBUG parameter is deprecated in Oracle Database 11g. The parameter
PLSQL_DEBUG no longer controls the generation of debugging information by the PL/SQL
compiler; debugging information is always generated and no special parameter is needed.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 O

R
AC

LE
 C

O
R

PO
R

AT
IO

N
 u

se
 o

nl
y

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Oracle Database 11g: Develop PL/SQL Program Units 11 - 11

Copyright © 2009, Oracle. All rights reserved.

The New Compiler Settings Since Oracle 10g

Enables or disables the reporting of warning
messages by the PL/SQL compiler.

PLSQL_WARNINGS

Specifies the optimization level to be used to compile
PL/SQL library units.

PLSQL_OPTIMIZE_LEVEL

PLSQL_CCFLAGS

PLSQL_CODE_TYPE

Compiler Option

Specifies the compilation mode for PL/SQL library
units.

Controls conditional compilation of each PL/SQL
library unit independently.

Description

In general, for the fastest performance, use the following
setting:

PLSQL_CODE_TYPE = NATIVE
PLSQL_OPTIMIZE_LEVEL = 2

The Compiler Settings

The new compiler increases the performance of PL/SQL code and allows it to execute
approximately two times faster than an Oracle8i database and 1.5 times to 1.75 times as fast as
Oracle9i Database Release 2.

To get the fastest performance, the compiler setting must be:
PLSQL_CODE_TYPE = NATIVE
PLSQL_OPTIMIZE_LEVEL = 2

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 O

R
AC

LE
 C

O
R

PO
R

AT
IO

N
 u

se
 o

nl
y

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Oracle Database 11g: Develop PL/SQL Program Units 11 - 12

Copyright © 2009, Oracle. All rights reserved.

Displaying the PL/SQL Initialization Parameters

Use the USER|ALL|DBA_PLSQL_OBJECT_SETTINGS data
dictionary views to display the settings for a PL/SQL object:

DESCRIBE USER_PLSQL_OBJECT_SETTINGS

Displaying the PL/SQL Initialization Parameters

The columns of the USER_PLSQL_OBJECTS_SETTINGS data dictionary view are:

Owner: The owner of the object. This column is not displayed in the
USER_PLSQL_OBJECTS_SETTINGS view.

Name: The name of the object

Type: The available choices are: PROCEDURE, FUNCTION, PACKAGE, PACKAGE BODY,
TRIGGER, TYPE, or TYPE BODY.

PLSQL_OPTIMIZE_LEVEL: The optimization level that was used to compile the object

PLSQL_CODE_TYPE: The compilation mode for the object

PLSQL_DEBUG: Specifies whether or not the object was compiled for debugging

PLSQL_WARNINGS: The compiler warning settings used to compile the object

NLS_LENGTH_SEMANTICS: The NLS length semantics used to compile the object

PLSQL_CCFLAGS: The conditional compilation flag used to compile the object

PLSCOPE_SETTINGS: Controls the compile time collection, cross reference, and storage of
PL/SQL source code identifier data (new in Oracle Database 11g).

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 O

R
AC

LE
 C

O
R

PO
R

AT
IO

N
 u

se
 o

nl
y

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Oracle Database 11g: Develop PL/SQL Program Units 11 - 13

Copyright © 2009, Oracle. All rights reserved.

Displaying and Setting the
PL/SQL Initialization Parameters

• Set the compiler initialization parameter’s value using the
ALTER SYSTEM or ALTER SESSION statements.

• The parameters’ values are accessed when the CREATE
OR REPLACE statement is executed.

SELECT name, type, plsql_code_type AS CODE_TYPE,
plsql_optimize_level AS OPT_LVL

FROM user_plsql_object_settings;

. . .

. . .

Note

• For additional information about the ALTER SYSTEM or ALTER SESSION statements,
refer to the Oracle Database SQL Reference 11g Release 1 (11.1) Guide.

• The DBA_STORED_SETTINGS data dictionary view family is deprecated in Oracle
Database 10g and is replaced with the DBA_PLSQL_OBJECT_SETTINGS data
dictionary view family.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 O

R
AC

LE
 C

O
R

PO
R

AT
IO

N
 u

se
 o

nl
y

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Oracle Database 11g: Develop PL/SQL Program Units 11 - 14

Copyright © 2009, Oracle. All rights reserved.

Changing PL/SQL Initialization
Parameters: Example

ALTER SESSION SET PLSQL_OPTIMIZE_LEVEL = 1;
ALTER SESSION SET PLSQL_CODE_TYPE = 'NATIVE';

-- code displayed in the notes page
CREATE OR REPLACE PROCEDURE add_job_history
. . .

. . .

. . .

Changing PL/SQL Initialization Parameters: Example

To change a compiled PL/SQL object from interpreted code type to native code type, you must
first set the PLSQL_CODE_TYPE parameter to NATIVE (optionally set the other parameters)
and then, recompile the program. To enforce native compilation to all PL/SQL code, you must
recompile each one. Scripts (in the rdmbs/admin directory) are provided for you to achieve
conversion to full native compilation (dbmsupgnv.sql) or full interpreted compilation
(dbmsupgin.sql). The add_job_history procedure is created as follows:

CREATE OR REPLACE PROCEDURE add_job_history
(p_emp_id job_history.employee_id%type
, p_start_date job_history.start_date%type
, p_end_date job_history.end_date%type
, p_job_id job_history.job_id%type
, p_department_id job_history.department_id%type)

IS
BEGIN

INSERT INTO job_history (employee_id, start_date,
end_date, job_id, department_id)

VALUES(p_emp_id, p_start_date, p_end_date,
p_job_id, p_department_id);

END add_job_history;
/

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 O

R
AC

LE
 C

O
R

PO
R

AT
IO

N
 u

se
 o

nl
y

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Oracle Database 11g: Develop PL/SQL Program Units 11 - 15

Copyright © 2009, Oracle. All rights reserved.

Lesson Agenda

• Describing the new PL/SQL compiler and features
• Using the new PLSQL_CODE_TYPE, PLSQL_DEBUG, and

PLSQL_OPTIMIZE_LEVEL PL/SQL compilation
initialization parameters

• Using the new PL/SQL compile time warnings:
– Using the PLSQL_WARNING initialization parameter

– Using the DBMS_WARNING package routines

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 O

R
AC

LE
 C

O
R

PO
R

AT
IO

N
 u

se
 o

nl
y

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Oracle Database 11g: Develop PL/SQL Program Units 11 - 16

Copyright © 2009, Oracle. All rights reserved.

Overview of PL/SQL Compile-Time
Warnings for Subprograms

Starting with Oracle 10g, the PL/SQL compiler has been enhanced to
produce warnings for subprograms.

Enable warnings View warningsCompile program

Overview of PL/SQL Compile-Time Warnings for Subprograms

To make your programs more robust and avoid problems at run time, you can turn on checking
for certain warning conditions. These conditions are not serious enough to produce an error and
keep you from compiling a subprogram. They may point out something in the subprogram that
produces an undefined result or might create a performance problem.

In releases prior to Oracle Database 10g, compiling a PL/SQL program had two possible
outcomes:

• Success, producing a valid compiled unit
• Failure, with compilation errors indicating that the program had either syntax or semantic

errors

However, even when compilation of a program was successful, the program may have violated
recommended best practices or could have been coded to be more efficient. Oracle Database 10g
introduced a new ease-of-use feature that allows the PL/SQL compiler to communicate warning
messages in these situations. Compiler warnings allow developers to avoid common coding
pitfalls, thus improving productivity.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 O

R
AC

LE
 C

O
R

PO
R

AT
IO

N
 u

se
 o

nl
y

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Oracle Database 11g: Develop PL/SQL Program Units 11 - 17

Overview of PL/SQL Compile-Time Warnings for Subprograms (continued)

PL/SQL supports passing of IN OUT and OUT parameters by value or by reference through the
NOCOPY compiler hint. Passing parameters by value is inherently less efficient because it
involves making multiple copies of the data. With Oracle Database 11g, the compiler
automatically detects and recommends the use of the NOCOPY hint, where the parameter types
are large object, record, or collection types.

With the PL/SQL compiler-warning feature, compiling a PL/SQL program could have additional
possible outcomes:

• Success with compilation warnings
• Failure with compilation errors and compilation warnings

Note that the compiler may issue warning messages even on a successful compile. A
compilation error must be corrected to be able to use the stored procedure whereas a warning is
for informational purposes.

Examples of warning messages:

SP2-0804: Procedure created with compilation warnings

PLW-07203: Parameter 'IO_TBL' may benefit from use of the NOCOPY compiler hint

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 O

R
AC

LE
 C

O
R

PO
R

AT
IO

N
 u

se
 o

nl
y

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Oracle Database 11g: Develop PL/SQL Program Units 11 - 18

Copyright © 2009, Oracle. All rights reserved.

Benefits of Compiler Warnings

• Make programs more robust and avoid problems at run time

• Identify potential performance problems

• Identify factors that produce undefined results

Benefits of Compiler Warnings

Using compiler warnings can help you to:
• Make your programs more robust and avoid problems at run time
• Identify potential performance problems
• Identify factors that produce undefined results

Note
• You can enable checking for certain warning conditions when these conditions are not

serious enough to produce an error and keep you from compiling a subprogram.
• Warning messages can be issued during compilation of PL/SQL subprograms; anonymous

blocks do not produce any warnings.
• All PL/SQL warning messages use the prefix PLW.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 O

R
AC

LE
 C

O
R

PO
R

AT
IO

N
 u

se
 o

nl
y

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Oracle Database 11g: Develop PL/SQL Program Units 11 - 19

Copyright © 2009, Oracle. All rights reserved.

Categories of PL/SQL
Compile-Time Warning Messages

SEVERE
PERFORMANCE

INFORMATIONAL ALL

Categories of PL/SQL Compile-Time Warning Messages

PL/SQL warning messages are divided into categories, so that you can suppress or display
groups of similar warnings during compilation. The categories are:
• SEVERE: Messages for conditions that may cause unexpected behavior or wrong results,

such as aliasing problems with parameters
• PERFORMANCE: Messages for conditions that may cause performance problems, such as

passing a VARCHAR2 value to a NUMBER column in an INSERT statement
• INFORMATIONAL: Messages for conditions that do not have an effect on performance or

correctness, but that you may want to change to make the code more maintainable, such as
unreachable code that can never be executed

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 O

R
AC

LE
 C

O
R

PO
R

AT
IO

N
 u

se
 o

nl
y

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Oracle Database 11g: Develop PL/SQL Program Units 11 - 20

Copyright © 2009, Oracle. All rights reserved.

Setting the Warning Messages Levels

You can set warning levels using one of the following methods:

• Declaratively:
– Using the PLSQL_WARNINGS initialization parameter

• Programmatically:
– Using the DBMS_WARNING package

PLSQL_WARNINGS
initialization parameter

DBMS_WARNING
package

Setting the Warning Messages Levels

You can set the compiler warning messages levels using one of the following methods:
Using the PLSQL_WARNINGS Initialization Parameter
The PLSQL_WARNINGS setting enables or disables the reporting of warning messages by the
PL/SQL compiler, and specifies which warning messages to show as errors. The settings for the
PLSQL_WARNINGS parameter are stored along with each compiled subprogram. You can use
the PLSQL_WARNINGS initialization parameter to do the following:

• Enable or disable the reporting of all warnings, warnings of a selected category, or specific
warning messages.

• Treat all warnings, a selected category of warning, or specific warning messages as errors.
• Any valid combination of the preceding

The keyword All is a shorthand way to refer to all warning messages: SEVERE,
PERFORMANCE, and INFORMATIONAL.
Using the DBMS_WARNING Package
The DBMS_WARNING package provides a way to manipulate the behavior of PL/SQL warning
messages, in particular by reading and changing the setting of the PLSQL_WARNINGS
initialization parameter to control what kinds of warnings are suppressed, displayed, or treated
as errors. This package provides the interface to query, modify, and delete current system or
session settings. This package is covered later in this lesson.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 O

R
AC

LE
 C

O
R

PO
R

AT
IO

N
 u

se
 o

nl
y

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Oracle Database 11g: Develop PL/SQL Program Units 11 - 21

Copyright © 2009, Oracle. All rights reserved.

Setting Compiler Warning Levels:
Using PLSQL_WARNINGS

ALTER [SESSION|SYSTEM]
PLSQL_WARNINGS = 'value_clause1'[,'value_clause2']...

Qualifier Value = { ENABLE | DISABLE | ERROR }

Modifier Value =
{ ALL | SEVERE | INFORMATIONAL | PERFORMANCE |
{ integer | (integer [, integer] ...) } }

value_clause = Qualifier Value : Modifier Value

Modifying Compiler Warning Settings

The parameter value comprises a comma-separated list of quoted qualifier and modifier
keywords, where the keywords are separated by colons. The qualifier values are: ENABLE,
DISABLE, and ERROR. The modifier value ALL applies to all warning messages. SEVERE,
INFORMATIONAL, and PERFORMANCE apply to messages in their own category, and an
integer list for specific warning messages.

Possible values for ENABLE, DISABLE, and ERROR:
• ALL
• SEVERE
• INFORMATIONAL
• PERFORMANCE
• numeric_value

Values for numeric_value are in:
• Range 5000-5999 for severe
• Range 6000-6249 for informational
• Range 7000-7249 for performance

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 O

R
AC

LE
 C

O
R

PO
R

AT
IO

N
 u

se
 o

nl
y

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Oracle Database 11g: Develop PL/SQL Program Units 11 - 22

Copyright © 2009, Oracle. All rights reserved.

Setting Compiler Warning Levels:
Using PLSQL_WARNINGS, Examples

ALTER SESSION
SET plsql_warnings = 'enable:severe',

'enable:performance',
'disable:informational';

ALTER SESSION
SET plsql_warnings = 'enable:severe';

ALTER SESSION SET PLSQL_WARNINGS='ENABLE:SEVERE',
'DISABLE:PERFORMANCE' , 'ERROR:05003';

Setting Compiler Warning Levels: Using PLSQL_WARNINGS, Examples

You can use the ALTER SESSION or ALTER SYSTEM command to change the
PLSQL_WARNINGS initialization parameter. The graphic in the slide shows the various
examples of enabling and disabling compiler warnings.

Example 1

In this example, you are enabling SEVERE and PERFORMANCE warnings and disabling
INFORMATIONAL warnings.

Example 2

In the second example, you are enabling only SEVERE warnings.

Example 3

You can also treat particular messages as errors instead of warnings. In this example, if you
know that the warning message PLW-05003 represents a serious problem in your code,
including 'ERROR:05003' in the PLSQL_WARNINGS setting makes that condition trigger an
error message (PLS_05003) instead of a warning message. An error message causes the
compilation to fail. In this example, you are also disabling PERFORMANCE warnings.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 O

R
AC

LE
 C

O
R

PO
R

AT
IO

N
 u

se
 o

nl
y

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Oracle Database 11g: Develop PL/SQL Program Units 11 - 23

Copyright © 2009, Oracle. All rights reserved.

Setting Compiler Warning Levels:
Using PLSQL_WARNINGS in SQL Developer

Setting Compiler Warning Levels: Using PLSQL_WARNINGS in SQL Developer

The PL/SQL Compiler pane specifies options for compilation of PL/SQL subprograms. If the
Generate PL/SQL Debug Information check box is selected, PL/SQL debug information is
included in the compiled code; if this option is not selected, this debug information is not
included. The ability to stop on individual code lines and debugger access to variables are
allowed only in code compiled with debug information generated.

Setting and Viewing the PL/SQL Compile-Time Warning Messages Categories in SQL
Developer

You can control the display of informational, severe, and performance-related messages. The
ALL type overrides any individual specifications for the other types of messages. For each type
of message, you can specify any of the following:

• No entry (blank): Use any value specified for ALL; and if none is specified, use the
Oracle default.

• Enable: Enable the display of all messages of this category.
• Disable: Disable the display of all messages of this category.
• Error: Enable the display of only error messages of this category.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 O

R
AC

LE
 C

O
R

PO
R

AT
IO

N
 u

se
 o

nl
y

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Oracle Database 11g: Develop PL/SQL Program Units 11 - 24

Copyright © 2009, Oracle. All rights reserved.

Viewing the Current Setting of PLSQL_WARNINGS

V$PARAMETER
view

DBMS_WARNING
package function

USER|DBA|ALL_PLSQL_
OBJECT_SETTINGS views

PLSQL_WARNINGS
initialization parameter

SQL Developer

Viewing the Current Value of the PLSQL_WARNINGS Parameter

You can examine the current setting for the PLSQL_WARNINGS parameter by issuing a
SELECT statement on the V$PARAMETER view. For example:

ALTER SESSION SET plsql_warnings = 'enable:severe',
'enable:performance','enable:informational';

Session altered.
SELECT value FROM v$parameter WHERE name='plsql_warnings';
VALUE

ENABLE:ALL

Alternatively, you can use the DBMS_WARNING.GET_WARNING_SETTING_STRING
package and method to retrieve the current settings for the PLSQL_WARNINGS parameter:

DECLARE s VARCHAR2(1000);
BEGIN

s := dbms_warning.get_warning_setting_string();
dbms_output.put_line (s);

END;
/

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 O

R
AC

LE
 C

O
R

PO
R

AT
IO

N
 u

se
 o

nl
y

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Oracle Database 11g: Develop PL/SQL Program Units 11 - 25

Copyright © 2009, Oracle. All rights reserved.

