
Oracle Database 12c: SQL

Workshop I

Student Guide - Volume II

D80190GC10

Edition 1.0

August 2013

D83123

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 E

ga
bi

 S
ol

ut
io

ns
 u

se
 o

nl
y

TH
ES

E
eK

IT
 M

AT
ER

IA
LS

 A
R

E
FO

R
 Y

O
U

R
 U

SE
 IN

 T
H

IS
 C

LA
SS

R
O

O
M

 O
N

LY
.

C
O

PY
IN

G
 e

KI
T

M
AT

ER
IA

LS
 F

R
O

M
 T

H
IS

 C
O

M
PU

TE
R

 IS
 S

TR
IC

TL
Y

PR
O

H
IB

IT
ED

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

Disclaimer

This document contains proprietary information and is protected by copyright and
other intellectual property laws. You may copy and print this document solely for your
own use in an Oracle training course. The document may not be modified or altered
in any way. Except where your use constitutes "fair use" under copyright law, you
may not use, share, download, upload, copy, print, display, perform, reproduce,
publish, license, post, transmit, or distribute this document in whole or in part without
the express authorization of Oracle.

The information contained in this document is subject to change without notice. If you
find any problems in the document, please report them in writing to: Oracle University,
500 Oracle Parkway, Redwood Shores, California 94065 USA. This document is not
warranted to be error-free.

Restricted Rights Notice

If this documentation is delivered to the United States Government or anyone using
the documentation on behalf of the United States Government, the following notice is
applicable:

U.S. GOVERNMENT RIGHTS
The U.S. Government’s rights to use, modify, reproduce, release, perform, display, or
disclose these training materials are restricted by the terms of the applicable Oracle
license agreement and/or the applicable U.S. Government contract.

Trademark Notice

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names
may be trademarks of their respective owners.

Author

Dimpi Rani Sarmah

Technical Contr ibutors
and Reviewers

Nancy Greenberg

Swarnapriya Shridhar

Bryan Roberts

Laszlo Czinkoczki

KimSeong Loh

Brent Dayley

Jim Spiller

Christopher Wensley

Anjulaponni Azhagulekshmi
 Subbiahpillai

Manish Pawar

Clair Bennett

Yanti Chang

Joel Goodman

Gerlinde Frenzen

Diganta Choudhury

Editors

Vijayalakshmi Narasimhan

Raj Kumar

Graphic Designer

Seema Bopaiah

Publisher

Jobi Varghese O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 E

ga
bi

 S
ol

ut
io

ns
 u

se
 o

nl
y

TH
ES

E
eK

IT
 M

AT
ER

IA
LS

 A
R

E
FO

R
 Y

O
U

R
 U

SE
 IN

 T
H

IS
 C

LA
SS

R
O

O
M

 O
N

LY
.

C
O

PY
IN

G
 e

KI
T

M
AT

ER
IA

LS
 F

R
O

M
 T

H
IS

 C
O

M
PU

TE
R

 IS
 S

TR
IC

TL
Y

PR
O

H
IB

IT
ED

 iii

Contents

1 Introduction

Lesson Objectives 1-2

Lesson Agenda 1-3

Course Objectives 1-4

Course Agenda 1-5

Appendices and Practices Used in the Course 1-7

Lesson Agenda 1-8

Oracle Database 12c: Focus Areas 1-9

Oracle Database 12c 1-10

Oracle Fusion Middleware 1-12

Oracle Enterprise Manager Cloud Control 1-13

Oracle Cloud 1-14

Oracle Cloud Services 1-15

Cloud Deployment Models 1-16

Lesson Agenda 1-17

Relational and Object Relational Database Management Systems 1-18

Data Storage on Different Media 1-19

Relational Database Concept 1-20

Definition of a Relational Database 1-21

Data Models 1-22

Entity Relationship Model 1-23

Entity Relationship Modeling Conventions 1-25

Relating Multiple Tables 1-27

Relational Database Terminology 1-29

Lesson Agenda 1-31

Using SQL to Query Your Database 1-32

SQL Statements Used in the Course 1-33

Development Environments for SQL 1-34

Lesson Agenda 1-35

Human Resources (HR) Schema 1-36

Tables Used in the Course 1-37

Lesson Agenda 1-38

Oracle Database Documentation 1-39

Additional Resources 1-40

Summary 1-41

Practice 1: Overview 1-42

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 E

ga
bi

 S
ol

ut
io

ns
 u

se
 o

nl
y

TH
ES

E
eK

IT
 M

AT
ER

IA
LS

 A
R

E
FO

R
 Y

O
U

R
 U

SE
 IN

 T
H

IS
 C

LA
SS

R
O

O
M

 O
N

LY
.

C
O

PY
IN

G
 e

KI
T

M
AT

ER
IA

LS
 F

R
O

M
 T

H
IS

 C
O

M
PU

TE
R

 IS
 S

TR
IC

TL
Y

PR
O

H
IB

IT
ED

 iv

2 Retrieving Data Using the SQL SELECT Statement

Objectives 2-2

Lesson Agenda 2-3

Capabilities of SQL SELECT Statements 2-4

Basic SELECT Statement 2-5

Selecting All Columns 2-6

Selecting Specific Columns 2-7

Writing SQL Statements 2-8

Column Heading Defaults 2-9

Lesson Agenda 2-10

Arithmetic Expressions 2-11

Using Arithmetic Operators 2-12

Operator Precedence 2-13

Defining a Null Value 2-14

Null Values in Arithmetic Expressions 2-15

Lesson Agenda 2-16

Defining a Column Alias 2-17

Using Column Aliases 2-18

Lesson Agenda 2-19

Concatenation Operator 2-20

Literal Character Strings 2-21

Using Literal Character Strings 2-22

Alternative Quote (q) Operator 2-23

Duplicate Rows 2-24

Lesson Agenda 2-25

Displaying the Table Structure 2-26

Using the DESCRIBE Command 2-27

Quiz 2-28

Summary 2-29

Practice 2: Overview 2-30

3 Restricting and Sorting Data

Objectives 3-2

Lesson Agenda 3-3

Limiting Rows Using a Selection 3-4

Limiting the Rows That Are Selected 3-5

Using the WHERE Clause 3-6

Character Strings and Dates 3-7

Comparison Operators 3-8

Using Comparison Operators 3-9

Range Conditions Using the BETWEEN Operator 3-10

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 E

ga
bi

 S
ol

ut
io

ns
 u

se
 o

nl
y

TH
ES

E
eK

IT
 M

AT
ER

IA
LS

 A
R

E
FO

R
 Y

O
U

R
 U

SE
 IN

 T
H

IS
 C

LA
SS

R
O

O
M

 O
N

LY
.

