
Oracle Database 11g: Develop
PL/SQL Program Units
Student Guide • Additional Practices

D49986GC10

Edition 1.0

August 2007

D52204

Copyright © 2007, Oracle. All rights reserved.

Disclaimer

This course provides an overview of features and enhancements planned in release
11g. It is intended solely to help you assess the business benefits of upgrading to 11g
and to plan your IT projects.

This course in any form, including its course labs and printed matter, contains
proprietary information that is the exclusive property of Oracle. This course and the
information contained herein may not be disclosed, copied, reproduced, or distributed
to anyone outside Oracle without prior written consent of Oracle. This course and its
contents are not part of your license agreement nor can they be incorporated into any
contractual agreement with Oracle or its subsidiaries or affiliates.

This course is for informational purposes only and is intended solely to assist you in
planning for the implementation and upgrade of the product features described. It is
not a commitment to deliver any material, code, or functionality, and should not be
relied upon in making purchasing decisions. The development, release, and timing of
any features or functionality described in this document remain at the sole discretion
of Oracle.

This document contains proprietary information and is protected by copyright and
other intellectual property laws. You may copy and print this document solely for your
own use in an Oracle training course. The document may not be modified or altered in
any way. Except where your use constitutes "fair use" under copyright law, you may
not use, share, download, upload, copy, print, display, perform, reproduce, publish,
license, post, transmit, or distribute this document in whole or in part without the
express authorization of Oracle.

The information contained in this document is subject to change without notice. If you
find any problems in the document, please report them in writing to: Oracle University,
500 Oracle Parkway, Redwood Shores, California 94065 USA. This document is not
warranted to be error-free.

Restricted Rights Notice

If this documentation is delivered to the United States Government or anyone using
the documentation on behalf of the United States Government, the following notice is
applicable:

U.S. GOVERNMENT RIGHTS
The U.S. Government’s rights to use, modify, reproduce, release, perform, display, or
disclose these training materials are restricted by the terms of the applicable Oracle
license agreement and/or the applicable U.S. Government contract.

Trademark Notice

Oracle is a registered trademark of Oracle Corporation and/or its affiliates. Other
names may be trademarks of their respective owners.

Author
Lauran K. Serhal

Technical Contributors
and Reviewers
Don Bates
Claire Bennett
Zarko Cesljas
Purjanti Chang
Ashita Dhir
Peter Driver
Gerlinde Frenzen
Steve Friedberg
Nancy Greenberg
Thomas Hoogerwerf
Akira Kinutani
Chaitanya Koratamaddi
Timothy Leblanc
Bryn Llewellyn
Lakshmi Narapareddi
Essi Parast
Alan Paulson
Alan Paulson
Manish Pawar
Srinivas Putrevu
Bryan Roberts
Grant Spencer
Tulika Srivastava
Glenn Stokol
Jenny Tsai-Smith
Lex Van Der Werff
Ted Witiuk

Graphic Designer
Rajiv Chandrabhanu

Editors
Arijit Ghosh
Atanu Raychaudhuri

Publishers
Nita Brozowski
Jobi Varghese
Giri Venugopal

Contents

Preface

1 Introduction
Objectives I-2
Lesson Objectives 1-2
Lesson Agenda 1-3
Course Objectives 1-4
Course Agenda 1-5
The Human Resources (HR) Schema That Is Used in This Course 1-7
Class Account Information 1-8
Appendixes Used in This Course 1-9
The PL/SQL Development Environments 1-10
What Is Oracle SQL Developer? 1-11
Coding PL/SQL in SQL*Plus 1-12
Coding PL/SQL in Oracle JDeveloper 1-13
Lesson Agenda 1-14
Starting SQL Developer and Creating a Database Connection 1-15
Creating Schema Objects 1-16
Using the SQL Worksheet 1-17
Executing SQL Statements 1-19
Saving SQL Scripts 1-20
Executing Saved Script Files: Method 1 1-21
Executing Saved SQL Scripts: Method 2 1-22
Creating an Anonymous Block 1-23
Editing the PL/SQL Code 1-24
Lesson Agenda 1-25
Oracle 11g SQL and PL/SQL Documentation 1-26
Additional Resources 1-27
Practice 1 Overview: Getting Started 1-29

2 Creating Procedures
Objectives 2-2
Lesson Agenda 2-3
Creating a Modularized Subprogram Design 2-4
Creating a Layered Subprogram Design 2-5
Modularizing Development with PL/SQL Blocks 2-6
Anonymous Blocks: Overview 2-7
PL/SQL Execution Environment 2-8
What Are PL/SQL Subprograms? 2-9
The Benefits of Using PL/SQL Subprograms 2-10
Differences Between Anonymous Blocks and Subprograms 2-11

iv

Lesson Agenda 2-12
What Are Procedures? 2-13
Creating Procedures: Overview 2-14
Creating Procedures with the SQL CREATE OR REPLACE Statement 2-15
Creating Procedures Using SQL Developer 2-16
Compiling Procedures and Displaying Compilation Errors in SQL Developer 2-17
Correcting Compilation Errors in SQL Developer 2-18
Naming Conventions of PL/SQL Structures Used in This Course 2-19
What Are Parameters and Parameter Modes? 2-20
Formal and Actual Parameters 2-21
Procedural Parameter Modes 2-22
Comparing the Parameter Modes 2-23
Using the IN Parameter Mode: Example 2-24
Using the OUT Parameter Mode: Example 2-25
Using the IN OUT Parameter Mode: Example 2-26
Viewing the OUT Parameters: Using the DBMS_OUTPUT.PUT_LINE
 Subroutine 2-27
Viewing OUT Parameters: Using SQL*Plus Host Variables 2-28
Available Notations for Passing Actual Parameters 2-29
Passing Actual Parameters: Creating the add_dept Procedure 2-30
Passing Actual Parameters: Examples 2-31
Using the DEFAULT Option for the Parameters 2-32
Calling Procedures 2-34
Calling Procedures Using SQL Developer 2-35
Lesson Agenda 2-36
Handled Exceptions 2-37
Handled Exceptions: Example 2-38
Exceptions Not Handled 2-39
Exceptions Not Handled: Example 2-40
Removing Procedures: Using the DROP SQL Statement or SQL Developer 2-41
Viewing Procedure Information Using the Data Dictionary Views 2-42
Viewing Procedure Information Using SQL Developer 2-43
Summary 2-44
Practice 2 Overview: Creating, Compiling, and Calling Procedures 2-45

3 Creating Functions and Debugging Subprograms
Objectives 3-2
Overview of Stored Functions 3-3
Creating Functions 3-4
The Difference Between Procedures and Functions 3-5
Creating and Running Functions: Overview 3-6
Creating and Invoking a Stored Function Using the CREATE FUNCTION
 Statement: Example 3-7
Using Different Methods for Executing Functions 3-8

v

Creating and Compiling Functions Using SQL Developer 3-10
Executing Functions Using SQL Developer 3-11
Advantages of User-Defined Functions in SQL Statements 3-12
Using a Function in a SQL Expression: Example 3-13
Calling User-Defined Functions in SQL Statements 3-14
Restrictions When Calling Functions from SQL Expressions 3-15
Controlling Side Effects When Calling Functions from SQL Expressions 3-16
Restrictions on Calling Functions from SQL: Example 3-17
Named and Mixed Notation from SQL 3-18
Named and Mixed Notation from SQL: Example 3-19
Removing Functions: Using the DROP SQL Statement or SQL Developer 3-20
Viewing Functions Using Data Dictionary Views 3-21
Practice 3-1: Overview 3-22
Debugging PL/SQL Subprograms Using the SQL Developer Debugger 3-25
Debugging a Subprogram: Overview 3-26
The Procedure or Function Code Editing Tab 3-27
The Procedure or Function Tab Toolbar 3-28
The Debugging – Log Tab Toolbar 3-29
Additional Tabs 3-31
Debugging a Procedure Example: Creating a New emp_list Procedure 3-32
Debugging a Procedure Example: Creating a New get_location Function 3-33
Setting Breakpoints and Compiling emp_list for Debug Mode 3-34
Compiling the get_location Function for Debug Mode 3-35
Debugging emp_list and Entering Values for the PMAXROWS Parameter 3-36
Debugging emp_list: Step Into the Code 3-37
Viewing the Data 3-39
Modifying the Variables While Debugging the Code 3-40
Debugging emp_list: Step Over the Code 3-41
Debugging emp_list: Step Out of the Code ([Shift] + [F7]) 3-42
Debugging emp_list: Run to Cursor ([F4]) 3-43
Debugging emp_list: Step to End of Method 3-44
Practice 3-2 Overview: Introduction to the SQL Developer Debugger 3-45
Summary 3-47

4 Creating Packages
Objectives 4-2
Lesson Agenda 4-3
What Are PL/SQL Packages? 4-4
Advantages of Using Packages 4-5
Components of a PL/SQL Package 4-7
The Visibility of a Package’s Components 4-8
Developing PL/SQL Packages: Overview 4-9
Lesson Agenda 4-10

vi

Creating the Package Specification: Using the CREATE PACKAGE Statement 4-11
Creating the Package Specification: Using SQL Developer 4-12
Creating the Package Body: Using SQL Developer 4-13
Example of a Package Specification: comm_pkg 4-14
Creating the Package Body 4-15
Example of a Package Body: comm_pkg 4-16
Invoking the Package Subprograms: Examples 4-17
Invoking the Package Subprograms: Using SQL Developer 4-18
Creating and Using Bodiless Packages 4-19
Removing Packages: Using SQL Developer or the SQL DROP Statement 4-20
Viewing Packages Using the Data Dictionary 4-21
Guidelines for Writing Packages 4-22
Summary 4-23
Practice 4 Overview: Creating and Using Packages 4-24

5 Working with Packages
Objectives 5-2
Lesson Agenda 5-3
Overloading Subprograms in PL/SQL 5-4
Overloading Procedures Example: Creating the Package Specification 5-6
Overloading Procedures Example: Creating the Package Body 5-7
Overloading and the STANDARD Package 5-8
Illegal Procedure Reference 5-9
Using Forward Declarations to Solve Illegal Procedure Reference 5-10
Initializing Packages 5-11
Using Package Functions in SQL 5-12
Controlling Side Effects of PL/SQL Subprograms 5-13
Package Function in SQL: Example 5-14
Lesson Agenda 5-15
Persistent State of Packages 5-16
Persistent State of Package Variables: Example 5-18
Persistent State of a Package Cursor: Example 5-19
Executing the CURS_PKG Package 5-21
Using PL/SQL Tables of Records in Packages 5-22
Summary 5-23
Practice 5: Overview 5-24

6 Using Oracle-Supplied Packages in Application Development
Objectives 6-2
Lesson Agenda 6-3
Using Oracle-Supplied Packages 6-4
Examples of Some Oracle-Supplied Packages 6-5

vii

Lesson Agenda 6-6
How the DBMS_OUTPUT Package Works 6-7
Using the UTL_FILE Package to Interact with Operating System Files 6-8
File Processing Using the UTL_FILE Package: Overview 6-9
Using the Available Declared Exceptions in the UTL_FILE Package 6-10
The FOPEN and IS_OPEN Functions: Example 6-11
Using UTL_FILE: Example 6-13
What Is the UTL_MAIL Package? 6-15
Setting Up and Using the UTL_MAIL: Overview 6-16
Summary of UTL_MAIL Subprograms 6-17
Installing and Using UTL_MAIL 6-18
The SEND Procedure Syntax 6-19
The SEND_ATTACH_RAW Procedure 6-20
Sending Email with a Binary Attachment: Example 6-21
The SEND_ATTACH_VARCHAR2 Procedure 6-23
Sending Email with a Text Attachment: Example 6-24
Summary 6-26
Practice 6: Overview 6-27

7 Using Dynamic SQL
Objectives 7-2
Lesson Agenda 7-3
Execution Flow of SQL 7-4
What Is Dynamic SQL? 7-5
When Do You Need Dynamic SQL? 7-7
Native Dynamic SQL (NDS) 7-8
Using the EXECUTE IMMEDIATE Statement 7-9
Dynamic SQL with a DDL Statement: Examples 7-10
Dynamic SQL with DML Statements 7-11
Dynamic SQL with a Single-Row Query: Example 7-12
Dynamic SQL with a Multirow Query: Example 7-13
Declaring Cursor Variables 7-14
Executing a PL/SQL Anonymous Block Dynamically 7-15
Using Native Dynamic SQL to Compile PL/SQL Code 7-16
Lesson Agenda 7-17
Using the DBMS_SQL Package 7-18
Using the DBMS_SQL Package Subprograms 7-19
Using DBMS_SQL with a DML Statement: Deleting Rows 7-21
Using DBMS_SQL with a Parameterized DML Statement 7-22
Dynamic SQL Functional Completeness 7-23
Summary 7-24
Practice 7 Overview: Using Native Dynamic SQL 7-25

viii

8 Design Considerations for PL/SQL Code
Objectives 8-2
Lesson Agenda 8-3
Standardizing Constants and Exceptions 8-4
Standardizing Exceptions 8-5
Standardizing Exception Handling 8-6
Standardizing Constants 8-7
Local Subprograms 8-8
Definer’s Rights Versus Invoker’s Rights 8-9
Specifying Invoker’s Rights: Setting AUTHID to CURRENT_USER 8-10
Autonomous Transactions 8-11
Features of Autonomous Transactions 8-12
Using Autonomous Transactions: Example 8-13
Lesson Agenda 8-15
Using the NOCOPY Hint 8-16
Effects of the NOCOPY Hint 8-17
When Does the PL/SQL Compiler Ignore the NOCOPY Hint? 8-18
Using the PARALLEL_ENABLE Hint 8-19
Using the Cross-Session PL/SQL Function Result Cache 8-20
Enabling Result-Caching for a Function 8-21
Declaring and Defining a Result-Cached Function: Example 8-22
Using the DETERMINISTIC Clause with Functions 8-24
Lesson Agenda 8-25
Bulk Binding 8-26
Using Bulk Binding: Syntax and Keywords 8-27
Bulk Binding FORALL: Example 8-29
Using BULK COLLECT INTO with Queries 8-31
Using BULK COLLECT INTO with Cursors 8-32
Using BULK COLLECT INTO with a RETURNING Clause 8-33
FORALL Support for Sparse Collections 8-34
Using Bulk Binds in Sparse Collections 8-35
Using Bulk Bind with Index Array 8-36
Using the RETURNING Clause 8-37
Summary 8-38
Practice 8: Overview 8-39