Viewing the Compiler Warnings: Using SQL
Developer, SQL*Plus, or Data Dictionary Views

Enable warnings
and compile program

Use SHOW ERRORS
command in SQL*Plus

Use USER/ALL/DBA_
ERRORS views

View errors/warnings
in SQL Developer

View compiler
warnings/errors

Compiler
warnings/errors?

Viewing the Compiler Warnings

You can use SQL*Plus to see any warnings raised as a result of the compilation of a PL/SQL
block. SQL*Plus indicates that a compilation warning has occurred. The “SP2-08xx: <object>
created with compilation warnings.” message is displayed for objects compiled with the
PERFORMANCE, INFORMATIONAL, or SEVERE modifiers. There is no differentiation between
the three. You must enable the compiler warnings before compiling the program. You can
display the compiler warning messages using one of the following methods:

Using the SQL*Plus SHOW ERRORS Command

This command displays any compiler errors including the new compiler warnings and
informational messages. This command is invoked immediately after a CREATE
[PROGEDURE|FUNCTION|PACKAGE] command is used. The SHOW ERRORS command
displays warnings and compiler errors. New compiler warnings and informational messages are
“interleaved” with compiler errors when SHOW ERRORS is invoked.

Using the Data Dictionary Views

You can select from the USER_|ALL_|DBA_ERRORS data dictionary views to display
PL/SQL compiler warnings. The ATTRIBUTES column of these views has a new attribute
called WARNING and the warning message displays in the TEXT column.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 O

R
AC

LE
 C

O
R

PO
R

AT
IO

N
 u

se
 o

nl
y

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Oracle Database 11g: Develop PL/SQL Program Units 11 - 26

Copyright © 2009, Oracle. All rights reserved.

SQL*Plus Warning Messages: Example

CREATE OR REPLACE PROCEDURE bad_proc(p_out …) IS
BEGIN
. . .;
END;
/

SP2-0804: Procedure created with compilation warnings.

SHOW ERRORS;
Errors for PROCEDURE BAD_PROC:

LINE/COL ERROR
-------- --------------------------------------
6/24 PLW-07203: parameter 'p_out' may benefit

from use of the NOCOPY compiler hint

SQL*Plus Warning Messages: Example

Use the SHOW ERRORS command in SQL*Plus to display the compilation errors of a stored
procedure. When you specify this option with no arguments, SQL*Plus displays the compilation
errors for the most recently created or altered stored procedure. If SQL*Plus displays a
compilation warnings message after you create or alter a stored procedure, you can use SHOW
ERRORS commands to obtain more information.

With the introduction of the support for PL/SQL warnings, the range of feedback messages is
expanded to include a third message as follows:

SP2-08xx: <object> created with compilation warnings.

This enables you to differentiate between the occurrence of a compilation warning and a
compilation error. You must correct an error if you want to use the stored procedure, whereas a
warning is for informational purposes only.

The SP2 prefix is included with the warning message, because this provides you with the ability
to look up the corresponding message number in the SQL*Plus User’s Guide and Reference to
determine the cause and action for the particular message.

Note: The SHOW SQL*Plus command is not supported in the SQL Developer 1.2.0 (29.98)
version that is used in this class. You can view the compiler errors and warnings using the
USER_|ALL_|DBA_ERRORS data dictionary views.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 O

R
AC

LE
 C

O
R

PO
R

AT
IO

N
 u

se
 o

nl
y

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Oracle Database 11g: Develop PL/SQL Program Units 11 - 27

Copyright © 2009, Oracle. All rights reserved.

Guidelines for Using PLSQL_WARNINGS

• The settings for the PLSQL_WARNINGS parameter are
stored along with each compiled subprogram.

• If you recompile the subprogram using one of the following
statements, the current settings for that session are used:
– CREATE OR REPLACE

– ALTER ... COMPILE

• If you recompile the subprogram using the ALTER ...
COMPILE statement with the REUSE SETTINGS clause,
the original setting stored with the program is used.

Guidelines for Using PLSQL_WARNINGS

As already stated, the PLSQL_WARNINGS parameter can be set at the session level or the
system level.

The settings for the PLSQL_WARNINGS parameter are stored along with each compiled
subprogram. If you recompile the subprogram with a CREATE OR REPLACE statement, the
current settings for that session are used. If you recompile the subprogram with an
ALTER...COMPILE statement, then the current session setting is used unless you specify the
REUSE SETTINGS clause in the statement, which uses the original setting that is stored with
the subprogram.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 O

R
AC

LE
 C

O
R

PO
R

AT
IO

N
 u

se
 o

nl
y

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Oracle Database 11g: Develop PL/SQL Program Units 11 - 28

Copyright © 2009, Oracle. All rights reserved.

Lesson Agenda

• Describing the new PL/SQL compiler and features
• Using the New PLSQL_CODE_TYPE, PLSQL_DEBUG, and

PLSQL_OPTIMIZE_LEVEL PL/SQL Compilation
Initialization Parameters

• Using the New PL/SQL Compile Time Warnings:
– Using the PLSQL_WARNING Initialization Parameter

– Using the DBMS_WARNING Package Routines

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 O

R
AC

LE
 C

O
R

PO
R

AT
IO

N
 u

se
 o

nl
y

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Oracle Database 11g: Develop PL/SQL Program Units 11 - 29

Copyright © 2009, Oracle. All rights reserved.

Setting Compiler Warning Levels:
Using the DBMS_WARNING Package

DBMS_WARNINGS
package subprograms

Query settings Modify settings

Delete settingsRestore settings

Setting Compiler Warning Levels: Using the DBMS_WARNING Package

Use the DBMS_WARNING package to programmatically manipulate the behavior of current
system or session PL/SQL warning settings. The DBMS_WARNING package provides a way to
manipulate the behavior of PL/SQL warning messages, in particular by reading and changing the
setting of the PLSQL_WARNINGS initialization parameter to control what kinds of warnings are
suppressed, displayed, or treated as errors. This package provides the interface to query, modify,
and delete current system or session settings.

The DBMS_WARNING package is valuable if you are writing a development environment that
compiles PL/SQL subprograms. Using the package interface routines, you can control PL/SQL
warning messages programmatically to suit your requirements.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 O

R
AC

LE
 C

O
R

PO
R

AT
IO

N
 u

se
 o

nl
y

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Oracle Database 11g: Develop PL/SQL Program Units 11 - 30

Setting Compiler Warning Levels: Using the DBMS_WARNING Package (continued)

Overview of PL/SQL Compile-Time Warnings for Subprograms: Example

Assume that you write some code to compile PL/SQL code. You know that the compiler issues
performance warnings when passing collection variables as OUT or IN OUT parameters without
specifying the NOCOPY hint. The general environment that calls your compilation utility may or
may not have appropriate warning-level settings. In any case, your business rules indicate that
the calling environment set must be preserved and that your compilation process should suppress
the warnings. By calling subprograms in the DBMS_WARNING package, you can detect the
current warning settings, change the settings to suit your business requirements, and restore the
original settings when your processing has completed.

When you use the ALTER SESSION or ALTER SYSTEM command to set the
PLSQL_WARNINGS parameter, the new value specified completely replaces the previous value.
A new package, DBMS_WARNING, is available in Oracle Database 10g, that has interfaces to
query and incrementally change the setting for the PLSQL_WARNINGS parameter and make it
more specific to your requirements.

The DBMS.WARNING package can be used to change the PLSQL_WARNINGS parameter
incrementally, so that you can set the warnings that you want to set, without having to work out
how to preserve the values of any warnings not of direct interest to you. For example, the DBA
may only enable severe warnings for the entire database in the initialization parameter file, but a
developer who is testing new code may want to view specific performance and informational
messages. The developer can then use the DBMS_WARNING package to incrementally add the
specific warnings that he or she wishes to see. This allows the developer to view the messages
that he or she wants to see without replacing the DBA’s settings.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 O

R
AC

LE
 C

O
R

PO
R

AT
IO

N
 u

se
 o

nl
y

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Oracle Database 11g: Develop PL/SQL Program Units 11 - 31

Copyright © 2009, Oracle. All rights reserved.

Using the DBMS_WARNING Package Subprograms

GET_CATEGORY (function)Get the warnings’
categories names

Replace warnings

Query warnings

Set warnings

Scenario

ADD_WARNING_SETTING_CAT (procedure)

ADD_WARNING_SETTING_NUM (procedure)

SET_WARNING_SETTING_STRING (procedure)

GET_WARNING_SETTING_CAT (function)

GET_WARNING_SETTING_NUM (function)

GET_WARNING_SETTING_STRING (function)

Subprograms to Use

Using the DBMS_WARNING Subprograms

The following is a list of the DBMS_WARNING subprograms:

ADD_WARNING_SETTING_CAT: Modifies the current session or system warning settings of
the warning_category previously supplied

ADD_WARNING_SETTING_NUM: Modifies the current session or system warning settings of
the warning_number previously supplied

GET_CATEGORY: Returns the category name, given the message number

GET_WARNING_SETTING_CAT: Returns the specific warning category in the session

GET_WARNING_SETTING_NUM: Returns the specific warning number in the session

GET_WARNING_SETTING_STRING: Returns the entire warning string for the current session

SET_WARNING_SETTING_STRING: Replaces previous settings with the new value

Note: For additional information about the above subprograms, refer to Oracle Database
PL/SQL Packages and Types Reference 11g Release 1 (11.1).

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 O

R
AC

LE
 C

O
R

PO
R

AT
IO

N
 u

se
 o

nl
y

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Oracle Database 11g: Develop PL/SQL Program Units 11 - 32

Copyright © 2009, Oracle. All rights reserved.

The DBMS_WARNING Procedures:
Syntax, Parameters, and Allowed Values

EXECUTE DBMS_WARNING.ADD_WARNING_SETTING_NUM (-
warning_number IN NUMBER,
warning_value IN VARCHAR2,
scope IN VARCAHR2);

EXECUTE DBMS_WARNING.ADD_WARNING_SETTING_CAT (-
warning_category IN VARCHAR2,
warning_value IN VARCHAR2,
scope IN VARCAHR2);

EXECUTE DBMS_WARNING.SET_WARNING_SETTING_STRING (-
warning_value IN VARCHAR2,
scope IN VARCHAR2);

The DBMS_WARNING Procedures: Syntax, Parameters, and Allowed Values

warning_category is the name of the category. The allowed values are: ALL,
INFORMATIONAL, SEVERE, or PERFORMANCE.

warning_value is the value for the category. The allowed values are: ENABLE, DISABLE,
or ERROR.

warning_number is the warning message number. The allowed values are all valid warning
numbers.

scope specifies whether the changes are being performed in the session context or the system
context. The allowed values are SESSION or SYSTEM. Using SYSTEM requires the ALTER
SYTSTEM privilege.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 O

R
AC

LE
 C

O
R

PO
R

AT
IO

N
 u

se
 o

nl
y

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Oracle Database 11g: Develop PL/SQL Program Units 11 - 33

Copyright © 2009, Oracle. All rights reserved.

The DBMS_WARNING Procedures: Example

-- Establish the following warning setting string in the
-- current session:
-- ENABLE:INFORMATIONAL,
-- DISABLE:PERFORMANCE,
-- ENABLE:SEVERE

EXECUTE DBMS_WARNING.SET_WARNING_SETTING_STRING(-
'ENABLE:ALL', 'SESSION');

EXECUTE DBMS_WARNING.ADD_WARNING_SETTING_CAT(-
'PERFORMANCE','DISABLE', 'SESSION');

Using DBMS_WARNING Procedures: Example

Using the SET_WARNING_SETTING_STRING procedure, you can set one warning setting. If
you have multiple warning settings, you should perform the following steps:

1. Call SET_WARNING_SETTING_STRING to set the initial warning setting string.
2. Call ADD_WARNING_SETTING_CAT (or ADD_WARNING_SETTING_NUM) repeatedly

to add more settings to the initial string.

The example in the slide establishes the following warning setting string in the current session:
ENABLE:INFORMATIONAL,DISABLE:PERFORMANCE,ENABLE:SEVERE

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 O

R
AC

LE
 C

O
R

PO
R

AT
IO

N
 u

se
 o

nl
y

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Oracle Database 11g: Develop PL/SQL Program Units 11 - 34

Copyright © 2009, Oracle. All rights reserved.

The DBMS_WARNING Functions:
Syntax, Parameters, and Allowed Values

DBMS_WARNING.GET_CATEGORY (-
warning_number IN pls_integer) RETURN VARCHAR2;

DBMS_WARNING.GET_WARNING_SETTING_NUM (-
warning_number IN NUMBER) RETURN warning_value;

DBMS_WARNING.GET_WARNING_SETTING_CAT (-
warning_category IN VARCHAR2) RETURN warning_value;

DBMS_WARNING.GET_WARNING_SETTING_STRING
RETURN pls_integer;

The DBMS_WARNING Functions: Syntax, Parameters, and Allowed Values

warning_category is the name of the category. The allowed values are: ALL,
INFORMATIONAL, SEVERE, or PERFORMANCE.

warning_number is the warning message number. The allowed values are all valid warning
numbers.

scope specifies whether the changes are being performed in the session context or the system
context. The allowed values are SESSION or SYSTEM. Using SYSTEM requires the ALTER
SYTSTEM privilege.

Note: Use the GET_WARNING_SETTING_STRING function when you do not have the
SELECT privilege on the v$parameter or v$paramater2 fixed tables, or if you want to
parse the warning string yourself and then modify and set the new value using
SET_WARNING_SETTING_STRING.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 O

R
AC

LE
 C

O
R

PO
R

AT
IO

N
 u

se
 o

nl
y

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Oracle Database 11g: Develop PL/SQL Program Units 11 - 35

Copyright © 2009, Oracle. All rights reserved.

The DBMS_WARNING Functions: Example

-- Determine the category for warning message number
-- PLW-07203

EXECUTE DBMS_OUTPUT.PUT_LINE(-
DBMS_WARNING.GET_CATEGORY(7203));

-- Determine the current session warning settings

EXECUTE DBMS_OUTPUT.PUT_LINE(-
DBMS_WARNING.GET_WARNING_SETTING_STRING);

Note

The message numbers must be specified as positive integers, because the data type for the
GET_CATEGORY parameter is PLS_INTEGER (allowing positive integer values).

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 O

R
AC

LE
 C

O
R

PO
R

AT
IO

N
 u

se
 o

nl
y

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Oracle Database 11g: Develop PL/SQL Program Units 11 - 36

Copyright © 2009, Oracle. All rights reserved.

Using DBMS_WARNING: Example

CREATE OR REPLACE PROCEDURE compile_code(p_pkg_name VARCHAR2) IS
v_warn_value VARCHAR2(200);
v_compile_stmt VARCHAR2(200) :=
'ALTER PACKAGE '|| p_pkg_name ||' COMPILE';

BEGIN
v_warn_value := DBMS_WARNING.GET_WARNING_SETTING_STRING;
DBMS_OUTPUT.PUT_LINE('Current warning settings: '||

v_warn_value);
DBMS_WARNING.ADD_WARNING_SETTING_CAT(

'PERFORMANCE', 'DISABLE', 'SESSION');
DBMS_OUTPUT.PUT_LINE('Modified warning settings: '||

DBMS_WARNING.GET_WARNING_SETTING_STRING);
EXECUTE IMMEDIATE v_compile_stmt;
DBMS_WARNING.SET_WARNING_SETTING_STRING(v_warn_value,

'SESSION');
DBMS_OUTPUT.PUT_LINE('Restored warning settings: '||

DBMS_WARNING.GET_WARNING_SETTING_STRING);
END;
/

Using DBMS_WARNING: Example

Note: Before you run the code provided in the example in the slide, you must create the
MY_PKG script found in demo_11_36.sql. This demo script creates the MY_PKG package.

In the example in the slide, the compile_code procedure is designed to compile a named
PL/SQL package. The code suppresses the PERFORMANCE category warnings. The calling
environment’s warning settings must be restored after the compilation is performed. The code
does not know what the calling environment warning settings are; it uses the
GET_WARNING_SETTING_STRING function to save the current setting. This value is used to
restore the calling environment setting using the
DBMS_WARNING.SET_WARNING_SETTING_STRING procedure in the last line of the
example code. Before compiling the package using Native Dynamic SQL, the compile_code
procedure alters the current session-warning level by disabling warnings for the PERFORMANCE
category. The code also prints the original, modified, and the restored warning settings.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 O

R
AC

LE
 C

O
R

PO
R

AT
IO

N
 u

se
 o

nl
y

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Oracle Database 11g: Develop PL/SQL Program Units 11 - 37

Copyright © 2009, Oracle. All rights reserved.

Using DBMS_WARNING: Example

EXECUTE DBMS_WARNING.SET_WARNING_SETTING_STRING(-
'ENABLE:ALL', 'SESSION');

@code_11_36_bs.sql

@code_11_37_cs.sql –- compiles the DEPT_PKG package
EXECUTE compile_code('DEPT_PKG');

Current warning settings: ENABLE:ALL
Modified warning settings:
ENABLE:INFORMATIONAL,DISABLE:PERFORMANCE,ENABLE:SEVERE
Restored warning settings: ENABLE:ALL

Using DBMS_WARNING: Example (continued)

In the example in the slide, the example provided in the previous slide is tested. First, enable all
compiler warnings. Next, run the script on the previous page. Finally, call the compile_code
procedure and pass it an existing package name, DEPT_PKG, as a parameter.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 O

R
AC

LE
 C

O
R

PO
R

AT
IO

N
 u

se
 o

nl
y

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Oracle Database 11g: Develop PL/SQL Program Units 11 - 38

Copyright © 2009, Oracle. All rights reserved.