C
O

PY
IN

G
 e

KI
T

M
AT

ER
IA

LS
 F

R
O

M
 T

H
IS

 C
O

M
PU

TE
R

 IS
 S

TR
IC

TL
Y

PR
O

H
IB

IT
ED

 v

Membership Condition Using the IN Operator 3-11

Pattern Matching Using the LIKE Operator 3-12

Combining Wildcard Characters 3-13

Using the NULL Conditions 3-14

Defining Conditions Using the Logical Operators 3-15

Using the AND Operator 3-16

Using the OR Operator 3-17

Using the NOT Operator 3-18

Lesson Agenda 3-19

Rules of Precedence 3-20

Lesson Agenda 3-22

Using the ORDER BY Clause 3-23

Sorting 3-24

Lesson Agenda 3-26

SQL Row Limiting Clause 3-27

Using SQL Row Limiting Clause in a Query 3-28

SQL Row Limiting Clause Example 3-29

Lesson Agenda 3-30

Substitution Variables 3-31

Using the Single-Ampersand Substitution Variable 3-33

Character and Date Values with Substitution Variables 3-35

Specifying Column Names, Expressions, and Text 3-36

Using the Double-Ampersand Substitution Variable 3-37

Lesson Agenda 3-38

Using the DEFINE Command 3-39

Using the VERIFY Command 3-40

Quiz 3-41

Summary 3-42

Practice 3: Overview 3-43

4 Using Single-Row Functions to Customize Output

Objectives 4-2

Lesson Agenda 4-3

SQL Functions 4-4

Two Types of SQL Functions 4-5

Single-Row Functions 4-6

Lesson Agenda 4-8

Character Functions 4-9

Case-Conversion Functions 4-11

Using Case-Conversion Functions 4-12

Character-Manipulation Functions 4-13

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 E

ga
bi

 S
ol

ut
io

ns
 u

se
 o

nl
y

TH
ES

E
eK

IT
 M

AT
ER

IA
LS

 A
R

E
FO

R
 Y

O
U

R
 U

SE
 IN

 T
H

IS
 C

LA
SS

R
O

O
M

 O
N

LY
.

C
O

PY
IN

G
 e

KI
T

M
AT

ER
IA

LS
 F

R
O

M
 T

H
IS

 C
O

M
PU

TE
R

 IS
 S

TR
IC

TL
Y

PR
O

H
IB

IT
ED

 vi

Using the Character-Manipulation Functions 4-14

Lesson Agenda 4-15

Nesting Functions 4-16

Nesting Functions: Example 4-17

Lesson Agenda 4-18

Numeric Functions 4-19

Using the ROUND Function 4-20

Using the TRUNC Function 4-21

Using the MOD Function 4-22

Lesson Agenda 4-23

Working with Dates 4-24

RR Date Format 4-25

Using the SYSDATE Function 4-27

Arithmetic with Dates 4-28

Using Arithmetic Operators with Dates 4-29

Lesson Agenda 4-30

Date-Manipulation Functions 4-31

Using Date Functions 4-32

Using ROUND and TRUNC Functions with Dates 4-33

Quiz 4-34

Summary 4-35

Practice 4: Overview 4-36

5 Using Conversion Functions and Conditional Expressions

Objectives 5-2

Lesson Agenda 5-3

Conversion Functions 5-4

Implicit Data Type Conversion 5-5

Explicit Data Type Conversion 5-7

Lesson Agenda 5-9

Using the TO_CHAR Function with Dates 5-10

Elements of the Date Format Model 5-11

Using the TO_CHAR Function with Dates 5-14

Using the TO_CHAR Function with Numbers 5-15

Using the TO_NUMBER and TO_DATE Functions 5-18

Using TO_CHAR and TO_DATE Functions with the RR Date Format 5-20

Lesson Agenda 5-21

General Functions 5-22

NVL Function 5-23

Using the NVL Function 5-24

Using the NVL2 Function 5-25

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 E

ga
bi

 S
ol

ut
io

ns
 u

se
 o

nl
y

TH
ES

E
eK

IT
 M

AT
ER

IA
LS

 A
R

E
FO

R
 Y

O
U

R
 U

SE
 IN

 T
H

IS
 C

LA
SS

R
O

O
M

 O
N

LY
.

C
O

PY
IN

G
 e

KI
T

M
AT

ER
IA

LS
 F

R
O

M
 T

H
IS

 C
O

M
PU

TE
R

 IS
 S

TR
IC

TL
Y

PR
O

H
IB

IT
ED

 vii

Using the NULLIF Function 5-26

Using the COALESCE Function 5-27

Lesson Agenda 5-30

Conditional Expressions 5-31

CASE Expression 5-32

Using the CASE Expression 5-33

DECODE Function 5-34

Using the DECODE Function 5-35

Quiz 5-37

Summary 5-38

Practice 5: Overview 5-39

6 Reporting Aggregated Data Using the Group Functions

Objectives 6-2

Lesson Agenda 6-3

What Are Group Functions? 6-4

Types of Group Functions 6-5

Group Functions: Syntax 6-6

Using the AVG and SUM Functions 6-7

Using the MIN and MAX Functions 6-8

Using the COUNT Function 6-9

Using the DISTINCT Keyword 6-10

Group Functions and Null Values 6-11

Lesson Agenda 6-12

Creating Groups of Data 6-13

Creating Groups of Data: GROUP BY Clause Syntax 6-14

Using the GROUP BY Clause 6-15

Grouping by More Than One Column 6-17

Using the GROUP BY Clause on Multiple Columns 6-18

Illegal Queries Using Group Functions 6-19

Restricting Group Results 6-21

Restricting Group Results with the HAVING Clause 6-22

Using the HAVING Clause 6-23

Lesson Agenda 6-25

Nesting Group Functions 6-26

Quiz 6-27

Summary 6-28

Practice 6: Overview 6-29

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 E

ga
bi

 S
ol

ut
io

ns
 u

se
 o

nl
y

TH
ES

E
eK

IT
 M

AT
ER

IA
LS

 A
R

E
FO

R
 Y

O
U

R
 U

SE
 IN

 T
H

IS
 C

LA
SS

R
O

O
M

 O
N

LY
.

C
O

PY
IN

G
 e

KI
T

M
AT

ER
IA

LS
 F

R
O

M
 T

H
IS

 C
O

M
PU

TE
R

 IS
 S

TR
IC

TL
Y

PR
O

H
IB

IT
ED

 viii

7 Displaying Data from Multiple Tables Using Joins

Objectives 7-2

Lesson Agenda 7-3

Obtaining Data from Multiple Tables 7-4

Types of Joins 7-5

Joining Tables Using SQL:1999 Syntax 7-6

Qualifying Ambiguous Column Names 7-7

Lesson Agenda 7-8

Creating Natural Joins 7-9

Retrieving Records with Natural Joins 7-10

Creating Joins with the USING Clause 7-11

Joining Column Names 7-12

Retrieving Records with the USING Clause 7-13

Using Table Aliases with the USING Clause 7-14

Creating Joins with the ON Clause 7-15

Retrieving Records with the ON Clause 7-16

Creating Three-Way Joins with the ON Clause 7-17

Applying Additional Conditions to a Join 7-18

Lesson Agenda 7-19

Joining a Table to Itself 7-20

Self-Joins Using the ON Clause 7-21

Lesson Agenda 7-22

Nonequijoins 7-23

Retrieving Records with Nonequijoins 7-24

Lesson Agenda 7-25

Returning Records with No Direct Match Using OUTER Joins 7-26

INNER Versus OUTER Joins 7-27

LEFT OUTER JOIN 7-28

RIGHT OUTER JOIN 7-29

FULL OUTER JOIN 7-30

Lesson Agenda 7-31

Cartesian Products 7-32

Generating a Cartesian Product 7-33

Creating Cross Joins 7-34

Quiz 7-35

Summary 7-36

Practice 7: Overview 7-37

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 E

ga
bi

 S
ol

ut
io

ns
 u

se
 o

nl
y

TH
ES

E
eK

IT
 M

AT
ER

IA
LS

 A
R

E
FO

R
 Y

O
U

R
 U

SE
 IN

 T
H

IS
 C

LA
SS

R
O

O
M

 O
N

LY
.

