Oracle Database 11g: PL/SQL
Fundamentals

Student Guide

D49990GC20
Edition 2.0
September 2009
D62728

ORACLE

Author
Brian Pottle

Technical Contributors

and Reviewers
Tom Best
Christoph Burandt
Y anti Chang
Laszlo Czinkoczki
Ashita Dhir

Peter Driver
Gerlinde Frenzen
Nancy Greenberg
Chaitanya K ortamaddi
Tim Leblanc
Bryan Roberts
Abhishek X Singh
Puja Singh

Lex Van Der Werff

Graphic Designer
Satish Bettegowda

Editors

Vijayalakshmi Narasmhan

Danid Milne

Publisher
Jobi Varghese

Copyright © 2009, Oracle. All rights reserved.

Disclaimer

This document contains proprietary information and is protected by copyright and
other intellectual property laws. You may copy and print this document solely for your
own use in an Oracle training course. The document may not be modified or altered in
any way. Except where your use constitutes "fair use" under copyright law, you may
not use, share, download, upload, copy, print, display, perform, reproduce, publish,
license, post, transmit, or distribute this document in whole or in part without the
express authorization of Oracle.

The information contained in this document is subject to change without notice. If you
find any problems in the document, please report them in writing to: Oracle University,
500 Oracle Parkway, Redwood Shores, California 94065 USA. This document is not
warranted to be error-free.

Restricted Rights Notice

If this documentation is delivered to the United States Government or anyone using
the documentation on behalf of the United States Government, the following notice is
applicable:

U.S. GOVERNMENT RIGHTS

The U.S. Government's rights to use, modify, reproduce, release, perform, display, or
disclose these training materials are restricted by the terms of the applicable Oracle
license agreement and/or the applicable U.S. Government contract.

Trademark Notice

Oracle is a registered trademark of Oracle Corporation and/or its affiliates. Other
names may be trademarks of their respective owners.

Introduction

Copyright © 2009, Oracle. All rights reserved.

Lesson Objectives

After completing this lesson, you should be able to do the
following:
« Discuss the goals of the course
* Describe the HR database schema that is used in the
course

« Identify the available user interface environments that can
be used in this course

* Reference the available appendixes, documentation, and
other resources

-2 Copyright © 2009, Oracle. All rights reserved.

Lesson Objectives

This lesson gives you a high-level overview of the course and its flow. Y ou learn about the
database schema and the tables that the course uses. You are aso introduced to different
products in the Oracle 11g grid infrastructure.

Oracle Database 11g: PL/SQL Fundamentals 1|-2

Course Objectives

After completing this course, you should be able to do the

following:
« Identify the programming extensions that PL/SQL provides
to SQL

* Write PL/SQL code to interface with the database
« Design PL/SQL anonymous blocks that execute efficiently

* Use PL/SQL programming constructs and conditional
control statements

* Handle run-time errors
» Describe stored procedures and functions

-3 Copyright © 2009, Oracle. All rights reserved.

Course Objectives

This course presentsthe basics of PL/SQL. You learn about PL/SQL syntax, blocks, and
programming constructs and also about the advantages of integrating SQL with those constructs.
Y ou learn how to write PL/SQL program units and execute them efficiently. In addition, you
learn how to use SQL Developer as a development environment for PL/SQL. You aso learn
how to design reusable program units such as procedures and functions.

Oracle Database 11g: PL/SQL Fundamentals 1-3

Human Resources (HR) Schema
for This Course

DEPARTMENTS LOCATIONS
department_id location_id
department_name >_ — street_address
manager_id postal_code
location_id city
state_province
I country_id
JOB_HISTORY & 1
employee_id
start_date EMPLOYE.ES
end_date enjployeeJd
job,_id If|rs,t7name
department_id aséﬁ:gre COUNTR!ES
country_id
phone_number country_name
hire_date - region_id
job_id >
salary
commission_pct
(: manager_id
job_id department_id
job_itle — REGIONS
minfsallary region_id
max_salary regionfngme
-4 Copyright © 2009, Oracle. All rights reserved.

Human Resources (HR) Schema for This Course

The Human Resources (HR) schema is part of the Oracle Sample Schemas that can be installed
in an Oracle database. The practice sessions in this course use data from the HR schema.

Table Descriptions
REG ONS contains rows that represent aregion such asthe Americasor Asia.
COUNTRI ES contains rows for countries, each of which is associated with aregion.
LOCATI ONS contains the specific address of a specific office, warehouse, or production
site of acompany in a particular country.
DEPARTMENTS shows details about the departments in which employees work. Each
department may have arelationship representing the department manager in the
EMPLOYEES table.
EMPLOYEES contains details about each employee working for a department. Some
employees may not be assigned to any department.
JOBS contains the job types that can be held by each employee.
JOB_HI STORY contains the job history of the employees. If an employee changes
departments within ajob or changes jobs within a department, a new row is inserted into
this table with the old job information of the employee.

Oracle Database 11g: PL/SQL Fundamentals |-4

Course Agenda

Day 1:

I. Introduction

1. Introduction to PL/SQL

2. Declaring PL/SQL Variables
3. Writing Executable Statements
4

Interacting with Oracle Database Server: SQL Statements
in PL/SQL Programs

5. Writing Control Structures

Day 2:

6. Working with Composite Data Types

7. Using Explicit Cursors

8. Handling Exceptions

9. Introducing Stored Procedures and Functions

-5 Copyright © 2009, Oracle. All rights reserved.

Oracle Database 11g: PL/SQL Fundamentals 1-5

Class Account Information

A cloned HR account ID is set up for you.
Your account ID is or a41.
The password matches your account ID.

Each machine has its own complete environment, and is
assigned the same account.

The instructor has a separate ID.

Copyright © 2009, Oracle. All rights reserved.

Oracle Database 11g: PL/SQL Fundamentals 1-6

Appendixes Used in This Course

Appendix A: Practices and Solutions

Appendix B: Table Descriptions and Data
Appendix C: Using SQL Developer

Appendix D: Using SQL*Plus

Appendix E: Using JDeveloper

Appendix F: REF Cursors

Appendix AP: Additional Practices and Solutions

Copyright © 2009, Oracle. All rights reserved.

Oracle Database 11g: PL/SQL Fundamentals |-7

PL/SQL Development Environments

This course setup provides the following tools for developing
PL/SQL code:

* Oracle SQL Developer (used in this course)
e Oracle SQL*Plus
* Oracle JDeveloper IDE

1-8 Copyright © 2009, Oracle. All rights reserved.

PL/SQL Development Environments

Oracle provides several tools that can be used to write PL/SQL code. Some of the development
tools that are available for use in this course:

* Oracle SQL Developer: A graphical tool

* Oracle SQL*Plus: A window or command-line application

» Oracle JDeveloper: A window-based integrated development environment (IDE)

Note: The code and screen examples presented in the course notes were generated from output
in the SQL Developer environment.

Oracle Database 11g: PL/SQL Fundamentals 1-8

What Is Oracle SQL Developer?

« Oracle SQL Developer is a free graphical tool that
enhances productivity and simplifies database
development tasks.

¢ You can connect to any target Oracle database schema
using standard Oracle database authentication.

* You will use SQL Developer in this course.
« Appendix C contains details on using SQL Developer.

SQL Developer

-9 Copyright © 2009, Oracle. All rights reserved.

What Is Oracle SQL Developer?

Oracle SQL Developer is a free graphical tool designed to improve your productivity and
simplify the development of everyday database tasks. With just afew clicks, you can easily
create and maintain stored procedures, test SQL statements, and view optimizer plans.

SQL Developer, the visual tool for database development, simplifies the following tasks:

» Browsing and managing database objects

» Executing SQL statements and scripts

» Editing and debugging PL/SQL statements

» Creating reports
Y ou can connect to any target Oracle database schema by using standard Oracle database
authentication. When you are connected, you can perform operations on objects in the database.

Appendix C

Appendix C of this course provides an introduction on using the SQL Developer interface. Refer
to the appendix for information about creating a database connection, interacting with data using
SQL and PL/SQL, and more.

Oracle Database 11g: PL/SQL Fundamentals 1-9

Coding PL/SQL in SQL*Plus

Terminal
File Edit View Terminal Tabs Help
S0L*Plus: Release 11.2.0.0.2 Beta on Thu May 28 21:20:35 2009 [«

g Copyright (c) 1982, 20089, Oracle. All rights reserved. —

Enter user-name: orad4l
Enter password:

Terminal

Connected to:
Oracle Database 1lg Enterprise Edition Release 11.2.8.8.2 - Beta
With the Partitioning, OLAP, Data Mining and Real Application Testing options
—
50L= set serveroutput on
50L= create or replace procedure hello is
2 begin
3 dbms_output.put_line('Hello Class!');
4 end;
5/

Procedure created.

SQL> execute hello
Hello Class!

PL/SOL procedure successfully completed.

SQL=>

I1-10 Copyright © 2009, Oracle. All rights reserved.

Coding PL/SQL in SQL*Plus
Oracle SQL*Plus is a command-line interface that enables you to submit SQL statements and
PL/SQL blocks for execution and receive the results in an application or acommand window.
SQL*Plusis:
» Shipped with the database
* Installed on aclient and on the database server system
» Accessed using an icon or the command line
When you code PL/SQL subprograms using SQL* Plus, remember the following:
* You create subprograms by using the CREATE SQL statement.
* You execute subprograms by using either an anonymous PL/SQL block or the EXECUTE

command.
» If you use the DBMS_OUTPUT package procedures to print text to the screen, you must
first execute the SET SERVEROUTPUT ON command in your session.

Note
* Tolaunch SQL*Plusin Linux environment, open a Terminal window and enter the
command: sql pl us.
* For moreinformation about using SQL*Plus, see Appendix D.

Oracle Database 11g: PL/SQL Fundamentals 1-10

Coding PL/SQL in Oracle JDeveloper

Oracle |Developer 11g

File Edit View Application Refactor Search Navigate Build Run Versioning Tools Window Help
Goaag 96 NEh QO -@- S- hidda- > -&-(6

Application Mavigatar E] l@Stan Page E]

%- New Application...
| [}
Open Application...

Oracle JDeveloper 11¢g

= Muodel Applications
|, = Structure E]

Design Databases

Messages— Lag E]

[02:47:24 PM] Creating Integrated Weblogic domain...
[02:48:09 PM] Extending Integrated Weblogic domain...
[02:48:53 PM] Integrated Weblogic domain processing completed successfully.

Messages Feedback 1 E]E]

1-11 Copyright © 2009, Oracle. All rights reserved.

Coding PL/SQL in Oracle JDeveloper

Oracle JDeveloper allows developersto create, edit, test, and debug PL/SQL code by using a
sophisticated GUI. Oracle JDeveloper is a part of Oracle Developer Suite and is also available as
a separate product.

When you code PL/SQL in JDeveloper, consider the following:

* Youfirst create a database connection to enable JDeveloper to access a database schema
owner for the subprograms.

* You can then use the JDeveloper context menus on the Database connection to create a
new subprogram construct using the built-in JDeveloper Code Editor.

* You invoke a subprogram by using a Run command on the context menu for the named
subprogram. The output appears in the JDeveloper Log Message window, as shown in the
lower portion of the screenshot.

Note

» JDeveloper provides color-coding syntax in the JDeveloper Code Editor and is sensitive to
PL/SQL language constructs and statements.

* For more information about using JDeveloper, see Appendix E.

Oracle Database 11g: PL/SQL Fundamentals 1-11

-12

Oracle 11g SQL and PL/SQL Documentation

Oracle Database New Features Guide 11g Release 2
(11.2)

Oracle Database Advanced Application Developer’s Guide
119 Release 2 (11.2)

Oracle Database PL/SQL Language Reference 11g
Release 2 (11.2)

Oracle Database Reference 11g Release 2 (11.2)

Oracle Database SQL Language Reference 11g Release 2
(11.2)

Oracle Database Concepts 11g Release 2 (11.2)

Oracle Database PL/SQL Packages and Types Reference
119 Release 2 (11.2)

Oracle Database SQL Developer User’'s Guide Release
1.5

Copyright © 2009, Oracle. All rights reserved.

Oracle Database 11g: PL/SQL Fundamentals |-12

Summary

In this lesson, you should have learned how to:
« Discuss the goals of the course

 Describe the HR database schema that is used in the
course

« Identify the available user interface environments that can
be used in this course

* Reference the available appendixes, documentation, and
other resources

-13 Copyright © 2009, Oracle. All rights reserved.

Oracle Database 11g: PL/SQL Fundamentals 1-13

Practice | Overview: Getting Started

This practice covers the following topics:
« Starting SQL Developer
» Creating a new database connection
* Browsing the HR schema tables

« Setting a SQL Developer preference

1-14 Copyright © 2009, Oracle. All rights reserved.

Practice I: Overview
In this practice, you use SQL Developer to execute SQL statements to examine data in the HR
schema. Y ou also create a ssimple anonymous block.
Note: All written practices use SQL Developer as the development environment. Although it is

recommended that you use SQL Developer, you can also use the SQL* Plus or JDeveloper
environments that are available in this course.

Oracle Database 11g: PL/SQL Fundamentals |- 14

Introduction to PL/SQL

Copyright © 2009, Oracle. All rights reserved.

Objectives

After completing this lesson, you should be able to do the
following:

« Explain the need for PL/SQL

« Explain the benefits of PL/SQL

* ldentify the different types of PL/SQL blocks
¢ Output messages in PL/SQL

1-2 Copyright © 2009, Oracle. All rights reserved.

Objectives

This lesson introduces PL/SQL and the PL/SQL programming constructs. You also learn about
the benefits of PL/SQL.

Oracle Database 11g: PL/SQL Fundamentals 1 -2

Agenda

Understanding the benefits and structure of PL/SQL
Examining PL/SQL blocks
Generating output messages in PL/SQL

Copyright © 2009, Oracle. All rights reserved.

Oracle Database 11g: PL/SQL Fundamentals 1-3

About PL/SQL

PL/SQL:
« Stands for “Procedural Language extension to SQL”

* Is Oracle Corporation’s standard data access language for
relational databases

« Seamlessly integrates procedural constructs with SQL

1-4 Copyright © 2009, Oracle. All rights reserved.

About PL/SQL

Structured Query Language (SQL) isthe primary language used to access and modify datain
relational databases. There are only afew SQL commands, so you can easily learn and use them.

Consider an example:
SELECT first_nane, departnent_id, salary FROM enpl oyees;

The preceding SQL statement is simple and straightforward. However, if you want to alter any
datathat is retrieved in a conditional manner, you soon encounter the limitations of SQL.

Consider aslightly modified problem statement: For every employee retrieved, check the
department 1D and salary. Depending on the department’ s performance and also the employee’'s
salary, you may want to provide varying bonuses to the employees.

Looking at the problem, you know that you have to execute the preceding SQL statement,
collect the data, and apply logic to the data.

* Onesolution isto write a SQL statement for each department to give bonuses to the
employees in that department. Remember that you also have to check the salary
component before deciding the bonus amount. This makes it a little complicated.

* A more effective solution might include conditional statements. PL/SQL is designed to
meet such requirements. It provides a programming extension to the already-existing SQL .

Oracle Database 11g: PL/SQL Fundamentals 1-4

About PL/SQL

PL/SQL:

* Provides a block structure for executable units of code.
Maintenance of code is made easier with such a well-
defined structure.

* Provides procedural constructs such as:

— Variables, constants, and data types
— Control structures such as conditional statements and loops

— Reusable program units that are written once and executed
many times

1-5 Copyright © 2009, Oracle. All rights reserved.

About PL/SQL (continued)

PL/SQL defines ablock structure for writing code. Maintaining and debugging code is made
easier with such a structure because you can easily understand the flow and execution of the
program unit.

PL/SQL offers modern software engineering features such as data encapsulation, exception
handling, information hiding, and object orientation. It brings state-of-the-art programming to
the Oracle Server and toolset. PL/SQL provides all the procedural constructsthat are available in
any third-generation language (3GL).

Oracle Database 11g: PL/SQL Fundamentals 1-5

PL/SQL Run-Time Architecture

PL/SQL block

L
.
usal' [_!‘J « procedural 'iiiii:)
~ : o| it)
: ,EHJ,

Procedural statement
executor

PL/SQL Engine

2
%J Oracle Server

SQL statement executor

1-6 Copyright © 2009, Oracle. All rights reserved.

PL/SQL Run-Time Architecture

The diagram in the slide shows a PL/SQL block being executed by the PL/SQL engine. The
PL/SQL engineresidesin:
» The Oracle database for executing stored subprograms
* The Oracle Forms client when you run client/server applications, or in the Oracle
Application Server when you use Oracle Forms Services to run Forms on the Web

Irrespective of the PL/SQL run-time environment, the basic architecture remains the same.
Therefore, all PL/SQL statements are processed in the Procedural Statement Executor, and all
SQL statements must be sent to the SQL Statement Executor for processing by the Oracle Server
processes. The SQL environment may also invoke the PL/SQL environment. For example, the
PL/SQL environment is invoked when a PL/SQL function isused in a SELECT statement.

The PL/SQL engine isa virtual machine that resides in memory and processes the PL/SQL
m-code instructions. When the PL/SQL engine encounters a SQL statement, a context switch is
made to passthe SQL statement to the Oracle Server processes. The PL/SQL engine waits for
the SQL statement to complete and for the results to be returned before it continues to process
subsequent statements in the PL/SQL block. The Oracle Forms PL/SQL engine runs in the client
for the client/server implementation, and in the application server for the Forms Services
implementation. In either case, SQL statements are typically sent over a network to an Oracle
Server for processing.

Oracle Database 11g: PL/SQL Fundamentals 1-6

Benefits of PL/SQL

* Integration of procedural constructs with SQL
* Improved performance

SQL 1
SQL 2

SQL

| F... THEN
SQ

ELSE -
SQL

END | F;

SQL

1-7 Copyright © 2009, Oracle. All rights reserved.

Benefits of PL/SQL

Integration of procedural constructswith SQL: The most important advantage of PL/SQL is
the integration of procedural constructs with SQL. SQL is a nonprocedural language. When you
issue a SQL command, your command tells the database server what to do. However, you
cannot specify howto do it. PL/SQL integrates control statements and conditional statements
with SQL, giving you better control of your SQL statements and their execution. Earlier in this
lesson, you saw an example of the need for such integration.

Improved performance: Without PL/SQL, you would not be able to logically combine SQL
statements as one unit. If you have designed an application that contains forms, you may have
many different forms with fields in each form. When a form submits data, you may have to
execute a number of SQL statements. SQL statements are sent to the database one at atime. This
results in many network trips and one call to the database for each SQL statement, thereby
increasing network traffic and reducing performance (especially in a client/server model).

With PL/SQL, you can combine all these SQL statements into a single program unit. The
application can send the entire block to the database instead of sending the SQL statements one
at atime. This significantly reduces the number of database calls. Asthe dlide illustrates, if the
application is SQL intensive, you can use PL/SQL blocks to group SQL statements before
sending them to the Oracle database server for execution.

Oracle Database 11g: PL/SQL Fundamentals 1-7

Benefits of PL/SQL

¢ Modularized program development
* Integration with Oracle tools

« Portability

* Exception handling

1-8 Copyright © 2009, Oracle. All rights reserved.

Benefits of PL/SQL (continued)

Modularized program development: The basic unit in all PL/SQL programs is the block.
Blocks can be in a sequence or they can be nested in other blocks. Modularized program
development has the following advantages:

* You cangroup logically related statements within blocks.

* You can nest blocks inside larger blocks to build powerful programs.

* You can break your application into smaller modules. If you are designing a complex
application, PL/SQL allows you to break down the application into smaller, manageable,
and logically related modules.

* You can easily maintain and debug code.

In PL/SQL, modularization is implemented using procedures, functions, and packages, which
are discussed in the lesson titled “Introducing Stored Procedures and Functions.”

Integration with tools: The PL/SQL engine is integrated in Oracle tools such as Oracle Forms
and Oracle Reports. When you use these tools, the locally available PL/SQL engine processes
the procedural statements; only the SQL statements are passed to the database.

Oracle Database 11g: PL/SQL Fundamentals 1-8

Benefits of PL/SQL (continued)

Portability: PL/SQL programs can run anywhere an Oracle Server runs, irrespective of the
operating system and platform. Y ou do not need to customize them to each new environment.
Y ou can write portable program packages and create libraries that can be reused in different
environments.

Exception handling: PL/SQL enables you to handle exceptions efficiently. Y ou can define
separate blocks for dealing with exceptions. Y ou learn more about exception handling in the
lesson titled “Handling Exceptions.”

PL/SQL shares the same data type system as SQL (with some extensions) and uses the same
expression syntax.

Oracle Database 11g: PL/SQL Fundamentals 1-9

PL/SQL Block Structure

« DECLARE (optional)

— Variables, cursors, user-defined exceptions
 BEG N (mandatory)

— SQL statements

— PL/SQL statements
o EXCEPTI ON (optional) uRE
. gC
— Actions to perform .".--
when exceptions occur .,ggil“ -
« END; (mandatory) . E"_GEF“O
T
1-10 Copyright © 2009, Oracle. All rights reserved.

PL/SQL Block Structure

The slide shows abasic PL/SQL block. A PL/SQL block consists of four sections:

» Declarative (optional): The declarative section begins with the keyword DECL ARE and
ends when the executable section starts.

* Begin (required): The executable section begins with the keyword BEG N. This section
needsto have at least one statement. However, the executable section of a PL/SQL block
can include any number of PL/SQL blocks.

* Exception handling (optional): The exception section is nested within the executable
section. This section begins with the keyword EXCEPTI ON.

* End (required): All PL/SQL blocks must conclude with an END statement. Observe that
END is terminated with a semicolon.

Oracle Database 11g: PL/SQL Fundamentals 1 -10

PL/SQL Block Structure (continued)

InaPL/SQL block, the keywords DECLARE, BEG N, and EXCEPTI ON are not terminated by a
semicolon. However, the keyword END, all SQL statements, and PL/SQL statements must be
terminated with a semicolon.

Section Description Inclusion

Declarative Contains declarations of all variables, constants, Optional
(DECLARE) cursors, and user-defined exceptions that are
referenced in the executable and exception sections

Executable Contains SQL statements to retrieve data from the Mandatory

(BEGA N.... database; contains PL/SQL statements to manipul ate
END) datain the block
Exception Specifies the actions to perform when errors and Optional

(EXCEPTI ON) | abnormal conditions arise in the executable section

Oracle Database 11g: PL/SQL Fundamentals 1-11

Agenda

* Understanding the benefits and structure of PL/SQL
* Examining PL/SQL blocks
» Generating output messages in PL/SQL

-12 Copyright © 2009, Oracle. All rights reserved.

Oracle Database 11g: PL/SQL Fundamentals 1-12

Block Types

Procedure Function Anonymous
PRCCEDURE nane FUNCTI ON narne [DECLARE]
IS RETURN dat at ype
IS
BEG N BEG N BEG N
--statenents --statenents --statenents
RETURN val ue;
[EXCEPTI ON] [EXCEPTI ON] [EXCEPTI ON]
END; END; END;
1-13 Copyright © 2009, Oracle. All rights reserved.
Block Types

A PL/SQL program comprises one or more blocks. These blocks can be entirely separate or
nested within another block.

There are three types of blocks that make up a PL/SQL program:
* Procedures
* Functions
* Anonymous blocks

Procedures. Procedures are named objects that contain SQL and/or PL/SQL statements.

Functions: Functions are named objects that contain SQL and/or PL/SQL statements. Unlike a
procedure, afunction returns a value of a specified data type.

Anonymous blocks

Anonymous blocks are unnamed blocks. They are declared inline at the point in an application
where they are to be executed and are compiled each time the application is executed. These
blocks are not stored in the database. They are passed to the PL/SQL engine for execution at run
time. Triggers in Oracle Developer components consist of such blocks.

If you want to execute the same block again, you have to rewrite the block. Y ou cannot invoke
or call the block that you wrote earlier because blocks are anonymous and do not exist after they
are executed.

Oracle Database 11g: PL/SQL Fundamentals 1-13

Block Types (continued)
Subprograms

Subprograms are complementary to anonymous blocks. They are named PL/SQL blocksthat are
stored in the database. Because they are named and stored, you can invoke them whenever you
want (depending on your application). Y ou can declare them either as procedures or as
functions. Y ou typically use a procedure to perform an action and a function to compute and
return avalue.

Subprograms can be stored at the server or application level. Using Oracle Developer
components (Forms, Reports), you can declare procedures and functions as part of the
application (aform or report) and call them from other procedures, functions, and triggers within
the same application, whenever necessary.

Oracle Database 11g: PL/SQL Fundamentals 1 -14

Program Constructs

Database Server

Tools Constructs Constructs

Anonymous blocks Anonymous blocks

Application procedures
or functions

Stored procedures or
functions

Application packages Stored packages

Application triggers Database triggers

Object types Object types

Copyright © 2009, Oracle. All rights reserved.

Program Constructs

The following table outlines a variety of PL/SQL program constructs that use the basic PL/SQL
block. The program constructs are available based on the environment in which they are
executed.

Program Description Availability

Construct

Anonymous Unnamed PL/SQL blocks that are embedded All PL/SQL environments

blocks within an application or are issued interactively

Application Named PL/SQL blocks that are stored in an Oracle | Oracle Devel oper tools

procedures or Forms Developer application or a shared library; components (for example, Oracle

functions can accept parameters and can be invoked Forms Developer, Oracle
repeatedly by name Reports)

Stored Named PL/SQL blocks that are stored in the Orecle server or Oracle Devel oper

procedures or Oracle server; can accept parameters and can be tools

functions invoked repeatedly by name

Packages Named PL/SQL modulesthat group related Orecle server and Oracle

(application or procedures, functions, and identifiers Developer tools components (for

stored) example, Oracle Forms

Developer)

Oracle Database 11g: PL/SQL Fundamentals 1 -15

Program Constructs (continued)

Program Description Availability

Construct

Databasetriggers | PL/SQL blocksthat are associated with adatabase | Oracle server or any Oracle tool
table and are fired automatically when triggered by | that issues the DML
various events

Application PL/SQL blocks that are associated either with a Oracle Devel oper tools

triggers database table or system events. They arefired components (for example, Oracle
automatically when triggered by aDML or a Forms Developer)
system event respectively.

Object types User-defined composite data types that encapsulate | Oracle server and Oracle
adata structure along with the functions and Developer tools
procedures needed to manipulate data

Oracle Database 11g: PL/SQL Fundamentals 1-16

Examining an Anonymous Block

An anonymous block in the SQL Developer workspace:

SOL_Worksheet History
ESRS B8 &

DECLARE
v_Thame YVARCHARZ (207 ;

BEGIN
SELECT Tirst_name INTO w_tname FROM emplovees
WHERE emplovee_id=100;

END;

/

1-17 Copyright © 2009, Oracle. All rights reserved.

Examining an Anonymous Block

To create an anonymous block by using SQL Developer, enter the block in the workspace (as
shown in the slide).

Example

The example block has the declarative section and the executable section. Y ou need not pay
attention to the syntax of statements in the block; you learn the syntax later in the course.

The anonymous block getsthef i r st _nane of the employee whose enpl oyee i d is100,
and storesit inavariable called v_f nane.

Oracle Database 11g: PL/SQL Fundamentals 1-17

Executing an Anonymous Block

Click the Run Script button to execute the anonymous block:

//////////fynlScﬂpt(orFS)
SOl _Warks ztary
FIEIRER® B8 ¢ 046330699 seconds

DECLARE
v_Thame VARCHARZ (20%;

BEGIN
SELECT first_name INTO w_fname FROM emplovees
WHERE emnplovee_id=100;

END;

I

.

[Results | [& script output. B Explain |?£]Autu:utrace |[EDBMS Qutput | G4 Ok Gutput

¢HdE

ananymous block completed

1-18 Copyright © 2009, Oracle. All rights reserved.

Executing an Anonymous Block
To execute an anonymous block, click the Run Script button (or press F5).

Note: The message “anonymous block completed” is displayed in the Script Output window
after the block is executed.

Oracle Database 11g: PL/SQL Fundamentals 1-18

Agenda

* Understanding the benefits and structure of PL/SQL
 Examining PL/SQL blocks
* Generating output messages in PL/SQL

-19 Copyright © 2009, Oracle. All rights reserved.

Oracle Database 11g: PL/SQL Fundamentals 1-19

Enabling Output of a PL/SQL Block

1. To enable output in SQL Developer, execute the following
command before running the PL/SQL block:

SET SERVEROUTPUT ON

2. Use a predefined Oracle package and its procedure in the
anonymous block:
— DBMS_OUTPUT. PUT LI NE

DBVMS_OUTPUT. PUT_LINE(" The First Nanme of the
Enpl oyee is ' || v_fnane);
1-20 Copyright © 2009, Oracle. All rights reserved.

Enabling Output of a PL/SQL Block
In the example shown in the previous slide, avalue is stored inthev_f nanme variable.
However, the value has not been printed.

PL/SQL does not have built-in input or output functionality. Therefore, you need to use
predefined Oracle packages for input and output. To generate output, you must perform the

following:
1. Execute the following command:

SET SERVEROUTPUT ON

Note: To enable output in SQL*Plus, you must explicitly issue the SET SERVEROUTPUT
ON command.

2. Inthe PL/SQL block, usethe PUT_LI NE procedure of the DBMS OUTPUT package to
display the output. Passthe value that hasto be printed as an argument to this procedure
(as shown in the slide). The procedure then outputs the argument.

Oracle Database 11g: PL/SQL Fundamentals 1 -20

Viewing the Output of a PL/SQL Block

SaL Worksheet | History
PERRO B8 ¢ 011275294 seconds

SET SEEVEROUTFUT OH

Press F5 to execute the

DECLARE command and PL/SQL
v_frnawe VARCHAR (Z0) ; block.
BEGIH

SELECT first name

THTO v_fhname

FROM employees

THERE employee id = 100;

DEM3I OUTPUT.PUT_LINE(' The First Name of the Employee is ' || v_fname):;
EHD ;
7
F %
[Resutts | & Scrigt Output ‘ﬂg]Explain|%]Amntrace|@oams Output | G0 S Output

anonywous block completed
The First Name of the Employee iz Stewen

1-21 Copyright © 2009, Oracle. All rights reserved.

Viewing the Output of a PL/SQL Block

Press F5 (or click the Run Script icon) to view the output for the PL/SQL block. This action:
1. Executesthe SET SERVEROUTPUT ON command
2. Runsthe anonymous PL/SQL block

The output appears on the Script Output tab.

Oracle Database 11g: PL/SQL Fundamentals 1-21

Quiz

A PL/SQL block must consist of the following three sections:

* A Declarative section, which begins with the keyword
DECLARE and ends when the executable section starts.

* An Executable section, which begins with the keyword
BEG N and ends with END.

* An Exception handling section, which begins with the
keyword EXCEPTI ON and is nested within the executable

section.
1. True
2. False
1-22 Copyright © 2009, Oracle. All rights reserved.
Answer: 2

A PL/SQL block consists of three sections:

» Declarative (optional): The optional declarative section begins with the keyword
DECLARE and ends when the executable section starts.

» Executable (required): The required executable section begins with the keyword BEG N
and ends with END. This section essentially needs to have at least one statement. Observe
that END is terminated with a semicolon. The executable section of a PL/SQL block can, in
turn, include any number of PL/SQL blocks.

» Exception handling (optional): The optional exception section is nested within the
executable section. This section begins with the keyword EXCEPTI ON.

Oracle Database 11g: PL/SQL Fundamentals 1 -22

Summary

In this lesson, you should have learned how to:

* Integrate SQL statements with PL/SQL program constructs
* Describe the benefits of PL/SQL

« Differentiate between PL/SQL block types

¢ Output messages in PL/SQL

1-23 Copyright © 2009, Oracle. All rights reserved.

Summary
PL/SQL isalanguage that has programming features that serve as extensionsto SQL. SQL,
which is a nonprocedural language, is made procedural with PL/SQL programming constructs.
PL/SQL applications can run on any platform or operating system on which an Oracle Server
runs. In this lesson, you learned how to build basic PL/SQL blocks.

Oracle Database 11g: PL/SQL Fundamentals 1-23

Practice 1: Overview

This practice covers the following topics:
« ldentifying the PL/SQL blocks that execute successfully
« Creating and executing a simple PL/SQL block

1-24 Copyright © 2009, Oracle. All rights reserved.

Practice 1: Overview

This practice reinforces the basics of PL/SQL covered in this lesson.
* Exercise 1 isa paper-based exercise in which you identify PL/SQL blocks that execute
successfully.
» Exercise 2 involves creating and executing a simple PL/SQL block.

Oracle Database 11g: PL/SQL Fundamentals 1-24

Declaring PL/SQL Variables

Copyright © 2009, Oracle. All rights reserved.

Objectives

After completing this lesson, you should be able to do the
following:

* Recognize valid and invalid identifiers

« List the uses of variables

* Declare and initialize variables

« List and describe various data types

« ldentify the benefits of using the %' YPE attribute
* Declare, use, and print bind variables

2-2 Copyright © 2009, Oracle. All rights reserved.

Objectives

Y ou have already learned about basic PL/SQL blocks and their sections. In this lesson, you learn
about valid and invalid identifiers. Y ou learn how to declare and initialize variables in the
declarative section of a PL/SQL block. The lesson describes the various data types. Y ou also
learn about the % YPE attribute and its benefits.

Oracle Database 11g: PL/SQL Fundamentals 2 -2

Agenda

Introducing variables
Examining variable data types and the % YPE attribute

Examining bind variables

Copyright © 2009, Oracle. All rights reserved.

Oracle Database 11g: PL/SQL Fundamentals 2 -3

Use of Variables

Variables can be used for:
« Temporary storage of data
* Manipulation of stored values

* Reusability
SELECT
first_nane,
departnent _id
77 = - v_fname
’#" v_fnane, —
v_dept no —
o 1
[10] v_dept no
2-4 Copyright © 2009, Oracle. All rights reserved.

Use of Variables
With PL/SQL, you can declare variables, and then use them in SQL and procedural statements.
Variables are mainly used for storage of data and manipulation of stored values. Consider the
PL/SQL statement in the slide. The statement retrievesfi r st _nanme anddepart nent i d
fromthetable. If you haveto manipulatefi r st _nane or depart nent _i d, you haveto
storethe retrieved value. Variables are used to temporarily store the value. Y ou can use the

value stored in these variables for processing and manipulating data. Variables can store any
PL/SQL object such as variables, types, cursors, and subprograms.

Reusability is another advantage of declaring variables. After the variables are declared, you can
use them repeatedly in an application by referring to them multiple times in various statements.

Oracle Database 11g: PL/SQL Fundamentals 2 -4

Requirements for Variable Names

A variable name:
e Must start with a letter
e Can include letters or numbers
e Caninclude special characters (such as $, _, and #)
e Must contain no more than 30 characters
e Must not include reserved words

a 2% 74

2-5 Copyright © 2009, Oracle. All rights reserved.

Requirements for Variable Names
The rules for naming avariable are listed in the slide.

Oracle Database 11g: PL/SQL Fundamentals 2 -5

Handling Variables in PL/SQL

Variables are:

« Declared and (optionally) initialized in the declarative
section

» Used and assigned new values in the executable section
* Passed as parameters to PL/SQL subprograms
* Used to hold the output of a PL/SQL subprogram

2-6 Copyright © 2009, Oracle. All rights reserved.

Handling Variables in PL/SQL

Y ou can use variables in the following ways:

» Declareand initialize them in the declaration section: You can declare variables in the
declarative part of any PL/SQL block, subprogram, or package. Declarations allocate
storage space for avalue, specify its datatype, and name the storage location so that you
can reference it. Declarations can also assign an initial value and impose the NOT NULL
constraint on the variable. Forward references are not allowed. Y ou must declare avariable
before referencing it in other statements, including other declarative statements.

* Usethem and assign new valuesto them in the executable section: In the executable
section, the existing value of the variable can be replaced with a new value.

» Passthem asparametersto PL/SQL subprograms. Subprograms can take parameters.
Y ou can pass variables as parameters to subprograms.

» Usethem to hold the output of a PL/SQL subprogram: Variables can be used to hold
the value that is returned by a function.

Oracle Database 11g: PL/SQL Fundamentals 2 -6

Declaring and Initializing PL/SQL Variables

Syntax:
identifier [CONSTANT] datatype [NOT NULL]
[:=| DEFAULT expr];
Examples:
DECLARE
v_hi redat e DATE;
v_deptno NUVBER(2) NOT NULL : = 10;
v_l ocation VARCHAR2(13) := 'Atlanta';
c_conmm CONSTANT NUMBER : = 1400;
2-7 Copyright © 2009, Oracle. All rights reserved.

Declaring and Initializing PL/SQL Variables

Y ou must declare all PL/SQL identifiersin the declaration section before referencing them in

the PL/SQL block. Y ou have the option of assigning an initial value to avariable (as shown in
the slide). You do not need to assign avalue to avariable in order to declare it. If you refer to

other variables in a declaration, be sure that they are already declared separately in a previous
statement.

In the syntax:

identifier |'s the name of the variable

CONSTANT Congtrains the variable so that its value cannot change (Constants must be
initialized.)

data type |s ascalar, composite, reference, or LOB datatype (This course covers only
scalar, composite, and LOB data types.)

NOT NULL Congtrains the variable so that it contains a value (NOT NULL
variables must be initialized.)

expr Is any PL/SQL expression that can be a literal expression, another variable,

or an expression involving operators and functions

Note: In addition to variables, you can also declare cursors and exceptions in the declarative
section. You learn about declaring cursors in the lesson titled “Using Explicit Cursors’ and
about exceptions in the lesson titled “Handling Exceptions.”

Oracle Database 11g: PL/SQL Fundamentals 2 -7

®

Declaring and Initializing PL/SQL Variables

DECLARE
v_nyName VARCHAR2(20) ;
BEG N
DBMS_OUTPUT. PUT_LINE(" My nane is: '|| v_nyNane);
v_nyNanme : = 'John';
DBMS_OUTPUT. PUT_LINE(" My nane is: '|| v_nyNane);
END;
/
DECLARE
v_myName VARCHAR2(20):= 'John';
BEG N
v_nyName := 'Steven';
DBMS_OUTPUT. PUT_LINE(" My nane is: '|| v_nyNane);
END;
/

Copyright © 2009, Oracle. All rights reserved.

Declaring and Initializing PL/SQL Variables (continued)
Examine the two code blocks in the slide.

1. Inthefirst block, thev_myNanme variable is declared but not initialized. A value John is

assigned to the variable in the executable section.

2. Inthe second block, the v_nyName variable is declared and initialized in the declarative
section. v_nyNane holds the value John after initialization. This value is manipulated in

String literals must be enclosed in single quotation marks. If your string has a
guotation mark asin “Today’s Date,” the string would be' Today' ' s Dat e’ .
The assignment operator is: “: =".
The PUT_LI NE procedure is invoked by passing the v__myNanme variable. The value
of the variable is concatenated with the string' My nane i s:'.
Output of thisanonymous block is: [z T EJserer owpn T Epan |

¢HdE

ananvmous block completed
My name is:
My name is: lohn

the executable section of the block. The output of this anonymous block is:

anomymous hlock completed
My name is: Stewven

Oracle Database 11g: PL/SQL Fundamentals 2 -8

Delimiters in String Literals

DECLARE
v_event VARCHAR2(15);

BEG N
v_event := q'!Father's day!';
DBVS_QUTPUT. PUT_LI NE(' 3rd Sunday in June is :
"|| v_event);
v_event := q'[Mther's day]';
DBMS_OUTPUT. PUT_LI NE(' 2nd Sunday in May is :
|| v_event);

END;

/

anonymwous block completed
Resulting drd Sunday in June is : Father's day
output Znd Sunday in May is : Mother's day

2-9 Copyright © 2009, Oracle. All rights reserved.

Delimiters in String Literals

If your string contains an apostrophe (identical to a single quotation mark), you must double the

guotation mark, asin the following example:
v_event VARCHAR2(15):='Father''s day';

The first quotation mark acts as the escape character. This makes your string complicated,
especialy if you have SQL statements as strings. Y ou can specify any character that is not
present in the string as a delimiter. The slide shows how to usetheq' notation to specify the
delimiter. The example uses! and [asdelimiters. Consider the following example:
v_event := q'!Father's day!"';
Y ou can compare this with the first example on this page. Y ou gart the string with q' if you
want to use a delimiter. The character following the notation is the delimiter used. Enter your
string after specifying the delimiter, close the delimiter, and close the notation with asingle
guotation mark. The following example shows how to use[asadeimiter:
v_event := q'[Modther's day]';

Oracle Database 11g: PL/SQL Fundamentals 2 -9

Agenda

* Introducing variables
* Examining variable data types and the % YPE attribute

 Examining bind variables

-10 Copyright © 2009, Oracle. All rights reserved.

Oracle Database 11g: PL/SQL Fundamentals 2 -10

Types of Variables

 PL/SQL variables:
— Scalar
— Reference
— Large object (LOB)
— Composite
* Non-PL/SQL variables: Bind variables

2-11 Copyright © 2009, Oracle. All rights reserved.

Types of Variables

Every PL/SQL variable has a data type, which specifies a storage format, constraints, and avalid
range of values. PL/SQL supports several datatype categories, including scalar, reference, large
object (LOB), and composite.

e Scalar datatypes. Scalar datatypes hold asingle value. The value depends on the data
type of the variable. For example, the v_nmyNane variable in the example in the section
“Declaring and Initializing PL/SQL Variables” (in thislesson) is of type VARCHAR2.
Therefore, v_myNane can hold a string value. PL/SQL also supports Boolean variables.

» Referencedatatypes. Reference datatypes hold values, called pointers, which point to a
storage location.

* LOBdatatypes: LOB datatypes hold values, called locators, which specify the location of
large objects (such as graphic images) that are stored outside the table.

» Composite datatypes. Composite datatypes are available by using PL/SQL collection
and record variables. PL/SQL collections and records contain internal elements that you
can treat as individual variables.

Non-PL/SQL variables include host language variables declared in precompiler programs,
screen fields in Forms applications, and host variables. Y ou learn about host variables later in
this lesson.

For more information about LOBs, seethe PL/SQL User’s Guide and Reference.

Oracle Database 11g: PL/SQL Fundamentals 2 -11

Types of Variables

15-JAN-09

Snow White

Long, long ago,
in aland far, far away,
there lived a princess called
Snow White. . .

2-12 Copyright © 2009, Oracle. All rights reserved.

Types of Variables (continued)

The dlide illustrates the following data types.
- TRUE represents a Boolean value.
e 15-JAN-09 represents a DATE.
» Theimage represents a BLOB.
» Thetext inthe callout can represent a VARCHAR2 datatype or a CLOB.
o 256120.08 represents a NUMBER data type with precision and scale.
* Thefilmreel represents a BFI LE.
* The city name Atlanta represents a VARCHAR2 datatype.

Oracle Database 11g: PL/SQL Fundamentals 2-12

Guidelines for Declaring and Initializing
PL/SQL Variables

* Follow consistent naming conventions.
« Use meaningful identifiers for variables.

« Initialize variables that are designated as NOT NULL and
CONSTANT.

« Initialize variables with the assignment operator (. =) or the
DEFAULT keyword:

v_myName VARCHAR2(20): =' John' ;

v_nyName VARCHAR2(20) DEFAULT ' John';

« Declare one identifier per line for better readability and
code maintenance.

2-13 Copyright © 2009, Oracle. All rights reserved.

Guidelines for Declaring and Initializing PL/SQL Variables

Here are some guidelines to follow when you declare PL/SQL variables.

» Follow consistent naming conventions—for example, you might use nane to represent a
variable and c__nane to represent a constant. Similarly, to name a variable, you can use
v_f name. The key isto apply your naming convention consistently for easier
identification.

» Use meaningful and appropriate identifiers for variables. For example, consider using
salary andsal _w th_conm ssi oninstead of sal aryl and sal ary?2.

» If you use the NOT NULL constraint, you must assign a value when you declare the
variable.

* Inconstant declarations, the CONSTANT keyword must precede the type specifier. The
following declaration names a constant of NUMBER type and assigns the value of 50,000 to
the constant. A constant must be initialized in its declaration; otherwise, you get a

compilation error. After initializing a constant, you cannot change its value.
sal CONSTANT NUMBER : = 50000. 00;

Oracle Database 11g: PL/SQL Fundamentals 2 -13

Guidelines for Declaring PL/SQL Variables

« Avoid using column names as identifiers.

DECLARE
enpl oyee id NUMBER(6) ;
BEG N
SELECT enpl oyee id ! '
| NTO enpl oyee_id b
FROM enpl oyees
VWHERE | ast _name = ' Kochhar';
END;
/

e« Use the NOT NULL constraint when the variable must hold
a value.

-14 Copyright © 2009, Oracle. All rights reserved.

Guidelines for Declaring PL/SQL Variables

Initialize the variable to an expression with the assignment operator (: =) or with the
DEFAULT reserved word. If you do not assign an initial value, the new variable contains
NULL by default until you assign a value. To assign or reassign avalue to a variable, you
write a PL/SQL assignment statement. However, it is good programming practice to
initialize all variables.

Two objects can have the same name only if they are defined in different blocks. Where
they coexist, you can qualify them with labels and use them.

Avoid using column names as identifiers. If PL/SQL variables occur in SQL statements
and have the same name as a column, the Oracle Server assumesthat it is the column that
is being referenced. Although the code example in the slide works, code that is written
using the same name for a database table and a variable is not easy to read or maintain.
Impose the NOT NULL constraint when the variable must contain a value. Y ou cannot
assign nullsto avariable that is defined as NOT NULL. The NOT NULL constraint must be

followed by an initialization clause.
pi ncode VARCHAR2(15) NOT NULL := 'Oxford';

Oracle Database 11g: PL/SQL Fundamentals 2 -14

Naming Conventions of PL/SQL
Structures Used in This Course

PL/SQL Structure Convention Example
Variable v_vari abl e_nane v_rate
Constant c_const ant _nanme c_rate
Subprogram p_par anmet er _nanme p_id
parameter
Bind (host) variable b_bi nd_nane b _sal ary
Cursor cur _cur sor_name cur_enp
Record rec_record_nane rec_enp
Type type_nane_t ype enanme_t abl e_type
Exception e_excepti on_nane e _products_invalid
File handle f file_handle name |f file
2-15 Copyright © 2009, Oracle. All rights reserved.

Naming Conventions of PL/SQL Structures Used in This Course

Thetable in the slide displays some examples of the naming conventions for PL/SQL structures
that are used in this course.

Oracle Database 11g: PL/SQL Fundamentals 2 -15

Scalar Data Types

* Hold a single value
* Have no internal components

TRUE 15-JAN-09

The soul of the lazy man
desires, and he has nothing;
but the soul of the diligent
shall be made rich.

Atlanta

2-16 Copyright © 2009, Oracle. All rights reserved.

Scalar Data Types

PL/SQL provides avariety of predefined data types. For instance, you can choose from integer,
floating point, character, Boolean, date, collection, and LOB types. This lesson coversthe basic

types that are used frequently in PL/SQL programs.

A scalar datatype holds a single value and has no internal components. Scalar data types can be
classified into four categories. number, character, date, and Boolean. Character and number data
types have subtypes that associate a base type to a constraint. For example, | NTEGER and

PCSI Tl VE are subtypes of the NUMBER base type.

For more information about scalar data types (as well as a complete list), see the PL/SQL User’s

Guide and Reference.

Oracle Database 11g: PL/SQL Fundamentals 2 -16

Base Scalar Data Types

* CHAR [(maxi mum | engt h)]

« VARCHAR2 (naxi mum | engt h)

« NUMBER [(precision, scale)]
* BI NARY_| NTEGER

e PLS | NTEGER

« BOOLEAN

* BI NARY_FLOAT

* BI NARY_DOUBLE

2-17 Copyright © 2009, Oracle. All rights reserved.

Base Scalar Data Types

Data Type Description

CHAR Base type for fixed-length character data up to 32,767 bytes. If you do
[(maxi mum_ engt h)] | not specify amaximum length, the default length is set to 1.
VARCHAR? Base type for variable-length character data up to 32,767 bytes. There
(maxi num_| engt h) is no default size for VARCHAR?Z variables and constants.

NUMBER Number having precision p and scale s. The precision p can range

[(plr e)Ci sl on, from 1 through 38. The scale s can range from —84 through 127.

scal e

Bl NARY_I NTEGER Base type for integers between —2,147,483,647 and 2,147,483,647

Oracle Database 11g: PL/SQL Fundamentals 2 -17

Base Scalar Data Types (continued)

Data Type

Description

PLS | NTEGER

Base type for signed integers between —2,147,483,647 and
2,147,483,647. PLS_| NTEGER vaues require less storage and are
faster than NUMBER values. In Oracle Database 11g, the

PLS | NTEGER and Bl NARY_| NTEGER datatypes are identical.
The arithmetic operationson PLS_| NTEGER and

Bl NARY_| NTEGER values are faster than on NUMBER values.