Using the New PLW 06009 Warning Message

• A new PLW warning is available in Oracle Database 11g.

• This warning indicates that the OTHERS handler of your
PL/SQL subroutine can exit without executing:
– Some form of RAISE, or

– A call to the standard procedure
RAISE_APPLICATION_ERROR

• A good programming practice suggests that OTHERS
handlers must always pass an exception upward.

Using the New PLW 06009 Warning

As a good programming practice, you should have your OTHERS exception handler pass the
exception upward to the calling subroutine. If you fail to add this functionality, you run the risk
of having exceptions go unnoticed. To avoid this flaw in your code, you can turn on warnings
for your session and recompile the code that you want to verify. If the OTHERS handler does not
handle the exception, the PLW 06009 warning will inform you.

Note: PLW 06009 is not the only new warning message in Oracle Database 11g. For a complete
list of all PLW warnings, see the Oracle Database Error Messages11g Release 1 (11.1) guide.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 O

R
AC

LE
 C

O
R

PO
R

AT
IO

N
 u

se
 o

nl
y

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Oracle Database 11g: Develop PL/SQL Program Units 11 - 39

Copyright © 2009, Oracle. All rights reserved.

The New PLW 06009 Warning: Example

-- You must create table t shown in the notes section first.
CREATE OR REPLACE PROCEDURE p(i IN VARCHAR2)
IS
BEGIN
INSERT INTO t(col_a) VALUES (i);

EXCEPTION
WHEN OTHERS THEN null;

END p;
/
ALTER PROCEDURE P COMPILE
PLSQL_warnings = 'enable:all' REUSE SETTINGS;

SELECT *
FROM user_errors
WHERE name = 'P'

The New PLW 06009 Warning: Example

After running the first code example in the slide and after compiling the procedure using the
Object Navigation tree, the Compiler – Log tab displays the PLW-06009 warning.

You can also use the user_error data dictionary view to display the error.
The definition of table t that is used in the slide example is as follows:

CREATE TABLE t (col_a NUMBER); O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 O

R
AC

LE
 C

O
R

PO
R

AT
IO

N
 u

se
 o

nl
y

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Oracle Database 11g: Develop PL/SQL Program Units 11 - 40

Copyright © 2009, Oracle. All rights reserved.

Quiz

The categories of PL/SQL compile-time warning messages
are:
1. SEVERE

2. PERFORMANCE

3. INFORMATIONAL

4. All

5. CRITICAL

Answers: 1, 2, 3, 4

PL/SQL warning messages are divided into categories, so that you can suppress or display
groups of similar warnings during compilation. The categories are:
• SEVERE: Messages for conditions that may cause unexpected behavior or wrong results,

such as aliasing problems with parameters.
• PERFORMANCE: Messages for conditions that may cause performance problems, such as

passing a VARCHAR2 value to a NUMBER column in an INSERT statement.
• INFORMATIONAL: Messages for conditions that do not have an effect on performance or

correctness, but that you may want to change to make the code more maintainable, such as
unreachable code that can never be executed.

• ALL: Displays all categories.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 O

R
AC

LE
 C

O
R

PO
R

AT
IO

N
 u

se
 o

nl
y

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Oracle Database 11g: Develop PL/SQL Program Units 11 - 41

Copyright © 2009, Oracle. All rights reserved.

Summary

In this lesson, you should have learned how to:

• Describe the new PL/SQL compiler and features

• Use the new PL/SQL compiler initialization parameters

• Use the new PL/SQL compile time warnings

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 O

R
AC

LE
 C

O
R

PO
R

AT
IO

N
 u

se
 o

nl
y

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Oracle Database 11g: Develop PL/SQL Program Units 11 - 42

Copyright © 2009, Oracle. All rights reserved.

Practice 11: Overview

This practice covers the following topics:

• Displaying the compiler initialization parameters

• Enabling native compilation for your session and compiling
a procedure

• Disabling the compiler warnings, and then restoring the
original session-warning settings

• Identifying the categories for some compiler-warning
message numbers

Practice 11: Overview

In this practice, you display the compiler initialization parameters. You then enable native
compilation for your session and compile a procedure. You then suppress all compiler warnings
categories and then restore the original session-warning settings. Finally, you identify the
categories for some compiler-warning message numbers.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 O

R
AC

LE
 C

O
R

PO
R

AT
IO

N
 u

se
 o

nl
y

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Oracle Database 11g: Develop PL/SQL Program Units 11 - 43

Practice 11

1. Create and run a lab_11_01 script to display the following information about compiler-
initialization parameters by using the

USER_PLSQL_OBJECT_SETTINGS data dictionary view. Note the settings for the
ADD_JOB_HISTORY object.
Note: Use the Execute Statement (F9) icon to display the results in the Results tab.

a. Object name

b. Object type

c. Whether or not the object was compiled for debugging

d. The object’s compilation mode

e. The compilation optimization level

2. Alter the PLSQL_CODE_TYPE parameter to enable native compilation for your session,
and compile ADD_JOB_HISTORY.

a. Execute the ALTER SESSION command to enable native compilation for the
session.

b. Compile the ADD_JOB_HISTORY procedure.

c. Rerun the sol_11_01 script. Note the PLSQL_CODE_TYPE parameter.

d. Switch compilation to use interpreted compilation mode.

3. Use the Tools > Preferences > PL/SQL Compiler Options region to disable all compiler
warnings categories.

4. Edit, examine, and execute the lab_11_04.sql script to create the
UNREACHABLE_CODE procedure. Click the Run Script icon to create the procedure. Use
the procedure name in the Navigation tree to compile the procedure.

5. What are the compiler warnings that are displayed in the Compiler – Log tab, if any?

6. Enable all compiler-warning messages for this session using the Preferences window.

7. Recompile the UNREACHABLE_CODE procedure using the Object Navigation tree. What
compiler warnings are displayed, if any?

8. Use the Compiler – Log tab in SQL developer or the USER_ERRORS data dictionary
view to display the compiler-warning messages details.

9. Create a script named warning_msgs that uses the EXECUTE DBMS_OUTPUT and the
DBMS_WARNING packages to identify the categories for the following compiler-warning
message numbers: 5050, 6075, and 7100.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 O

R
AC

LE
 C

O
R

PO
R

AT
IO

N
 u

se
 o

nl
y

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 O

R
AC

LE
 C

O
R

PO
R

AT
IO

N
 u

se
 o

nl
y

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Copyright © 2009, Oracle. All rights reserved.

Managing PL/SQL Code

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 O

R
AC

LE
 C

O
R

PO
R

AT
IO

N
 u

se
 o

nl
y

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Oracle Database 11g: Develop PL/SQL Program Units 12 - 2

Copyright © 2009, Oracle. All rights reserved.

Objectives

After completing this lesson, you should be able to do the
following:

• Describe and use conditional compilation

• Hide PL/SQL source code using dynamic obfuscation and
the Wrap utility

Lesson Aim

This lesson introduces the conditional compilation and obfuscating or wrapping PL/SQL code.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 O

R
AC

LE
 C

O
R

PO
R

AT
IO

N
 u

se
 o

nl
y

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Oracle Database 11g: Develop PL/SQL Program Units 12 - 3

Copyright © 2009, Oracle. All rights reserved.

Lesson Agenda

• Using conditional compilation

• Obfuscating PL/SQL code

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 O

R
AC

LE
 C

O
R

PO
R

AT
IO

N
 u

se
 o

nl
y

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Oracle Database 11g: Develop PL/SQL Program Units 12 - 4

Copyright © 2009, Oracle. All rights reserved.

What Is Conditional Compilation?

Enables you to customize the functionality in a PL/SQL
application without removing any source code:

• Utilize the latest functionality with the latest database
release or disable the new features to run the application
against an older release of the database.

• Activate debugging or tracing functionality in the
development environment and hide that functionality in the
application while it runs at a production site.

Reserved preprocessor control tokens

$IF, $THEN, $ELSE,
$ELSIF, $END, $$, $ERROR

What Is Conditional Compilation?

Conditional compilation enables you to selectively include code, depending on the values of the
conditions evaluated during compilation. For example, conditional compilation enables you to
determine which PL/SQL features in a PL/SQL application are used for specific database
releases. The latest PL/SQL features in an application can be run on a new database release and
at the same time those features can be conditional so that the same application is compatible
with a previous database release. Conditional compilation is also useful when you want to
execute debugging procedures in a development environment, but want to turn off the debugging
routines in a production environment.

Benefits of Conditional Compilation
• Support for multiple versions of the same program in one source code
• Easy maintenance and debugging of code
• Easy migration of code to a different release of the database

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 O

R
AC

LE
 C

O
R

PO
R

AT
IO

N
 u

se
 o

nl
y

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Oracle Database 11g: Develop PL/SQL Program Units 12 - 5

Copyright © 2009, Oracle. All rights reserved.

How Does Conditional Compilation Work?

Inquiry directives:
Use the $$ token.

Selection directives:
Use the $IF token.

Error directives:
Use the $ERROR token.

DBMS_DB_VERSION
package

DBMS_PREPROCESSOR
package

How Does Conditional Compilation Work?

You can use conditional compilation by embedding directives in your PL/SQL source programs.
When the PL/SQL program is submitted for compilation, a preprocessor evaluates these
directives and selects parts of the program to be compiled. The selected program source is then
handed off to the compiler for compilation.

Inquiry directives use the $$ token to make inquiries about the compilation environment such as
the value of a PL/SQL compiler initialization parameters PLSQL_CCFLAGS or
PLSQL_OPTIMIZE_LEVEL for the unit being compiled. This directive can be used in
conjunction with the conditional selection directive to select the parts of the program to compile.

Selection directives can test inquiry directives or static package constants by using the $IF
construct to branch sections of code for possible compilation if a condition is satisfied.

Error directives issue a compilation error if an unexpected condition is encountered during
conditional compilation using the $ERROR token.

The DBMS_DB_VERSION package provides database version and release constants that can be
used for conditional compilation.

The DBMS_PREPROCESSOR package provides subprograms for accessing the post-processed
source text that is selected by conditional compilation directives in a PL/SQL unit.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 O

R
AC

LE
 C

O
R

PO
R

AT
IO

N
 u

se
 o

nl
y

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Oracle Database 11g: Develop PL/SQL Program Units 12 - 6

Copyright © 2009, Oracle. All rights reserved.

Using Selection Directives

DECLARE
CURSOR cur IS SELECT employee_id FROM
employees WHERE
$IF myapp_tax_package.new_tax_code $THEN

salary > 20000;
$ELSE

salary > 50000;
$END
BEGIN

OPEN cur;
. . .
END;

$IF <Boolean-expression> $THEN Text
$ELSEIF <Boolean-expression> $THEN Text
. . .
$ELSE Text
$END

Using Selection Directives

The conditional selection directive looks like and operates like the IF-THEN-ELSE mechanism
in PL/SQL proper. When the preprocessor encounters $THEN, it verifies that the text between
$IF and $THEN is a static expression. If the check succeeds and the result of the evaluation is
TRUE, then the PL/SQL program text between $THEN and $ELSE (or $ELSIF) is selected for
compilation.

The selection condition (the expression between $IF and $THEN) can be constructed by
referring to constants defined in another package or an inquiry directive or some combination of
the two.

In the example in the slide, conditional selection directive chooses between two versions of the
cursor, cur, on the basis of the value of MYAPP_TAX_PACKAGE.NEW_TAX_CODE. If the
value is TRUE, then employees with salary > 20000 are selected, else employees with
salary > 50000 are selected.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 O

R
AC

LE
 C

O
R

PO
R

AT
IO

N
 u

se
 o

nl
y

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Oracle Database 11g: Develop PL/SQL Program Units 12 - 7

Copyright © 2009, Oracle. All rights reserved.

PLSQL_CCFLAGS

PLSQL_CODE_TYPE

PLSQL_DEBUG

PLSQL_OPTIMIZE_LEVEL

PLSQL_WARNINGS

NLS_LENGTH_SEMANTICS

PLSQL_LINE

PLSQL_UNIT

Using Predefined and
User-Defined Inquiry Directives

PLSQL_CCFLAGS = 'plsql_ccflags:true,debug:true,debug:0';

Predefined inquiry directives

User-defined inquiry directives

Using Predefined and User-Defined Inquiry Directives

An inquiry directive can be predefined or user-defined. The following describes the order of the
processing flow when conditional compilation attempts to resolve an inquiry directive:

1. The ID is used as an inquiry directive in the form $$id for the search key.
2. The two-pass algorithm proceeds as follows:

a. The string in the PLSQL_CCFLAGS initialization parameter is scanned from right to
left, searching with ID for a matching name (not case sensitive); done if found.

b. The predefined inquiry directives are searched; done if found.
3. If the $$ID cannot be resolved to a value, then the PLW-6003 warning message is

reported if the source text is not wrapped. The literal NULL is substituted as the value for
undefined inquiry directives. Note that if the PL/SQL code is wrapped, then the warning
message is disabled so that the undefined inquiry directive is not revealed.

In the example in the slide, the value of $$debug is 0 and the value of $$plsql_ccflags
is TRUE. Note that the value of $$plsql_ccflags resolves to the user-defined
plsql_ccflags inside the value of the PLSQL_CCFLAGS compiler parameter. This occurs
because a user-defined directive overrides the predefined one.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 O

R
AC

LE
 C

O
R

PO
R

AT
IO

N
 u

se
 o

nl
y

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Oracle Database 11g: Develop PL/SQL Program Units 12 - 8

Copyright © 2009, Oracle. All rights reserved.

The PLSQL_CCFLAGS Parameter
and the Inquiry Directive

Use the PLSQL_CCFLAGS parameter to control conditional
compilation of each PL/SQL library unit independently.

PLSQL_CCFLAGS = '<v1>:<c1>,<v2>:<c2>,...,<vn>:<cn>'

ALTER SESSION SET
PLSQL_CCFLAGS = 'plsql_ccflags:true, debug:true, debug:0';

PLSQL_CCFLAGS
initialization parameter Inquiry directive

The PLSQL_CCFLAGS Parameter and the Inquiry Directive

Oracle Database 10g Release 2 introduced a new Oracle initialization parameter
PLSQL_CCFLAGS for use with conditional compilation. This dynamic parameter enables you
to set up name-value pairs. The names (called flag names) can then be referenced in inquiry
directives. PLSQL_CCFLAGS provides a mechanism that allows PL/SQL programmers to
control conditional compilation of each PL/SQL library unit independently.

Values
• vi: Has the form of an unquoted PL/SQL identifier. It is unrestricted and can be a reserved

word or a keyword. The text is not case sensitive. Each one is known as a flag or flag
name. Each vi can occur more than once in the string, each occurrence can have a
different flag value, and the flag values can be of different kinds.

• ci: Can be any of the following:
- A PL/SQL Boolean literal
- A PLS_INTEGER literal
- The literal NULL (default). The text is not case sensitive. Each one is known as a flag

value and corresponds to a flag name.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 O

R
AC

LE
 C

O
R

PO
R

AT
IO

N
 u

se
 o

nl
y

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Oracle Database 11g: Develop PL/SQL Program Units 12 - 9

Copyright © 2009, Oracle. All rights reserved.

Displaying the PLSQL_CCFLAGS Initialization
Parameter Setting

SELECT name, type, plsql_ccflags
FROM user_plsql_object_settings

. . .

Displaying the PLSQL_CCFLAGS Initialization Parameter Setting

Use the USER|ALL|DBA_PLSQL_OBJECT_SETTINGS data dictionary views to display the
settings of a PL/SQL object.

You can define any allowable value for PLSQL_CCFLAGS. However, Oracle recommends that
this parameter be used for controlling the conditional compilation of debugging or tracing code.

The flag names can be set to any identifier, including reserved words and keywords. The values
must be the literals TRUE, FALSE, or NULL, or a PLS_INTEGER literal. The flag names and
values are not case sensitive. The PLSQL_CCFLAGS parameter is a PL/SQL compiler
parameter (like other compiler parameters) and is stored with the PL/SQL program unit.
Consequently, if the PL/SQL program gets recompiled later with the REUSE SETTINGS
clause (example, ALTER PACKAGE …REUSE SETTINGS), then the same value of
PLSQL_CCFLAGS is used for the recompilation. Because the PLSQL_CCFLAGS parameter can
be set to a different value for each PL/SQL unit, it provides a convenient method for controlling
conditional compilation on a per unit basis.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 O

R
AC

LE
 C

O
R

PO
R

AT
IO

N
 u

se
 o

nl
y

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Oracle Database 11g: Develop PL/SQL Program Units 12 - 10

Copyright © 2009, Oracle. All rights reserved.

ALTER SESSION SET PLSQL_CCFLAGS = 'Tracing:true';
CREATE OR REPLACE PROCEDURE P IS
BEGIN
$IF $$tracing $THEN

DBMS_OUTPUT.PUT_LINE ('TRACING');
$END

END P;

The PLSQL_CCFLAGS Parameter
and the Inquiry Directive: Example

SELECT name, plsql_ccflags
FROM USER_PLSQL_OBJECT_SETTINGS
WHERE name = 'P';

The PLSQL_CCFLAGS Parameter and the Inquiry Directive: Example

In the example in the slide, the parameter is set and then the procedure is created. The setting is
stored with each PL/SQL unit.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 O

R
AC

LE
 C

O
R

PO
R

AT
IO

N
 u

se
 o

nl
y

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Oracle Database 11g: Develop PL/SQL Program Units 12 - 11

Copyright © 2009, Oracle. All rights reserved.