C
O

PY
IN

G
 e

KI
T

M
AT

ER
IA

LS
 F

R
O

M
 T

H
IS

 C
O

M
PU

TE
R

 IS
 S

TR
IC

TL
Y

PR
O

H
IB

IT
ED

 ix

8 Using Subqueries to Solve Queries

Objectives 8-2

Lesson Agenda 8-3

Using a Subquery to Solve a Problem 8-4

Subquery Syntax 8-5

Using a Subquery 8-6

Rules for Using Subqueries 8-7

Types of Subqueries 8-8

Lesson Agenda 8-9

Single-Row Subqueries 8-10

Executing Single-Row Subqueries 8-11

Using Group Functions in a Subquery 8-12

HAVING Clause with Subqueries 8-13

What Is Wrong with This Statement? 8-14

No Rows Returned by the Inner Query 8-15

Lesson Agenda 8-16

Multiple-Row Subqueries 8-17

Using the ANY Operator in Multiple-Row Subqueries 8-18

Using the ALL Operator in Multiple-Row Subqueries 8-19

Using the EXISTS Operator 8-20

Lesson Agenda 8-21

Null Values in a Subquery 8-22

Quiz 8-24

Summary 8-25

Practice 8: Overview 8-26

9 Using the Set Operators

Objectives 9-2

Lesson Agenda 9-3

Set Operators 9-4

Set Operator Rules 9-5

Oracle Server and Set Operators 9-6

Lesson Agenda 9-7

Tables Used in This Lesson 9-8

Lesson Agenda 9-12

UNION Operator 9-13

Using the UNION Operator 9-14

UNION ALL Operator 9-16

Using the UNION ALL Operator 9-17

Lesson Agenda 9-18

INTERSECT Operator 9-19

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 E

ga
bi

 S
ol

ut
io

ns
 u

se
 o

nl
y

TH
ES

E
eK

IT
 M

AT
ER

IA
LS

 A
R

E
FO

R
 Y

O
U

R
 U

SE
 IN

 T
H

IS
 C

LA
SS

R
O

O
M

 O
N

LY
.

C
O

PY
IN

G
 e

KI
T

M
AT

ER
IA

LS
 F

R
O

M
 T

H
IS

 C
O

M
PU

TE
R

 IS
 S

TR
IC

TL
Y

PR
O

H
IB

IT
ED

 x

Using the INTERSECT Operator 9-20

Lesson Agenda 9-21

MINUS Operator 9-22

Using the MINUS Operator 9-23

Lesson Agenda 9-24

Matching the SELECT Statements 9-25

Matching the SELECT Statement: Example 9-26

Lesson Agenda 9-27

Using the ORDER BY Clause in Set Operations 9-28

Quiz 9-29

Summary 9-30

Practice 9: Overview 9-31

10 Managing Tables Using DML Statements

Objectives 10-2

Lesson Agenda 10-3

Data Manipulation Language 10-4

Adding a New Row to a Table 10-5

INSERT Statement Syntax 10-6

Inserting New Rows 10-7

Inserting Rows with Null Values 10-8

Inserting Special Values 10-9

Inserting Specific Date and Time Values 10-10

Creating a Script 10-11

Copying Rows from Another Table 10-12

Lesson Agenda 10-13

Changing Data in a Table 10-14

UPDATE Statement Syntax 10-15

Updating Rows in a Table 10-16

Updating Two Columns with a Subquery 10-17

Updating Rows Based on Another Table 10-18

Lesson Agenda 10-19

Removing a Row from a Table 10-20

DELETE Statement 10-21

Deleting Rows from a Table 10-22

Deleting Rows Based on Another Table 10-23

TRUNCATE Statement 10-24

Lesson Agenda 10-25

Database Transactions 10-26

Database Transactions: Start and End 10-27

Advantages of COMMIT and ROLLBACK Statements 10-28

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 E

ga
bi

 S
ol

ut
io

ns
 u

se
 o

nl
y

TH
ES

E
eK

IT
 M

AT
ER

IA
LS

 A
R

E
FO

R
 Y

O
U

R
 U

SE
 IN

 T
H

IS
 C

LA
SS

R
O

O
M

 O
N

LY
.

C
O

PY
IN

G
 e

KI
T

M
AT

ER
IA

LS
 F

R
O

M
 T

H
IS

 C
O

M
PU

TE
R

 IS
 S

TR
IC

TL
Y

PR
O

H
IB

IT
ED

 xi

Explicit Transaction Control Statements 10-29

Rolling Back Changes to a Marker 10-30

Implicit Transaction Processing 10-31

State of the Data Before COMMIT or ROLLBACK 10-33

State of the Data After COMMIT 10-34

Committing Data 10-35

State of the Data After ROLLBACK 10-36

State of the Data After ROLLBACK: Example 10-37

Statement-Level Rollback 10-38

Lesson Agenda 10-39

Read Consistency 10-40

Implementing Read Consistency 10-41

Lesson Agenda 10-42

FOR UPDATE Clause in a SELECT Statement 10-43

FOR UPDATE Clause: Examples 10-44

Quiz 10-46

Summary 10-47

Practice 10: Overview 10-48

11 Introduction to Data Definition Language

Objectives 11-2

Lesson Agenda 11-3

Database Objects 11-4

Naming Rules 11-5

Lesson Agenda 11-6

Data Types 11-7

Datetime Data Types 11-9

DEFAULT Option 11-10

Lesson Agenda 11-11

CREATE TABLE Statement 11-12

Creating Tables 11-13

Lesson Agenda 11-14

Including Constraints 11-15

Constraint Guidelines 11-16

Defining Constraints 11-17

NOT NULL Constraint 11-19

UNIQUE Constraint 11-20

PRIMARY KEY Constraint 11-22

FOREIGN KEY Constraint 11-23

FOREIGN KEY Constraint: Keywords 11-25

CHECK Constraint 11-26

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 E

ga
bi

 S
ol

ut
io

ns
 u

se
 o

nl
y

TH
ES

E
eK

IT
 M

AT
ER

IA
LS

 A
R

E
FO

R
 Y

O
U

R
 U

SE
 IN

 T
H

IS
 C

LA
SS

R
O

O
M

 O
N

LY
.