BOOLEAN

Base type that stores one of the three possible values used for
logical calculations: TRUE, FALSE, and NULL

Bl NARY_FLOAT

Represents floating-point number in |EEE 754 format. It requires 5
bytes to store the value.

Bl NARY_DOUBLE

Represents floating-point number in |EEE 754 format. It requires 9
bytes to store the value.

Oracle Database 11g: PL/SQL Fundamentals 2 -18

Base Scalar Data Types

- DATE

 TI MESTAMP

- TIMESTAMP WTH TI ME ZONE

- TIMESTAMP WTH LOCAL TI ME ZONE
e | NTERVAL YEAR TO MONTH

« | NTERVAL DAY TO SECOND

2-19 Copyright © 2009, Oracle. All rights reserved.

Base Scalar Data Types (continued)

Data Type Description

DATE Base type for dates and times. DATE values include the time of day in seconds
since midnight. The range for datesis between 4712 B.C. and A.D. 9999.

TI MESTAWP The TI MESTANP data type, which extends the DATE datatype, stores the year,
month, day, hour, minute, second, and fraction of second. The syntax is

TI MESTAMP[(pr eci si on)], where the optional parameter pr eci si on
specifies the number of digitsin the fractional part of the secondsfield. To
specify the precision, you must use an integer in the range 0-9. The default is 6.

TI MESTAMP WTH | The TI MESTAMP W THTI ME ZONE data type, which extends the TI MESTAVP
TIME ZONE data type, includes a time-zone di splacement. The time-zone displacement is the
difference (in hours and minutes) between local time and Coordinated Universal
Time (UTC), formerly known as Greenwich Mean Time. The syntax is

TI MESTAMP[(preci si on)] W THTI ME ZONE, where the optional
parameter pr eci si on specifies the number of digitsin the fractional part of the
seconds field. To specify the precision, you must use an integer in the range 0-9.
The default is 6.

Oracle Database 11g: PL/SQL Fundamentals 2 -19

Base Scalar Data Types (continued)

Data Type

Description

TI MESTAMP W TH
LOCAL TI ME ZONE

The TI MESTAMP W THLOCAL Tl ME ZONE data type, which extends the
TI MESTAMP datatype, includes a time-zone displacement. The time-zone
displacement is the difference (in hours and minutes) between local time and
Coordinated Universal Time (UTC), formerly known as Greenwich Mean
Time. The syntax is TI MESTAMP[(pr eci si on)] W THLOCAL TI ME
ZONE, where the optiona parameter pr eci si on specifies the number of
digitsin the fractional part of the secondsfield. Y ou cannot use a symbolic
constant or variable to specify the precision; you must use an integer literal in
the range 0-9. The default is 6.

This data type differsfrom TI MESTAMP W THTI ME ZONE in that when
you insert a value into a database column, the value is normalized to the
database time zone, and the time-zone displacement is not stored in the
column. When you retrieve the value, the Oracle server returnsthe valuein
your local session time zone.

| NTERVAL YEAR
TO MONTH

You use the | NTERVAL YEAR TOMONTH data type to store and manipulate
intervals of years and months. The syntax is | NTERVAL

YEAR[(preci sion)] TOMONTH, wherepr eci si on specifiesthe
number of digitsin the yearsfield. Y ou cannot use a symbolic constant or
variable to specify the precision; you must use an integer literal in the range
0-4. The default is 2.

| NTERVAL DAY TO
SECOND

You use thel NTERVAL DAY TO SECOND data type to store and manipulate
intervals of days, hours, minutes, and seconds. The syntax is| NTERVAL
DAY[(preci sionl)] TOSECOND (precision2)],where

preci si onl and preci si on2 specify the number of digitsin the days
field and secondsfield, respectively. In both cases, you cannot use a symbolic
constant or variable to specify the precision; you must use an integer literal in
the range 0-9. The defaults are 2 and 6, respectively.

Oracle Database 11g: PL/SQL Fundamentals 2 -20

Declaring Scalar Variables

Examples:
DECLARE

v_enp_j ob VARCHAR2(9) ;
v_count _| oop Bl NARY_| NTEGER : = 0;
v_dept total sal NUMBER(9, 2) := O;
v_orderdate DATE : = SYSDATE + 7;
c_tax_rate CONSTANT NUMBER(3, 2) : = 8.25;
v_valid BOOLEAN NOT NULL : = TRUE;

2-21 Copyright © 2009, Oracle. All rights reserved.

Declaring Scalar Variables

The examples of variable declaration shown in the slide are defined as follows:
v_enp_j ob: Variable to sore an employee job title
v_count _| oop: Variable to count the iterations of aloop; initialized to O
v_dept total sal:Variableto accumulate the total salary for adepartment;
initialized to O
v_or der dat e: Variableto store the ship date of an order; initialized to one week from
today
c_t ax_r at e: Constant variable for the tax rate (which never changes throughout the
PL/SQL block); set to 8. 25
v_val i d: Flag to indicate whether a piece of datais valid or invalid; initialized to TRUE

Oracle Database 11g: PL/SQL Fundamentals 2 -21

o YPE Attribute

« Is used to declare a variable according to:
— A database column definition
— Another declared variable
* Is prefixed with:
— The database table and column name
— The name of the declared variable

2-22 Copyright © 2009, Oracle. All rights reserved.

% YPE Attribute

PL/SQL variables are usually declared to hold and manipulate data stored in a database. When
you declare PL/SQL variables to hold column values, you must ensure that the variable is of the
correct datatype and precision. If it isnot, a PL/SQL error occurs during execution. If you have
to design large subprograms, this can be time consuming and error prone.

Rather than hard-coding the data type and precision of a variable, you can use the %' YPE
attribute to declare a variable according to another previously declared variable or database
column. The %' YPE attribute is most often used when the value stored in the variable is derived
from atable in the database. When you use the %0 YPE attribute to declare a variable, you should
prefix it with the database table and column name. If you refer to a previously declared variable,
prefix the variable name of the previously declared variable to the variable being declared.

Oracle Database 11g: PL/SQL Fundamentals 2 -22

%' YPE Attribute (continued)
Advantages of the %0 YPE Attribute

Y ou can avoid errors caused by data type mismatch or wrong precision.

Y ou can avoid hard coding the data type of a variable.

Y ou need not change the variable declaration if the column definition changes. If you have
already declared some variables for a particular table without using the %' YPE attribute,
the PL/SQL block may throw errorsif the column for which the variable is declared is
altered. When you use the % YPE attribute, PL/SQL determines the data type and size of
the variable when the block is compiled. This ensuresthat such avariable is always
compatible with the column that is used to populate it.

Oracle Database 11g: PL/SQL Fundamentals 2 -23

Declaring Variables

with the YT YPE Attribute

Syntax
identifier t abl e. col unm_nane% YPE;
Examples
v_enp_I| nane enpl oyees. | ast _nanme%l YPE;
v_bal ance NUVBER(7, 2) ;
v_m n_bal ance v_bal ance%lYPE : = 1000;
2-24 Copyright © 2009, Oracle. All rights reserved.

Declaring Variables with the %' YPE Attribute

Declare variables to store the last name of an employee. Thev_enp_| nane variable is defined
to be of the same datatype asthev_| ast _name columninthe enpl oyees table. The

%0 YPE attribute provides the data type of a database column.

Declare variables to store the balance of a bank account, as well as the minimum balance, which
is1,000. Thev_m n_bal ance variable is defined to be of the same data type as the
v_bal ance variable. The %I'YPE attribute provides the data type of a variable.

A NOT NULL database column constraint does not apply to variables that are declared using
% YPE. Therefore, if you declare a variable using the % YPE attribute that uses a database
column defined as NOT NULL, you can assign the NULL value to the variable.

Oracle Database 11g: PL/SQL Fundamentals 2 -24

Declaring Boolean Variables

* Only the TRUE, FALSE, and NULL values can be assigned
to a Boolean variable.

« Conditional expressions use the logical operators AND and
OR, and the unary operator NOT to check the variable
values.

« The variables always yield TRUE, FALSE, or NULL.

* Arithmetic, character, and date expressions can be used to
return a Boolean value.

2-25 Copyright © 2009, Oracle. All rights reserved.

Declaring Boolean Variables

With PL/SQL, you can compare variables in both SQL and procedural statements. These
comparisons, called Boolean expressions, consist of simple or complex expressions separated by
relational operators. In a SQL statement, you can use Boolean expressions to specify the rowsin
atable that are affected by the statement. In a procedural statement, Boolean expressions are the
basis for conditional control. NULL stands for a missing, inapplicable, or unknown value.

Examples
enp_sal 1 :
enp_sal 2 :

50000;
60000;

The following expression yields TRUE:
enp_sall < enp_sal 2

Declare and initialize a Boolean variable:
DECLARE
fl ag BOOLEAN : = FALSE;
BEG N
flag : = TRUE
END;
/

Oracle Database 11g: PL/SQL Fundamentals 2 -25

LOB Data Type Variables

Book
(CLOB)

Photo
(BLOB)

Movie

B ¢ cro

f -

2-26 Copyright © 2009, Oracle. All rights reserved.

LOB Data Type Variables

Large objects (LOBs) are meant to store alarge amount of data. A database column can be of the
LOB category. With the LOB category of data types (BLOB, CLOB, and so on), you can store
blocks of unstructured data (such as text, graphic images, video clips, and sound wave forms) of
up to 128 terabytes depending on the database block size. LOB data types allow efficient,
random, piecewise access to data and can be attributes of an object type.

* Thecharacter large object (CLOB) datatype is used to store large blocks of character
data in the database.

* Thebinary large object (BLOB) datatype is used to store large unstructured or structured
binary objects in the database. When you insert or retrieve such data into or from the
database, the database does not interpret the data. External applications that use this data
must interpret the data.

» Thebinary file (BFI LE) datatype is used to store large binary files. Unlike other LOBs,
BFI LES are stored outside the database and not in the database. They could be operating
system files. Only a pointer to the BFI LE is stored in the database.

» The national language character large object (NCLOB) datatype is used to store large
blocks of single-byte or fixed-width multibyte NCHAR unicode data in the database.

Oracle Database 11g: PL/SQL Fundamentals 2 - 26

Composite Data Types: Records and Collections

PL/SQL Record:

TRUE | 23-DEC-98 | ATLANTA

PL/SQL Collections:

1 SM TH 1 5000
2 JONES 2 2345
3 NANCY 3 12
4 TIM 4 3456
L |—VARCHARZ L |— NUMBER
PLS | NTEGER PLS | NTEGER
2-27 Copyright © 2009, Oracle. All rights reserved.

Composite Data Types: Records and Collections

As mentioned previously, a scalar data type holds a single value and has no internal components.
Composite data types—called PL/SQL Records and PL/SQL Collections—have internal
components that that you can treat as individual variables.

* InaPL/SQL record, the internal components can be of different datatypes, and are called
fields. Y ou access each field with thissyntax: r ecor d_nane. fi el d_nane. A record
variable can hold atable row, or some columns from atable row. Each record field
corresponds to atable column.

* InaPL/SQL collection, the internal components are always of the same data type, and are
called elements. Y ou access each element by its unique subscript. Lists and arrays are
classic examples of collections. There are three types of PL/SQL collections. Associative
Arrays, Nested Tables, and VARRAY types.

Note
* PL/SQL Records and Associative Arrays are covered in the lesson titled: “Working with

Composite Data Types.”
 NESTED TABLE and VARRAY data types are covered in the coursetitled Oracle Database

11g: Advanced PL/SQL.

Oracle Database 11g: PL/SQL Fundamentals 2 -27

Agenda

* Introducing variables
 Examining variable data types and the %TYPE attribute
* Examining bind variables

-28 Copyright © 2009, Oracle. All rights reserved.

Oracle Database 11g: PL/SQL Fundamentals 2 -28

Bind Variables

Bind variables are:
e Created in the environment
» Also called host variables
« Created with the VARI ABLE keyword*
e Used in SQL statements and PL/SQL blocks
* Accessed even after the PL/SQL block is executed
« Referenced with a preceding colon
Values can be output using the PRI NT command.
* Required when using SQL*Plus and SQL Developer

2-29 Copyright © 2009, Oracle. All rights reserved.

Bind Variables
Bind variables are variables that you create in ahost environment. For this reason, they are
sometimes called host variables.
Uses of Bind Variables

Bind variables are created in the environment and not in the declarative section of a PL/SQL
block. Therefore, bind variables are accessible even after the block is executed. When created,
bind variables can be used and manipulated by multiple subprograms. They can be used in SQL
statements and PL/SQL blocks just like any other variable. These variables can be passed as run-
time values into or out of PL/SQL subprograms.

Note: A bind variable is an environment variable, but is not aglobal variable.

Creating Bind Variables

To create abind variable in SQL Developer, use the VARI ABLE command. For example, you
declare a variable of type NUMBER and VARCHAR?Z as follows:

VARI ABLE r et urn_code NUMBER

VARI ABLE return_nmsg VARCHAR2(30)
Viewing Valuesin Bind Variables

Y ou can reference the bind variable using SQL Developer and view its value using the PRI NT
command.

Oracle Database 11g: PL/SQL Fundamentals 2 -29

Bind Variables (continued)
Example
Y ou can reference a bind variable in a PL/SQL program by preceding the variable with a colon.

For example, the following PL/SQL block creates and uses the bind variableb_r esul t . The
output resulting from the PRI NT command is shown below the code.

VARI ABLE b_result NUMBER

BEG N
SELECT (SALARY*12) + NVL(COWM SSI ON_PCT, 0) I NTO : b_result
FROM enpl oyees WHERE enpl oyee_id = 144;

END,

/

PRI NT b _result

[pesults El Script Qutput B Explain |

¢dE

anonymous block completed
b_result

Note: If you are creating a bind variable of the NUMBER type, you cannot specify the precision
and scale. However, you can specify the size for character strings. An Oracle NUMBER is stored
in the same way regardless of the dimension. The Oracle Server uses the same number of bytes
to store 7, 70, and .0734. It is not practical to calculate the size of the Oracle number
representation from the number format, so the code always allocates the bytes needed. With
character strings, the user hasto specify the size so that the required number of bytes can be
allocated.

Oracle Database 11g: PL/SQL Fundamentals 2 -30

Referencing Bind Variables

Example:

VARl ABLE b_enp_sal ary NUMBER
BEG N
SELECT salary |INTO :b_enp_salary
FROM enpl oyees WHERE enpl oyee_id = 178;

END;
/ [Resuits | [E] script utput) T Explain |'_¢;-._'1Aumtrace | @
PRI NT b_enp_sal ary ¢ B8
SELECT first_nanme, l|ast_name |, .umous slock conpleted
FROM errpl oyees h_emp_salary
WHERE sal ary=: b_enp_sal ary; 7000
FIREST_MAME LAST_NAME
Output — |otiver Twae
sarath Semall
Kimheraly Grant

3 rows selected

2-31 Copyright © 2009, Oracle. All rights reserved.

Referencing Bind Variables

As stated previously, after you create a bind variable, you can reference that variable in any
other SQL statement or PL/SQL program.

Inthe example, b_enp_sal ary iscreated asabind variable in the PL/SQL block. Then, it is
used in the SELECT statement that follows.

When you execute the PL/SQL block shown in the slide, you see the following output:
* The PRI NT command executes:

b_enp_sal ary
7000

* Then, the output of the SQL statement follows:
FI RST_NAVE LAST_NAME
Aiver Tuvaul t
Sarath Sewal |
Ki nberely G ant

Note: To display all bind variables, use the PRI NT command without a variable.

Oracle Database 11g: PL/SQL Fundamentals 2 -31

Using AUTOPRI NT with Bind Variables

S0L Worksheet History

PERSRD BB @

VARTABLE B emnp _salary NUMBER
[SET AUTOPRIWT ON I

DECLARE

w_empno NUMEBER (&) :=&empno;
BEGIN

SELECT =alary INTOD :b_emp_salary

FROM emplovees WHERE emplovee_id = v_empno;

END;
/ S EEEEE————————
| = Enter Substitution Variable X/
EMPRO:
% 3
[Results [EScript Ou |1?8| |
¢d84& [Results | [& seript ouput| B Exp
|]9 | | Cancel | M
¢B8E
anonymous block completed
h_emp_salary
TO00
2-32 Copyright © 2009, Oracle. All rights reserved.

Using AUTOPRI NT with Bind Variables

Use the SET AUTOPRI NT ON command to automatically display the bind variablesused in a
successful PL/SQL block.

Example

In the code example:
 Abindvariablenamed b_enp_sal ary iscreated and AUTOPRI NT isturned on.
» A variable named v_enpno isdeclared, and a substitution variable is used to receive user
input.
» Finally, the bind variable and temporary variables are used in the executable section of the
PL/SQL block.

When a valid employee number is entered—in this case 178—the output of the bind variable is
automatically printed. The bind variable contains the salary for the employee number that is
provided by the user.

Oracle Database 11g: PL/SQL Fundamentals 2 -32

Quiz

The %' YPE attribute:

1. Is used to declare a variable according to a database
column definition

2. Is used to declare a variable according to a collection of
columns in a database table or view

3. Is used to declare a variable according to the definition of
another declared variable

4. s prefixed with the database table and column name or
the name of the declared variable

2-33 Copyright © 2009, Oracle. All rights reserved.

Answer: 1, 3,4
The %' YPE Attribute

PL/SQL variables are usually declared to hold and manipulate data stored in a database. When
you declare PL/SQL variablesto hold column values, you must ensure that the variable is of the
correct datatype and precision. If it isnot, a PL/SQL error occurs during execution. If you have
to design large subprograms, this can be time consuming and error prone.

Rather than hard-coding the data type and precision of a variable, you can use the %' YPE
attribute to declare a variable according to another previously declared variable or database
column. The %' YPE attribute is most often used when the value stored in the variable is derived
from atable in the database. When you use the %0 YPE attribute to declare a variable, you should
prefix it with the database table and column name. If you refer to a previously declared variable,
prefix the variable name of the previously declared variable to the variable being declared. The
benefit of %0 YPE is that you do not have to change the variable if the column is altered. Also, if

the variable is used in any calculations, you need not worry about its precision.
The ¥%RON YPE Attribute

The YRONYPE attribute is used to declare arecord that can hold an entire row of atable or
view. You learn about this attribute in the lesson titled “Working with Composite Data Types.”

Oracle Database 11g: PL/SQL Fundamentals 2 -33

Summary

In this lesson, you should have learned how to:
* Recognize valid and invalid identifiers

« Declare variables in the declarative section of a PL/SQL
block

* Initialize variables and use them in the executable section
« Differentiate between scalar and composite data types
 Use the YI'YPE attribute

e Use bind variables

2-34 Copyright © 2009, Oracle. All rights reserved.

Summary

An anonymous PL/SQL block is a basic, unnamed unit of a PL/SQL program. It consists of a set
of SQL or PL/SQL statements to perform alogical function. The declarative part isthe first part
of a PL/SQL block and is used for declaring objects such as variables, constants, cursors, and
definitions of error situations called exceptions.

In this lesson, you learned how to declare variables in the declarative section. Y ou saw some of
the guidelines for declaring variables. Y ou learned how to initialize variables when you declare
them.

The executable part of a PL/SQL block is the mandatory part and contains SQL and PL/SQL
statements for querying and manipulating data. You learned how to initialize variablesin the
executable section and also how to use them and manipulate the values of variables.

Oracle Database 11g: PL/SQL Fundamentals 2 - 34

Practice 2: Overview

This practice covers the following topics:
« Determining valid identifiers
« Determining valid variable declarations
« Declaring variables within an anonymous block
« Using the %' YPE attribute to declare variables
« Declaring and printing a bind variable
« Executing a PL/SQL block

2-35 Copyright © 2009, Oracle. All rights reserved.

Practice 2: Overview
Exercises 1, 2, and 3 are paper based.

Oracle Database 11g: PL/SQL Fundamentals 2 -35

Writing Executable Statements

Copyright © 2009, Oracle. All rights reserved.

Objectives

After completing this lesson, you should be able to do the
following:

Identify lexical units in a PL/SQL block
Use built-in SQL functions in PL/SQL

Describe when implicit conversions take place and when
explicit conversions have to be dealt with

Write nested blocks and qualify variables with labels
Write readable code with appropriate indentation
Use sequences in PL/SQL expressions

Copyright © 2009, Oracle. All rights reserved.

Objectives

Y ou learned how to declare variables and write executable statements in a PL/SQL block. In this
lesson, you learn how lexical units make up a PL/SQL block. Y ou learn to write nested blocks.
Y ou also learn about the scope and visibility of variables in nested blocks and about qualifying

variables with labels.

Oracle Database 11g: PL/SQL Fundamentals 3 -2

Agenda

* Writing executable statements in a PL/SQL block
« Writing nested blocks
* Using operators and developing readable code

-3 Copyright © 2009, Oracle. All rights reserved.

Oracle Database 11g: PL/SQL Fundamentals 3 -3

Lexical Units in a PL/SQL Block

Lexical units:
* Are building blocks of any PL/SQL block

* Are sequences of characters including letters, numerals,
tabs, spaces, returns, and symbols

e« Can be classified as:
— lIdentifiers: v_f nanme, c_percent

— Delimiters:; , +, -
— Literals: John, 428, True
— Comments:--, [* */
3-4 Copyright © 2009, Oracle. All rights reserved.

Lexical Units in a PL/SQL Block

Lexical unitsinclude letters, numerals, special characters, tabs, spaces, returns, and symbols.

* ldentifiers. Identifiers are the names given to PL/SQL objects. You learned to identify
valid and invalid identifiers. Recall that keywords cannot be used as identifiers.

Quoted identifiers:
- Make identifiers case-sensitive.
- Include characters such as spaces.
- Usereserved words.
Examples:
"begi n date" DATE;
"end date" DATE;
"exception thrown" BOOLEAN DEFAULT TRUE;
All subsequent usage of these variables should have double quotation marks. However, use
of quoted identifiers is not recommended.

* Deéimiters. Delimiters are symbols that have special meaning. Y ou already learned that
the semicolon (;) isused to terminate a SQL or PL/SQL statement. Therefore, ; isan
example of adelimiter.

For more information, refer to the PL/SQL User’s Guide and Reference.

Oracle Database 11g: PL/SQL Fundamentals 3 -4

Lexical Units in a PL/SQL Block (continued)

* Deélimiters (continued)
Delimiters are simple or compound symbols that have special meaning in PL/SQL.
Simple symbols

Symbol Meaning

+ Addition operator

- Subtraction/negation operator

Multiplication operator

/ Division operator

= Equality operator

@ Remote access indicator

; Statement terminator

Compound symbols

Symbol M eaning

<> Inequality operator

I = Inequality operator

[Concatenation operator
- - Single-line comment indicator

I Beginning comment delimiter

*/ Ending comment delimiter

= Assignment operator

Note: Thisisonly asubset and not a complete list of delimiters.
» Literals: Any valuethat is assigned to avariable isaliteral. Any character, numeral,
Boolean, or date value that is not an identifier isaliteral. Literals are classified as:
- Character literals: All string literals have the data type CHAR or VARCHAR2 and
are, therefore, called character literals (for example, John, and 12C).
- Numeric literals: A numeric literal represents an integer or real value (for example,
428 and 1. 276).
- Boolean literals: Valuesthat are assigned to Boolean variables are Boolean literals.
TRUE, FALSE, and NULL are Boolean literals or keywords.
 Comments: It isgood programming practice to explain what a piece of code istrying to
achieve. However, when you include the explanation in a PL/SQL block, the compiler
cannot interpret these instructions. Therefore, there should be away in which you can
indicate that these instructions need not be compiled. Comments are mainly used for this
purpose. Any instruction that is commented is not interpreted by the compiler.
- Two hyphens (- -) are used to comment asingle line.
- The beginning and ending comment delimiters (/ * and */) are used to comment
multiple lines.

Oracle Database 11g: PL/SQL Fundamentals 3 -5

PL/SQL Block Syntax and Guidelines

e Using Literals
— Character and date literals must be enclosed in single quotation marks.
— Numbers can be simple values or in scientific notation.

[v_name :="Henderson';

* Formatting Code: Statements can span several lines.

DECLARE @& saLHistory F
v_fname ViR 2200 | cu Ctrl-¥
BEGIH Copy Ctrl-
select firsterfme into | Faste QLR
Select All Ctrl-A
WHERE ehployee id=100; S i
EHD ; Compile Ctrl+5hift-Fa
Replace With (2) DECLARE
t VARCHAR?2 (Z0) ;
Refactaring ~ e { !

ol BEGTH

SELECT first_name

THTOD v_fnamel @
FROM ewnployess

VHERE employee_id = 100;
LEHD :

3-6 Copyright © 2009, Oracle. All rights reserved.

PL/SQL Block Syntax and Guidelines
Using Literals

A literal is an explicit numeric, character string, date, or Boolean value that is not represented by
an identifier.
» Character literalsinclude all printable charactersin the PL/SQL character set: letters,
numerals, spaces, and special symbols.
* Numeric literals can be represented either by a simple value (for example, —32. 5) or in
scientific notation (for example, 2E5 means 2 * 10° = 200,000).

Formatting Code
InaPL/SQL block, a SQL statement can span several lines (as shown in example 3 in the slide).

Y ou can format an unformatted SQL statement (as shown in example 1 in the slide) by using the
SQL Worksheet shortcut menu. Right-click the active SQL Worksheet and, in the shortcut menu
that appears, select the Format option (as shown in example 2).

Note: You can also use the shortcut key combination of Ctrl + F7 to format your code.

Oracle Database 11g: PL/SQL Fundamentals 3 -6

Commenting Code

Prefix single-line comments with two hyphens (- -).
Place a block comment between the symbols / * and */ .

Example:

DECLARE

v_annual _sal NUMBER (9, 2);

BEG

/* Conput e the annual sal ary based on the

nont hly salary input fromthe user */
v_annual _sal := nonthly_sal * 12;
--The following line displays the annual salary
DBVMS_OUTPUT. PUT_LI NE(v_annual _sal);

END;
/

N

Copyright © 2009, Oracle. All rights reserved.

Commenting Code
Y ou should comment code to document each phase and to assist debugging. In PL/SQL code:

A single-line comment is commonly prefixed with two hyphens (- -)
Y ou can also enclose a comment between the symbols/ * and */

Note: For multiline comments, you can either precede each comment line with two hyphens, or
use the block comment format.

Comments are strictly informational and do not enforce any conditions or behavior on the logic
or data. Well-placed comments are extremely valuable for code readability and future code
maintenance.

Oracle Database 11g: PL/SQL Fundamentals 3 -7

SQL Functions in PL/SQL

* Available in procedural statements:
— Single-row functions

* Not available in procedural statements:
— DECODE
— Group functions

3-8 Copyright © 2009, Oracle. All rights reserved.

SQL Functions in PL/SQL
SQL provides several predefined functions that can be used in SQL statements. Most of these
functions (such as single-row number and character functions, data type conversion functions,
and date and time-stamp functions) are valid in PL/SQL expressions.
The following functions are not available in procedural statements:
- DECODE
» Group functions: AVG, M N, MAX, COUNT, SUM STDDEV, and VARI ANCE
Group functions apply to groups of rows in atable and are, therefore, available only in
SQL statements in a PL/SQL block. The functions mentioned here are only a subset of the
complete list.

Oracle Database 11g: PL/SQL Fundamentals 3-8

SQL Functions in PL/SQL: Examples

* Get the length of a string:

v_desc_si ze | NTEGER(5);
v_prod_descri pti on VARCHAR2(70):="You can use this
product with your radi os for higher frequency';

-- get the length of the string in prod_description
[v_desc_si ze: = LENGTH(v_prod_descri ption)f;

* Get the number of months an employee has worked:

v_tenure: = MONTHS BETWEEN (CURRENT_DATE, v_hiredate);

3-9 Copyright © 2009, Oracle. All rights reserved.

SQL Functions in PL/SQL: Examples
Y ou can use SQL functions to manipulate data. These functions are grouped into the following
categories:
e Number
* Character
» Conversion
« Date
* Miscellaneous

Oracle Database 11g: PL/SQL Fundamentals 3 -9

Using Sequences in PL/SQL Expressions
Starting in 119:
DECLARE
v_new_i d NUVBER
BEG N
v_new_id := ny_seq. NEXTVAL;
END;
/
Before 119:
DECLARE
v_new_i d NUMBER
BEG N
SELECT ny_seq. NEXTVAL I NTO v_new_id FROM Dual ;
END;
/
3-10 Copyright © 2009, Oracle. All rights reserved.

Accessing Sequence Values

In Oracle Database 11g, you can use the NEXTVAL and CURRVAL pseudocolumns in any
PL/SQL context, where an expression of the NUVBER data type may legally appear. Although
the old style of using a SELECT statement to query a sequence is still valid, it is recommended

that you do not useiit.

Before Oracle Database 11g, you were forced to write a SQL statement in order to use a
sequence object value in a PL/SQL subroutine. Typically, you would write a SELECT statement
to reference the pseudocolumns of NEXTVAL and CURRVAL to obtain a sequence number. This

method created a usability problem.

In Oracle Database 119, the limitation of forcing you to write a SQL statement to retrieve a

sequence value is eliminated. With the sequence enhancement feature:
* Sequence usability is improved
» Thedeveloper hasto type less
* Theresulting code is clearer

Oracle Database 11g: PL/SQL Fundamentals 3 -10

Data Type Conversion

« Converts data to comparable data types

e |s of two types:

— Implicit conversion

— Explicit conversion
* Functions:

— TO_CHAR

— TO _DATE

— TO_NUMBER

— TO_TI MESTAWP

3-11 Copyright © 2009, Oracle. All rights reserved.

Data Type Conversion

In any programming language, converting one data type to another is a common requirement.
PL/SQL can handle such conversions with scalar datatypes. Data type conversions can be of
two types:

Implicit conversions. PL/SQL attempts to convert datatypes dynamically if they are mixed in a
statement. Consider the following example:
DECLARE
v_sal ary NUMBER(6) : =6000;
v_sal _hi ke VARCHAR2(5):="'1000";
v_total _salary v_sal ary%l YPE;
BEG N
v_total _salary:=v_salary + v_sal _hike;
END;
/

In thisexample, thesal _hi ke variable is of the VARCHARZ2 type. When calculating the total
salary, PL/SQL first convertssal _hi ke to NUMBER, and then performs the operation. The
result is of the NUVBER type.
Implicit conversions can be between:

* Characters and numbers

» Characters and dates

Oracle Database 11g: PL/SQL Fundamentals 3-11

Data Type Conversion (continued)

Explicit conversions: To convert values from one data type to another, use built-in functions.
For example, to convert a CHAR value to a DATE or NUMBER value, use TO_DATE or
TO_NUMBER, respectively.

Oracle Database 11g: PL/SQL Fundamentals 3-12

Data Type Conversion

-- inplicit data type conversion
@ v_date_of joining DATE: = ' 02- Feb- 2000 ;

-- error in data type conversion
@ v_date_of joining DATE: = ' February 02, 2000’ ;

-- explicit data type conversion

@ v_date_of joining DATE: = TO DATE(' February
02, 2000',"' Month DD, YYYY');

3-13 Copyright © 2009, Oracle. All rights reserved.

Data Type Conversion (continued)
Note the three examples of implicit and explicit conversions of the DATE data type in the slide:
1. Becausethe string literal being assigned to dat e_of _j oi ni ng isin the default format,
this example performs implicit conversion and assigns the specified date to
dat e_of _j oi ni ng.
2. The PL/SQL returns an error because the date that is being assigned is not in the default

format.
3. The TO_DATE function is used to explicitly convert the given date in a particular format

and assign it to the DATE datatype variable dat e_of _j oi ni ng.

Oracle Database 11g: PL/SQL Fundamentals 3-13

Agenda

« Writing executable statements in a PL/SQL block
* Writing nested blocks
* Using operators and developing readable code

-14 Copyright © 2009, Oracle. All rights reserved.

Oracle Database 11g: PL/SQL Fundamentals 3 -14

Nested Blocks

PL/SQL blocks can be nested.

* An executable section (BEG N ...
END) can contain nested blocks. pﬁ.;w"ﬁ

* An exception section can contain 9533'"
nested blocks.
nﬁ“”‘FIE

3-15 Copyright © 2009, Oracle. All rights reserved.

Nested Blocks
Being procedural gives PL/SQL the ability to nest statements. Y ou can nest blocks wherever an
executable statement is allowed, thus making the nested block a statement. If your executable
section has code for many logically related functionalities to support multiple business
requirements, you can divide the executable section into smaller blocks. The exception section
can also contain nested blocks.

Oracle Database 11g: PL/SQL Fundamentals 3-15

Nested Blocks: Example

DECLARE
v_out er_vari abl e VARCHAR2(20): ="' GLOBAL VARI ABLE' ;
BEGA N
DECLARE
v_inner_vari abl e VARCHAR2(20) : =' LOCAL VARI ABLE' ;
BEG N
DBMS_OUTPUT. PUT_LI NE(v_i nner _vari abl e) ;
DBMS_OUTPUT. PUT_LI NE(v_out er _vari abl e) ;

END;
DBMS_OUTPUT. PUT_LI NE(v_out er _vari abl e);
END;

anonymous block completed
LocaL WARIABLE
GLLOBAL “WARIABLE
oLOBAL “WoaRIABLE

3-16 Copyright © 2009, Oracle. All rights reserved.

Nested Blocks (continued)

The example shown in the slide has an outer (parent) block and a nested (child) block. The
v_out er _vari abl e variable isdeclared in the outer block and thev_i nner _vari abl e
variable is declared in the inner block.

v_out er _vari abl e islocal to the outer block but global to the inner block. When you
access this variable in the inner block, PL/SQL first looksfor alocal variable in the inner block
with that name. There is no variable with the same name in the inner block, so PL/SQL looks for
the variable in the outer block. Therefore, v_out er _vari abl e isconsidered to be the global
variable for all the enclosing blocks. Y ou can access this variable in the inner block as shown in
the slide. Variables declared in a PL/SQL block are considered local to that block and global to
all its subblocks.

v_i nner _vari abl e islocal to the inner block and is not global because the inner block does
not have any nested blocks. This variable can be accessed only within the inner block. If

PL/SQL does not find the variable declared locally, it looks upward in the declarative section of
the parent blocks. PL/SQL does not look downward in the child blocks.

Oracle Database 11g: PL/SQL Fundamentals 3 -16

Variable Scope and Visibility

DECLARE
v_fat her _name VARCHAR2(20):='Patrick';
v_date_of birth DATE: =' 20- Apr-1972';
BEG N
DECLARE
v_chil d_name VARCHAR2(20):='M ke';

v_date_ of birth DATE: =' 12- Dec- 2002' ;
BEG N
DBVMS_OUTPUT. PUT_LINE(' Father''s Nanme: '||v_father_nane);
DBV _OUTPUT. PUT_LINE(' Date of Birth: '||v_date of birth);
DBVMS_OUTPUT. PUT_LINE(' Child''s Nane: '||v_child_nane);
END;
DBVS_OUTPUT. PUT_LINE(' Date of Birth: '||v_date_of birth);
END;
/
3-17 Copyright © 2009, Oracle. All rights reserved.

Variable Scope and Visibility

The output of the block shown in the slide is as follows:
anonynous bl ock conpl eted
Father's Nane: Patrick
Date of Birth: 12-DEC 02
Child s Nane: M ke
Date of Birth: 20-APR 72

Examine the date of birth that is printed for father and child. The output does not provide the
correct information, because the scope and visibility of the variables are not applied correctly.
» The scope of avariable is the portion of the program in which the variable is declared and
isaccessible.
» Thevishility of avariable is the portion of the program where the variable can be accessed
without using a qualifier.
Scope
 Thev_fat her _nane variable and the first occurrence of thev_dat e_of _birth
variable are declared in the outer block. These variables have the scope of the block in
which they are declared. Therefore, the scope of these variablesis limited to the outer
block.

Oracle Database 11g: PL/SQL Fundamentals 3-17

Variable Scope and Visibility (continued)
Scope (continued)

* Thev_chil d_name andv_dat e_of _bi rt h variables are declared in the inner block
or the nested block. These variables are accessible only within the nested block and are not
accessible in the outer block. When avariable is out of scope, PL/SQL frees the memory
used to store the variable; therefore, these variables cannot be referenced.

Vishbility

» Thev_dat e_of _bi rt h variable declared in the outer block has scope even in the inner
block. However, this variable is not visible in the inner block because the inner block has a
local variable with the same name.

1. Examine the code in the executable section of the PL/SQL block. Y ou can print the
father’s name, the child’s name, and the date of birth. Only the child’s date of birth
can be printed here because the father’ s date of birth is not visible.

2. Thefather’s date of birth is visible in the outer block and, therefore, can be printed.

Note: You cannot have variables with the same name in ablock. However, as shown in this
example, you can declare variables with the same name in two different blocks (nested blocks).
The two items represented by identifiers are distinct; changes in one do not affect the other.

Oracle Database 11g: PL/SQL Fundamentals 3-18

Using a Qualifier with Nested Blocks

BEG N <<out er >>
DECLARE
v_fat her _name VARCHAR2(20):='Patrick';
v_date_of birth DATE: =' 20- Apr-1972' ;
BEG N
DECLARE
v_chil d_name VARCHAR2(20):='M ke';
v_date of birth DATE: =' 12- Dec- 2002' ;
BEG N
DBVMS_OUTPUT. PUT_LINE(' Father''s Nanme: '||v_father_nane);
DBVMS_OUTPUT. PUT LI NE(' Date of Birth:
| | outer.v _date of birth);

DBV _OUTPUT. PUT _LINE(' Child''s Nane: '||v_child_nane);
DBV OUTPUT. PUT_LINE(' Date of Birth: '||v_date of birth);
END;
END;
END out er;
3-19 Copyright © 2009, Oracle. All rights reserved.

Using a Qualifier with Nested Blocks

A qualifier isalabel given to ablock. You can use aqualifier to access the variables that have

scope but are not visible.
Example

In the code example:
e Theouter block islabeled out er

* Within the inner block, the out er qualifier isused to accessthev_date_of _birth
variable that is declared in the outer block. Therefore, the father’ s date of birth and the

child’s date of birth can both be printed from within the inner block.
» Theoutput of the code in the slide shows the correct information:

anonymous hlock completed
Father's Name: Patrick
Date of Birth: 20-APR-7:2
Child's Name: HMike

Date of Birth: 12-DEC-02

Note: Labeling is not limited to the outer block. You can label any block.

Oracle Database 11g: PL/SQL Fundamentals 3-19

Challenge: Determining Variable Scope

BEG N <<out er >>
DECLARE
v_sal NUMBER(7, 2)
v_conm NUMBER(7, 2)
v_message VARCHAR2(255)
BEG N
DECLARE
v_sal NUMBER(7, 2) 50000;
v_comm NUMVBER(7, 2) 0;
v_total _conp NUMBER(7,2) := v_sal + v_comm
BEG N

60000;
v_sal * 0. 20;
= eligible for conm ssion';

v_nessage := 'CLERK not'||v_nessage;
outer.v_comm:= v_sal * 0.30;

END;

= Vv_nessage := ' SALESMAN | | v_nessage;

END;

END out er;

/

@_
@_

3-20 Copyright © 2009, Oracle. All rights reserved.

Challenge: Determining Variable Scope
Evaluate the PL/SQL block in the slide. Determine each of the following values according to the

rules of scoping:
1. Vaueofv_nessage a postion 1
2. Valueofv_total conp at position 2
3. Valueof v_commat position 1
4. Vaueof out er. v_conmat position 1

5. Valueof v_conmmat position 2

6. Valueofv_nessage at postion 2

Oracle Database 11g: PL/SQL Fundamentals 3 -20

Answers: Determining Variable Scope
Answers to the questions of scope are as follows:
1. Vaueof v_nessage at position 1: CLERK not eligible for commission

2. Vaueofv_total conp a position2: Error.v_t ot al _conp isnot visble here
because it isdefined within theinner block.

3. Valueof v_conmmat position 1: 0
4. Vaueof out er. v_conmmat position 1: 12000
5. Valueof v_commat position 2: 15000

6. Vaueof v_nmessage at postion 2: SALESMANCLERK not eligible for commission

Oracle Database 11g: PL/SQL Fundamentals 3-21

Agenda

« Writing executable statements in a PL/SQL block
« Writing nested blocks
* Using operators and developing readable code

-22 Copyright © 2009, Oracle. All rights reserved.

Oracle Database 11g: PL/SQL Fundamentals 3 -22

Operators in PL/SQL

* Logical
* Arithmetic
- Concatenation Same as in SQL

 Parentheses to control order
of operations

- Exponential operator (**)

3-23 Copyright © 2009, Oracle. All rights reserved.

Operators in PL/SQL

The operations in an expression are performed in a particular order depending on their
precedence (priority). The following table shows the default order of operations from high
priority to low priority:

Operator Operation

** Exponentiation

+, - Identity, negation

* Multiplication, division

+ -, Addition, subtraction, concatenation
=<, >, <=, 55, <3 =~ A Comparison

I'S NULL, LI KE, BETVWEEN, | N

NOT L ogical negation

AND Conjunction

R Inclusion

Oracle Database 11g: PL/SQL Fundamentals 3 -23

Operators in PL/SQL: Examples

* Increment the counter for a loop.

| oop_count := | oop_count + 1;

« Set the value of a Boolean flag.

good_sal := sal BETWEEN 50000 AND 150000;

« Validate whether an employee number contains a value.

valid := (enpno I'S NOT NULL);

3-24 Copyright © 2009, Oracle. All rights reserved.

Operators in PL/SQL (continued)
When you are working with nulls, you can avoid some common mistakes by keeping in mind the

following rules:
» Comparisons involving nulls always yield NULL.
* Applying the logical operator NOT to a null yields NULL.
* Inconditional control statements, if the condition yields NULL, its associated sequence

of statements is not executed.

Oracle Database 11g: PL/SQL Fundamentals 3 -24

Programming Guidelines

Make code maintenance easier by:
« Documenting code with comments
« Developing a case convention for the code

« Developing naming conventions for identifiers and other
objects

« Enhancing readability by indenting

3-25 Copyright © 2009, Oracle. All rights reserved.

Programming Guidelines

Follow programming guidelines shown in the slide to produce clear code and reduce
maintenance when developing a PL/SQL block.

Code Conventions

The following table provides guidelines for writing code in uppercase or lowercase characters to
help distinguish keywords from named objects.

Category Case Convention Examples

SQL statements Uppercase SELECT, | NSERT

PL/SQL keywords Uppercase DECLARE, BEG N, | F

Datatypes Uppercase VARCHAR2, BOOLEAN

Identifiers and parameters Lowercase v_sal ,enp_cursor,g_sal,
p_enpno

Database tables Lowercase, plural enpl oyees, depart nent s

Database columns Lowercase, singular enpl oyee_i d,
departnment _id

Oracle Database 11g: PL/SQL Fundamentals 3 -25

Indenting Code

For clarity, indent each level of code.

BEG N [DECLARE
| F x=0 THEN dept no NUVBER(4) ;
y: =1, location_id NUMBER(4);
END | F; BEG N
END,; SELECT departnent _id,
/ | ocation_id
| NTO dept no,

| ocation_id
FROM depart nents
VWHERE depart ment _nane
= 'Sal es';
END;
/

3-26 Copyright © 2009, Oracle. All rights reserved.

Indenting Code

For clarity and enhanced readability, indent each level of code. To show structure, you can

divide lines by using carriage returns and you can indent lines by using spaces and tabs.
Compare the following | F statements for readability:

I F x>y THEN max: =x; ELSE max: =y; END | F;

IF x >y THEN
max = X;
ELSE
max :=vy;
END | F;

Oracle Database 11g: PL/SQL Fundamentals 3 -26

Quiz

You can use most SQL single-row functions such as number,
character, conversion, and date single-row functions in PL/SQL
expressions.

1. True
2. False
3-27 Copyright © 2009, Oracle. All rights reserved.
Answer: 1

SQL Functionsin PL/SQL
SQL provides several predefined functions that can be used in SQL statements. Most of these
functions (such as single-row number and character functions, data type conversion functions,
and date and time-stamp functions) are valid in PL/SQL expressions.
The following functions are not available in procedural statements:
- DECODE
» Group functions: AVG, M N, MAX, COUNT, SUM STDDEV, and VARI ANCE
Group functions apply to groups of rows in atable and are, therefore, available only in
SQL statements in a PL/SQL block. The functions mentioned here are only a subset of the
complete list.

Oracle Database 11g: PL/SQL Fundamentals 3 -27

Summary

In this lesson, you should have learned how to:

* Identify lexical units in a PL/SQL block

e Use built-in SQL functions in PL/SQL

« Write nested blocks to break logically related functionalities
« Decide when to perform explicit conversions

* Qualify variables in nested blocks

* Use sequences in PL/SQL expressions

3-28 Copyright © 2009, Oracle. All rights reserved.

Summary

Because PL/SQL is an extension of SQL, the general syntax rules that apply to SQL also apply
to PL/SQL.

A block can have any number of nested blocks defined within its executable part. Blocks defined
within a block are called subblocks. Y ou can nest blocks only in the executable part of a block.
Because the exception section is also a part of the executable section, it can also contain nested
blocks. Ensure correct scope and visibility of the variables when you have nested blocks. Avoid
using the same identifiers in the parent and child blocks.

Most of the functions available in SQL are also valid in PL/SQL expressions. Conversion
functions convert a value from one data type to another. Comparison operators compare one
expression with another. The result is always TRUE, FALSE, or NULL. Typically, you use
comparison operatorsin conditional control statements and in the WHERE clause of SQL data
manipulation statements. The relational operators enable you to compare arbitrarily complex
expressions.

Oracle Database 11g: PL/SQL Fundamentals 3 -28

Practice 3: Overview

This practice covers the following topics:
* Reviewing scoping and nesting rules
* Writing and testing PL/SQL blocks

3-29 Copyright © 2009, Oracle. All rights reserved.

Practice 3: Overview
Exercises 1 and 2 are paper based.

Oracle Database 11g: PL/SQL Fundamentals 3-29

Interacting with Oracle Database Server:
SQL Statements in PL/SQL Programs

Copyright © 2009, Oracle. All rights reserved.

Objectives

After completing this lesson, you should be able to do the
following:

« Determine the SQL statements that can be directly
included in a PL/SQL executable block

* Manipulate data with DML statements in PL/SQL
* Use transaction control statements in PL/SQL

« Make use of the | NTOclause to hold the values returned
by a SQL statement

« Differentiate between implicit cursors and explicit cursors
e Use SQL cursor attributes

4-2 Copyright © 2009, Oracle. All rights reserved.

Objectives
In this lesson, you learn to embed standard SQL SELECT, | NSERT, UPDATE, DELETE, and
VERCE statements in PL/SQL blocks. Y ou learn how to include data definition language (DDL)
and transaction control statements in PL/SQL. You learn the need for cursors and differentiate
between the two types of cursors. The lesson also presents the various SQL cursor attributes that
can be used with implicit cursors.

Oracle Database 11g: PL/SQL Fundamentals 4 -2

Agenda

Retrieving data with PL/SQL
Manipulating data with PL/SQL
Introducing SQL cursors

Copyright © 2009, Oracle. All rights reserved.

Oracle Database 11g: PL/SQL Fundamentals 4 -3

SQL Statements in PL/SQL

* Retrieve a row from the database by using the SELECT
command.

* Make changes to rows in the database by using DML
commands.

« Control a transaction with the COVM T, ROLLBACK, or
SAVEPQO NT command.

-4 Copyright © 2009, Oracle. All rights reserved.

SQL Statements in PL/SQL
InaPL/SQL block, you use SQL statementsto retrieve and modify data from the database table.
PL/SQL supports data manipulation language (DML) and transaction control commands. Y ou
can use DML commands to modify the data in a database table. However, remember the
following points while using DML statements and transaction control commands in PL/SQL
blocks:

The END keyword signals the end of a PL/SQL block, not the end of a transaction. Just as a
block can span multiple transactions, a transaction can span multiple blocks.

PL/SQL does not directly support data definition language (DDL) statements such as
CREATE TABLE, ALTER TABLE, or DROP TABLE. PL/SQL supports early binding,
which cannot happen if applications have to create database objects at run time by passing
values. DDL statements cannot be directly executed. These statements are dynamic SQL
statements. Dynamic SQL statements are built as character strings at run time and can
contain placeholders for parameters. Therefore, you can use dynamic SQL to execute your
DDL statements in PL/SQL. The details of working with dynamic SQL is covered in the
course titled Oracle Database 11g: Develop PL/SQL Program Units.

PL/SQL does not directly support data control language (DCL) statements such as GRANT
or REVOKE. You can use dynamic SQL to execute them.

Oracle Database 11g: PL/SQL Fundamentals 4 -4

SELECT Statements in PL/SQL

Retrieve data from the database with a SELECT statement.