9 Creating Triggers
Objectives 9-2
What Are Triggers? 9-3
Defining Triggers 9-4
The Trigger Event Types 9-5
Application and Database Triggers 9-6
Business Application Scenarios for Implementing Triggers 9-7

ix

The Available Trigger Types 9-8
Trigger Event Types and Body 9-9
Creating DML Triggers Using the CREATE TRIGGER Statement 9-10
Specifying the Trigger Firing (Timing) 9-11
Statement-Level Triggers Versus Row-Level Triggers 9-12
Creating DML Triggers Using SQL Developer 9-13
Trigger-Firing Sequence: Single-Row Manipulation 9-14
Trigger-Firing Sequence: Multirow Manipulation 9-15
Creating a DML Statement Trigger Example: SECURE_EMP 9-16
Testing Trigger SECURE_EMP 9-17
Using Conditional Predicates 9-18
Creating a DML Row Trigger 9-19
Using OLD and NEW Qualifiers 9-20
Using OLD and NEW Qualifiers: Example 9-21
Using OLD and NEW Qualifiers: Example Using AUDIT_EMP 9-22
Using the WHEN Clause to Fire a Row Trigger Based on a Condition 9-23
Summary of the Trigger Execution Model 9-24
Implementing an Integrity Constraint with an After Trigger 9-25
INSTEAD OF Triggers 9-26
Creating an INSTEAD OF Trigger: Example 9-27
Creating an INSTEAD OF Trigger to Perform DML on Complex Views 9-28
The Status of a Trigger 9-30
Creating a Disabled Trigger 9-31
Managing Triggers Using the ALTER and DROP SQL Statements 9-32
Managing Triggers Using SQL Developer 9-33
Testing Triggers 9-34
Viewing Trigger Information 9-35
Using USER_TRIGGERS 9-36
Summary 9-37
Practice 9 Overview: Creating Statement and Row Triggers 9-38

10 Creating Compound, DDL, and Event Database Triggers
Objectives 10-2
What Is a Compound Trigger? 10-3
Working with Compound Triggers 10-4
The Benefits of Using a Compound Trigger 10-5
Timing-Point Sections of a Table Compound Trigger 10-6
Compound Trigger Structure for Tables 10-7
Compound Trigger Structure for Views 10-8
Compound Trigger Restrictions 10-9
Trigger Restrictions on Mutating Tables 10-10
Mutating Table: Example 10-11
Using a Compound Trigger to Resolve the Mutating Table Error 10-13

x

Comparing Database Triggers to Stored Procedures 10-15
Comparing Database Triggers to Oracle Forms Triggers 10-16
Creating Triggers on DDL Statements 10-17
Creating Database-Event Triggers 10-18
Creating Triggers on System Events 10-19
LOGON and LOGOFF Triggers: Example 10-20
CALL Statements in Triggers 10-21
Benefits of Database-Event Triggers 10-22
System Privileges Required to Manage Triggers 10-23
Guidelines for Designing Triggers 10-24
Summary 10-25
Practice 10: Overview 10-26

11 Using the PL/SQL Compiler
Objectives 11-2
Lesson Agenda 11-3
Using the PL/SQL Compiler 11-4
Changes in the PL/SQL Compiler 11-5
Lesson Agenda 11-6
Initialization Parameters for PL/SQL Compilation 11-7
Using the Initialization Parameters for PL/SQL Compilation 11-8
The New Compiler Settings Since Oracle 10g 11-11
Displaying the PL/SQL Initialization Parameters 11-12
Displaying and Setting the PL/SQL Initialization Parameters 11-13
Changing PL/SQL Initialization Parameters: Example 11-14
Lesson Agenda 11-15
Overview of PL/SQL Compile-Time Warnings for Subprograms 11-16
Benefits of Compiler Warnings 11-18
Categories of PL/SQL Compile-Time Warning Messages 11-19
Setting the Warning Messages Levels 11-20
Setting Compiler Warning Levels: Using PLSQL_WARNINGS 11-21
Setting Compiler Warning Levels: Using PLSQL_WARNINGS, Examples 11-22
Setting Compiler Warning Levels: Using PLSQL_WARNINGS in
 SQL Developer 11-23
Viewing the Current Setting of PLSQL_WARNINGS 11-24
Viewing the Compiler Warnings: Using SQL Developer, SQL*Plus, or Data
 Dictionary Views 11-25
SQL*Plus Warning Messages: Example 11-26
Guidelines for Using PLSQL_WARNINGS 11-27
Lesson Agenda 11-28
Setting Compiler Warning Levels: Using the DBMS_WARNING Package 11-29
Using the DBMS_WARNING Package Subprograms 11-31
The DBMS_WARNING Procedures: Syntax, Parameters, and Allowed
 Values 11-32

xi

The DBMS_WARNING Procedures: Example 11-33
The DBMS_WARNING Functions: Syntax, Parameters, and Allowed Values 11-34
The DBMS_WARNING Functions: Example 11-35
Using DBMS_WARNING: Example 11-36
Using the New PLW 06009 Warning Message 11-38
The New PLW 06009 Warning: Example 11-39
Summary 11-40
Practice 11: Overview 11-41

12 Managing PL/SQL Code
Objectives 12-2
Lesson Agenda 12-3
What Is Conditional Compilation? 12-4
How Does Conditional Compilation Work? 12-5
Using Selection Directives 12-6
Using Predefined and User-Defined Inquiry Directives 12-7
The PLSQL_CCFLAGS Parameter and the Inquiry Directive 12-8
Displaying the PLSQL_CCFLAGS Initialization Parameter Setting 12-9
The PLSQL_CCFLAGS Parameter and the Inquiry Directive: Example 12-10
Using Conditional Compilation Error Directives to Raise User-Defined Errors 12-11
Using Static Expressions with Conditional Compilation 12-12
The DBMS_DB_VERSION Package: Boolean Constants 12-13
The DBMS_DB_VERSION Package Constants 12-14
Using Conditional Compilation with Database Versions: Example 12-15
Using DBMS_PREPROCESSOR Procedures to Print or Retrieve Source
 Text 12-17
Lesson Agenda 12-18
What Is Obfuscation? 12-19
Benefits of Obfuscating 12-20
What’s New in Dynamic Obfuscating Since Oracle 10g? 12-21
Nonobfuscated PL/SQL Code: Example 12-22
Obfuscated PL/SQL Code: Example 12-23
Dynamic Obfuscation: Example 12-24
The PL/SQL Wrapper Utility 12-25
Running the Wrapper Utility 12-26
Results of Wrapping 12-27
Guidelines for Wrapping 12-28
The DBMS_DDL Package Versus the Wrap Utility 12-29
Summary 12-30
Practice 12: Overview 12-31

13 Managing Dependencies
Objectives 13-2
Overview of Schema Object Dependencies 13-3

xii

Dependencies 13-4
Direct Local Dependencies 13-5
Querying Direct Object Dependencies: Using the USER_DEPENDENCIES
 View 13-6
Querying an Object’s Status 13-7
Invalidation of Dependent Objects 13-8
Schema Object Change That Invalidates Some Dependents: Example 13-9
Displaying Direct and Indirect Dependencies 13-11
Displaying Dependencies Using the DEPTREE View 13-12
More Precise Dependency Metadata in Oracle Database 11g 13-13
Fine-Grained Dependency Management 13-14
Fine-Grained Dependency Management: Example 13-15
Impact of Redefining Synonyms Before Oracle Database 10g 13-18
Changes to Synonym Dependencies Starting with Oracle Database 10g 13-19
Maintaining Valid PL/SQL Program Units and Views 13-20
Another Scenario of Local Dependencies 13-21
Guidelines for Reducing Invalidation 13-22
Object Revalidation 13-23
Remote Dependencies 13-24
Concepts of Remote Dependencies 13-26
Setting the REMOTE_DEPENDENCIES_MODE Parameter 13-27
Remote Dependencies and Time Stamp Mode 13-28
Remote Procedure B Compiles at 8:00 AM 13-30
Local Procedure A Compiles at 9:00 AM 13-31
Execute Procedure A 13-32
Remote Procedure B Recompiled at 11:00 AM 13-33
Execute Procedure A 13-34
Signature Mode 13-35
Recompiling a PL/SQL Program Unit 13-36
Unsuccessful Recompilation 13-37
Successful Recompilation 13-38
Recompiling Procedures 13-39
Packages and Dependencies: Subprogram References the Package 13-40
Packages and Dependencies: Package Subprogram References Procedure 13-41
Summary 13-42
Practice 13 Overview: Managing Dependencies in Your Schema 13-43

Appendix A: Practice Solutions

Appendix B: Table Descriptions

Appendix C: Using SQL Developer

Appendix D: Review of PL/SQL

xiii

Appendix E: Using SQL*Plus

Appendix F: Studies for Implementing Triggers

Appendix G: Using the DBMS_SCHEDULER and HTP Packages

Appendix H: Review of JDeveloper

Index

Additional Practices

Additional Practice Solutions

Additional Practices: Table Descriptions and Data

Preface

Preface - 3

Profile

Before You Begin This Course
Before you begin this course, you should have thorough knowledge of SQL and SQL*Developer or
SQL*Plus, as well as working experience in developing applications.

Prerequisites
Prerequisites are any of the following Oracle University courses or combinations of courses:

• Oracle Database 11g: PL/SQL Fundamentals
• Oracle Database 11g: Introduction to SQL
• Oracle Database 11g: SQL Fundamentals I and Oracle Database 11g: SQL Fundamentals II
• Oracle Database 11g: SQL and PL/SQL Fundamentals

How This Course Is Organized
Oracle Database 11g: Develop PL/SQL Program Units is an instructor-led course featuring lectures and
hands-on exercises. Online demonstrations and practice sessions reinforce the concepts and skills that are
introduced.

Preface - 4

Related Publications
Oracle Publications

Title Part Number
Oracle® Database Reference 11g Release 1 (11.1) B28320-01
Oracle® Database SQL Language Reference 11g Release 1 (11.1) B28286-01
Oracle® Database Concepts 11g Release 1 (11.1) B28318-01
Oracle® Database Advanced Application Developer's Guide –
11g Release 1 (11.1) B28424-01
SQL*Plus® User's Guide and Reference Release 11.1 B31189-01
Oracle Database SQL Developer User's Guide Release 1.2 B10406-01
Oracle® Database PL/SQL Language Reference B28370-01
11g Release 1 (11.1)
Oracle® Database PL/SQL Packages and Types Reference B28419-01
11g Release 1 (11.1)

Additional Publications
• System release bulletins
• Installation and user’s guides
• Read-me files
• International Oracle User’s Group (IOUG) articles
• Oracle Magazine

Preface - 5

Typographic Conventions

Typographic Conventions In Text

Convention Element Example

Bold Emphasized words and phrases
in Web content only

To navigate within this application, do
not click the Back and Forward buttons.

Bold italic

Glossary terms (if there is a
glossary)

The algorithm inserts the new key.

Brackets

Key names

Press [Enter].

Caps and
lowercase

Buttons,
check boxes,
triggers,
windows

Click the Executable button.
Select the Registration Required check
box.
Assign a When-Validate-Item trigger.
Open the Master Schedule window.

Carets

Menu paths

Select File > Save.

Commas

Key sequences

Press and release these keys one at a
time:
[Alt], [F], [D]

Preface - 6

Typographic Conventions (continued)

Typographic Conventions In Text (continued)

Convention Object or Term Example

Courier New,
case sensitive

Code output,
SQL and PL/SQL
code elements, Java
code elements,
directory names,
filenames,
passwords,
pathnames, URLs,
user input,
usernames

Code output: debug.seti (‘I’,300);

SQL code elements: Use the SELECT command to view
information stored in the last_name column of the emp
table.

Java code elements: Java programming involves the
String and StringBuffer classes.

Directory names: bin (DOS), $FMHOME (UNIX)

Filenames: Locate the init.ora file.

Passwords: Use tiger as your password.

Pathnames: Open c:\my_docs\projects.

URLs: Go to http://www.oracle.com.

User input: Enter 300.

Usernames: Log on as scott.

Initial cap Graphics labels
(unless the term is a
proper noun)

Customer address (but Oracle Payables)

Italic Emphasized words
and phrases in print
publications, titles of
books and courses,
variables

Do not save changes to the database.

For further information, see Oracle7 Server SQL
Language Reference Manual.
Enter user_id@us.oracle.com, where user_id is
the name of the user.

Plus signs Key combinations Press and hold these keys simultaneously:
[Control] + [Alt] + [Delete]

Quotation
marks

Lesson and chapter
titles in cross
references, interface
elements with long
names that have only
initial caps

This subject is covered in Unit II, Lesson 3, “Working with
Objects.”

Select the “Include a reusable module component” and
click Finish.

Use the “WHERE clause of query” property.