C
O

PY
IN

G
 e

KI
T

M
AT

ER
IA

LS
 F

R
O

M
 T

H
IS

 C
O

M
PU

TE
R

 IS
 S

TR
IC

TL
Y

PR
O

H
IB

IT
ED

 xii

CREATE TABLE: Example 11-27

Violating Constraints 11-28

Lesson Agenda 11-30

Creating a Table Using a Subquery 11-31

Lesson Agenda 11-33

ALTER TABLE Statement 11-34

Adding a Column 11-36

Modifying a Column 11-37

Dropping a Column 11-38

SET UNUSED Option 11-39

Read-Only Tables 11-41

Lesson Agenda 11-42

Dropping a Table 11-43

Quiz 11-44

Summary 11-45

Practice 11: Overview 11-46

A Table Descriptions

B Using SQL Developer

Objectives B-2

What Is Oracle SQL Developer? B-3

Specifications of SQL Developer B-4

SQL Developer 3.2 Interface B-5

Creating a Database Connection B-7

Browsing Database Objects B-10

Displaying the Table Structure B-11

Browsing Files B-12

Creating a Schema Object B-13

Creating a New Table: Example B-14

Using the SQL Worksheet B-15

Executing SQL Statements B-19

Saving SQL Scripts B-20

Executing Saved Script Files: Method 1 B-21

Executing Saved Script Files: Method 2 B-22

Formatting the SQL Code B-23

Using Snippets B-24

Using Snippets: Example B-25

Using Recycle Bin B-26

Debugging Procedures and Functions B-27

Database Reporting B-28

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 E

ga
bi

 S
ol

ut
io

ns
 u

se
 o

nl
y

TH
ES

E
eK

IT
 M

AT
ER

IA
LS

 A
R

E
FO

R
 Y

O
U

R
 U

SE
 IN

 T
H

IS
 C

LA
SS

R
O

O
M

 O
N

LY
.

C
O

PY
IN

G
 e

KI
T

M
AT

ER
IA

LS
 F

R
O

M
 T

H
IS

 C
O

M
PU

TE
R

 IS
 S

TR
IC

TL
Y

PR
O

H
IB

IT
ED

 xiii

Creating a User-Defined Report B-29

Search Engines and External Tools B-30

Setting Preferences B-31

Resetting the SQL Developer Layout B-33

Data Modeler in SQL Developer B-34

Summary B-35

C Using SQL*Plus

Objectives C-2

SQL and SQL*Plus Interaction C-3

SQL Statements Versus SQL*Plus Commands C-4

Overview of SQL*Plus C-5

Logging In to SQL*Plus C-6

Displaying the Table Structure C-7

SQL*Plus Editing Commands C-9

Using LIST, n, and APPEND C-11

Using the CHANGE Command C-12

SQL*Plus File Commands C-13

Using the SAVE, START Commands C-14

SERVEROUTPUT Command C-15

Using the SQL*Plus SPOOL Command C-16

Using the AUTOTRACE Command C-17

Summary C-18

D Commonly Used SQL Commands

Objectives D-2

Basic SELECT Statement D-3

SELECT Statement D-4

WHERE Clause D-5

ORDER BY Clause D-6

GROUP BY Clause D-7

Data Definition Language D-8

CREATE TABLE Statement D-9

ALTER TABLE Statement D-10

DROP TABLE Statement D-11

GRANT Statement D-12

Privilege Types D-13

REVOKE Statement D-14

TRUNCATE TABLE Statement D-15

Data Manipulation Language D-16

INSERT Statement D-17

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 E

ga
bi

 S
ol

ut
io

ns
 u

se
 o

nl
y

TH
ES

E
eK

IT
 M

AT
ER

IA
LS

 A
R

E
FO

R
 Y

O
U

R
 U

SE
 IN

 T
H

IS
 C

LA
SS

R
O

O
M

 O
N

LY
.

C
O

PY
IN

G
 e

KI
T

M
AT

ER
IA

LS
 F

R
O

M
 T

H
IS

 C
O

M
PU

TE
R

 IS
 S

TR
IC

TL
Y

PR
O

H
IB

IT
ED

 xiv

UPDATE Statement Syntax D-18

DELETE Statement D-19

Transaction Control Statements D-20

COMMIT Statement D-21

ROLLBACK Statement D-22

SAVEPOINT Statement D-23

Joins D-24

Types of Joins D-25

Qualifying Ambiguous Column Names D-26

Natural Join D-27

Equijoins D-28

Retrieving Records with Equijoins D-29

Additional Search Conditions Using the AND and WHERE Operators D-30

Retrieving Records with Nonequijoins D-31

Retrieving Records by Using the USING Clause D-32

Retrieving Records by Using the ON Clause D-33

Left Outer Join D-34

Right Outer Join D-35

Full Outer Join D-36

Self-Join: Example D-37

Cross Join D-38

Summary D-39

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 E

ga
bi

 S
ol

ut
io

ns
 u

se
 o

nl
y

TH
ES

E
eK

IT
 M

AT
ER

IA
LS

 A
R

E
FO

R
 Y

O
U

R
 U

SE
 IN

 T
H

IS
 C

LA
SS

R
O

O
M

 O
N

LY
.

C
O

PY
IN

G
 e

KI
T

M
AT

ER
IA

LS
 F

R
O

M
 T

H
IS

 C
O

M
PU

TE
R

 IS
 S

TR
IC

TL
Y

PR
O

H
IB

IT
ED

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

Using the Set Operators

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 E

ga
bi

 S
ol

ut
io

ns
 u

se
 o

nl
y

TH
ES

E
eK

IT
 M

AT
ER

IA
LS

 A
R

E
FO

R
 Y

O
U

R
 U

SE
 IN

 T
H

IS
 C

LA
SS

R
O

O
M

 O
N

LY
.

C
O

PY
IN

G
 e

KI
T

M
AT

ER
IA

LS
 F

R
O

M
 T

H
IS

 C
O

M
PU

TE
R

 IS
 S

TR
IC

TL
Y

PR
O

H
IB

IT
ED

In this lesson, you learn how to write queries by using set operators.

Oracle Database 12c: SQL Workshop I 9 - 2

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

Objectives

After completing this lesson, you should be able to do the
following:

• Describe set operators

• Use a set operator to combine multiple queries into a
single query

• Control the order of rows returned

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 E

ga
bi

 S
ol

ut
io

ns
 u

se
 o

nl
y

TH
ES

E
eK

IT
 M

AT
ER

IA
LS

 A
R

E
FO

R
 Y

O
U

R
 U

SE
 IN

 T
H

IS
 C

LA
SS

R
O

O
M

 O
N

LY
.

C
O

PY
IN

G
 e

KI
T

M
AT

ER
IA

LS
 F

R
O

M
 T

H
IS

 C
O

M
PU

TE
R

 IS
 S

TR
IC

TL
Y

PR
O

H
IB

IT
ED

Oracle Database 12c: SQL Workshop I 9 - 3

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

Lesson Agenda

• Set Operators: Types and guidelines

• Tables used in this lesson
• UNION and UNION ALL operator

• INTERSECT operator

• MINUS operator

• Matching the SELECT statements

• Using the ORDER BY clause in set operations

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 E

ga
bi

 S
ol

ut
io

ns
 u

se
 o

nl
y

TH
ES

E
eK

IT
 M

AT
ER

IA
LS

 A
R

E
FO

R
 Y

O
U

R
 U

SE
 IN

 T
H

IS
 C

LA
SS

R
O

O
M

 O
N

LY
.