Using Conditional Compilation Error
Directives to Raise User-Defined Errors

ALTER SESSION SET Plsql_CCFlags = ' Trace_Level:3 '
/ CREATE PROCEDURE P IS
BEGIN
$IF $$Trace_Level = 0 $THEN ...;
$ELSIF $$Trace_Level = 1 $THEN ...;
$ELSIF $$Trace_Level = 2 $THEN ...;
$else $error 'Bad: '||$$Trace_Level $END
$END

END P; /

$ERROR varchar2_static_expression $END

SHOW ERRORS
Errors for PROCEDURE P:
LINE/COL ERROR
-------- ------------------------------------
6/9 PLS-00179: $ERROR: Bad: 3

Using Conditional Compilation Error Directives to Raise User-Defined Errors

The $ERROR error directive raises a user-defined error and is of the form:
$ERROR varchar2_static_expression $END

Note: varchar2_static_expression must be a VARCHAR2 static expression.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 O

R
AC

LE
 C

O
R

PO
R

AT
IO

N
 u

se
 o

nl
y

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Oracle Database 11g: Develop PL/SQL Program Units 12 - 12

Copyright © 2009, Oracle. All rights reserved.

Using Static Expressions
with Conditional Compilation

• Boolean static expressions:
– TRUE, FALSE, NULL, IS NULL, IS NOT NULL

– > , < , >= , <= , = , <>, NOT, AND, OR

• PLS_INTEGER static expressions:
– -2147483648 to 2147483647, NULL

• VARCHAR2 static expressions include:
– ||, NULL, TO_CHAR

• Static constants:

static_constant CONSTANT datatype := static_expression;

Using Static Expressions with Conditional Compilation

As described earlier, a preprocessor processes conditional directives before proper compilation
begins. Consequently, only expressions that can be fully evaluated at compile time are permitted
in conditional compilation directives. Any expression that contains references to variables or
functions that require the execution of the PL/SQL are not available during compilation and
cannot be evaluated.

This subset of PL/SQL expressions allowed in conditional compilation directives is referred to
as static expressions. Static expressions are carefully defined to guarantee that if a unit is
automatically recompiled without any changes to the values it depends on, the expressions
evaluate in the same way and the same source is compiled.

Generally, static expressions are composed of three sources:
• Inquiry directives marked with $$
• Constants defined in PL/SQL packages such as DBMS_DB_VERSION. These values can

be combined and compared using the ordinary operations of PL/SQL.
• Literals such as TRUE, FALSE, 'CA', 123, NULL

Static expressions can also contain operations that include comparisons, logical Boolean
operations (such as OR and AND), or concatenations of static character expression.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 O

R
AC

LE
 C

O
R

PO
R

AT
IO

N
 u

se
 o

nl
y

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Oracle Database 11g: Develop PL/SQL Program Units 12 - 13

Copyright © 2009, Oracle. All rights reserved.

The DBMS_DB_VERSION Package:
Boolean Constants

VER_LE_9

VER_LE_9_1

VER_LE_9_2

VER_LE_10

VER_LE_10_1

VER_LE_10_2

VER_LE_11

VER_LE_11_1

DBMS_DB_VERSION
Package

DBMS_DB_VERSION
Boolean constants

Oracle 10g Release 2

TRUE?

The DBMS_DB_VERSION Package

Oracle Database 10g Release 2 introduced the DBMS_DB_VERSION package. This package
specifies the Oracle database version and release numbers that are useful when making simple
selections for conditional compilation.

The constants represent a Boolean condition that evaluates to less than or equal to the version
and the release, if present.

Example

VER_LE_10 indicates that the database version <= 10. The values of the constants are either
TRUE or FALSE. For example, in an Oracle Database 10g Release 2 database, VER_LE_10
and VER_LE_10_2 are TRUE and all other constants are FALSE.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 O

R
AC

LE
 C

O
R

PO
R

AT
IO

N
 u

se
 o

nl
y

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Oracle Database 11g: Develop PL/SQL Program Units 12 - 14

Copyright © 2009, Oracle. All rights reserved.

The DBMS_DB_VERSION Package Constants

Version <=11 and release <= 1.TRUEVER_LE_11_1

Version <= 11.FALSEVER_LE_11

Version <=10 and release <= 2.TRUEVER_LE_10_2

Version <= 10 and release <= 1.FALSEVER_LE_10_1

Version <= 10.

Version <= 9 and release <= 2.

Version <= 9 and release <= 1.

Version <= 9.

Current release.

Current version.

Description

FALSEVER_LE_9_2

FALSEVER_LE_9_1

FALSEVER_LE_9

2RELEASE

10VERSIO N

TRUEVER_LE_10

Name Value

The DBMS_DB_VERSION Package
The package for the Oracle Database 11g Release 1 version is shown below:

PACKAGE DBMS_DB_VERSION IS
VERSION CONSTANT PLS_INTEGER := 11; -- RDBMS version

-- number
RELEASE CONSTANT PLS_INTEGER := 1; -- RDBMS release

-- number
ver_le_9_1 CONSTANT BOOLEAN := FALSE;
ver_le_9_2 CONSTANT BOOLEAN := FALSE;
ver_le_9 CONSTANT BOOLEAN := FALSE;
ver_le_10_1 CONSTANT BOOLEAN := FALSE;
ver_le_10_2 CONSTANT BOOLEAN := FALSE;
ver_le_10 CONSTANT BOOLEAN := FALSE;
ver_le_11_1 CONSTANT BOOLEAN := TRUE;
ver_le_11 CONSTANT BOOLEAN := TRUE;

END DBMS_DB_VERSION;

The DBMS_DB_VERSION package contains different constants for different Oracle Database
releases. The Oracle Database 11g Release 1 version of the DBMS_DB_VERSION package uses
the constants shown in the slide.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 O

R
AC

LE
 C

O
R

PO
R

AT
IO

N
 u

se
 o

nl
y

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Oracle Database 11g: Develop PL/SQL Program Units 12 - 15

Copyright © 2009, Oracle. All rights reserved.

Using Conditional Compilation
with Database Versions: Example

ALTER SESSION SET PLSQL_CCFLAGS = 'my_debug:FALSE, my_tracing:FALSE';
CREATE PACKAGE my_pkg AS
SUBTYPE my_real IS
-- Check the database version, if >= 10g, use BINARY_DOUBLE data type,
-- else use NUMBER data type
$IF DBMS_DB_VERSION.VERSION < 10 $THEN NUMBER;
$ELSE BINARY_DOUBLE;
$END

my_pi my_real; my_e my_real;
END my_pkg;
/
CREATE PACKAGE BODY my_pkg AS
BEGIN
$IF DBMS_DB_VERSION.VERSION < 10 $THEN

my_pi := 3.14016408289008292431940027343666863227;
my_e := 2.71828182845904523536028747135266249775;

$ELSE
my_pi := 3.14016408289008292431940027343666863227d;
my_e := 2.71828182845904523536028747135266249775d;

$END
END my_pkg;
/

Using Conditional Compilation with Database Versions: Example

This example also shows the use of the PLSQL_CCFLAGS parameter. First, you set the
PLSQL_CCFLAGS parameter flag for displaying debugging code and tracing information.

In the example in the slide on this page and the next page, conditional compilation is used to
specify code for database versions. Conditional compilation is used to determine whether the
BINARY_DOUBLE data type can be utilized in the calculations for PL/SQL units in the
database. The BINARY_DOUBLE data type can only be used in Oracle Database 10g or later. If
you are using Oracle Database 10g, then the data type for my_real is BINARY_DOUBLE;
otherwise, the data type for my_real is NUMBER.

In the specification of the new package, my_pkg, conditional compilation is used to check for
the database version. In the body definition of the package, conditional compilation is used again
to set the values of my_pi and my_e for future calculations based on the database version.

The result of the slide example code is as follows:

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 O

R
AC

LE
 C

O
R

PO
R

AT
IO

N
 u

se
 o

nl
y

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Oracle Database 11g: Develop PL/SQL Program Units 12 - 16

Copyright © 2009, Oracle. All rights reserved.

Using Conditional Compilation
with Database Versions: Example

CREATE OR REPLACE PROCEDURE circle_area(p_radius my_pkg.my_real) IS
v_my_area my_pkg.my_real;
v_my_datatype VARCHAR2(30);

BEGIN
v_my_area := my_pkg.my_pi * p_radius;
DBMS_OUTPUT.PUT_LINE('Radius: ' || TO_CHAR(p_radius)

|| ' Area: ' || TO_CHAR(v_my_area));
$IF $$my_debug $THEN -- if my_debug is TRUE, run some debugging code
SELECT DATA_TYPE INTO v_my_datatype FROM USER_ARGUMENTS

WHERE OBJECT_NAME = 'CIRCLE_AREA' AND ARGUMENT_NAME = 'P_RADIUS';
DBMS_OUTPUT.PUT_LINE('Datatype of the RADIUS argument is: ' ||
v_my_datatype);

$END
END; /

CALL circle_area(50); -- Using Oracle Database 11g Release 1

Using Conditional Compilation with Database Versions: Example (continued)

In the example in the slide, a new procedure called circle_area is defined. This procedure
calculates the area of a circle based on the values of the variables in the my_pkg package
defined on the previous page. The procedure has one IN formal parameter, radius.

The procedure declares a couple of variables: my_area, which is the same data type as
my_real in my_pkg, and my_datatype, which is a VARCHAR2(30).

In the procedure’s body, my_area becomes equal to the value of my_pi set in my_pkg
multiplied by the value that is passed to the procedure as a radius. A message is printed
displaying the radius and the area of the circle as shown in the second code example in the slide.

Note: If you want to set my_debug to TRUE, you can make this change only for the
circle_area procedure with the REUSE SETTINGS clause as follows:

ALTER PROCEDURE circle_area COMPILE PLSQL_CCFLAGS =
'my_debug:TRUE' REUSE SETTINGS;

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 O

R
AC

LE
 C

O
R

PO
R

AT
IO

N
 u

se
 o

nl
y

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Oracle Database 11g: Develop PL/SQL Program Units 12 - 17

Copyright © 2009, Oracle. All rights reserved.

Using DBMS_PREPROCESSOR Procedures
to Print or Retrieve Source Text

-- Substitute ORA62 with your user account as needed
CALL

DBMS_PREPROCESSOR.PRINT_POST_PROCESSED_SOURCE('PACKAGE'
, 'ORA62', 'MY_PKG');

Using DBMS_PREPROCESSOR Procedures to Print or Retrieve Source Text

DBMS_PREPROCESSOR subprograms print or retrieve the postprocessed source text of a
PL/SQL unit after processing the conditional compilation directives. This postprocessed text is
the actual source used to compile a valid PL/SQL unit. The example in the slide shows how to
print the postprocessed form of my_pkg using the PRINT_POST_PROCESSED_SOURCE
procedure.

When my_pkg is compiled on an Oracle Database 10g release or later database using the HR
account, the resulting output is shown in the slide above.

The PRINT_POST_PROCESSED_SOURCE removes unselected text. The lines of code that are
not included in the postprocessed text are removed. The arguments for the
PRINT_POST_PROCESSED_SOURCE procedure are: object type, schema name (using student
account ORA62), and object name.

Note: For additional information about the DBMS_PREPROCESSOR package, refer to the
Oracle Database PL/SQL Packages and Types Reference 11g Release 1 (11.1) guide.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 O

R
AC

LE
 C

O
R

PO
R

AT
IO

N
 u

se
 o

nl
y

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Oracle Database 11g: Develop PL/SQL Program Units 12 - 18

Copyright © 2009, Oracle. All rights reserved.

Lesson Agenda

• Using conditional compilation

• Obfuscating PL/SQL code

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 O

R
AC

LE
 C

O
R

PO
R

AT
IO

N
 u

se
 o

nl
y

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Oracle Database 11g: Develop PL/SQL Program Units 12 - 19

Copyright © 2009, Oracle. All rights reserved.

What Is Obfuscation?

• Obfuscation (or wrapping) of a PL/SQL unit is the process
of hiding the PL/SQL source code.

• Wrapping can be done with the wrap utility and DBMS_DDL
subprograms.

• The wrap utility is run from the command line and it
processes an input SQL file, such as a SQL*Plus
installation script.

• The DBMS_DDL subprograms wrap a single PL/SQL unit,
such as a single CREATE PROCEDURE command, that has
been generated dynamically.

Note

For additional information about obfuscation, refer to the Oracle Database PL/SQL Language
Reference 11g Release 1 (11.1) guide.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 O

R
AC

LE
 C

O
R

PO
R

AT
IO

N
 u

se
 o

nl
y

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Oracle Database 11g: Develop PL/SQL Program Units 12 - 20

Copyright © 2009, Oracle. All rights reserved.

Benefits of Obfuscating

• It prevents others from seeing your source code.
• Your source code is not visible through the USER_SOURCE,

ALL_SOURCE, or DBA_SOURCE data dictionary views.

• SQL*Plus can process the obfuscated source files.
• The Import and Export utilities accept wrapped files.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 O

R
AC

LE
 C

O
R

PO
R

AT
IO

N
 u

se
 o

nl
y

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Oracle Database 11g: Develop PL/SQL Program Units 12 - 21

Copyright © 2009, Oracle. All rights reserved.

What’s New in Dynamic
Obfuscating Since Oracle 10g?

DBMS_DDL package

DBMS_DDL.WRAP
function

CREATE_WRAPPED
procedure

Wraps the text and creates
the PL/SQL unit

Provides the same functionality
as the CREATE_WRAPPED procedure

but allows for larger inputs

What’s New in Dynamic Obfuscating Since Oracle 10g?

The CREATE_WRAPPED Procedure

It takes as input a single CREATE OR REPLACE statement that specifies creation of a PL/SQL
package specification, package body, function, procedure, type specification, or type body,
generates a CREATE OR REPLACE statement with the PL/SQL source text obfuscated, and
executes the generated statement.

The WRAP Function

It takes as input a CREATE OR REPLACE statement that specifies the creation of a PL/SQL
package specification, package body, function, procedure, type specification, or type body and
returns a CREATE OR REPLACE statement, where the text of the PL/SQL unit has been
obfuscated.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 O

R
AC

LE
 C

O
R

PO
R

AT
IO

N
 u

se
 o

nl
y

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Oracle Database 11g: Develop PL/SQL Program Units 12 - 22

Copyright © 2009, Oracle. All rights reserved.

Nonobfuscated PL/SQL Code: Example

BEGIN -- The ALL_SOURCE view family shows source code
EXECUTE IMMEDIATE '
CREATE OR REPLACE PROCEDURE P1 IS
BEGIN
DBMS_OUTPUT.PUT_LINE (''I am not wrapped'');

END P1;
';

END;
/
CALL p1();

SELECT text FROM user_source
WHERE name = 'P1' ORDER BY line;

Nonobfuscated PL/SQL Code: Example

In the first example in the slide, the EXECUTE IMMEDIATE statement is used to create the
procedure P1. The code in the created procedure is not wrapped. The code is not hidden when
you use any of the views from the ALL_SOURCE view family to display the procedure’s code as
shown in the slide.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 O

R
AC

LE
 C

O
R

PO
R

AT
IO

N
 u

se
 o

nl
y

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Oracle Database 11g: Develop PL/SQL Program Units 12 - 23

Copyright © 2009, Oracle. All rights reserved.

Obfuscated PL/SQL Code: Example

BEGIN -- ALL_SOURCE view family obfuscates source code
DBMS_DDL.CREATE_WRAPPED ('
CREATE OR REPLACE PROCEDURE P1 IS
BEGIN
DBMS_OUTPUT.PUT_LINE (''I am wrapped now'');

END P1;
');

END;
/
CALL p1();

SELECT text FROM user_source
WHERE name = 'P1' ORDER BY line;

. . .

Obfuscated PL/SQL Code: Example

In the example in the slide, the DBMS_DDL.CREATE_WRAPPED package procedure is used to
create the procedure P1.

The code is obfuscated when you use any of the views from the ALL_SOURCE view family to
display the procedure’s code as shown on the next page. When you check the *_SOURCE views,
the source is wrapped, or hidden, so that others cannot view the code details as shown in the
output of the command in the slide.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 O

R
AC

LE
 C

O
R

PO
R

AT
IO

N
 u

se
 o

nl
y

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Oracle Database 11g: Develop PL/SQL Program Units 12 - 24

Copyright © 2009, Oracle. All rights reserved.

Dynamic Obfuscation: Example

SET SERVEROUTPUT ON

DECLARE
c_code CONSTANT VARCHAR2(32767) :=
' CREATE OR REPLACE PROCEDURE new_proc AS
v_VDATE DATE;
BEGIN
v_VDATE := SYSDATE;
DBMS_OUTPUT.PUT_LINE(v_VDATE) ;

END; ' ;
BEGIN
DBMS_DDL.CREATE_WRAPPED (c_CODE);

END;
/

Dynamic Obfuscation: Example

The example in the slide displays the creation of a dynamically obfuscated procedure called
NEW_PROC. To verify that the code for NEW_PROC is obfuscated, you can query from the
DBA|ALL|USER_SOURCE dictionary views as shown below:

SELECT text FROM user_source
WHERE name = 'NEW_PROC';

. . .