Preface - 7

Typographic Conventions (continued)

Typographic Conventions in Navigation Paths
This course uses simplified navigation paths, such as the following example, to direct you through Oracle
Applications.
Example:
Invoice Batch Summary
(N) Invoice > Entry > Invoice Batches Summary (M) Query > Find (B) Approve

This simplified path translates to the following:
1. (N) From the Navigator window, select Invoice > Entry > Invoice Batches Summary.
2. (M) From the menu, select Query > Find.
3. (B) Click the Approve button.
Notation:

(N) = Navigator (I) = Icon
(M) = Menu (H) = Hyperlink
(T) = Tab (B) = Button

Additional
Practices

Oracle Database 11g: Develop PL/SQL Program Units Additional Practices - 2

Additional Practices: Overview
These additional practices are provided as a supplement to the course Oracle Database 11g:
Develop PL/SQL Program Units. In these practices, you apply the concepts that you learned
in the course.
The additional practices comprise two parts:
Part A provides supplemental exercises to create stored procedures, functions, packages, and
triggers, and to use the Oracle-supplied packages with SQL Developer or SQL*Plus as the
development environment. The tables used in this portion of the additional practice include
EMPLOYEES, JOBS, JOB_HISTORY, and DEPARTMENTS.
Part B is a case study that can be completed at the end of the course. This part supplements
the practices for creating and managing program units. The tables used in the case study are
based on a video database and contain the TITLE, TITLE_COPY, RENTAL,
RESERVATION, and MEMBER tables.
An entity relationship diagram is provided at the start of part A and part B. Each entity
relationship diagram displays the table entities and their relationships. More detailed
definitions of the tables and the data contained in them is provided in the appendix titled
“Additional Practices: Table Descriptions and Data.”

Oracle Database 11g: Develop PL/SQL Program Units Additional Practices - 3

Part A
Entity Relationship Diagram

Human Resources:

Oracle Database 11g: Develop PL/SQL Program Units Additional Practices - 4

Part A (continued)
Note: These exercises can be used for extra practice when discussing how to create
procedures.

1. In this exercise, create a program to add a new job into the JOBS table.
a. Create a stored procedure called NEW_JOB to enter a new order into the JOBS

table. The procedure should accept three parameters. The first and second
parameters supply a job ID and a job title. The third parameter supplies the
minimum salary. Use the maximum salary for the new job as twice the minimum
salary supplied for the job ID.

b. Invoke the procedure to add a new job with job ID 'SY_ANAL', job title
'System Analyst', and minimum salary of 6000.

c. Check whether a row was added and note the new job ID for use in the next
exercise. Commit the changes.

2. In this exercise, create a program to add a new row to the JOB_HISTORY table, for an
existing employee.

a. Create a stored procedure called ADD_JOB_HIST to add a new row into the
JOB_HISTORY table for an employee who is changing his job to the new job ID
('SY_ANAL') that you created in exercise 1 b.
The procedure should provide two parameters, one for the employee ID who is
changing the job, and the second for the new job ID. Read the employee ID from
the EMPLOYEES table and insert it into the JOB_HISTORY table. Make the hire
date of this employee as start date and today’s date as end date for this row in the
JOB_HISTORY table.
Change the hire date of this employee in the EMPLOYEES table to today’s date.
Update the job ID of this employee to the job ID passed as parameter (use the
'SY_ANAL' job ID) and salary equal to the minimum salary for that job ID + 500.
Note: Include exception handling to handle an attempt to insert a nonexistent
employee.

b. Disable all triggers on the EMPLOYEES, JOBS, and JOB_HISTORY tables before
invoking the ADD_JOB_HIST procedure.

c. Execute the procedure with employee ID 106 and job ID 'SY_ANAL' as
parameters.

d. Query the JOB_HISTORY and EMPLOYEES tables to view your changes for
employee 106, and then commit the changes.

e. Reenable the triggers on the EMPLOYEES, JOBS, and JOB_HISTORY tables.
3. In this exercise, create a program to update the minimum and maximum salaries for a

job in the JOBS table.
a. Create a stored procedure called UPD_JOBSAL to update the minimum and

maximum salaries for a specific job ID in the JOBS table. The procedure should
provide three parameters: the job ID, a new minimum salary, and a new maximum
salary. Add exception handling to account for an invalid job ID in the JOBS table.
Raise an exception if the maximum salary supplied is less than the minimum
salary, and provide a message that will be displayed if the row in the JOBS table is
locked.
Hint: The resource locked/busy error number is –54.

Oracle Database 11g: Develop PL/SQL Program Units Additional Practices - 5

Part A (continued)
b. Execute the UPD_JOBSAL procedure by using a job ID of 'SY_ANAL', a

minimum salary of 7000 and a maximum salary of 140.
Note: This should generate an exception message.

c. Disable triggers on the EMPLOYEES and JOBS tables.
d. Execute the UPD_JOBSAL procedure using a job ID of 'SY_ANAL', a minimum

salary of 7000, and a maximum salary of 14000.
e. Query the JOBS table to view your changes, and then commit the changes.
f. Enable the triggers on the EMPLOYEES and JOBS tables.

4. In this exercise, create a procedure to monitor whether employees have exceeded their
average salaries for their job type.

a. Disable the SECURE_EMPLOYEES trigger.
b. In the EMPLOYEES table, add an EXCEED_AVGSAL column to store up to three

characters and a default value of NO. Use a check constraint to allow the values
YES or NO.

c. Write a stored procedure called CHECK_AVGSAL that checks whether each
employee’s salary exceeds the average salary for the JOB_ID. The average salary
for a job is calculated from the information in the JOBS table. If the employee’s
salary exceeds the average for his or her job, then update the EXCEED_AVGSAL
column in the EMPLOYEES table to a value of YES; otherwise, set the value to NO.
Use a cursor to select the employee’s rows using the FOR UPDATE option in the
query. Add exception handling to account for a record being locked.
Hint: The resource locked/busy error number is –54. Write and use a local
function called GET_JOB_AVGSAL to determine the average salary for a job ID
specified as a parameter.

d. Execute the CHECK_AVGSAL procedure. Then, to view the results of your
modifications, write a query to display the employee’s ID, job, the average salary
for the job, the employee’s salary and the exceed_avgsal indicator column for
employees whose salaries exceed the average for their job, and finally commit the
changes.

Note: These exercises can be used for extra practice when discussing how to create
functions.

5. Create a subprogram to retrieve the number of years of service for a specific employee.
a. Create a stored function called GET_YEARS_SERVICE to retrieve the total

number of years of service for a specific employee. The function should accept the
employee ID as a parameter and return the number of years of service. Add error
handling to account for an invalid employee ID.

b. Invoke the GET_YEARS_SERVICE function in a call to
DBMS_OUTPUT.PUT_LINE for an employee with ID 999.

c. Display the number of years of service for employee 106 with
DBMS_OUTPUT.PUT_LINE invoking the GET_YEARS_SERVICE function.

d. Query the JOB_HISTORY and EMPLOYEES tables for the specified employee to
verify that the modifications are accurate. The values represented in the results on
this page may differ from those you get when you run these queries.

Oracle Database 11g: Develop PL/SQL Program Units Additional Practices - 6

Part A (continued)
6. In this exercise, create a program to retrieve the number of different jobs that an

employee worked on during his or her service.
a. Create a stored function called GET_JOB_COUNT to retrieve the total number of

different jobs on which an employee worked.
The function should accept the employee ID in a parameter, and return the number
of different jobs that the employee worked on until now, including the present job.
Add exception handling to account for an invalid employee ID.
Hint: Use the distinct job IDs from the JOB_HISTORY table, and exclude the
current job ID, if it is one of the job IDs on which the employee has already
worked. Write a UNION of two queries and count the rows retrieved into a PL/SQL
table. Use a FETCH with BULK COLLECT INTO to obtain the unique jobs for the
employee.

b. Invoke the function for the employee with the ID of 176.
Note: These exercises can be used for extra practice when discussing how to create
packages.

7. Create a package called EMPJOB_PKG that contains your NEW_JOB,
ADD_JOB_HIST, UPD_JOBSAL procedures, as well as your GET_YEARS_SERVICE
and GET_JOB_COUNT functions.

a. Create the package specification with all the subprogram constructs as public.
Move any subprogram local-defined types into the package specification.

b. Create the package body with the subprogram implementation; remember to
remove, from the subprogram implementations, any types that you moved into the
package specification.

c. Invoke your EMPJOB_PKG.NEW_JOB procedure to create a new job with the ID
PR_MAN, the job title Public Relations Manager, and the salary 6250.

d. Invoke your EMPJOB_PKG.ADD_JOB_HIST procedure to modify the job of
employee ID 110 to job ID PR_MAN.
Note: You need to disable the UPDATE_JOB_HISTORY trigger before you
execute the ADD_JOB_HIST procedure, and re-enable the trigger after you have
executed the procedure.

e. Query the JOBS, JOB_HISTORY, and EMPLOYEES tables to verify the results.
Note: These exercises can be used for extra practice when discussing how to create database
triggers.

8. In this exercise, create a trigger to ensure that the minimum and maximum salaries of a
job are never modified such that the salary of an existing employee with that job ID is
out of the new range specified for the job.

a. Create a trigger called CHECK_SAL_RANGE that is fired before every row that is
updated in the MIN_SALARY and MAX_SALARY columns in the JOBS table. For
any minimum or maximum salary value that is changed, check whether the salary
of any existing employee with that job ID in the EMPLOYEES table falls within the
new range of salaries specified for this job ID. Include exception handling to cover
a salary range change that affects the record of any existing employee.

Oracle Database 11g: Develop PL/SQL Program Units Additional Practices - 7

Part A (continued)
b. Test the trigger using the SY_ANAL job, setting the new minimum salary to 5000,

and the new maximum salary to 7000. Before you make the change, write a query
to display the current salary range for the SY_ANAL job ID, and another query to
display the employee ID, last name, and salary for the same job ID. After the
update, query the change (if any) to the JOBS table for the specified job ID.

c. Using the SY_ANAL job, set the new minimum salary to 7,000, and the new
maximum salary to 18000. Explain the results.

Oracle Database 11g: Develop PL/SQL Program Units Additional Practices - 8

Part B
Entity Relationship Diagram

TITLE
#* ID

* title
* description

o rating
o category
o release date

TITLE_COPY
#* ID

* status

RENTAL
#* book date
o act ret date
o exp ret date

MEMBER
#* ID

* last name
o first name
o address
o city
o phone
* join date

RESERVATION
#* reservation date

for

the subject
of

available as

a copy

the subject of

made against

responsible
for

created
for

responsible
for

set up for

Oracle Database 11g: Develop PL/SQL Program Units Additional Practices - 9

Part B (continued)
In this case study, you create a package named VIDEO_PKG that contains procedures and
functions for a video store application. This application enables customers to become a
member of the video store. Any member can rent movies, return rented movies, and reserve
movies. Additionally, you create a trigger to ensure that any data in the video tables is
modified only during business hours.
Create the package by using SQL*Plus and use the DBMS_OUTPUT Oracle-supplied
package to display messages.
The video store database contains the following tables: TITLE, TITLE_COPY, RENTAL,
RESERVATION, and MEMBER. The entity relationship diagram is shown on the previous
page.

Oracle Database 11g: Develop PL/SQL Program Units Additional Practices - 10

Part B (continued)
1. Load and execute the D:\labs\PLPU\labs\buildvid1.sql script to create all

the required tables and sequences that are needed for this exercise.
2. Load and execute the D:\labs\PLPU\labs\buildvid2.sql script to populate

all the tables created through the buildvid1.sql script.
3. Create a package named VIDEO_PKG with the following procedures and functions:

a. NEW_MEMBER: A public procedure that adds a new member to the MEMBER table.
For the member ID number, use the sequence MEMBER_ID_SEQ; for the join
date, use SYSDATE. Pass all other values to be inserted into a new row as
parameters.

b. NEW_RENTAL: An overloaded public function to record a new rental. Pass the title
ID number for the video that a customer wants to rent, and either the customer’s
last name or his member ID number into the function. The function should return
the due date for the video. Due dates are three days from the date the video is
rented. If the status for a movie requested is listed as AVAILABLE in the
TITLE_COPY table for one copy of this title, then update this TITLE_COPY table
and set the status to RENTED. If there is no copy available, the function must
return NULL. Then, insert a new record into the RENTAL table identifying the
booked date as today’s date, the copy ID number, the member ID number, the title
ID number, and the expected return date. Be aware of multiple customers with the
same last name. In this case, have the function return NULL, and display a list of
the customers’ names that match and their ID numbers.

c. RETURN_MOVIE: A public procedure that updates the status of a video (available,
rented, or damaged) and sets the return date. Pass the title ID, the copy ID, and the
status to this procedure. Check whether there are reservations for that title and
display a message if it is reserved. Update the RENTAL table and set the actual
return date to today’s date. Update the status in the TITLE_COPY table based on
the status parameter passed into the procedure.

d. RESERVE_MOVIE: A private procedure that executes only if all the video copies
requested in the NEW_RENTAL procedure have a status of RENTED. Pass the
member ID number and the title ID number to this procedure. Insert a new record
into the RESERVATION table and record the reservation date, member ID
number, and title ID number. Print a message indicating that a movie is reserved
and its expected date of return.

e. EXCEPTION_HANDLER: A private procedure that is called from the exception
handler of the public programs. Pass the SQLCODE number to this procedure, and
the name of the program (as a text string) where the error occurred. Use
RAISE_APPLICATION_ERROR to raise a customized error. Start with a unique
key violation (-1) and foreign key violation (-2292). Allow the exception
handler to raise a generic error for any other errors.

Oracle Database 11g: Develop PL/SQL Program Units Additional Practices - 11

Part B (continued)
4. Use the following scripts located in the E:\labs\PLPU\soln directory to test your

routines:
a. Add two members using sol_apb_04_a_new_members.sql.
b. Add new video rentals using sol_apb_04_b_new_rentals.sql.
c. Return movies using the sol_apb_04_c_return_movie.sql script.