C
O

PY
IN

G
 e

KI
T

M
AT

ER
IA

LS
 F

R
O

M
 T

H
IS

 C
O

M
PU

TE
R

 IS
 S

TR
IC

TL
Y

PR
O

H
IB

IT
ED

Set operators combine the results of two or more component queries into one result. Queries
containing set operators are called compound queries.

All set operators have equal precedence. If a SQL statement contains multiple set operators,
the Oracle server evaluates them from left (top) to right (bottom) - if no parentheses explicitly
specify another order. You should use parentheses to specify the order of evaluation explicitly
in queries that use the INTERSECT operator with other set operators.

Operator Returns

UNION Rows from both queries after eliminating duplications

UNION ALL Rows from both queries, including all duplications

INTERSECT Rows that are common to both queries

MINUS Rows in the first query that are not present in the second query

Oracle Database 12c: SQL Workshop I 9 - 4

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

Set Operators

UNION/UNION ALL

A B A B

A B

INTERSECT

A B

MINUS

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 E

ga
bi

 S
ol

ut
io

ns
 u

se
 o

nl
y

TH
ES

E
eK

IT
 M

AT
ER

IA
LS

 A
R

E
FO

R
 Y

O
U

R
 U

SE
 IN

 T
H

IS
 C

LA
SS

R
O

O
M

 O
N

LY
.

C
O

PY
IN

G
 e

KI
T

M
AT

ER
IA

LS
 F

R
O

M
 T

H
IS

 C
O

M
PU

TE
R

 IS
 S

TR
IC

TL
Y

PR
O

H
IB

IT
ED

• The expressions in the SELECT lists of the queries must match in number and data type.
Queries that use UNION, UNION ALL, INTERSECT, and MINUS operators must have the
same number and data type of columns in their SELECT list. The data type of the
columns in the SELECT list of the queries in the compound query may not be exactly the
same. The column in the second query must be in the same data type group (such as
numeric or character) as the corresponding column in the first query.

• Set operators can be used in subqueries.

• You should use parentheses to specify the order of evaluation in queries that use the
INTERSECT operator with other set operators. This ensures compliance with emerging
SQL standards that will give the INTERSECT operator greater precedence than the
other set operators.

Oracle Database 12c: SQL Workshop I 9 - 5

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

Set Operator Rules

• The expressions in the SELECT lists must match in
number.

• The data type of each column in the subsequent query
must match the data type of its corresponding column in
the first query.

• Parentheses can be used to alter the sequence of
execution.

• ORDER BY clause can appear only at the very end of the
statement.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 E

ga
bi

 S
ol

ut
io

ns
 u

se
 o

nl
y

TH
ES

E
eK

IT
 M

AT
ER

IA
LS

 A
R

E
FO

R
 Y

O
U

R
 U

SE
 IN

 T
H

IS
 C

LA
SS

R
O

O
M

 O
N

LY
.

C
O

PY
IN

G
 e

KI
T

M
AT

ER
IA

LS
 F

R
O

M
 T

H
IS

 C
O

M
PU

TE
R

 IS
 S

TR
IC

TL
Y

PR
O

H
IB

IT
ED

When a query uses set operators, the Oracle server eliminates duplicate rows automatically
except in the case of the UNION ALL operator. The column names in the output are decided
by the column list in the first SELECT statement. By default, the output is sorted in ascending
order of the first column of the SELECT clause.

The corresponding expressions in the SELECT lists of the component queries of a compound
query must match in number and data type. If component queries select character data, the
data type of the return values is determined as follows:

• If both queries select values of CHAR data type, of equal length, the returned values
have the CHAR data type of that length. If the queries select values of CHAR with different
lengths, the returned value is VARCHAR2 with the length of the larger CHAR value.

• If either or both of the queries select values of VARCHAR2 data type, the returned values
have the VARCHAR2 data type.

If component queries select numeric data, the data type of the return values is determined by
numeric precedence. If all queries select values of the NUMBER type, the returned values have
the NUMBER data type. In queries using set operators, the Oracle server does not perform
implicit conversion across data type groups. Therefore, if the corresponding expressions of
component queries resolve to both character data and numeric data, the Oracle server returns
an error.

Oracle Database 12c: SQL Workshop I 9 - 6

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

Oracle Server and Set Operators

• Duplicate rows are automatically eliminated except in
UNION ALL.

• Column names from the first query appear in the result.

• The output is sorted in ascending order by default except
in UNION ALL.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 E

ga
bi

 S
ol

ut
io

ns
 u

se
 o

nl
y

TH
ES

E
eK

IT
 M

AT
ER

IA
LS

 A
R

E
FO

R
 Y

O
U

R
 U

SE
 IN

 T
H

IS
 C

LA
SS

R
O

O
M

 O
N

LY
.

C
O

PY
IN

G
 e

KI
T

M
AT

ER
IA

LS
 F

R
O

M
 T

H
IS

 C
O

M
PU

TE
R

 IS
 S

TR
IC

TL
Y

PR
O

H
IB

IT
ED

Oracle Database 12c: SQL Workshop I 9 - 7

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

Lesson Agenda

• Set Operators: Types and guidelines

• Tables used in this lesson
• UNION and UNION ALL operator

• INTERSECT operator

• MINUS operator

• Matching the SELECT statements

• Using the ORDER BY clause in set operations

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 E

ga
bi

 S
ol

ut
io

ns
 u

se
 o

nl
y

TH
ES

E
eK

IT
 M

AT
ER

IA
LS

 A
R

E
FO

R
 Y

O
U

R
 U

SE
 IN

 T
H

IS
 C

LA
SS

R
O

O
M

 O
N

LY
.

C
O

PY
IN

G
 e

KI
T

M
AT

ER
IA

LS
 F

R
O

M
 T

H
IS

 C
O

M
PU

TE
R

 IS
 S

TR
IC

TL
Y

PR
O

H
IB

IT
ED

Two tables are used in this lesson: the EMPLOYEES table and the JOB_HISTORY table.

You are already familiar with the EMPLOYEES table that stores employee details such as a
unique identification number, email address, job identification (such as ST_CLERK, SA_REP,
and so on), salary, manager, and so on.

Some of the employees have been with the company for a long time and have switched to
different jobs. This is monitored using the JOB_HISTORY table. When an employee switches
jobs, the details of the start date and end date of the former job, the job_id (such as
ST_CLERK, SA_REP, and so on), and the department are recorded in the JOB_HISTORY
table.

The structure and data from the EMPLOYEES and JOB_HISTORY tables are shown on the
following pages.

Oracle Database 12c: SQL Workshop I 9 - 8

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

Tables Used in This Lesson

The tables used in this lesson are:
• EMPLOYEES: Provides details regarding all current

employees
• JOB_HISTORY: Records the details of the start date and

end date of the former job, and the job identification
number and department when an employee switches jobs

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 E

ga
bi

 S
ol

ut
io

ns
 u

se
 o

nl
y

TH
ES

E
eK

IT
 M

AT
ER

IA
LS

 A
R

E
FO

R
 Y

O
U

R
 U

SE
 IN

 T
H

IS
 C

LA
SS

R
O

O
M

 O
N

LY
.