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 O

R
AC

LE
 C

O
R

PO
R

AT
IO

N
 u

se
 o

nl
y

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Oracle Database 11g: Develop PL/SQL Program Units 12 - 25

Copyright © 2009, Oracle. All rights reserved.

The PL/SQL Wrapper Utility

• The PL/SQL wrapper is a stand-alone utility that hides
application internals by converting PL/SQL source code
into portable object code.

• Wrapping has the following features:
– Platform independence

– Dynamic loading

– Dynamic binding

– Dependency checking

– Normal importing and exporting when invoked

PL/SQL Wrapper

The PL/SQL wrapper is a stand-alone utility that converts PL/SQL source code into portable
object code. Using it, you can deliver PL/SQL applications without exposing your source code,
which may contain proprietary algorithms and data structures. The wrapper converts the
readable source code into unreadable code. By hiding application internals, it prevents misuse of
your application.

Wrapped code, such as PL/SQL stored programs, has several features:
• It is platform independent, so you do not need to deliver multiple versions of the same

compilation unit.
• It permits dynamic loading, so users need not shut down and restart to add a new feature.
• It permits dynamic binding, so external references are resolved at load time.
• It offers strict dependency checking, so that invalidated program units are recompiled

automatically when they are invoked.
• It supports normal importing and exporting, so the import/export utility can process

wrapped files.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 O

R
AC

LE
 C

O
R

PO
R

AT
IO

N
 u

se
 o

nl
y

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Oracle Database 11g: Develop PL/SQL Program Units 12 - 26

Copyright © 2009, Oracle. All rights reserved.

Running the Wrapper Utility

• Do not use spaces around the equal signs.
• The INAME argument is required.

• The default extension for the input file is .sql, unless it is
specified with the name.

• The ONAME argument is optional.

• The default extension for output file is .plb, unless
specified with the ONAME argument.

WRAP INAME=input_file_name [ONAME=output_file_name]

WRAP INAME=demo_04_hello.sql
WRAP INAME=demo_04_hello
WRAP INAME=demo_04_hello.sql ONAME=demo_04_hello.plb

Examples

Running the Wrapper

The wrapper is an operating system executable called WRAP. To run the wrapper, enter the
following command at your operating system prompt:

WRAP INAME=input_file_name [ONAME=output_file_name]

Each of the examples shown in the slide takes a file called demo_04_hello.sql as input
and creates an output file called demo_04_hello.plb.

After the wrapped file is created, execute the .plb file from iSQL*Plus to compile and store
the wrapped version of the source code, as you would execute SQL script files.

Note
• Only the INAME argument is required. If the ONAME argument is not specified, then the

output file acquires the same name as the input file with an extension of .plb.
• The input file can have any extension, but the default is .sql.
• Case sensitivity of the INAME and ONAME values depends on the operating system.
• Generally, the output file is much larger than the input file.
• Do not put spaces around the equal signs in the INAME and ONAME arguments and values.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 O

R
AC

LE
 C

O
R

PO
R

AT
IO

N
 u

se
 o

nl
y

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Oracle Database 11g: Develop PL/SQL Program Units 12 - 27

Copyright © 2009, Oracle. All rights reserved.

Results of Wrapping

-- Original PL/SQL source code in input file:

CREATE PACKAGE banking IS
min_bal := 100;
no_funds EXCEPTION;
...
END banking;
/

-- Wrapped code in output file:

CREATE PACKAGE banking
wrapped

012abc463e ...

/

Results of Wrapping

When it is wrapped, an object type, package, or subprogram has the following form: header,
followed by the word wrapped, followed by the encrypted body.

The input file can contain any combination of SQL statements. However, the PL/SQL wrapper
wraps only the following CREATE statements:
• CREATE [OR REPLACE] TYPE
• CREATE [OR REPLACE] TYPE BODY
• CREATE [OR REPLACE] PACKAGE
• CREATE [OR REPLACE] PACKAGE BODY
• CREATE [OR REPLACE] FUNCTION
• CREATE [OR REPLACE] PROCEDURE

All other SQL CREATE statements are passed intact to the output file.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 O

R
AC

LE
 C

O
R

PO
R

AT
IO

N
 u

se
 o

nl
y

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Oracle Database 11g: Develop PL/SQL Program Units 12 - 28

Copyright © 2009, Oracle. All rights reserved.

Guidelines for Wrapping

• You must wrap only the package body, not the package
specification.

• The wrapper can detect syntactic errors but cannot detect
semantic errors.

• The output file should not be edited. You maintain the
original source code and wrap again as required.

• To ensure that all the important parts of your source code
are obfuscated, view the wrapped file in a text editor
before distributing it.

Guidelines for Wrapping

Guidelines include the following:
• When wrapping a package or object type, wrap only the body, not the specification. Thus,

you give other developers the information that they need to use the package without
exposing its implementation.

• If your input file contains syntactic errors, the PL/SQL wrapper detects and reports them.
However, the wrapper cannot detect semantic errors because it does not resolve external
references. For example, the wrapper does not report an error if the table or view amp does
not exist:

CREATE PROCEDURE raise_salary (emp_id INTEGER, amount NUMBER)
AS
BEGIN

UPDATE amp -- should be emp
SET sal = sal + amount WHERE empno = emp_id;

END;

However, the PL/SQL compiler resolves external references. Therefore, semantic errors
are reported when the wrapper output file (.plb file) is compiled.

• Because its contents are not readable, the output file should not be edited. To change a
wrapped object, you need to modify the original source code and wrap the code again.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 O

R
AC

LE
 C

O
R

PO
R

AT
IO

N
 u

se
 o

nl
y

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Oracle Database 11g: Develop PL/SQL Program Units 12 - 29

Copyright © 2009, Oracle. All rights reserved.

DBMS_DDL Package Versus the Wrap Utility

YesNoObfuscate multiple
programs at a time

Dynamic Obfuscation

Code obfuscation

Functionality

YesYes

No

Wrap Utility

Yes

DBMS_DDL

DBMS_DDL Versus the Wrap Utility

Both the Wrap utility and the DBMS_DDL package have distinct uses:

The Wrap utility is useful for obfuscating multiple programs with one execution of the utility. In
essence, a complete application may be wrapped. However, the Wrap utility cannot be used to
obfuscate dynamically generated code at run time. The Wrap utility processes an input SQL file
and obfuscates only the PL/SQL units in the file, such as:

• Package specification and body
• Function and procedure
• Type specification and body

The Wrap utility does not obfuscate PL/SQL content in:
• Anonymous blocks
• Triggers
• Non-PL/SQL code

The DBMS_DDL package is intended to obfuscate a dynamically generated program unit from
within another program unit. The DBMS_DDL package methods cannot obfuscate multiple
program units at one execution. Each execution of these methods accepts only one CREATE OR
REPLACE statement at a time as argument.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 O

R
AC

LE
 C

O
R

PO
R

AT
IO

N
 u

se
 o

nl
y

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Oracle Database 11g: Develop PL/SQL Program Units 12 - 30

Copyright © 2009, Oracle. All rights reserved.

Quiz

Conditional compilation enables you to customize the

functionality in a PL/SQL application without removing any

source code.

1. True

2. False

Answer: 1

Conditional Compilation

Conditional compilation enables you to customize the functionality in a PL/SQL application
without removing any source code:

Utilize the latest functionality with the latest database release or disable the new features to run
the application against an older release of the database.

Activate debugging or tracing functionality in the development environment and hide that
functionality in the application while it runs at a production site.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 O

R
AC

LE
 C

O
R

PO
R

AT
IO

N
 u

se
 o

nl
y

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Oracle Database 11g: Develop PL/SQL Program Units 12 - 31

Copyright © 2009, Oracle. All rights reserved.

Summary

In this lesson, you should have learned how to:

• Describe and use conditional compilation

• Hide PL/SQL source code using dynamic obfuscation and
the Wrap utility

Summary

This lesson introduced the conditional compilation and obfuscating (or wrapping) of PL/SQL
code.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 O

R
AC

LE
 C

O
R

PO
R

AT
IO

N
 u

se
 o

nl
y

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Oracle Database 11g: Develop PL/SQL Program Units 12 - 32

Copyright © 2009, Oracle. All rights reserved.

Practice 12: Overview

This practice covers the following topics:

• Creating a package and a procedure that uses conditional
compilation

• Using the appropriate package to retrieve the
postprocessed source text of the PL/SQL unit

• Obfuscating some PL/SQL code

Practice 12: Overview

In this practice, you create a package and a procedure that use conditional compilation. In
addition, you use the appropriate package to retrieve the postprocessed source text of the
PL/SQL unit. You also obfuscate some PL/SQL code.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 O

R
AC

LE
 C

O
R

PO
R

AT
IO

N
 u

se
 o

nl
y

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Oracle Database 11g: Develop PL/SQL Program Units 12 - 33

Practice 12

1. Examine and then execute the lab_12_01.sql script. This script sets flags for
displaying debugging code and tracing information. The script also creates the my_pkg
package and the circle_area procedure.

2. Use the DBMS_PREPROCESSOR subprogram to retrieve the postprocessed source text of
the PL/SQL unit after processing the conditional compilation directives from
lab_12_01.

3. Create a PL/SQL script that uses the DBMS_DB_VERSION constant with conditional
compilation. The code should test for the Oracle database version:

a. If the database version is less than or equal to 10.1, it should display the following
error message:
Unsupported database release.

b. If the database version is 11.1 or higher, it should display the following message:
Release 11.1 is supported.

4. Consider the following code in the lab_12_04.sql script that uses
CREATE_WRAPPED to dynamically create and wrap a package specification and a
package body in a database. Edit the lab_12_04.sql script to add the needed code to
obfuscate the PL/SQL code. Save and then execute the script.

DECLARE

-- the package_text variable contains the text to create

-- the package spec and body

package_text VARCHAR2(32767);

FUNCTION generate_spec (pkgname VARCHAR2) RETURN VARCHAR2
AS

BEGIN

RETURN 'CREATE PACKAGE ' || pkgname || ' AS

PROCEDURE raise_salary (emp_id NUMBER, amount NUMBER);

PROCEDURE fire_employee (emp_id NUMBER);

END ' || pkgname || ';';

END generate_spec; O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 O

R
AC

LE
 C

O
R

PO
R

AT
IO

N
 u

se
 o

nl
y

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Oracle Database 11g: Develop PL/SQL Program Units 12 - 34

Practice 12 (continued)

4. (continued)

FUNCTION generate_body (pkgname VARCHAR2) RETURN VARCHAR2
AS

BEGIN

RETURN 'CREATE PACKAGE BODY ' || pkgname || ' AS

PROCEDURE raise_salary (emp_id NUMBER, amount NUMBER)
IS

BEGIN

UPDATE employees SET salary = salary + amount WHERE
employee_id = emp_id;

END raise_salary;

PROCEDURE fire_employee (emp_id NUMBER) IS

BEGIN

DELETE FROM employees WHERE employee_id = emp_id;

END fire_employee;

END ' || pkgname || ';';

END generate_body;

a. Generate the package specification while passing the emp_actions parameter.

b. Create and wrap the package specification.

c. Generate the package body.

d. Create and wrap the package body.

e. Call a procedure from the wrapped package as follows:

CALL emp_actions.raise_salary(120, 100);

f. Use the USER_SOURCE data dictionary view to verify that the code is hidden as
follows:

SELECT text FROM USER_SOURCE WHERE name = 'EMP_ACTIONS';

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 O

R
AC

LE
 C

O
R

PO
R

AT
IO

N
 u

se
 o

nl
y

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Copyright © 2009, Oracle. All rights reserved.

Managing Dependencies

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 O

R
AC

LE
 C

O
R

PO
R

AT
IO

N
 u

se
 o

nl
y

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Oracle Database 11g: Develop PL/SQL Program Units 13 - 2

Copyright © 2009, Oracle. All rights reserved.

Objectives

After completing this lesson, you should be able to do the
following:

• Track procedural dependencies

• Predict the effect of changing a database object on
procedures and functions

• Manage procedural dependencies

Lesson Aim

This lesson introduces you to object dependencies and implicit and explicit recompilation of
invalid objects.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 O

R
AC

LE
 C

O
R

PO
R

AT
IO

N
 u

se
 o

nl
y

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Oracle Database 11g: Develop PL/SQL Program Units 13 - 3

Copyright © 2009, Oracle. All rights reserved.

Overview of Schema Object Dependencies

BothView

BothUser-defined object

BothUser-defined collection

BothTrigger

BothTable

BothSynonym

BothSubprogram

Referenced onlySequence

Dependent onlyPackage body

Package specification

Object Type

Both

Can Be Dependent or Referenced

Dependent and Referenced Objects

Some types of schema objects can reference other objects in their definitions. For example, a
view is defined by a query that references tables or other views, and the body of a subprogram
can include SQL statements that reference other objects. If the definition of object A references
object B, then A is a dependent object (with respect to B) and B is a referenced object (with
respect to A).

Dependency Issues
• If you alter the definition of a referenced object, dependent objects may or may not

continue to work properly. For example, if the table definition is changed, the procedure
may or may not continue to work without error.

• The Oracle server automatically records dependencies among objects. To manage
dependencies, all schema objects have a status (valid or invalid) that is recorded in the data
dictionary, and you can view the status in the USER_OBJECTS data dictionary view.

• If the status of a schema object is VALID, then the object has been compiled and can be
immediately used when referenced.

• If the status of a schema object is INVALID, then the schema object must be compiled
before it can be used.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 O

R
AC

LE
 C

O
R

PO
R

AT
IO

N
 u

se
 o

nl
y

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Oracle Database 11g: Develop PL/SQL Program Units 13 - 4

Copyright © 2009, Oracle. All rights reserved.

Dependencies

Direct dependency

Indirect dependency

Direct dependency

View or procedure:
Referenced/dependent

Referenced
table

Dependent
procedure

Dependent and Referenced Objects (continued)

A procedure or function can directly or indirectly (through an intermediate view, procedure,
function, or packaged procedure or function) reference the following objects:

• Tables
• Views
• Sequences
• Procedures
• Functions
• Packaged procedures or functions

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 O

R
AC

LE
 C

O
R

PO
R

AT
IO

N
 u

se
 o

nl
y

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Oracle Database 11g: Develop PL/SQL Program Units 13 - 5

Copyright © 2009, Oracle. All rights reserved.

Direct Local Dependencies

View A Table AProcedure A Procedure B

“depends-on” table

Managing Local Dependencies

In the case of local dependencies, the objects are on the same node in the same database. The
Oracle server automatically manages all local dependencies, using the database’s internal
“depends-on” table. When a referenced object is modified, the dependent objects are sometimes
invalidated. The next time an invalidated object is called, the Oracle server automatically
recompiles it.

If you alter the definition of a referenced object, dependent objects might or might not continue
to function without error, depending on the type of alteration. For example, if you drop a table,
no view based on the dropped table is usable.

Starting with Oracle Database 10g, the CREATE OR REPLACE SYNONYM command has been
enhanced to minimize the invalidations to dependent PL/SQL program units and views that
reference it. This is covered later in this lesson.

Starting with Oracle Database 11g, dependencies are tracked at the level of element within unit.
This is referred to as fine-grained dependency. Fine-grained dependencies are covered later in
this lesson.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 O

R
AC

LE
 C

O
R

PO
R

AT
IO

N
 u

se
 o

nl
y

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Oracle Database 11g: Develop PL/SQL Program Units 13 - 6

Copyright © 2009, Oracle. All rights reserved.

Querying Direct Object Dependencies:
Using the USER_DEPENDENCIES View

SELECT name, type, referenced_name, referenced_type
FROM user_dependencies
WHERE referenced_name IN ('EMPLOYEES','EMP_VW');

. . .

Querying Direct Object Dependencies: Using the USER_DEPENDENCIES View

You can determine which database objects to recompile manually by displaying direct
dependencies from the USER_DEPENDENCIES data dictionary view.

The ALL_DEPENDENCIES and DBA_DEPENDENCIES views contain the additional OWNER
column, which references the owner of the object.

The USER_DEPENDENCIES Data Dictionary View Columns

The columns of the USER_DEPENDENCIES data dictionary view are as follows:
• NAME: The name of the dependent object
• TYPE: The type of the dependent object (PROCEDURE, FUNCTION, PACKAGE,

PACKAGE BODY, TRIGGER, or VIEW)
• REFERENCED_OWNER: The schema of the referenced object
• REFERENCED_NAME: The name of the referenced object
• REFERENCED_TYPE: The type of the referenced object
• REFERENCED_LINK_NAME: The database link used to access the referenced object

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 O

R
AC

LE
 C

O
R

PO
R

AT
IO

N
 u

se
 o

nl
y

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Oracle Database 11g: Develop PL/SQL Program Units 13 - 7

Copyright © 2009, Oracle. All rights reserved.

Querying an Object’s Status

Every database object has one of the following status values:

An access privilege on a referenced object was revoked.
(Only a dependent object can be unauthorized.)

UNAUTHORIZED

The object is marked invalid because an object that it
references has changed. (Only a dependent object can be
invalid.)

INVALID

The object was successfully compiled, using the current
definition in the data dictionary.

VALID

COMPILED WITH
ERRORS

Status

The most recent attempt to compile the object produced
errors.

Description

Querying an Object’s Status

Every database object has one of the status values shown in the table in the slide.

Note: The static data dictionary views—USER_OBJECTS, ALL_OBJECTS, and
DBA_OBJECTS—do not distinguish between Compiled with errors, Invalid, and
Unauthorized; instead, they describe all these as INVALID.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 O

R
AC

LE
 C

O
R

PO
R

AT
IO

N
 u

se
 o

nl
y

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Oracle Database 11g: Develop PL/SQL Program Units 13 - 8

Copyright © 2009, Oracle. All rights reserved.