Syntax:

SELECT select |ist

| NTO {vari abl e_nane[, variable nane]...
| record_nane}

FROM t abl e

[WHERE condition];

4-5 Copyright © 2009, Oracle. All rights reserved.

SELECT Statements in PL/SQL
Use the SELECT statement to retrieve data from the database.

select list List of at least one column; can include SQL expressions, row
functions, or group functions

variable name Scalar variable that holds the retrieved value

record_name PL/SQL record that holds the retrieved values

table Specifies the database table name

condition Is composed of column names, expressions, constants, and
comparison operators, including PL/SQL variables and constants

Guidelinesfor Retrieving Data in PL/SQL

* Terminate each SQL statement with a semicolon (;).

» Every valueretrieved must be stored in avariable by using the | NTOclause.

» The WHERE clause is optional and can be used to specify input variables, constants,
literals, and PL/SQL expressions. However, when you use the | NTO clause, you should
fetch only one row; using the WHERE clause is required in such cases.

Oracle Database 11g: PL/SQL Fundamentals 4 -5

SELECT Statements in PL/SQL (continued)

» Specify the same number of variablesin the | NTO clause as the number of database
columnsin the SELECT clause. Be sure that they correspond positionally and that their

datatypes are compatible.
» Usegroup functions, such as SUM in a SQL statement, because group functions apply to
groupsof rowsin atable.

Oracle Database 11g: PL/SQL Fundamentals 4 -6

SELECT Statements in PL/SQL

« The | NTOclause is required.
* Queries must return only one row.

DECLARE
v_fnanme VARCHARZ2(25);
BEG N
SELECT first_nanme | NTO v_f nane
FROM enpl oyees VWHERE enpl oyee i d=200;
DBMS_OUTPUT. PUT_LINE("' First Name is : '||v_fnanme);
END;
/

anomymous hlock completed
First Wame iz : lennifer

4-7 Copyright © 2009, Oracle. All rights reserved.

SELECT Statements in PL/SQL (continued)
| NTOClause
The | NTOclause is mandatory and occurs between the SELECT and FROMclauses. It isused to
specify the names of variables that hold the values that SQL returns from the SELECT clause.
Y ou must specify one variable for each item selected, and the order of the variables must
correspond with the items selected.
Usethe | NTOclause to populate either PL/SQL variables or host variables.

QueriesMust Return Only One Row

SELECT statements within a PL/SQL block fall into the ANSI classification of embedded SQL,
for which the following rule applies. Queries must return only one row. A query that returns
more than one row or no row generates an error.

PL/SQL manages these errors by raising standard exceptions, which you can handle in the
exception section of the block with the NO_DATA_FOUND and TOO_MANY _ROWS exceptions.
Include a WHERE condition in the SQL statement so that the statement returns a single row. You
learn about exception handling in the lesson titled “Handling Exceptions.”

Note: In all cases where DBVS_OUTPUT. PUT_LI NE isused in the code examples, the SET
SERVEROUTPUT ON statement precedes the block.

Oracle Database 11g: PL/SQL Fundamentals 4 -7

SELECT Statements in PL/SQL (continued)
How to Retrieve M ultiple Rows from a Table and Operate on the Data

A SELECT statement with the | NTO clause can retrieve only one row at atime. If your
requirement isto retrieve multiple rows and operate on the data, you can make use of explicit
cursors. You are introduced to cursors later in this lesson and learn about explicit cursorsin the
lesson titled “Using Explicit Cursors.”

Oracle Database 11g: PL/SQL Fundamentals 4 -8

Retrieving Data in PL/SQL: Example

Retrieve hi r e_dat e and sal ar y for the specified employee.

DECLARE
v_enp_hi redat e enpl oyees. hi re_dat e%YPE;
v_enp_sal ary enpl oyees. sal ar y%I YPE;
BEG N
SELECT hire_date, salary
| NTO v_enp_hiredate, v_enp_salary

FROM enpl oyees
WHERE enpl oyee id = 100;

DBMS QUTPUT. PUT LINE (‘Hire date is :'|| v_enp_hiredate);
DBMS QUTPUT. PUT LINE ('Salary is :'|| v_enp_ salary);
END;

/

anonymous hlock completed
Hire date is : 17-1UN-87
Salary is @ 24000

4-9 Copyright © 2009, Oracle. All rights reserved.

Retrieving Data in PL/SQL

In the example in the slide, thev_enp_hi redat e andv_enp_sal ary variablesare
declared in the declarative section of the PL/SQL block. In the executable section, the values of
thehi r e_dat e and sal ary columns for the employee with the enpl oyee i d 100 are
retrieved fromthe enpl oyees table. Next, they are stored intheenp_hi r edat e and
enp_sal ary variables, respectively. Observe how the | NTO clause, along with the SELECT
statement, retrieves the database column values and stores them in the PL/SQL variables.

Note: The SELECT statement retrieveshi r e_dat e, and then sal ar y. The variablesin the
| NTOclause must thus be in the same order. For example, if you exchangev_enp_hi r edat e
andv_enp_sal ary inthe statement in the slide, the statement results in an error.

Oracle Database 11g: PL/SQL Fundamentals 4 -9

Retrieving Data in PL/SQL

Return the sum of salaries for all the employees in the specified

department.
Example:

DECLARE
v_sum sal
v_dept no
BEG N

SELECT SUM sal ary)
I NTO v_sum sal

NUVBER(10, 2) ;
NUVBER NOT NULL

FROMenpl oyees

.= 60;

-- group function

WHERE departnment _id = v_deptno;
DBMS QUTPUT. PUT_LINE (' The sum of salary is ' || v_sumsal);
END;
anonywous block completed
The swnm of salary is Z8800
4-10 Copyright © 2009, Oracle. All rights reserved.

Retrieving Data in PL/SQL (continued)
In the example in the slide, thev_sum sal andv_dept no variables are declared in the
declarative section of the PL/SQL block. In the executable section, the total salary for the
employees in the department with depar t nent _i d 60 is computed using the SQL aggregate
function SUM The calculated total salary isassigned tothev_sum sal variable.
Note: Group functions cannot be used in PL/SQL syntax. They must be used in SQL statements
within a PL/SQL block as shown in the example in the slide.

For instance, you cannot use group functions using the following syntax:
V_sumsal := SUM enpl oyees. sal ary);

Oracle Database 11g: PL/SQL Fundamentals 4 -10

Naming Ambiguities

DECLARE

hire_date enpl oyees. hi re_dat e%d YPE;

sysdate hi r e_dat e%I'YPE;

enpl oyee_id enpl oyees. enpl oyee i dWYPE : = 176;
BEG N

SELECT hire_date, sysdate

| NTO hire_date, sysdate

FROM enpl oyees

WHERE enpl oyee_id = enpl oyee_ i d;
END;
/

Error report:
ORA-01427: exact fetch returns mwore than requested number of rows
CRA-0651Z: at line 6

014ZZ. 00000 - "exact fetch returns more than requested nunber of rows"
*Cause: The nuwber specified in exact fetech is less than the rows returned.
*Action: Rewrite the cquery or change nuwber of rows requested

4-11 Copyright © 2009, Oracle. All rights reserved.

Naming Ambiguities
In potentially ambiguous SQL statements, the names of database columns take precedence over
the names of local variables.

The example shown in the slide is defined as follows: Retrieve the hire date and today’ s date
fromthe enpl oyees table for enpl oyee_i d 176. This example raises an unhandled run-
time exception because, in the WHERE clause, the PL/SQL variable names are the same asthe
database column names in the enpl oyees table.

The following DELETE statement removes all employees from the enpl oyees table, where
the last name is not null (not just “King”), because the Oracle Server assumes that both
occurrences of | ast _nane in the WHERE clause refer to the database column:
DECLARE
| ast _nane VARCHAR2(25) := 'King';
BEG N
DELETE FROM enpl oyees WHERE | ast _nane = | ast _nane;

Oracle Database 11g: PL/SQL Fundamentals 4 -11

Naming Conventions

« Use a naming convention to avoid ambiguity in the WHERE
clause.

* Avoid using database column names as identifiers.

« Syntax errors can arise because PL/SQL checks the
database first for a column in the table.

« The names of local variables and formal parameters take
precedence over the names of database tables.

« The names of database table columns take precedence
over the names of local variables.

4-12 Copyright © 2009, Oracle. All rights reserved.

Naming Conventions
Avoid ambiguity in the WHERE clause by adhering to a naming convention that distinguishes
database column names from PL/SQL variable names.

» Database columns and identifiers should have distinct names.

» Syntax errors can arise because PL/SQL checks the database first for a column in the table.
Note: There is no possibility of ambiguity in the SELECT clause because any identifier in the
SELECT clause must be a database column name. There is no possibility of ambiguity in the
| NTO clause because identifiersin the | NTO clause must be PL/SQL variables. The possibility
of confusion is present only in the WHERE clause.

Oracle Database 11g: PL/SQL Fundamentals 4 -12

Agenda

* Retrieving data with PL/SQL
* Manipulating data with PL/SQL
* Introducing SQL cursors

-13 Copyright © 2009, Oracle. All rights reserved.

Oracle Database 11g: PL/SQL Fundamentals 4 -13

Using PL/SQL to Manipulate Data

Make changes to database tables by using DML commands:

* | NSERT
- UPDATE
« MERGE
s |
#”
»
»
>
#”
| NSERT —— |
-
>
”" [
UPDATE MERGE |7
4-14 Copyright © 2009, Oracle. All rights reserved.

Using PL/SQL to Manipulate Data

Y ou manipulate data in the database by using DML commands. Y ou can issue DML commands
such as| NSERT, UPDATE, DELETE, and MERGE without restriction in PL/SQL. Row locks
(and table locks) are released by including the COVM T or ROLLBACK statements in the
PL/SQL code.
* Thel NSERT statement adds new rowsto the table.
» The UPDATE statement modifies existing rows in the table.
* The DELETE statement removes rows from the table.
* The MERGE statement selects rows from one table to update or insert into another table.
The decision whether to update or insert into the target table is based on a condition in the
ON clause.

Note: MERGE is adeterministic statement. That is, you cannot update the same row of the target
table multiple times in the same MERGE statement. You must have | NSERT and UPDATE object
privileges on the target table and SELECT privilege on the source table.

Oracle Database 11g: PL/SQL Fundamentals 4 -14

Inserting Data: Example

Add new employee information to the EMPLOYEES table.

BEG N
| NSERT | NTO enpl oyees
(empl oyee_id, first_nanme, |ast_nane, emil,

hire date, job_id, salary)
VALUES(enpl oyees_seq. NEXTVAL, 'Ruth', 'Cores',
' RCORES' , CURRENT _DATE, ' AD ASST', 4000);

END;

/

4-15 Copyright © 2009, Oracle. All rights reserved.

Inserting Data

In the example in the slide, an | NSERT statement is used within a PL/SQL block to insert a
record into the enpl oyees table. While using the | NSERT command in a PL/SQL block, you
can:

* Use SQL functions such as USER and CURRENT _DATE

» Generate primary key values by using existing database sequences

» Derivevaluesinthe PL/SQL block
Note: Thedataintheenpl oyees table needs to remain unchanged. Even though the
enpl oyees tableis not read-only, inserting, updating, and deleting are not allowed on this
table to ensure consistency of output, as shown in code examplecode_04_15_s. sql .

Oracle Database 11g: PL/SQL Fundamentals 4 -15

Updating Data: Example
Increase the salary of all employees who are stock clerks.
DECLARE
sal _increase enpl oyees. sal ar y%d'YPE : = 800;
BEG N
UPDATE enpl oyees
SET salary = salary + sal _increase
WHERE job_id = 'ST _CLERK ;
END;
/
anonymous block completed
Trene 3500
Janes 3200
Ramdar1 2200
Peter 3300
4-16 Copyright © 2009, Oracle. All rights reserved.

Updating Data
There may be ambiguity in the SET clause of the UPDATE statement because, although the
identifier on the left of the assignment operator is always a database column, the identifier on the
right can be either a database column or aPL/SQL variable. Recall that if column names and
identifier names are identical in the WHERE clause, the Oracle Server looksto the database first
for the name.

Remember that the WHERE clause is used to determine the rows that are affected. If no rows are
modified, no error occurs (unlike the SELECT statement in PL/SQL).

Note: PL/SQL variable assignments always use : =, and SQL column assignments always use =.

Oracle Database 11g: PL/SQL Fundamentals 4 -16

Deleting Data: Example

Delete rows that belong to department 10 from the enpl oyees
table.

DECLARE
dept no enpl oyees. depart nment _i dW@YPE : = 10;
BEG N
DELETE FROM enpl oyees
WHERE departnent _id = deptno;
END;
/

4-17 Copyright © 2009, Oracle. All rights reserved.

Deleting Data

The DELETE statement removes unwanted rows from atable. If the WHERE clause is not used,
all therowsin atable can be removed if there are no integrity constraints.

Oracle Database 11g: PL/SQL Fundamentals 4 -17

Merging Rows

Insert or update rows in the copy_enp table to match the
enpl oyees table.

BEG N
MERGE | NTO copy_enp c
USI NG enpl oyees e
ON (e. enpl oyee id = c.enpno)
VWHEN MATCHED THEN
UPDATE SET
c.first_nane
c.last _nane
c. emai |

e.first _nane,
e. |l ast _nane,
e. email ,

VWHEN NOT MATCHED THEN
| NSERT VALUES(e. enpl oyee_id, e.first_name, e.last_name,
., e.departnent _id);
END;
/

4-18 Copyright © 2009, Oracle. All rights reserved.

Merging Rows
The MERGE statement inserts or updates rows in one table by using data from another table.
Each row is inserted or updated in the target table depending on an equijoin condition.

The example shown matches the enrpno column inthecopy_enp tableto theenpl oyee i d
column in the enpl oyees table. If amatch is found, the row is updated to match the row in the
enpl oyees table. If the row is not found, it is inserted into the copy_enp table.

The complete example of using MERGE in a PL/SQL block is shown on the next page.

Oracle Database 11g: PL/SQL Fundamentals 4 -18

Merging Rows (continued)
BEG N
MERGE | NTO copy_enp ¢
USI NG enpl oyees e
ON (e.enpl oyee_id = c. enpno)
VHEN MATCHED THEN
UPDATE SET

. comm ssi on_pct
. manager _id
.departnent __id
VHEN NOT MATCHED THEN

| NSERT VALUES(e. enpl oyee_id, e.first_name,
e.emil, e.phone_nunber, e.hire_date,

..comm ssi on_pct,
. manager _i d,
.department _id

c.first_nane = e.first_nane,
c.last_nane = e.last_nane,

c. ennil = e.emil,

c. phone_nunber = e. phone_nunber,
c.hire_date = e. hire_date,
c.job_id = e.job_id,
c.salary = e.salary,

c e

c e

c e

e. |l ast _nane,

e.job_id,

e.sal ary, e.comm ssion_pct, e.nanager _id,

e. department _id);
END,

Oracle Database 11g: PL/SQL Fundamentals 4 -19

Agenda

* Retrieving data with PL/SQL
 Manipulating data with PL/SQL
* Introducing SQL cursors

-20 Copyright © 2009, Oracle. All rights reserved.

Oracle Database 11g: PL/SQL Fundamentals 4 - 20

SQL Cursor

* A cursor is a pointer to the private memory area allocated
by the Oracle Server. It is used to handle the result set of a
SELECT statement.

« There are two types of cursors: implicit and explicit.

— Implicit: Created and managed internally by the Oracle
Server to process SQL statements

— Explicit: Declared explicitly by the programmer

ORACLE 11 g

DATABASE

Implicit cursor Explicit cursor

4-21 Copyright © 2009, Oracle. All rights reserved.

SQL Cursor

Y ou have already learned that you can include SQL statements that return asingle row ina
PL/SQL block. The dataretrieved by the SQL statement should be held in variables using the
| NTOclause.

Where Doesthe Oracle Server Process SQL Statements?

The Oracle Server allocates a private memory area called the context area for processing SQL
statements. The SQL statement is parsed and processed in this area. The information required for
processing and the information retrieved after processing are all stored in this area. Y ou have no
control over this area because it is internally managed by the Oracle Server.

A cursor isa pointer to the context area. However, this cursor is an implicit cursor and is
automatically managed by the Oracle Server. When the executable block issues a SQL
statement, PL/SQL creates an implicit cursor.

Types of Cursors

There are two types of cursors.
* Implicit: Animplicit cursor is created and managed by the Oracle Server. You do not have
accessto it. The Oracle Server creates such a cursor when it has to execute a SQL
statement.

Oracle Database 11g: PL/SQL Fundamentals 4 -21

SQL Cursor (continued)
Types of Cursors (continued)
* Explicit: Asaprogrammer, you may want to retrieve multiple rows from a database table,
have a pointer to each row that is retrieved, and work on the rows one a atime. In such
cases, you can declare cursors explicitly depending on your business requirements. A
cursor that is declared by programmers is called an explicit cursor. Y ou declare such a
cursor in the declarative section of a PL/SQL block.

Oracle Database 11g: PL/SQL Fundamentals 4 -22

SQL Cursor Attributes for Implicit Cursors

Using SQL cursor attributes, you can test the outcome of your
SQL statements.

SQL%-OUND Boolean attribute that evaluates to TRUE if the
most recent SQL statement affected at least one
row

SQLYNOTFOUND | Boolean attribute that evaluates to TRUE if

the most recent SQL statement did not affect
even one row

SQLYRONCOUNT | An integer value that represents the number of
rows affected by the most recent SQL statement

4-23 Copyright © 2009, Oracle. All rights reserved.

SQL Cursor Attributes for Implicit Cursors

SQL cursor attributes enable you to evaluate what happened when an implicit cursor was last
used. Use these attributes in PL/SQL statements but not in SQL statements.

Y ou can test the SQLYROWCOUNT, SQL%-OUND, and SQLYNOT FOUND attributes in the
executable section of a block to gather information after the appropriate DML command
executes. PL/SQL does not return an error if aDML statement does not affect rowsin the
underlying table. However, if a SELECT statement does not retrieve any rows, PL/SQL returns
an exception.

Observe that the attributes are prefixed with SQL. These cursor atributes are used with implicit
cursorsthat are automatically created by PL/SQL and for which you do not know the names.
Therefore, you use SQL instead of the cursor name.

The SQLYNOTFOUND attribute is the opposite of SQL%-OUND. This attribute may be used as
the exit condition in aloop. It is useful in UPDATE and DELETE statements when no rows are
changed because exceptions are not returned in these cases.

Y ou learn about explicit cursor attributes in the lesson titled “Using Explicit Cursors.”

Oracle Database 11g: PL/SQL Fundamentals 4 -23

SQL Cursor Attributes for Implicit Cursors

Delete rows that have the specified employee ID from the
enpl oyees table. Print the number of rows deleted.

Example:

DECLARE
v_rows_del et ed VARCHAR2(30)
= 176;

v_enpno enpl oyees. enpl oyee_i d%WYPE : =
BEG N
DELETE FROM enpl oyees
WHERE enpl oyee id = v_enpno;
v_rows_del eted : = (SQLYRONCOUNT | |
" row del eted.");

DBVS_QUTPUT. PUT_LINE (v_rows_del eted);

END;

Copyright © 2009, Oracle. All rights reserved.

SQL Cursor Attributes for Implicit Cursors (continued)
The example in the slide deletes arow withenpl oyee i d 176 fromthe enpl oyees table.
Using the SQL YR0OWCOUNT attribute, you can print the number of rows deleted.

Oracle Database 11g: PL/SQL Fundamentals 4 -24

Quiz

When using the SELECT statement in PL/SQL, the | NTOclause
Is required and queries can return one or more row.

1. True
2. False

4-25 Copyright © 2009, Oracle. All rights reserved.

Answer: 2
| NTOClause
The | NTOclause is mandatory and occurs between the SELECT and FROMclauses. It is used to
specify the names of variables that hold the values that SQL returns from the SELECT clause.
Y ou must specify one variable for each item selected, and the order of the variables must
correspond with the items selected.
Usethe | NTOclause to populate either PL/SQL variables or host variables.

QueriesMust Return Only One Row

SELECT statements within a PL/SQL block fall into the ANSI classification of embedded SQL,
for which the following rule applies. Queries must return only one row. A query that returns
more than one row or no row generates an error.

PL/SQL manages these errors by raising standard exceptions, which you can handle in the
exception section of the block with the NO_DATA_FOUND and TOO_MANY_ROWS exceptions.
Include a WHERE condition in the SQL statement so that the statement returns a single row. You

learn about exception handling later in the course.

Oracle Database 11g: PL/SQL Fundamentals 4 -25

Summary

In this lesson, you should have learned how to:

- Embed DML statements, transaction control statements,
and DDL statements in PL/SQL

* Use the | NTOclause, which is mandatory for all SELECT
statements in PL/SQL

- Differentiate between implicit cursors and explicit cursors

e Use SQL cursor attributes to determine the outcome of
SQL statements

4-26 Copyright © 2009, Oracle. All rights reserved.

Summary

DML commands and transaction control statements can be used in PL/SQL programs without
restriction. However, the DDL commands cannot be used directly.

A SELECT gtatement in a PL/SQL block can return only one row. It is mandatory to use the
| NTOclause to hold the values retrieved by the SELECT statement.

A cursor is a pointer to the memory area. There are two types of cursors. Implicit cursors are
created and managed internally by the Oracle Server to execute SQL statements. Y ou can use
SQL cursor attributes with these cursors to determine the outcome of the SQL statement.
Explicit cursors are declared by programmers.

Oracle Database 11g: PL/SQL Fundamentals 4 - 26

Practice 4: Overview

This practice covers the following topics:
* Selecting data from a table
* Inserting data into a table
* Updating data in a table
* Deleting a record from a table

4-27 Copyright © 2009, Oracle. All rights reserved.

Oracle Database 11g: PL/SQL Fundamentals 4 -27

Writing Control Structures

Copyright © 2009, Oracle. All rights reserved.

Objectives

After completing this lesson, you should be able to do the
following:

« ldentify the uses and types of control structures
 Construct an | F statement

* Use CASE statements and CASE expressions
« Construct and identify loop statements
* Use guidelines when using conditional control structures

5-2 Copyright © 2009, Oracle. All rights reserved.

Objectives

Y ou have learned to write PL/SQL blocks containing declarative and executable sections. You
have also learned to include expressions and SQL statements in the executable block.

In this lesson, you learn how to use control structures such as| F statements, CASE expressions,
and LOOP structures in a PL/SQL block.

Oracle Database 11g: PL/SQL Fundamentals 5 -2

Controlling Flow of Execution
IF:e gN- IF- i gN- IF: N g
T%EW; Ttgﬁ T[Iguﬁ.'- 11:5“’

gN THRF: TreE-
gN? EL"F
g0’
N for
THE
ASE gN
G%EE T_I.HHEI“ loop '
lﬁE Er
e v
while
5-3 Copyright © 2009, Oracle. All rights reserved.

Controlling Flow of Execution

Y ou can change the logical flow of statements within the PL/SQL block with a number of
control structures. This lesson addresses four types of PL/SQL control structures: conditional
constructs with the | F statement, CASE expressions, LOOP control structures, and the
CONTI NUE statement.

Oracle Database 11g: PL/SQL Fundamentals 5-3

Agenda

Using | F statements
Using CASE statements and CASE expressions
Constructing and identifying loop statements

Copyright © 2009, Oracle. All rights reserved.

Oracle Database 11g: PL/SQL Fundamentals 5-4

| F Statement

Syntax:

| F condition THEN
st at enent s;

[ELSIF condition THEN
st at enment s;]

[ELSE
st at enment s;]

END | F;

5-5 Copyright © 2009, Oracle. All rights reserved.

| F Statement

The structure of the PL/SQL | F statement is similar to the structure of | F statements in other
procedural languages. It allows PL/SQL to perform actions selectively based on conditions.

In the syntax:

condition |s a Boolean variable or expression that returns TRUE,
FALSE, or NULL

THEN Introduces a clause that associates the Boolean expression
with the sequence of statements that follows it

statements Can be one or more PL/SQL or SQL statements. (They may
include additional | F statements containing several nested
| F, ELSE, and ELSI F statements.) The statements in the
THEN clause are executed only if the condition in the
associated | F clause evaluates to TRUE.

Oracle Database 11g: PL/SQL Fundamentals 5-5

| F Statement (continued)
In the syntax:

ELSI F Is a keyword that introduces a Boolean expression (If the first
condition yields FALSE or NULL, the ELSI F keyword introduces

additional conditions.)
ELSE Introduces the default clause that is executed if and only if none of the
earlier predicates (introduced by | F and ELSI F) are TRUE. The

tests are executed in sequence so that a later predicate that might be
true is preempted by an earlier predicate that istrue.

ENDIF Markstheend of an | F statement
Note: ELSI F and ELSE are optional inan | F statement. Y ou can have any number of ELSI F

keywords but only one EL SE keyword in your | F statement. END | F markstheend of an| F
statement and must be terminated by a semicolon.

Oracle Database 11g: PL/SQL Fundamentals 5-6

Simple | F Statement
DECLARE
vV_nyage nunber: =31;
BEG N
IF v_nyage < 11
THEN
DBMS_OUTPUT. PUT_LINE(' | ama child ');
END | F;
END;
/
anonymous block completed
5-7 Copyright © 2009, Oracle. All rights reserved.

Simple | F Statement
Simple | F Example

The slide shows an example of asimple | F statement with the THEN clause.
» Thev_nyage variableisinitialized to 31.
* Thecondition for the | F statement returns FALSE becausev_nyage isnot lessthan 11.
* Therefore, the control never reaches the THEN clause.

Adding Conditional Expressions

An| F statement can have multiple conditional expressions related with logical operators such
as AND, OR, and NOT.

For example:
I F (nmyfirstname=" Christopher' AND v_nyage <11)

The condition uses the AND operator and therefore, evaluates to TRUE only if both conditions
are evaluated as TRUE. There is no limitation on the number of conditional expressions.
However, these statements must be related with appropriate logical operators.

Oracle Database 11g: PL/SQL Fundamentals 5-7

| F THEN ELSE Statement
DECLARE
Vv_nyage nunber: =31,
BEG N
IF v_nyage < 11
THEN
DBVS_OUTPUT. PUT_LINE(' | ama child ');
ELSE
DBMS_OUTPUT. PUT_LINE(' | amnot a child ');
END | F;
END;
/
anonymous block completed
I am not a child
5-8 Copyright © 2009, Oracle. All rights reserved.
| F THEN ELSE Statement

An ELSE clause is added to the code in the previous slide. The condition has not changed and,
therefore, still evaluatesto FALSE. Recall that the statements in the THEN clause are executed

only if the condition returns TRUE. In this case, the condition returns FALSE and the control
moves to the EL SE statement.

The output of the block is shown below the code.

Oracle Database 11g: PL/SQL Fundamentals 5-8

| F ELSI F ELSE Clause

DECLARE
V_nyage nunber: =31;
BEG N
IF v_nyage < 11 THEN
DBVS_OUTPUT. PUT_LINE(' | ama child ');
ELSIF v_nyage < 20 THEN
DBVS_OUTPUT. PUT_LINE(' | am young ');
ELSIF v_nmyage < 30 THEN
DBVS _OUTPUT. PUT_LINE(" | amin ny twenties');
ELSIF v_nyage < 40 THEN
DBVS _OUTPUT. PUT_LINE(" | amin ny thirties');

ELSE
DBVS_OUTPUT. PUT_LINE(' | am al ways young ');

END | F;
END;
/

anonymwous block completed
I am in my thirties

-9 Copyright © 2009, Oracle. All rights reserved.

| FELSI F ELSE Clause

The | F clause may contain multiple ELSI F clauses and an EL SE clause. The example
illustrates the following characteristics of these clauses:

The ELSI F clauses can have conditions, unlike the EL SE clause.

The condition for ELSI F should be followed by the THEN clause, which is executed if the
condition for ELSI F returns TRUE.

When you have multiple ELSI F clauses, if the first condition is FALSE or NULL, the
control shiftsto the next ELSI F clause.

Conditions are evaluated one by one from the top.

If all conditions are FALSE or NULL, the statements in the EL SE clause are executed.

The final ELSE clause is optional.

In the example, the output of the block is shown below the code.

Oracle Database 11g: PL/SQL Fundamentals 5-9

NULL Value in | F Statement

DECLARE
v_nyage nunber;
BEG N
| F v_nyage < 11 THEN
DBVS_QUTPUT. PUT_LINE(' | ama child ");

ELSE
DBMS_QUTPUT. PUT_LINE(" | amnot a child ');
END | F;
END;
/
snonywous block completed
I am not a child
5-10 Copyright © 2009, Oracle. All rights reserved.

NULL Value in | F Statement
In the example shown in the slide, the variablev_nyage isdeclared but not initialized. The
condition inthe | F statement returns NULL rather than TRUE or FALSE. In such a case, the
control goes to the EL SE statement.

Guidelines
* You can perform actions selectively based on conditions that are being met.
* When you write code, remember the spelling of the keywords:
— ELSI F isone word.
— ENDI F istwo words.

» If the controlling Boolean condition is TRUE, the associated sequence of statementsis
executed; if the controlling Boolean condition is FALSE or NULL, the associated sequence
of statements is passed over. Any number of ELSI F clauses is permitted.

* Indent the conditionally executed statements for clarity.

Oracle Database 11g: PL/SQL Fundamentals 5 -10

Agenda

 Using | F statements
* Using CASE statements and CASE expressions
» Constructing and identifying loop statements

-11 Copyright © 2009, Oracle. All rights reserved.

Oracle Database 11g: PL/SQL Fundamentals 5-11

CASE Expressions

« A CASE expression selects a result and returns it.

« To select the result, the CASE expression uses
expressions. The value returned by these expressions is
used to select one of several alternatives.

CASE sel ect or
WHEN expressionl THEN resultl
WHEN expressi on2 THEN result 2

WHEN expressi onN THEN resul t N
[ELSE resul t N+1]
END;

5-12 Copyright © 2009, Oracle. All rights reserved.

CASE Expressions

A CASE expression returns a result based on one or more alternatives. To return the result, the
CASE expression uses a selector, which is an expression whose value is used to return one of
several alternatives. The selector is followed by one or more WHEN clauses that are checked
sequentially. The value of the selector determines which result is returned. If the value of the
selector equals the value of a WHEN clause expression, that WHEN clause is executed and that
result is returned.
PL/SQL also provides a searched CASE expression, which has the form:
CASE
VWHEN search_conditi onl THEN resultl
VWHEN search_condi ti on2 THEN result?2

VWHEN sear ch_condi ti onN THEN resul t N
[ELSE resul t N+1]
END;
A searched CASE expression has no selector. Furthermore, the WHEN clauses in CASE
expressions contain search conditions that yield a Boolean value rather than expressions that can
yield avalue of any type.

Oracle Database 11g: PL/SQL Fundamentals 5-12

CASE Expressions: Example

SET VERI FY OFF

DECLARE
v_grade CHAR(1) := UPPER(' &grade');
v_appr ai sal VARCHAR2(20) ;
BEG N
v_apprai sal := CASE v_grade
WHEN ' A' THEN ' Excel | ent’
WHEN ' B' THEN ' Very Good'
WHEN ' C THEN ' Good'
ELSE ' No such grade'
END;

DBMS_OQUTPUT. PUT_LINE (' G ade: '|| v_grade || '
Appraisal ' || v_appraisal);
END;
/
5-13 Copyright © 2009, Oracle. All rights reserved.

CASE Expressions: Example

In the example in the slide, the CASE expression uses the value in the v_gr ade variable as the
expression. This value is accepted from the user by using a substitution variable. Based on the
value entered by the user, the CASE expression returns the value of thev_appr ai sal variable

based on the value of thev_gr ade value.
Result

When you enter a or Afor v_gr ade, as shown in the Substitution Variable window, the output

of the example is as follows:

B Enter Substitution Variable %/

[Results | &l script output B Explain |

¢HdE

Cancel |

ananvmous blaock completed
Grade: A Appraisal Excellent

Oracle Database 11g: PL/SQL Fundamentals 5-13

Searched CASE Expressions

DECLARE
v_grade CHAR(1) := UPPER(' &grade');
v_appr ai sal VARCHAR2(20) ;
BEGA N
v_apprai sal := CASE
WHEN v_grade = '"A" THEN ' Excell ent’
WHEN v_grade IN ('B,'C) THEN ' Good'
ELSE ' No such grade'
END,
DBMS_OUTPUT. PUT_LINE (' Grade: '"|| v_grade || '
Appraisal ' || v_appraisal);
END;
/
5-14 Copyright © 2009, Oracle. All rights reserved.

Searched CASE Expressions

In the previous example, you saw a single test expression, thev_gr ade variable.
The WHEN clause compared a value against this test expression.

In searched CASE statements, you do not have atest expression. Instead, the WHEN clause
contains an expression that results in a Boolean value. The same example is rewritten in this
slide to show searched CASE statements.

Result
The output of the example is as follows when you enter b or B for v_gr ade:

|t| | [Results | [Script output| T Explain

¢ &

anonymous hlock completed
Grade: B Appraisal Good

| o] | | Cancel |

Oracle Database 11g: PL/SQL Fundamentals 5 - 14

CASE Statement

DECLARE
v_deptid NUVBER;
v_dept nanme VARCHAR2(20) ;
v_enmps NUMBER;
v_mgi d NUMBER = 108;
BEG N
CASE v_mmgi d
VWHEN 108 THEN
SELECT departnent id, departnent_nane
I NTO v_deptid, v_deptnane FROM departnents
VWHERE nanager i d=108;
SELECT count (*) INTO v_enps FROM enpl oyees
VWHERE departnent i d=v_depti d;
VWHEN 200 THEN

END CASE;
DBMS_QUTPUT. PUT_LINE (' You are working in the '|| v_deptnane||
departnment. There are '||v_enps ||' enployees in this
departnent');
END;
/

5-15 Copyright © 2009, Oracle. All rights reserved.

CASE Statement

Recall the use of the | F statement. Y ou may include n number of PL/SQL statements in the
THEN clause and also in the ELSE clause. Similarly, you can include statements in the CASE
statement, which is more readable compared to multiple | F and ELSI F statements.

How a CASE Expression Differsfrom a CASE Statement
A CASE expression evaluates the condition and returns a value, whereas a CASE statement

evaluates the condition and performs an action. A CASE statement can be a complete PL/SQL

block.
» CASE gstatements end with END CASE;
» CASE expressions end with END;

The output of the slide code example is as follows:

B> Resuits Script Qutput| T Explain | Bl sutatrace |.3DBMS Qutput | 0 0w Dutput

¢ a&

anamymous block completed
You are working in the Finance department. There are & employees in this department

Note: Whereasan | F statement is able to do nothing (the conditions could be all false and the
EL SE clause is not mandatory), a CASE statement must execute some PL/SQL statement.

Oracle Database 11g: PL/SQL Fundamentals 5 -15

Handling Nulls

When you are working with nulls, you can avoid some common
mistakes by keeping in mind the following rules:

e Simple comparisons involving nulls always yield NULL.
* Applying the logical operator NOT to a null yields NULL.

« If the condition yields NULL in conditional control

statements, its associated sequence of statements is not
executed.

5-16 Copyright © 2009, Oracle. All rights reserved.

Handling Nulls
Consider the following example:

X = 5;
y = NULL;
IF x '=y THEN -- yields NULL, not TRUE
-- sequence_of _statenents that are not executed
END I F;

Y ou may expect the sequence of statements to execute because x and y seem unequal. But nulls
are indeterminate. Whether or not x isequal toy is unknown. Therefore, thel F condition yields
NULL and the sequence of statements is bypassed.

a = NULL;
b := NULL;
IFa=DbTHEN -- yields NULL, not TRUE
-- sequence_of _statenents that are not executed
END I F;

In the second example, you may expect the sequence of statements to execute because a and b
seem equal. But, again, equality is unknown, so the | F condition yields NULL and the sequence
of statements is bypassed.

Oracle Database 11g: PL/SQL Fundamentals 5 -16

Logic Tables

Build a simple Boolean condition with a comparison operator.

TRUE

FALSE| NULL R

TRUE

FALSE

NULL

NOT

TRUE

TRUE

FALSE| NULL || TRUE

TRUE

TRUE

TRUE

TRUE

FALSE

FALSE

FALSE

FALSE | FALSE||FALSE

TRUE

FALSE

NUL L

FALSE

TRUE

NULL

NUL L

FALSE| NULL || NULL

TRUE

NUL L

NUL L

NULL

NUL L

Copyright © 2009, Oracle. All rights reserved.

Logic Tables

Y ou can build a simple Boolean condition by combining number, character, and date
expressions with comparison operators.

Y ou can build a complex Boolean condition by combining simple Boolean conditions with the

logical operators AND, OR, and NOT. The logical operators are used to check the Boolean
variable values and return TRUE, FALSE, or NULL. Inthe logic tables shown in the slide:

FAL SE takes precedence in an AND condition, and TRUE takes precedence in an OR

condition

AND returns TRUE only if both of its operands are TRUE

ORreturns FALSE only if both of its operands are FALSE
NULL AND TRUE always evaluatesto NULL because it is not known whether the second

operand evaluates to TRUE
Note: The negation of NULL (NOT NULL) resultsin anull value because null values are

indeterminate.

Oracle Database 11g: PL/SQL Fundamentals 5-17

Boolean Expressions or Logical Expression?

What is the value of f | ag in each case?

flag : = reorder _flag AND avail abl e_fl ag;
RECRDER_FLAG |AVAI LABLE FLAG |FLAG
TRUE TRUE ? (1)
TRUE FALSE ? (2)
NULL TRUE ? (3)
NULL FALSE ? (4)
5-18 Copyright © 2009, Oracle. All rights reserved.

Boolean Expressions or Logical Expression?

The AND logic table can help you to evaluate the possibilities for the Boolean condition in the
slide.

Answers
1. TRUE
2. FALSE
3. NULL
4. FALSE

Oracle Database 11g: PL/SQL Fundamentals 5-18

Agenda

 Using | F statements
» Using CASE statements and CASE expressions
* Constructing and identifying loop statements

-19 Copyright © 2009, Oracle. All rights reserved.

Oracle Database 11g: PL/SQL Fundamentals 5-19

lterative Control: LOOP Statements

* Loops repeat a statement (or a sequence of statements)
multiple times.

* There are three loop types:

— Basic loop
— FORloop
— WHI LE loop
5-20 Copyright © 2009, Oracle. All rights reserved.

lterative Control: LOOP Statements

PL/SQL provides several facilities to structure loops to repeat a satement or sequence of
statements multiple times. Loops are mainly used to execute statements repeatedly until an exit
condition isreached. It is mandatory to have an exit condition in aloop; otherwise, the loop is
infinite.
Looping constructs are the third type of control structures. PL/SQL provides the following types
of loops:
» Basic loop that performs repetitive actions without overall conditions
FOR loopsthat perform iterative actions based on a count
VWHI LE loopsthat perform iterative actions based on a condition

Note: An EXI T statement can be used to terminate loops. A basic loop must have an EXI T. The
cursor FOR loop (which is another type of FOR loop) is discussed in the lesson titled “Using
Explicit Cursors.”

Oracle Database 11g: PL/SQL Fundamentals 5 -20

Basic Loops

Syntax:

LOOP
st at enent 1,

EXIT [WHEN condi tion];
END LOOP;

5-21 Copyright © 2009, Oracle. All rights reserved.

Basic Loops

The simplest form of a LOOP statement is the basic loop, which encloses a sequence of
statements between the LOOP and END L OOP keywords. Each time the flow of execution
reaches the END L OOP statement, control is returned to the corresponding LOOP statement
above it. A basic loop allows execution of its statements at least once, even if the EXI T
condition is already met upon entering the loop. Without the EXI T statement, the loop would be
infinite.

EXI T Statement

You can use the EXI T statement to terminate a loop. Control passes to the next statement after
the END LOOP statement. You can issue EXI T either as an action within an | F statement or asa
stand-alone statement within the loop. The EXI T statement must be placed inside a loop. In the
latter case, you can attach a WHEN clause to enable conditional termination of the loop. When
the EXI T statement is encountered, the condition in the WHEN clause is evaluated. If the
condition yields TRUE, the loop ends and control passes to the next statement after the loop.

A basic loop can contain multiple EXI T statements, but it is recommended that you have only
one EXI T point.

Oracle Database 11g: PL/SQL Fundamentals 5-21

Basic Loop: Example

DECLARE
v_countryid | ocations. country id%YPE :="'CA";
v_loc_id | ocations. | ocation_i d%YPE;
v_count er NUMBER(2) := 1;
V_hew city | ocations.city%YPE : = ' Montreal ';
BEG N

SELECT MAX(l ocation_id) INTO v_|loc_id FROM | ocati ons

WHERE country_id = v_countryid;

LOoOP
| NSERT | NTO | ocati ons(location_id, city, country_ id)
VALUES((v_loc_id + v_counter), v_newcity, v_countryid);

v_counter := v_counter + 1;
EXIT WHEN v_counter > 3;
END LOOP;
END;
/
5-22 Copyright © 2009, Oracle. All rights reserved.

Basic Loop: Example

The basic loop example shown in the slide is defined as follows: “Insert three new location IDs
for the CA country code and the city of Montreal.”

Note
» A basic loop allows execution of its statements until the EXI T VWHEN condition is met.
» If the condition is placed in the loop such that it is not checked until after the loop
statements execute, the loop executes at least once.
* However, if the exit condition is placed at the top of the loop (before any of the other
executable statements) and if that condition is true, the loop exits and the statements never
execute.

Results
To view the output, run the code example: code_05_22_s. sql .

Oracle Database 11g: PL/SQL Fundamentals 5 -22

VWHI LE Loops

Syntax:

VHI LE conditi on LOOCP
st at enent 1;
st at enent 2;

END LOOP;

Use the VWHI LE loop to repeat statements while a condition is
TRUE.

5-23 Copyright © 2009, Oracle. All rights reserved.

WHI LE Loops

Y ou can use the VWHI LE loop to repeat a sequence of statements until the controlling condition is
no longer TRUE. The condition is evaluated at the start of each iteration. The loop terminates
when the condition is FALSE or NULL. If the condition is FALSE or NULL at the start of the
loop, no further iterations are performed. Thus, it is possible that none of the statements inside
the loop are executed.

In the syntax:
condition |saBoolean variable or expression (TRUE, FALSE, or NULL)
statement Can be one or more PL/SQL or SQL statements

If the variables involved in the conditions do not change during the body of the loop, the
condition remains TRUE and the loop does not terminate.

Note: If the condition yields NULL, the loop is bypassed and control passes to the next
statement.

Oracle Database 11g: PL/SQL Fundamentals 5 -23

VWHI LE Loops: Example

DECLARE
v_countryid | ocations. country i d%I'YPE : = ' CA';
v loc id | ocati ons. | ocation_i d%TYPE;
V_hew city | ocations.city%YPE : = 'Montreal ';
vV_count er NUMBER : = 1;

BEG N

SELECT MAX(location_id) INTO v_loc_id FROM I ocati ons
WHERE country_id = v_countryid;
VWH LE v_counter <= 3 LOOP
| NSERT | NTO | ocati ons(location_id, city, country id)
VALUES((v_loc id + v_counter), v_new city, v_countryid);
v_counter := v_counter + 1;
END LOOP;
END;
/

-24 Copyright © 2009, Oracle. All rights reserved.

WHI LE Loops: Example

In the example in the slide, three new location IDs for the CA country code and the city of

Montreal are added.

With each iteration through the WHI LE loop, a counter (v_count er) isincremented.
If the number of iterations is less than or equal to the number 3, the code within the loop is

executed and arow isinserted into thel ocat i ons table.

After v_count er exceedsthe number of new locations for this city and country, the

condition that controls the loop evaluates to FAL SE and the loop terminates.

Results
To view the output, run the code example: code_05_24_s. sql .

Oracle Database 11g: PL/SQL Fundamentals 5 - 24

FOR Loops

* Use a FOR loop to shortcut the test for the number of
iterations.

« Do not declare the counter; it is declared implicitly.

FOR counter | N [REVERSE]
| ower _bound. . upper bound LOOCP
st at enent 1;
st at enent 2;

END LOOP;

5-25 Copyright © 2009, Oracle. All rights reserved.

FOR Loops

FOR loops have the same general structure as the basic loop. In addition, they have a control
statement before the LOOP keyword to set the number of iterations that the PL/SQL performs.

In the syntax:

counter Isan implicitly declared integer whose value automatically
increases or decreases (decreases if the REVERSE keyword is used)
by 1 on each iteration of the loop until the upper or lower bound is
reached

REVERSE Causes the counter to decrement with each iteration from the upper
bound to the lower bound
Note: The lower bound is still referenced first.

lower_bound Specifiesthe lower bound for the range of counter values

upper_bound Specifiesthe upper bound for the range of counter values

Do not declare the counter. It is declared implicitly as an integer.

Oracle Database 11g: PL/SQL Fundamentals 5 - 25

FORLoops (continued)

Note: The sequence of statements is executed each time the counter is incremented, as
determined by the two bounds. The lower bound and upper bound of the loop range can be
literals, variables, or expressions, but they must evaluate to integers. The bounds are rounded to
integers; that is, 11/3 and 8/5 are valid upper or lower bounds. The lower bound and upper
bound are inclusive in the loop range. If the lower bound of the loop range evaluates to alarger
integer than the upper bound, the sequence of statements is not executed.
For example, the following statement is executed only once:

FORi IN3..3

LOOP

st at enent 1;
END LOOP;

Oracle Database 11g: PL/SQL Fundamentals 5 - 26

FORLoops: Example

DECLARE
v_countryid | ocations. country i d%I'YPE : = ' CA';
v loc id | ocati ons. | ocation_i d%IYPE;
V_hew city | ocations.city%YPE : = 'Montreal ';
BEG N

SELECT MAX(location_id) INTOvV loc id
FROM | ocati ons
WHERE country id = v_countryi d;
FORi IN1..3 LOCP
| NSERT | NTO | ocati ons(location_id, city, country id)
VALUES((v_loc_id + i), v_newcity, v_countryid);
END LOOP;
END;
/

5-27 Copyright © 2009, Oracle. All rights reserved.

FOR Loops: Example

Y ou have already learned how to insert three new locations for the CA country code and the city
of Montreal by using the basic loop and the WHI LE loop. The example in this slide shows how

to achieve the same by using the FOR loop.
Results
To view the output, run the code examplecode_05_27_s. sql .

Oracle Database 11g: PL/SQL Fundamentals 5 -27

FOR Loop Rules

* Reference the counter only within the loop; it is undefined
outside the loop.

« Do not reference the counter as the target of an
assignment.

* Neither loop bound should be NULL.

5-28 Copyright © 2009, Oracle. All rights reserved.

FORLoop Rules
The dlide lists the guidelines to follow when writing a FOR loop.

Note: The lower and upper bounds of a LOOP statement do not need to be numeric literals. They
can be expressions that convert to numeric values.

Example:
DECLARE
v_|ower NUMBER : = 1;
v_upper NUMBER : = 100;

BEG N
FOR i IN v_|lower..v_upper LOOP
END LOOP;

END,

/

Oracle Database 11g: PL/SQL Fundamentals 5 -28

Suggested Use of Loops

« Use the basic loop when the statements inside the loop
must execute at least once.

* Use the WHI LE loop if the condition must be evaluated at
the start of each iteration.

* Use a FOR loop if the number of iterations is known.

5-29 Copyright © 2009, Oracle. All rights reserved.

Suggested Use of Loops

A basic loop allows the execution of its statement at least once, even if the condition is already
met upon entering the loop. Without the EXI T statement, the loop would be infinite.

Y ou can use the WHI LE loop to repeat a sequence of statements until the controlling condition is
no longer TRUE. The condition is evaluated at the start of each iteration. The loop terminates
when the condition is FALSE. If the condition is FALSE at the start of the loop, no further
iterations are performed.

FOR loops have a control statement before the LOOP keyword to determine the number of
iterations that the PL/SQL performs. Use a FOR loop if the number of iterationsis
predetermined.

Oracle Database 11g: PL/SQL Fundamentals 5 -29

Nested Loops and Labels

* You can nest loops to multiple levels.
« Use labels to distinguish between blocks and loops.

« Exit the outer loop with the EXI T statement that references
the label.

5-30 Copyright © 2009, Oracle. All rights reserved.

Nested Loops and Labels

Y ou can nest the FOR, VHI LE, and basic loops within one another. The termination of a nested

loop does not terminate the enclosing loop unless an exception is raised. However, you can label
loops and exit the outer loop with the EXI T statement.

Label names follow the same rules as the other identifiers. A label is placed before a statement,
either on the same line or on a separate line. White space is insignificant in all PL/SQL parsing
except inside literals. Label basic loops by placing the label before the word LOOP within label
delimiters (<<label>>). In FOR and WHI LE loops, place the label before FOR or WHI LE.

If the loop is labeled, the label name can be included (optionally) after the END L OOP statement
for clarity.