5. The business hours for the video store are 8:00 AM through 10:00 AM, Sunday through
Friday, and 8:00 AM through 12:00 AM on Saturday. To ensure that the tables can be
modified only during these hours, create a stored procedure that is called by triggers on
the tables.

a. Create a stored procedure called TIME_CHECK that checks the current time
against business hours. If the current time is not within business hours, use the
RAISE_APPLICATION_ERROR procedure to give an appropriate message.

b. Create a trigger on each of the five tables. Fire the trigger before data is inserted,
updated, and deleted from the tables. Call your TIME_CHECK procedure from
each of these triggers.

Additional
Practice:

Solutions

Oracle Database 11g: Develop PL/SQL Program Units Additional Practice Solutions - 2

Part A: Additional Practice 1 Solutions

1. In this exercise, create a program to add a new job into the JOBS table.

a. Create a stored procedure called NEW_JOB to enter a new order into the JOBS table.
The procedure should accept three parameters. The first and second parameters supply a
job ID and a job title. The third parameter supplies the minimum salary. Use the
maximum salary for the new job as twice the minimum salary supplied for the job ID.

CREATE OR REPLACE PROCEDURE new_job(
 p_jobid IN jobs.job_id%TYPE,
 p_title IN jobs.job_title%TYPE,
 v_minsal IN jobs.min_salary%TYPE) IS
 v_maxsal jobs.max_salary%TYPE := 2 * v_minsal;
BEGIN
 INSERT INTO jobs(job_id, job_title, min_salary, max_salary)
 VALUES (p_jobid, p_title, v_minsal, v_maxsal);
 DBMS_OUTPUT.PUT_LINE ('New row added to JOBS table:');
 DBMS_OUTPUT.PUT_LINE (p_jobid || ' ' || p_title ||' '||
 v_minsal || ' ' || v_maxsal);
END new_job;
/
SHOW ERRORS

PROCEDURE new_job Compiled.
No Errors.

b. Invoke the procedure to add a new job with job ID 'SY_ANAL', job title
'System Analyst', and minimum salary 6,000.

EXECUTE new_job ('SY_ANAL', 'System Analyst', 6000)

anonymous block completed
New row added to JOBS table:
SY_ANAL System Analyst 6000 12000

c. Verify that a row was added, and note the new job ID for use in the next exercise.
Commit the changes.

SELECT *
FROM jobs
WHERE job_id = 'SY_ANAL';

COMMIT;

Commit complete.

Oracle Database 11g: Develop PL/SQL Program Units Additional Practice Solutions - 3

Part A: Additional Practice 2 Solutions

2. In this exercise, create a program to add a new row to the JOB_HISTORY table for an
existing employee.

a. Create a stored procedure called ADD_JOB_HIST to add a new row into the
JOB_HISTORY table for an employee who is changing his job to the new job ID
('SY_ANAL') that you created in exercise 1b.

The procedure should provide two parameters: one for the employee ID who is changing
the job, and the second for the new job ID. Read the employee ID from the EMPLOYEES
table and insert it into the JOB_HISTORY table. Make the hire date of this employee as
the start date and today’s date as the end date for this row in the JOB_HISTORY table.

Change the hire date of this employee in the EMPLOYEES table to today’s date. Update
the job ID of this employee to the job ID passed as parameter (use the 'SY_ANAL' job
ID) and salary equal to the minimum salary for that job ID plus 500.

Note: Include exception handling to handle an attempt to insert a nonexistent employee.

CREATE OR REPLACE PROCEDURE add_job_hist(
 p_emp_id IN employees.employee_id%TYPE,
 p_new_jobid IN jobs.job_id%TYPE) IS
BEGIN
 INSERT INTO job_history
 SELECT employee_id, hire_date, SYSDATE, job_id, department_id
 FROM employees
 WHERE employee_id = p_emp_id;
 UPDATE employees
 SET hire_date = SYSDATE,
 job_id = p_new_jobid,
 salary = (SELECT min_salary + 500
 FROM jobs
 WHERE job_id = p_new_jobid)
 WHERE employee_id = p_emp_id;
 DBMS_OUTPUT.PUT_LINE ('Added employee ' || p_emp_id ||
 ' details to the JOB_HISTORY table');
 DBMS_OUTPUT.PUT_LINE ('Updated current job of employee ' ||
 p_emp_id|| ' to '|| p_new_jobid);
EXCEPTION
 WHEN NO_DATA_FOUND THEN
 RAISE_APPLICATION_ERROR (-20001, 'Employee does not exist!');
END add_job_hist;
/
SHOW ERRORS

PROCEDURE add_job_hist(Compiled.
No Errors.

Oracle Database 11g: Develop PL/SQL Program Units Additional Practice Solutions - 4

Part A: Additional Practice 2 Solutions (continued)

b. Disable all triggers on the EMPLOYEES, JOBS, and JOB_HISTORY tables before
invoking the ADD_JOB_HIST procedure.

ALTER TABLE employees DISABLE ALL TRIGGERS;
ALTER TABLE jobs DISABLE ALL TRIGGERS;
ALTER TABLE job_history DISABLE ALL TRIGGERS;

ALTER TABLE employees succeeded.
ALTER TABLE jobs succeeded.
ALTER TABLE job_history succeeded.

c. Execute the procedure with employee ID 106 and job ID 'SY_ANAL' as parameters.

EXECUTE add_job_hist(106, 'SY_ANAL')

anonymous block completed
Added employee 106 details to the JOB_HISTORY table
Updated current job of employee 106 to SY_ANAL

d. Query the JOB_HISTORY and EMPLOYEES tables to view your changes for employee
106, and then commit the changes.

SELECT * FROM job_history
WHERE employee_id = 106;

SELECT job_id, salary FROM employees
WHERE employee_id = 106;

COMMIT;

Commit complete.

e. Reenable the triggers on the EMPLOYEES, JOBS, and JOB_HISTORY tables.

ALTER TABLE employees ENABLE ALL TRIGGERS;
ALTER TABLE jobs ENABLE ALL TRIGGERS;
ALTER TABLE job_history ENABLE ALL TRIGGERS;

ALTER TABLE employees succeeded.
ALTER TABLE jobs succeeded.
ALTER TABLE job_history succeeded.

Oracle Database 11g: Develop PL/SQL Program Units Additional Practice Solutions - 5

Part A: Additional Practice 3 Solutions

3. In this exercise, create a program to update the minimum and maximum salaries for a job in
the JOBS table.

a. Create a stored procedure called UPD_JOBSAL to update the minimum and maximum
salaries for a specific job ID in the JOBS table. The procedure should provide three
parameters: the job ID, a new minimum salary, and a new maximum salary. Add
exception handling to account for an invalid job ID in the JOBS table. Raise an exception
if the maximum salary supplied is less than the minimum salary. Provide a message that
will be displayed if the row in the JOBS table is locked.
Hint: The resource locked/busy error number is –54.

CREATE OR REPLACE PROCEDURE upd_jobsal(
 p_jobid IN jobs.job_id%type,
 p_new_minsal IN jobs.min_salary%type,
 p_new_maxsal IN jobs.max_salary%type) IS
 v_dummy PLS_INTEGER;
 e_resource_busy EXCEPTION;
 e_sal_error EXCEPTION;
 PRAGMA EXCEPTION_INIT (e_resource_busy , -54);
BEGIN
 IF (p_new_maxsal < p_new_minsal) THEN
 RAISE e_sal_error;
 END IF;
 SELECT 1 INTO v_dummy
 FROM jobs
 WHERE job_id = p_jobid
 FOR UPDATE OF min_salary NOWAIT;
 UPDATE jobs
 SET min_salary = p_new_minsal,
 max_salary = p_new_maxsal
 WHERE job_id = p_jobid;
EXCEPTION
 WHEN e_resource_busy THEN
 RAISE_APPLICATION_ERROR (-20001,
 'Job information is currently locked, try later.');
 WHEN NO_DATA_FOUND THEN
 RAISE_APPLICATION_ERROR(-20001, 'This job ID does not exist');
 WHEN e_sal_error THEN
 RAISE_APPLICATION_ERROR(-20001,
 'Data error: Max salary should be more than min salary');
END upd_jobsal;
/
SHOW ERRORS

PROCEDURE upd_jobsal(Compiled.
No Errors.

Oracle Database 11g: Develop PL/SQL Program Units Additional Practice Solutions - 6

Part A: Additional Practice 3 Solutions (continued)

b. Execute the UPD_JOBSAL procedure by using a job ID of 'SY_ANAL', a minimum
salary of 7000, and a maximum salary of 140.
Note: This should generate an exception message.

EXECUTE upd_jobsal('SY_ANAL', 7000, 140)

BEGIN upd_jobsal('SY_ANAL', 7000, 140); END;

*

ERROR at line 1:
ORA-20001: Data error: Max salary should be more than min salary
ORA-06512: at "ORA1.UPD_JOBSAL", line 28
ORA-06512: at line 1

c. Disable triggers on the EMPLOYEES and JOBS tables.

ALTER TABLE employees DISABLE ALL TRIGGERS;
ALTER TABLE jobs DISABLE ALL TRIGGERS;

ALTER TABLE employees succeeded.
ALTER TABLE jobs succeeded.

d. Execute the UPD_JOBSAL procedure using a job ID of 'SY_ANAL', a minimum
salary of 7000, and a maximum salary of 14000.

EXECUTE upd_jobsal('SY_ANAL', 7000, 14000)

anonymous block completed.

e. Query the JOBS table to view your changes, and then commit the changes.

SELECT *
FROM jobs
WHERE job_id = 'SY_ANAL';

f. Enable the triggers on the EMPLOYEES and JOBS tables.

ALTER TABLE employees ENABLE ALL TRIGGERS;
ALTER TABLE jobs ENABLE ALL TRIGGERS;

ALTER TABLE employees succeeded.
ALTER TABLE jobs succeeded.

Oracle Database 11g: Develop PL/SQL Program Units Additional Practice Solutions - 7

Part A: Additional Practice 4 Solutions

4. In this exercise, create a procedure to monitor whether employees have exceeded their
average salaries for their job type.

a. Disable the SECURE_EMPLOYEES trigger.

ALTER TRIGGER secure_employees DISABLE;

ALTER TRIGGER secure_employees succeeded.

b. In the EMPLOYEES table, add an EXCEED_AVGSAL column for storing up to three
characters and a default value of NO. Use a check constraint to allow the values YES or
NO.

ALTER TABLE employees (
 ADD (exceed_avgsal VARCHAR2(3) DEFAULT 'NO'
 CONSTRAINT employees_exceed_avgsal_ck
 CHECK (exceed_avgsal IN ('YES', 'NO')));

ALTER TABLE employees succeeded.

c. Write a stored procedure called CHECK_AVGSAL that checks whether each employee’s
salary exceeds the average salary for the JOB_ID. The average salary for a job is
calculated from information in the JOBS table. If the employee’s salary exceeds the
average for his or her job, then update his or her EXCEED_AVGSAL column in the
EMPLOYEES table to a value of YES; otherwise, set the value to NO. Use a cursor to
select the employee’s rows using the FOR UPDATE option in the query. Add exception
handling to account for a record being locked.
Hint: The resource locked/busy error number is –54. Write and use a local function
called GET_JOB_AVGSAL to determine the average salary for a job ID specified as a
parameter.

CREATE OR REPLACE PROCEDURE check_avgsal IS
 emp_exceed_avgsal_type employees.exceed_avgsal%type;
 CURSOR c_emp_csr IS
 SELECT employee_id, job_id, salary
 FROM employees
 FOR UPDATE;
 e_resource_busy EXCEPTION;
 PRAGMA EXCEPTION_INIT(e_resource_busy, -54);
 FUNCTION get_job_avgsal (jobid VARCHAR2) RETURN NUMBER IS
 avg_sal employees.salary%type;
 BEGIN
 SELECT (max_salary + min_salary)/2 INTO avg_sal
 FROM jobs
 WHERE job_id = jobid;
 RETURN avg_sal;
 END;

BEGIN
 FOR emprec IN c_emp_csr

Oracle Database 11g: Develop PL/SQL Program Units Additional Practice Solutions - 8

 LOOP
 emp_exceed_avgsal_type := 'NO';
 IF emprec.salary >= get_job_avgsal(emprec.job_id) THEN
 emp_exceed_avgsal_type := 'YES';
 END IF;
 UPDATE employees
 SET exceed_avgsal = emp_exceed_avgsal_type
 WHERE CURRENT OF c_emp_csr;
 END LOOP;
EXCEPTION
 WHEN e_resource_busy THEN
 ROLLBACK;
 RAISE_APPLICATION_ERROR (-20001, 'Record is busy, try later.');
END check_avgsal;
/
SHOW ERRORS

PROCEDURE check_avgsal Compiled.
No Errors.

d. Execute the CHECK_AVGSAL procedure. Then, to view the results of your modifications,
write a query to display the employee’s ID, job, the average salary for the job, the
employee’s salary, and the exceed_avgsal indicator column for employees whose
salaries exceed the average for their job, and finally commit the changes.

EXECUTE check_avgsal

SELECT e.employee_id, e.job_id, (j.max_salary-j.min_salary/2) job_avgsal,
 e.salary, e.exceed_avgsal avg_exceeded
FROM employees e, jobs j
WHERE e.job_id = j.job_id
and e.exceed_avgsal = 'YES';

COMMIT;

Oracle Database 11g: Develop PL/SQL Program Units Additional Practice Solutions - 9

Part A: Additional Practice 4 Solutions (continued)

anonymous block completed.

. . .

Commit complete.

Oracle Database 11g: Develop PL/SQL Program Units Additional Practice Solutions - 10

Part A: Additional Practice 5 Solutions

5. Create a subprogram to retrieve the number of years of service for a specific employee.

a. Create a stored function called GET_YEARS_SERVICE to retrieve the total number of
years of service for a specific employee. The function should accept the employee ID as a
parameter and return the number of years of service. Add error handling to account for an
invalid employee ID.