Invalidation of Dependent Objects

• Procedure A is a direct dependent of View B. View B is a direct
dependent of Table C. Procedure A is an indirect dependent of
Table C.

• Direct dependents are invalidated only by changes to the
referenced object that affect them.

• Indirect dependents can be invalidated by changes to the
reference object that do not affect them.

View B Table CProcedure A

Invalidation of Dependent Objects

If object A depends on object B, which depends on object C, then A is a direct dependent of B,
B is a direct dependent of C, and A is an indirect dependent of C.

In Oracle Database 11g, direct dependents are invalidated only by changes to the referenced
object that affect them (changes to the signature of the referenced object).

Indirect dependents can be invalidated by changes to the reference object that do not affect
them: If a change to Table C invalidates View B, it invalidates Procedure A (and all other direct
and indirect dependents of View B). This is called cascading invalidation.

Assume that the structure of the table on which a view is based is modified. When you describe
the view by using the SQL*Plus DESCRIBE command, you get an error message that states that
the object is invalid to describe. This is because the command is not a SQL command; at this
stage, the view is invalid because the structure of its base table is changed. If you query the view
now, then the view is recompiled automatically and you can see the result if it is successfully
recompiled.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 O

R
AC

LE
 C

O
R

PO
R

AT
IO

N
 u

se
 o

nl
y

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Oracle Database 11g: Develop PL/SQL Program Units 13 - 9

Copyright © 2009, Oracle. All rights reserved.

Schema Object Change That Invalidates
Some Dependents: Example

CREATE VIEW commissioned AS
SELECT first_name, last_name, commission_pct FROM employees
WHERE commission_pct > 0.00;

CREATE VIEW six_figure_salary AS
SELECT * FROM employees
WHERE salary >= 100000;

SELECT object_name, status
FROM user_objects
WHERE object_type = 'VIEW';

Schema Object Change That Invalidates Some Dependents: Example

The example in the slide demonstrates an example of a schema object change that invalidates
some dependents but not others. The two newly created views are based on the EMPLOYEES
table in the HR schema. The status of the newly created views is VALID.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 O

R
AC

LE
 C

O
R

PO
R

AT
IO

N
 u

se
 o

nl
y

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Oracle Database 11g: Develop PL/SQL Program Units 13 - 10

Copyright © 2009, Oracle. All rights reserved.

Schema Object Change That Invalidates
Some Dependents: Example

ALTER TABLE employees MODIFY email VARCHAR2(50);

SELECT object_name, status
FROM user_objects
WHERE object_type = 'VIEW';

Schema Object Change That Invalidates Some Dependents: Example (continued)

Suppose you determine that the EMAIL column in the EMPLOYEES table needs to be
lengthened from 25 to 50, you alter the table as shown in the slide above.

Because the COMMISSIONED view does not include the EMAIL column in its select list, it is
not invalidated. However, the SIXFIGURES view is invalidated because all columns in the
table are selected. O

ra
cl

e
U

ni
ve

rs
ity

 a
nd

 O
R

AC
LE

 C
O

R
PO

R
AT

IO
N

 u
se

 o
nl

y

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Oracle Database 11g: Develop PL/SQL Program Units 13 - 11

Copyright © 2009, Oracle. All rights reserved.

Displaying Direct and Indirect Dependencies

1. Run the utldtree.sql script that creates the objects that
enable you to display the direct and indirect dependencies.

2. Execute the DEPTREE_FILL procedure.

EXECUTE deptree_fill('TABLE', 'ORA61', 'EMPLOYEES')

@D:/Labs/plpu/labs/utldtree.sql

Displaying Direct and Indirect Dependencies by Using Views Provided by Oracle

Display direct and indirect dependencies from additional user views called DEPTREE and
IDEPTREE; these views are provided by Oracle.

Example

1. Make sure that the utldtree.sql script has been executed. This script is located in the
$ORACLE_HOME/rdbms/admin folder. You can run the script as follows:

@?/rdbms/admin/utldtree.sql
Note: In this class, this script is supplied in the lab folder of your class files. The code
example above uses the student account ORA61.

2. Populate the DEPTREE_TEMPTAB table with information for a particular referenced
object by invoking the DEPTREE_FILL procedure. There are three parameters for this
procedure:

object_type Type of the referenced object

object_owner Schema of the referenced object

object_name Name of the referenced object

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 O

R
AC

LE
 C

O
R

PO
R

AT
IO

N
 u

se
 o

nl
y

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Oracle Database 11g: Develop PL/SQL Program Units 13 - 12

Copyright © 2009, Oracle. All rights reserved.

Displaying Dependencies
Using the DEPTREE View

SELECT nested_level, type, name
FROM deptree
ORDER BY seq#;

. . .

Displaying Dependencies Using the DEPTREE View

You can display a tabular representation of all dependent objects by querying the DEPTREE
view. You can display an indented representation of the same information by querying the
IDEPTREE view, which consists of a single column named DEPENDENCIES as follows:

SELECT *
FROM ideptree;

. . .

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 O

R
AC

LE
 C

O
R

PO
R

AT
IO

N
 u

se
 o

nl
y

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Oracle Database 11g: Develop PL/SQL Program Units 13 - 13

Copyright © 2009, Oracle. All rights reserved.

More Precise Dependency Metadata
in Oracle Database 11g

• Before 11g, adding column D to table T invalidated the
dependent objects.

• Oracle Database 11g records additional, finer-grained
dependency management:
– Adding column D to table T does not impact view V and does

not invalidate the dependent objects

Procedure P Function FView V

Columns: A,B

Table T

Columns: A,B

Add column D

Fine-Grained Dependencies

Starting with Oracle Database 11g, you have access to records that describe more precise
dependency metadata. This is called fine-grained dependency and it enables you to see when the
dependent objects are not invalidated without logical requirement.

Earlier Oracle Database releases record dependency metadata—for example, PL/SQL unit P
depends on PL/SQL unit F, or that view V depends on table T—with the precision of the whole
object. This means that dependent objects are sometimes invalidated without logical
requirement. For example, if view V depends only on columns A and B in table T, and column D
is added to table T, the validity of view V is not logically affected. Nevertheless, before Oracle
Database Release 11.1, view V is invalidated by the addition of column D to table T. With
Oracle Database Release 11.1, adding column D to table T does not invalidate view V. Similarly,
if procedure P depends only on elements E1 and E2 within a package, adding element E99 to
the package does not invalidate procedure P.

Reducing the invalidation of dependent objects in response to changes to the objects on which
they depend increases application availability, both in the development environment and during
online application upgrade.

For more information about this topic, refer to the 11g: Infrastructure Grid – High Availability
P1 eStudy.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 O

R
AC

LE
 C

O
R

PO
R

AT
IO

N
 u

se
 o

nl
y

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Oracle Database 11g: Develop PL/SQL Program Units 13 - 14

Copyright © 2009, Oracle. All rights reserved.

Fine-Grained Dependency Management

• In Oracle Database 11g, dependencies are now tracked at
the level of element within unit.

• Element-based dependency tracking covers the following:
– Dependency of a single-table view on its base table

– Dependency of a PL/SQL program unit (package
specification, package body, or subprogram) on the
following:

— Other PL/SQL program units

— Tables

— Views

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 O

R
AC

LE
 C

O
R

PO
R

AT
IO

N
 u

se
 o

nl
y

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Oracle Database 11g: Develop PL/SQL Program Units 13 - 15

Copyright © 2009, Oracle. All rights reserved.

Fine-Grained Dependency Management:
Example 1

CREATE TABLE t2 (col_a NUMBER, col_b NUMBER, col_c NUMBER);
CREATE VIEW v AS SELECT col_a, col_b FROM t2;

ALTER TABLE t2 ADD (col_d VARCHAR2(20));

SELECT ud.name, ud.type, ud.referenced_name,
ud.referenced_type, uo.status

FROM user_dependencies ud, user_objects uo
WHERE ud.name = uo.object_name AND ud.name = 'V';

SELECT ud.name, ud.type, ud.referenced_name,
ud.referenced_type, uo.status

FROM user_dependencies ud, user_objects uo
WHERE ud.name = uo.object_name AND ud.name = 'V';

Fine-Grained Dependency Management: Example 1

Example of Dependency of a Single-Table View on Its Base Table

In the first slide example, table T2 is created with three columns: COL_A, COL_B, and COL_C.
A view named V is created based on columns COL_A and COL_B of table T2. The dictionary
views are queried and the view V is dependent on table T and its status is valid.

In the third slide example, table T2 is altered. A new column named COL_D is added. The
dictionary views still report that the view V is dependent because element-based dependency
tracking realizes that the columns COL_A and COL_B are not modified and, therefore, the view
does not need to be invalidated.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 O

R
AC

LE
 C

O
R

PO
R

AT
IO

N
 u

se
 o

nl
y

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Oracle Database 11g: Develop PL/SQL Program Units 13 - 16

Copyright © 2009, Oracle. All rights reserved.

Fine-Grained Dependency Management:
Example 1

ALTER TABLE t2 MODIFY (col_a VARCHAR2(20));
SELECT ud.name, ud.referenced_name, ud.referenced_type,

uo.status
FROM user_dependencies ud, user_objects uo
WHERE ud.name = uo.object_name AND ud.name = 'V';

Fine-Grained Dependency Management: Example 1 (continued)

In the slide example, the view is invalidated because its element (COL_A) is modified in the
table on which the view is dependent.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 O

R
AC

LE
 C

O
R

PO
R

AT
IO

N
 u

se
 o

nl
y

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Oracle Database 11g: Develop PL/SQL Program Units 13 - 17

Copyright © 2009, Oracle. All rights reserved.

Fine-Grained Dependency Management:
Example 2

CREATE PACKAGE pkg IS
PROCEDURE proc_1;

END pkg;
/
CREATE OR REPLACE PROCEDURE p IS
BEGIN
pkg.proc_1();

END p;
/
CREATE OR REPLACE PACKAGE pkg
IS
PROCEDURE proc_1;
PROCEDURE unheard_of;

END pkg;
/

Fine-Grained Dependency Management: Example 2

In the slide example, you create a package named PKG that has procedure PROC_1 declared.

A procedure named P invokes PKG.PROC_1.

The definition of the PKG package is modified and another subroutine is added to the package
declaration.

When you query the USER_OBJECTS dictionary view for the status of the P procedure, it is
still valid as shown as follows because the element you added to the definition of PKG is not
referenced through procedure P.

SELECT status FROM user_objects
WHERE object_name = 'P';

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 O

R
AC

LE
 C

O
R

PO
R

AT
IO

N
 u

se
 o

nl
y

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Oracle Database 11g: Develop PL/SQL Program Units 13 - 18

Copyright © 2009, Oracle. All rights reserved.

Impact of Redefining Synonyms
Before Oracle Database 10g

EMPLOYEES

EMPLOYEES_HIST

INVALID
status

CREATE OR REPLACE
SYNONYM emp_hist

Impact of Redefining Synonyms

You can use synonyms to achieve data independence and location transparency. However, you
must be careful when you reassign a synonym from one table to another. In many cases, this
invalidates dependent objects such as PL/SQL program units, views, or object types.

Before the introduction of this feature, when you redefined a synonym, the status of any
dependent PL/SQL program unit was set to INVALID. If you did not recompile the PL/SQL
program units manually, they would recompile automatically the next time they were invoked,
causing run-time performance overhead.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 O

R
AC

LE
 C

O
R

PO
R

AT
IO

N
 u

se
 o

nl
y

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Oracle Database 11g: Develop PL/SQL Program Units 13 - 19

Copyright © 2009, Oracle. All rights reserved.

Changes to Synonym Dependencies
Starting with Oracle Database 10g

VALID status

VALID status

CREATE OR REPLACE SYNONYM

Changes to Synonym Dependencies

Starting with version 10g, Oracle Database minimizes down time during code upgrades or
schema merges.

When certain conditions on columns, privileges, partitions, and so on are met, a table or object
type is considered equivalent and dependent objects are no longer invalidated. For detailed
information, refer to the Oracle Database 10g: Maximize Availability - General Enhancements
eStudy.

In Oracle Database 10g, the CREATE OR REPLACE SYNONYM command has been enhanced
to minimize the invalidations to dependent PL/SQL program units and views that reference it.
This eliminates the need for time-consuming recompilation of the program units after
redefinition of the synonyms or during execution. You do not have to set any parameters or issue
any special commands to enable this functionality; invalidations are minimized automatically.

Note: This enhancement applies only to synonyms pointing to tables.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 O

R
AC

LE
 C

O
R

PO
R

AT
IO

N
 u

se
 o

nl
y

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Oracle Database 11g: Develop PL/SQL Program Units 13 - 20

Copyright © 2009, Oracle. All rights reserved.

Maintaining Valid PL/SQL
Program Units and Views

EMPLOYEES

CREATE OR REPLACE
SYNONYM emp_hist

EMPLOYEES_HIST

VALID status

Maintaining Valid PL/SQL Program Units

Starting with Oracle Database 10g Release 2, you can change the definition of a synonym, and
the dependent PL/SQL program units are not invalidated under the following conditions:

• The column order, column names, and column data types of the tables are identical.
• The privileges on the newly referenced table and its columns are a superset of the set of

privileges on the original table. These privileges must not be derived through roles alone.
• The names and types of partitions and subpartitions are identical.
• The tables are of the same organization type.
• Object type columns are of the same type.

Maintaining Valid Views

As with dependent PL/SQL program units, you can change the definition of a synonym, and the
dependent views are not invalidated under the conditions listed in the preceding paragraph. In
addition, the following must be true to preserve the VALID status of dependent views, but not of
dependent PL/SQL program units, when you redefine a synonym:

• Columns and order of columns defined for primary key and unique indexes, NOT NULL
constraints, and primary key and unique constraints must be identical.

• The dependent view cannot have any referential constraints.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 O

R
AC

LE
 C

O
R

PO
R

AT
IO

N
 u

se
 o

nl
y

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Oracle Database 11g: Develop PL/SQL Program Units 13 - 21

Copyright © 2009, Oracle. All rights reserved.

EMPLOYEES table

REDUCE_SAL
procedure

RAISE_SAL
procedure

Another Scenario of Local Dependencies

…

Another Scenario of Local Dependencies

Example 1

Predict the effect that a change in the definition of a procedure has on the recompilation of a
dependent procedure.

Assume that the RAISE_SAL procedure updates the EMPLOYEES table directly, and that the
REDUCE_SAL procedure updates the EMPLOYEES table indirectly by way of RAISE_SAL.

In each of the following cases, does the REDUCE_SAL procedure successfully recompile?
1. The internal logic of the RAISE_SAL procedure is modified.
2. One of the formal parameters to the RAISE_SAL procedure is eliminated.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 O

R
AC

LE
 C

O
R

PO
R

AT
IO

N
 u

se
 o

nl
y

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Oracle Database 11g: Develop PL/SQL Program Units 13 - 22

Copyright © 2009, Oracle. All rights reserved.

Guidelines for Reducing Invalidation

To reduce invalidation of dependent objects:

Add new items to the
end of the package

Reference each table
through a view

Guidelines for Reducing Invalidation

Add New Items to End of Package

When adding new items to a package, add them to the end of the package. This preserves the
slot numbers and entry-point numbers of existing top-level package items, preventing their
invalidation. For example, consider the following package:

CREATE OR REPLACE PACKAGE pkg1 IS
FUNCTION get_var RETURN VARCHAR2;
PROCEDURE set_var (v VARCHAR2);
END;

Adding an item to the end of pkg1 does not invalidate dependents that reference get_var.
Inserting an item between the get_var function and the set_var procedure invalidates
dependents that reference the set_var function.

Reference Each Table Through a View

Reference tables indirectly, using views. This allows you to do the following:
• Add columns to the table without invalidating dependent views or dependent PL/SQL

objects
• Modify or delete columns not referenced by the view without invalidating dependent

objects

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 O

R
AC

LE
 C

O
R

PO
R

AT
IO

N
 u

se
 o

nl
y

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Oracle Database 11g: Develop PL/SQL Program Units 13 - 23

Copyright © 2009, Oracle. All rights reserved.

Object Revalidation

• An object that is not valid when it is referenced must be
validated before it can be used.

• Validation occurs automatically when an object is
referenced; it does not require explicit user action.

• If an object is not valid, its status is either COMPILED
WITH ERRORS, UNAUTHORIZED, or INVALID.

Object Revalidation

The compiler cannot automatically revalidate an object that compiled with errors. The compiler
recompiles the object, and if it recompiles without errors, it is revalidated; otherwise, it remains
invalid.

The compiler checks whether the unauthorized object has access privileges to all of its
referenced objects. If so, the compiler revalidates the unauthorized object without recompiling it.
If not, the compiler issues appropriate error messages.

The SQL compiler recompiles the invalid object. If the object recompiles without errors, it is
revalidated; otherwise, it remains invalid.

For an invalid PL/SQL program unit (procedure, function, or package), the PL/SQL compiler
checks whether any referenced object changed in a way that affects the invalid object.

• If so, the compiler recompiles the invalid object. If the object recompiles without errors, it
is revalidated; otherwise, it remains invalid. If not, the compiler revalidates the invalid
object without recompiling it.