C
O

PY
IN

G
 e

KI
T

M
AT

ER
IA

LS
 F

R
O

M
 T

H
IS

 C
O

M
PU

TE
R

 IS
 S

TR
IC

TL
Y

PR
O

H
IB

IT
ED

There have been instances in the company of people who have held the same position more
than once during their tenure with the company. For example, consider the employee Taylor,
who joined the company on 24-MAR-2006. Taylor held the job title SA_REP for the period 24-
MAR-06 to 31-DEC-06 and the job title SA_MAN for the period 01-JAN-07 to 31-DEC-07. Taylor
moved back into the job title of SA_REP, which is his current job title.

DESCRIBE employees

Oracle Database 12c: SQL Workshop I 9 - 9

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 E

ga
bi

 S
ol

ut
io

ns
 u

se
 o

nl
y

TH
ES

E
eK

IT
 M

AT
ER

IA
LS

 A
R

E
FO

R
 Y

O
U

R
 U

SE
 IN

 T
H

IS
 C

LA
SS

R
O

O
M

 O
N

LY
.

C
O

PY
IN

G
 e

KI
T

M
AT

ER
IA

LS
 F

R
O

M
 T

H
IS

 C
O

M
PU

TE
R

 IS
 S

TR
IC

TL
Y

PR
O

H
IB

IT
ED

SELECT employee_id, last_name, job_id, hire_date, department_id

FROM employees;

DESCRIBE job_history

Oracle Database 12c: SQL Workshop I 9 - 10

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 E

ga
bi

 S
ol

ut
io

ns
 u

se
 o

nl
y

TH
ES

E
eK

IT
 M

AT
ER

IA
LS

 A
R

E
FO

R
 Y

O
U

R
 U

SE
 IN

 T
H

IS
 C

LA
SS

R
O

O
M

 O
N

LY
.

C
O

PY
IN

G
 e

KI
T

M
AT

ER
IA

LS
 F

R
O

M
 T

H
IS

 C
O

M
PU

TE
R

 IS
 S

TR
IC

TL
Y

PR
O

H
IB

IT
ED

SELECT * FROM job_history;

Oracle Database 12c: SQL Workshop I 9 - 11

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 E

ga
bi

 S
ol

ut
io

ns
 u

se
 o

nl
y

TH
ES

E
eK

IT
 M

AT
ER

IA
LS

 A
R

E
FO

R
 Y

O
U

R
 U

SE
 IN

 T
H

IS
 C

LA
SS

R
O

O
M

 O
N

LY
.

C
O

PY
IN

G
 e

KI
T

M
AT

ER
IA

LS
 F

R
O

M
 T

H
IS

 C
O

M
PU

TE
R

 IS
 S

TR
IC

TL
Y

PR
O

H
IB

IT
ED

Oracle Database 12c: SQL Workshop I 9 - 12

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

Lesson Agenda

• Set Operators: Types and guidelines

• Tables used in this lesson
• UNION and UNION ALL operator

• INTERSECT operator

• MINUS operator

• Matching the SELECT statements

• Using the ORDER BY clause in set operations

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 E

ga
bi

 S
ol

ut
io

ns
 u

se
 o

nl
y

TH
ES

E
eK

IT
 M

AT
ER

IA
LS

 A
R

E
FO

R
 Y

O
U

R
 U

SE
 IN

 T
H

IS
 C

LA
SS

R
O

O
M

 O
N

LY
.

C
O

PY
IN

G
 e

KI
T

M
AT

ER
IA

LS
 F

R
O

M
 T

H
IS

 C
O

M
PU

TE
R

 IS
 S

TR
IC

TL
Y

PR
O

H
IB

IT
ED

The UNION operator returns all rows that are selected by either query. Use the UNION
operator to return all rows from multiple tables and eliminate any duplicate rows.

Guidelines

• The number of columns being selected must be the same.

• The data types of the columns being selected must be in the same data type group
(such as numeric or character).

• The names of the columns need not be identical.

• UNION operates over all of the columns being selected.

• NULL values are not ignored during duplicate checking.

• By default, the output is sorted in ascending order of the columns of the SELECT clause.

Oracle Database 12c: SQL Workshop I 9 - 13

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

UNION Operator

A B

The UNION operator returns rows from both queries after eliminating
duplications.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 E

ga
bi

 S
ol

ut
io

ns
 u

se
 o

nl
y

TH
ES

E
eK

IT
 M

AT
ER

IA
LS

 A
R

E
FO

R
 Y

O
U

R
 U

SE
 IN

 T
H

IS
 C

LA
SS

R
O

O
M

 O
N

LY
.

C
O

PY
IN

G
 e

KI
T

M
AT

ER
IA

LS
 F

R
O

M
 T

H
IS

 C
O

M
PU

TE
R

 IS
 S

TR
IC

TL
Y

PR
O

H
IB

IT
ED

The UNION operator eliminates any duplicate records. If records that occur in both the
EMPLOYEES and the JOB_HISTORY tables are identical, the records are displayed only once.
Observe in the output shown in the slide that the record for the employee with the
EMPLOYEE_ID 200 appears twice because the JOB_ID is different in each row.

Consider the following example:
SELECT employee_id, job_id, department_id
FROM employees
UNION
SELECT employee_id, job_id, department_id
FROM job_history;

…

…

Oracle Database 12c: SQL Workshop I 9 - 14

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

Using the UNION Operator

Display the current and previous job details of all employees.
Display each employee only once.

SELECT employee_id, job_id
FROM employees
UNION
SELECT employee_id, job_id
FROM job_history;

…

…

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 E

ga
bi

 S
ol

ut
io

ns
 u

se
 o

nl
y

TH
ES

E
eK

IT
 M

AT
ER

IA
LS

 A
R

E
FO

R
 Y

O
U

R
 U

SE
 IN

 T
H

IS
 C

LA
SS

R
O

O
M

 O
N

LY
.

C
O

PY
IN

G
 e

KI
T

M
AT

ER
IA

LS
 F

R
O

M
 T

H
IS

 C
O

M
PU

TE
R

 IS
 S

TR
IC

TL
Y

PR
O

H
IB

IT
ED

In the preceding output, employee 200 appears three times. Why? Note the DEPARTMENT_ID
values for employee 200. One row has a DEPARTMENT_ID of 90, another 10, and the third 90.
Because of these unique combinations of job IDs and department IDs, each row for employee
200 is unique and, therefore, not considered to be a duplicate. Observe that the output is sorted
in ascending order of the first column of the SELECT clause (in this case, EMPLOYEE_ID).

Oracle Database 12c: SQL Workshop I 9 - 15

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 E

ga
bi

 S
ol

ut
io

ns
 u

se
 o

nl
y

TH
ES

E
eK

IT
 M

AT
ER

IA
LS

 A
R

E
FO

R
 Y

O
U

R
 U

SE
 IN

 T
H

IS
 C

LA
SS

R
O

O
M

 O
N

LY
.