CREATE OR REPLACE FUNCTION get_years_service(
 p_emp_empid_type IN employees.employee_id%TYPE) RETURN NUMBER IS
 CURSOR c_jobh_csr IS
 SELECT MONTHS_BETWEEN(end_date, start_date)/12 v_years_in_job
 FROM job_history
 WHERE employee_id = p_emp_empid_type;
 v_years_service NUMBER(2) := 0;
 v_years_in_job NUMBER(2) := 0;
BEGIN
 FOR jobh_rec IN c_jobh_csr
 LOOP
 EXIT WHEN c_jobh_csr%NOTFOUND;
 v_years_service := v_years_service + jobh_rec.v_years_in_job;
 END LOOP;
 SELECT MONTHS_BETWEEN(SYSDATE, hire_date)/12 INTO v_years_in_job
 FROM employees
 WHERE employee_id = p_emp_empid_type;
 v_years_service := v_years_service + v_years_in_job;
 RETURN ROUND(v_years_service);
EXCEPTION
 WHEN NO_DATA_FOUND THEN
 RAISE_APPLICATION_ERROR(-20348,
 'Employee with ID '|| p_emp_empid_type ||' does not exist.');
 RETURN NULL;
END get_years_service;
/
SHOW ERRORS

FUNCTION get_years_service(Compiled.
No Errors.

b. Invoke the GET_YEARS_SERVICE function in a call to DBMS_OUTPUT.PUT_LINE
for an employee with ID 999.

EXECUTE DBMS_OUTPUT.PUT_LINE(get_years_service (999))

Error starting at line 1 in command:
EXECUTE DBMS_OUTPUT.PUT_LINE(get_years_service (999))
Error report:
ORA-20348: Employee with ID 999 does not exist.
ORA-06512: at "ORA61.GET_YEARS_SERVICE", line 22
ORA-06512: at line 1

Oracle Database 11g: Develop PL/SQL Program Units Additional Practice Solutions - 11

Part A: Additional Practice 5 Solutions (continued)

c. Display the number of years of service for employee 106 with
DBMS_OUTPUT.PUT_LINE
invoking the GET_YEARS_SERVICE function.

BEGIN
 DBMS_OUTPUT.PUT_LINE (
 'Employee 106 has worked ' || get_years_service(106) || ' years');
END;
/

anonymous block completed
Employee 106 has worked 9 years.

d. Query the JOB_HISTORY and EMPLOYEES tables for the specified employee to verify
that the modifications are accurate.
Note: The values represented in the results on this page may differ from those you get
when you run these queries.

SELECT employee_id, job_id,
 MONTHS_BETWEEN(end_date, start_date)/12 duration
FROM job_history;

SELECT job_id, MONTHS_BETWEEN(SYSDATE, hire_date)/12 duration
FROM employees
WHERE employee_id = 106;

Oracle Database 11g: Develop PL/SQL Program Units Additional Practice Solutions - 12

Part A: Additional Practice 6 Solutions

6. In this exercise, create a program to retrieve the number of different jobs that an employee
worked on during his or her service.

a. Create a stored function called GET_JOB_COUNT to retrieve the total number of
different jobs on which an employee worked.

The function should accept the employee ID in a parameter, and return the number of
different jobs that the employee worked on until now, including the present job. Add
exception handling to account for an invalid employee ID.
Hint: Use the distinct job IDs from the JOB_HISTORY table, and exclude the current
job ID, if it is one of the job IDs on which the employee has already worked. Write a
UNION of two queries and count the rows retrieved into a PL/SQL table. Use a FETCH
with BULK COLLECT INTO to obtain the unique jobs for the employee.

CREATE OR REPLACE FUNCTION get_job_count(
 p_emp_empid_type IN employees.employee_id%TYPE) RETURN NUMBER IS
 TYPE jobs_table_type IS TABLE OF jobs.job_id%type;
 v_jobtab jobs_table_type;
 CURSOR c_empjob_csr IS
 SELECT job_id
 FROM job_history
 WHERE employee_id = p_emp_empid_type
 UNION
 SELECT job_id
 FROM employees
 WHERE employee_id = p_emp_empid_type;
BEGIN
 OPEN c_empjob_csr;
 FETCH c_empjob_csr BULK COLLECT INTO v_jobtab;
 CLOSE c_empjob_csr;
 RETURN v_jobtab.count;
EXCEPTION
 WHEN NO_DATA_FOUND THEN
 RAISE_APPLICATION_ERROR(-20348,
 'Employee with ID '|| p_emp_empid_type ||' does not exist!');
 RETURN NULL;
END get_job_count;
/
SHOW ERRORS

FUNCTION get_job_count(Compiled.
No Errors.

Oracle Database 11g: Develop PL/SQL Program Units Additional Practice Solutions - 13

Part A: Additional Practice 6 Solutions (continued)

b. Invoke the function for an employee with ID 176.

BEGIN
 DBMS_OUTPUT.PUT_LINE('Employee 176 worked on ' ||
 get_job_count(176) || ' different jobs.');
END;
/

Employee 176 worked on 2 different jobs.
PL/SQL procedure successfully completed.

Oracle Database 11g: Develop PL/SQL Program Units Additional Practice Solutions - 14

Part A: Additional Practice 7 Solutions

7. Create a package called EMPJOB_PKG that contains your NEW_JOB, ADD_JOB_HIST, and
UPD_JOBSAL procedures, as well as your GET_YEARS_SERVICE and GET_JOB_COUNT
functions.

a. Create the package specification with all the subprogram constructs public. Move any
subprogram local-defined types into the package specification.

CREATE OR REPLACE PACKAGE empjob_pkg IS
 TYPE jobs_table_type IS TABLE OF jobs.job_id%type;

 PROCEDURE add_job_hist(
 p_emp_id IN employees.employee_id%TYPE,
 p_new_jobid IN jobs.job_id%TYPE);

 FUNCTION get_job_count(
 p_emp_id IN employees.employee_id%TYPE) RETURN NUMBER;

 FUNCTION get_years_service(
 p_emp_id IN employees.employee_id%TYPE) RETURN NUMBER;

 PROCEDURE new_job(
 p_jobid IN jobs.job_id%TYPE,
 p_title IN jobs.job_title%TYPE,
 p_minsal IN jobs.min_salary%TYPE);

 PROCEDURE upd_jobsal(
 p_jobid IN jobs.job_id%type,
 p_new_minsal IN jobs.min_salary%type,
 p_new_maxsal IN jobs.max_salary%type);
END empjob_pkg;
/
SHOW ERRORS

PACKAGE empjob_pkg Compiled.
No Errors.

Oracle Database 11g: Develop PL/SQL Program Units Additional Practice Solutions - 15

Part A: Additional Practice 7 Solutions (continued)

b. Create the package body with the subprogram implementation; remember to remove
(from the subprogram implementations) any types that you moved into the package
specification.

CREATE OR REPLACE PACKAGE BODY empjob_pkg IS
 PROCEDURE add_job_hist(
 p_emp_id IN employees.employee_id%TYPE,
 p_new_jobid IN jobs.job_id%TYPE) IS
 BEGIN
 INSERT INTO job_history
 SELECT employee_id, hire_date, SYSDATE, job_id, department_id
 FROM employees
 WHERE employee_id = p_emp_id;
 UPDATE employees
 SET hire_date = SYSDATE,
 job_id = p_new_jobid,
 salary = (SELECT min_salary + 500
 FROM jobs
 WHERE job_id = p_new_jobid)
 WHERE employee_id = p_emp_id;
 DBMS_OUTPUT.PUT_LINE ('Added employee ' || p_emp_id ||
 ' details to the JOB_HISTORY table');
 DBMS_OUTPUT.PUT_LINE ('Updated current job of employee ' ||
 p_emp_id|| ' to '|| p_new_jobid);
 EXCEPTION
 WHEN NO_DATA_FOUND THEN
 RAISE_APPLICATION_ERROR (-20001, 'Employee does not exist!');
 END add_job_hist;

 FUNCTION get_job_count(
 p_emp_id IN employees.employee_id%TYPE) RETURN NUMBER IS
 v_jobtab jobs_table_type;
 CURSOR c_empjob_csr IS
 SELECT job_id
 FROM job_history
 WHERE employee_id = p_emp_id
 UNION
 SELECT job_id
 FROM employees
 WHERE employee_id = p_emp_id;
 BEGIN
 OPEN c_empjob_csr;
 FETCH c_empjob_csr BULK COLLECT INTO v_jobtab;
 CLOSE c_empjob_csr;
 RETURN v_jobtab.count;
 EXCEPTION
 WHEN NO_DATA_FOUND THEN
 RAISE_APPLICATION_ERROR(-20348,
 'Employee with ID '|| p_emp_id ||' does not exist!');
 RETURN 0;
 END get_job_count;

Oracle Database 11g: Develop PL/SQL Program Units Additional Practice Solutions - 16

 FUNCTION get_years_service(
 p_emp_id IN employees.employee_id%TYPE) RETURN NUMBER IS
 CURSOR c_jobh_csr IS
 SELECT MONTHS_BETWEEN(end_date, start_date)/12 v_years_in_job
 FROM job_history
 WHERE employee_id = p_emp_id;
 v_years_service NUMBER(2) := 0;
 v_years_in_job NUMBER(2) := 0;
 BEGIN
 FOR jobh_rec IN c_jobh_csr
 LOOP
 EXIT WHEN c_jobh_csr%NOTFOUND;
 v_years_service := v_years_service + jobh_rec.v_years_in_job;
 END LOOP;
 SELECT MONTHS_BETWEEN(SYSDATE, hire_date)/12 INTO v_years_in_job
 FROM employees
 WHERE employee_id = p_emp_id;
 v_years_service := v_years_service + v_years_in_job;
 RETURN ROUND(v_years_service);
 EXCEPTION
 WHEN NO_DATA_FOUND THEN
 RAISE_APPLICATION_ERROR(-20348,
 'Employee with ID '|| p_emp_id ||' does not exist.');
 RETURN 0;
 END get_years_service;

 PROCEDURE new_job(
 p_jobid IN jobs.job_id%TYPE,
 p_title IN jobs.job_title%TYPE,
 p_minsal IN jobs.min_salary%TYPE) IS
 v_maxsal jobs.max_salary%TYPE := 2 * p_minsal;
 BEGIN
 INSERT INTO jobs(job_id, job_title, min_salary, max_salary)
 VALUES (p_jobid, p_title, p_minsal, v_maxsal);
 DBMS_OUTPUT.PUT_LINE ('New row added to JOBS table:');
 DBMS_OUTPUT.PUT_LINE (p_jobid || ' ' || p_title ||' '||
 p_minsal || ' ' || v_maxsal);
 END new_job;

 PROCEDURE upd_jobsal(
 p_jobid IN jobs.job_id%type,
 p_new_minsal IN jobs.min_salary%type,
 p_new_maxsal IN jobs.max_salary%type) IS
 v_dummy PLS_INTEGER;
 e_resource_busy EXCEPTION;
 e_sal_error EXCEPTION;
 PRAGMA EXCEPTION_INIT (e_resource_busy , -54);
 BEGIN
 IF (p_new_maxsal < p_new_minsal) THEN
 RAISE e_sal_error;
 END IF;
 SELECT 1 INTO v_dummy
 FROM jobs

Oracle Database 11g: Develop PL/SQL Program Units Additional Practice Solutions - 17

 WHERE job_id = p_jobid
 FOR UPDATE OF min_salary NOWAIT;
 UPDATE jobs
 SET min_salary = p_new_minsal,
 max_salary = p_new_maxsal
 WHERE job_id = p_jobid;
 EXCEPTION
 WHEN e_resource_busy THEN
 RAISE_APPLICATION_ERROR (-20001,
 'Job information is currently locked, try later.');
 WHEN NO_DATA_FOUND THEN
 RAISE_APPLICATION_ERROR(-20001, 'This job ID does not exist');
 WHEN e_sal_error THEN
 RAISE_APPLICATION_ERROR(-20001,
 'Data error: Max salary should be more than min salary');
 END upd_jobsal;
END empjob_pkg;
/
SHOW ERRORS

PACKAGE BODY empjob_pkg Compiled.
No Errors.

c. Invoke your EMPJOB_PKG.NEW_JOB procedure to create a new job with ID
PR_MAN, job title Public Relations Manager, and salary 6250.

EXECUTE empjob_pkg.new_job('PR_MAN', 'Public Relations Manager', 6250)

anonymous block completed
New row added to JOBS table:
PR_MAN Public Relations Manager 6250 12500.

Oracle Database 11g: Develop PL/SQL Program Units Additional Practice Solutions - 18

Part A: Additional Practice 7 Solutions (continued)

d. Invoke your EMPJOB_PKG.ADD_JOB_HIST procedure to modify the job of employee
ID 110 to job ID PR_MAN.
Note: You need to disable the UPDATE_JOB_HISTORY trigger before you execute the
ADD_JOB_HIST procedure, and reenable the trigger after you have executed the
procedure.

ALTER TRIGGER update_job_history DISABLE;
EXECUTE empjob_pkg.add_job_hist(110, 'PR_MAN')
ALTER TRIGGER update_job_history ENABLE;

ALTER TRIGGER update_job_history succeeded.
anonymous block completed
Added employee 110 details to the JOB_HISTORY table
Updated current job of employee 110 to PR_MAN

ALTER TRIGGER update_job_history succeeded.

e. Query the JOBS, JOB_HISTORY, and EMPLOYEES tables to verify the results.