• If not, the compiler revalidates the invalid object without recompiling it. Fast revalidation
is usually performed on objects that were invalidated due to cascading invalidation.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 O

R
AC

LE
 C

O
R

PO
R

AT
IO

N
 u

se
 o

nl
y

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Oracle Database 11g: Develop PL/SQL Program Units 13 - 24

Copyright © 2009, Oracle. All rights reserved.

Remote Dependencies

View Table

Procedure

Procedure

Remote
dependency

View
INVALID

Table
Procedure
VALID

Procedure
INVALID

Remote
dependency

Local and remote references

Remote Dependencies

In the case of remote dependencies, the objects are on separate nodes. The Oracle server does
not manage dependencies among remote schema objects other than local-procedure-to-remote-
procedure dependencies (including functions, packages, and triggers). The local stored
procedure and all its dependent objects are invalidated but do not automatically recompile when
called for the first time.

Recompilation of Dependent Objects: Local and Remote
• Verify successful explicit recompilation of the dependent remote procedures and implicit

recompilation of the dependent local procedures by checking the status of these procedures
within the USER_OBJECTS view.

• If an automatic implicit recompilation of the dependent local procedures fails, the status
remains invalid and the Oracle server issues a run-time error. Therefore, to avoid
disrupting production, it is strongly recommended that you recompile local dependent
objects manually, rather than relying on an automatic mechanism.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 O

R
AC

LE
 C

O
R

PO
R

AT
IO

N
 u

se
 o

nl
y

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Oracle Database 11g: Develop PL/SQL Program Units 13 - 25

Copyright © 2009, Oracle. All rights reserved.

Concepts of Remote Dependencies

Remote dependencies are governed by the mode that is
chosen by the user:

TIMESTAMP checking SIGNATURE checking

Concepts of Remote Dependencies

TIMESTAMP Checking

Each PL/SQL program unit carries a time stamp that is set when it is created or recompiled.
Whenever you alter a PL/SQL program unit or a relevant schema object, all its dependent
program units are marked as invalid and must be recompiled before they can execute. The actual
time stamp comparison occurs when a statement in the body of a local procedure calls a remote
procedure.
SIGNATURE Checking

For each PL/SQL program unit, both the time stamp and the signature are recorded. The
signature of a PL/SQL construct contains information about the following:

• The name of the construct (procedure, function, or package)
• The base types of the parameters of the construct
• The modes of the parameters (IN, OUT, or IN OUT)
• The number of the parameters

The recorded time stamp in the calling program unit is compared with the current time stamp in
the called remote program unit. If the time stamps match, the call proceeds. If they do not match,
the remote procedure call (RPC) layer performs a simple comparison of the signature to
determine whether the call is safe or not. If the signature has not been changed in an
incompatible manner, execution continues; otherwise, an error is returned.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 O

R
AC

LE
 C

O
R

PO
R

AT
IO

N
 u

se
 o

nl
y

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Oracle Database 11g: Develop PL/SQL Program Units 13 - 26

Copyright © 2009, Oracle. All rights reserved.

Setting the REMOTE_DEPENDENCIES_MODE
Parameter

• As an init.ora parameter:
REMOTE_DEPENDENCIES_MODE = value

• At the system level:
ALTER SYSTEM SET REMOTE_DEPENDENCIES_MODE =
value

• At the session level:
ALTER SESSION SET REMOTE_DEPENDENCIES_MODE
= value

REMOTE_DEPENDENCIES_MODE Parameter

Setting the REMOTE_DEPENDENCIES_MODE

value TIMESTAMP
SIGNATURE

Specify the value of the REMOTE_DEPENDENCIES_MODE parameter using one of the three
methods described in the slide.

Note: The calling site determines the dependency model.
O

ra
cl

e
U

ni
ve

rs
ity

 a
nd

 O
R

AC
LE

 C
O

R
PO

R
AT

IO
N

 u
se

 o
nl

y

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Oracle Database 11g: Develop PL/SQL Program Units 13 - 27

Copyright © 2009, Oracle. All rights reserved.

Remote Procedure B
Compiles at 8:00 AM

Remote procedure B:
Compiles and is VALID

at 8:00 AM

Local Procedures Referencing Remote Procedures

A local procedure that references a remote procedure is invalidated by the Oracle server if the
remote procedure is recompiled after the local procedure is compiled.

Automatic Remote Dependency Mechanism

When a procedure compiles, the Oracle server records the time stamp of that compilation within
the P code of the procedure.

In the slide, when the remote procedure B is successfully compiled at 8:00 AM, this time is
recorded as its time stamp.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 O

R
AC

LE
 C

O
R

PO
R

AT
IO

N
 u

se
 o

nl
y

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Oracle Database 11g: Develop PL/SQL Program Units 13 - 28

Copyright © 2009, Oracle. All rights reserved.

Local Procedure A
Compiles at 9:00 AM

Remote procedure
B: VALID

Local procedure A: VALID

TIMESTAMP of B TIMESTAMP of A Record
TIMESTAMP of B

Local Procedures Referencing Remote Procedures (continued)

Automatic Remote Dependency Mechanism (continued)

When a local procedure referencing a remote procedure compiles, the Oracle server also records
the time stamp of the remote procedure in the P code of the local procedure.

In the slide, local procedure A (which is dependent on remote procedure B) is compiled at 9:00
AM. The time stamps of both procedure A and remote procedure B are recorded in the P code of
procedure A.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 O

R
AC

LE
 C

O
R

PO
R

AT
IO

N
 u

se
 o

nl
y

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Oracle Database 11g: Develop PL/SQL Program Units 13 - 29

Copyright © 2009, Oracle. All rights reserved.

Execute Procedure A

Remote procedure
B: VALID

Local procedure A: VALID

TIMESTAMP of B TIMESTAMP of A TIMESTAMP of B

TIMESTAMP
comparison

Automatic Remote Dependency

When the local procedure is invoked at run time, the Oracle server compares the two time
stamps of the referenced remote procedure.

If the time stamps are equal (indicating that the remote procedure has not recompiled), then the
Oracle server executes the local procedure.

In the example in the slide, the time stamp recorded with the P code of remote procedure B is
the same as that recorded with local procedure A. Therefore, local procedure A is valid.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 O

R
AC

LE
 C

O
R

PO
R

AT
IO

N
 u

se
 o

nl
y

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Oracle Database 11g: Develop PL/SQL Program Units 13 - 30

Copyright © 2009, Oracle. All rights reserved.

Remote Procedure B
Recompiled at 11:00 AM

Remote procedure B:
Recompiles and is VALID

at 11:00 AM

Local Procedures Referencing Remote Procedures

Assume that remote procedure B is successfully recompiled at 11:00 AM. The new time stamp
is recorded along with its P code.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 O

R
AC

LE
 C

O
R

PO
R

AT
IO

N
 u

se
 o

nl
y

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Oracle Database 11g: Develop PL/SQL Program Units 13 - 31

Copyright © 2009, Oracle. All rights reserved.

Execute Procedure A

Remote procedure
B: VALID

Local procedure A: INVALID

TIMESTAMP of B TIMESTAMP of A TIMESTAMP of B

TIMESTAMP
comparison

Saved TIMESTAMP of B != COMPILE TIME of B

Automatic Remote Dependency

If the time stamps are not equal (indicating that the remote procedure has recompiled), then the
Oracle server invalidates the local procedure and returns a run-time error. If the local procedure
(which is now tagged as invalid) is invoked a second time, then the Oracle server recompiles it
before executing, in accordance with the automatic local dependency mechanism.

Note: If a local procedure returns a run-time error the first time it is invoked (indicating that the
remote procedure’s time stamp has changed), then you should develop a strategy to reinvoke the
local procedure.

In the example in the slide, the remote procedure is recompiled at 11:00 AM and this time is
recorded as its time stamp in the P code. The P code of local procedure A still has 8:00 AM as
the time stamp for remote procedure B. Because the time stamp recorded with the P code of
local procedure A is different from that recorded with the remote procedure B, the local
procedure is marked invalid. When the local procedure is invoked for the second time, it can be
successfully compiled and marked valid.

A disadvantage of time stamp mode is that it is unnecessarily restrictive. Recompilation of
dependent objects across the network is often performed when not strictly necessary, leading to
performance degradation.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 O

R
AC

LE
 C

O
R

PO
R

AT
IO

N
 u

se
 o

nl
y

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Oracle Database 11g: Develop PL/SQL Program Units 13 - 32

Copyright © 2009, Oracle. All rights reserved.

Signature Mode

• The signature of a procedure is:
– The name of the procedure

– The data types of the parameters

– The modes of the parameters

• The signature of the remote procedure is saved in the local
procedure.

• When executing a dependent procedure, the signature of
the referenced remote procedure is compared.

Signatures

To alleviate some of the problems with the time stamp–only dependency model, you can use the
signature model. This allows the remote procedure to be recompiled without affecting the local
procedures. This is important if the database is distributed.

The signature of a subprogram contains the following information:
• The name of the subprogram
• The data types of the parameters
• The modes of the parameters
• The number of parameters
• The data type of the return value for a function

If a remote program is changed and recompiled but the signature does not change, then the local
procedure can execute the remote procedure. With the time stamp method, an error would have
been raised because the time stamps would not have matched.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 O

R
AC

LE
 C

O
R

PO
R

AT
IO

N
 u

se
 o

nl
y

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Oracle Database 11g: Develop PL/SQL Program Units 13 - 33

Copyright © 2009, Oracle. All rights reserved.

Recompiling a PL/SQL
Program Unit

Recompilation:

• Is handled automatically through implicit run-time
recompilation

• Is handled through explicit recompilation with the ALTER
statement

ALTER PROCEDURE [SCHEMA.]procedure_name COMPILE;

ALTER FUNCTION [SCHEMA.]function_name COMPILE;

ALTER PACKAGE [SCHEMA.]package_name
COMPILE [PACKAGE | SPECIFICATION | BODY];

ALTER TRIGGER trigger_name [COMPILE[DEBUG]];

Recompiling PL/SQL Objects

If the recompilation is successful, the object becomes valid. If not, the Oracle server returns an
error and the object remains invalid. When you recompile a PL/SQL object, the Oracle server
first recompiles any invalid object on which it depends.

Procedure: Any local objects that depend on a procedure (such as procedures that call the
recompiled procedure or package bodies that define the procedures that call the recompiled
procedure) are also invalidated.

Packages: The COMPILE PACKAGE option recompiles both the package specification and the
body, regardless of whether it is invalid. The COMPILE SPECIFICATION option recompiles
the package specification. Recompiling a package specification invalidates any local objects that
depend on the specification, such as subprograms that use the package. Note that the body of a
package also depends on its specification. The COMPILE BODY option recompiles only the
package body.

Triggers: Explicit recompilation eliminates the need for implicit run-time recompilation and
prevents associated run-time compilation errors and performance overhead.

The DEBUG option instructs the PL/SQL compiler to generate and store the code for use by the
PL/SQL debugger.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 O

R
AC

LE
 C

O
R

PO
R

AT
IO

N
 u

se
 o

nl
y

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Oracle Database 11g: Develop PL/SQL Program Units 13 - 34

Copyright © 2009, Oracle. All rights reserved.

Unsuccessful Recompilation

Recompiling dependent procedures and functions is
unsuccessful when:

• The referenced object is dropped or renamed

• The data type of the referenced column is changed

• The referenced column is dropped

• A referenced view is replaced by a view with different
columns

• The parameter list of a referenced procedure is modified

Unsuccessful Recompilation

Sometimes a recompilation of dependent procedures is unsuccessful (for example, when a
referenced table is dropped or renamed).

The success of any recompilation is based on the exact dependency. If a referenced view is re-
created, any object that is dependent on the view needs to be recompiled. The success of the
recompilation depends on the columns that the view now contains, as well as the columns that
the dependent objects require for their execution. If the required columns are not part of the new
view, then the object remains invalid.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 O

R
AC

LE
 C

O
R

PO
R

AT
IO

N
 u

se
 o

nl
y

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Oracle Database 11g: Develop PL/SQL Program Units 13 - 35

Copyright © 2009, Oracle. All rights reserved.

Successful Recompilation

Recompiling dependent procedures and functions is successful
if:

• The referenced table has new columns

• The data type of referenced columns has not changed

• A private table is dropped, but a public table that has the
same name and structure exists

• The PL/SQL body of a referenced procedure has been
modified and recompiled successfully

Successful Recompilation

The recompilation of dependent objects is successful if:
• New columns are added to a referenced table
• All INSERT statements include a column list
• No new column is defined as NOT NULL

When a private table is referenced by a dependent procedure and the private table is dropped, the
status of the dependent procedure becomes invalid. When the procedure is recompiled (either
explicitly or implicitly) and a public table exists, the procedure can recompile successfully but is
now dependent on the public table. The recompilation is successful only if the public table
contains the columns that the procedure requires; otherwise, the status of the procedure remains
invalid.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 O

R
AC

LE
 C

O
R

PO
R

AT
IO

N
 u

se
 o

nl
y

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Oracle Database 11g: Develop PL/SQL Program Units 13 - 36

Copyright © 2009, Oracle. All rights reserved.

Recompiling Procedures

Minimize dependency failures by:
• Declaring records with the %ROWTYPE attribute

• Declaring variables with the %TYPE attribute

• Querying with the SELECT * notation

• Including a column list with INSERT statements

Recompilation of Procedures

You can minimize recompilation failure by following the guidelines that are shown in the slide.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 O

R
AC

LE
 C

O
R

PO
R

AT
IO

N
 u

se
 o

nl
y

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Oracle Database 11g: Develop PL/SQL Program Units 13 - 37

Copyright © 2009, Oracle. All rights reserved.

Packages and Dependencies:
Subprogram References the Package

Package
specification

Package
body

Stand-alone
procedure

Procedure A
declaration

Procedure A
declaration

.

.

.

.

Package
definition
changed

Packages and Dependencies: Subprogram References the Package

You can simplify dependency management with packages when referencing a package
procedure or function from a stand-alone procedure or function.

• If the package body changes and the package specification does not change, then the stand-
alone procedure that references a package construct remains valid.

• If the package specification changes, then the outside procedure referencing a package
construct is invalidated, as is the package body. O

ra
cl

e
U

ni
ve

rs
ity

 a
nd

 O
R

AC
LE

 C
O

R
PO

R
AT

IO
N

 u
se

 o
nl

y

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Oracle Database 11g: Develop PL/SQL Program Units 13 - 38

Copyright © 2009, Oracle. All rights reserved.

Packages and Dependencies:
Package Subprogram References Procedure

Package
specification

Package
body

Stand-alone
procedure definition

changed

Procedure A
declaration

Procedure A
declaration

.

.

.

.

Packages and Dependencies: Package Subprogram References Procedure

If a stand-alone procedure that is referenced within the package changes, then the entire package
body is invalidated, but the package specification remains valid. Therefore, it is recommended
that you bring the procedure into the package.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 O

R
AC

LE
 C

O
R

PO
R

AT
IO

N
 u

se
 o

nl
y

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Oracle Database 11g: Develop PL/SQL Program Units 13 - 39

Copyright © 2009, Oracle. All rights reserved.

Quiz

You can display direct and indirect dependencies by running
the utldtree.sql script, populating the DEPTREE_TEMPTAB
table with information for a particular referenced object, and
querying the DEPTREE or IDEPTREE views.

1. True

2. False

Answer: 1

Displaying Direct and Indirect Dependencies

You can display direct and indirect dependencies as follows:

1. Run the utldtree.sql script which creates the objects that enable you to display the direct and
indirect dependencies.

2. Populate the DEPTREE_TEMPTAB table with information for a particular referenced object
by executing the DEPTREE_FILL procedure.

3. Query the DEPTREE or IDEPTREE views.
O

ra
cl

e
U

ni
ve

rs
ity

 a
nd

 O
R

AC
LE

 C
O

R
PO

R
AT

IO
N

 u
se

 o
nl

y

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Oracle Database 11g: Develop PL/SQL Program Units 13 - 40

Copyright © 2009, Oracle. All rights reserved.

Summary

In this lesson, you should have learned how to:

• Track procedural dependencies

• Predict the effect of changing a database object on
procedures and functions

• Manage procedural dependencies

Summary

Avoid disrupting production by keeping track of dependent procedures and recompiling them
manually as soon as possible after the definition of a database object changes.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 O

R
AC

LE
 C

O
R

PO
R

AT
IO

N
 u

se
 o

nl
y

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Oracle Database 11g: Develop PL/SQL Program Units 13 - 41

Copyright © 2009, Oracle. All rights reserved.

Practice 13 Overview: Managing
Dependencies in Your Schema

This practice covers the following topics:
• Using DEPTREE_FILL and IDEPTREE to view

dependencies

• Recompiling procedures, functions, and packages

Practice 13: Overview

In this practice, you use the DEPTREE_FILL procedure and the IDEPTREE view to investigate
dependencies in your schema. In addition, you recompile invalid procedures, functions,
packages, and views.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 O

R
AC

LE
 C

O
R

PO
R

AT
IO

N
 u

se
 o

nl
y

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Oracle Database 11g: Develop PL/SQL Program Units 13 - 42

Practice 13

1. Create a tree structure showing all dependencies involving your add_employee
procedure and your valid_deptid function.

Note: add_employee and valid_deptid were created in the lesson 3 titled

“Creating Functions”. You can run the solution scripts for Practice 3 if you need to create
the procedure and function.

a. Load and execute the utldtree.sql script, which is located in the
D:\lab\labs folder.

b. Execute the deptree_fill procedure for the add_employee procedure.

c. Query the IDEPTREE view to see your results.

d. Execute the deptree_fill procedure for the valid_deptid function.

e. Query the IDEPTREE view to see your results.