Oracle Database 11g: PL/SQL Fundamentals 5 - 30

Nested Loops and Labels: Example

BEG N

<<Qut er _| oop>>
LOCOP
v_counter := v_counter+1;

EXIT WHEN v_count er >10;
<<I nner _| oop>>
LOOP

EXIT Quter | oop WHEN total done = ' YES' ;
-- Leave both | oops

EXIT WHEN i nner _done = ' YES ;

-- Leave inner |oop only

END LOOP | nner | oop:
END LOOP Quter | oop:

END;
/

5-31 Copyright © 2009, Oracle. All rights reserved.

Nested Loops and Labels: Example

In the example in the slide, there are two loops. The outer loop is identified by the label
<<CQut er _Loop>> and the inner loop is identified by the label <<I nner _Loop>>.
The identifiers are placed before the word LOOP within label delimiters (<<label>>). The inner
loop is nested within the outer loop. The label names are included after the END L OOP

statements for clarity.

Oracle Database 11g: PL/SQL Fundamentals 5 -31

PL/SQL CONTI NUE Statement

« Definition
— Adds the functionality to begin the next loop iteration

— Provides programmers with the ability to transfer control to
the next iteration of a loop

— Uses parallel structure and semantics to the EXI T statement
e Benefits
— Eases the programming process

— May provide a small performance improvement over the
previous programming workarounds to simulate the
CONTI NUE statement

{.

5-32 Copyright © 2009, Oracle. All rights reserved.

PL/SQL CONTI NUE Statement

The CONTI NUE statement enables you to transfer control within aloop back to a new iteration
or to leave the loop. Many other programming languages have this functionality. With the
Oracle Database 119 release, PL/SQL also offers this functionality. Before the Oracle Database
119 release, you could code aworkaround by using Boolean variables and conditional
statements to simulate the CONTI NUE programmatic functionality. In some cases, the
workarounds are less efficient.

The CONTI NUE statement offers you a simplified meansto control loop iterations. It may be
more efficient than the previous coding workarounds.

The CONTI NUE statement is commonly used to filter data within aloop body before the main
processing begins.

Oracle Database 11g: PL/SQL Fundamentals 5 -32

PL/SQL CONTI NUE Statement: Example 1

DECLARE [Resuits | [F script output TExp
v_total SIMPLE I NTEGER := 0; ¢B8E&
BEG N anonymaus hlock completed
FORi IN1..10 LOCP Total is: 1
v total = v total + i: out of Loop Total is:
— — . ’ 2
db'nrs_out put . p‘ut _line Total is: 4
(" Total is: '|| v_total); Oyt of Loop Total is:
CONTI NUE WHEN i > 5; 6
v_total := v_total + i; — gﬂtm;? 5 Total e
dbns_out put . put _|i ne ut o 1200;3 otal 1s:
(' Qut of Loop Total is: Total dis: 16
|| v_total); out of Loop Total is:
END LOOP; Toral ?0 -
otal is:
END; Out of Loop Total is:
/ 30
Total is: 36
Total is: 43
Total is: 51
Total is: &0
Total is: 70
5-33 Copyright © 2009, Oracle. All rights reserved.

PL/SQL CONTI NUE Statement: Example 1

In the example, there are two assignments using thev_t ot al variable:

1. Thefirst assignment is executed for each of the 10 iterations of the loop.
2 Thesecond assignment is executed for the first five iterations of the loop. The CONTI NUE

statement transfers control within aloop back to anew iteration, so for the last five
iterations of the loop, the second TOTAL assignment is not executed.

The end result of the TOTAL variable is 70.

Oracle Database 11g: PL/SQL Fundamentals 5 -33

PL/SQL CONTI NUE Statement

. Example 2

DECLARE

v_total NUMBER : = 0;
BEG N

<<Bef or eTopLoop>>
FORi IN1..10 LOOP

v_total := v_total + 1;
dbns_out put . put _|ine
(' Total is: ' || v_total);
FORj IN1..10 LOOP
CONTI NUE Bef or eTopLoop WHEN i + j > 5;
v_total := v_total + 1;
ENENEZLZ) ; [= ResulEIEScrintOumut = [
END t wo_| oop; ¢HE
anonymous block completed
Total is: 1
Total is: 6
Total is: 10
Total is: 13
Total is: 15
Total is: 16
Total is: 17
Total is: 18
Total is: 19
Total is: 20
5-34 Copyright © 2009, Oracle. All rights reserved.

PL/SQL CONTI NUE Statement: Example 2

Y ou can use the CONTI NUE statement to jump to the next iteration of an outer loop. To do this,
provide the outer loop alabel to identify where the CONTI NUE statement should go.

The CONTI NUE statement in the innermost loop terminates that loop whenever the WHEN
condition istrue (just like the EXI T keyword). After the innermost loop is terminated by the
CONTI NUE statement, control transfers to the next iteration of the outermost loop labeled

Bef or eTopLoop inthisexample.

When this pair of loops completes, the value of the TOTAL variableis 20.

Y ou can also use the CONTI NUE statement within an inner block of code, which does not

contain aloop as long as the block is nested inside an appropriate outer loop.

Restrictions

» The CONTI NUE statement cannot appear outside a loop at all—this generates a compiler

error.

* You cannot use the CONTI NUE statement to pass through a procedure, function, or method
boundary—this generates a compiler error.

Oracle Database 11g: PL/SQL Fundamentals 5 - 34

Quiz
There are three types of loops: basic, FOR, and VWHI LE.
1. True
2. False
5-35 Copyright © 2009, Oracle. All rights reserved.
Answer: 1
Loop Types

PL/SQL provides the following types of loops:

Basic loops that perform repetitive actions without overall conditions
FOR loopsthat perform iterative actions based on a count
VWHI LE loopsthat perform iterative actions based on a condition

Oracle Database 11g: PL/SQL Fundamentals 5-35

Summary

In this lesson, you should have learned to change the logical
flow of statements by using the following control structures:

e Conditional (I F statement)
» CASE expressions and CASE statements
 Loops:
— Basic loop
— FORloop
— WHI LE loop
 EXI T statement
* CONTI NUE statement

5-36 Copyright © 2009, Oracle. All rights reserved.

Summary

A language can be called a programming language only if it provides control structures for the
implementation of business logic. These control structures are also used to control the flow of
the program. PL/SQL is a programming language that integrates programming constructs with
SQL.

A conditional control construct checks for the validity of a condition and performs an action
accordingly. You use the | F construct to perform a conditional execution of statements.

An iterative control construct executes a sequence of statements repeatedly, as long as a
specified condition holds TRUE. You use the various loop constructs to perform iterative
operations.

Oracle Database 11g: PL/SQL Fundamentals 5 - 36

Practice 5: Overview

This practice covers the following topics:
« Performing conditional actions by using | F statements
« Performing iterative steps by using LOCP structures

5-37 Copyright © 2009, Oracle. All rights reserved.

Practice 5: Overview

In this practice, you create the PL/SQL blocks that incorporate loops and conditional control
structures. The exercises test your understanding of writing various | F statements and L OOP

constructs.

Oracle Database 11g: PL/SQL Fundamentals 5-37

Working with
Composite Data Types

Copyright © 2009, Oracle. All rights reserved.

Objectives

After completing this lesson, you should be able to do the
following:
* Describe PL/SQL collections and records
* Create user-defined PL/SQL records
* Create a PL/SQL record with the YROM YPE attribute
« Create associative arrays
— | NDEX BY table
— | NDEX BY table of records

6-2 Copyright © 2009, Oracle. All rights reserved.

Objectives
Y ou have already been introduced to composite datatypes. In this lesson, you learn more about
composite data types and their uses.

Oracle Database 11g: PL/SQL Fundamentals 6 -2

Agenda

* Introducing composite data types
 Using PL/SQL records

— Manipulating data with PL/SQL records

— Advantages of the “R0OM YPE attribute
 Using PL/SQL collections

— Examining associative arrays

— Introducing nested tables
— Introducing VARRAY

-3 Copyright © 2009, Oracle. All rights reserved.

Oracle Database 11g: PL/SQL Fundamentals 6 -3

Composite Data Types

¢ Can hold multiple values (unlike scalar types)

* Are of two types:
— PL/SQL records

— PL/SQL collections
— Associative array (I NDEX BY table)

— Nested table
— VARRAY

6-4 Copyright © 2009, Oracle. All rights reserved.

Composite Data Types

Y ou learned that variables of the scalar data type can hold only one value, whereas a variable
of the composite data type can hold multiple values of the scalar data type or the composite
datatype. There are two types of composite data types.

* PL/SQL records. Records are used to treat related but dissimilar data as a logical unit. A
PL/SQL record can have variables of different types. For example, you can define a
record to hold employee details. This involves storing an employee number as NUVBER,
afirst name and last name as VARCHAR2, and so on. By creating arecord to store
employee details, you create alogical collective unit. This makes data access and
manipulation easier.

* PL/SQL collections. Collections are used to treat data as a single unit. Collections are of
three types:

- Associative array
- Nested table
- VARRAY

Why Use Composite Data Types?

Y ou have all the related data as a single unit. Y ou can easily access and modify data. Datais
easier to manage, relate, and transport if it is composite. An analogy is having a single bag for
all your laptop components rather than a separate bag for each component.

Oracle Database 11g: PL/SQL Fundamentals 6 -4

PL/SQL Records or Collections?

* Use PL/SQL records when you want to store values of
different data types but only one occurrence at a time.

* Use PL/SQL collections when you want to store values of
the same data type.

PL/SQL Collection:

PL/SQL Record: 1 SM TH
2 JONES
3 BENNETT
TRUE |23- DEC- 98 | ATLANTA | 4 KRANMER
L |— VARCHAR2
PLS | NTEGER
-5 Copyright © 2009, Oracle. All rights reserved.

PL/SQL Records or Collections?

If both PL/SQL records and PL/SQL collections are composite types, how do you choose
which one to use?

Use PL/SQL records when you want to store values of different datatypesthat are
logically related. For example, you can create a PL/SQL record to hold employee details
and indicate that all the values stored are related because they provide information about
aparticular employee.

Use PL/SQL collections when you want to store values of the same data type. Note that
this data type can also be of the composite type (such asrecords). You can define a
collection to hold the first names of all employees. You may have stored n names in the
collection; however, name 1 is not related to name 2. The relation between these names is
only that they are employee names. These collections are similar to arrays in
programming languages such as C, C++, and Java.

Oracle Database 11g: PL/SQL Fundamentals 6 -5

Agenda

e Examining composite data types
* Using PL/SQL records

— Manipulating data with PL/SQL records
— Advantages of the YROM YPE attribute

 Using PL/SQL collections
— Examining associative arrays

— Introducing nested tables
— Introducing VARRAY

-6 Copyright © 2009, Oracle. All rights reserved.

Oracle Database 11g: PL/SQL Fundamentals 6 -6

PL/SQL Records

e Must contain one or more components (called fields) of

any scalar, RECORD, or | NDEX BY table data type

* Are similar to structures in most third-generation

languages (including C and C++)

* Are user-defined and can be a subset of a row in a table
« Treat a collection of fields as a logical unit
* Are convenient for fetching a row of data from a table for

processing

-7 Copyright © 2009, Oracle. All rights reserved.

PL/SQL Records
A record isagroup of related data items stored in fields, each with its own name and data type.

Each record defined can have as many fields as necessary.

Records can be assigned initial values and can be defined as NOT NULL.

Fields without initial values are initialized to NULL.

The DEFAULT keyword aswell as: = can be used in initializing fields.

Y ou can define RECORD types and declare user-defined records in the declarative part of
any block, subprogram, or package.

Y ou can declare and reference nested records. One record can be the component of
another record.

Oracle Database 11g: PL/SQL Fundamentals 6 -7

Syntax:

Creating a PL/SQL Record

@ TYPE type_name | S RECORD

(field_declaration[, field_declaration].);

@ identifier t ype_nane;

field declaration:

field_name {field_type | variabl e%dYPE

| table.col umi@YPE | tabl e¥ROMYPE}
[[NOT NULL] {:=| DEFAULT} expr]

Copyright © 2009, Oracle. All rights reserved.

Creating a PL/SQL Record

PL/SQL records are user-defined composite types. To use them, perform the following steps:
1. Define the record in the declarative section of a PL/SQL block. The syntax for defining
the record is shown in the slide.
2. Declare (and optionally initialize) the internal components of this record type.

In the syntax:
t ype_name

field nane
field type

expr

Is the name of the RECORD type (This identifier is used to declare
records.)

I's the name of afield within the record

|s the data type of the field (It represents any PL/SQL data type except
REF CURSOR. Y ou can use the %' YPE and R0OWT YPE attributes.)
Isthefield_type or an initial value

The NOT NULL constraint prevents assigning of nulls to the specified fields. Be sure to
initialize the NOT NULL fields.

Oracle Database 11g: PL/SQL Fundamentals 6 -8

PL/SQL Record Structure

Field declarations:

Fieldl (data type) Field2 (data type) Field3 (data type)

Example:

Fieldl (data type) Field2 (data type) Field3 (data type)
employee_id number(6) last_ name varchar2(25) job_id varchar2(10)

100 King AD_PRES

6-9 Copyright © 2009, Oracle. All rights reserved.

PL/SQL Record Structure

Fields in arecord are accessed with the name of the record. To reference or initialize an

individual field, use the dot notation:
record_nane. fiel d_name

For example, you referencethej ob_i d field intheenp_r ecor d record as follows:
enp_record.job_id

Y ou can then assign a value to the record field:
enp_record.job_id :="'ST_CLERK ;

In ablock or subprogram, user-defined records are instantiated when you enter the block or
subprogram. They cease to exist when you exit the block or subprogram.

Oracle Database 11g: PL/SQL Fundamentals 6 -9

YROMYPE Attribute

* Declare a variable according to a collection of columns in a
database table or view.

* Prefix YROMYPE with the database table or view.

* Fields in the record take their names and data types from
the columns of the table or view.

Syntax:

DECLARE
identifier referenceROMYPE;

6-10 Copyright © 2009, Oracle. All rights reserved.

YROWIYPE Attribute
You learned that %' YPE is used to declare a variable of the column type. The variable has the
same data type and size as the table column. The benefit of %' YPE is that you do not have to
change the variable if the column is altered. Also, if the variable isa number and is used in any
calculations, you need not worry about its precision.
The YROWM YPE attribute is used to declare arecord that can hold an entire row of atable or
view. The fields in the record take their names and data types from the columns of the table or
view. The record can also store an entire row of data fetched from a cursor or cursor variable.

The slide shows the syntax for declaring a record. In the syntax:
identifier | s the name chosen for the record as a whole
reference Isthe name of the table, view, cursor, or cursor variable on

which the record is to be based (The table or view must exist
for thisreference to be valid.)

In the following example, arecord is declared using ¥ROW YPE as a data type specifier:
DECLARE
enp_record enpl oyees%RONMYPE;

Oracle Database 11g: PL/SQL Fundamentals 6 - 10

YROWTYPE Attribute (continued)

Theenp_r ecor d record has a structure consisting of the following fields, each representing
acolumn intheenpl oyees table.

Note: Thisis not code, but simply the structure of the composite variable.

(enpl oyee_i d NUMBER(6) ,
first _name VARCHAR2(20) ,
| ast _nane VARCHAR2(20) ,
emai | VARCHAR2(20) ,
phone_nunber VARCHAR2(20) ,
hire_date DATE,

sal ary NUMBER(8, 2) ,
conmmi ssi on_pct NUMBER(2, 2) ,
manager _id NUVBER(6) ,
departnent _id NUVBER(4))

To reference an individual field, use the dot notation:
record_nane.field nane
For example, you referencethe conm ssi on_pct fieldintheenp_r ecor d record as

follows:
enp_record. conm ssi on_pct

Y ou can then assign a value to the record field:
enp_record. conm ssi on_pct: = . 35;

Assigning Valuesto Records

Y ou can assign a list of common values to arecord by using the SELECT or FETCH
statement. Make sure that the column names appear in the same order as the fields in your
record. You can also assign one record to another if both have the same corresponding data
types. A record of type enpl oyees¥%ROW YPE and a user-defined record type having
analogous fields of theenpl oyees table will have the same data type. Therefore, if a user-
defined record contains fields similar to the fields of a “ROWI'YPE record, you can assign that
user-defined record to the ROWM YPE record.

Oracle Database 11g: PL/SQL Fundamentals 6 -11

Creating a PL/SQL Record: Example

DECLARE
TYPE t _rec IS RECORD
(v_sal nunber(8),
v_m nsal nunber (8) default 1000,
v_hire_dat e enpl oyees. hire_dat e% ype,
v_recl enpl oyees% owt ype) ;
v_myrec t_rec;

BEG N
v_nyrec.v_sal := v_nyrec.v_ninsal + 500;
v_nyrec.v_hire_date := sysdate;

SELECT * INTO v_nyrec.v_recl
FROM enpl oyees WHERE enpl oyee id = 100;
DBMS_QUTPUT. PUT LI NE(v_myrec.v_recl.last_nanme ||" ||
to_char(v_nyrec.v_hire_date) ||' '|| to_char(v_nyrec.v_sal));
END;

anonymous bhlock completed
Eing 16-FEBE-09 1500

6-12 Copyright © 2009, Oracle. All rights reserved.

Creating a PL/SQL Record: Example

The field declarations used in defining arecord are like variable declarations. Each field has a
unique name and a specific datatype. There are no predefined data types for PL/SQL records,
asthere are for scalar variables. Therefore, you must create the record type first, and then
declare an identifier using that type.

In the example in the slide, a PL/SQL record is created using the required two-step process:
1. Arecordtype(t _rec) isdefined
2. Arecord (v_nyrec) of thet _r ec typeisdeclared

Note

* Therecord contains four fields: v_sal ,v_m nsal ,v_hire_date,andv_recl.

* v_recl isdefined using the “ROW YPE attribute, which is similar to the % YPE
attribute. With % YPE, afield inherits the data type of a specified column. With
YROWYPE, afield inherits the column names and data types of all columnsin the
referenced table.

* PL/SQL record fields are referenced using the <r ecor d>. <f i el d> notation, or the
<record>. <fi el d>. <col umm> notation for fields that are defined with the
YROWT YPE attribute.

* You can add the NOT NULL constraint to any field declaration to prevent assigning nulls
to that field. Remember that fields that are declared as NOT NULL must be initialized.

Oracle Database 11g: PL/SQL Fundamentals 6 -12

Advantages of Using the %ROM YPE Attribute

 The number and data types of the underlying database
columns need not be known—and, in fact, might change at
run time.

* The YROMYPE attribute is useful when you want to
retrieve a row with:
— The SELECT * statement
— Row-level | NSERT and UPDATE statements

6-13 Copyright © 2009, Oracle. All rights reserved.

Advantages of Using %RONM YPE

The advantages of using the YROM YPE attribute are listed in the slide. Use the “ROW YPE
attribute when you are not sure about the structure of the underlying database table.

The main advantage of using YROW YPE is that it simplifies maintenance. Using YROM YPE
ensures that the datatypes of the variables declared with this attribute change dynamically
when the underlying table is altered. If a DDL statement changes the columnsin atable, the
PL/SQL program unit is invalidated. When the program is recompiled, it automatically reflects
the new table format.

The YROM YPE attribute is particularly useful when you want to retrieve an entire row from a

table. In the absence of this attribute, you would be forced to declare a variable for each of the
columnsretrieved by the SELECT statement.

Oracle Database 11g: PL/SQL Fundamentals 6 -13

Another YROM YPE Attribute Example

DECLARE
v_enpl oyee_nunber nunber: = 124;
v_enp_rec enpl oyeesYROMYPE;
BEG N
SELECT * I NTO v_enp_rec FROM enpl oyees
WHERE enpl oyee_id = v_enpl oyee_nunber;
I NSERT I NTO retired_enps(enpno, enane, job, ngr,
hi redate, | eavedate, sal, conm deptno)
VALUES (v_enp_rec. enpl oyee_id, v_enp_rec.|ast_nane,
v_enp_rec.job_id, v_enp_rec. manager_id,
v_enp_rec. hire_date, SYSDATE,
v_enp_rec.salary, Vv_enp_rec.comm ssion_pct,
v_enp_rec. depart ment _i d);

END;
/ SELECT * FROM retired_emps;
S
.. 4
[Results| =] script output | 5] Explain |f,;:jAutotrace | FLDBMS Output | A oW Output
Results:
emruo B Ename|f Job [§ mcr|8 HireoaTe|§ LeaveoaTE|H saL|l comm B DEPTHO |
1 124 Mourgas ST_MAN 100 16-NOV-99 16-JUN-D2 5800 frully 50
6-14 Copyright © 2009, Oracle. All rights reserved.
Another YROWYPE Attribute Example

Another example of the ¥6ROWNYPE attribute is shown in the slide. If an employee isretiring,
information about that employee is added to atable that holds information about retired
employees. The user supplies the employee number. The record of the employee specified by
the user isretrieved from the enpl oyees table and stored inthe enp_r ec variable, which is

declared using the YROM YPE attribute.
The CREATE statement that createsther eti r ed_enps tableis:

Note

CREATE TABLE retired_enps

(EMPNO NUMBER(4), ENAVE VARCHAR2(10) ,
JOB VARCHAR2(9) , MGR NUVBER(4) ,
H REDATE DATE, LEAVEDATE DATE,
SAL NUMBER(7, 2), COWM NUVBER(7, 2) ,
DEPTNO NUVBER(2))

Therecord that isinserted intother et i r ed_enps table is shown in the slide.

To see the output shown in the slide, place your cursor on the SELECT statement at the

bottom of the code example in SQL Developer and press F9.

The complete code exampleisfoundincode_6_14 n-s. sql .

Oracle Database 11g: PL/SQL Fundamentals 6 - 14

Inserting a Record by Using YROM YPE

DECLARE
v_enpl oyee nunber nunber:= 124;
v_enp_rec retired_enps¥WRONMYPE;
BEG N
SELECT enpl oyee id, |ast _nanme, job id, manager id,
hire date, hire date, salary, comm ssion pct,
departnment _id INTO v_enp_rec FROM enpl oyees
WHERE enpl oyee id = v_enpl oyee nunber;
I NSERT | NTO retired _enps VALUES v_enp_rec;
END;
/
SELECT * FROM retired _enps;

= Results =] Script Output |Ej Explain |_?;-3Autotrace | _LE.DBMS Qutput | " QA Dutput
Rezults:

empuo @ emame[d joe [mcr|E HireaTe[H ceavepaTE[sacl@ comm|@ pertmo |
1 124 Mourgos ST_MAN 10016-NOV-99 16-NOV-99 =800 (rully =0

6-15 Copyright © 2009, Oracle. All rights reserved.

Inserting a Record by Using Y“ROM YPE

Compare the | NSERT statement in the previous slide with the | NSERT statement in this slide.
Theenp_rec recordisof typer eti red_enps. The number of fields in the record must be
equal to the number of field namesin the | NTOclause. Y ou can use this record to insert values
into atable. This makes the code more readable.

Examine the SELECT statement in the slide. You select hi r e_dat e twice and insert the

hi re_dat e valueinthel eavedat e fieldof r et i r ed_enps. No employee retires on the
hire date. The inserted record is shown in the slide. (Y ou will see how to update this in the next
slide)

Note: To see the output shown in the slide, place your cursor on the SELECT statement at the
bottom of the code example in SQL Developer and press F9.

Oracle Database 11g: PL/SQL Fundamentals 6 - 15

Updating a Row in a Table
by Using a Record

SET VERI FY OFF
DECLARE
v_enpl oyee nunber nunber:= 124;
v_enp_rec retired_enps¥WRONYPE;
BEG N
SELECT * INTO v_enp rec FROM retired_enps;
v_enp_rec. | eavedat e: =CURRENT _DATE;
UPDATE retired _enmps SET RON = v_enp_rec WHERE
enpno=v_enpl oyee nunber;
END;
/
SELECT * FROM retired _enps;

[Results| 5] script output |E}jEprain |_-f;'-jAutotrace | ZLDBMS Output | (% oW Cutput
Rezults:
empuo @ emame[d joe [mcr|E HireaTe[H ceavepaTE[sacl@ comm|@ pertmo |
1 124 Mourgos ST_MAN 100 16-NOY-33 16-NOY-99 800 frully =0

6-16 Copyright © 2009, Oracle. All rights reserved.

Updating a Row in a Table by Using a Record

Y ou learned to insert arow by using arecord. This slide shows you how to update arow by
using arecord.

* The ROWKkeyword is used to represent the entire row.

» The code shown in the slide updatesthe | eavedat e of the employee.

* Therecord isupdated as shown in the slide.

Note: To see the output shown in the slide, place your cursor on the SELECT statement at the
bottom of the code example in SQL Developer and press F9.

Oracle Database 11g: PL/SQL Fundamentals 6 - 16

Agenda

Using PL/SQL collections
Examining associative arrays

Introducing nested tables
Introducing VARRAY

6-17 Copyright © 2009, Oracle. All rights reserved.

Agenda

As stated previously, PL/SQL collections are used when you want to store values of the same
datatype. This data type can also be of the composite type (such as records).

Therefore, collections are used to treat data as a single unit. Collections are of three types:
* Associative array
* Nested table
* VARRAY

Note: Of these three collections, the associative array is the focus of this lesson. The Nested
table and VARRARY are introduced only for comparative purposes. These two collections are

covered in detail in the course Oracle Database 11g: Advanced PL/SQL.

Oracle Database 11g: PL/SQL Fundamentals 6 -17

Associative Arrays (I NDEX BY Tables)

An associative array is a PL/SQL collection with two columns:
* Primary key of integer or string data type
* Column of scalar or record data type

Key Values
1 JONES
2 HARDEY
3 MADURO
4 KRANMER
6-18 Copyright © 2009, Oracle. All rights reserved.

Associative Arrays (I NDEX BY Tables)

An associative array is atype of PL/SQL collection. It isacomposite data type, and is user
defined. Associative arrays are sets of key-value pairs. They can store data using a primary key
value as the index, where the key values are not necessarily sequential. Associative arrays are
also known as | NDEX BY tables.

Associative arrays have only two columns, neither of which can be named:
» Thefirst column, of integer or string type, acts as the primary key.
» The second column, of scalar or record datatype, holds values.

Oracle Database 11g: PL/SQL Fundamentals 6 -18

Associative Array Structure

®

Unique key ---- Values column ----
column I 1
<or> [T} :
| |
1 Jones 110 : ADMIN :Jones
5 Smith 103 ! ADMIN ! Smith
3 Maduro 176 : IT_PROG: Maduro
| |
| |
| |
PLS | NTEGER Scalar Record
6-19 Copyright © 2009, Oracle. All rights reserved.

Associative Array Structure

As previously mentioned, associative arrays have two columns. The second column either
holds one value per row, or multiple values.

Unique Key Column: The data type of the key column can be:

* Numeric, either Bl NARY_| NTEGER or PLS_| NTEGER. These two numeric data types
require less storage than NUMBER, and arithmetic operations on these data types are
faster than the NUVBER arithmetic.

* VARCHARZ or one of its subtypes

“Value” Column: The value column can be either a scalar datatype or arecord datatype. A
column with scalar data type can hold only one value per row, whereas a column with record
data type can hold multiple values per row.

Other Characteristics

* Anassociative array is not populated at the time of declaration. It contains no keys or
values, and you cannot initialize an associative array in its declaration.

* Anexplicit executable statement is required to populate the associative array.

» Likethe size of adatabase table, the size of an associative array is unconstrained. That is,
the number of rows can increase dynamically so that your associative array grows as new
rows are added. Note that the keys do not have to be sequential, and can be both positive
and negative.

Oracle Database 11g: PL/SQL Fundamentals 6 -19

Steps to Create an Associative Array

Syntax:

1) TYPE type_name IS TABLE OF
{col um_type | variabl e%dYPE
| table.col um%lYPE} [NOT NULL]
| tabl e¥ROWMYPE
| I NDEX BY PLS | NTEGER | BI NARY_|I NTEGER
| VARCHAR2(<si ze>);
(2) identifier type_nane;

Example:

errpl oyees. TI7ast narre%I'YPE
I NDEX BY PLS | NTECER,

enane_t abl e [ename_tabl e_type;!

6-20 Copyright © 2009, Oracle. All rights reserved.

Steps to Create an Associative Array

There are two steps involved in creating an associative array:
1. Declare a TABLE datatype using the | NDEX BY option.
2. Declare avariable of that datatype.

Syntax

type_name Is the name of the TABLE type (This nameis used in the subsequent
declaration of the array identifier.)

column_type Isany scalar or composite data type such as VARCHARZ2, DATE,
NUMBER, or %' YPE (Y ou can use the % YPE atribute to provide
the column data type.)

identifier Isthe name of theidentifier that represents an entire associative array

Note: The NOT NULL constraint prevents nulls from being assigned to the associative array.
Example

In the example, an associative array with the variable name enane_t abl e isdeclared to
store the last names of employees.

Oracle Database 11g: PL/SQL Fundamentals 6 - 20

Creating and Accessing Associative Arrays

DECLARE
TYPE enane_table type | S TABLE OF
enpl oyees. | ast _nanme%l YPE
| NDEX BY PLS | NTEGER;
TYPE hiredate_table type | S TABLE OF DATE
| NDEX BY PLS | NTEGER;

ename_t abl e enanme_t abl e_t ype;

hiredat e _tabl e hi redate_tabl e type;
BEG N

enane_t abl e(1) = ' CAMERON ;

hiredat e tabl e(8) := SYSDATE + 7;

| F enane_tabl e. EXI STS(1) THEN
| NSERT | NTO . . .

END; anonymous block completed
/ ENAME HIREDT

CAMEROM 23-JUN-09

1 rows selected

6-21 Copyright © 2009, Oracle. All rights reserved.

Creating and Accessing Associative Arrays

The example in the slide creates two associative arrays, with the identifiersenane_t abl e and
hi redat e_t abl e.

The key of each associative array is used to access an element in the array, by using the
following syntax:
i dentifier(index)
In both arrays, thei ndex value belongsto the PLS | NTEGER type.
* Toreferencethe first row inthe ename_t abl e associative array, specify:
enane_t abl e(1)
» Toreference the eighth row inthe hi r edat e_t abl e associative array, specify:
hi redat e_t abl e(8)

Note
* The magnitude range of aPLS | NTECGER is—2,147,483,647 through 2,147,483,647, sO
the primary key value can be negative. Indexing does not need to start with 1.
* Theexi st s(i) method returns TRUE if arow with index i isreturned. Use the
exi st s method to prevent an error that israised in reference to a nonexistent table
element.
» The complete code exampleisfoundincode_6 21 s. sql .

Oracle Database 11g: PL/SQL Fundamentals 6 - 21

Using | NDEX BY Table Methods

The following methods make associative arrays easier to use:
e EXISTS c PRIOR
e COUNT e NEXT
e« FIRST « DELETE
e LAST

-22

Copyright © 2009, Oracle. All rights reserved.

Using | NDEX BY Table Methods

An | NDEX BY table method is a built-in procedure or function that operates on an associative
array and is called by using the dot notation.

Syntax: t abl e_nane. met hod_nane[(paraneters)]

Method Description

EXI STS(n) | Returns TRUE if the nth element in an associative array exists

COUNT Returns the number of elements that an associative array currently

contains

FI RST Returns the first (smallest) index number in an associative array
Returns NULL if the associative array is empty

LAST Returns the last (largest) index number in an associative array
Returns NULL if the associative array is empty

PRI OR(n) Returns the index number that precedes index n in an associative array

NEXT(n) Returns the index number that succeeds index nin an associative array

DELETE DELETE removes all € ements from an associative array.
DELETE(n) removes the nth e ement from an associative array.
DELETE(m n) removesal elementsintherangem... n froman
associative array.

Oracle Database 11g: PL/SQL Fundamentals 6 - 22

| NDEX BY Table of Records Option

Define an associative array to hold an entire row from a table.

DECLARE
TYPE dept _table type IS TABLE OF
depart ment sSUROMYPE | NDEX PLS | NTEGER;
dept tabl e dept table type;
-- Each elenent of dept table is a record
Begi n
SELECT * | NTO dept table(1l) FROM depart nments
WHERE departnent _id = 10;
DBMS_QUTPUT. PUT_LI NE(dept _tabl e(1). departnent _id || |]
dept _tabl e(1).department_nane || ||
dept _t abl e(1). manager _i d);
END; [Results ElScript Cutput| B Exp
/ ¢B&E

ananmymaous block completed
10 Administration 200

6-23 Copyright © 2009, Oracle. All rights reserved.

| NDEX BY Table of Records Option

As previously discussed, an associative array that is declared as atable of scalar data type can
store the details of only one column in a database table. However, there is often a need to store
all the columnsretrieved by a query. The | NDEX BY table of records option enables one array

definition to hold information about all the fields of a database table.
Creating and Referencing a Table of Records
As shown in the associative array example in the slide, you can:
* Usethe ROM YPE attribute to declare arecord that represents arow in a database table
» Refer to fieldswithin the dept _t abl e array because each element of the array isa
record
The differences between the ¥ROWI YPE attribute and the composite data type PL/SQL record

are asfollows:

* PL/SQL record types can be user-defined, whereas R0 YPE implicitly definesthe
record.

» PL/SQL records enable you to specify the fields and their data types while declaring
them. When you use ¥R0OW YPE, you cannot specify the fields. The ¥ROM YPE
attribute represents a table row with all the fields based on the definition of that table.

* User-defined records are static, but %60 YPE records are dynamic—they are based on
atable structure. If the table structure changes, the record structure also picks up the

change.
Oracle Database 11g: PL/SQL Fundamentals 6 - 23

| NDEX BY Table of Records Option: Example 2

DECLARE
TYPE enp_table type | S TABLE OF
enpl oyeesYRONMYPE | NDEX BY PLS | NTEGER;
my_enp_table enp_table type;

max_count NUMVBER(3) : = 104;
BEG N
FOR i I N 100..max_count
LOOP

SELECT * | NTO nmy_enp_tabl e(i) FROM enpl oyees
VWHERE enpl oyee id = i;
END LOOP;
FOR i IN ny_enp_tabl e. FI RST. . ny_enp_tabl e. LAST
LOoOP
DBVS_OUTPUT. PUT_LI NE(nmy_enp_tabl e(i) .l ast_nane);
END LOOP;
END;
/

6-24 Copyright © 2009, Oracle. All rights reserved.

| NDEX BY Table of Records: Example 2

The example in the slide declares an associative array, using the | NDEX BY table of records
option, to temporarily store the details of employees whose employee IDs are between 100 and
104. The variable name for the array isenp_t abl e_t ype.

Using aloop, the information of the employees from the EMPLOYEES table is retrieved and
stored in the array. Another loop is used to print the last names from the array. Note the use of
thefirst and| ast methodsinthe example.

Note: The slide demonstrates one way to work with an associative array that uses the | NDEX
BY table of records method. However, you can do the same more efficiently using cursors.
Cursors are explained in the lesson titled “Using Explicit Cursors.”

The results of the code example is as follows:

[= Results Script Qutput T Explain |

¢B8E&

anonymous block completed
King

Kochhar

De Haan

Hunold

Ernst

Oracle Database 11g: PL/SQL Fundamentals 6 - 24

Nested Tables

,—g B
- —1 1 """ !
. !
[[— v
— [—
— 1 1 | Bombay
—— | 2 | Sydney
3 | Oxford
4 | London
2 GB max.
-25 Copyright © 2009, Oracle. All rights reserved.

Nested Tables

The functionality of nested tablesis similar to that of associative arrays; however, there are
differences in the nested table implementation.

The nested table isavalid data type in a schema-level table, but an associative array is
not. Therefore, unlike associative arrays, nested tables can be stored in the database.

The size of a nested table can increase dynamically, although the maximum size is 2 GB.
The “key” cannot be a negative value (unlike in the associative array). Though reference
is made to the first column as key, there is no key in anested table. There isa column
with numbers.

Elements can be deleted from anywhere in a nested table, leaving a sparse table with
nonsequential “keys.” The rows of a nested table are not in any particular order.

When you retrieve values from a nested table, the rows are given consecutive subscripts
starting from 1.

Syntax

TYPEt ype_nane | STABLE OF
{col um_type| vari abl e%dYPE
| tabl e.col um%YPE} [NOT NULL]
| tabl e. “IROMYPE

Oracle Database 11g: PL/SQL Fundamentals 6 - 25

Nested Tables (continued)

Example:
TYPE | ocation_type IS TABLE OF | ocati ons. city%lYPE;
of fices | ocation_type;

If you do not initialize a nested table, it is automatically initialized to NULL. You can initialize
the of f i ces nested table by using a constructor:
offices := |l ocation_type(' Bonbay', 'Tokyo','Singapore',
"Oxford');

The complete code example and output is as follows:
SET SERVEROQUTPUT ON;

DECLARE
TYPE | ocation_type IS TABLE OF | ocati ons. ci t y%I'YPE;
offices | ocation_type;
t abl e_count NUMBER;
BEG N
offices : =
'xford);
FORi in 1.. offices.count() LOOP
DBMS_QUTPUT. PUT_LI NE(of fices(i));
END LOOP;
END;
/

| ocati on_type(' Bonbay', 'Tokyo','Si ngapore’

[Recults [F] script output) Explain
¢ 8

anonymous block completed
Bombay

Tokyo

Singapore

Oxford

Oracle Database 11g: PL/SQL Fundamentals 6 - 26

VARRAY

1 | Bombay
2 | Sydney
3 | Oxford
4 | London
10 | Tokyo
6-27 Copyright © 2009, Oracle. All rights reserved.

VARRAY

A variable-size array (VARRAY) is similar to an associative array, except that a VARRAY is
constrained in size.
* A VARRAY isvalid in aschema-level table.
* Itemsof VARRAY type are called VARRAYS.
* VARRAYs have a fixed upper bound. Y ou have to specify the upper bound when you
declare them. Thisissimilar to arraysin C language. The maximum size of a VARRAY is
2 GB, asin nested tables.
» Thedistinction between a nested table and a VARRAY is the physical storage mode. The
elements of a VARRAY are stored inline with the table’s data unless the size of the
VARRAY is greater than 4 KB. Contrast that with nested tables, which are always stored

out-of-line.
* You can create a VARRAY type in the database by using SQL.
Example:

TYPE | ocation_type IS VARRAY(3) OF | ocations.city%YPE,
of fices | ocation_type;

The size of this VARRAY isrestricted to 3. You can initialize a VARRAY by using constructors.
If you try to initialize the VARRAY with more than three elements, a “ Subscript outside of
[imit” error message is displayed.

Oracle Database 11g: PL/SQL Fundamentals 6 - 27

Summary of Collection Types

Associative array

Index by Index by
PLS | NTEGER VARCHAR2
-

Nested table Varray

I—MJ4 e —
mmm | ———
I .
— —1 1 e
| [——— S
—]
— | — '=_..
|| e e
— I |

6-28 Copyright © 2009, Oracle. All rights reserved.

Summary of Collection Types
Associative Arrays
Associative arrays are sets of key-value pairs, where each key is unique and is used to locate a

corresponding value in the array. The key can be either integer- or character-based. The array
value may be of the scalar datatype (single value) or the record datatype (multiple values).

Because associative arrays are intended for storing temporary data, you cannot use them with
SQL statements such as | NSERT and SELECT | NTQO.

Nested Tables

A nested table holds a set of values. In other words, it is atable within atable. Nested tables
are unbounded; that is, the size of the table can increase dynamically. Nested tables are
available in both PL/SQL and the database. Within PL/SQL, nested tables are like one-
dimensional arrays whose size can increase dynamically.

Varrays

Variable-size arrays, or varrays, are also collections of homogeneous elements that hold a fixed
number of elements (although you can change the number of elements at run time). They use
sequential numbers as subscripts. Y ou can define equivalent SQL types, thereby allowing
varrays to be stored in database tables.

Oracle Database 11g: PL/SQL Fundamentals 6 - 28

Quiz

|dentify situations in which you can use the ROM YPE attribute.

1. When you are not sure about the structure of the
underlying database table

2. When you want to retrieve an entire row from a table

3. When you want to declare a variable according to another
previously declared variable or database column

6-29 Copyright © 2009, Oracle. All rights reserved.

Answer: 1, 2
Advantages of Using the “ROM YPE Attribute

Use the “ROWT YPE attribute when you are not sure about the structure of the underlying
database table.

The main advantage of using YROW YPE is that it simplifies maintenance. Using YROM YPE
ensures that the data types of the variables declared with this attribute change dynamically
when the underlying table is altered. If a DDL statement changes the columnsin atable, the
PL/SQL program unit is invalidated. When the program is recompiled, it automatically reflects
the new table format.

The YROM YPE attribute is particularly useful when you want to retrieve an entire row from a

table. In the absence of this attribute, you would be forced to declare a variable for each of the
columnsretrieved by the SELECT statement.

Oracle Database 11g: PL/SQL Fundamentals 6 - 29

Summary

In this lesson, you should have learned to:

* Define and reference PL/SQL variables of composite data
types
— PL/SQL record

— Associative array
— | NDEX BY table
— | NDEX BY table of records

« Define a PL/SQL record by using the %ROM YPE attribute
e Compare and contrast the three PL/SQL collection types:
— Associative array

— Nested table
— VARRAY

6-30 Copyright © 2009, Oracle. All rights reserved.

Summary

A PL/SQL record is acollection of individual fields that represent arow in atable. By using
records, you can group the data into one structure, and then manipulate this structure as one
entity or logical unit. This helps reduce coding and keeps the code easy to maintain and
understand.

Like PL/SQL records, a PL/SQL collection is another composite data type. PL/SQL collections
include:

» Associative arrays (also known as | NDEX BY tables). They are objects of TABLE type
and look similar to database tables, but with a slight difference. The so-called | NDEX BY
tables use a primary key to give you array-like access to rows. The size of an associative
array is unconstrained.

* Nested tables. The key for nested tables cannot have a negative value, unlike | NDEX BY
tables. The key must also be in a sequence.

* Variable-size arrays (VARRAY). A VARRAY is similar to associative arrays, except that a
VARRAY is constrained in size.

Oracle Database 11g: PL/SQL Fundamentals 6 - 30

Practice 6: Overview

This practice covers the following topics:
« Declaring associative arrays
* Processing data by using associative arrays
* Declaring a PL/SQL record
* Processing data by using a PL/SQL record

6-31 Copyright © 2009, Oracle. All rights reserved.

Practice 6: Overview
In this practice, you define, create, and use associative arrays and PL/SQL records.

Oracle Database 11g: PL/SQL Fundamentals 6 -31

Using Explicit Cursors

Copyright © 2009, Oracle. All rights reserved.

Objectives

After completing this lesson, you should be able to do the
following:

Distinguish between implicit and explicit cursors
Discuss the reasons for using explicit cursors
Declare and control explicit cursors

Use simple loops and cursor FOR loops to fetch data
Declare and use cursors with parameters

Lock rows with the FOR UPDATE clause

Reference the current row with the WHERE CURRENT OF
clause

Copyright © 2009, Oracle. All rights reserved.

Objectives

Y ou have learned about implicit cursorsthat are automatically created by PL/SQL when you
execute a SQL SELECT or DML statement. In this lesson, you learn about explicit cursors. You
learn to differentiate between implicit and explicit cursors. You also learn to declare and control
simple cursors, as well as cursors with parameters.

Oracle Database 11g: PL/SQL Fundamentals 7 -2

Agenda

What are explicit cursors?

Using explicit cursors

Using cursors with parameters

Locking rows and referencing the current row

Copyright © 2009, Oracle. All rights reserved.

Oracle Database 11g: PL/SQL Fundamentals 7 -3

Cursors

Every SQL statement that is executed by the Oracle Server has
an associated individual cursor:

* Implicit cursors: declared and managed by PL/SQL for all
DML and PL/SQL SELECT statements

« Explicit cursors: declared and managed by the
programmer

ORACLE 11 g

DATABASE

Implicit cursor Explicit cursor

7-4 Copyright © 2009, Oracle. All rights reserved.

Cursors
The Oracle Server uses work areas (called private SQL areas) to execute SQL statements and to
store processing information. Y ou can use explicit cursorsto name a private SQL area and to
access its stored information.

Cursor Type Description

Implicit Implicit cursors are declared by PL/SQL implicitly for al
DML and PL/SQL SELECT statements.

Explicit For queries that return multiple rows, explicit cursors are
declared and managed by the programmer, and manipulated
through specific statementsin the block’ s executable actions.

The Oracle Server implicitly opens a cursor to process each SQL statement that is not associated
with an explicitly declared cursor. Using PL/SQL, you can refer to the most recent implicit
cursor asthe SQL cursor.

Oracle Database 11g: PL/SQL Fundamentals 7 -4

Explicit Cursor Operations

Table
100 Ki ng AD_PRES
101 Kochhar AD VP
102 De Haan AD_VP

139 Seo ST _CLERK

. 140 Patel ST CLERK
Active set -

7-5 Copyright © 2009, Oracle. All rights reserved.

Explicit Cursor Operations

Y ou declare explicit cursorsin PL/SQL when you have a SELECT statement that returns
multiple rows. You can process each row returned by the SELECT statement.

The set of rows returned by a multiple-row query is called the active set. Its size is the number of
rowsthat meet your search criteria. The diagram in the slide shows how an explicit cursor
“points’ to the current row in the active set. This enables your program to process the rows one
at atime.

Explicit cursor functions:
» Can perform row-by-row processing beyond the first row returned by a query
» Keep track of the row that is currently being processed
* Enable the programmer to manually control explicit cursorsin the PL/SQL block

Oracle Database 11g: PL/SQL Fundamentals 7 -5

Controlling Explicit Cursors

No

DECLARE OPEN FETCH Yes | o ose

* Create a * Identify the ¢ Load the * Testfor * Releasethe

named active set. current existing active set.
SQL area. row into rows.
variables.
* Return to
FETCH if
rows are
found.
-6 Copyright © 2009, Oracle. All rights reserved.

Controlling Explicit Cursors
Now that you have a conceptual understanding of cursors, review the stepsto use them.

1.

2.

In the declarative section of a PL/SQL block, declare the cursor by naming it and defining
the structure of the query to be associated with it.

Open the cursor.

The OPEN statement executes the query and binds any variables that are referenced. Rows
identified by the query are called the active set and are now available for fetching.

Fetch data from the cursor.

In the flow diagram shown in the slide, after each fetch, you test the cursor for any existing
row. If there are no more rows to process, you must close the cursor.

Close the cursor.

The CLOSE statement releases the active set of rows. It is now possible to reopen the
cursor to establish a fresh active set.

Oracle Database 11g: PL/SQL Fundamentals 7 -6

Controlling Explicit Cursors

/t
@ Open the cursor. //
7 Cursor

pointer

4

4
@ Fetch a row. y

Cursor
pointer

Cursor
@ Close the cursor. pointer

7-7 Copyright © 2009, Oracle. All rights reserved.

Controlling Explicit Cursors (continued)

A PL/SQL program opens a cursor, processes rows returned by a query, and then closes the
cursor. The cursor marks the current position in the active set.
1. The OPEN statement executes the query associated with the cursor, identifies the active set,
and positionsthe cursor at the first row.
2. The FETCH statement retrieves the current row and advances the cursor to the next
row until there are no more rows or a specified condition is met.
3. The CLOSE statement releases the cursor.

Oracle Database 11g: PL/SQL Fundamentals 7 -7

Agenda

What are explicit cursors?

Using explicit cursors

Using cursors with parameters

Locking rows and referencing the current row

Copyright © 2009, Oracle. All rights reserved.

Oracle Database 11g: PL/SQL Fundamentals 7 -8

Declaring the Cursor

Syntax:

CURSOR cursor_nane | S
sel ect _stat enent;

Examples:

DECLARE
CURSCOR c_enp_cursor | S
SELECT enpl oyee_id, | ast_nane FROM enpl oyees
WHERE departnment id =30;

DECLARE
v_locid NUMBER = 1700;
CURSOR c_dept _cursor 1S
SELECT * FROM depart nents
WHERE | ocation_id = v_| oci d;

7-9 Copyright © 2009, Oracle. All rights reserved.

Declaring the Cursor
The syntax to declare a cursor is shown in the slide. In the syntax:
cursor_name IsaPL/SQL identifier
select_statement Isa SELECT statement without an | NTO clause

The active set of a cursor is determined by the SELECT statement in the cursor declaration. It is
mandatory to have an | NTO clause for a SELECT statement in PL/SQL. However, note that the
SELECT statement in the cursor declaration cannot have an | NTOclause. That is because you
are only defining a cursor in the declarative section and not retrieving any rows into the cursor.

Note
* Do not includethe | NTOclause in the cursor declaration because it appears later in the
FETCH statement.
* If you want the rowsto be processed in a specific sequence, use the ORDER BY clause in
the query.

» Thecursor can be any valid SELECT statement, including joins, subqueries, and so on.