C
O

PY
IN

G
 e

KI
T

M
AT

ER
IA

LS
 F

R
O

M
 T

H
IS

 C
O

M
PU

TE
R

 IS
 S

TR
IC

TL
Y

PR
O

H
IB

IT
ED

Use the UNION ALL operator to return all rows from multiple queries.

Guidelines

The guidelines for UNION and UNION ALL are the same, with the following two exceptions
that pertain to UNION ALL: Unlike UNION, duplicate rows are not eliminated and the output is
not sorted by default.

Oracle Database 12c: SQL Workshop I 9 - 16

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

UNION ALL Operator

The UNION ALL operator returns rows from both queries, including all
duplications.

A B

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 E

ga
bi

 S
ol

ut
io

ns
 u

se
 o

nl
y

TH
ES

E
eK

IT
 M

AT
ER

IA
LS

 A
R

E
FO

R
 Y

O
U

R
 U

SE
 IN

 T
H

IS
 C

LA
SS

R
O

O
M

 O
N

LY
.

C
O

PY
IN

G
 e

KI
T

M
AT

ER
IA

LS
 F

R
O

M
 T

H
IS

 C
O

M
PU

TE
R

 IS
 S

TR
IC

TL
Y

PR
O

H
IB

IT
ED

In the example, 30 rows are selected. The combination of the two tables totals to 30 rows.
The UNION ALL operator does not eliminate duplicate rows. UNION returns all distinct rows
selected by either query. UNION ALL returns all rows selected by either query, including all
duplicates. Consider the query in the slide, now written with the UNION clause:

SELECT employee_id, job_id,department_id
FROM employees
UNION
SELECT employee_id, job_id,department_id
FROM job_history
ORDER BY employee_id;

The preceding query returns 29 rows. This is because it eliminates the following row (because
it is a duplicate):

Oracle Database 12c: SQL Workshop I 9 - 17

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

Using the UNION ALL Operator

Display the current and previous departments of all employees.
SELECT employee_id, job_id, department_id
FROM employees
UNION ALL
SELECT employee_id, job_id, department_id
FROM job_history
ORDER BY employee_id;

…

…

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 E

ga
bi

 S
ol

ut
io

ns
 u

se
 o

nl
y

TH
ES

E
eK

IT
 M

AT
ER

IA
LS

 A
R

E
FO

R
 Y

O
U

R
 U

SE
 IN

 T
H

IS
 C

LA
SS

R
O

O
M

 O
N

LY
.

C
O

PY
IN

G
 e

KI
T

M
AT

ER
IA

LS
 F

R
O

M
 T

H
IS

 C
O

M
PU

TE
R

 IS
 S

TR
IC

TL
Y

PR
O

H
IB

IT
ED

Oracle Database 12c: SQL Workshop I 9 - 18

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

Lesson Agenda

• Set Operators: Types and guidelines

• Tables used in this lesson
• UNION and UNION ALL operator

• INTERSECT operator

• MINUS operator

• Matching the SELECT statements

• Using ORDER BY clause in set operations

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 E

ga
bi

 S
ol

ut
io

ns
 u

se
 o

nl
y

TH
ES

E
eK

IT
 M

AT
ER

IA
LS

 A
R

E
FO

R
 Y

O
U

R
 U

SE
 IN

 T
H

IS
 C

LA
SS

R
O

O
M

 O
N

LY
.

C
O

PY
IN

G
 e

KI
T

M
AT

ER
IA

LS
 F

R
O

M
 T

H
IS

 C
O

M
PU

TE
R

 IS
 S

TR
IC

TL
Y

PR
O

H
IB

IT
ED

Use the INTERSECT operator to return all rows that are common to multiple queries.

Guidelines

• The number of columns and the data types of the columns being selected by the
SELECT statements in the queries must be identical in all the SELECT statements used
in the query. The names of the columns, however, need not be identical.

• Reversing the order of the intersected tables does not alter the result.

• INTERSECT does not ignore NULL values.

Oracle Database 12c: SQL Workshop I 9 - 19

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

INTERSECT Operator

A B

The INTERSECT operator returns rows that are common to both queries.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 E

ga
bi

 S
ol

ut
io

ns
 u

se
 o

nl
y

TH
ES

E
eK

IT
 M

AT
ER

IA
LS

 A
R

E
FO

R
 Y

O
U

R
 U

SE
 IN

 T
H

IS
 C

LA
SS

R
O

O
M

 O
N

LY
.

C
O

PY
IN

G
 e

KI
T

M
AT

ER
IA

LS
 F

R
O

M
 T

H
IS

 C
O

M
PU

TE
R

 IS
 S

TR
IC

TL
Y

PR
O

H
IB

IT
ED

In the example in this slide, the query returns only those records that have the same values in
the selected columns in both tables.

What will be the results if you add the DEPARTMENT_ID column to the SELECT statement
from the EMPLOYEES table and add the DEPARTMENT_ID column to the SELECT statement
from the JOB_HISTORY table, and run this query? The results may be different because of
the introduction of another column whose values may or may not be duplicates.

Example
SELECT employee_id, job_id, department_id

FROM employees

INTERSECT

SELECT employee_id, job_id, department_id

FROM job_history;

Employee 200 is no longer part of the results because the EMPLOYEES.DEPARTMENT_ID
value is different from the JOB_HISTORY.DEPARTMENT_ID value.

Oracle Database 12c: SQL Workshop I 9 - 20

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

Using the INTERSECT Operator

Display the employee IDs and job IDs of those employees who
currently have a job title that is the same as their previous one
(that is, they changed jobs but have now gone back to doing
the same job they did previously).

SELECT employee_id, job_id
FROM employees
INTERSECT
SELECT employee_id, job_id
FROM job_history;

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 E

ga
bi

 S
ol

ut
io

ns
 u

se
 o

nl
y

TH
ES

E
eK

IT
 M

AT
ER

IA
LS

 A
R

E
FO

R
 Y

O
U

R
 U

SE
 IN

 T
H

IS
 C

LA
SS

R
O

O
M

 O
N

LY
.

C
O

PY
IN

G
 e

KI
T

M
AT

ER
IA

LS
 F

R
O

M
 T

H
IS

 C
O

M
PU

TE
R

 IS
 S

TR
IC

TL
Y

PR
O

H
IB

IT
ED

Oracle Database 12c: SQL Workshop I 9 - 21

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

Lesson Agenda

• Set Operators: Types and guidelines

• Tables used in this lesson
• UNION and UNION ALL operator

• INTERSECT operator

• MINUS operator

• Matching the SELECT statements

• Using the ORDER BY clause in set operations

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 E

ga
bi

 S
ol

ut
io

ns
 u

se
 o

nl
y

TH
ES

E
eK

IT
 M

AT
ER

IA
LS

 A
R

E
FO

R
 Y

O
U

R
 U

SE
 IN

 T
H

IS
 C

LA
SS

R
O

O
M

 O
N

LY
.

C
O

PY
IN

G
 e

KI
T

M
AT

ER
IA

LS
 F

R
O

M
 T

H
IS

 C
O

M
PU

TE
R

 IS
 S

TR
IC

TL
Y

PR
O

H
IB

IT
ED

Use the MINUS operator to return all distinct rows selected by the first query, but not present
in the second query result set (the first SELECT statement MINUS the second SELECT
statement).