If you have time, complete the following exercise:

2. Dynamically validate invalid objects.

a. Make a copy of your EMPLOYEES table, called EMPS.

b. Alter your EMPLOYEES table and add the column TOTSAL with data type
NUMBER(9,2).

c. Create and save a query to display the name, type, and status of all invalid objects.

d. In the compile_pkg (created in Practice 7 in the lesson titled “Using Dynamic
SQL”), add a procedure called recompile that recompiles all invalid procedures,
functions, and packages in your schema. Use Native Dynamic SQL to alter the
invalid object type and compile it.

e. Execute the compile_pkg.recompile procedure.

f. Run the script file that you created in step 3 c to check the status column value. Do
you still have objects with an INVALID status?

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 O

R
AC

LE
 C

O
R

PO
R

AT
IO

N
 u

se
 o

nl
y

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

	Oracle Database 11g: Develop PL/SQL Program Units
	Table Of Contents
	Preface
	Lesson 1: Introduction
	Lesson Objectives
	Lesson Agenda
	Course Objectives
	Course Agenda
	The Human Resources (HR) Schema That Is Used in This Course
	Class Account Information
	Appendixes Used in This Course
	PL/SQL Development Environments
	What Is Oracle SQL Developer?
	Coding PL/SQL in SQL*Plus
	Coding PL/SQL in Oracle JDeveloper
	Lesson Agenda
	Starting SQL Developer and Creating a Database Connection
	Creating Schema Objects
	Using the SQL Worksheet
	Executing SQL Statements
	Saving SQL Scripts
	Executing Saved Script Files: Method 1
	Executing Saved SQL Scripts: Method 2
	Creating an Anonymous Block
	Editing the PL/SQL Code
	Lesson Agenda
	Oracle 11g SQL and PL/SQL Documentation
	Additional Resources
	Summary
	Practice 1 Overview: Getting Started

	Lesson 2: Creating Procedures
	Objectives
	Lesson Agenda
	Creating a Modularized Subprogram Design
	Creating a Layered Subprogram Design
	Modularizing Development with PL/SQL Blocks
	Anonymous Blocks: Overview
	PL/SQL Execution Environment
	What Are PL/SQL Subprograms?
	The Benefits of Using PL/SQL Subprograms
	Differences Between Anonymous Blocks and Subprograms
	Lesson Agenda
	What Are Procedures?
	Creating Procedures: Overview
	Creating Procedures with the SQL CREATE OR REPLACE Statement
	Creating Procedures Using SQL Developer
	Compiling Procedures and Displaying Compilation Errors in SQL Developer
	Correcting Compilation Errors in SQL Developer
	Naming Conventions of PL/SQL Structures Used in This Course
	What Are Parameters and Parameter Modes?
	Formal and Actual Parameters
	Procedural Parameter Modes
	Comparing the Parameter Modes
	Using the IN Parameter Mode: Example
	Using the OUT Parameter Mode: Example
	Using the IN OUT Parameter Mode: Example
	Viewing the OUT Parameters: Using the DBMS_OUTPUT.PUT_LINE Subroutine
	Viewing OUT Parameters: Using SQL*Plus Host Variables
	Available Notations for Passing Actual Parameters
	Passing Actual Parameters: Creating the add_dept Procedure
	Passing Actual Parameters: Examples
	Using the DEFAULT Option for the Parameters
	Calling Procedures
	Calling Procedures Using SQL Developer
	Lesson Agenda
	Handled Exceptions
	Handled Exceptions: Example
	Exceptions Not Handled
	Exceptions Not Handled: Example
	Removing Procedures: Using the DROP SQL Statement or SQL Developer
	Viewing Procedure Information Using the Data Dictionary Views
	Viewing Procedure Information Using SQL Developer
	Quiz
	Summary
	Practice 2 Overview: Creating, Compiling, and Calling Procedures

	Lesson 3: Creating Functions
	Objectives
	Overview of Stored Functions
	Creating Functions
	The Difference Between Procedures and Functions
	Creating and Running Functions: Overview
	Creating and Invoking a Stored Function Using the CREATE FUNCTION Statement: Example
	Using Different Methods for Executing Functions
	Creating and Compiling Functions Using SQL Developer
	Executing Functions Using SQL Developer
	Advantages of User-Defined Functions in SQL Statements
	Using a Function in a SQL Expression: Example
	Calling User-Defined Functions in SQL Statements
	Restrictions When Calling Functions from SQL Expressions
	Controlling Side Effects When Calling Functions from SQL Expressions
	Restrictions on Calling Functions from SQL: Example
	Named and Mixed Notation from SQL
	Named and Mixed Notation from SQL: Example
	Removing Functions: Using the DROP SQL Statement or SQL Developer
	Viewing Functions Using Data Dictionary Views
	Quiz
	Summary
	Practice 3: Overview

	Lesson 4: Creating Packages
	Objectives
	Lesson Agenda
	What Are PL/SQL Packages?
	Advantages of Using Packages
	Components of a PL/SQL Package
	The Visibility of a Package222s Components
	Developing PL/SQL Packages: Overview
	Lesson Agenda
	Creating the Package Specification: Using the CREATE PACKAGE Statement
	Creating the Package Specification: Using SQL Developer
	Creating the Package Body: Using SQL Developer
	Example of a Package Specification: comm_pkg
	Creating the Package Body
	Example of a Package Body: comm_pkg
	Invoking the Package Subprograms: Examples
	Invoking the Package Subprograms: Using SQL Developer
	Creating and Using Bodiless Packages
	Removing Packages: Using SQL Developer or the SQL DROP Statement
	Viewing Packages Using the Data Dictionary
	Guidelines for Writing Packages
	Quiz
	Summary
	Practice 4 Overview: Creating and Using Packages

	Lesson 5: Working with Packages
	Objectives
	Lesson Agenda
	Overloading Subprograms in PL/SQL
	Overloading Procedures Example: Creating the Package Specification
	Overloading Procedures Example: Creating the Package Body
	Overloading and the STANDARD Package
	Illegal Procedure Reference
	Using Forward Declarations to Solve Illegal Procedure Reference
	Initializing Packages
	Using Package Functions in SQL
	Controlling Side Effects of PL/SQL Subprograms
	Package Function in SQL: Example
	Lesson Agenda
	Persistent State of Packages
	Persistent State of Package Variables: Example
	Persistent State of a Package Cursor: Example
	Executing the CURS_PKG Package
	Using PL/SQL Tables of Records in Packages
	Quiz
	Summary
	Practice 5: Overview

	Lesson 6: Using Oracle-Supplied Packagesin Application Development
	Objectives
	Lesson Agenda
	Using Oracle-Supplied Packages
	Examples of Some Oracle-Supplied Packages
	Lesson Agenda
	How the DBMS_OUTPUT Package Works
	Using the UTL_FILE Package to Interact with Operating System Files
	File Processing Using the UTL_FILE Package: Overview
	Using the Available Declared Exceptions in the UTL_FILE Package
	FOPEN and IS_OPEN Functions: Example
	Using UTL_FILE: Example
	What Is the UTL_MAIL Package?
	Setting Up and Using the UTL_MAIL: Overview
	Summary of UTL_MAIL Subprograms
	Installing and Using UTL_MAIL
	The SEND Procedure Syntax
	The SEND_ATTACH_RAW Procedure
	Sending Email with a Binary Attachment: Example
	The SEND_ATTACH_VARCHAR2 Procedure
	Sending Email with a Text Attachment: Example
	Quiz
	Summary
	Practice 6: Overview

	Lesson 7: Using Dynamic SQL
	Objectives
	Lesson Agenda
	Execution Flow of SQL
	Working With Dynamic SQL
	Using Dynamic SQL
	Native Dynamic SQL (NDS)
	Using the EXECUTE IMMEDIATE Statement
	Available Methods for Using NDS
	Dynamic SQL with a DDL Statement: Examples
	Dynamic SQL with DML Statements
	Dynamic SQL with a Single-Row Query: Example
	Dynamic SQL with a Multirow Query: Example
	Declaring Cursor Variables
	Executing a PL/SQL Anonymous Block Dynamically
	Using Native Dynamic SQL to Compile PL/SQL Code
	Lesson Agenda
	Using the DBMS_SQL Package
	Using the DBMS_SQL Package Subprograms
	Using DBMS_SQL with a DML Statement: Deleting Rows
	Using DBMS_SQL with a Parameterized DML Statement
	Dynamic SQL Functional Completeness
	Quiz
	Summary
	Practice 7 Overview: Using Native Dynamic SQL

	Lesson 8: Design Considerations for PL/SQL Code
	Objectives
	Lesson Agenda
	Standardizing Constants and Exceptions
	Standardizing Exceptions
	Standardizing Exception Handling
	Standardizing Constants
	Local Subprograms
	Definer222s Rights Versus Invoker222s Rights
	Specifying Invoker222s Rights: Setting AUTHID to CURRENT_USER
	Autonomous Transactions
	Features of Autonomous Transactions
	Using Autonomous Transactions: Example
	Lesson Agenda
	Using the NOCOPY Hint
	Effects of the NOCOPY Hint
	When Does the PL/SQL Compiler Ignore the NOCOPY Hint?
	Using the PARALLEL_ENABLE Hint
	Using the Cross-Session PL/SQL Function Result Cache
	Enabling Result-Caching for a Function
	Declaring and Defining a Result-Cached Function: Example
	Using the DETERMINISTIC Clause with Functions
	Lesson Agenda
	Bulk Binding
	Using Bulk Binding: Syntax and Keywords
	Bulk Binding FORALL: Example
	Using BULK COLLECT INTO with Queries
	Using BULK COLLECT INTO with Cursors
	Using BULK COLLECT INTO with a RETURNING Clause
	FORALL Support for Sparse Collections
	Using Bulk Binds in Sparse Collections
	Using Bulk Bind with Index Array
	Using the RETURNING Clause
	Quiz
	Summary
	Practice 8: Overview

	Lesson 9: Creating Triggers
	Objectives
	What Are Triggers?
	Defining Triggers
	Trigger Event Types
	Application and Database Triggers
	Business Application Scenarios for Implementing Triggers
	Available Trigger Types
	Trigger Event Types and Body
	Creating DML Triggers Using the CREATE TRIGGER Statement
	Specifying the Trigger Firing (Timing)
	Statement-Level Triggers Versus Row-Level Triggers
	Creating DML Triggers Using SQL Developer
	Trigger-Firing Sequence: Single-Row Manipulation
	Trigger-Firing Sequence: Multirow Manipulation
	Creating a DML Statement Trigger Example: SECURE_EMP
	Testing Trigger SECURE_EMP
	Using Conditional Predicates
	Creating a DML Row Trigger
	Using OLD and NEW Qualifiers
	Using OLD and NEW Qualifiers: Example
	Using OLD and NEW Qualifiers: Example Using AUDIT_EMP
	Using the WHEN Clause to Fire a Row Trigger Based on a Condition
	Summary of the Trigger Execution Model
	Implementing an Integrity Constraint with an After Trigger
	INSTEAD OF Triggers
	Creating an INSTEAD OF Trigger: Example
	Creating an INSTEAD OF Trigger to Perform DML on Complex Views
	The Status of a Trigger
	Creating a Disabled Trigger
	Managing Triggers Using the ALTER and DROP SQL Statements
	Managing Triggers Using SQL Developer
	Testing Triggers
	Viewing Trigger Information
	Using USER_TRIGGERS
	Quiz
	Summary
	Practice 9 Overview: Creating Statement and Row Triggers

	Lesson 10: Creating Compound, DDL, and Event Database Triggers
	Objectives
	What Is a Compound Trigger?
	Working with Compound Triggers
	The Benefits of Using a Compound Trigger
	Timing-Point Sections of a Table Compound Trigger
	Compound Trigger Structure for Tables
	Compound Trigger Structure for Views
	Compound Trigger Restrictions
	Trigger Restrictions on Mutating Tables
	Mutating Table: Example
	Using a Compound Trigger to Resolve the Mutating Table Error
	Using a Compound Trigger to Resolve the Mutating Table Error
	Comparing Database Triggers to Stored Procedures
	Comparing Database Triggers to Oracle Forms Triggers
	Creating Triggers on DDL Statements
	Creating Database-Event Triggers
	Creating Triggers on System Events
	LOGON and LOGOFF Triggers: Example
	CALL Statements in Triggers
	Benefits of Database-Event Triggers
	System Privileges Required to Manage Triggers
	Guidelines for Designing Triggers
	Quiz
	Summary
	Practice 10: Overview

	Lesson 11: Using the PL/SQL Compiler
	Objectives
	Lesson Agenda
	Using the PL/SQL Compiler
	Changes in the PL/SQL Compiler
	Lesson Agenda
	Initialization Parameters for PL/SQL Compilation
	Using the Initialization Parameters for PL/SQL Compilation
	The New Compiler Settings Since Oracle 10g
	Displaying the PL/SQL Initialization Parameters
	Displaying and Setting the PL/SQL Initialization Parameters
	Changing PL/SQL Initialization Parameters: Example
	Lesson Agenda
	Overview of PL/SQL Compile-Time Warnings for Subprograms
	Benefits of Compiler Warnings
	Categories of PL/SQL Compile-Time Warning Messages
	Setting the Warning Messages Levels
	Setting Compiler Warning Levels: Using PLSQL_WARNINGS
	Setting Compiler Warning Levels: Using PLSQL_WARNINGS, Examples
	Setting Compiler Warning Levels: Using PLSQL_WARNINGS in SQL Developer
	Viewing the Current Setting of PLSQL_WARNINGS
	Viewing the Compiler Warnings: Using SQL Developer, SQL*Plus, or Data Dictionary Views
	SQL*Plus Warning Messages: Example
	Guidelines for Using PLSQL_WARNINGS
	Lesson Agenda
	Setting Compiler Warning Levels: Using the DBMS_WARNING Package
	Using the DBMS_WARNING Package Subprograms
	The DBMS_WARNING Procedures: Syntax, Parameters, and Allowed Values
	The DBMS_WARNING Procedures: Example
	The DBMS_WARNING Functions: Syntax, Parameters, and Allowed Values
	The DBMS_WARNING Functions: Example
	Using DBMS_WARNING: Example
	Using the New PLW 06009 Warning Message
	The New PLW 06009 Warning: Example
	Quiz
	Summary
	Practice 11: Overview

	Lesson 12: Managing PL/SQL Code
	Objectives
	Lesson Agenda
	What Is Conditional Compilation?
	How Does Conditional Compilation Work?
	Using Selection Directives
	Using Predefined and User-Defined Inquiry Directives
	The PLSQL_CCFLAGS Parameter and the Inquiry Directive
	Displaying the PLSQL_CCFLAGS Initialization Parameter Setting
	The PLSQL_CCFLAGS Parameter and the Inquiry Directive: Example
	Using Conditional Compilation Error Directives to Raise User-Defined Err
ors
	Using Static Expressions with Conditional Compilation
	The DBMS_DB_VERSION Package: Boolean Constants
	The DBMS_DB_VERSION Package Constants
	Using Conditional Compilation with Database Versions: Example
	Using DBMS_PREPROCESSOR Procedures to Print or Retrieve Source Text
	Lesson Agenda
	What Is Obfuscation?
	Benefits of Obfuscating
	What222s New in Dynamic Obfuscating Since Oracle 10g?
	Nonobfuscated PL/SQL Code: Example
	Obfuscated PL/SQL Code: Example
	Dynamic Obfuscation: Example
	The PL/SQL Wrapper Utility
	Running the Wrapper Utility
	Results of Wrapping
	Guidelines for Wrapping
	DBMS_DDL Package Versus the Wrap Utility
	Quiz
	Summary
	Practice 12: Overview

	Lesson 13: Managing Dependencies
	Objectives
	Overview of Schema Object Dependencies
	Dependencies
	Direct Local Dependencies
	Querying Direct Object Dependencies: Using the USER_DEPENDENCIES View
	Querying an Object222s Status
	Invalidation of Dependent Objects
	Schema Object Change That Invalidates Some Dependents: Example
	Schema Object Change That Invalidates Some Dependents: Example
	Displaying Direct and Indirect Dependencies
	Displaying Dependencies Using the DEPTREE View
	More Precise Dependency Metadata in Oracle Database 11g
	Fine-Grained Dependency Management
	Fine-Grained Dependency Management: Example 1
	Fine-Grained Dependency Management: Example 2
	Impact of Redefining Synonyms Before Oracle Database 10g
	Changes to Synonym Dependencies Starting with Oracle Database 10g
	Maintaining Valid PL/SQL Program Units and Views
	Another Scenario of Local Dependencies
	Guidelines for Reducing Invalidation
	Object Revalidation
	Remote Dependencies
	Concepts of Remote Dependencies
	Setting the REMOTE_DEPENDENCIES_MODE Parameter
	Remote Procedure B Compiles at 8:00 AM
	Local Procedure A Compiles at 9:00 AM
	Execute Procedure A
	Remote Procedure B Recompiled at 11:00 AM
	Execute Procedure A
	Signature Mode
	Recompiling a PL/SQL Program Unit
	Unsuccessful Recompilation
	Successful Recompilation
	Recompiling Procedures
	Packages and Dependencies: Subprogram References the Package
	Packages and Dependencies: Package Subprogram References Procedure
	Quiz
	Summary
	Practice 13 Overview: Managing Dependencies in Your Schema