Oracle Database 11g: PL/SQL Fundamentals 7 -9

Declaring the Cursor (continued)

Thec_enp_cur sor cursor isdeclared to retrievetheenpl oyee i d and|l ast _nane
columns for those employees working in the department with depar t ment _i d 30.

Thec_dept cur sor cursor isdeclared to retrieve all the details for the department with the
| ocati on_i d 1700. Note that a variable is used while declaring the cursor. These variables
are considered bind variables, which must be visible when you are declaring the cursor. These
variables are examined only once at the time the cursor opens. Y ou have learned that explicit
cursors are used when you have to retrieve and operate on multiple rows in PL/SQL. However,
this example shows that you can use the explicit cursor even if your SELECT statement returns
only one row.

Oracle Database 11g: PL/SQL Fundamentals 7 -10

Opening the Cursor

DECLARE
CURSOR c_enp_cursor 1S
SELECT enpl oyee_id, |ast_nane FROM enpl oyees
WHERE departnent id =30;
BEA N
OPEN c_enp_cursor;

7-11 Copyright © 2009, Oracle. All rights reserved.

Opening the Cursor
The OPEN statement executes the query associated with the cursor, identifies the active set, and
positions the cursor pointer at the first row. The OPEN statement is included in the executable
section of the PL/SQL block.

OPEN is an executable statement that performs the following operations:

1. Dynamically allocates memory for a context area

2. Parsesthe SELECT statement

3. Bindsthe input variables (sets the values for the input variables by obtaining their memory
addresses)

4. I|dentifiesthe active set (the set of rowsthat satisfy the search criteria). Rows in the active
set are not retrieved into variables when the OPEN statement is executed. Rather, the
FETCH statement retrieves the rows from the cursor to the variables.

5. Positions the pointer to the first row in the active set

Note: If aquery returns no rows when the cursor is opened, PL/SQL does not raise an exception.
Y ou can find out the number of rows returned with an explicit cursor by using the
<cur sor _name>%ROWCOUNT attribute.

Oracle Database 11g: PL/SQL Fundamentals 7 -11

Fetching Data from the Cursor

DECLARE
CURSOR c_enp_cursor |S
SELECT enpl oyee_id, |ast_nanme FROM enpl oyees
WHERE departnment _id =30;
v_enmpno enpl oyees. enpl oyee_i d%IYPE;
v_| nane enpl oyees. | ast _nane% YPE;
BEG N
OPEN c_enp_cursor;
FETCH c_enp_cursor | NTO v_enpno, Vv_I| nane;

DBVMS_QUTPUT. PUT_LINE(v_enpno ||" '|]|v_lnane);
END;
/
anonymous blaock completed
114 Raphaely
7-12 Copyright © 2009, Oracle. All rights reserved.

Fetching Data from the Cursor

The FETCH statement retrieves the rows from the cursor one at atime. After each fetch, the
cursor advances to the next row in the active set. You can use the Y“ANOTFOUND attribute to

determine whether the entire active set has been retrieved.

Consider the example shown in the slide. Two variables, enpno and | nane, are declared to

hold the fetched values from the cursor. Examine the FETCH statement.

Y ou have successfully fetched the values from the cursor to the variables. However, there are six
employees in department 30, but only one row was fetched. To fetch all rows, you must use

loops. In the next slide, you see how a loop is used to fetch all the rows.

The FETCH statement performs the following operations:
1. Readsthe datafor the current row into the output PL/SQL variables
2. Advancesthe pointer to the next row in the active set

Oracle Database 11g: PL/SQL Fundamentals 7 -12

Fetching Data from the Cursor (continued)
Y ou can include the same number of variables in the | NTO clause of the FETCH statement as
there are columns in the SELECT statement; be sure that the data types are compatible. Match
each variable to correspond to the columns positionally. Alternatively, you can also define a
record for the cursor and reference the record in the FETCH | NTOclause. Finally, test to see
whether the cursor contains rows. If afetch acquires no values, there are no rows left to process
in the active set and no error is recorded.

Oracle Database 11g: PL/SQL Fundamentals 7 -13

Fetching Data from the Cursor

DECLARE
CURSOR c_enp_cursor 1S
SELECT enpl oyee_id, |ast_nane FROM enpl oyees
WHERE departnment _id =30;
v_enpno enpl oyees. enpl oyee_i d%IYPE;
v_| nanme enpl oyees. | ast _nane% YPE;
BEA N
OPEN c_enp_cursor;
LOOP
FETCH c_enp_cursor | NTO v_enpno, v_I| naneg;
EXIT WHEN c_enp_cur sor ¥NOTFOUND;
DBMS_QUTPUT. PUT_LINE(v_enpno ||" '|]|v_l name);
END LQOOP;
END;
/

7-14 Copyright © 2009, Oracle. All rights reserved.

Fetching Data from the Cursor (continued)

Observe that asmple LOOP is used to fetch all the rows. Also, the cursor attribute %NOTFOUND
is used to test for the exit condition. The output of the PL/SQL block is:

anohymous block completed
114 ERaphaely

115 Ehoao

116 Eaida

117 Tobias

115 Himuro

112 Colmenares

Oracle Database 11g: PL/SQL Fundamentals 7 -14

Closing the Cursor

LOCP
FETCH c_enp_cursor | NTO enpno, | nane;
EXIT WHEN c_enp_cur sor YNOTFOUND,;
DBMS_QUTPUT. PUT_LINE(v_enpno ||" "||v_l nane);
END LOOP;
CLOSE c_enp_cursor;
END;
/

7-15 Copyright © 2009, Oracle. All rights reserved.

Closing the Cursor

The CLOSE statement disables the cursor, releases the context area, and “undefines’ the active
set. Close the cursor after completing the processing of the FETCH statement. Y ou can reopen
the cursor if required. A cursor can be reopened only if it is closed. If you attempt to fetch data
from a cursor after it is closed, an | NVALI D_CURSOR exception is raised.

Note: Although it is possible to terminate the PL/SQL block without closing cursors, you should
make it a habit to close any cursor that you declare explicitly to free resources.

There is a maximum limit on the number of open cursors per session, which is determined by the
OPEN_CURSORS parameter in the database parameter file. (OPEN_CURSORS = 50 by default.)

Oracle Database 11g: PL/SQL Fundamentals 7 -15

Cursors and Records

Process the rows of the active set by fetching values into a
PL/SQL record.
DECLARE

CURSOR c_enp _cursor |S

SELECT enpl oyee_id, |ast_nanme FROM enpl oyees
WHERE departnent i d =30;

v_enp_record c¢_enp_cursor YROMYPE;
BEG N

OPEN c_enp_cursor;
LOCOP

FETCH c_enp_cursor |INTO v_enp_record,;
EXIT WHEN c_enp_cur sor ¥YNOTFOUND,;
DBMS_QUTPUT. PUT_LI NE(v_enp_record. enpl oyee_id

[]" "||]v_enp_record.|ast_nane);

END LOOP;

CLCSE c_enp_cursor;
END,;

Copyright © 2009, Oracle. All rights reserved.

Cursors and Records

Y ou have already seen that you can define records that have the structure of columnsin atable.
Y ou can also define arecord based on the selected list of columnsin an explicit cursor. Thisis
convenient for processing the rows of the active set, because you can simply fetch into the

record. Therefore, the values of the rows are loaded directly into the corresponding fields of the
record.

anonywous block conpleted
114 Raphaely

115 Fhoo

116 Baida

117 Tobias

1158 Himurao

1158 Colmenares

Oracle Database 11g: PL/SQL Fundamentals 7 -16

Cursor FOR Loops

Syntax:

FOR record_name I N cursor_name LOOP
st at ement 1;
st at ement 2;

END LOOP;

* The cursor FORIoop is a shortcut to process explicit
cursors.

« Implicit open, fetch, exit, and close occur.
« The record is implicitly declared.

7-17 Copyright © 2009, Oracle. All rights reserved.

Cursor FORLoops

Y ou learned to fetch data from cursors by using simple loops. Y ou now learn to use a cursor
FOR loop, which processes rows in an explicit cursor. It is a shortcut because the cursor is
opened, arow is fetched once for each iteration in the loop, the loop exits when the last row is
processed, and the cursor is closed automatically. The loop itself is terminated automatically at
the end of the iteration where the last row is fetched.

In the syntax:
record _name I's the name of the implicitly declared record
Cursor_name IsaPL/SQL identifier for the previously declared cursor
Guidelines

* Do not declare the record that controls the loop; it is declared implicitly.

» Test the cursor attributes during the loop if required.

» Supply the parameters for a cursor, if required, in parentheses following the cursor name in
the FOR statement.

Oracle Database 11g: PL/SQL Fundamentals 7 -17

Cursor FOR Loops

DECLARE
CURSOR c_enp_cursor 1S
SELECT enpl oyee_id, |ast_nane FROM enpl oyees
WHERE departnent id =30;
BEA N
FOR enp_record IN c_enp_cursor
LOOP
DBMS_OUTPUT. PUT_LI NE(enp_record. enpl oyee id
[]* ' ||enp_record.|ast_nane);
END LOOP;
END;
/

anonymous block completed
114 Raphaelsy

115 Fhoo

116 Baida

117 Tobias

118 Himuro

119 Colmenares

7-18 Copyright © 2009, Oracle. All rights reserved.

Cursor FORLoops (continued)

The example that was used to demonstrate the usage of a simple loop to fetch data from cursors

is rewritten to use the cursor FOR loop.

enp_r ecor d istherecord that isimplicitly declared. Y ou can access the fetched data with this

implicit record (as shown in the slide). Observe that no variables are declared to hold the fetched
data using the | NTO clause. The code does not have the OPEN and CL OSE statements to open

and close the cursor, respectively.

Oracle Database 11g: PL/SQL Fundamentals 7 -18

Explicit Cursor Attributes

Use explicit cursor attributes to obtain status information about

a Cursor.

Attribute Type Description

% SOPEN Boolean Evaluates to TRUE if the cursor is open

YNOTFOUND Boolean Evaluates to TRUE if the most recent fetch
does not return a row

%-OUND Boolean Evaluates to TRUE if the most recent fetch
returns a row; complement of “0NOTFQOUND

YRONCOUNT Number Evaluates to the total number of rows returned
so far

7-19 Copyright © 2009, Oracle. All rights reserved.

Explicit Cursor Attributes

Aswith implicit cursors, there are four attributes for obtaining the status information of a cursor.
When appended to the cursor variable name, these attributes return useful information about the
execution of a cursor manipulation statement.

Note: You cannot reference cursor atributes directly in a SQL statement.

Oracle Database 11g: PL/SQL Fundamentals 7 -19

04 SOPEN Attribute

* You can fetch rows only when the cursor is open.

* Use the % SOPEN cursor attribute before performing a
fetch to test whether the cursor is open.

Example:

I'F NOT' c_enp_cursor % SOPEN THEN
OPEN c_enp_cursor;
END | F;
LOCP
FETCH c_enp_cursor. ..

7-20 Copyright © 2009, Oracle. All rights reserved.

%9 SOPEN Attribute

* You can fetch rows only when the cursor is open. Use the %4 SOPEN cursor attribute to
determine whether the cursor is open.

» Fetchrowsin aloop. Use cursor attributes to determine when to exit the loop.

* Usethe ROWCOUNT cursor attribute to do the following:

- Process an exact number of rows.
- Fetch therowsin aloop and determine when to exit the loop.

Note: %9 SOPEN returns the status of the cursor: TRUE if open and FALSE if not.

Oracle Database 11g: PL/SQL Fundamentals 7 - 20

YROWNCOUNT and Y8NOTFOUND: Example

DECLARE
CURSOR c_enp_cursor |S SELECT enpl oyee i d,
| ast _nanme FROM enpl oyees;
v_enp_record c_enp_cursor “RONYPE;
BEG N
OPEN c_enp_cursor;
LOOP
FETCH c_enp_cursor | NTO v_enp_record;
EXIT WHEN c_enp_cur sor “RONCOUNT > 10 OR
c_enp_cur sor ¥NOTFOUND;
DBMS _OUTPUT. PUT _LINE(v_enp_record. enpl oyee id
[|" "||v_enp_record.|ast_nane);

END LOOP;
CLOSE c_enp_cursor;

END ; / anorymous block completed
174 Ahel

166 Ande

130 Atkinson
105 Austin
204 Baer

116 Baida
1a7 Banda
172 Bates
192 Bell

151 Bernstein

7-21 Copyright © 2009, Oracle. All rights reserved.

YROWCOUNT and Y8NOTFOUND: Example

The example in the slide retrieves the first 10 employees one by one. This example shows how
the YROWCOUNT and %8NOT FOUND attributes can be used for exit conditions in a loop.

Oracle Database 11g: PL/SQL Fundamentals 7 -21

Cursor FOR Loops Using Subqueries

There is no need to declare the cursor.

BEG N
FOR enp_record I N (SELECT enpl oyee_id, |ast_nane
FROM enpl oyees WHERE departnent i d =30)
LOOP
DBMS_OUTPUT. PUT_LI NE(enp_record. enpl oyee_id
[|' '"||enmp_record.| ast_nane);
END LOOP;
END;
/

anonymous block completed
114 Raphaelw

115 Ehoao

116 Baida

117 Tobias

115 Himuro

119 Colmenares

7-22 Copyright © 2009, Oracle. All rights reserved.

Cursor FORLoops Using Subqueries

Note that there is no declarative section in this PL/SQL block. The difference between the cursor
FOR loops using subqueries and the cursor FOR loop lies in the cursor declaration. If you are
writing cursor FOR loops using subqueries, you need not declare the cursor in the declarative
section. Y ou have to provide the SELECT statement that determines the active set in the loop

itself.

The example that was used to illustrate a cursor FOR loop is rewritten to illustrate a cursor FOR
loop using subqueries.

Note: You cannot reference explicit cursor attributes if you use a subquery in acursor FOR loop
because you cannot give the cursor an explicit name.

Oracle Database 11g: PL/SQL Fundamentals 7 -22

-23

Agenda

What are explicit cursors?

Using explicit cursors

Using cursors with parameters

Locking rows and referencing the current row

Copyright © 2009, Oracle. All rights reserved.

Oracle Database 11g: PL/SQL Fundamentals 7 -23

Cursors with Parameters

Syntax:

"CURSOR cur sor_nane

[(paranmet er _name datatype, ...)]
IS

sel ect _st at enent ;

« Pass parameter values to a cursor when the cursor is
opened and the query is executed.

* Open an explicit cursor several times with a different active
set each time.

CPEN cursor _nane(paraneter_val ue,.....)

7-24 Copyright © 2009, Oracle. All rights reserved.

Cursors with Parameters

Y ou can pass parameters to acursor. This means that you can open and close an explicit cursor
several times in a block, returning a different active set on each occasion. For each execution,
the previous cursor is closed and reopened with a new set of parameters.

Each formal parameter in the cursor declaration must have a corresponding actual parameter

in the OPEN statement. Parameter datatypes are the same as those for scalar variables, but

you do not give them sizes. The parameter names are for reference in the query expression of the
cursor.

In the syntax:
Cursor_name IsaPL/SQL identifier for the declared cursor
parameter name Isthe name of a parameter
datatype Isthe scalar data type of the parameter

select_statement Isa SELECT statement without the | NTO clause

The parameter notation does not offer greater functionality; it simply allows you to specify input
values easily and clearly. Thisis particularly useful when the same cursor is referenced
repeatedly.

Oracle Database 11g: PL/SQL Fundamentals 7 - 24

Cursors with Parameters

DECLARE
CURSOR c_enp_cursor (deptno NUMBER) IS
SELECT enpl oyee_id, |ast_name
FROM enpl oyees
WHERE departnent id = deptno;

BEG N
OPEN c_enp_cursor (10);

CLCBE Cc_enp_cursor,
OPEN c_enp_cursor (20);

anonymous block completed
200 Thalen

201 Hartstein

202 Fay

7-25 Copyright © 2009, Oracle. All rights reserved.

Cursors with Parameters (continued)

Parameter data types are the same as those for scalar variables, but you do not give them sizes.
The parameter names are for reference in the cursor’s query. In the following example, a cursor
is declared and is defined with one parameter:
DECLARE
CURSOR c_enp_cursor (deptno NUMBER) IS SELECT . ..

The following statements open the cursor and return different active sets:
OPEN c_enp_cursor (10);
OPEN c_enp_cursor (20);

Y ou can pass parametersto the cursor that is used in a cursor FOR loop:
DECLARE
CURSOR c_enp_cursor (p_deptno NUMBER, p_job VARCHAR2)I S
SELECT ...
BEG N
FOR enp_record IN c_enp_cursor (10, 'Sales') LOOP ...

Oracle Database 11g: PL/SQL Fundamentals 7 -25

- 26

Agenda

What are explicit cursors?

Using explicit cursors

Using cursors with parameters

Locking rows and referencing the current row

Copyright © 2009, Oracle. All rights reserved.

Oracle Database 11g: PL/SQL Fundamentals 7 - 26

FOR UPDATE Clause

Syntax:

SELECT ...
FROM C
FOR UPDATE [OF column_reference] [NOMIT | WAIT n];

* Use explicit locking to deny access to other sessions for
the duration of a transaction.

* Lock the rows before the update or delete.

7-27 Copyright © 2009, Oracle. All rights reserved.

FOR UPDATE Clause

If there are multiple sessions for a single database, there is the possibility that the rows of a
particular table were updated after you opened your cursor. Y ou see the updated data only when
you reopen the cursor. Therefore, it is better to have locks on the rows before you update or
delete rows. You can lock the rows with the FOR UPDATE clause in the cursor query.

In the syntax:

column_reference Isacolumn in the table against which the query is
performed (A list of columns may also be used.)

NOWAI T Returns an Oracle Server error if the rows are
locked by another session

The FOR UPDATE clause isthe last clause in a SELECT statement, even after ORDER BY (if it
exists). When you want to query multiple tables, you can use the FOR UPDATE clause to confine
row locking to particular tables. FOR UPDATE OF col _namne(s) locksrowsonly in tables
that containcol _nane(s).

Oracle Database 11g: PL/SQL Fundamentals 7 - 27

FOR UPDATE Clause (continued)

The SELECT . . . FOR UPDATE statement identifies the rows that are to be updated or deleted,
and then locks each row in the result set. Thisis useful when you want to base an update on the
existing valuesin arow. Inthat case, you must make sure that the row is not changed by another
session before the update.
The optional NOMAI T keyword tells the Oracle Server not to wait if the requested rows have
been locked by another user. Control isimmediately returned to your program so that it can do
other work before trying again to acquire the lock. If you omit the NOMAI T keyword, the Oracle
Server waits until the rows are available.
Example:
DECLARE

CURSORcC_enp_cursor IS

SELECT enpl oyee_i d, | ast _nane, FROM enpl oyees

VWHERE depart nent _i d =80 FORUPDATE OF sal ary NOMAI T;

If the Oracle Server cannot acquire the locks on the rows it needs in a SELECT FOR UPDATE
operation, it waits indefinitely. Use NOMAI T to handle such situations. If the rows are locked by
another session and you have specified NOMAI T, opening the cursor resultsin an error. You can
try to open the cursor later. You can use WAI T instead of NOMAI T, specify the number of
seconds to wait, and then determine whether the rows are unlocked. If the rows are ill locked
after n seconds, an error is returned.

It is not mandatory for the FOR UPDATE OF clause to refer to a column, but it is

recommended for better readability and maintenance.

Oracle Database 11g: PL/SQL Fundamentals 7 - 28

VWHERE CURRENT OF Clause

Syntax:
WHERE CURRENT OF cursor ;

* Use cursors to update or delete the current row.

* Include the FOR UPDATE clause in the cursor query to first
lock the rows.

* Use the WHERE CURRENT OF clause to reference the
current row from an explicit cursor.

UPDATE enpl oyees
SET salary = ...
VWHERE CURRENT OF c_enp_cursor;

7-29 Copyright © 2009, Oracle. All rights reserved.

VHERE CURRENT OF Clause

The WHERE CURRENT OF clause is used in conjunction with the FOR UPDATE clause to refer
to the current row in an explicit cursor. The WHERE CURRENT OF clause is used in the UPDATE
or DELETE statement, whereas the FOR UPDATE clause is specified in the cursor declaration.

Y ou can use the combination for updating and deleting the current row from the corresponding
database table. This enables you to apply updates and deletes to the row currently being
addressed, without the need to explicitly reference the row ID. You must include the FOR
UPDATE clause in the cursor query so that the rows are locked on OPEN.

In the syntax:
cursor I's the name of a declared cursor (The cursor must have been declared with the FOR
UPDATE clause.)

Oracle Database 11g: PL/SQL Fundamentals 7 -29

Quiz

Implicit cursors are declared by PL/SQL implicitly for all DML
and PL/SQL SELECT statements. The Oracle Server implicitly

opens a cursor to process each SQL statement that is not
associated with an explicitly declared cursor.

1. True
2. False
7-30 Copyright © 2009, Oracle. All rights reserved.
Answer: 1

Oracle Database 11g: PL/SQL Fundamentals 7 -30

Summary

In this lesson, you should have learned to:
« Distinguish cursor types:

— Implicit cursors are used for all DML statements and single-
row queries.

— Explicit cursors are used for queries of zero, one, or more
rows.

* Create and handle explicit cursors

« Use simple loops and cursor FOR loops to handle multiple
rows in the cursors

« Evaluate cursor status by using cursor attributes

* Use the FOR UPDATE and WHERE CURRENT CF clauses to
update or delete the current fetched row

7-31 Copyright © 2009, Oracle. All rights reserved.

Summary

The Oracle Server uses work areasto execute SQL statements and store processing information.
You can use a PL/SQL construct called a cursor to name awork area and access its stored
information. There are two kinds of cursors. implicit and explicit. PL/SQL implicitly declaresa
cursor for all SQL data manipulation statements, including queries that return only one row. For
gueriesthat return multiple rows, you must explicitly declare a cursor to process the rows
individually.

Every explicit cursor and cursor variable has four attributes: %-OUND, %4 SOPEN, ¥8NOTFOUND,
and YRONCOUNT. When appended to the cursor variable name, these attributes return useful
information about the execution of a SQL statement. Y ou can use cursor attributes in procedural
statements but not in SQL statements.

Use simple loops or cursor FOR loops to operate on the multiple rows fetched by the cursor. If
you are using simple loops, you have to open, fetch, and close the cursor; however, cursor FOR
loops do this implicitly. If you are updating or deleting rows, lock the rows by using a FOR
UPDATE clause. This ensures that the data you are using is not updated by another session after
you open the cursor. Use a WHERE CURRENT OF clause in conjunction with the FOR UPDATE
clause to reference the current row fetched by the cursor.

Oracle Database 11g: PL/SQL Fundamentals 7 -31

Practice 7: Overview

This practice covers the following topics:

« Declaring and using explicit cursors to query rows of a
table

« Using a cursor FOR loop

* Applying cursor attributes to test the cursor status

« Declaring and using cursors with parameters

* Using the FOR UPDATE and WHERE CURRENT CF clauses

7-32 Copyright © 2009, Oracle. All rights reserved.

Practice 7: Overview

In this practice, you apply your knowledge of cursorsto process a number of rows from atable
and populate another table with the results using a cursor FOR loop. Y ou also write a cursor with
parameters.

Oracle Database 11g: PL/SQL Fundamentals 7 -32

Handling Exceptions

Copyright © 2009, Oracle. All rights reserved.

Objectives

After completing this lesson, you should be able to do the
following:

Define PL/SQL exceptions

Recognize unhandled exceptions

List and use different types of PL/SQL exception handlers
Trap unanticipated errors

Describe the effect of exception propagation in nested
blocks

Customize PL/SQL exception messages

Copyright © 2009, Oracle. All rights reserved.

Objectives

Y ou learned to write PL/SQL blocks with a declarative section and an executable section. All

the SQL and PL/SQL code that must be executed is written in the executable block.

So far it has been assumed that the code works satisfactorily if you take care of compile-time
errors. However, the code may cause some unanticipated errors a run time. In this lesson, you

learn how to deal with such errorsin the PL/SQL block.

Oracle Database 11g: PL/SQL Fundamentals 8 -2

Agenda

* Understanding PL/SQL exceptions
 Trapping exceptions

-3 Copyright © 2009, Oracle. All rights reserved.

Oracle Database 11g: PL/SQL Fundamentals 8-3

What Is an Exception?

DECLARE
v_| namre VARCHAR2(15);
BEG N
SELECT | ast _name | NTO v_| nane
FROM enpl oyees
WHERE first_nane='John';

DBMS QUTPUT. PUT_LINE ('John''s last name is :' |]|v_Ilnane);
END; [Resuits | B seript output "F;}Explainl'_";aAutotrace|-3DBMS output | (£ OWA Cutput
¢HdE
Errar starting at Tine 3 in command:
DECLARE
w_Thame YWARCHARZ({15Y;
BEGIN

SELECT Tast_name INTO w_lname FROM employvees WHERE
first_name="'Jaohn'
DEMS_QUTPUT.PUT_LINE ('lohn''s last name is : ' ||w_Tname);
END;
Erraor repart:
OR&-01422: exact fetch returns more than reguested number of rows
0RA-26512: at line 4

01422, 00000 - "exact fetch returns more than reguested number of rows"
*lause: The number specified in exact fetch is less than the rows returned.
*ACTion: Fewrite the guery or change number of rows reguested

8-4 Copyright © 2009, Oracle. All rights reserved.

What Is an Exception?

Consider the example shown in the slide. There are no syntax errorsin the code, which means
that you must be able to successfully execute the anonymous block. The SELECT statement in
the block retrieves the last name of John.

However, you see the following error report when you execute the code:

Error report:
OFA-01422: exact fetch returhs more than redquested number of rows
OE&-06512Z: at line 4

01422, 00000 - "exact fetch returns more than requested mumber of rows™
Cauze: The mumber specified in exact fetch iz less than the rows returned.
Thction: Fewrite the dquery or change number of rows regquested

The code does not work as expected. Y ou expected the SELECT statement to retrieve only one
row; however, it retrieves multiple rows. Such errors that occur at run time are called exceptions.
When an exception occurs, the PL/SQL block isterminated. Y ou can handle such exceptionsin
your PL/SQL block.

Oracle Database 11g: PL/SQL Fundamentals 8 -4

Handling the Exception: An Example

DECLARE

v_| name VARCHAR2(15) ;
BEG N

SELECT | ast _name | NTO v_I| nane

FROM enpl oyees

WHERE first nanme='John';

DBMS QUTPUT. PUT_LINE ('John''s last name is :' |]|v_Ilnane);
EXCEPTI ON

WHEN TOO MANY_ROWS THEN

DBMS QUTPUT. PUT_LINE (' Your select statenment retrieved
mul tiple rows. Consider using a cursor.');

END;

/
[Resuits Script Qutput| T Explain |'f;_'jAutotrace
¢ d
anonymous block completed
Your select statement retrieved multiple

rows. Consider using a cursor.
8-5 Copyright © 2009, Oracle. All rights reserved.

Handling the Exception: An Example
Y ou have previously learned how to write PL/SQL blocks with a declarative section (beginning
with the DECL ARE keyword) and an executable section (beginning and ending with the BEG N
and END keywords, respectively).
For exception handling, you include another optional section called the exception section.
» This section begins with the EXCEPTI ON keyword.
* If present, this must be the last section in a PL/SQL block.

Example

In the example in the slide, the code from the previous slide is rewritten to handle the exception
that occurred. The output of the code is shown in the slide as well.

By adding the EXCEPTI ON section of the code, the PL/SQL program does not terminate
abruptly. When the exception is raised, the control shifts to the exception section and all the
statements in the exception section are executed. The PL/SQL block terminates with normal,
successful completion

Oracle Database 11g: PL/SQL Fundamentals 8 -5

Understanding Exceptions with PL/SQL

« An exception is a PL/SQL error that is raised during
program execution.
* An exception can be raised:
— Implicitly by the Oracle Server
— Explicitly by the program
* An exception can be handled:
— By trapping it with a handler
— By propagating it to the calling environment

8-6 Copyright © 2009, Oracle. All rights reserved.

Understanding Exceptions with PL/SQL

An exception isan error in PL/SQL that israised during the execution of ablock. A block
always terminates when PL/SQL raises an exception, but you can specify an exception handler
to perform final actions before the block ends.

Two Methods for Raising an Exception

* An Oracle error occurs and the associated exception is raised automatically. For example,
if the ORA- 01403 error occurs when no rows are retrieved from the database in a
SELECT statement, PL/SQL raises the NO_DATA FOUND exception. These errors are
converted into predefined exceptions.

» Depending on the business functionality your program implements, you may have to
explicitly raise an exception. Y ou raise an exception explicitly by issuing the RAI SE
statement in the block. The raised exception may be either user-defined or predefined.
There are also some non-predefined Oracle errors. These errors are any standard Oracle
errorsthat are not predefined. Y ou can explicitly declare exceptions and associate them
with the non-predefined Oracle errors.

Oracle Database 11g: PL/SQL Fundamentals 8 -6

Handling Exceptions

o
L g
- _- Terminate
] (e
=~ _ - abruptly.
-
=z
- =
-~
-~
-
Exception | Execute statements Propagate the
is raised. in the EXCEPT| ON exception.
section.
Terminate
gracefully.
8-7 Copyright © 2009, Oracle. All rights reserved.

Handling Exceptions
Trapping an Exception
Include an EXCEPTI ON section in your PL/SQL program to trap exceptions. If the exception is
raised in the executable section of the block, processing branches to the corresponding exception
handler in the exception section of the block. If PL/SQL successfully handles the exception, the
exception does not propagate to the enclosing block or to the calling environment. The PL/SQL
block terminates successfully.
Propagating an Exception
If the exception israised in the executable section of the block and there is no corresponding
exception handler, the PL/SQL block terminates with failure and the exception is propagated to
an enclosing block or to the calling environment. The calling environment can be any
application (such as SQL* Plus that invokes the PL/SQL program).

Oracle Database 11g: PL/SQL Fundamentals 8 -7

Exception Types

» Predefined Oracle Server
- Non-predefined Oracle Server Implicitly raised

» User-defined Explicitly raised

8-8 Copyright © 2009, Oracle. All rights reserved.

Exception Types
There are three types of exceptions.

Exception Description Directionsfor Handling
Predefined Oracle | One of approximately 20 | Y ou need not declare these
Server error errors that occur most exceptions. They are predefined by
often in PL/SQL code the Oracle server and are raised
implicitly.
Non-predefined Any other standard Y ou need to declare these within the
Oracle Server error | Oracle Server error declarative section; the Oracle server

raises the error implicitly, and you
can catch the error in the exception

handler.
User-defined error | A condition that the Y ou need to declare in the
developer determinesis | declarative section and raise
abnormal explicitly.

Note: Some application tools with client-side PL/SQL (such as Oracle Developer Forms) have
their own exceptions.

Oracle Database 11g: PL/SQL Fundamentals 8 -8

Agenda

 Understanding PL/SQL exceptions
* Trapping exceptions

-9 Copyright © 2009, Oracle. All rights reserved.

Oracle Database 11g: PL/SQL Fundamentals 8 -9

Syntax to Trap Exceptions

EXCEPTI ON
VWHEN exceptionl [OR exception2 . . .] THEN
st at enent 1;
st at enent 2;

[WHEN exception3 [OR exceptiond . . .] THEN
st at ement 1;
st at ement 2;
o]
[WHEN OTHERS THEN
st at ement 1;
st at ement 2;

-]

8-10 Copyright © 2009, Oracle. All rights reserved.

Syntax to Trap Exceptions

Y ou can trap any error by including a corresponding handler within the exception-handling
section of the PL/SQL block. Each handler consists of a WHEN clause, which specifies an
exception name, followed by a sequence of statements to be executed when that exception is
raised.

Y ou can include any number of handlers within an EXCEPTI ON section to handle specific
exceptions. However, you cannot have multiple handlers for a single exception.

Exception trapping syntax includes the following elements:

exception Is the standard name of a predefined exception or the name of a user-
defined exception declared within the declarative section

statement Is one or more PL/SQL or SQL statements

OTHERS Is an optional exception-handling clause that traps any exceptions

that have not been explicitly handled

Oracle Database 11g: PL/SQL Fundamentals 8 -10

Exception Trapping Syntax (continued)
WHEN OTHERS Exception Handler

As stated previously, the exception-handling section traps only those exceptions that are
specified.

To trap any exceptions that are not specified, you use the OTHERS exception handler. This
option traps any exception not yet handled. For this reason, if the OTHERS handler is used, it
must be the last exception handler that is defined.

For example:

VWHEN NO DATA FOUND THEN
st at enent 1;

VWHEN TOO MANY ROWAS THEN
st at enent 1;

VWHEN OTHERS THEN
st at enent 1;

Example

Consider the preceding example. If the NO_DATA_FOUND exception israised by the program,
the statements in the corresponding handler are executed. If the TOO_MANY_ROWS exception is
raised, the statements in the corresponding handler are executed. However, if some other
exception israised, the statements in the OTHERS exception handler are executed.

The OTHERS handler traps all the exceptions that are not already trapped. Some Oracle tools

have their own predefined exceptions that you can raise to cause events in the application. The
OTHERS handler also traps these exceptions.

Oracle Database 11g: PL/SQL Fundamentals 8 -11

Guidelines for Trapping Exceptions

« The EXCEPTI ON keyword starts the exception-handling
section.

« Several exception handlers are allowed.

* Only one handler is processed before leaving the block.
« VWHEN OTHERS is the last clause.

8-12 Copyright © 2009, Oracle. All rights reserved.

Guidelines for Trapping Exceptions

* Begin the exception-handling section of the block with the EXCEPTI ON keyword.

» Define several exception handlers, each with its own set of actions, for the block.

* When an exception occurs, PL/SQL processes only one handler before leaving the block.
* Place the OTHERS clause after all other exception-handling clauses.

* You can have only one OTHERS clause.

* Exceptions cannot appear in assignment statements or SQL statements.

Oracle Database 11g: PL/SQL Fundamentals 8 -12

Trapping Predefined Oracle Server Errors

* Reference the predefined name in the exception-handling
routine.
« Sample predefined exceptions:
— NO_DATA FOUND
— TOO MANY_ RONS
— | NVALI D_CURSOR
— ZERO DI VI DE
— DUP_VAL_ON_I NDEX

8-13 Copyright © 2009, Oracle. All rights reserved.

Trapping Predefined Oracle Server Errors

Trap apredefined Oracle Server error by referencing its predefined name within the
corresponding exception-handling routine.

For acomplete list of predefined exceptions, see the PL/SQL User’s Guide and Reference.
Note: PL/SQL declares predefined exceptions in the STANDARD package.

Oracle Database 11g: PL/SQL Fundamentals 8-13

Predefined Exceptions

Exception Name Oracle Description
Server
Error
Number
ACCESS_I NTO_NULL ORA- Attempted to assign values to the
06530 attributes of an uninitialized object
CASE_NOT_FOUND ORA- None of the choices in the WHEN clauses
06592 of a CASE statement are sdl ected, and
thereis no ELSE clause.
COLLECTI ON_I S_NULL 85?31 Attempted to apply collection methods

other than EXI STS to an uninitialized
nested table or VARRAY

CURSOR_ALREADY_OPEN ORA-

Attempted to open an already open cursor

06511

DUP_VAL_ON_I NDEX OO(;\)QO . Attempted to insert aduplicate value

I NVALI D_CURSOR 0058\01 [llegal cursor operation occurred.

I NVALI D_NUMBER ORA- Conversion of character string to number
01722 failed.

LOG N_DENI ED ORA- Logging on to the Oracle server with an
01017 invalid username or password

NO_DATA_FQOUND 005203 Single row SELECT returned no data.

NOT_LOGGED _ON ORA- The PL/SQL program issues a database
01012 call without being connected to the Oracle

server.
PROGRAM_ERRCR 85?01 PL/SQL has an internal problem.
ROMYPE_M SMATCH 002’?04 The host cursor variable and PL/SQL

cursor variable involved in an ass gnment
have incompatible return types.

Oracle Database 11g: PL/SQL Fundamentals 8 -14

Predefined Exceptions (continued)

Exception Name Oracle Description
Server
Error
Number
STORAGE_ERRCR ORA- PL/SQL ran out of memory, or memory is
06500 corrupted.
SUBSCRI PT_BEYOND_COUNT ORA- Referenced a nested table or VARRAY e ement
06533 by using an index number larger than the
number of elementsin the collection
SUBSCRI PT_OQUTSI DE_LIM T | ORA- Referenced a nested table or VARRAY element
06532 by using an index number that is outside the
legal range (for example, —1)
SYS_I NVALI D_RON' D ORA- The conversion of a character string into a
01410 universal RON Dfails because the character
string does not represent avalid RON D.
T1I MEQUT_ON_RESOURCE ORA- Time-out occurred while the Oracle server was
00051 waiting for aresource.
TOO_MANY_ROWS 001\’222 Single-row SELECT returned multiple rows.
VALUE_ERRCR ORA- Arithmetic, conversion, truncation, or size-
06502 constraint error occurred.
ZERO DI VI DE ORA- Attempted to divide by zero
01476

Oracle Database 11g: PL/SQL Fundamentals 8 -15

Trapping Non-Predefined
Oracle Server Errors

Declare |———| Associate Reference
Declarative section EXCEPTI ON section
Name the Use PRAGVA Handle the raised
exception. EXCEPTI ON_I NI T. exception.
8-16 Copyright © 2009, Oracle. All rights reserved.

Trapping Non-Predefined Oracle Server Errors

Non-predefined exceptions are similar to predefined exceptions; however, they are not defined
as PL/SQL exceptions in the Oracle Server. They are standard Oracle errors. You create
exceptions with standard Oracle errors by using the PRAGVA EXCEPTI ON_I NI T function.

Such exceptions are called non-predefined exceptions.

Y ou can trap a non-predefined Oracle Server error by declaring it first. The declared exception is
raised implicitly. In PL/SQL, PRAGVA EXCEPTI ON_I NI T tells the compiler to associate an
exception name with an Oracle error number. This enables you to refer to any internal exception
by name and to write a specific handler for it.

Note: PRAGVA (also called pseudoinstructions) is the keyword that signifies that the statement
isacompiler directive, which is not processed when the PL/SQL block is executed. Rather, it
directsthe PL/SQL compiler to interpret al occurrences of the exception name within the block
asthe associated Oracle Server error number.

Oracle Database 11g: PL/SQL Fundamentals 8 -16

Non-Predefined Error Trapping: Example

To trap Oracle Server error 01400 (“cannot insert NULL"):

DECLARE

e _insert_excep EXCEPTI ON;

[PRAGVA EXCEPTI ON TNI T(6 1 nsert_excep, -01400): |_@
BEG N

| NSERT | NTO depart ment s
(departnment id, department nane) VALUES (280, NULL);

EXCEPTI ON [} 3
VWHEN| e_i nsert _excep THENI
DBVS_OUTPUT. PUT_LI NE(' | NSERT OPERATI ON FAI LED);
DBVS_OUTPUT. PUT_LI NE(SQLERRM) ;

END;
/ .
[Results Script Qutput| 5] Explain | L Autotrace | B.DBMS Output | % OWia Output
¢Bd8&
anonymous block completed
INSERT OPERATION FAILED
ORA-01400: cannot insert WULL into ("ORAd41"."DEPARTMENTS"."DEPARTMENT_MAME")
8-17 Copyright © 2009, Oracle. All rights reserved.

Non-Predefined Error Trapping: Example
The example illustrates the three steps associated with trapping a non-predefined error:

1. Declare the name of the exception in the declarative section, using the syntax:
exception EXCEPTI ON,;
In the syntax, except i on isthe name of the exception.

2. Associate the declared exception with the standard Oracle Server error number by using
the PRAGVA EXCEPTI ON_I NI T function. Use the following syntax:
PRAGVA EXCEPTI ON_I NI T(exception, error_nunber);
In the syntax, except i on isthe previously declared exception and er r or _nunber isa

standard Oracle Server error number.
3. Reference the declared exception within the corresponding exception-handling routine.

Example

The example in the slide tries to insert the NULL value for thedepar t mrent _nane column of

thedepart nent s table. However, the operation is not successful because

depart ment _nane isaNOT NULL column. Note the following line in the example:
DBMS_OUTPUT. PUT_LI NE(SQLERRM ;

The SQLERRMfunction is used to retrieve the error message. Y ou learn more about SQLERRM

in the next few slides.

Oracle Database 11g: PL/SQL Fundamentals 8 -17

Functions for Trapping Exceptions

¢ SQLCODE: Returns the numeric value for the error code

SQ.ERRM Returns the message associated with the error
number

8-18 Copyright © 2009, Oracle. All rights reserved.

Functions for Trapping Exceptions

When an exception occurs, you can identify the associated error code or error message by using
two functions. Based on the values of the code or the message, you can decide which subsequent
actionsto take.

SQLCODE returns the Oracle error number for internal exceptions. SQLERRMreturns the
message associated with the error number.

Function Description

SQLCCDE Returns the numeric value for the error code (Y ou can assign it to a
NUMBER variable.)

SQLERRM Returns character data containing the message associated with the error
number

SQLCODE Values. Examples

SQLCODE Value Description

0 No exception encountered

1 User-defined exception

+100 NO_DATA_FOUND exception
negative number Ancther Oracle server error number

Oracle Database 11g: PL/SQL Fundamentals 8 -18

Functions for Trapping Exceptions

DECLARE
error_code NUMBER;
error_message VARCHAR2(255);
BEG N
EXCEPTI ON

WHEN OTHERS THEN
ROLLBACK;

error_code :=|SQLCCDE ; I

error_nessage :=

I NSERT | NTO errors (e_user, e date, error_code,
error _nmessage) VALUES(USER, SYSDATE, err or _code,

error_mnessage) ;
END;
/

8-19 Copyright © 2009, Oracle. All rights reserved.

Functions for Trapping Exceptions (continued)

When an exception is trapped in the WHEN OTHERS exception handler, you can use a set of
generic functionsto identify those errors. The example in the slide illustrates the values of
SQLCODE and SQLERRMassigned to variables, and then those variables being used in a SQL

statement.

Y ou cannot use SQLCCODE or SQLERRMdirectly in a SQL statement. Instead, you must assign
their valuesto local variables, and then use the variables in the SQL statement, as shown in the

following example:
DECLARE
err_num NUMBER,;
err_nmsg VARCHAR2(100);
BEG N

EXCEPTI ON

WHEN OTHERS THEN
err_num : = SQ.CODE;
err_nsg : = SUBSTR(SQLERRM 1, 100);
I NSERT | NTO errors VALUES (err_num err_mnsg);
END;
/

Oracle Database 11g: PL/SQL Fundamentals 8 -19

Trapping User-Defined Exceptions

using the RAI SE
statement.

Declare Raise Reference
Declarative Executable Exception-handling

section section section
Name the Explicitly raise Handle the raised
exception. the exception by exception.

Copyright © 2009, Oracle. All rights reserved.

Trapping User-Defined Exceptions

PL/SQL enables you to define your own exceptions depending on the requirements of your

application. For example, you may prompt the user to enter a department number.

Define an exception to deal with error conditions in the input data. Check whether the
department number exists. If it does not, you may have to raise the user-defined exception.

PL/SQL exceptions must be:

e Declared in the declarative section of a PL/SQL block
» Raised explicitly with RAI SE statements
e Handled inthe EXCEPTI ON section

Oracle Database 11g: PL/SQL Fundamentals 8 - 20

Trapping User-Defined Exceptions

DECLARE
v_dept no NUMBER : = 500;
v_name VARCHAR2(20) := 'Testing';
e_i nval i d_departnment EXCEPTI ON,
BEG N

UPDATE depart nent s
SET depart nment nanme
WHERE departnent _id

| F SQLYNOTFOUND THEN

V_name
v_dept no;

END | F;
COW T;

|RAI SE e_i nval i d_depart ment ; }—@

—-@

EXCEPTI ON |
VHEN [e_i nval i d_depar t ment THEN |

DBMS QUTPUT. PUT LI NE(' No such departnment id."');

®

/END, [Results EScriptOutput) Explain
¢dE&
| anaonymous block completed
Mo such department id.
8-21 Copyright © 2009, Oracle. All rights reserved.

Trapping User-Defined Exceptions (continued)

Y ou trap a user-defined exception by declaring it and raising it explicitly.
1. Declare the name of the user-defined exception within the declarative section.

Syntax:
exception EXCEPTI ON,

Inthe syntax, except i on isthe name of the exception.
2. Usethe RAI SE statement to raise the exception explicitly within the executable section.

Syntax:
RAI SE excepti on;

In the syntax, except i on isthe previously declared exception.
3. Reference the declared exception within the corresponding exception-handling routine.

Example

The block shown in the slide updates the depar t ment _nane of adepartment. The user
supplies the department number and the new name. If the supplied department number does not
exist, no rows are updated inthe depar t nent s table. An exception israised and a message is
printed for the user that an invalid department number was entered.

Note: Usethe RAI SE statement by itself within an exception handler to raise the same
exception again and propagate it back to the calling environment.

Oracle Database 11g: PL/SQL Fundamentals 8 -21

Propagating Exceptions in a Subblock

DECLARE
e_no_rows excepti on;
e_integrity excepti on;
PRAGVA EXCEPTION_INIT (e_integrity, -2292);
BEG N
FOR c_record I N enp_cursor LOOP
BEG N
Subblocks can handle SELECT . ..
an exception or pass UPDATE . ..
the exception to the | F SQLYNOTFOUND THEN
enclosing block. SR i s,
END | F;
END;
END LOCP;
EXCEPTI ON
VWHEN e_integrity THEN ...
WHEN e_no_rows THEN ...
END;
/
8-22 Copyright © 2009, Oracle. All rights reserved.

Propagating Exceptions in a Subblock

When a subblock handles an exception, it terminates normally. Control resumes in the enclosing
block immediately after the subblock’s END statement.

However, if aPL/SQL raises an exception and the current block does not have a handler for that
exception, the exception propagates to successive enclosing blocks until it finds a handler. If
none of these blocks handles the exception, an unhandled exception in the host environment
results.

When the exception propagates to an enclosing block, the remaining executable actions in that
block are bypassed.

One advantage of this behavior isthat you can enclose statements that require their own
exclusive error handling in their own block, while leaving more general exception handling to
the enclosing block.

Note in the example that the exceptions(no_r ows andi nt egri ty) aredeclared in the outer
block. In the inner block, when theno_r ows exception israised, PL/SQL looks for the
exception to be handled in the subblock. Because the exception is not handled in the subblock,
the exception propagates to the outer block, where PL/SQL finds the handler.

Oracle Database 11g: PL/SQL Fundamentals 8 -22

RAI SE_APPLI CATI ON_ERRCR Procedure

Syntax:

rai se_application_error (error_nunber,
message[, {TRUE | FALSE}]);

* You can use this procedure to issue user-defined error
messages from stored subprograms.

* You can report errors to your application and avoid
returning unhandled exceptions.

8-23 Copyright © 2009, Oracle. All rights reserved.

RAI SE_APPLI CATI ON_ERROR Procedure

Use the RAI SE_APPLI CATI ON_ERROR procedure to communicate a predefined exception

interactively by returning a nonstandard error code and error message. With
RAI SE_APPLI CATI ON_ERROR, you can report errorsto your application and avoid returning

unhandled exceptions.

In the syntax:
error_number Is a user-specified number for the exception between —20,000
and —20,999
message Is the user-specified message for the exception; is a character string

up to 2,048 bytes long

TRUE| FALSE |san optiona Boolean parameter (If TRUE, the error is placed
on the stack of previous errors. If FALSE, which is the default, the
error replaces all previous errors.)

Oracle Database 11g: PL/SQL Fundamentals 8 -23

RAI SE_APPLI CATI ON_ERRCR Procedure

e Is used in two different places:
— Executable section
— Exception section

 Returns error conditions to the user in a manner consistent
with other Oracle Server errors

8-24 Copyright © 2009, Oracle. All rights reserved.

RAI SE_APPLI CATI ON_ERROR Procedure (continued)

The RAI SE_APPLI CATI ON_ERROR procedure can be used in either the executable section or
the exception section of a PL/SQL program, or both. The returned error is consistent with how
the Oracle Server produces a predefined, non-predefined, or user-defined error. The error
number and message are displayed to the user.

Oracle Database 11g: PL/SQL Fundamentals 8 - 24

RAI SE_APPLI CATI ON_ERRCR Procedure

Executable section:

BEG N

DELETE FROM enpl oyees
VWHERE mmnager_id = v_ngr;
| F SQLYNOTFOUND THEN
RAI SE_APPLI CATI ON_ERROR(- 20202,
"This is not a valid manager');
END I F;

Exception section:

EXCEPTI ON
VWHEN NO DATA FOUND THEN
RAI SE_APPLI| CATI ON_ERRCR (-20201,
' Manager is not a valid enployee.');
FND;

8-25 Copyright © 2009, Oracle. All rights reserved.