SELECT * FROM jobs WHERE job_id = 'PR_MAN';
SELECT * FROM job_history WHERE employee_id = 110;
SELECT job_id, salary FROM employees WHERE employee_id = 110;

Oracle Database 11g: Develop PL/SQL Program Units Additional Practice Solutions - 19

Part A: Additional Practice 8 Solutions

8. In this exercise, create a trigger to ensure that the minimum and maximum salaries of a job
are never modified such that the salary of an existing employee with that job ID is outside the
new range specified for the job.

a. Create a trigger called CHECK_SAL_RANGE that is fired before every row that is
updated in the MIN_SALARY and MAX_SALARY columns in the JOBS table. For any
minimum or maximum salary value that is changed, check whether the salary of any
existing employee with that job ID in the EMPLOYEES table falls within the new range of
salaries specified for this job ID. Include exception handling to cover a salary range
change that affects the record of any existing employee.

CREATE OR REPLACE TRIGGER check_sal_range
BEFORE UPDATE OF min_salary, max_salary ON jobs
FOR EACH ROW
DECLARE
 v_minsal employees.salary%TYPE;
 v_maxsal employees.salary%TYPE;
 e_invalid_salrange EXCEPTION;
BEGIN
 SELECT MIN(salary), MAX(salary) INTO v_minsal, v_maxsal
 FROM employees
 WHERE job_id = :NEW.job_id;
 IF (v_minsal < :NEW.min_salary) OR (v_maxsal > :NEW.max_salary) THEN
 RAISE e_invalid_salrange;
 END IF;
EXCEPTION
 WHEN e_invalid_salrange THEN
 RAISE_APPLICATION_ERROR(-20550,
 'Employees exist whose salary is out of the specified range. '||
 'Therefore the specified salary range cannot be updated.');
END check_sal_range;
/
SHOW ERRORS

TRIGGER check_sal_range Compiled.
No Errors.

Oracle Database 11g: Develop PL/SQL Program Units Additional Practice Solutions - 20

Part A: Additional Practice 8 Solutions (continued)

b. Test the trigger using the SY_ANAL job, setting the new minimum salary to 5000 and
the new maximum salary to 7000. Before you make the change, write a query to display
the current salary range for the SY_ANAL job ID, and another query to display the
employee ID, last name, and salary for the same job ID. After the update, query the
change (if any) to the JOBS table for the specified job ID.

SELECT * FROM jobs
WHERE job_id = 'SY_ANAL';

SELECT employee_id, last_name, salary
FROM employees
WHERE job_id = 'SY_ANAL';

UPDATE jobs
 SET min_salary = 5000, max_salary = 7000
 WHERE job_id = 'SY_ANAL';

1 row updated.

SELECT * FROM jobs
WHERE job_id = 'SY_ANAL';

c. Using the job SY_ANAL, set the new minimum salary to 7000 and the new maximum salary
to 18000. Explain the results.

UPDATE jobs
 SET min_salary = 7000, max_salary = 18000
 WHERE job_id = 'SY_ANAL';

Error starting at line 1 in command:
UPDATE jobs
 SET min_salary = 7000, max_salary = 18000
 WHERE job_id = 'SY_ANAL'
Error report:
SQL Error: ORA-20550: Employees exist whose salary is out of the
specified range. Therefore the specified salary range cannot be updated.
ORA-06512: at "ORA61.CHECK_SAL_RANGE", line 14
ORA-04088: error during execution of trigger 'ORA61.CHECK_SAL_RANGE'

Oracle Database 11g: Develop PL/SQL Program Units Additional Practice Solutions - 21

Part A: Additional Practice 8 Solutions (continued)

The update fails to change the salary range due to the functionality provided by the
CHECK_SAL_RANGE trigger because employee 106 who has the SY_ANAL job ID
has a salary of 6500, which is less than the minimum salary for the new salary
range specified in the UPDATE statement.

Oracle Database 11g: Develop PL/SQL Program Units Additional Practice Solutions - 22

Part B: Entity Relationship Diagram

TITLE
#* ID
 * title
 * description
 o rating
 o category
 o release date

TITLE_COP
Y
#* ID

RENTAL
#* book date
 o act ret date
 o exp ret date

RESERVATION
#* reservation date

for

the subject
of

available as

a

the subject
f

made against

responsible
for

created
for

responsible
for

set up

 MEMBER
#* ID
 * last name
 o first name
 o address
 o city
 o phone
 * join date

Oracle Database 11g: Develop PL/SQL Program Units Additional Practice Solutions - 23

Part B (continued)
In this case study, create a package named VIDEO_PKG that contains procedures and functions
for a video store application. This application enables customers to become a member of the
video store. Any member can rent movies, return rented movies, and reserve movies.
Additionally, create a trigger to ensure that any data in the video tables is modified only during
business hours.
Create the package by using iSQL*Plus and use the DBMS_OUTPUT Oracle-supplied package to
display messages.
The video store database contains the following tables: TITLE, TITLE_COPY, RENTAL,
RESERVATION, and MEMBER. The entity relationship diagram is shown on the previous page.

Oracle Database 11g: Develop PL/SQL Program Units Additional Practice Solutions - 24

Part B: Additional Practice 1 Solutions

1. Load and execute the E:\labs\PLPU\labs\buildvid1.sql script to create all the
required tables and sequences that are needed for this exercise.

SET ECHO OFF
/* Script to build the Video Application (Part 1 - buildvid1.sql)
 for the Oracle Introduction to Oracle with Procedure Builder course.
 Created by: Debby Kramer Creation date: 12/10/95
 Last upated: 2/13/96
 Modified by Nagavalli Pataballa on 26-APR-2001
 For the course Introduction to Oracle9i: PL/SQL
 This part of the script creates tables and sequences that are used
 by Part B of the Additional Practices of the course.
 Ignore the errors which appear due to dropping of table.
*/

DROP TABLE rental CASCADE CONSTRAINTS;
DROP TABLE reservation CASCADE CONSTRAINTS;
DROP TABLE title_copy CASCADE CONSTRAINTS;
DROP TABLE title CASCADE CONSTRAINTS;
DROP TABLE member CASCADE CONSTRAINTS;

PROMPT Please wait while tables are created....

CREATE TABLE MEMBER
 (member_id NUMBER (10) CONSTRAINT member_id_pk PRIMARY KEY
 , last_name VARCHAR2(25)
 CONSTRAINT member_last_nn NOT NULL
 , first_name VARCHAR2(25)
 , address VARCHAR2(100)
 , city VARCHAR2(30)
 , phone VARCHAR2(25)
 , join_date DATE DEFAULT SYSDATE
 CONSTRAINT join_date_nn NOT NULL)
/

CREATE TABLE TITLE
 (title_id NUMBER(10)
 CONSTRAINT title_id_pk PRIMARY KEY
 , title VARCHAR2(60)
 CONSTRAINT title_nn NOT NULL
 , description VARCHAR2(400)
 CONSTRAINT title_desc_nn NOT NULL
 , rating VARCHAR2(4)
 CONSTRAINT title_rating_ck CHECK (rating IN
('G','PG','R','NC17','NR'))
 , category VARCHAR2(20) DEFAULT 'DRAMA'
 CONSTRAINT title_categ_ck CHECK (category IN
('DRAMA','COMEDY','ACTION', 'CHILD','SCIFI','DOCUMENTARY'))
 , release_date DATE)
/

Oracle Database 11g: Develop PL/SQL Program Units Additional Practice Solutions - 25

Part B: Additional Practice 1 Solutions (continued)
CREATE TABLE TITLE_COPY
 (copy_id NUMBER(10)
 , title_id NUMBER(10)
 CONSTRAINT copy_title_id_fk
 REFERENCES title(title_id)
 , status VARCHAR2(15)
 CONSTRAINT copy_status_nn NOT NULL
 CONSTRAINT copy_status_ck CHECK (status IN ('AVAILABLE',
'DESTROYED',
 'RENTED', 'RESERVED'))
 , CONSTRAINT copy_title_id_pk PRIMARY KEY(copy_id, title_id))
/
CREATE TABLE RENTAL
 (book_date DATE DEFAULT SYSDATE
 , copy_id NUMBER(10)
 , member_id NUMBER(10)
 CONSTRAINT rental_mbr_id_fk REFERENCES member(member_id)
 , title_id NUMBER(10)
 , act_ret_date DATE
 , exp_ret_date DATE DEFAULT SYSDATE+2
 , CONSTRAINT rental_copy_title_id_fk FOREIGN KEY (copy_id, title_id)
 REFERENCES title_copy(copy_id,title_id)
 , CONSTRAINT rental_id_pk PRIMARY KEY(book_date, copy_id, title_id,
member_id))
/
CREATE TABLE RESERVATION
 (res_date DATE
 , member_id NUMBER(10)
 , title_id NUMBER(10)
 , CONSTRAINT res_id_pk PRIMARY KEY(res_date, member_id, title_id))
/

PROMPT Tables created.
DROP SEQUENCE title_id_seq;
DROP SEQUENCE member_id_seq;

PROMPT Creating Sequences...
CREATE SEQUENCE member_id_seq
 START WITH 101
 NOCACHE

CREATE SEQUENCE title_id_seq
 START WITH 92
 NOCACHE
/

PROMPT Sequences created.

PROMPT Run buildvid2.sql now to populate the above tables.

Oracle Database 11g: Develop PL/SQL Program Units Additional Practice Solutions - 26

Part B: Additional Practice 2 Solutions

2. Load and execute the E:\labs\PLPU\labs\buildvid2.sql script to populate all the
tables created by the buildvid1.sql script.

/* Script to build the Video Application (Part 2 - buildvid2.sql)
 This part of the script populates the tables that are created using
 buildvid1.sql
 These are used by Part B of the Additional Practices of the course.
 You should run the script buildvid1.sql before running this script to
 create the above tables.
*/

INSERT INTO member
 VALUES (member_id_seq.NEXTVAL, 'Velasquez', 'Carmen',
 '283 King Street', 'Seattle', '587-99-6666', '03-MAR-90');
INSERT INTO member
 VALUES (member_id_seq.NEXTVAL, 'Ngao', 'LaDoris',
 '5 Modrany', 'Bratislava', '586-355-8882', '08-MAR-90');
INSERT INTO member
 VALUES (member_id_seq.NEXTVAL,'Nagayama', 'Midori',
 '68 Via Centrale', 'Sao Paolo', '254-852-5764', '17-JUN-91');
INSERT INTO member
 VALUES (member_id_seq.NEXTVAL,'Quick-To-See','Mark',
 '6921 King Way', 'Lagos', '63-559-777', '07-APR-90');
INSERT INTO member
 VALUES (member_id_seq.NEXTVAL, 'Ropeburn', 'Audry',
 '86 Chu Street', 'Hong Kong', '41-559-87', '04-MAR-90');
INSERT INTO member
 VALUES (member_id_seq.NEXTVAL, 'Urguhart', 'Molly',
 '3035 Laurier Blvd.', 'Quebec', '418-542-9988','18-JAN-91');
INSERT INTO member
 VALUES (member_id_seq.NEXTVAL, 'Menchu', 'Roberta',
 'Boulevard de Waterloo 41', 'Brussels', '322-504-2228', '14-MAY-90');
INSERT INTO member
 VALUES (member_id_seq.NEXTVAL, 'Biri', 'Ben',
 '398 High St.', 'Columbus', '614-455-9863', '07-APR-90');
INSERT INTO member
 VALUES (member_id_seq.NEXTVAL, 'Catchpole', 'Antoinette',
 '88 Alfred St.', 'Brisbane', '616-399-1411', '09-FEB-92');

COMMIT;

Oracle Database 11g: Develop PL/SQL Program Units Additional Practice Solutions - 27

Part B: Additional Practice 2 Solutions (continued)
INSERT INTO TITLE (title_id, title, description, rating, category,
release_date)
 VALUES (TITLE_ID_SEQ.NEXTVAL, 'Willie and Christmas Too',
 'All of Willie''s friends made a Christmas list for Santa, but Willie
has yet to create his own wish list.', 'G', 'CHILD', '05-OCT-95');
INSERT INTO TITLE (title_id, title, description, rating, category,
release_date)
 VALUES (TITLE_ID_SEQ.NEXTVAL, 'Alien Again', 'Another installment of
science fiction history. Can the heroine save the planet from the alien
life form?', 'R', 'SCIFI', '19-MAY-95');
INSERT INTO TITLE (title_id, title, description, rating, category,
release_date)
 VALUES (TITLE_ID_SEQ.NEXTVAL, 'The Glob', 'A meteor crashes near a
small American town and unleashes carivorous goo in this classic.', 'NR',
'SCIFI', '12-AUG-95');
INSERT INTO TITLE (title_id, title, description, rating, category,
release_date)
 VALUES (TITLE_ID_SEQ.NEXTVAL, 'My Day Off', 'With a little luck and a
lot of ingenuity, a teenager skips school for a day in New York.', 'PG',
'COMEDY', '12-JUL-95');
INSERT INTO TITLE (title_id, title, description, rating, category,
release_date)
 VALUES (TITLE_ID_SEQ.NEXTVAL, 'Miracles on Ice', 'A six-year-old has
doubts about Santa Claus. But she discovers that miracles really do
exist.', 'PG', 'DRAMA', '12-SEP-95');
INSERT INTO TITLE (title_id, title, description, rating, category,
release_date)
 VALUES (TITLE_ID_SEQ.NEXTVAL, 'Soda Gang', 'After discovering a cached
of drugs, a young couple find themselves pitted against a vicious gang.',
'NR', 'ACTION', '01-JUN-95');
INSERT INTO title (title_id, title, description, rating, category,
release_date)
 VALUES (TITLE_ID_SEQ.NEXTVAL, 'Interstellar Wars', 'Futuristic
interstellar action movie. Can the rebels save the humans from the evil
Empire?', 'PG', 'SCIFI','07-JUL-77');

COMMIT;