RAI SE_APPLI CATI ON_ERROR Procedure (continued)

The slide shows that the RAI SE_APPLI CATI ON_ERROR procedure can be used in both the
executable and the exception sections of a PL/SQL program.

Here is another example of using the RAI SE_APPLI CATI ON_ERROR procedure:

DECLARE
e_nanme EXCEPTI ON,
BEG N

DELETE FROM enpl oyees

WHERE | ast_nane = 'Higgins';

| F SQLYNOTFOUND THEN RAI SE e_nane;

END | F;
EXCEPTI ON

VWHEN e _nane THEN

RAlI SE_APPLI CATI ON_ERRCR (-20999, 'This is not a valid

| ast nane'); ..
END;

/

Oracle Database 11g: PL/SQL Fundamentals 8 -25

Quiz
You can trap any error by including a corresponding handler
within the exception-handling section of the PL/SQL block.
1. True
2. False
8-26 Copyright © 2009, Oracle. All rights reserved.
Answer: 1

Y ou can trap any error by including a corresponding handler within the exception-handling
section of the PL/SQL block. Each handler consists of a WHEN clause, which specifies an

exception name, followed by a sequence of statements to be executed when that exception is
raised. You can include any number of handlers within an EXCEPTI ON section to handle

specific exceptions. However, you cannot have multiple handlers for a single exception.

Oracle Database 11g: PL/SQL Fundamentals 8 - 26

Summary

In this lesson, you should have learned to:
« Define PL/SQL exceptions
 Add an EXCEPTI ON section to the PL/SQL block to deal
with exceptions at run time
« Handle different types of exceptions:
— Predefined exceptions
— Non-predefined exceptions
— User-defined exceptions

* Propagate exceptions in nested blocks and call
applications

8-27 Copyright © 2009, Oracle. All rights reserved.

Summary

In this lesson, you learned how to deal with different types of exceptions. In PL/SQL, awarning
or error condition at runtime is called an exception. Predefined exceptions are error conditions
that are defined by the Oracle Server. Non-predefined exceptions can be any standard Oracle
Server errors. User-defined exceptions are exceptions specific to your application. The PRAGVA
EXCEPTI ON_I NI T function can be used to associate a declared exception name with an
Oracle Server error.

Y ou can define exceptions of your own in the declarative section of any PL/SQL block. For
example, you can define an exception named | NSUFFI CI ENT_FUNDS to flag overdrawn bank
accounts.

When an error occurs, an exception is raised. Normal execution stops and transfers control to the
exception-handling section of your PL/SQL block. Internal exceptions are raised implicitly
(automatically) by the run-time system; however, user-defined exceptions must be raised
explicitly. To handle raised exceptions, you write separate routines called exception handlers.

Oracle Database 11g: PL/SQL Fundamentals 8 -27

Practice 8: Overview

This practice covers the following topics:
« Creating and invoking user-defined exceptions
« Handling named Oracle Server exceptions

8-28 Copyright © 2009, Oracle. All rights reserved.

Practice 8: Overview

In these practices, you create exception handlers for a predefined exception and a standard
Oracle Server exception.

Oracle Database 11g: PL/SQL Fundamentals 8 -28

Introducing Stored Procedures and Functions

Copyright © 2009, Oracle. All rights reserved.

Objectives

After completing this lesson, you should be able to do the
following:

Differentiate between anonymous blocks and subprograms

Create a simple procedure and invoke it from an
anonymous block

Create a simple function
Create a simple function that accepts a parameter
Differentiate between procedures and functions

Copyright © 2009, Oracle. All rights reserved.

Objectives

Y ou learned about anonymous blocks. This lesson introduces you to named blocks, which are
also called subprograms. Procedures and functions are PL/SQL subprograms. In the lesson, you

learn to differentiate between anonymous blocks and subprograms.

Oracle Database 11g: PL/SQL Fundamentals 9 -2

Agenda

Introducing procedures and functions
Previewing procedures
Previewing functions

Copyright © 2009, Oracle. All rights reserved.

Oracle Database 11g: PL/SQL Fundamentals 9 -3

Procedures and Functions

e Are named PL/SQL blocks
e Are called PL/SQL subprograms

« Have block structures similar to anonymous blocks:
— Optional declarative section (without the DECLARE keyword)
— Mandatory executable section
— Optional section to handle exceptions

-4 Copyright © 2009, Oracle. All rights reserved.

Procedures and Functions

Up to this point, anonymous blocks were the only examples of PL/SQL code covered in this
course. As the name indicates, anonymous blocks are unnamed executable PL/SQL blocks.
Because they are unnamed, they can be neither reused nor stored for later use.

Procedures and functions are named PL/SQL blocks that are also known as subprograms. These
subprograms are compiled and stored in the database. The block structure of the subprogramsis
similar to the structure of anonymous blocks. Subprograms can be declared not only at the
schema level but also within any other PL/SQL block. A subprogram contains the following
sections:

Declarative section: Subprograms can have an optional declarative section. However,
unlike anonymous blocks, the declarative section of a subprogram does not start with the
DECLARE keyword. The optional declarative section followsthel S or AS keyword in the
subprogram declaration.

Executable section: Thisisthe mandatory section of the subprogram, which contains the
implementation of the business logic. Looking at the code in this section, you can easily
determine the business functionality of the subprogram. This section begins and ends with
the BEG N and END keywords, respectively.

Exception section: Thisisan optional section that is included to handle exceptions.

Oracle Database 11g: PL/SQL Fundamentals 9 -4

Differences Between Anonymous
Blocks and Subprograms

Anonymous Blocks

Subprograms

Unnamed PL/SQL blocks

Named PL/SQL blocks

Compiled every time

Compiled only once

Not stored in the database

Stored in the database

Cannot be invoked by other
applications

Named and, therefore, can be invoked by
other applications

Do not return values

If functions, must return values

Cannot take parameters

Can take parameters

9-5 Copyright © 2009, Oracle. All rights reserved.

Differences Between Anonymous Blocks and Subprograms

Thetable in the slide not only shows the differences between anonymous blocks and
subprograms, but also highlights the general benefits of subprograms.

Anonymous blocks are not persistent database objects. They are compiled every time they areto
be executed. They are not stored in the database for reuse. If you want to reuse them, you must
rerun the script that creates the anonymous block, which causes recompilation and execution.

Procedures and functions are compiled and stored in the database in a compiled form. They are

recompiled only when they are modified. Because they are stored in the database, any

application can make use of these subprograms based on appropriate permissions. The calling
application can pass parameters to the procedures if the procedure is designed to accept
parameters. Similarly, a calling application can retrieve avalue if it invokes a function or a

procedure.

Oracle Database 11g: PL/SQL Fundamentals 9 -5

Agenda

Introducing procedures and functions
Previewing procedures
Previewing functions

Copyright © 2009, Oracle. All rights reserved.

Oracle Database 11g: PL/SQL Fundamentals 9 -6

Procedure: Syntax

D]
| S| AS

CREATE [OR REPLACE] PROCEDURE procedure_nane
[(argunent 1 [nodel] datatypel,
argunment 2 [node2] dat at ype2,

pr ocedur e_body;

Copyright © 2009, Oracle. All rights reserved.

Procedure: Syntax

The slide shows the syntax for creating procedures. In the syntax:

procedure_name

argument

mode

datatype

Procedure_body

Is the name of the procedure to be created

Is the name given to the procedure parameter. Every argument is
associated with amode and data type. Y ou can have any number of
arguments separated by commas.

Mode of argument:

| N (default)
ouT
IN OUT

Is the data type of the associated parameter. The data type of
parameters cannot have explicit size; instead, use %I YPE.

Isthe PL/SQL block that makes up the code

The argument list is optional in a procedure declaration. You learn about procedures in detail in
the course titled Oracle Database 11g: Develop PL/SQL Program Units.

Oracle Database 11g: PL/SQL Fundamentals 9 -7

Creating a Procedure

CREATE TABLE dept AS SELECT * FROM depart nents;
CREATE PROCEDURE add_dept |S

v_dept i d dept. departnent i dW'YPE;

v_dept _nane dept. depart nment _nanme%l YPE;

BEG N

v_dept _id: =280;

v_dept _nane: =" ST-Curri cul um ;

| NSERT | NTO dept (depart nment _i d, depart nent _nane)
VALUES(v_dept _id, v_dept _nane);

DBMS_QUTPUT. PUT_LINE(' Inserted '|| SQLY%RONCOUNT
1" row ');

END;

9-8 Copyright © 2009, Oracle. All rights reserved.

Creating a Procedure
In the code example, the add_dept procedure inserts a new department with department 1D
280 and department name ST- Curri cul um

In addition, the example shows the following:
» Thedeclarative section of a procedure starts immediately after the procedure declaration
and does not begin with the DECLARE keyword.
* The procedure declares two variables, dept i d and dept _nane.
* The procedure uses the implicit cursor attribute or the SQLYRONCOUNT SQL attribute to
verify that the row was successfully inserted. A value of 1 should be returned in this case.

Note: See the following page for more notes on the example.

Oracle Database 11g: PL/SQL Fundamentals 9 -8

Procedure: Example

Note
* When you create any object, the entries are made to theuser _obj ect s table. When the
codein the slide is executed successfully, you can check the user _obj ect s table for
the new objects by issuing the following command:

SELECT obj ect _nane, obj ect _t ype FROM user _obj ect s;

[Results| 5] script output | B Explain | ElAutotrace |
Rezults: .
OBJECT_MAME @ oBECT_TvPE|
41 COPY_EMP TABLE
42|DEPT TABLE |
43 CREET PROCEDURE
44] ADD_DEFT FROCEDURE |
45 MY_SEQ SECQUENCE

» The source of the procedure is stored inthe user _sour ce table. You can check the
source for the procedure by issuing the following command:

SELECT * FROM user _source WHERE nane=' ADD_DEPT' ;

[Results| 5] script Output |'E:jEprain ElAutotrace |=3DBMS Cutput | (28 OWa Sutput
Results:
nameE || TveE @ unE|f TET

1 ADD_DEPT PROCEDURE 1 PROCEDURE add_dept |5

2 ADD_DEPT PROCEDURE 2 w_depi_id dept.department_id%T 1 PE;

3 ADD_DEFT PROCEDURE 3 w_dept_name dept.department_nam e%T7PE;

4 ADD_DEPT PROCEDURE 4 BEGIN

5 ADD_DEPT PROCEDURE 5 ow_dept_id:=280;

6 ADD_DERT PROCEDURE & w_dept_name:="ST-Curriculum’;

7 ADD_DEPT PROCEDURE 7 IMSERT INTO dept{department_id,department_natm)

g ADD_DEPT PROCEDURE g WALUES{_dept_idv_dept_name);

9 ADD_DEPT PROCEDURE 9 DEMS_OUTPUT.PUT_LIME Inserted || SOL%ROWCOUNT || rowe'y;

10 ADD_DEFT PROCEDURE 10 EMLDy;

Oracle Database 11g: PL/SQL Fundamentals 9 -9

Invoking a Procedure

BEG N
add_dept;
END;
/
SELECT departnent _id, departnent_nanme FROM dept
VWHERE depart nment _i d=280;

[Results | [Bscript Output| B Explain |&}Autotrace

vHdE

ahonvmous block completed
Inserted 1 row

DEPARTMENT_ID DEFARTHENT_MAME

280 ST-Curriculum

1 rows selected

9-10 Copyright © 2009, Oracle. All rights reserved.

Invoking the Procedure

The slide shows how to invoke a procedure from an anonymous block. Y ou must include the call
to the procedure in the executable section of the anonymous block. Similarly, you can invoke the
procedure from any application, such as a Forms application or a Java application. The SELECT

statement in the code checks to see whether the row was successfully inserted.
Y ou can also invoke a procedure with the SQL statement CALL <pr ocedur e_nane>.

Oracle Database 11g: PL/SQL Fundamentals 9 -10

Agenda

Introducing procedures and functions
Previewing procedures
Previewing functions

Copyright © 2009, Oracle. All rights reserved.

Oracle Database 11g: PL/SQL Fundamentals 9-11

Function: Syntax

CREATE [OR REPLACE] FUNCTI ON functi on_nane
[(argunent 1 [nodel] dat atypel,
argunment 2 [node2] dat at ypez2,
o)]
RETURN dat at ype
| S| AS
functi on_body;

9-12 Copyright © 2009, Oracle. All rights reserved.

Function: Syntax
The slide shows the syntax for creating a function. In the syntax:

function_name Is the name of the function to be created

argument Is the name given to the function parameter (Every argument is
associated with amode and data type. Y ou can have any number
of arguments separated by a comma. Y ou pass the argument when
you invoke the function.)

mode Is the type of parameter (Only | N parameters should be declared.)

datatype Is the data type of the associated parameter

RETURN datatype Isthe datatype of the value returned by the function

function_body Is the PL/SQL block that makes up the function code
The argument list is optional in the function declaration. The difference between a procedure
and a function is that a function must return a value to the calling program. Therefore, the syntax

contains return_type, which specifies the data type of the value that the function returns. A
procedure may return avalue viaan OUT or | N QUT parameter.

Oracle Database 11g: PL/SQL Fundamentals 9-12

Creating a Function

CREATE FUNCTI ON check_sal RETURN Bool ean IS
v_dept _id enpl oyees. depart nent i d%'YPE;
V_enpno enpl oyees. enpl oyee_i d%IYPE;

v_sal enpl oyees. sal ar y%I'YPE;

v_avg_sal enpl oyees. sal ar y%IYPE;
BEG N

v_enpno: =205;

SELECT sal ary, departnment _id | NTO v_sal ,v_dept _id FROM
enpl oyees

WHERE enpl oyee i d= v_enpno;
SELECT avg(sal ary) |INTO v_avg sal FROM enpl oyees WHERE
depart ment _i d=v_dept _i d;
IF v_sal > v_avg sal THEN
RETURN TRUE;
ELSE
RETURN FALSE;
END I F;
EXCEPTI ON
VWHEN NO DATA FOUND THEN
RETURN NULL;
END;

9-13 Copyright © 2009, Oracle. All rights reserved.

Function: Example

Thecheck_sal functioniswritten to determine whether the salary of a particular employeeis
greater than or less than the average salary of all employees working in the same department.
The function returns TRUE if the salary of the employee is greater than the average salary of the
employees in the department; if not, it returns FALSE. The function returns NULL if a
NO_DATA FOUND exception is thrown.

Note that the function checks for the employee with the employee ID 205. The function is hard-
coded to check only for this employee ID. If you want to check for any other employees, you
must modify the function itself. Y ou can solve this problem by declaring the function such that it
accepts an argument. Y ou can then pass the employee ID as parameter.

Oracle Database 11g: PL/SQL Fundamentals 9 -13

Invoking a Function

BEG N
| F (check_sal IS NULL) THEN
DBMS_OUTPUT. PUT_LI NE(" The function returned
NULL due to exception');
ELSIF (check_sal) THEN
DBMS_OUTPUT. PUT_LI NE(" Sal ary > aver age');

ELSE
DBMS_OUTPUT. PUT_LI NE(' Sal ary < average');
END | F;
END;
/
[Results | [&] Script Output. B Ex
¢B8E&
ananymaus block completed
Salary > average
9-14 Copyright © 2009, Oracle. All rights reserved.

Invoking the Function

Y ou include the call to the function in the executable section of the anonymous block.

The function isinvoked as a part of a statement. Remember that thecheck_sal function
returns Bool ean or NULL. Thusthe call to the function is included as the conditional
expression for the | F block.

Note: You can use the DESCRI BE command to check the arguments and return type of the

function, as in the following example:
DESCRI BE check_sal ;

Oracle Database 11g: PL/SQL Fundamentals 9 - 14

Passing a Parameter to the Function

DROP FUNCTI ON check_sal ;
CREATE FUNCTI ON check_sal (p_enmpno enpl oyees. enpl oyee_i d%I'YPE)
RETURN Bool ean |S

v_dept i d enpl oyees. depart ment i d%I'YPE;

v_sal enpl oyees. sal ar y%I'YPE;
v_avg_sal enpl oyees. sal ar y%IYPE;
BEG N

SELECT sal ary, departnent _id I NTO v_sal,v_dept_id FROM enpl oyees
WHERE enpl oyee i d=p_enpno;
SELECT avg(sal ary) |INTO v_avg sal FROM enpl oyees
VWHERE depart nent i d=v_dept i d;
IF v_sal > v_avg sal THEN
RETURN TRUE;
ELSE
RETURN FALSE;
END I F;
EXCEPTI ON

9-15 Copyright © 2009, Oracle. All rights reserved.

Passing a Parameter to the Function

Remember that the function was hard-coded to check the salary of the employee with employee
ID 205. The code shown in the slide removes that constraint because it is rewritten to accept the
employee number as a parameter. You can now pass different employee numbers and check for
the employee’s salary.

Y ou learn more about functions in the course titled Oracle Database 11g: Develop PL/SQL
Program Units.

The output of the code example inthe slide is as follows:

[results | Bl script Sutput B Explain | =5

¢HdE

DEOP FUMCTION check_sal succeeded.
FUNCTION check_sal Compiled.

Oracle Database 11g: PL/SQL Fundamentals 9 -15

Invoking the Function with a Parameter

BEG N
DBMS_QUTPUT. PUT_LI NE(' Checki ng for enployee with id 205');
| F (check_sal (205) 1S NULL) THEN
DBVS_OUTPUT. PUT_LI NE(' The function returned
NULL due to exception');
ELSI F (check_sal (205)) THEN
DBMS _OUTPUT. PUT LI NE(' Sal ary > average');
ELSE
DBVS_OUTPUT. PUT_LI NE(' Sal ary < average');
END | F;
DBMS_QUTPUT. PUT_LI NE(' Checki ng for enployee with id 70");
| F (check_sal (70) IS NULL) THEN
DBVS_OUTPUT. PUT_LI NE(' The function returned
NULL due to exception');
ELSI F (check_sal (70)) THEN
END | F;
END;
/

9-16 Copyright © 2009, Oracle. All rights reserved.

Invoking the Function with a Parameter

The code in the slide invokes the function twice by passing parameters. The output of the code is
asfollows:

[Results | [E] Seript output. B Explain |_i§_-:'jAutu:utrace
¢8da

anonymous block completed

Checking for emplovee with id 205

Salary = awerage

Checking for emplovee with id 70

The Tunction returned NULL due To exception

7

Oracle Database 11g: PL/SQL Fundamentals 9 -16

a s oD

Quiz

Subprograms:
1.

Are named PL/SQL blocks and can be invoked by other
applications

Are compiled only once

Are stored in the database

Do not have to return values if they are functions
Can take parameters

Copyright © 2009, Oracle. All rights reserved.

Answer: 1,2,3,5

Oracle Database 11g: PL/SQL Fundamentals 9 -17

Summary

In this lesson, you should have learned to:

Create a simple procedure

Invoke the procedure from an anonymous block
Create a simple function

Create a simple function that accepts parameters
Invoke the function from an anonymous block

Copyright © 2009, Oracle. All rights reserved.

Summary

Y ou can use anonymous blocks to design any functionality in PL/SQL. However, the major
constraint with anonymous blocks is that they are not stored and, therefore, cannot be reused.

Instead of creating anonymous blocks, you can create PL/SQL subprograms. Procedures and
functions are called subprograms, which are named PL/SQL blocks. Subprograms express
reusable logic by virtue of parameterization. The structure of a procedure or function is similar
to the structure of an anonymous block. These subprograms are stored in the database and are,
therefore, reusable.

Oracle Database 11g: PL/SQL Fundamentals 9 -18

Practice 9: Overview

This practice covers the following topics:
* Converting an existing anonymous block to a procedure
* Modifying the procedure to accept a parameter
* Writing an anonymous block to invoke the procedure

9-19 Copyright © 2009, Oracle. All rights reserved.

Oracle Database 11g: PL/SQL Fundamentals 9 -19

Appendix A
Practices and Solutions

Table of Contents

Practices and Solutions for Lesson L.........cccoiiiiiiiiiieiiicie e 3
Practice I-1: Accessing SQL Developer Resources..........cocevevveeeienieninncnecnieeieseee 3
Practice I-2: Getting Started..........cccoeviieiieiieiiiieiie et e 3
Solution I-1: Accessing SQL Developer ReSOUrcesoccuvevieeiiieniienieeieeieeiieeiiens 6
Solution I-2: Getting Started...........ccveeueeiiiriiieeiie ettt ettt e e e e eaae e 7

Practices and Solutions for Lesson 1cccoiiiiiieiiiiiiiniieie et 14
Practice 1: Introduction to PL/SQLcooiiiiiiiiciie e 14
Solution 1: Introduction to PL/SQL..........cooiiiiiiiiiie e 15

Practices and Solutions fOr LeSSon 2ccciiiiiiiiieiiieiiieiieeiie ettt 16
Practice 2: Declaring PL/SQL Variablesccoccevieiiieiiiniieiiecie e 16
Solution 2: Declaring PL/SQL Variablescccoovueeiiiiiiinniieeieceeeeeeee e 18

Practices and Solutions for Lesson 3cocciiiiiiiieiiieiiiieie e 21
Practice 3: Writing Executable Statements............coceveerieeieniininiicnecieenceecceie e 21
Solution 3: Writing Executable Statementsceecueeviieniiinniienie e 24

Practices and Solutions fOr LeSSOn 4cccoioiiiiieiiieiiieiieciie ettt 28
Practice 4: Interacting with the Oracle Server..........ccocevieiiniiniiiiiieceneeee 28
Solution 4: Interacting with the Oracle Serverccooovevviieiieiieiieeee e, 30

Practices and Solutions for LeSSOn 5cooiiiiiiiieiiieiieieie et 33
Practice 5: Writing Control StruCtUIES........ccuevieriiriiireeie ettt 33
Solution 5: Writing Control StrUCUIESccceeriieriieeiieeieeeeeiie et 35

Practices and Solutions fOr LeSSON 6cccoooiiiriieiiieiiieiieiie et 38
Practice 6: Working with Composite Data Types........ccceevveerierieeiiiiniieniie i 38
Solution 6: Working with Composite Data TYPes........cccveeriirriierieeiieniieiie e 40

Practices and Solutions fOr LeSSON 7ccciiiiiiiiieiiieiieiieciie ettt 45
Practice 7-1: Using EXPIiCit CUISOTS.....c..eouiriiriiiniieieeiie ettt sttt 45
Practice 7-2: Using Explicit Cursors — Optional..........cccceeuerieniniiineeneeienieneeseeens 48
Solution 7-1: Using EXPLICIt CUISOTS......cccuiiriiiiieiiieeieeeeeriieetie e eee e saae e eneeeeees 49
Solution 7-2: Using Explicit Cursors — Optional............ccccevvveriiiiiiiniinineeieee e 54

Practices and Solutions for Lesson 8ccoooiiiiiiiiiiiiiniieie et 56
Practice 8-1: Handling Predefined EXCEptionsccccoeuevirniiniiiienieiienecnceieee 56
Practice 8-2: Handling Standard Oracle Server EXCeptionsccccecvevvevirnieneeniennnens 58
Solution 8-1: Handling Predefined EXCeptions..........ccceeevvevniienieeiiieiiieiiesie e 59
Solution 8-2: Handling Standard Oracle Server Exceptions...........cccceveveerieeienieneenne. 61

Practices and Solutions for Lesson 9ccccoiiiiiiieiiiiiiiiee e 62
Practice 9: Creating and Using Stored Procedurescoceeeeueriininninieeneiienienens 62
Solution 9: Creating and Using Stored Procedures............ccccevviieiieiiiinciinniienie e, 64

Oracle Database 11g: PL/SQL Fundamentals A -2

Practices and Solutions for Lesson |

In these practices, you identify information resources for SQL Developer, execute SQL
statements using SQL Developer, and examine data in the class schema. Specifically,
you:

Start SQL Developer

Create a new database connection

Browse the schema tables

Set a SQL Developer preference

Note: All written practices use SQL Developer as the development environment.
Although it is recommended that you use SQL Developer, you can also use the SQL*Plus
or JDeveloper environments that are available in this course.

Practice I-1: Accessing SQL Developer Resources

In this practice, you navigate to the SQL Developer home page and browse helpful
information on the tool.

1) Access the SQL Developer home page.
a) Access the online SQL Developer Home Page, which is available at:

http://www.oracle.com/technologv/products/database/sql developer/index.html

b) Bookmark the page for easier access in future.

2) Access the SQL Developer tutorial, which is available online at http://st-
curriculum.oracle.com/tutorial/SQLDeveloper/index.htm. Then review the following
sections and associated demonstrations:

a) What to Do First
b) Working with Database Objects
c) Accessing Data

Practice I-2: Getting Started

1) Start SQL Developer.

2) Create a database connection by using the following information (Hint: Select the
Save Password check box):

a) Connection Name: MyConnection
b) Username: ora4l
c) Password: ora41l

d) Hostname: localhost
e) Port: 1521

Oracle Database 11g: PL/SQL Fundamentals A -3

http://www.oracle.com/technology/products/database/sql_developer/index.html

Practice I-2: Getting Started (continued)

3)

4)

5)

6)

7)

8)

9)

f) SID: orcl

Test the new connection. If the Status is Success, connect to the database using this
new connection.

a) In the Database Connection window, click the Test button.
Note: The connection status appears in the lower-left corner of the window.
b) If the status is Success, click the Connect button.

Browse the structure of the EMPLOYEES table and display its data.

a) Expand the MyConnection connection by clicking the plus symbol next to it.
b) Expand the Tables icon by clicking the plus symbol next to it.

c) Display the structure of the EMPLOYEES table.

Use the EMPLOYEES tab to view data in the EMPLOYEES table.

Use the SQL Worksheet to select the last names and salaries of all employees whose
annual salary is greater than $10,000. Use both the Execute Statement (F9) and the
Run Script (F5) icons to execute the SELECT statement. Review the results of both
methods of executing the SELECT statements on the appropriate tabs.

Note: Take a few minutes to familiarize yourself with the data, or consult Appendix
B, which provides the description and data for all the tables in the HR schema that
you will use in this course.

From the SQL Developer menu, select Tools > Preferences. The Preferences window
appears.

Select Database > Worksheet Parameters. In the “Select default path to look for
scripts” text box, use the Browse button to select the /home /oracle/labs/plst
folder. This folder contains the code example scripts, lab scripts, and practice solution
scripts that are used in this course. Then, in the Preferences window, click OK to save
the Worksheet Parameter setting.

Familiarize yourself with the structure of the /home /oracle/labs/plsf folder.

a) Select File > Open. The Open window automatically selects the .../plsf folder
as your starting location. This folder contains three subfolders:

e The /code ex folder contains the code examples found in the course
materials. Each . sql script is associated with a particular page in the
lesson.

e The /labs folder contains the code that is used in certain lesson
practices. You are instructed to run the required script in the appropriate
practice.

e The /soln folder contains the solutions for each practice. Each . sgl
script is numbered with the associated practice exercise reference.

Oracle Database 11g: PL/SQL Fundamentals A -4

Practice I-2: Getting Started (continued)
b) You can also use the Files tab to navigate through folders to open the script files.

c) Using the Open window, and the Files tab, navigate through the folders and open
a script file without executing the code.

d) Close the SQL Worksheet.

Oracle Database 11g: PL/SQL Fundamentals A -5

Solution I-1: Accessing SQL Developer Resources

1) Access the SQL Developer home page.

2)

a) Access the online SQL Developer Home Page, which is available at:

D W W W

The SQL Developer home page is displayed as follows:

-3 Oracle SQL Developer - Microsoft Internet Explorer

Developer Tools
Enterprise Management
Applications Technology
Extensions and Plugins
Products A-Z

TECHNOLOGIES
Bl & Data Warehousing
Java

3

Oracle SQL Developer

Oracle SQL DEVE\OpEF is a free grapnlcal tool for database
deve\opment, With SQL Developer, you can browse
database objects, run SQL statements and SQL scripts, and

edit and debug PL/SQL statements. You can also run any
number of provided reports, as well as create and save your own. SQL
Developer enhances productivity and simplifies your database

development tasks.

L

I'LIE? SQL Developer can connect to any Oracle Database version 9.2.0.1 and
biﬁce later and runs on Windows, Linux and Mac OSX

PHP

Security What is Oracle SQL

Senvice-Oriented Architecture
XML

Windows Server System
Technologies A-Z

COMMUNITY = | SQL Developer

About OTN 'y A Exchange

Oracle ACEs

Regional Directors . . SQL Developer

Blogs ¥ Extensions Exchange
Podcasts 57 Team Blogs & Magazine
Events | Brticles

Newsletters
Qracle Magazine

1«

Developer?

OTN Forum

3
G
&
i

What is SGL Developer
1.22

Whitepapers &
Supporting Documents

Podcasts & Viewlets

Tutorials & Oracle by
Example (OBE

Documentation

€]

| Fle Edt View Favortes Took Help | *

J @Back > B |£| |EL| ;\1 ‘ /'-7\' Search “;1\'/ Favorites €?| ¥ iz =

JAddl’ESS |£§] http://www.orade.com/technology/products/database/sql_developer/index.html ﬂ Go

JLinks _J Financial _ /ST Curr _JOU _JTOOLs _JDoc&Tech _J11gPLSQL PU Related Doc _| OCP >
PRODUCTS Getting Started D loads Doc tati Forums Articles Sample Code Tutorials d
Database
Middleware

¥ FREE DOWHNLOAD

Download (7 June 07}
Oracle SQL Developer 1.2

o

Oracle Develop
[='cYN<W=§ The premier conference for
dewelopers Cicy here to ragister

Testimonials

“At Network Solutions, the developers have
moved from platform-zpecific, costly third-
party tools to Oracle SQL Developer. The
database access our developers need iz
mostly for stored procedure code and data
browsing and SQL Developer fits the bill.”

Dominic Delmoling
Director Database Engineering, Network
Solutions

Related Technologies

-Qracle Database 10g
_Oracle Database 10¢ EXpress

,—’—’_—l_l_||._g Local intranet

|
4

b) Bookmark the page for easier access in future.

Access the SQL Developer tutorial, which is available online at http://st-

curriculum.oracle.com/tutorial/SQLDeveloper/index.htm. Then review the following

sections and associated demos:

a) What to Do First
b) Working with Database Objects
c) Accessing Data

Oracle Database 11g: PL/SQL Fundamentals A -6

http://www.oracle.com/technology/products/database/sql_developer/index.html

Solution I-2: Getting Started

1) Start SQL Developer.
Click the SQL Developer icon on your desktop.

3]

SQL Developer

2) Create a database connection by using the following information (Hint: Select the
Save Password check box):

a)
b)
©)
d)
e)
f)

Connection Name: MyConnection
Username: ora41l

Password: ora41

Hostname: localhost

Port: 1521

SID: orcl

Right-click the Connections node on the Connections tabbed page and select
New Database Connection from the shortcut menu. Result: The New/Select
Database Connection window appears.

Use the preceding information to create the new database connection. In
addition, select the Save Password check box. For example:

Connection Mame | iy Connection |

Uzername | aradi |

Passward

tEERE |

Save Pazsword

COracle Access

Role detaut v | [] 0S Authertication
Connection Type |Eas||3—"| [] Merberos Authentication
[] Prozy Connection
Hostname Incahost |
Port 1521 |
() SIo | orcl |
|

() Service natme |

Oracle Database 11g: PL/SQL Fundamentals A -7

Solution I-2: Getting Started (continued)

3)

4)

Test the new connection. If the Status is Success, connect to the database using this
new connection.

a) In the Database Connection window, click the Test button.
Note: The connection status appears in the lower-left corner of the window.
b) If the status is Success, click the Connect button.

L New [/ Select Database Connection

Connection Ma.. Connection Det...| Copnection Name |MYCDnnEEtiUn

Username |0ra4l

Password |n-n-m

Sawe Password

() Service namel

Oracle
Rale |defaun vl [] 0% Authentication
Connection Type |Basic vl [] kerberos Authentication

[] Praxy Connection
Hostname ||ocalh|:|st |
Port [1521 |
(@) sID |0rc| |

Status @ SUCCess

Help | Save | | Clear | | Test | | Connect I}J | Cancel

Note: To display the properties of an existing connection, right-click the connection
name on the Connections tab and select Properties from the shortcut menu.

Browse the structure of the EMPLOYEES table and display its data.

a) Expand the MyConnection connection by clicking the plus symbol next to it.
b) Expand Tables by clicking the plus symbol next to it.

c) Display the structure of the EMPLOYEES table.

Drill down on the EMPLOYEES table by clicking the plus symbol next to it.
Click the EMPLOYEES table.

Result: The Columns tab displays the columns in the EMPLOYEES table as
follows:

Oracle Database 11g: PL/SQL Fundamentals A -8

Solution I-2: Getting Started (continued)

Oracle SQL Developer =]l
File Edit MView Navigate Run Source Versioning Migration Tools Help
GoEg 96 YEHh ©-0 = - E_
R Comnecti. | (L[] 2| B> MyConnection EEHEMPLOYEES &
[3 @ 4 Columns Data | Constraints | Grants | Statistics | Triggers | Flashback | Dependencies | Details | Inde l;
=&y Connections ~|| 7 B Actions...
=@ MyConnection B columnName [DataType |8 nunable |Data Deraun [CoLumnio [§ Primary Key [§
= f! -%b'“ EMPLOYEE_ID MUMBER(S, 0) Mo (nuin 1 iF
Z:Z P g;'i:;:i:m FIRST_NAME VARCHARZ(20 BYTE) fes il 2 {rully £
:_: & JempLoYEES | LAST_MAME VARCHARZ(2S BYTE) No (nun 3 (rully L
H EMPLOVEEID EmMAIL WARCHARZ(2E BYTE) Ma (rally 4 {rully E
B FIRST_MAME PHOME_NUMBER VARCHARZ(20 BYTE) Yes {null) 5 (nully F
a LAST_MAME HIRE_DATE DATE Na (mull 6 (rully C
g E:;:E_NUHHBER JOB_ID VARCHARZ(10 BYTE) No (nulh 7 {rull) €
5 HIRE_DATE SALARY MUMBER(S, 2) Yes (nuln 8 (rully b
R COMMISSION_PCT MUMBER{Z,2} Yes ol a {rully €
B saLary MANAGER_ID MUMBER(6,0) Yes (rualn 10 (rully &
8 CoOMMISSION_PCT DEPARTMENT_ID MUMBER{4, 0} Yes full) 11 {ruilly €
5 MANACER_ID
H DEPARTMENT_ID
- JoB_HISTORY
=5 Joss
- LOCATIONS
55 RECIONS
(03] E Wiews
5) Use the EMPLOYEES tab to view the data in the EMPLOYEES table.
To display employees’ data, click the Data tab.
Result: The EMPLOYEES table data is displayed as follows:
[MycConnection | EFIEMPLOYEES | =)
Columns |Data| Constraints | Grants | Statistics |Triggers | Flashback | Lependencies | Details | Indelzll
) =]
| 4 E[ﬂ E% 4 3 QEihLE Filter:| |v|ﬂu:til:uns...
EMPLOVEEID | FIRST_MamME|§ LasT_naMe|§ EMaIL|f PHOME_MUMBER | HIRE
1 100 Steven king SKIMG 5151234587 17-]UM-
2 101 Meena Kachhar MEDCH... 515.123.4568 21-5EP-
3 102 Lex De Haah LDEHAAR 515.122.4569 13- M-
4 1035 Alexander Hunaold AHUMOLD 590.423.4567 03-]AM-
5 104 Bruce Ernst BEERMST 590,423 4565 21-miAy
& 105 Dawvid Austin DALSTIM 590,423 4569 25-]UM-
7 106 valli Pataballa WPATABAL 590.4235.4560 05-FEEB-
a 107 Diana Lorentz DLOREM... 5904223 5567 07-FEB-
a9 108 Mancy Creenberg MCREEMEE 515.124.45649 17-A1C
10 109 Daniel Fawiet DFAVIET 515.124.4169 la-ALGC
11 110 John Chen JZHEM 515124 4289 Z8-%EP-
12 111 Izmael Sciarra ISCIARRA 515.124.4369 S0-5EP-
13 112 Joze Manuel Urman JMURMARN 515124 4469 07-mMAR

Oracle Database 11g: PL/SQL Fundamentals A -9

Solution I-2: Getting Started (continued)

6) Use the SQL Worksheet to select the last names and salaries of all employees whose
annual salary is greater than $10,000. Use both the Execute Statement (F9) and Run
Script (F5) icons to execute the SELECT statement. Review the results of both
methods of executing the SELECT statements on the appropriate tabs.

Note: Take a few minutes to familiarize yourself with the data, or consult Appendix
B, which provides the description and data for all the tables in the HR schema that
you will use in this course.

To display the SQL Worksheet, click the MyConnection tab.

Note: This tab was opened previously when you drilled down on your database
connection.

Enter the appropriate SELECT statement. Press F9 to execute the query and F5 to
execute the query using the Run Script method.

For example, when you press F9, the results appear similar to the following:

(> MyConnection | EEMPLOYEES =]
= @O B8 ¢ 0015465 seconds m?CDnnectiDn -|

select last_name, salary
from emplovees
where salary > 10000;

.

B Results =] script Output | B Explain | Bl Autotrace | ADEMS Output | £ OWA Output

Results:

LasT_MAME ([§ saLaRY |

1 King 24000
Z Kochhar 17000
3 De Haan 17000
4 Creenberg 1z000
5 Raphaely 11000
& Ruszzell 14000
7 Partners 13500

Oracle Database 11g: PL/SQL Fundamentals A -10

Solution I-2: Getting Started (continued)

7) From the SQL Developer menu, select Tools > Preferences. The Preferences window
appears.

'ﬁ “. Environment
W Showe Splash Screen at Startup
e BCCeleratars |:| Sawe All When Deactivating or Exiting
[+ Code Editor Autamatically Reload Externally Modified Files
-~ Compare and Merge silently Reload When File Is Unmodified
[Database Check far Externally Modified Files an Startup
[#--Debugger
e Extensions Undo Lewel:
—-File Types e :
~-Global lgnore List UL A
[#--Migration
B} Versiohing Lookand Feel: | Oracle |
-~ Web Browser and Proxy Theme: [Fusinn Blue (Defaulty v]

Look and feel changes applied after restart

8) Select Database > Worksheet Parameters. In the “Select default path to look for

scripts” text box, use the Browse button to select the /home/oracle/labs/plst
folder.

L Select Directory x|
Location: [Itl plsf v| |§| |E |gg|g:|
P~ I
3 code_e €3 home
e L C3 oracle
@ soln 3 labs

Y ——

Directary Mame | fhaomefaracleflabs/plsf |

’ Open |[Cancel]

This folder contains the code example scripts, lab scripts, and practice solution scripts
that are used in this course.

Click Open to select the folder.

Oracle Database 11g: PL/SQL Fundamentals A -11

Solution I-2: Getting Started (continued)

Then, in the Preferences window, click OK to save the Worksheet Parameter setting.

'ﬁ | Database: Worksheet Parameters

[F- Environment
------ Accelerators
[#- Code Editar
------ Compare and Merge |:| Close all warksheets on dizcannect
= Database

------ Advanced Parameter
------ Autotrace fExplain Pl Max Rowes to print in a script | 5000 |

[JAutocommit in SGL Warksheet

Cpen aworksheet on connect

Prompt for Save file on Close.

------ Genetral Export Paran -
______ MLS Parameters Select default path to look for scripts
------ Objectviewer Parame | || | /home/oracle/labs /pisf | [Browse |
""" PL/SOL Compiler Opy This is the directory uzed when running a script using the @
------ Reparts abd
""" *0L Bditor Code Tem [] Zave Bind wariables ta disk on exit
[SQL Farmatter
------ Third Party |DEC Driw "Drag and Drop Effects”
""" User Defined Extensi Choose the type of statement created when dragging from the navigator
eet Paramete) Insert
[+ Debugger) Delete
------ Extenzions) Update
------ File Types (3) Select
------ Clobal lgnare List -
o g () Individual statements
[+ Migration ik =)
RO) ()]ain []Prompt ewery time
£ >

e I

9) Familiarize yourself with the structure of the /home /oracle/labs/plsf folder.

a) Select File > Open. The Open window automatically selects the .../plsf folder
as your starting location. This folder contains three subfolders:

Location: ||::l fhomejoracle/flabs,/plst '| '9 E@ Iﬁ "E S
D code_gx
D labs
D salh
Desktop
[
sql
]
code_gex

e The /code_ex folder contains the code examples found in the course
materials. Each . sgl script is associated with a particular page in the
lesson.

e The /1labs folder contains the code that is used in certain lesson
practices. You are instructed to run the required script in the appropriate
practice.

Oracle Database 11g: PL/SQL Fundamentals A -12

Solution I-2: Getting Started (continued)

e The /soln folder contains the solutions for each practice. Each . sgl
script is numbered with the associated practice exercise reference.

b) You can also use the Files tab to navigate through folders to open script files.

[2 Connections |I::| |_I]
W

E]{:l home

EID aracle

r_—l autozave
r_—l .config
D .eggeups
D .gconf
l:l .geonfd
r_—l .gname
D .gnamez
D .gnomez_private
l:l .@streamer-0.10
r_—l .metacity
D hautilus
D T

D qt

r_—l zqldeveloper
r_—l .zzh

r_—l Trazh

D WA

D Dezktop
---r_—ljdev
---Djdevhome
Elr_—l labs

@[3 pipu
o0

C B code_ex
D labs

¢ @-[=ain
-- I:l =qll
-1 sqiz
-] setup

c) Using the Open window, and the Files tab, navigate through the folders and open
a script file without executing the code.

d) Close the SQL Worksheet.
To close any SQL Worksheet tab, click X on the tab, as shown here:

| [Glcode_01_15.501 I)__(ll
SOl Warksheet | Hizto

bERE O WE ¢

Oracle Database 11g: PL/SQL Fundamentals A -13

Practices and Solutions for Lesson 1

The /home/oracle/labs folder is the working directory where you save the scripts
that you create.

The solutions for all the practices are in the /home/oracle/labs/plsf/soln
folder.

Practice 1: Introduction to PL/SQL
1) Which of the following PL/SQL blocks execute successfully?

a) BEGIN
END ;

b) DECLARE
v_amount INTEGER(10) ;
END;

¢) DECLARE
BEGIN
END;

d) DECLARE
v_amount INTEGER (10) ;
BEGIN
DBMS OUTPUT.PUT_ LINE (amount) ;
END;

2) Create and execute a simple anonymous block that outputs “Hello World.” Execute
and save this script as lab_01 02 soln.sqgl.

Oracle Database 11g: PL/SQL Fundamentals A -14

Solution 1: Introduction to PL/SQL

1y

2)

Which of the following PL/SQL blocks execute successfully?

a) BEGIN
END ;

b) DECLARE
v_amount INTEGER (10) ;
END;

c) DECLARE
BEGIN
END;

d) DECLARE
v_amount INTEGER (10) ;
BEGIN
DBMS OUTPUT.PUT LINE (amount) ;
END;

The block in a does not execute. It has no executable statements.

The block in b does not have the mandatory executable section that starts with
the BEGIN keyword.

The block in ¢ has all the necessary parts, but no executable statements.

The block in d executes succesfully.

Create and execute a simple anonymous block that outputs “Hello World.” Execute
and save this script as 1ab_01 02 soln.sqgl.

Enter the following code in the workspace, and then press F5.

SET SERVEROUTPUT ON

BEGIN

DBMS OUTPUT.PUT LINE(' Hello World ');
END;

You should see the following output on the Script Output tab:

[Results Su:ript Cutput B Explain

¢HdE

anaorymous hlock completed
Hella World

Click the Save button. Select the folder in which you want to save the file. Enter
lab 01 02 soln.sql as the file name and click Save.

Oracle Database 11g: PL/SQL Fundamentals A -15

Practices and Solutions for Lesson 2

Practice 2: Declaring PL/SQL Variables
In this practice, you declare PL/SQL variables.

1y

2)

3)

Identify valid and invalid identifiers:

a) today

b) last name

¢c) today’s date

d) Number of days in February this year
e) IsleapSyear

f) #number

g) NUMBER#

h) numberlto7?

Identify valid and invalid variable declaration and initialization:

a) number of copies PLS INTEGER;

b) PRINTER NAME constant VARCHAR?2 (10) ;
c) deliver to VARCHAR?2 (10) :=Johnson;
d) by when DATE:= CURRENT DATE+I;

Examine the following anonymous block, and then select a statement from the
following that is true.

DECLARE

v_fname VARCHAR2 (20) ;

v_lname VARCHAR2 (15) DEFAULT 'fernandez';
BEGIN

DBMS_OUTPUT.PUT LINE (v _fname ||' ' ||v_lname);
END;

a) The block executes successfully and prints “fernandez.”

b) The block produces an error because the fname variable is used without
initializing.

c) The block executes successfully and prints “null fernandez.”

d) The block produces an error because you cannot use the DEFAULT keyword to
initialize a variable of type VARCHAR2.

e) The block produces an error because the v_fname variable is not declared.

Oracle Database 11g: PL/SQL Fundamentals A -16

Practice 2: Declaring PL/SQL Variables (continued)

4) Modify an existing anonymous block and save it as a new script.

5)

a)

b)

d)

Open the 1ab 01 02 soln.sqgl script, which you created in Practice 1.
In this PL/SQL block, declare the following variables:

1. v_today of type DATE. Initialize today with SYSDATE.
2. v_tomorrow of type today. Use the $TYPE attribute to declare this
variable.

In the executable section:

1. Initialize the v_tomorrow variable with an expression, which calculates
tomorrow’s date (add one to the value in today)
2. Print the value of v_today and tomorrow after printing “Hello World”

Save your scriptas 1ab 02 04 soln.sqgl, and then execute.

The sample output is as follows (the values of v_today and v_tomorrow will
be different to reflect your current today’s and tomorrow’s date):

anaonmymous block completed
Hello World

TODAY I @ 05-1UN-09

TOMORROW IS : O&a-JUN-09

Editthe lab 02 04 soln.sql script.

a)

b)

c)

d)

Add code to create two bind variables, named b_basic percent and
b pf percent. Both bind variables are of type NUMBER.

In the executable section of the PL/SQL block, assign the values 45 and 12 to
b basic percent andb pf percent, respectively.

Terminate the PL/SQL block with “/” and display the value of the bind variables
by using the PRINT command.

Execute and save your scriptas lab 02 05 soln.sqgl. The sample output is
as follows:

anonymous black completed
h_basic_percent

45

h_pf_percent

12

Oracle Database 11g: PL/SQL Fundamentals A -17

Solution 2: Declaring PL/SQL Variables

1y

2)

3)

Identify valid and invalid identifiers:

a) today Valid

b) last name Valid

¢c) today’s date Invalid — character “’ ” not allowed
d) Number of days in February this year Invalid — Too long

e) IsleapSyear Valid

f) #number Invalid — Cannot start with “#”

g) NUMBER# Valid

h) numberlto7? Valid

Identify valid and invalid variable declaration and initialization:

a) number of copies PLS INTEGER; Valid
b) PRINTER NAME constant VARCHAR?2 (10) ; Invalid
c) deliver to VARCHAR2 (10) :=Johnson; Invalid
d) by when DATE:= CURRENT DATE+l; Valid

The declaration in b is invalid because constant variables must be initialized during
declaration.

The declaration in c is invalid because string literals should be enclosed within single
quotation marks.

Examine the following anonymous block, and then select a statement from the
following that is true.

DECLARE

v_fname VARCHAR2 (20) ;

v_lname VARCHAR2 (15) DEFAULT 'fernandez';
BEGIN

DBMS_OUTPUT.PUT LINE (v _fname ||' ' ||v_lname);
END;

a) The block executes successfully and prints “fernandez.”

b) The block produces an error because the fname variable is used without
initializing.

c) The block executes successfully and prints “null fernandez.”

d) The block produces an error because you cannot use the DEFAULT keyword to
initialize a variable of type VARCHAR2.

e) The block produces an error because the v_fname variable is not declared.

a. The block will execute successfully and print “fernandez.”

Oracle Database 11g: PL/SQL Fundamentals A -18

Solution 2: Declaring PL/SQL Variables (continued)

4) Modify an existing anonymous block and save it as a new script.
a) Openthe lab 01 02 soln.sqgl script, which you created in Practice 1.
b) Inthe PL/SQL block, declare the following variables:
1. Variable v_today of type DATE. Initialize today with SYSDATE.

DECLARE
v_today DATE:=SYSDATE;

2. Variable v_tomorrow of type today. Use the $TYPE attribute to declare
this variable.

| v_tomorrow v_today3TYPE;

c) In the executable section:
1. Initialize the v_tomorrow variable with an expression, which calculates
tomorrow’s date (add one to the value in v_today)
2. Print the value of v_today and v_tomorrow after printing “Hello World”

BEGIN

v_tomorrow:=v_today +1;

DBMS OUTPUT.PUT LINE (' Hello World ');

DBMS OUTPUT.PUT LINE ('TODAY IS : '|| v_today) ;

DBMS OUTPUT.PUT LINE ('TOMORROW IS : ' || v_tomorrow) ;
END;

d) Save your scriptas lab 02 04 soln.sqgl, and then execute.

The sample output is as follows (the values of v_today and v_tomorrow will
be different to reflect your current today’s and tomorrow’s date):

[Rresuits | &l script Qutput A Explain

¢ dE

anonymous block completed
Hello World

TODAY IS @ O5-JUN-09
TOMORREOW IS @ O&-JUN-09

Oracle Database 11g: PL/SQL Fundamentals A -19

Solution 2: Declaring PL/SQL Variables (continued)

5) Editthe 1ab 02 04 soln.sqgl script.

a) Add the code to create two bind variables, named b_basic percent and
b _pf percent. Both bind variables are of type NUMBER.

VARIABLE b basic percent NUMBER
VARIABLE b_pf percent NUMBER

b) In the executable section of the PL/SQL block, assign the values 45 and 12 to
b basic percent andb pf percent, respectively.

:b _basic_percent:=45;
:b_ pf percent:=12;

c) Terminate the PL/SQL block with “/” and display the value of the bind variables
by using the PRINT command.

/
PRINT b basic_percent
PRINT b_pf percent

OR

[PRINT

d) Execute and save your scriptas lab_02 05 soln.sqgl. The sample output is
as follows:

[Results Su:ript Qutput 'E;jEpr
¢ HdE

anorymous block completed
h_basic_percent

45

h_pT_percent

12

Oracle Database 11g: PL/SQL Fundamentals A - 20

Practices and Solutions for Lesson 3

Practice 3: Writing Executable Statements
In this practice, you examine and write executable statements.

DECLARE
v_weight NUMBER (3) := 600;
v_message VARCHAR2 (255) := 'Product 10012';
BEGIN
DECLARE
v_weight NUMBER (3) := 1;
V_message VARCHAR2 (255) := 'Product 11001';
v_new_locn VARCHAR2 (50) := 'Europe';
BEGIN
v_weight := v_weight + 1;
v_new locn := 'Western ' || v_new locn;

—>

END;
v_weight := v_weight + 1;
v_message := v_message || ' is in stock';
v_new locn := 'Western ' || v_new locn;
—>
END;

/

1) Evaluate the preceding PL/SQL block and determine the data type and value of each

of the following variables, according to the rules of scoping.

a) The value of v_weight at position 1 is:

b) The value of v_new locn at position 1 is:
c) The value of v_weight at position 2 is:

d) The value of v_message at position 2 is:

e) The value of v_new locn at position 2 is:

Oracle Database 11g: PL/SQL Fundamentals A - 21

Practice 3: Writing Executable Statements (continued)

2)

3)

DECLARE
v_customer VARCHAR2 (50) := 'Womansport';
V_Credit_rating VARCHAR2 (50) := 'EXCELLENT';
BEGIN
DECLARE
v_customer NUMBER(7) := 201;
v_name VARCHAR2 (25) := 'Unisports';
BEGIN
v_credit_rating :='GOOD';
END;
END;

In the preceding PL/SQL block, determine the values and data types for each of the
following cases:

a) The value of v_customer in the nested block is:

b) The value of v_name in the nested block is:

c) The value of v_credit rating in the nested block is:

d) The value of v_customer in the main block is:

e) The value of v_name in the main block is:

f) The value of v_credit rating in the main block is:

Use the same session that you used to execute the practices in the lesson titled

“Declaring PL/SQL Variables.” If you have opened a new session, execute
lab 02 05 soln.sgl. Then,editlab 02 05 soln.sqgl as follows:

a) Use single-line comment syntax to comment the lines that create the bind
variables, and turn on SERVEROUTPUT.

b) Use multiple-line comments in the executable section to comment the lines that
assign values to the bind variables.

c) In the declaration section:
1. Declare and initialize two temporary variables to replace the commented
out bind variables
2. Declare two additional variables: v_fname of type VARCHAR2 and size
15,and v_emp_sal of type NUMBER and size 10

Oracle Database 11g: PL/SQL Fundamentals A - 22

Practice 3: Writing Executable Statements (continued)
d) Include the following SQL statement in the executable section:

SELECT first name, salary INTO v_fname, v_emp sal
FROM employees WHERE employee i1d=110;

e) Change the line that prints “Hello World” to print “Hello” and the first name.
Then, comment the lines that display the dates and print the bind variables.

f) Calculate the contribution of the employee towards provident fund (PF).
PF is 12% of the basic salary, and the basic salary is 45% of the salary. Use local
variables for the calculation. Try to use only one expression to calculate the PF.
Print the employee’s salary and his or her contribution toward PF.

g) Execute and save your script as lab_ 03 03 soln.sqgl. The sample output is
as follows:

anonynous block completed

Hello John

YOUR SALARY I35 @ 5200

YOUR CONTREIEUTION TOWAEDS FPF:
442 3

Oracle Database 11g: PL/SQL Fundamentals A -23

Solution 3: Writing Executable Statements
In this practice, you examine and write executable statements.

DECLARE
v_weight NUMBER (3) := 600;
vV_message VARCHAR2 (255) := 'Product 10012';
BEGIN
DECLARE
v_weight NUMBER (3) := 1;
v_message VARCHAR2 (255) := 'Product 11001';
v_new_locn VARCHAR2 (50) := 'Europe';
BEGIN
v_weight := v_weight + 1;
v_new locn := 'Western ' || v_new locn;
—1>
END;
v_weight := v_weight + 1;
v_message := v_message || ' is in stock';
v_new locn := 'Western ' || v_new locn;
—1—>
END;
/

1) Evaluate the preceding PL/SQL block and determine the data type and value of each
of the following variables, according to the rules of scoping.

a) The value of v_weight at position 1 is:
2
The data type is NUMBER.

b) The value of v_new locn at position 1 is:
Western Europe
The data type is VARCHAR2.

c) The value of v_weight at position 2 is:

601
The data type is NUMBER.

d) The value of v_message at position 2 is:
Product 10012 is in stock
The data type is VARCHAR2.

e) The value of v_new locn at position 2 is:
Illegal because v_new locn is not visible outside the subblock

Oracle Database 11g: PL/SQL Fundamentals A - 24

Solution 3: Writing Executable Statements (continued)

DECLARE
v_customer VARCHAR2 (50) := 'Womansport';
v_credit rating VARCHAR2 (50) := 'EXCELLENT';
BEGIN
DECLARE
v_customer NUMBER(7) := 201;
v_name VARCHAR2 (25) := 'Unisports';
BEGIN
v_credit_rating :='GOOD';
END;
END;

2) In the preceding PL/SQL block, determine the values and data types for each of the
following cases:

a) The value of v_customer in the nested block is:
201
The data type is NUMBER.
b) The value of v_name in the nested block is:
Unisports
The data type is VARCHAR2.
c) The value of v_credit rating in the nested block is:
GOOD
The data type is VARCHAR2.
d) The value of v_customer in the main block is:
Womansport
The data type is VARCHAR2.
e) The value of v_name in the main block is:
Null. name is not visible in the main block and you would see an error.
f) The value of v_credit rating in the main block is:
EXCELLENT
The data type is VARCHAR2.

3) Use the same session that you used to execute the practices in the lesson titled
“Declaring PL/SQL Variables.” If you have opened a new session, execute
lab 02 05 soln.sqgl. Then,editlab 02 05 soln.sqgl as follows:

a) Use single-line comment syntax to comment the lines that create the bind
variables, and turn on SERVEROUTPUT.

-- VARIABLE b basic_percent NUMBER
-- VARIABLE b pf percent NUMBER
SET SERVEROUTPUT ON

Oracle Database 11g: PL/SQL Fundamentals A - 25

Solution 3: Writing Executable Statements (continued)
b) Use multiple-line comments in the executable section to comment the lines that

assign values to the bind variables.

/*:b basic percent:=45;
:b_pf percent:=12;*/

c) In the declaration section:

1. Declare and initialize two temporary variables to replace the commented
out bind variables

2. Declare two additional variables: v_fname of type VARCHAR2 and size
15,and v_emp_ sal of type NUMBER and size 10

DECLARE

v_basic_percent NUMBER:=45;
v_pf percent NUMBER:=12;
v_fname VARCHAR2 (15) ;
v_emp_sal NUMBER(10) ;

d) Include the following SQL statement in the executable section:

SELECT first name, salary INTO v_fname, v_emp sal
FROM employees WHERE employee i1d=110;

e) Change the line that prints “Hello World” to print “Hello” and the first name.

Then, comment the lines that display the dates and print the bind variables.

DBMS OUTPUT.PUT LINE(' Hello '|| v_fname);

/* DBMS OUTPUT.PUT LINE ('TODAY IS : '|| v_today) ;
DBMS OUTPUT.PUT LINE('TOMORROW IS : ' || v_tomorrow) ;*/
/

--PRINT b_basic_percent

--PRINT b_basic_percent

f)

Calculate the contribution of the employee towards provident fund (PF).

PF is 12% of the basic salary, and the basic salary is 45% of the salary. Use local
variables for the calculation. Try to use only one expression to calculate the PF.
Print the employee’s salary and his or her contribution toward PF.

DBMS OUTPUT.PUT LINE ('YOUR SALARY IS : '||v_emp sal);
DBMS OUTPUT.PUT LINE ('YOUR CONTRIBUTION TOWARDS PF:
'"| |v_emp sal*v basic percent/100*v_pf percent/100) ;

END;

Oracle Database 11g: PL/SQL Fundamentals A - 26

Solution 3: Writing Executable Statements (continued)

g) Execute and save your script as lab_ 03 03 soln.sqgl. The sample output is
as follows:

[Results | [& script Output B Explain
¢ HE

anonvmous block completed
Hello John
YOUR SALARY Is @ 5200
YOUR CONTREIBUTION TOWARDS PF:
442 .8

Oracle Database 11g: PL/SQL Fundamentals A - 27

Practices and Solutions for Lesson 4

Practice 4: Interacting with the Oracle Server
In this practice, you use PL/SQL code to interact with the Oracle Server.

1) Create a PL/SQL block that selects the maximum department ID in the
departments table and stores it in the v_max deptno variable. Display the
maximum department ID.

2)

a)
b)

d)

Declare a variable v_max_deptno of type NUMBER in the declarative section.

Start the executable section with the BEGIN keyword and include a SELECT
statement to retrieve the maximum department id from the departments
table.

Display v_max_deptno and end the executable block.

Execute and save your script as lab 04 01 soln.sqgl. The sample output is
as follows:

anonymous block completed
The maximum departmwent id is : Z70

Modify the PL/SQL block that you created in step 1 to insert a new department into
the departments table.

a)

b)

Loadthe 1ab 04 01 soln.sql script. Declare two variables:
v_dept name of type departments.department name and
v_dept_id of type NUMBER

Assign 'Education’ to v_dept name in the declarative section.

You have already retrieved the current maximum department number from the
departments table. Add 10 to it and assign the result to v_dept id.

Include an INSERT statement to insert data into the department name,
department id, and location id columns of the departments table.
Use values in dept _name and dept_id for department name and
department id, respectively, and use NULL for location id.

Use the SQL attribute SQL$ROWCOUNT to display the number of rows that are
affected.

Execute a SELECT statement to check whether the new department is inserted.
You can terminate the PL/SQL block with “/”” and include the SELECT statement
in your script.

Execute and save your script as lab 04 02 soln.sqgl. The sample output is
as follows:

Oracle Database 11g: PL/SQL Fundamentals A - 28

Practice 4: Interacting with the Oracle Server (continued)

ananmymous block completed
The maximum department_id is : 270
SOLMROWCOUNT gives 1

DEFARTHENT_ID DEFARTHENT _MAME MANAGER_ID LOCATION_ID

280 Education

1 rows selected

3) Instep 2, youset location id to NULL. Create a PL/SQL block that updates the
location idto 3000 for the new department.
Note: If you successfully completed step 2, continue with step 3a. If not, first execute
the solution script /soln/sol 04 02.sqgl.

a) Start the executable block with the BEGIN keyword. Include the UPDATE

statement to set the location idto 3000 for the new department (dept id
=280).

b) End the executable block with the END keyword. Terminate the PL/SQL block
with “/” and include a SELECT statement to display the department that you
updated.

c) Include a DELETE statement to delete the department that you added.

d) Execute and save your script as lab_04 03 soln.sqgl. The sample output is
as follows:

ananymous hlock completed
DEPARTMENT_ID DEPARTHENT_NAME MANAGER_ID LOCATION_ID

280 Educatian 3000
1 rows selected

1 rows deleted

Oracle Database 11g: PL/SQL Fundamentals A - 29

Solution 4: Interacting with the Oracle Server
In this practice, you use PL/SQL code to interact with the Oracle Server.
1) Create a PL/SQL block that selects the maximum department ID in the

departments table and stores it in the v_max deptno variable. Display the
maximum department ID.

2)

a)

b)

d)

Declare a variable v_max_deptno of type NUMBER in the declarative section.

DECLARE
v_max deptno NUMBER;

Start the executable section with the BEGIN keyword and include a SELECT
statement to retrieve the maximum department id from the departments
table.

BEGIN
SELECT MAX (department id) INTO v_max deptno FROM
departments;

Display v_max_deptno and end the executable block.

DBMS OUTPUT.PUT LINE ('The maximum department id is : ' ||
v_max_deptno) ;
END;

Execute and save your script as lab 04 01 soln.sqgl. The sample output is
as follows:

anonymous hlock completed
The maximum department id is : 270

Modify the PL/SQL block that you created in step 1 to insert a new department into
the departments table.

a)

Load the 1ab 04 01 soln.sql script. Declare two variables:
v_dept name of type departments.department name and
v_dept_id of type NUMBER

Assign ‘Education’ to v_dept name in the declarative section.

v_dept name departments.department name%TYPE:= 'Education';
v_dept_ id NUMBER;

Oracle Database 11g: PL/SQL Fundamentals A - 30

Solution 4: Interacting with the Oracle Server (continued)

b) You have already retrieved the current maximum department number from the
departments table. Add 10 to it and assign the result to v_dept id.

|v_dept_id := 10 + v_max_deptno; |

c) Include an INSERT statement to insert data into the department name,
department id, and location id columns of the departments table.
Use values in dept _name and dept_id for department name and
department id, respectively, and use NULL for location id.

INSERT INTO departments (department id, department name,
location_id)
VALUES (v_dept id, v_dept name, NULL) ;

d) Use the SQL attribute SQL$ROWCOUNT to display the number of rows that are
affected.

DBMS OUTPUT.PUT LINE (' SQL%ROWCOUNT gives ' || SQL%ROWCOUNT) ;

e) Execute a SELECT statement to check whether the new department is inserted.
You can terminate the PL/SQL block with “/” and include the SELECT statement
in your script.

/
SELECT * FROM departments WHERE department id= 280;

f) Execute and save your script as lab_04 02 soln.sqgl. The sample output is
as follows:

ananmymous block completed
The maximum department_id is : 270
SOLMROWCOUNT gives 1

DEPARTMENT_ID DEFARTHMENT _HAME MANAGER_ID LOCATION_ID

280 Education

1 rows selected

Oracle Database 11g: PL/SQL Fundamentals A - 31

Solution 4: Interacting with the Oracle Server (continued)

3) Instep 2, youset location id to NULL. Create a PL/SQL block that updates the
location idto 3000 for the new department.
Note: If you successfully completed step 2, continue with step 3a. If not, first execute
the solution script /soln/sol 04 02.sqgl.

a) Start the executable block with the BEGIN keyword. Include the UPDATE

statement to set location idto 3000 for the new department (dept id
=280).

BEGIN
UPDATE departments SET location id=3000 WHERE
department 1d=280;

b) End the executable block with the END keyword. Terminate the PL/SQL block
with “/” and include a SELECT statement to display the department that you
updated.

END;

/
SELECT * FROM departments WHERE department 1d=280;

c) Include a DELETE statement to delete the department that you added.

|DELETE FROM departments WHERE department id=280; |

d) Execute and save your script as lab_04 03 soln.sqgl. The sample output is
as follows:

ananymous hlaock completed
DEPARTMENT_ID DEPARTHENT_NAME MANAGER_ID LOCATION_ID

280 Educatian 3000
1 rows selected

1 rows deleted

Oracle Database 11g: PL/SQL Fundamentals A - 32

Practices and Solutions for Lesson 5

Practice 5: Writing Control Structures

In this practice, you create PL/SQL blocks that incorporate loops and conditional control
structures. This practice tests your understanding of various IF statements and LOOP
constructs.

1) Execute the command in the 1ab 05 01.sql file to create the messages table.
Write a PL/SQL block to insert numbers into the messages table.
a) Insert the numbers 1 through 10, excluding 6 and 8.
b) Commit before the end of the block.
c) Execute a SELECT statement to verify that your PL/SQL block worked.

Result: You should see the following output:

[pesuttz | & script Qutput B Explain |
¢ dE

ananvmous hlock completed
RESULTS

L BTN I) RN W LN Y

0

B rows selected

2) Execute the 1ab_ 05 02.sql script. This script creates an emp table that is a
replica of the employees table. It alters the emp table to add a new column,
stars, of VARCHAR?2 data type and size 50. Create a PL/SQL block that inserts an
asterisk in the stars column for every $1000 of an employee’s salary. Save your
script as lab_ 05 02 soln.sql.

a) In the declarative section of the block, declare a variable v_empno of type
emp .employee id and initialize it to 176. Declare a variable v_asterisk
of type emp . stars and initialize it to NULL. Create a variable v_sal of type
emp.salary.

b) In the executable section, write logic to append an asterisk (*) to the string for
every $1,000 of the salary. For example, if the employee earns $8,000, the string

Oracle Database 11g: PL/SQL Fundamentals A -33

Practice 5: Writing Control Structures (continued)

of asterisks should contain eight asterisks. If the employee earns $12,500, the
string of asterisks should contain 13 asterisks.

Update the stars column for the employee with the string of asterisks. Commit
before the end of the block.

Display the row from the emp table to verify whether your PL/SQL block has
executed successfully.

Execute and save your script as lab_ 05 02 soln.sqgl. The output is as
follows:

[Results | [& script Output T Explain f,-;]AumtraceL@.DEMS output | QA

¢Hd:E

anorvmous hlock completed

EMPLOYEE_ID SALARY STARS

196 8E0G AR

1 rows selected

Oracle Database 11g: PL/SQL Fundamentals A - 34

Solution 5: Writing Control Structures

1) Execute the command in the 1ab 05 01.sql file to create the messages table.
Write a PL/SQL block to insert numbers into the messages table.

a)
b)

c)

Insert the numbers 1 through 10, excluding 6 and 8.
Commit before the end of the block.

BEGIN
FOR i1 in 1..10 LOOP
IF i =6 or 1 = 8 THEN
null;
ELSE
INSERT INTO messages (results)
VALUES (i) ;
END IF;
END LOOP;
COMMIT;
END;
/

Execute a SELECT statement to verify that your PL/SQL block worked.

|SELECT * FROM messages;

Result: You should see the following output:

[pesuttz | & script Qutput B Explain |

¢ Hd&

L BTN I) RN W LN Y

ananvmous hlock completed
RESULTS

0

B rows selected

Oracle Database 11g: PL/SQL Fundamentals A - 35

Solution 5: Writing Control Structures (continued)

2) Execute the 1ab_ 05 02.sql script. This script creates an emp table that is a
replica of the employees table. It alters the emp table to add a new column,
stars, of VARCHAR?2 data type and size 50. Create a PL/SQL block that inserts an
asterisk in the stars column for every $1000 of the employee’s salary. Save your
script as lab_ 05 02 soln.sqgl.

a)

b)

d)

In the declarative section of the block, declare a variable v_empno of type
emp.employee id and initialize it to 176. Declare a variable v_asterisk
of type emp . stars and initialize it to NULL. Create a variable v_sal of type
emp.salary.

DECLARE
V_empno emp.employee 1d%TYPE := 176;
v_asterisk emp.stars$TYPE := NULL;
v_sal emp.salary$TYPE;

In the executable section, write logic to append an asterisk (*) to the string for
every $1,000 of the salary. For example, if the employee earns $8,000, the string
of asterisks should contain eight asterisks. If the employee earns $12,500, the
string of asterisks should contain 13 asterisks.

BEGIN
SELECT NVL (ROUND (salary/1000), 0) INTO v_sal
FROM emp WHERE employee id = v_empno;

FOR i IN 1..v_sal

LOOP

v_asterisk := v_asterisk ||'*';
END LOOP;

Update the stars column for the employee with the string of asterisks. Commit
before the end of the block.

UPDATE emp SET stars = v_asterisk
WHERE employee id = v_empno;
COMMIT;

END;

/

Display the row from the emp table to verify whether your PL/SQL block has
executed successfully.

SELECT employee id,salary, stars
FROM emp WHERE employee id =176;

Oracle Database 11g: PL/SQL Fundamentals A - 36

Solution 5: Writing Control Structures (continued)

e) Execute and save your scriptas lab_ 05 02 soln.sqgl. The output is as
follows:

[Results Script Qutput| Tl Explain [T Autotrace |~3DEMS Cutput | @

¢ BdE

anonymous bhlock completed

EMFLOYEE_ID SALARY STARS
T o sc00 AR

1 rows selected

Oracle Database 11g: PL/SQL Fundamentals A - 37

Practices and Solutions for Lesson 6

Practice 6: Working with Composite Data Types

1) Write a PL/SQL block to print information about a given country.

a) Declare a PL/SQL record based on the structure of the countries table.

b) Declare a variable v_countryid. Assign CA to v_countryid.

c) In the declarative section, use the $ROWTYPE attribute and declare the
v_country record variable of type countries.

d) In the executable section, get all the information from the countries table by
using v_countryid. Display selected information about the country. The
sample output is as follows:

anonymous block completed
Country Id: C4 Country Name: Canada Fegion: 2

e) You may want to execute and test the PL/SQL block for countries with the IDs
DE, UK, and US.

2) Create a PL/SQL block to retrieve the names of some departments from the
departments table and print each department name on the screen, incorporating an
associative array. Save the script as lab_ 06 02 soln.sqgl.

a) Declare an INDEX BY table dept table type of type
departments.department name. Declare a variable my dept table
of type dept _table type to temporarily store the names of the departments.

b) Declare two variables: £ 1loop count and v_deptno of type NUMBER.
Assign 10to £ loop count and 0 to v_deptno.

c) Using a loop, retrieve the names of 10 departments and store the names in the
associative array. Start with department id 10. Increase v_deptno by 10
for every loop iteration. The following table shows the department id for
which you should retrieve the department name.

DEPARTMENT ID DEPARTMENT NAME
10 Administration
20 Marketing
30 Purchasing
40 Human Resources
50 Shipping
60 IT
70 Public Relations
80 Sales
90 Executive
100 Finance

Oracle Database 11g: PL/SQL Fundamentals A - 38

Practice 6: Working with Composite Data Types (continued)

d) Using another loop, retrieve the department names from the associative array and
display them.

e) Execute and save your scriptas lab_ 06 02 soln.sqgl. The output is as
follows:

anonymnols block comnpleted
Ldministration
HMarketing
Purchaszing
Human Resources
Shipping

IT

Public Relations
Sales

Executiwve
Finance

3) Modify the block that you created in Practice 2 to retrieve all information about each
department from the departments table and display the information. Use an
associative array with the INDEX BY table of records method.

a) Loadthe lab 06 02 soln.sqgl script.

b) You have declared the associative array to be of type
departments.department name. Modify the declaration of the
associative array to temporarily store the number, name, and location of all the
departments. Use the $ROWTYPE attribute.

c) Modify the SELECT statement to retrieve all department information currently in
the departments table and store it in the associative array.

d) Using another loop, retrieve the department information from the associative
array and display the information.

The sample output is as follows:

anonymous block completed

Department MNumber: 10 Department Name: Administration Manager Id: 200 Location Id: 1700
Department Numher: 20 Department Name: Marketing Manager Id: 201 Location Id: 1300
Department MNumber: 30 Department Name: Purchasing Manager Id: 114 Location Id: 1700
Department Mumber: 40 Department Name: Human Fesources Manager Id: 203 Location Id: 2400
Department Mumber: 50 Department Nawme: Shipping Manager Id: 121 Location Id: 1500
Department Mumber: 60 Department Name: IT Manager Id: 103 Location Id: 1400

Department Number: 70 Department Name: Public Relations Manager Id: 204 Location Id: 2700
Department Numbher: S0 Department Name: Zales Manager Id: 145 Location Id: 2500
Department Mumber: 90 Department Name: Executiwve Manager Id: 100 Location Id: 1700
Department Mumber: 100 Department Name: Finance Manager Id: 1083 Location Id: 1700

Oracle Database 11g: PL/SQL Fundamentals A -39

Solution 6: Working with Composite Data Types

1) Write a PL/SQL block to print information about a given country.

a) Declare a PL/SQL record based on the structure of the countries table.
b) Declare a variable v_countryid. Assign CA to v_countryid.

SET SERVEROUTPUT ON

SET VERIFY OFF
DECLARE
v_countryid varchar2(20):= 'CA';

c) In the declarative section, use the $ROWTYPE attribute and declare the
v_country record variable of type countries.

| v_country record countries%ROWTYPE;

d) In the executable section, get all the information from the countries table by
using v_countryid. Display selected information about the country. The
sample output is as follows:

BEGIN

SELECT *

INTO v_country record

FROM countries

WHERE country id = UPPER (v_countryid) ;

DBMS OUTPUT.PUT LINE ('Country Id: ' ||
v_country record.country id ||
' Country Name: ' || v_country record.country name
|| ' Region: ' || v_country record.region id);

END;

anonymous block completed
Country Id: C4 Country Name: Canada Fegion: 2

e) You may want to execute and test the PL/SQL block for countries with the IDs
DE, UK, and US.

Oracle Database 11g: PL/SQL Fundamentals A - 40

Solution 6: Working with Composite Data Types (continued)

2) Create a PL/SQL block to retrieve the names of some departments from the
departments table and print each department name on the screen, incorporating an
associative array. Save the script as lab_ 06 02 soln.sqgl.

a) Declare an INDEX BY table dept table type of type
departments.department name. Declare a variable my dept table
of type dept _table type to temporarily store the names of the departments.

SET SERVEROUTPUT ON

DECLARE
TYPE dept table type is table of
departments.department name3TYPE
INDEX BY PLS INTEGER;
my dept table dept table type;

b) Declare two variables: £ 1loop count and v_deptno of type NUMBER.
Assign 10to £ loop count and 0 to v_deptno.

loop_count NUMBER (2) :=10;
deptno NUMBER (4) :=0;

c) Using a loop, retrieve the names of 10 departments and store the names in the
associative array. Start with department id 10. Increase v_deptno by 10
for every iteration of the loop. The following table shows the department id
for which you should retrieve the department name and store in the
associative array.

DEPARTMENT ID DEPARTMENT NAME
10 Administration
20 Marketing
30 Purchasing
40 Human Resources
50 Shipping
60 IT
70 Public Relations
80 Sales
90 Executive
100 Finance

Oracle Database 11g: PL/SQL Fundamentals A - 41

Solution 6: Working with Composite Data Types (continued)

BEGIN
FOR i IN 1..f loop count
LOOP
v_deptno:=v_deptno+10;
SELECT department name
INTO my_ dept table(i)
FROM departments
WHERE department id = v_deptno;
END LOOP;

d) Using another loop, retrieve the department names from the associative array and

display them.
FOR i IN 1..f loop count
LOOP
DBMS OUTPUT.PUT LINE (my_ dept table(i));
END LOOP;
END;

e) Execute and save your scriptas lab_ 06 02 soln.sqgl. The output is as
follows:

anonymous block completed
Admini=stration
Harketing
Purchaszing
Hman Resources
Shipping

IT

Public Relations
Gales

Executive
Finance

3) Modify the block that you created in Practice 2 to retrieve all information about each
department from the departments table and display the information. Use an
associative array with the INDEX BY table of records method.

a) Loadthe lab 06 02 soln.sqgl script.

b) You have declared the associative array to be of the
departments.department name type. Modify the declaration of the
associative array to temporarily store the number, name, and location of all the
departments. Use the $ROWTYPE attribute.

Oracle Database 11g: PL/SQL Fundamentals A -42

Solution 6: Working with Composite Data Types (continued)

SET SERVEROUTPUT ON

DECLARE
TYPE dept table type is table of departments%ROWTYPE
INDEX BY PLS INTEGER;
my dept table dept table type;
f loop_ count NUMBER (2) :=10;
v_deptno NUMBER (4) :=0;

c) Modify the SELECT statement to retrieve all department information currently in
the departments table and store it in the associative array.

BEGIN
FOR i IN 1..f loop count
LOOP
v_deptno := v_deptno + 10;
SELECT *

INTO my_ dept table(i)

FROM departments

WHERE department id = v_deptno;
END LOOP;

d) Using another loop, retrieve the department information from the associative
array and display the information.

FOR i IN 1..f loop count
LOOP
DBMS OUTPUT.PUT LINE ('Department Number: ' ||
my dept table(i) .department id
|| ' Department Name: ' ||
my dept table(i) .department name
|| ' Manager Id: '|| my_dept table(i).manager id
|| ' Location Id: ' || my dept table(i).location_ id) ;
END LOOP;
END;

Oracle Database 11g: PL/SQL Fundamentals A -43

Solution 6: Working with Composite Data Types (continued)

The sample output is as follows:

Department
Department
Department
Department
Department
Department
Department
Department
Department
Department

Mumher:
Mumher:
Muamher:
Mumher:
Mumher:
Mumher:
Mumher:
Mumher:
Mumher:
Mumher:

10
20
30
40
50
a0
70
g
a0

anonymous block completed

Department
Department
Department
Department
Department
Department
Department
Department
Department

Name :
Name :
Mame:
Name :
Wame :
Name :
Name:
Wame :
Name :
100 Department Name:

Aidministration Manager Id: 200 Location Id: 1700

Marketing Manager Id: 201 Location Id: 1500
Purchasing Manager Id: 114 Location Id: 1700

Human Resources Manager Id: 203 Location Id: 2400
Shipping Manager Id: 121 Location Id: 1500

IT Manager Id: 103 Location Id: 1400

Public Relations Manager Id: 204 Location Id: 2700
Gdalez Manager Id: 145 Location Id: 2500

Executive Manager Id: 100 Location Id: 1700
Finance Manager Id: 108 Location Id: 1700

Oracle Database 11g: PL/SQL Fundamentals A -44

Practices and Solutions for Lesson 7

Practice 7-1: Using Explicit Cursors

In this practice, you perform two exercises:
e First, you use an explicit cursor to process a number of rows from a table and
populate another table with the results using a cursor FOR loop.

e Second, you write a PL/SQL block that processes information with two cursors,
including one that uses a parameter.

1) Create a PL/SQL block to perform the following:

a) In the declarative section, declare and initialize a variable named v_deptno of
type NUMBER. Assign a valid department ID value (see table in step d for values).

b) Declare a cursor named c¢_emp_cursor, which retrieves the last name,
salary, and manager_ 1id of employees working in the department specified
in v_deptno.

c) Inthe executable section, use the cursor FOR loop to operate on the data retrieved.
If the salary of the employee is less than 5,000 and if the manager ID is either 101
or 124, display the message “<<last name>> Due for a raise.” Otherwise, display
the message “<</ast name>> Not Due for a raise.”

d) Test the PL/SQL block for the following cases:

Department ID Message

10 Whalen Due for a raise

20 Hartstein Not Due for a raise
Fay Not Due for a raise

50 Weiss Not Due for a raise

Fripp Not Due for a raise
Kaufling Not Due for a raise
Vollman Not Due for a raise.

OConnell Due for a raise
Grant Due for a raise

80 Russell Not Due for a raise
Partners Not Due for a raise
Errazuriz Not Due for a raise
Cambrault Not Due for a raise

Livingston Not Due for a raise
Johnson Not Due for a raise

Oracle Database 11g: PL/SQL Fundamentals A -45

Practice 7-1: Using Explicit Cursors (continued)

2) Next, write a PL/SQL block that declares and uses two cursors—one without a
parameter and one with a parameter. The first cursor retrieves the department number
and the department name from the departments table for all departments whose
ID number is less than 100. The second cursor receives the department number as a
parameter, and retrieves employee details for those who work in that department and
whose employee idis less than 120.

a)

b)

f)

g)

Declare a cursor ¢_dept cursor to retrieve department id and
department name for those departments with department id less than
100. Order by department id.

Declare another cursor c_emp cursor that takes the department number as
parameter and retrieves the following data from the employees table:
last name, job_id, hire date, and salary of those employees who
work in that department, with employee id less than 120.

Declare variables to hold the values retrieved from each cursor. Use the $TYPE
attribute while declaring variables.

Open c¢_dept cursor and use a simple loop to fetch values into the variables
declared. Display the department number and department name. Use the
appropriate cursor attribute to exit the loop.

Open c¢_emp cursor by passing the current department number as a parameter.
Start another loop and fetch the values of emp cursor into variables, and print
all the details retrieved from the employees table.

Note

e Check whether c_emp cursor is already open before opening the cursor.

e Use the appropriate cursor attribute for the exit condition.

e When the loop completes, print a line after you have displayed the details of
each department, and close ¢_emp_ cursor.

End the first loop and close ¢_dept cursor. Then end the executable section.

Execute the script. The sample output is as follows:

Oracle Database 11g: PL/SQL Fundamentals A - 46

Practice 7-1: Using Explicit Cursors (continued)

anonymous block completed
Department Numher : 10 Department Name : Administration

Department Numbher : 20 Department Name : Marketing
Department Number : 30 Department Name : Purchasing
Raphaely PIT_MAW 07-DEC-94 lio0ao

Fhoo PI_CLERE 15-MAY-95 3100

Baida PI_CLERE 24-DEC-97 2900

Tobias PI_CLERE 24-JUL-97 2800

Himuaro PU_CLERE 15-H0W¥-98 2600

Colmenares PU_CLERE 10-AUG-329 2500

Department Number : 60 Department Name : IT
Hunold IT_FROG 03-JAN-90 Soon

Ernst IT_PROG Z1-Ma¥-91 G000

Austin IT_FROG ZH=-JUN-97 4500
Pataballa IT_PROG 05-FEE-95 4300
Lorents IT _PROG 07-FEE-99 4200

Department Number : 70 Department Name : Public REelations

Department Number : 80 Department Name : Zales
Department Number : 90 Department Name : Executiwve
King AL PRES 17-JUN-57 24000

Kochhar AT WP 21-5EP-59 17000

De Haan AT WP 13-TAN-93 17000

Oracle Database 11g: PL/SQL Fundamentals A - 47

Practice 7-2: Using Explicit Cursors — Optional

If you have time, complete the following optional practice. Here, create a PL/SQL block
that uses an explicit cursor to determine the top n salaries of employees.

1) Runthe 1ab 07-2.sqgl script to create the top salaries table for storing the
salaries of the employees.

2) In the declarative section, declare the v_num variable of the NUMBER type that holds
a number n, representing the number of top n earners from the employees table.
For example, to view the top five salaries, enter 5. Declare another variable sal of
type employees.salary. Declare a cursor, c_emp_ cursor, which retrieves the
salaries of employees in descending order. Remember that the salaries should not be
duplicated.

3) In the executable section, open the loop and fetch the top » salaries, and then insert
them into the top_salaries table. You can use a simple loop to operate on the
data. Also, try and use the ¥ ROWCOUNT and $FOUND attributes for the exit condition.

Note: Make sure that you add an exit condition to avoid having an infinite loop.

4) After inserting data into the top_salaries table, display the rows with a SELECT
statement. The output shown represents the five highest salaries in the employees
table.

5) Test a variety of special cases such as v_num = 0 or where v_num is greater than the
number of employees in the employees table. Empty the top salaries table
after each test.

Oracle Database 11g: PL/SQL Fundamentals A -48

Solution 7-1: Using Explicit Cursors
In this practice, you perform two exercises:

1y

First, you use an explicit cursor to process a number of rows from a table and
populate another table with the results using a cursor FOR loop.

Second, you write a PL/SQL block that processes information with two cursors,
including one that uses a parameter.

Create a PL/SQL block to perform the following:

a) In the declarative section, declare and initialize a variable named v_deptno of
the NUMBER type. Assign a valid department ID value (see table in step d for
values).

DECLARE
v_deptno NUMBER := 10;

b) Declare a cursor named c¢_emp_cursor, which retrieves the last name,
salary, and manager_ 1id of employees working in the department specified
inv_deptno.

CURSOR c_emp cursor IS

SELECT last name, salary,manager_ id
FROM employees
WHERE department id = v_deptno;

c) Inthe executable section, use the cursor FOR loop to operate on the data retrieved.
If the salary of the employee is less than 5,000 and if the manager ID is either 101
or 124, display the message “<<last name>> Due for a raise.” Otherwise, display
the message “<</ast name>> Not Due for a raise.”

BEGIN
FOR emp record IN c_emp_cursor
LOOP
IF emp record.salary < 5000 AND (emp record.manager id=101
OR emp record.manager id=124) THEN
DBMS OUTPUT.PUT LINE (emp record.last name || ' Due for
a raise');
ELSE
DBMS OUTPUT.PUT LINE (emp record.last name || ' Not Due
for a raise');
END IF;
END LOOP;
END;

d) Test the PL/SQL block for the following cases:

Oracle Database 11g: PL/SQL Fundamentals A - 49

Solution 7-1: Using Explicit Cursors (continued)

Department ID

Message

10

Whalen Due for a raise

20

Hartstein Not Due for a raise
Fay Not Due for a raise

50

Weiss Not Due for a raise
Fripp Not Due for a raise
Kaufling Not Due for a raise
Vollman Not Due for a raise.

OConnell Due for a raise
Grant Due for a raise

80

Russell Not Due for a raise

Partners Not Due for a raise
Errazuriz Not Due for a raise
Cambrault Not Due for a raise

Livingston Not Due for a raise
Johnson Not Due for a raise

2) Next, write a PL/SQL block that declares and uses two cursors—one without a
parameter and one with a parameter. The first cursor retrieves the department number
and the department name from the departments table for all departments whose
ID number is less than 100. The second cursor receives the department number as a
parameter, and retrieves employee details for those who work in that department and

whose employee idis less than 120.

a) Declare a cursor c_dept cursor to retrieve department id and
department name for those departments with department id less than

100. Order by department id.

DECLARE

CURSOR c_dept cursor IS
SELECT department id,department name
FROM departments
WHERE department id < 100
ORDER BY

department id;

Oracle Database 11g: PL/SQL Fundamentals A -50

Solution 7-1: Using Explicit Cursors (continued)

b) Declare another cursor c_emp cursor that takes the department number as
parameter and retrieves the following data from the employees table:
last name, job_id, hire date, and salary of those employees who
work in that department, with employee id less than 120.

CURSOR c_emp cursor (v_deptno NUMBER) IS
SELECT last name,job id,hire date,salary
FROM employees
WHERE department id = v_deptno
AND employee id < 120;

c) Declare variables to hold the values retrieved from each cursor. Use the $TYPE
attribute while declaring variables.

v_current deptno departments.department id%TYPE;
v_current dname departments.department name3TYPE;
v_ename employees.last name$TYPE;

v_job employees.job id%TYPE;

v_hiredate employees.hire date%TYPE;

v_sal employees.salary$TYPE;

d) Open c_dept cursor and use a simple loop to fetch values into the variables
declared. Display the department number and department name. Use the
appropriate cursor attribute to exit the loop.

BEGIN
OPEN c_dept cursor;
LOOP

FETCH c_dept_ cursor INTO v_current_ deptno,
v_current dname;

EXIT WHEN c_dept cursor$NOTFOUND;

DBMS OUTPUT.PUT LINE ('Department Number : ' ||
v_current deptno || ' Department Name : ' ||
v_current dname) ;

Oracle Database 11g: PL/SQL Fundamentals A - 51

Solution 7-1: Using Explicit Cursors (continued)

e) Openc_emp cursor by passing the current department number as a parameter.
Start another loop and fetch the values of emp cursor into variables, and print
all the details retrieved from the employees table.

Note

e Check whether c_emp cursor is already open before opening the cursor.

e Use the appropriate cursor attribute for the exit condition.

e When the loop completes, print a line after you have displayed the details of
each department, and close ¢_emp_ cursor.

IF ¢ _emp cursor%$ISOPEN THEN
CLOSE c_emp_cursor;
END IF;
OPEN c_emp cursor (v_current deptno);
LOOP
FETCH c_emp cursor INTO v_ename,v_job,v_hiredate,v_sal;
EXIT WHEN c_emp cursor3NOTFOUND;
DBMS OUTPUT.PUT LINE (v_ename || ' " || v_job
] ' || v_hiredate || N
v_sal);
END LOOP;
DBMS OUTPUT.PUT LINE('------=--=--- - oo oo oo oo oo oo

CLOSE c_emp cursor;

f) End the first loop and close ¢_dept cursor. Then end the executable section.

END LOOP;
CLOSE c_dept cursor;
END;

g) Execute the script. The sample output is as follows:

Oracle Database 11g: PL/SQL Fundamentals A -52

Solution 7-1: Using Explicit Cursors (continued)

anonymous block completed
Department Numher : 10 Department Name : Administration

Department Numbher : 20 Department Name : Marketing
Department Number : 30 Department Name : Purchasing
Raphaely PIT_MAW 07-DEC-94 lio0ao

Fhoo PI_CLERE 15-MAY-95 3100

Baida PI_CLERE 24-DEC-97 2900

Tobias PI_CLERE 24-JUL-97 2800

Himuaro PU_CLERE 15-H0W¥-98 2600

Colmenares PU_CLERE 10-AUG-329 2500

Department Number : 60 Department Name : IT
Hunold IT_FROG 03-JAN-90 Soon

Ernst IT_PROG Z1-Ma¥-91 G000

Austin IT_FROG ZH=-JUN-97 4500
Pataballa IT_PROG 05-FEE-95 4300
Lorents IT _PROG 07-FEE-99 4200

Department Number : 70 Department Name : Public REelations

Department Number : 80 Department Name : Zales
Department Number : 90 Department Name : Executiwve
King AL PRES 17-JUN-57 24000

Kochhar AT WP 21-5EP-59 17000

De Haan AT WP 13-TAN-93 17000

Oracle Database 11g: PL/SQL Fundamentals A -53

Solution 7-2: Using Explicit Cursors — Optional

If you have time, complete the following optional exercise. Here, create a PL/SQL block
that uses an explicit cursor to determine the top n salaries of employees.

1) Execute the 1ab 07-02.sqgl script to create a new table, top_salaries, for
storing the salaries of the employees.

2) In the declarative section, declare a variable v_num of type NUMBER that holds a
number n, representing the number of top » earners from the employees table. For
example, to view the top five salaries, enter 5. Declare another variable sal of type
employees.salary. Declare a cursor, c_emp cursor, which retrieves the
salaries of employees in descending order. Remember that the salaries should not be
duplicated.

DECLARE
v_num NUMBER (3) := 5;
v_sal employees.salary%TYPE;
CURSOR c_emp_cursor IS
SELECT salary
FROM employees
ORDER BY salary DESC;

3) In the executable section, open the loop and fetch the top » salaries, and then insert
them into the top_salaries table. You can use a simple loop to operate on the
data. Also, try and use the ¥ ROWCOUNT and $FOUND attributes for the exit condition.
Note: Make sure that you add an exit condition to avoid having an infinite loop.

BEGIN
OPEN c_emp_cursor;
FETCH c_emp_cursor INTO v_sal;
WHILE c¢_emp cursor%ROWCOUNT <= v_num AND c emp cursor$FOUND
LOOP
INSERT INTO top_ salaries (salary)
VALUES (v_sal);
FETCH c_emp_cursor INTO v_sal;
END LOOP;
CLOSE c_emp_cursor;
END;

Oracle Database 11g: PL/SQL Fundamentals A - 54

Solution 7-2: Using Explicit Cursors — Optional (continued)

4) After inserting data into the top_salaries table, display the rows with a SELECT
statement. The output shown represents the five highest salaries in the employees
table.

/
SELECT * FROM top_ salaries;

The sample output is as follows:

5) Test a variety of special cases such as v_num = 0 or where v_num is greater than the
number of employees in the employees table. Empty the top salaries table
after each test.

Oracle Database 11g: PL/SQL Fundamentals A -55

Practices and Solutions for Lesson 8

Practice 8-1: Handling Predefined Exceptions

In this practice, you write a PL/SQL block that applies a predefined exception in order to
process only one record at a time. The PL/SQL block selects the name of the employee
with a given salary value.

1) Execute the command in the 1ab 05 01.sql file to re-create the messages
table.

2) In the declarative section, declare two variables: v_ename of type
employees.last name andv_emp sal oftype employees.salary.
Initialize the latter to 6000.

3) In the executable section, retrieve the last names of employees whose salaries are
equal to the value in v_emp_sal. If the salary entered returns only one row, insert
into the messages table the employee’s name and the salary amount.

Note: Do not use explicit cursors.

4) 1If the salary entered does not return any rows, handle the exception with an
appropriate exception handler and insert into the messages table the message “No
employee with a salary of <salary>.”

5) If the salary entered returns multiple rows, handle the exception with an appropriate
exception handler and insert into the messages table the message “More than one
employee with a salary of <salary>.”

6) Handle any other exception with an appropriate exception handler and insert into the
messages table the message “Some other error occurred.”

7) Display the rows from the messages table to check whether the PL/SQL block has
executed successfully. The output is as follows:

REISULTS

More than one employee with a salary of 6000

1l rows selected

8) Change the initialized value of v_emp_ sal to 2000 and re-execute. Output is as
follows:

Oracle Database 11g: PL/SQL Fundamentals A - 56

Practice 8-1: Handling Predefined Exceptions (continued)
RESULTS

More than one employee with a salary of &000
HNo employee with a salary of 2000

2 rows zelected

Oracle Database 11g: PL/SQL Fundamentals A -57

Practice 8-2: Handling Standard Oracle Server Exceptions

In this practice, you write a PL/SQL block that declares an exception for the Oracle
Server error ORA-02292 (integrity constraint violated - child
record found). The block tests for the exception and outputs the error message.

1) In the declarative section, declare an exception e _childrecord exists.
Associate the declared exception with the standard Oracle Server error —02292.

2) In the executable section, display “Deleting department 40....” Include a DELETE
statement to delete the department with the department id 40.

3) Include an exception section to handle the e childrecord exists exception
and display the appropriate message.

The sample output is as follows:

anonymous block completed
Deleting department 40........
Cannot delete this department. There are employees in this department (child records exist.)

Oracle Database 11g: PL/SQL Fundamentals A -58

Solution 8-1: Handling Predefined Exceptions

In this practice, you write a PL/SQL block that applies a predefined exception in order to
process only one record at a time. The PL/SQL block selects the name of the employee
with a given salary value.

1) Execute the command in the 1ab_ 05 01.sql file to recreate the messages table.

2) In the declarative section, declare two variables: v_ename of type
employees.last name andv_emp sal oftype employees.salary.
Initialize the latter to 6000.

DECLARE
v_ename employees.last name3TYPE;
v_emp_ sal employees.salary$TYPE := 6000;

3) In the executable section, retrieve the last names of employees whose salaries are
equal to the value in v_emp_sal. If the salary entered returns only one row, insert
into the messages table the employee’s name and the salary amount.

Note: Do not use explicit cursors.

BEGIN
SELECTlast_name
INTO V_ename
FROM employees
WHERE salary = v_emp sal;
INSERT INTO messages (results)
VALUES (v_ename || ' - ' || v_emp_sal);

4) 1If the salary entered does not return any rows, handle the exception with an
appropriate exception handler and insert into the messages table the message “No
employee with a salary of <salary>.”

EXCEPTION
WHEN no_data_found THEN
INSERT INTO messages (results)
VALUES ('No employee with a salary of '||
TO_CHAR (v_emp sal)) ;

Oracle Database 11g: PL/SQL Fundamentals A -59

Solution 8-1: Handling Predefined Exceptions (continued)

5)

6)

7)

8)

If the salary entered returns multiple rows, handle the exception with an appropriate
exception handler and insert into the messages table the message “More than one
employee with a salary of <salary>.”

WHEN too many rows THEN
INSERT INTO messages (results)
VALUES ('More than one employee with a salary of '||
TO CHAR(v_emp_sal));

Handle any other exception with an appropriate exception handler and insert into the
messages table the message “Some other error occurred.”

WHEN others THEN

INSERT INTO messages (results)

VALUES ('Some other error occurred.');
END;

Display the rows from the messages table to check whether the PL/SQL block has
executed successfully.

/
SELECT * FROM messages;

The output is as follows:

REISULTS

More than one employee with a salary of 6000

1l rows selected

Change the initialized value of v_emp sal to 2000 and re-execute. The output is as
follows:

FESULTS

More than one employees with a salary of 000
HNo employee with a salary of 2000

Z rows selected

Oracle Database 11g: PL/SQL Fundamentals A - 60

Solution 8-2: Handling Standard Oracle Server Exceptions

In this practice, you write a PL/SQL block that declares an exception for the Oracle
Server error ORA-02292 (integrity constraint violated - child
record found). The block tests for the exception and outputs the error message.