INSERT INTO title_copy VALUES (1,92, 'AVAILABLE');
INSERT INTO title_copy VALUES (1,93, 'AVAILABLE');
INSERT INTO title_copy VALUES (2,93, 'RENTED');
INSERT INTO title_copy VALUES (1,94, 'AVAILABLE');
INSERT INTO title_copy VALUES (1,95, 'AVAILABLE');
INSERT INTO title_copy VALUES (2,95, 'AVAILABLE');
INSERT INTO title_copy VALUES (3,95, 'RENTED');
INSERT INTO title_copy VALUES (1,96, 'AVAILABLE');
INSERT INTO title_copy VALUES (1,97, 'AVAILABLE');
INSERT INTO title_copy VALUES (1,98, 'RENTED');
INSERT INTO title_copy VALUES (2,98, 'AVAILABLE');

COMMIT;

Oracle Database 11g: Develop PL/SQL Program Units Additional Practice Solutions - 28

Part B: Additional Practice 2 Solutions (continued)
INSERT INTO reservation VALUES (sysdate-1, 101, 93);
INSERT INTO reservation VALUES (sysdate-2, 106, 102);

COMMIT;

INSERT INTO rental VALUES (sysdate-1, 2, 101, 93, null, sysdate+1);
INSERT INTO rental VALUES (sysdate-2, 3, 102, 95, null, sysdate);
INSERT INTO rental VALUES (sysdate-3, 1, 101, 98, null, sysdate-1);
INSERT INTO rental VALUES (sysdate-4, 1, 106, 97, sysdate-2, sysdate-2);
INSERT INTO rental VALUES (sysdate-3, 1, 101, 92, sysdate-2, sysdate-1);

COMMIT;

PROMPT ** Tables built and data loaded **

Oracle Database 11g: Develop PL/SQL Program Units Additional Practice Solutions - 29

Part B: Additional Practice 3 Solutions

3. Create a package named VIDEO_PKG with the following procedures and functions:

a. NEW_MEMBER: A public procedure that adds a new member to the MEMBER table. For
the member ID number, use the sequence MEMBER_ID_SEQ. For the join date, use
SYSDATE. Pass all the other values to be inserted into a new row as parameters.

b. NEW_RENTAL: An overloaded public function to record a new rental. Pass the title ID
number for the video that a customer wants to rent, and either the customer’s last name or
his or her member ID number into the function. The function should return the due date
for the video. Due dates are three days from the date the video is rented. If the status for a
movie requested is listed as AVAILABLE in the TITLE_COPY table for one copy of this
title, then update this TITLE_COPY table and set the status to RENTED. If there is no
copy available, the function must return NULL. Then, insert a new record into the
RENTAL table identifying the booked date as today’s date, the copy ID number, the
member ID number, the title ID number, and the expected return date. Be aware of
multiple customers with the same last name. In this case, have the function return NULL,
and display a list of the customers’ names that match and their ID numbers.

c. RETURN_MOVIE: A public procedure that updates the status of a video (available,
rented, or damaged) and sets the return date. Pass the title ID, the copy ID, and the status
to this procedure. Check whether there are reservations for that title, and display a
message, if it is reserved. Update the RENTAL table and set the actual return date to
today’s date. Update the status in the TITLE_COPY table based on the status parameter
passed into the procedure.

d. RESERVE_MOVIE: A private procedure that executes only if all the video copies
requested in the NEW_RENTAL procedure have a status of RENTED. Pass the member ID
number and the title ID number to this procedure. Insert a new record into the
RESERVATION table and record the reservation date, member ID number, and title ID
number. Print a message indicating that a movie is reserved and its expected date of
return.

e. EXCEPTION_HANDLER: A private procedure that is called from the exception handler
of the public programs. Pass the SQLCODE number to this procedure, and the name of the
program (as a text string) where the error occurred. Use RAISE_APPLICATION_ERROR
to raise a customized error. Start with a unique key violation (-1) and foreign key
violation (-2292). Allow the exception handler to raise a generic error for any other
errors.

Oracle Database 11g: Develop PL/SQL Program Units Additional Practice Solutions - 30

Part B: Additional Practice 3 Solutions (continued)

VIDEO_PKG Package Specification

CREATE OR REPLACE PACKAGE video_pkg IS
 PROCEDURE new_member
 (p_lname IN member.last_name%TYPE,
 p_fname IN member.first_name%TYPE DEFAULT NULL,
 p_address IN member.address%TYPE DEFAULT NULL,
 p_city IN member.city%TYPE DEFAULT NULL,
 p_phone IN member.phone%TYPE DEFAULT NULL);

 FUNCTION new_rental
 (p_memberid IN rental.member_id%TYPE,
 p_titleid IN rental.title_id%TYPE)
 RETURN DATE;

 FUNCTION new_rental
 (p_membername IN member.last_name%TYPE,
 p_titleid IN rental.title_id%TYPE)
 RETURN DATE;

 PROCEDURE return_movie
 (p_titleid IN rental.title_id%TYPE,
 p_copyid IN rental.copy_id%TYPE,
 p_sts IN title_copy.status%TYPE);
END video_pkg;
/
SHOW ERRORS

PACKAGE video_pkg Compiled.
No Errors.

VIDEO_PKG Package Body

CREATE OR REPLACE PACKAGE BODY video_pkg IS
 PROCEDURE exception_handler(errcode IN NUMBER, context IN VARCHAR2) IS
 BEGIN
 IF errcode = -1 THEN
 RAISE_APPLICATION_ERROR(-20001,
 'The number is assigned to this member is already in use, '||
 'try again.');
 ELSIF errcode = -2291 THEN
 RAISE_APPLICATION_ERROR(-20002, context ||
 ' has attempted to use a foreign key value that is invalid');
 ELSE
 RAISE_APPLICATION_ERROR(-20999, 'Unhandled error in ' ||
 context || '. Please contact your application '||
 'administrator with the following information: '
 || CHR(13) || SQLERRM);
 END IF;
 END exception_handler;

Oracle Database 11g: Develop PL/SQL Program Units Additional Practice Solutions - 31

Part B: Additional Practice 3 Solutions (continued)
 PROCEDURE reserve_movie
 (memberid IN reservation.member_id%TYPE,
 titleid IN reservation.title_id%TYPE) IS
 CURSOR rented_csr IS
 SELECT exp_ret_date
 FROM rental
 WHERE title_id = titleid
 AND act_ret_date IS NULL;
 BEGIN
 INSERT INTO reservation (res_date, member_id, title_id)
 VALUES (SYSDATE, memberid, titleid);
 COMMIT;
 FOR rented_rec IN rented_csr LOOP
 DBMS_OUTPUT.PUT_LINE('Movie reserved. Expected back on: '
 || rented_rec.exp_ret_date);
 EXIT WHEN rented_csr%found;
 END LOOP;
 EXCEPTION
 WHEN OTHERS THEN
 exception_handler(SQLCODE, 'RESERVE_MOVIE');
 END reserve_movie;

 PROCEDURE return_movie(
 titleid IN rental.title_id%TYPE,
 copyid IN rental.copy_id%TYPE,
 sts IN title_copy.status%TYPE) IS
 v_dummy VARCHAR2(1);
 CURSOR res_csr IS
 SELECT *
 FROM reservation
 WHERE title_id = titleid;
 BEGIN
 SELECT '' INTO v_dummy
 FROM title
 WHERE title_id = titleid;
 UPDATE rental
 SET act_ret_date = SYSDATE
 WHERE title_id = titleid
 AND copy_id = copyid AND act_ret_date IS NULL;
 UPDATE title_copy
 SET status = UPPER(sts)
 WHERE title_id = titleid AND copy_id = copyid;
 FOR res_rec IN res_csr LOOP
 IF res_csr%FOUND THEN
 DBMS_OUTPUT.PUT_LINE('Put this movie on hold -- '||
 'reserved by member #' || res_rec.member_id);
 END IF;
 END LOOP;
 EXCEPTION
 WHEN OTHERS THEN
 exception_handler(SQLCODE, 'RETURN_MOVIE');
 END return_movie;

Oracle Database 11g: Develop PL/SQL Program Units Additional Practice Solutions - 32

Part B: Additional Practice 3 Solutions (continued)

 FUNCTION new_rental(
 memberid IN rental.member_id%TYPE,
 titleid IN rental.title_id%TYPE) RETURN DATE IS
 CURSOR copy_csr IS
 SELECT * FROM title_copy
 WHERE title_id = titleid
 FOR UPDATE;
 flag BOOLEAN := FALSE;
 BEGIN

 FOR copy_rec IN copy_csr LOOP
 IF copy_rec.status = 'AVAILABLE' THEN
 UPDATE title_copy
 SET status = 'RENTED'
 WHERE CURRENT OF copy_csr;
 INSERT INTO rental(book_date, copy_id, member_id,
 title_id, exp_ret_date)
 VALUES (SYSDATE, copy_rec.copy_id, memberid,
 titleid, SYSDATE + 3);
 flag := TRUE;
 EXIT;
 END IF;
 END LOOP;
 COMMIT;
 IF flag THEN
 RETURN (SYSDATE + 3);
 ELSE
 reserve_movie(memberid, titleid);
 RETURN NULL;
 END IF;
 EXCEPTION
 WHEN OTHERS THEN
 exception_handler(SQLCODE, 'NEW_RENTAL');
 END new_rental;

 FUNCTION new_rental(
 membername IN member.last_name%TYPE,
 titleid IN rental.title_id%TYPE) RETURN DATE IS
 CURSOR copy_csr IS
 SELECT * FROM title_copy
 WHERE title_id = titleid
 FOR UPDATE;
 flag BOOLEAN := FALSE;
 memberid member.member_id%TYPE;
 CURSOR member_csr IS
 SELECT member_id, last_name, first_name
 FROM member
 WHERE LOWER(last_name) = LOWER(membername)
 ORDER BY last_name, first_name;

Oracle Database 11g: Develop PL/SQL Program Units Additional Practice Solutions - 33

Part B: Additional Practice 3 Solutions (continued)
 BEGIN
 SELECT member_id INTO memberid
 FROM member
 WHERE lower(last_name) = lower(membername);
 FOR copy_rec IN copy_csr LOOP
 IF copy_rec.status = 'AVAILABLE' THEN
 UPDATE title_copy
 SET status = 'RENTED'
 WHERE CURRENT OF copy_csr;
 INSERT INTO rental (book_date, copy_id, member_id,
 title_id, exp_ret_date)
 VALUES (SYSDATE, copy_rec.copy_id, memberid,
 titleid, SYSDATE + 3);
 flag := TRUE;
 EXIT;
 END IF;
 END LOOP;
 COMMIT;
 IF flag THEN
 RETURN(SYSDATE + 3);
 ELSE
 reserve_movie(memberid, titleid);
 RETURN NULL;
 END IF;
 EXCEPTION
 WHEN TOO_MANY_ROWS THEN
 DBMS_OUTPUT.PUT_LINE(
 'Warning! More than one member by this name.');
 FOR member_rec IN member_csr LOOP
 DBMS_OUTPUT.PUT_LINE(member_rec.member_id || CHR(9) ||
 member_rec.last_name || ', ' || member_rec.first_name);
 END LOOP;
 RETURN NULL;
 WHEN OTHERS THEN
 exception_handler(SQLCODE, 'NEW_RENTAL');
 END new_rental;

 PROCEDURE new_member(
 lname IN member.last_name%TYPE,
 fname IN member.first_name%TYPE DEFAULT NULL,
 address IN member.address%TYPE DEFAULT NULL,
 city IN member.city%TYPE DEFAULT NULL,
 phone IN member.phone%TYPE DEFAULT NULL) IS
 BEGIN
 INSERT INTO member(member_id, last_name, first_name,
 address, city, phone, join_date)
 VALUES(member_id_seq.NEXTVAL, lname, fname,
 address, city, phone, SYSDATE);
 COMMIT;
CREATE OR REPLACE PACKAGE BODY video_pkg IS
 PROCEDURE exception_handler(errcode IN NUMBER, p_context IN VARCHAR2)
IS

Oracle Database 11g: Develop PL/SQL Program Units Additional Practice Solutions - 34

 BEGIN
 IF errcode = -1 THEN
 RAISE_APPLICATION_ERROR(-20001,
 'The number is assigned to this member is already in use, '||
 'try again.');
 ELSIF errcode = -2291 THEN
 RAISE_APPLICATION_ERROR(-20002, p_context ||
 ' has attempted to use a foreign key value that is invalid');
 ELSE
 RAISE_APPLICATION_ERROR(-20999, 'Unhandled error in ' ||
 p_context || '. Please contact your application '||
 'administrator with the following information: '
 || CHR(13) || SQLERRM);
 END IF;
 END exception_handler;

 PROCEDURE reserve_movie
 (p_memberid IN reservation.member_id%TYPE,
 p_titleid IN reservation.title_id%TYPE) IS
 CURSOR c_rented_csr IS
 SELECT exp_ret_date
 FROM rental
 WHERE title_id = p_titleid
 AND act_ret_date IS NULL;
 BEGIN
 INSERT INTO reservation (res_date, member_id, title_id)
 VALUES (SYSDATE, p_memberid, p_titleid);
 COMMIT;
 FOR rented_rec IN c_rented_csr LOOP
 DBMS_OUTPUT.PUT_LINE('Movie reserved. Expected back on: '
 || rented_rec.exp_ret_date);
 EXIT WHEN c_rented_csr%found;
 END LOOP;
 EXCEPTION
 WHEN OTHERS THEN
 exception_handler(SQLCODE, 'RESERVE_MOVIE');
 END reserve_movie;

PROCEDURE return_movie(
 p_titleid IN rental.title_id%TYPE,
 p_copyid IN rental.copy_id%TYPE,
 p_sts IN title_copy.status%TYPE) IS
 v_dummy VARCHAR2(1);
 CURSOR c_res_csr IS
 SELECT *
 FROM reservation
 WHERE title_id = p_titleid;
 BEGIN
 SELECT '' INTO v_dummy
 FROM title
 WHERE title_id = p_titleid;
 UPDATE rental
 SET act_ret_date = SYSDATE
 WHERE title_id = p_titleid