1) In the declarative section, declare an exception e _childrecord exists.
Associate the declared exception with the standard Oracle Server error —02292.

SET SERVEROUTPUT ON
DECLARE
e childrecord exists EXCEPTION;
PRAGMA EXCEPTION INIT (e childrecord exists, -02292);

2) In the executable section, display “Deleting department 40....” Include a DELETE
statement to delete the department with department id 40.

BEGIN
DBMS OUTPUT.PUT LINE(' Deleting department 40........ ")
delete from departments where department id=40;

3) Include an exception section to handle the e childrecord exists exception
and display the appropriate message.

EXCEPTION

WHEN e childrecord exists THEN

DBMS_OUTPUT.PUT LINE (' Cannot delete this department. There
are employees in this department (child records exist.) ');
END;

The sample output is as follows:

anonymos bhlock completed
Deleting department 40........
Cannot delete this department. There are employees in this department (child records exist.)

Oracle Database 11g: PL/SQL Fundamentals A - 61

Practices and Solutions for Lesson 9

Practice 9: Creating and Using Stored Procedures
In this practice, you modify existing scripts to create and use stored procedures.
1) Loadthe sol 02 04.sgl script from the /home/oracle/plsf/soln/ folder.

a) Modify the script to convert the anonymous block to a procedure called greet.
(Hint: Also remove the SET SERVEROUTPUT ON command.)

b) Execute the script to create the procedure. The output results should be as follows:

[Results & Script Output| 5 Ex

¢ dE

FEOCEDURE greet Compiled.

c) Save this scriptas lab 09 01 soln.sqgl.
d) Click the Clear button to clear the workspace.

e) Create and execute an anonymous block to invoke the greet procedure. (Hint:
Ensure that you enable SERVEROUTPUT at the beginning of the block.)

The output should be similar to the following:

[Results | [script Output) T Explain
&

ananvmous hlock completed
Hello World

TODAY IS5 @ 10-JUL-09
TOMOEROW I5 @ 11-JUL-09

2) Modify the lab 09 01 soln.sqgl script as follows:

a) Drop the greet procedure by issuing the following command:

| DROP PROCEDURE greet;

b) Modify the procedure to accept an argument of type VARCHAR?2. Call the
argument p_name.

c) Print Hello <name> (that is, the contents of the argument) instead of printing
Hello World.

d) Save your scriptas 1lab 09 02 soln.sqgl.

e) Execute the script to create the procedure. The output results should be as follows:

Oracle Database 11g: PL/SQL Fundamentals A - 62

Practice 9: Creating and Using Stored Procedures (continued)

[Results | &) script Qutput i’_-:"'Explain|

¢HdE&

DEOP PROCEDURE greet succeeded.
PEOCEDURE greet Compiled.

f) Create and execute an anonymous block to invoke the greet procedure with a
parameter value. The block should also produce the output.

The sample output should be similar to the following:

[pesuits B script outpur BfEx

v HdE

anonymous Block completed
Hello Nancy

TODAY Is @ 10-JUL-09
TOMORROW I5 : 11-JUL-09

Oracle Database 11g: PL/SQL Fundamentals A - 63

Solution 9: Creating and Using Stored Procedures
In this practice, you modify existing scripts to create and use stored procedures.
1) Loadthe sol 02 04.sgl script from the /home/oracle/plsf/soln/ folder.

a) Modify the script to convert the anonymous block to a procedure called greet.
(Hint: Also remove the SET SERVEROUTPUT ON command.)

CREATE PROCEDURE greet IS
V_today DATE:=SYSDATE;
V_tomorrow today$TYPE;

b) Execute the script to create the procedure. The output results should be as follows:

[Results & Script Output| 75 Ex

¢HdE&

FEOCEDURE greet Compiled.

c) Save this scriptas lab 09 01 soln.sqgl.

d) Click the Clear button to clear the workspace.

e) Create and execute an anonymous block to invoke the greet procedure. (Hint:
Ensure that you enable SERVEROUTPUT at the beginning of the block.)

SET SERVEROUTPUT ON

BEGIN
greet;
END;

The output should be similar to the following:

[Results | [Script Output) T Explain
&

anorymous block completed
Hello World

TODAY Is @ 10-JUL-09
TOMORROW I5 : 11-JUL-09

Oracle Database 11g: PL/SQL Fundamentals A - 64

Solution 9: Creating and Using Stored Procedures (continued)

2) Modify the lab 09 01 soln.sqgl script as follows:

a) Drop the greet procedure by issuing the following command:

| DROP PROCEDURE greet;

b) Modify the procedure to accept an argument of type VARCHAR?2. Call the
argument p_name.

CREATE PROCEDURE greet (p_name VARCHAR2) IS
V_today DATE:=SYSDATE;
V_tomorrow today$TYPE;

c) Print Hello <name> instead of printing Hello World.

BEGIN
V_tomorrow:=v_today +1;
DBMS OUTPUT.PUT LINE (' Hello '|| p_name);

d) Save your scriptas lab 09 02 soln.sqgl.
e) Execute the script to create the procedure. The output results should be as follows:

[Results | [&] Seript output| B Expiain |

¢HdE&

DEOP PROCEDURE greet succeeded.
PEOCEDURE greet Compiled.

f) Create and execute an anonymous block to invoke the greet procedure with a
parameter value. The block should also produce the output.

SET SERVEROUTPUT ON;
BEGIN

greet ('Nancy') ;
END;

The sample output should be similar to the following:

[Rpesults EScript Output) FREx

¢ BdE&

anorymous block completed
Hello Nancy

TODAY Is @ 10-JUL-09
TOMORREOW IS5 & 11-JUL-09

Oracle Database 11g: PL/SQL Fundamentals A - 65

B
Table Descriptions
and Data

ENTITY RELATIONSHIP DIAGRAM

LOCATIONS

DEPARTMENTS

JOB_HISTORY

LOCATION_ID : NOMBER[4, O]
STREET_ADDRESS : vAaRCHARZE0)
POSTAL_CODE : wARCHARZ[1Z)
CITY :“WARCHARZ(Z0)
STATE_PROYINGE : YARCHARZ(ZS)
COUNTRY_ID : CHAR[Z)

DEFARTMENT_ID : HUMEER(4, 0]
DEF ARTRENT_MAME : WARCHARZ[Z0]

0.1

COUNTRIES

COUNTRY_ID : CHAR(Z]
COUNTRY_NAME : VAR CHARZ40)
RESION_ID : NUMEER

=

0.1

REGIONS

RESION_ID : HUMEER
RESION_MAME :“WARCHARZ[ZS]

0.1-=

MANASER_ID : NUMEER(E, 0]
LOCATION_ID : NUMEER(4, O]

EMFLOYEE_ID : NUMEER(S, 0]

=

0.1

0.4 "

EMPLOYEES

EMPLOYEE_ID : MUMEER(E, 0]
MANASER_ID : NUMEER(E, 0] 1
DEFARTMENT_ID : NUMEER[4, 0]
FIRST_HAME :“aRCHARZ(ZO)
LAST_MAME : YARCHARZZS]

0.1

1 JOB_TITLE : vARCHARZ[3S)

START_DATE : DATE

EMD_DATE : DATE

JOEZID : vaRCHARZ(10)
DEFARTMENT_ID : HUMEBER(4, 0)

= =

1

JOES
JOB_ID : ¥ARGHARZ(10]

EMAIL : WARCHARZ[ZS] =

PHOME_NUMEER : YARCHARZZ0]
HIRE_DATE : DATE

JOB_ID : YARCHARZ(10]

SALARY : HUMBER(S, 2
COMMISSION_PCT : NUMEER[Z, 2)

=

MIN_SALARY : NUMBER(E, 0]
MAY_SALARY : NUMEBERE, 0

Oracle Database 11g: PL/SQL Fundamentals B -2

Tables in the Schema
SELECT * FROM t ab;

| TNAME | TABTYPE | CLUSTERID
(COUNTRIES TABLE |
[DEPARTMENTS TABLE |
[EMPLOYEES TABLE |
[EMP_DETAILS_WIEWY = |
JOBS ITABLE |
JOB_HISTORY TABLE |
ILOCATIONS TABLE |
IREGIONS TABLE |

3 rows selected.

Oracle Database 11g: PL/SQL Fundamentals B -3

regi ons Table
DESCRI BE r egi ons

| Mame | Hull? | Type

IREGION_ID INOT MULL INUMBER

[REGION_NAME | WARCHARZ(25)

SELECT * FROM r egi ons;

REGION_ID | REGION_NAME

1 |Eur|:|pe

3 |Asia

|
|
| 2 |Americas
|
|

4 |Middle East and Africa

Oracle Database 11g: PL/SQL Fundamentals B -4

countri es Table
DESCRI BE countri es

| Name | Null? | Type
\COUNTRY_ID IMOT MULL ICHAR(Z)
(COUNTRY _MAME | WVARCHARZ(40)
IREGION_ID | IMUMBER

SELECT * FROM countri es;

| co | COUNTRY_NAME | REGION_ID

|AR |£—‘argentina | 2
AL IAustralia | 3
\BE \Belgiurn | 1
BR Brazil | 2
T (Canada | 2
\CH |Switzerland | 1
e (China | 3
|DE |German3,r | 1
|DK |Denr‘nark | 1
[EG [Egypt | 4
|FR |Fran|:e | 1
|HK |HDngI<n:ung | 3
lIL lsrael | 4
I lIndiz | 3
| co | COUNTRY_NAME | REGION_ID

i lItaly | 1
|JF' |._Iapan | 3
[k Kt | 4
[IMexico | 2
MG Migeria | 4
ML [Metherlands | 1
|SG |Singapnre | 3
Lk \United Kingdorn | 1
|LJS |United States of America | 2
Zhd \Zarnhia | 4
Ty Zirmbabwe | 4

249 rows selected.

Oracle Database 11g: PL/SQL Fundamentals B -5

| ocati ons Table
DESCRI BE | ocati ons;

| Hame | Null? | Type
ILOCATION_ID IMOT MULL IMUMBER(4)
\STREET_ADDRESS | WARCHARZ(4D)
IPOSTAL_CODE | WARCHARZ(12)
CITY IMOT NULL WARCHARZ(ID)
\STATE_PROWINCE | WARCHARZ(25)
\COUNTRY_ID | (CHAR(2)
SELECT * FROM | ocati ons;
[LOCATION_ID | STREET_ADDRESS |POSTAL CODE | CITYr [STATE_PROVINCE |CO
| 1000 1297 “ia Cola di Rie |00983 |Rarma | T
| 1100 93091 Calle della Testa [10934 [venice | T
| 1200 (2017 Shinjuku-ku 11639 [Takyn [Tokyo Prefecture ||JP
| 1300 2450 Kamiya-cho BE23 |Hiroshirma || lIP
| 1400 [2014 Jabberwocky Rd [26192 |Southlake |Texas lus
1500 (2011 Interiors Blvd 99236 South San e o mia us
Francisco
1600 2007 Tagora St 50090 =outh New Jersey us
runswick
| 1700 2004 Charade Rd 125199 |Seattle [ashington us
| 1800 147 Spadina Ave sy 217 [Taronto |Ontario cA
| 1900 6092 Boxwood St [YSw 9T2 [whitehorse |[Yukon [CA
| 2000 [40-5-12 Laogianggen |[190513 |Beijing | [
| 2100 1298 vileparle (E) 490231 |Bombay [Maharashtra [Id
[LOCATION_ID | STREET_ADDRESS |POSTAL_CODE | CITY [STATE_PROVINCE [CO
| 2400 [3204 Arthur St | ILondon | UK
Magdalen Centre, The
2500 | o e B |09 9ZB Oxford Oxford UK
| 2600 9702 Chester Road 09629850293 |Stratford IManchester UK
| 2700 |Schwanthalerstr. 7031 [30925 [Munich |Bavaria DE
| 2800 |Rua Frei Caneca 1360 ||01307-002 |San Paulo |[Sao Paulo BR
2ong (20 Rue des 1730 Geneva Geneve CH
Corps-Saints
| 3000 [Murtenstrasse 921 13095 |Bern |BE ICH
3100 |[later Brevghelstaal - anagg. Utrecht Utrecht ML
| 3200 |Mariano Escobedo 9991 [11932 IMexico City ||Distrito Federal, (X%

23 rows selected.

Oracle Database 11g: PL/SQL Fundamentals

depart nment s Table
DESCRI BE departnents

| Name | Null? | Type
IDEPARTMENT _ID INOT MULL IMUMBER(4)
IDEPARTMENT_NAME IMOT MULL WARCHAR2(30)
MANAGER_ID | IMUMBER(E)
ILOCATION_ID | IMUMBER({4)

SELECT * FROM departnents;

| DEPARTMENT_ID | DEPARTMENT MAME | MANAGER_ID | LOCATION_ID

| 10 |Adrministration | 200 | 1700
| 20 Marketing | 201 | 1800
| 30 [Purchasing | 114 | 1700
| 40 |Human Resources | 203 | 2400
| 50 |Shipping | 121 || 1500
| B0 [IT | 103 || 1400
| 70 |Public Relations | 204 | 2700
| 80 |Sales | 145 | 2500
| 90 [Executive | 100 | 1700
| 100 |Finance | 108 || 1700
| 110 | |Accounting | 205 || 1700
| 120 [Treasury | | 1700
| 130 |C|:|rp|:|rate Tax | | 1700
| 140 |[Control And Credit | | 1700
| DEPARTMENT_ID | DEPARTMENT MAME | MANAGER_ID | LOCATION_ID

| 150 |Shareholder Services | | 1700
| 160 |Benefits | | 1700
| 170 [Manufacturing | | 1700
| 180 [Construction | | 1700
| 190 ||Contracting | | 1700
| 200 |Operations | | 1700
| 210 ||IT Suppart | | 1700
| 220 |MoC | | 1700
| 230 |IT Helpdesk | | 1700
| 240 |Gnvernment Sales | | 1700
| 250 |Retail Sales | | 1700
| 260 |Recruiting | | 1700
| 270 |Payrall | | 1700

27 rows selected.

Oracle Database 11g: PL/SQL Fundamentals B -7

| obs Table

DESCRI BE j obs

| Name | Null? | Type

OB _ID IMOT MULL WARCHARZ(10)

WJOB_TITLE IMOT MULL WARCHARZ(3E)

IMIN_SALARY | IMUMBER(E)

A SALARY | IMUMBER(E)

SELECT * FROM j obs;

| JOB_ID | JOB_TITLE | MIN_SALARY | MAX_SALARY
AD_PRES President | 20000 | 40000
AD WP \dministration Yice President | 15000 | 30000
AD_ASST Administration Assistant | 3000 | BO00
FI_MGR [Finance Manager | 200 | 16000
FI_ACCOUNT |Accountant | 4200 | 9000
AC_MGR Accounting Manager | 200 | 16000
AC_ACCOUNT |Public Accountant | 4200 | 5000
1S4 MAN Sales Manager | 10000 | 20000
|54 _REP Sales Representative | OO0 | 12000
IPU_MAN IPurchasing Manager | 000 | 15000
IPU_CLERK IPurchasing Clerk | 2500 | 5500
ST _MAN Stock Manager | 5500 | A500
ST _CLERK Stock Clerk | 2000 | 5000
|SH_CLERK Shipping Clerk | 2500 | 5500
| JOB_ID | JOB_TITLE | MIN_SALARY | MAX_SALARY
IT_PROG Programmer | 4000 | 10000
IWAK_MIAN IMarketing Manager | 9000 | 15000
IMK_REP IMarketing Representative | 4000 | 5000
|HF{_HEF' |Human Resources Representative | 4000 | 5000
IPR_REP IPublic Relations Representative | 4500 | 10500

19 rows selected.

Oracle Database 11g: PL/SQL Fundamentals B -8

enpl oyees Table
DESCRI BE enpl oyees

| Name | Null? | Type
[EMPLOYEE_ID INOT MULL IMUMBER(E)
IFIRST_MAME | WARCHARZ(20]
ILAST NAME INOT MULL WARCHARZ(25)
[EMAIL INOT MULL WARCHARZ(25)
IPHOME_MUMBER | WARCHARZ(20]
HIRE_DATE INOT MULL IDATE
JOB_ID INOT MULL WARCHARZ(10)
|SALARY | MUMBER(2 2)
(COMMISSION_PCT | IMUMBER(2 2)
IMANAGER_ID | IMUMBER(E)

|

IDEPARTMENT_ID IMUMBER(4)

Oracle Database 11g: PL/SQL Fundamentals B -9

enpl oyees Table (continued)
The headings for thecomm ssi on_pct, manager i d,anddepart nment _i d columns

aresettocomm ngri d, and dept i d, respectively, in the following screenshot to fit the
table values across the page.

SELECT * FROM enpl oyees;

|EMPLOYEE_ID [FIRST_MAME |LAST_MSME | EMaIL |PHONE_NUMBER |HIRE_DATE | JOB_ID [SALARY [comm [mgrid [deptid
100 ||Stewen |King |SKING |515.123 4567 [17-JUN-57 | |AD_PRES | 24000 || | | o0
101 ||Neena [Kachhar | |NKOCHHAR |515.123 4568 [21-5EP-38 |AD P | 17000 | | 100 | g0
102 ||Lex |De Haan ||[LDEHAAN ||515.123.4569 [13-JAN-93 |40 P | 17000 | | 100 | g0
103 ||Aexander | |Hunold [AHUNOLD (590 423 4567 [03-Jan-a0 (IT_PROG | 000 | | 12| &0
104 ||Bruce |Emst [BERNST |590.423 4568 [21-mev-91 [IT_PROG | 6000 | [13| w0
105 | David |ustin (DALSTIN 590 423 4569 [25-Jun-97 [IT_PROG | 4800 | [03| 60
106 ||l |Pataballa [WPATABAL | 5904234560 os-FEB-93 [IT_PROG | 4800 | [03| 60
107 | Diana |orertz [DLORENTZ | 590 4235567 [o7-FEB-99 [IT_PROG | 4200 | [03| 60
108 |Nancy |Greenberg | [NGREENBE |§15.124.4460 [17-AU5-04 | |FI_MGR | 1zo00 | [101 | 100
109 || Daniel [Faviet — |DFAVET ||515.124.4160 [16-20G-94 |FI_ACCOUNT | 9000 | | 108 | 100
10 ||John |Chen WCHEN [515.124.4260 [23-5EP-97 |[FI_LACCOUNT || 8200 || | 108 | 100
11 ||Ismael |sciama [I3CIARRA |[515.124.4360 |30-5EP-97 |FILACCOUNT | 7700 | | 108 | 100
112 ||Jose hManuel | |Lman [IMURMAN (515124 4469 |07-maR-92 |FI_ACCOUNT | 700 | | 108 | 100
113 ||Luis |Papp LrOPP (515,124 4567 |07-DEC-99 |FI_ACCOUNT || 6900 | | 108 | 100

EMFLOYEE_ID [FIRST_MAME [LAST_MOME | EMoIL

[FHOME_NUMEER

[HIRE_DATE [JoE_ID

[seLoRY [comm [mgrid [deptid

114 || Den |Raphasty | |[DRAPHEAL |515.127 4561 [07-DEC-94 | |PU_taN | 11000 | [100 | a0
115 ||Aexander [Khoo |AKHOO [515.127 4662 [13-ta-95 |PU_CLERK || 3100 | | 14| 20
16 ||Shelli |Baida [sBAIDA [515.127 4563 |24 DEC97 |PU_CLERK || 2900 | | 14| 20
17 ||igal [Tobias [STOBIAS ||515.127 4664 [24-JuLe7 |PU_CLERK || 200 | | 14| 20
18 ||Guy [Himuro |GHIMURD ||515.127 4565 [15-NOwieg |PU_CLERK || 2600 | | 14| 20
118 ||Karen |Colmenares | |KCOLMENA |515.127 4566 [0-20G-99 |PU_CLERK || 200 | | 14| a0
120 | |htatthew [iieiss IMMEISS BAD.123.1234 [18-JUL-B6 |5T_MaN | sooo | | 100 | 40
121 ||Adam |Fripp |SFRIPP 640123 2234 [10-2PR-97 |5T_MaN | sz00 | | 100 | 40
122 ||Payam [aufling [PKAUFLIN | |§50.123.3234 [01-pte-05 | |ST_Man | 7o00 | [100 | 50
123 |Sharta [bllman [SWOLLMAN | 650.123.4234 [10-0CT-97 ||ST_MaN | 8800 | [100 | 40
124 | Kevin Mourges [KMOURGOS [650.123.5234 [16-NO%A99 || ST_MAN | 5800 | [100 | 40
125 ||Julia Nayer |JNAYER |B50.124.1214 [16-JUL-97 |ST_CLERK | 3200 | [120 | 50
126 |Irene Ikkilineni — [IMIKKILI | [§50.124.1224 |2s-5EF-83 |[ST_CLERK | 2700 | [120 | 40

| R

127 |..lame5 |Landr!.r

LANDRY |§50.124.1334

[14-J4N-99 |ST_CLERK

2400 ||

120 |

Oracle Database 11g: PL/SQL Fundamentals B - 10

enpl oyees Table (continued)

[EMPLOYEE_ID [FIRST_MAME [L2ST_MEME | EMmIL |[PHOME_MUMEER [HIRE_DATE | JOB_ID [SALERY [comm [mgrid [deptid

EMFLOYEE_ID |FIHST_NP.ME

[LosT_moME [EmaIL

[FHOME_NUMEER [HIRE_DATE [JOE_ID

SALARY [zomm [mgrid [deptid

| 125 |[steven [maricle [steRKLE |[650.124.1434 [ps-mem-00 ([sT_CLERK || 2200 || EE
| 128 ||Laura |Bisset [LeissaT |[6s0.124.5234 [z0-a05-97 ([sT_cLERK || 3300 || [121 &0
| 130 | [Mozhe [Athinson |[MATKINGO |[650.124.6234 [z0-0cT97 ([sT_CLERK || 2300 || [121 &0
| 131 | [James [mricu [darLone |[650.124.7234 [t6-FEB-97 |[sT_CLERK || 2500 || [121 &0
| 132 [T [Disen [TJoLson |js0.124.8234 [10-2PR-9a |[sT_cLERK || 2100 || [1z1][50
| 133 | [Jason [mtlim [anteLiling|[650.127.1934 [t4Jun-es [sT_cLERK || 3300 || [12z &0
| 134 | [hichael |Rogers |WMROGERS | [650.127.1334 [z6-20G-92 |[sT_cLERK || 2800 || [1zz|[50
| 135 ||k | Gee [k5EE [650.127.1734 [1z-DEC-99 |[sT_CLERK || 2400 || [12z &0
| 126 |[Hazel |Phittanker | [HFHILTAN | [650.127 1634 [o6-FEB-D0 |[sT_CLERK || 2300 || [1zz|[50
| 137 | [Renshe [Ladwig [RLemwnG |[650.121.1234 [t4duLes ([sT_cLERK || 3600 || [123 =0
| 128 |[Stephen [stile= [ssTILEs [[ps0.121.2024 [z6-0cT97 |[sT_CcLERK || 2200 || [1zz][#0
| 138 | [Jahin [5e0 [45E0 6501212019 [1z-FEB-95 |[sT_CLERK || 270 || [123 =0
| 140 |[doshua |Patel [4raTEL [650.121. 1234 [o6-2PR-ge |[sT_cLERK || 2500 || [1zz][50
| 141 | [Trenna |Rais [TRAus [650.121.5009 [17-0cT95 ([sT_cLERK || 3500 || [124 50
[EMPLOYEE_ID [FIRST_MOME [LosT_HAME | EMAIL [PHOME_HWUMEER [HIRE_DATE [JOE_ID [SALARY [somm [mgrid [deptid
| 142 || Curtis [Davies |[COAMES |[650.121.2094 [z9-d2n-87 ([sT_CLERK || 300 || [124 50
| 143 | [Randall [t [rtaeTos |[6s0.121.2874 [15-meap-98 ([sT_CLERK || 2600 || [124 50
| 144 ||Peter [wargas [Puerces |j6s0.121.2004 [pg-guLss |[sT_cLErk || 2500 || [1za|[50
| 145 | [Jahin [Russell [[JRUSSEL |[011.44.1344.429265 [01-0CT-96 |[52 MaN [14000 [4| 100 =0
| 146 ||Karen [Partriers | [KPARTNER |[011.44.1344 467262 [D5-J2N-07 |[S8 MAN [1z800 | 2 wo|[=0
| 147 | [Aberto [Emazuriz |[AERRATUR |[011.44.1344.429273 [10-MaR-97 |[52 MAN [1zo00 [3 10| =0
| 142 |[Gerald [Cambrautt |[GCAMBRAL [011.44.1344.619268][15-0CT-99 |[S4 MaN [11ooo || 3 wo|[=0
| 143 | [Beni [Totkey |[EZLOTKEY |[011.44.1344.429013 | [29-JAN-00 |[52 MaN [10s00 [2| 10| =0
| 150 || Peter [Tucker [PTUCKER [[011.44 1344 120268 [30-08N-97 |54 RER [toooo || 2 148 =0
| 151 | [Dawid [Bemstein | [DBERMSTE |[011.44.1344.345265 | [24-MAR-97 |[32_REF [osoo [25 145 =0
| 152 |[Peter [Hal [PHALL 011 44 1344 472963 | [20-A0G-97 |[54_REP [oooo || 25 148 =0
| 153 | [Christopher |[Olzen [coLsEn |[o11.44.1344.4057 15 [30-MeR-93 | |34 REP [sooo [2| 145 =0
| 154 | [Manette [Cambrautt | [NCAWBRAL | [011.44.1344.957663|[09-DEC-93 |[32_REF [7500 [2| 145 =0
| 155 || Dliver [Tuvautt |[OTUSARULT |[011.44.1344.436508 [23-NO 99 |[32_REP [7ooo [a5 145 =0
| |

| |

| |

| |

| |

| |

| |

| |

| |

| |

| |

| |

| |

|

|

156 | [Janette [King [JKING [011.44.1345 429268 [30-JAN-96 |[34_REP oooo || 35 [146 =0
157 | [Patrick [uthy [PSULLY | [011.44.1345 920268 [D4-maR-96 | [54_REP o500 || 35 [146 =0
153 |[silan [hcEmwen | [MqCEWEN |[011.44.1345.829262|[01-AUG-96 |[54 REP gooo || 35 |[146 en
159 | |Lindsey |5mith [LsMITH | [011.44.1345. 720268 | [10-MAR-97 |[5A_REP gooo || 3 [146 =0
160 ||Lovize [Doran [LOORAN ([011.44.1345 620268 [15-DEC-97 |[S.A_REP o0 || a3 146 en
161 | [Sarath [5ewal [s5EMiALL | [011.44.1345. 520268 [03-NOW98 |[5A_REP foo0 || 25 [146 =0
162 |[Clara [shney |[CWISHNEY |[011.44.1346.120268|[11-NOW97 |[34 REP o500 || 25 ([147 || a0
163 | [Danielle | Greens [DGREENE | [011.44.1346. 220268 [19-M4R-99 |[5A_REP 9500 || a5 [147 [=0
164 | [Mattea [marines [raRAANS ([011.44.1346 320268 [24-0AN-00 |[54_REP 7zo0 || 4[] 147 en
165 | [David [Lee |OLEE [011.44.1346 529265 [23-FEB-00 |[3A_REP 6s00 || [147 [om0
166 | [Sundar [Ande [34NDE |[011.44.1346 629268 [24-M4R-00 |[54_REP ed00 || [147 [=0
167 | [mit [Banda [#BANDA | [011.44.1346. 720268 | [21-APR-00 |[5A_REP 6zo0 || [147 [om0
162 | [Liza | Dzer [LoZER [011.44.1343 929268 [11-MAR-97 |[34_REP [11500 | 25| 148 =0
169 | [Harison [Bloom [HBLOOM | [011.44.1343.520268 [23-MAR-98 | |5A_REP [toooo | 2| 148 | &0

Oracle Database 11g: PL/SQL Fundamentals B - 11

enpl oyees Table (continued)

[EMPLOYEE_ID [FIRST_MAME [LAST_MWAME [EMAIL [PHOME_MUMEER |[HIRE_DOTE | JOE_ID [SBLARY [somm [mgrid [deptid

| 170 |Taler |Fax |TFOX [011.44.1343 729268 [24-JAN-98 | [SA_REP | @600 | 2| 148 | 80
| 171 | [inilliam |$mith [WSMITH |011.44.1343.620268 |23-FEB-99 ||SA_REP [7400 || 15| 148 || a0
| 172 ||Bizabeth | |Bates [EBATES |011.44.1343.520268 [24-MAR-99 (|54 _REP [7300 || .15 148 a0
| 173 ||Sundita [kumar |[3KUMAR [011.44.1343 320268 |21-APR-OD | |34_REP [6100 1) 148] a0
| 174 || Blen | e |EBEL |011.44. 1644 420267 | 11-MaY-96 |54 REP [1000 || 3| 148 | &0
| 175 ||Ays=a [Hutton |SHUTTON |D11.44. 1644 420266 |19-M2R-97 ||SA_REP | sso0 || 25| 148 | &0
| 176 |[Jonathon | |Taylor UTAYLOR [D11.44.1544 420265 [24-M2R-93 ||SA_REP | sgoo | 2| 148 | &0
| 177 ||Jack |Lwingston || JLMANGS [011.44.1644.429264 [23-APR-93 | |3A_REP | s400 | 2| 14| a0
| 178 | |Kimberety || Grant [KGRANT [D11.44.1644.429263 [24-MAY-99 |54 REP | vooo0 | .18 | 149 |

| 178 ||Charles [Johnson ||[CJOHNSON [D11.44.1644.420262 [04JAN-00 |54 _REP | B0 | | 149 | 80
| 130 [Winston | |Taylor [WTAYLOR 650 507 9576 [24-JAN-98 |SH_CLERK | 3200 | | 1| &0
| 181 |Jean |Fleaur |JFLEAUR 650507 9877 23-FEB-98 |SH_CLERK | 3100 | | 1| &0
| 132 ||Martha [$ullvan |[MSULLIA [650.507 9378 [21-JUN-89 |SH_CLERK || 2500 | | 120 | 50
| 133 || Girard |Geani |GGEONI 640507 9574 [03-FEB-00 |SH_CLERK || 2800 | | 120 | 50
[EMPLOYEE_ID [FIRST_MAME [LAST_MME | EMAIL [FHOME_MUMEER |HIRE_DATE | JOE_ID |P.LP.H:‘r'|cl:umm [mgrid |deptid
| 134 ||Nandita |Sarchand ||NSARCHAN [650.509.1576 27-JAN-36 |SH_CLERK || 4200 | | 1zt | H0
| 125 | Mexis (Bull |ABULL |B50.509.2876 20-FEB-97 |SH_CLERK | 4100 | | 121 &0
| 136 | |Julia Dellinger | |JDELLING | |650 509.3376 [24JUN-98 ||SH_CLERK | 3400 | | 121 &0
| 187 |Anthony || Cabrio |ACABRID B50.509.4876 [07-FEB-99 |SH_CLERK | 3000 | | 121 &0
| 128 | Kelly |Chung [KCHUNG 650 505.1876 [14JUN-97 |SH_CLERK | 3300 | | 12z | &0
| 129 ||Jennifer | |Dily MDILLY 640 .505.2576 [13-AUG-97 |[SH_CLERK || 3600 || | 122 | 40
| 190 |[Timothy ||Gates [TGATES |640.505.3576 [11-JUL98 |SH_CLERK || 2900 | | 122 | 40
| 191 ||Randall |Perkins ||RPERKING [650.505.4876 [19-DEC-99 |[SH_CLERK || 2500 || | 122 | 40
| 192 ||Sarah (el |SBELL |50 501.1876 [04-FEB-95 |SH_CLERK || 4000 | [123]] 50
| 193 ||Britney |Everstt |BEVERETT 640 01,2576 [D3-MAR-97 ||SH_CLERK || 3900 | | 123 | #0
| 194 || Samuel M Cain [SMCCAIN |50 501.3576 [0D1-JUL98 [SH_CLERK || 3200 | | 123 | #0
| 195 |[vance [Jones [WIONES |50 5014576 [17-MAR-93 |SH_CLERK || 2800 | | 123 | #0
| 198 || Mana [1ialsh |MnaLSH 650 5079511 [242PR-98 |SH_CLERK | 3100 | | 124 | 0
| 197 | Kevin |Fesney |KFEENEY | |650.507 9822 [23-MAY-93 |SH_CLERK | 3000 | | 124 | &0
|[EMPLOYEE_ID [FIRST_MAME [LOST_MAME | EMAIL [PHOME_MUMEER |HIRE_DATE [JOE_ID |.ﬂ.L.ﬂ.R‘r'|cu:-mm [rgrid [deptid
| 192 |Donald [OCennell |DOCONMEL (650 507 9333 [21-JUN-99 |SH_CLERK | 2600 | | 124 | 0
| 199 ||Douglas || Grart [DGRANT 640507 9544 [13-JAN-00 |SH_CLERK || 2600 | | 124 | 50
| 200 |[Jernifer (halen |[JWHALEN |[515.123.4444 [17-3EP-87 |0 _ASST || <400 || | 01| 10
| 201 hichael |Hartstein |[MHARTSTE |[515.123.5555 [17-FEB-36 |MK_hia | 13000 | | o0 | oz
| 202 |Pat |Fay |PFaY |60z 123 B6GE [17-AUG-97 |MiK_REP | @000 | | 1| a0
| 203 | |Susan Itavriz [ShARIS (5161237777 [07-JUN-94 | [HR_REP | B500 | || 4
| 204 |[Hermann |Baer [HBRER [515.123.8888 [07-JUN-94 ||PR_REP | 10000 | [w1 | 7
| 205 ||Shelley |Higgins ~ ||SHIGGING | |515.123.8080 [07-JUN-94 | |AC_MGR | 12000 | [11| 110
| 206 |[William |Gietz [WGIETZ 5151238181 [07-JUN-94 | |AC_ACCOUNT | 8300 | | 205 | 110

107 rows selected.

Oracle Database 11g: PL/SQL Fundamentals B - 12

j ob_hi story Table
DESCRI BE j ob_hi story

| Name | Null? | Type
[EMPLOYEE_ID IMOT MULL IMUMBER(E)

\START DATE INOT MULL IDATE

[END_DATE INOT MULL IDATE

JOB_ID INOT MULL WARCHARZ(10)
IDEPARTMENT_ID | IMUMBER(4)

SELECT * FROM job_hi story;

| EMPLOYEE_ID | START DAT | END_DATE | JOB_ID | deptid

| 102 [13-JAN-33 24-JUL-98 IT_PROG | B0
| 101 [21-5EP-32 27-0CT-93 AC_ACCOUNT | 110
| 101 ([28-0CT-93 115-MAR-I7 A MGR | 110
| 201 [17-FEB-96 119-DEC-99 MI_REP | 20
| 114 [24-MAR-98 31-DEC-99 ST_CLERK | &0
| 122 |01-JAN-39 31-DEC-99 ST_CLERK | &0
| 200 [17-SEP-87 17-JUN-33 AD_ASST | a0
| 176 ([24-MAR-98 131-DEC-98 54 _REP | a0
| 176 |01-JAN-39 31-DEC-99 |SA_MAN | a0
| 200 |01-JUL-24 31-DEC-98 AC_ACCOUNT | 30

10 rowes selected.

Oracle Database 11g: PL/SQL Fundamentals B - 13

REF Cursors

Copyright © 2009, Oracle. All rights reserved.

Cursor Variables

« Cursor variables are like C or Pascal pointers, which hold
the memory location (address) of an item instead of the
item itself.

* In PL/SQL, a pointer is declared as REF X, where REF is
short for REFERENCE and X stands for a class of objects.

* A cursor variable has the data type REF CURSOR.
« A cursor is static, but a cursor variable is dynamic.
e Cursor variables give you more flexibility.

F-2 Copyright © 2009, Oracle. All rights reserved.

Cursor Variables

Cursor variables are like C or Pascal pointers, which hold the memory location (address) of an
item instead of the item itself. Thus, declaring a cursor variable creates a pointer, not an item. In
PL/SQL, a pointer has the data type REF X, where REF is short for REFERENCE and X stands for
aclass of objects. A cursor variable has the REF CURSOR data type.

Like a cursor, a cursor variable pointsto the current row in the result set of a multirow query.
However, cursors differ from cursor variables the way constants differ from variables. A cursor
is static, but a cursor variable is dynamic because it is not tied to a specific query. Y ou can open
acursor variable for any type-compatible query. This gives you more flexibility.

Cursor variables are available to every PL/SQL client. For example, you can declare a cursor
variable in aPL/SQL host environment such as an OCI or Pro* C program, and then pass it as an
input host variable (bind variable) to PL/SQL. Moreover, application development tools such as
Oracle Forms and Oracle Reports, which have a PL/SQL engine, can use cursor variables
entirely on the client side. The Oracle Server also has a PL/SQL engine. Y ou can pass cursor
variables back and forth between an application and server through remote procedure calls
(RPCs).

Oracle Database 11g: PL/SQL Fundamentals F -2

Using Cursor Variables

* You can use cursor variables to pass query result sets
between PL/SQL stored subprograms and various clients.

 PL/SQL can share a pointer to the query work area in
which the result set is stored.

* You can pass the value of a cursor variable freely from one
scope to another.

* You can reduce network traffic by having a PL/SQL block
open (or close) several host cursor variables in a single
roundtrip.

F-3 Copyright © 2009, Oracle. All rights reserved.

Using Cursor Variables

Y ou use cursor variables to pass query result sets between PL/SQL stored subprograms and
various clients. Neither PL/SQL nor any of its clients owns aresult set; they simply share a
pointer to the query work area in which the result set is stored. For example, an OCI client, an
Oracle Forms application, and the Oracle Server can all refer to the same work area.

A query work arearemains accessible as long as any cursor variable pointsto it. Therefore, you
can pass the value of a cursor variable freely from one scope to another. For example, if you
pass a host cursor variable to a PL/SQL block that is embedded in a Pro* C program, the work
areato which the cursor variable points remains accessible after the block completes.

If you have a PL/SQL engine on the client side, calls from the client to the server impose no
restrictions. For example, you can declare a cursor variable on the client side, open and fetch
from it on the server side, and then continue to fetch from it back on the client side. Also, you
can reduce network traffic by having a PL/SQL block open (or close) several host cursor
variables in a single roundtrip.

A cursor variable holds a reference to the cursor work area in the Program Global Area (PGA)
instead of addressing it with a static name. Because you address this area by areference, you
gain the flexibility of avariable.

Oracle Database 11g: PL/SQL Fundamentals F -3

Defining REF CURSOR Types

Define a REF CURSOR type:

Define a REF CURSOR type
TYPE ref _type nane IS REF CURSOR [RETURN return_type];

Declare a cursor variable of that type:

ref _cv ref_type nane;

Example:

DECLARE

TYPE Dept Cur Typ IS REF CURSOR RETURN
depart ment sUROM YPE;

dept _cv Dept Cur Typ;

F-4 Copyright © 2009, Oracle. All rights reserved.

Defining REF CURSOR Types

To define a REF CURSOR, you perform two steps. First, you define a REF CURSOR type, and then
you declare cursor variables of that type. You can define REF CURSOR types in any PL/SQL
block, subprogram, or package using the following syntax:

TYPE ref _type nane IS REF CURSOR [RETURN return_type];
where:

ref _type_nane Is atype specifier used in subsequent declarations of cursor
variables
return_type Represents arecord or arow in a database table

In this example, you specify areturn type that represents arow in the database table
DEPARTIVENT.

REF CURSOR types can be strong (restrictive) or weak (nonrestrictive). Asthe next example
shows, a strong REF CURSOR type definition specifies areturn type, but aweak definition does
not:

DECLARE

TYPE EnpCur Typ IS REF CURSOR RETURN enpl oyees%ROMYPE;, - -
strong

TYPE CenericCurTyp IS REF CURSOR, -- weak

Oracle Database 11g: PL/SQL Fundamentals F -4

Defining REF CURSOR Types (continued)

Strong REF CURSOR types are less error prone because the PL/SQL compiler lets you associate a
strongly typed cursor variable only with type-compatible queries. However, weak REF CURSOR
types are more flexible because the compiler lets you associate a weakly typed cursor variable
with any query.

Declaring Cursor Variables

After you define a REF CURSOR type, you can declare cursor variables of that type in any
PL/SQL block or subprogram. In the following example, you declare the cursor variable
DEPT_CV:

DECLARE
TYPE Dept Cur Typ IS REF CURSOR RETURN depart nent s¥%R0OM YPE;
dept _cv Dept CurTyp; -- declare cursor variable

Note: You cannot declare cursor variables in a package. Unlike packaged variables, cursor
variables do not have persistent states. Remember, declaring a cursor variable creates a pointer,
not an item. Cursor variables cannot be saved in the database; they follow the usual scoping and
instantiation rules.

In the RETURN clause of a REF CURSOR type definition, you can use %R0 YPE to specify a
record type that represents arow returned by a strongly (not weakly) typed cursor variable, as
follows:

DECLARE
TYPE TnpCur Typ IS REF CURSOR RETURN enpl oyees%ROMYPE;
tnp_cv TnpCur Typ; -- declare cursor variable
TYPE EnpCur Typ |'S REF CURSOR RETURN t np_cv%RONTYPE;
enp_cv EnmpCur Typ; -- declare cursor variable

Similarly, you can use %I YPE to provide the data type of arecord variable, as the following
example shows:

DECLARE
dept _rec departnentsUROMYPE; -- declare record variable
TYPE Dept Cur Typ IS REF CURSOR RETURN dept _rec%l YPE;
dept _cv Dept CurTyp; -- declare cursor variable
In the final example, you specify a user-defined RECORD type in the RETURN clause:
DECLARE
TYPE EnpRecTyp |'S RECORD (
enpno NUMBER(4),
ename VARCHAR2(10,
sal NUMBER(7, 2)) ;
TYPE EmpCur Typ IS REF CURSOR RETURN EnpRecTyp;
enp_cv EnmpCur Typ; -- declare cursor variable

Oracle Database 11g: PL/SQL Fundamentals F -5

Cursor Variables as Parameters

Y ou can declare cursor variables as the formal parameters of functions and procedures. In the
following example, you define the REF CURSOR type EnpCur Typ, and then declare a cursor

variable of that type as the formal parameter of a procedure:

DECLARE
TYPE EnpCur Typ |'S REF CURSOR RETURN enp%ROMYPE;

PROCEDURE open_enp_cv (enp_cv IN QUT EnpCurTyp) IS ...

Oracle Database 11g: PL/SQL Fundamentals F -6

Using the OPEN- FOR, FETCH,
and CLOSE Statements

« The OPEN- FOR statement associates a cursor variable
with a multirow query, executes the query, identifies the
result set, and positions the cursor to point to the first row
of the result set.

* The FETCH statement returns a row from the result set of a
multirow query, assigns the values of the select-list items
to the corresponding variables or fields in the | NTOclause,
increments the count kept by “RONCOUNT, and advances
the cursor to the next row.

e The CLOSE statement disables a cursor variable.

F-7 Copyright © 2009, Oracle. All rights reserved.

Using the OPEN- FOR, FETCH, and CLOSE Statements

Y ou use three statements to process a dynamic multirow query: OPEN- FOR, FETCH, and
CLCSE. First, you “open” acursor variable “for” a multirow query. Then you “fetch” rows from
the result set one at atime. When all the rows are processed, you “close” the cursor variable.

Opening the Cursor Variable

The OPEN- FOR statement associates a cursor variable with a multirow query, executes the
guery, identifies the result set, positions the cursor to point to the first row of the results set, and
then sets the rows-processed count kept by YRONCOUNT to zero. Unlike the static form of
OPEN- FOR, the dynamic form has an optional USI NG clause. At run time, bind argumentsin
the USI NG clause replace corresponding placeholders in the dynamic SELECT statement. The
syntax is:

OPEN {cursor_variable | :host_cursor_variabl e} FOR

dynam c_string

[USI NG bi nd_argunent[, bind_argunent]...];

where CURSCR_VARI ABLE is aweakly typed cursor variable (one without areturn type),
HOST_CURSOR_VARI ABLE isacursor variable declared in a PL/SQL host environment such
as an OCI program, and dynam c_st ri ng isastring expression that represents a multirow

query.

Oracle Database 11g: PL/SQL Fundamentals F-7

Using the OPEN- FOR, FETCH, and CLOSE Statements (continued)

In the following example, the syntax declares a cursor variable, and then associates it with a
dynamic SELECT statement that returns rows from the enpl oyees table:

DECLARE

TYPE EnpCur Typ | S REF CURSOR; -- define weak REF CURSOR
type
enp_cv EmpCur Typ; -- declare cursor variable

nmy_enanme VARCHAR2(15);
nmy_sal NUMBER : = 1000;

BEG N
OPEN enp_cv FOR -- open cursor variable
" SELECT | ast _name, sal ary FROM enpl oyees WHERE sal ary >
.S’
USI NG ny_sal ;
END,

Any bind argumentsin the query are evaluated only when the cursor variable is opened. Thus, to
fetch rows from the cursor using different bind values, you must reopen the cursor variable with
the bind arguments set to their new values each time.

Fetching from the Cursor Variable

The FETCH statement returns arow from the result set of a multirow query, assigns the values
of the select-list items to the corresponding variables or fields in the | NTO clause, increments
the count kept by ROWCOUNT, and advances the cursor to the next row. Use the following
syntax:

FETCH {cursor _variable | :host_cursor_vari abl e}
| NTO {define_variable[, define_variable]... | record};

Continuing the example, fetch rows from the cursor variable enp_cv into the define variables
MY_ENAME and MY_SAL :

LOOP
FETCH enp_cv INTO ny_enane, ny _sal; -- fetch next row
EXIT WHEN enp_cv¥NOTFOUND;, -- exit | oop when last rowis
f et ched
-- process row
END LOOP;

For each column value returned by the query associated with the cursor variable, there must be a
corresponding, type-compatible variable or field in the | NTOclause. Y ou can use a different

| NTO clause on separate fetches with the same cursor variable. Each fetch retrieves another row
from the same result set. If you try to fetch from a closed or never-opened cursor variable,
PL/SQL raises the predefined exception | NVALI D_CURSCOR.

Oracle Database 11g: PL/SQL Fundamentals F -8

Using the OPEN- FOR, FETCH, and CLOSE Statements (continued)
Closing the Cursor Variable

The CLOSE statement disables a cursor variable. After that, the associated result set is
undefined. Use the following syntax:

CLOSE {cursor_variable | :host_cursor_variable};
In this example, when the last row is processed, closethe enp_cv cursor variable:
LOOP
FETCH enp_cv I NTO ny_enane, ny_sal;
EXI T WHEN enp_cvISNOTFOUND;
-- process row
END LOOP;
CLOSE enp_cv; -- close cursor variable

If you try to close an already-closed or never-opened cursor variable, PL/SQL raises
| N\VALI D_CURSOR.

Oracle Database 11g: PL/SQL Fundamentals F-9

Example of Fetching

[DECLARE
TYPE EnpCur Typ | S REF CURSOR;
enp_cv EnpCur Typ;
enp_rec enpl oyees“ROMYPE;
sgl _stnt VARCHAR2(200);
my_job VARCHAR2(10) := 'ST _CLERK ;
BEA N
sgl _stnt :="'"SELECT * FROM enpl oyees
WHERE job id = :j";
OPEN enp_cv FOR sqgl _stnt USI NG ny_j ob;
LOOP
FETCH enp_cv | NTO enp_r ec;
EXIT WHEN enp_cv¥NOTFOUND;
-- process record
END LOOP;
CLOSE enp_cv;
END;
/

F-10 Copyright © 2009, Oracle. All rights reserved.

Example of Fetching

The example in the slide shows that you can fetch rows from the result set of a dynamic
multirow query into arecord. You must first define a REF CURSOR type, EmpCur Typ. You
then define a cursor variableenp_cv, of the type Enpcur Typ. In the executable section of the
PL/SQL block, the OPEN- FOR statement associates the cursor variable enp_cv with the
multirow query, sql _st nt . The FETCH statement returns arow from the result set of a
multirow query and assigns the values of the select-list itemsto EMP_REC in the | NTO clause.
When the last row is processed, closetheenp_cv cursor variable.

Oracle Database 11g: PL/SQL Fundamentals F - 10

	I: Introduction

	1: Introduction to PL/SQL

	2: Declaring PL/SQL Variables

	3: Writing Executable Statements

	4: SQL Statements in PL/SQL Programs
	5: Writing Control Structures

	6: Working with
Composite Data Types

	7: Using Explicit Cursors

	8: Handling Exceptions

	9: Introducing Stored Procedures and Functions

	A: Practices and Solutions

	B: Table Descriptions
and Data

	F: REF Cursors