Oracle Database 11g: Develop PL/SQL Program Units Additional Practice Solutions - 35

 AND copy_id = p_copyid AND act_ret_date IS NULL;
 UPDATE title_copy
 SET status = UPPER(p_sts)
 WHERE title_id = p_titleid AND copy_id = p_copyid;
 FOR res_rec IN c_res_csr LOOP
 IF c_res_csr%FOUND THEN
 DBMS_OUTPUT.PUT_LINE('Put this movie on hold -- '||
 'reserved by member #' || res_rec.member_id);
 END IF;
 END LOOP;
 EXCEPTION
 WHEN OTHERS THEN
 exception_handler(SQLCODE, 'RETURN_MOVIE');
 END return_movie;

 FUNCTION new_rental(
 p_memberid IN rental.member_id%TYPE,
 p_titleid IN rental.title_id%TYPE) RETURN DATE IS
 CURSOR c_copy_csr IS
 SELECT * FROM title_copy
 WHERE title_id = p_titleid
 FOR UPDATE;
 v_flag BOOLEAN := FALSE;
 BEGIN
 FOR copy_rec IN c_copy_csr LOOP
 IF copy_rec.status = 'AVAILABLE' THEN
 UPDATE title_copy
 SET status = 'RENTED'
 WHERE CURRENT OF c_copy_csr;
 INSERT INTO rental(book_date, copy_id, member_id,
 title_id, exp_ret_date)
 VALUES (SYSDATE, copy_rec.copy_id, p_memberid,
 p_titleid, SYSDATE + 3);
 v_flag := TRUE;
 EXIT;
 END IF;
 END LOOP;
 COMMIT;
 IF v_flag THEN
 RETURN (SYSDATE + 3);
 ELSE
 reserve_movie(p_memberid, p_titleid);
 RETURN NULL;
 END IF;
 EXCEPTION
 WHEN OTHERS THEN
 exception_handler(SQLCODE, 'NEW_RENTAL');
 RETURN NULL;
 END new_rental;

 FUNCTION new_rental(
 p_membername IN member.last_name%TYPE,
 p_titleid IN rental.title_id%TYPE) RETURN DATE IS
 CURSOR c_copy_csr IS

Oracle Database 11g: Develop PL/SQL Program Units Additional Practice Solutions - 36

 SELECT * FROM title_copy
 WHERE title_id = p_titleid
 FOR UPDATE;
 v_flag BOOLEAN := FALSE;
 v_memberid member.member_id%TYPE;
 CURSOR c_member_csr IS
 SELECT member_id, last_name, first_name
 FROM member
 WHERE LOWER(last_name) = LOWER(p_membername)
 ORDER BY last_name, first_name;
 BEGIN
 SELECT member_id INTO v_memberid
 FROM member
 WHERE lower(last_name) = lower(p_membername);
 FOR copy_rec IN c_copy_csr LOOP
 IF copy_rec.status = 'AVAILABLE' THEN
 UPDATE title_copy
 SET status = 'RENTED'
 WHERE CURRENT OF c_copy_csr;
 INSERT INTO rental (book_date, copy_id, member_id,
 title_id, exp_ret_date)
 VALUES (SYSDATE, copy_rec.copy_id, v_memberid,
 p_titleid, SYSDATE + 3);
 v_flag := TRUE;
 EXIT;
 END IF;
 END LOOP;
 COMMIT;
 IF v_flag THEN
 RETURN(SYSDATE + 3);
 ELSE
 reserve_movie(v_memberid, p_titleid);
 RETURN NULL;
 END IF;
 EXCEPTION
 WHEN TOO_MANY_ROWS THEN
 DBMS_OUTPUT.PUT_LINE(
 'Warning! More than one member by this name.');
 FOR member_rec IN c_member_csr LOOP
 DBMS_OUTPUT.PUT_LINE(member_rec.member_id || CHR(9) ||
 member_rec.last_name || ', ' || member_rec.first_name);
 END LOOP;
 RETURN NULL;
 WHEN OTHERS THEN
 exception_handler(SQLCODE, 'NEW_RENTAL');
 RETURN NULL;
 END new_rental;

 PROCEDURE new_member(
 p_lname IN member.last_name%TYPE,
 p_fname IN member.first_name%TYPE DEFAULT NULL,
 p_address IN member.address%TYPE DEFAULT NULL,
 p_city IN member.city%TYPE DEFAULT NULL,
 p_phone IN member.phone%TYPE DEFAULT NULL) IS

Oracle Database 11g: Develop PL/SQL Program Units Additional Practice Solutions - 37

 BEGIN
 INSERT INTO member(member_id, last_name, first_name,
 address, city, phone, join_date)
 VALUES(member_id_seq.NEXTVAL, p_lname, p_fname,
 p_address, p_city, p_phone, SYSDATE);
 COMMIT;
 EXCEPTION
 WHEN OTHERS THEN
 exception_handler(SQLCODE, 'NEW_MEMBER');
 END new_member;
END video_pkg;
/
SHOW ERRORS

PACKAGE BODY video_pkg Compiled.
No Errors.

Oracle Database 11g: Develop PL/SQL Program Units Additional Practice Solutions - 38

Part B: Additional Practice 4 Solutions

4. Use the following scripts located in the E:\labs\PLPU\soln directory to test your
routines:

a. Add two members using sol_apb_04_a.sql.

EXECUTE video_pkg.new_member('Haas', 'James', 'Chestnut Street',
'Boston', '617-123-4567')
EXECUTE video_pkg.new_member('Biri', 'Allan', 'Hiawatha Drive', 'New
York', '516-123-4567')

anonymous block completed
anonymous block completed.

b. Add new video rentals using sol_apb_04_b.sql.

EXEC DBMS_OUTPUT.PUT_LINE(video_pkg.new_rental(110, 98))
EXEC DBMS_OUTPUT.PUT_LINE(video_pkg.new_rental(109, 93))
EXEC DBMS_OUTPUT.PUT_LINE(video_pkg.new_rental(107, 98))
EXEC DBMS_OUTPUT.PUT_LINE(video_pkg.new_rental('Biri', 97))
EXEC DBMS_OUTPUT.PUT_LINE(video_pkg.new_rental(97, 97))

anonymous block completed
14-JUN-07

anonymous block completed
14-JUN-07

anonymous block completed
Movie reserved. Expected back on: 10-JUN-07

anonymous block completed
Warning! More than one member by this name.
111 Biri, Allan
108 Biri, Ben

Error starting at line 5 in command:
EXEC DBMS_OUTPUT.PUT_LINE(video_pkg.new_rental(97, 97))
Error report:
ORA-20002: NEW_RENTAL has attempted to use a foreign key value that is
invalid
ORA-06512: at "ORA61.VIDEO_PKG", line 9
ORA-06512: at "ORA61.VIDEO_PKG", line 103
ORA-06512: at line 1

Oracle Database 11g: Develop PL/SQL Program Units Additional Practice Solutions - 39

Part B: Additional Practice 4 Solutions (continued)

c. Return movies by using the sol_apb_04_c.sql script.

EXECUTE video_pkg.return_movie(98, 1, 'AVAILABLE')
EXECUTE video_pkg.return_movie(95, 3, 'AVAILABLE')
EXECUTE video_pkg.return_movie(111, 1, 'RENTED')

anonymous block completed
Put this movie on hold -- reserved by member #107

anonymous block completed

Error starting at line 3 in command:
EXECUTE video_pkg.return_movie(111, 1, 'RENTED')
Error report:
ORA-20999: Unhandled error in RETURN_MOVIE. Please contact your
application administrator with the following information:
ORA-01403: no data found
ORA-06512: at "ORA61.VIDEO_PKG", line 12
ORA-06512: at "ORA61.VIDEO_PKG", line 69
ORA-06512: at line 1

Oracle Database 11g: Develop PL/SQL Program Units Additional Practice Solutions - 40

Part B: Additional Practice 5 Solutions

5. The business hours for the video store are 8:00 AM through 10:00 PM, Sunday through
Friday, and 8:00 AM through 12:00 AM on Saturday. To ensure that the tables can be
modified only during these hours, create a stored procedure that is called by triggers on the
tables.

a. Create a stored procedure called TIME_CHECK that checks the current time against
business hours. If the current time is not within business hours, use the
RAISE_APPLICATION_ERROR procedure to give an appropriate message.

CREATE OR REPLACE PROCEDURE time_check IS
BEGIN
 IF ((TO_CHAR(SYSDATE,'D') BETWEEN 1 AND 6) AND
 (TO_DATE(TO_CHAR(SYSDATE, 'hh24:mi'), 'hh24:mi') NOT BETWEEN
 TO_DATE('08:00', 'hh24:mi') AND TO_DATE('22:00', 'hh24:mi')))
 OR ((TO_CHAR(SYSDATE, 'D') = 7)
 AND (TO_DATE(TO_CHAR(SYSDATE, 'hh24:mi'), 'hh24:mi') NOT BETWEEN
 TO_DATE('08:00', 'hh24:mi') AND TO_DATE('24:00', 'hh24:mi'))) THEN
 RAISE_APPLICATION_ERROR(-20999,
 'Data changes restricted to office hours.');
 END IF;
END time_check;
/
SHOW ERRORS

PROCEDURE time_check Compiled.
No Errors.

b. Create a trigger on each of the five tables. Fire the trigger before data is inserted, updated,
and deleted from the tables. Call your TIME_CHECK procedure from each of these
triggers.

CREATE OR REPLACE TRIGGER member_trig
 BEFORE INSERT OR UPDATE OR DELETE ON member
CALL time_check
/

CREATE OR REPLACE TRIGGER rental_trig
 BEFORE INSERT OR UPDATE OR DELETE ON rental
CALL time_check
/

CREATE OR REPLACE TRIGGER title_copy_trig
 BEFORE INSERT OR UPDATE OR DELETE ON title_copy
CALL time_check
/

CREATE OR REPLACE TRIGGER title_trig
 BEFORE INSERT OR UPDATE OR DELETE ON title
CALL time_check
/

Oracle Database 11g: Develop PL/SQL Program Units Additional Practice Solutions - 41

Part B: Additional Practice 5 Solutions (continued)
CREATE OR REPLACE TRIGGER reservation_trig
 BEFORE INSERT OR UPDATE OR DELETE ON reservation
CALL time_check
/

TRIGGER member_trig Compiled.
TRIGGER rental_trig Compiled.
TRIGGER title_copy_trig Compiled.
TRIGGER title_trig Compiled.
TRIGGER reservation_trig Compiled.

c. Test your triggers.

Note: In order for your trigger to fail, you may need to change the time to be outside the
range of your current time in class. For example, while testing, you may want valid video
hours in your trigger to be from 6:00 PM through 8:00 AM.

-- First determine current timezone and time
SELECT SESSIONTIMEZONE,
 TO_CHAR(CURRENT_DATE, 'DD-MON-YYYY HH24:MI') CURR_DATE
FROM DUAL;

-- Change your time zone usinge [+|-]HH:MI format such that the current
-- time returns a time between 6pm and 8am
ALTER SESSION SET TIME_ZONE='-07:00';

ALTER SESSION SET succeeded.

Oracle Database 11g: Develop PL/SQL Program Units Additional Practice Solutions - 42

Part B: Additional Practice 5 Solutions (continued)
-- Add a new member (for a sample test)
EXECUTE video_pkg.new_member('Elias', 'Elliane', 'Vine Street',
'California', '789-123-4567')

BEGIN video_pkg.new_member('Elias', 'Elliane', 'Vine Street',
'California', '789-123-4567'); END;

*

ERROR at line 1:
ORA-20999: Unhandled error in NEW_MEMBER. Please contact your application
administrator with the following information: ORA-20999: Data changes
restricted to office hours.
ORA-06512: at "ORA1.TIME_CHECK", line 9
ORA-06512: at "ORA1.MEMBER_TRIG", line 1
ORA-04088: error during execution of trigger 'ORA1.MEMBER_TRIG'
ORA-06512: at "ORA1.VIDEO_PKG", line 12
ORA-06512: at "ORA1.VIDEO_PKG", line 171
ORA-06512: at line 1

-- Restore the original time zone for your session.
ALTER SESSION SET TIME_ZONE='-00:00';

Session altered.

Additional Practices:
Table Descriptions

and Data

Oracle Database 11g: Develop PL/SQL Program Units Table Descriptions - 2

Part A
The tables and data used in part A are the same as those in Appendix B, “Table
Descriptions and Data.”

Oracle Database 11g: Develop PL/SQL Program Units Table Descriptions - 3

Part B: Tables Used

Oracle Database 11g: Develop PL/SQL Program Units Table Descriptions - 4

Part B: MEMBER Table
DESCRIBE member

SELECT * FROM member;

Oracle Database 11g: Develop PL/SQL Program Units Table Descriptions - 5

Part B: RENTAL Table
DESCRIBE rental

SELECT * FROM rental;

Oracle Database 11g: Develop PL/SQL Program Units Table Descriptions - 6

Part B: RESERVATION Table
DESCRIBE reservation

SELECT * FROM reservation;

Oracle Database 11g: Develop PL/SQL Program Units Table Descriptions - 7

Part B: TITLE Table
DESCRIBE title

SELECT * FROM title;

Oracle Database 11g: Develop PL/SQL Program Units Table Descriptions - 8

Part B: TITLE_COPY Table
DESCRIBE title_copy

SELECT * FROM title_copy;

	Cover
	TOC
	Preface
	01
	02
	03
	04
	05
	06
	07
	08
	09
	10
	11
	12
	13
	App A
	App B
	App C
	App D
	App E
	App F
	App G
	App H
	Index
	Additiona Practices
	Additional Practice: Solutions
	Additonal Practices: Table Descriptions and Data