Note: The number of columns must be the same and the data types of the columns being
selected by the SELECT statements in the queries must belong to the same data type group in
all the SELECT statements used in the query. The names of the columns, however, need not
be identical.

Oracle Database 12c: SQL Workshop I 9 - 22

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

MINUS Operator

A B

The MINUS operator returns all the distinct rows selected by the first query, but
not present in the second query result set.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 E

ga
bi

 S
ol

ut
io

ns
 u

se
 o

nl
y

TH
ES

E
eK

IT
 M

AT
ER

IA
LS

 A
R

E
FO

R
 Y

O
U

R
 U

SE
 IN

 T
H

IS
 C

LA
SS

R
O

O
M

 O
N

LY
.

C
O

PY
IN

G
 e

KI
T

M
AT

ER
IA

LS
 F

R
O

M
 T

H
IS

 C
O

M
PU

TE
R

 IS
 S

TR
IC

TL
Y

PR
O

H
IB

IT
ED

In the example in the slide, the employee IDs in the JOB_HISTORY table are subtracted from
those in the EMPLOYEES table. The results set displays the employees remaining after the
subtraction; they are represented by rows that exist in the EMPLOYEES table, but do not exist
in the JOB_HISTORY table. These are the records of the employees who have not changed
their jobs even once.

Oracle Database 12c: SQL Workshop I 9 - 23

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

Using the MINUS Operator

Display the employee IDs of those employees who have not
changed their jobs even once.

SELECT employee_id
FROM employees
MINUS
SELECT employee_id
FROM job_history;

…

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 E

ga
bi

 S
ol

ut
io

ns
 u

se
 o

nl
y

TH
ES

E
eK

IT
 M

AT
ER

IA
LS

 A
R

E
FO

R
 Y

O
U

R
 U

SE
 IN

 T
H

IS
 C

LA
SS

R
O

O
M

 O
N

LY
.

C
O

PY
IN

G
 e

KI
T

M
AT

ER
IA

LS
 F

R
O

M
 T

H
IS

 C
O

M
PU

TE
R

 IS
 S

TR
IC

TL
Y

PR
O

H
IB

IT
ED

Oracle Database 12c: SQL Workshop I 9 - 24

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

Lesson Agenda

• Set Operators: Types and guidelines

• Tables used in this lesson
• UNION and UNION ALL operator

• INTERSECT operator

• MINUS operator

• Matching the SELECT statements

• Using ORDER BY clause in set operations

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 E

ga
bi

 S
ol

ut
io

ns
 u

se
 o

nl
y

TH
ES

E
eK

IT
 M

AT
ER

IA
LS

 A
R

E
FO

R
 Y

O
U

R
 U

SE
 IN

 T
H

IS
 C

LA
SS

R
O

O
M

 O
N

LY
.

C
O

PY
IN

G
 e

KI
T

M
AT

ER
IA

LS
 F

R
O

M
 T

H
IS

 C
O

M
PU

TE
R

 IS
 S

TR
IC

TL
Y

PR
O

H
IB

IT
ED

Because the expressions in the SELECT lists of the queries must match in number, you can
use the dummy columns and the data type conversion functions to comply with this rule. In
the slide, the name, Warehouse location, is given as the dummy column heading. The
TO_CHAR function is used in the first query to match the VARCHAR2 data type of the
state_province column that is retrieved by the second query. Similarly, the TO_CHAR
function in the second query is used to match the VARCHAR2 data type of the
department_name column that is retrieved by the first query.

The output of the query is shown:

…
Oracle Database 12c: SQL Workshop I 9 - 25

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

Matching the SELECT Statements

• Using the UNION operator, display the location ID,
department name, and the state where it is located.

• You must match the data type (using the TO_CHAR
function or any other conversion functions) when columns
do not exist in one or the other table.

SELECT location_id, department_name "Department",
TO_CHAR(NULL) "Warehouse location"

FROM departments
UNION
SELECT location_id, TO_CHAR(NULL) "Department",

state_province
FROM locations;

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 E

ga
bi

 S
ol

ut
io

ns
 u

se
 o

nl
y

TH
ES

E
eK

IT
 M

AT
ER

IA
LS

 A
R

E
FO

R
 Y

O
U

R
 U

SE
 IN

 T
H

IS
 C

LA
SS

R
O

O
M

 O
N

LY
.

C
O

PY
IN

G
 e

KI
T

M
AT

ER
IA

LS
 F

R
O

M
 T

H
IS

 C
O

M
PU

TE
R

 IS
 S

TR
IC

TL
Y

PR
O

H
IB

IT
ED

The EMPLOYEES and JOB_HISTORY tables have several columns in common (for example,
EMPLOYEE_ID, JOB_ID, and DEPARTMENT_ID). But what if you want the query to display the
employee ID, job ID, and salary using the UNION operator, knowing that the salary exists
only in the EMPLOYEES table?

The code example in the slide matches the EMPLOYEE_ID and JOB_ID columns in the
EMPLOYEES and JOB_HISTORY tables. A literal value of 0 is added to the JOB_HISTORY
SELECT statement to match the numeric SALARY column in the EMPLOYEES SELECT
statement.

In the results shown in the slide, each row in the output that corresponds to a record from the
JOB_HISTORY table contains a 0 in the SALARY column.

Oracle Database 12c: SQL Workshop I 9 - 26

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

Matching the SELECT Statement: Example

Using the UNION operator, display the employee ID, job ID, and
salary of all employees.

SELECT employee_id, job_id,salary
FROM employees
UNION
SELECT employee_id, job_id,0
FROM job_history;

…

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 E

ga
bi

 S
ol

ut
io

ns
 u

se
 o

nl
y

TH
ES

E
eK

IT
 M

AT
ER

IA
LS

 A
R

E
FO

R
 Y

O
U

R
 U

SE
 IN

 T
H

IS
 C

LA
SS

R
O

O
M

 O
N

LY
.

C
O

PY
IN

G
 e

KI
T

M
AT

ER
IA

LS
 F

R
O

M
 T

H
IS

 C
O

M
PU

TE
R

 IS
 S

TR
IC

TL
Y

PR
O

H
IB

IT
ED

Oracle Database 12c: SQL Workshop I 9 - 27

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

Lesson Agenda

• Set Operators: Types and guidelines

• Tables used in this lesson
• UNION and UNION ALL operator

• INTERSECT operator

• MINUS operator

• Matching the SELECT statements

• Using the ORDER BY clause in set operations

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 E

ga
bi

 S
ol

ut
io

ns
 u

se
 o

nl
y

TH
ES

E
eK

IT
 M

AT
ER

IA
LS

 A
R

E
FO

R
 Y

O
U

R
 U

SE
 IN

 T
H

IS
 C

LA
SS

R
O

O
M

 O
N

LY
.

C
O

PY
IN

G
 e

KI
T

M
AT

ER
IA

LS
 F

R
O

M
 T

H
IS

 C
O

M
PU

TE
R

 IS
 S

TR
IC

TL
Y

PR
O

H
IB

IT
ED

The ORDER BY clause can be used only once in a compound query. If used, the ORDER BY
clause must be placed at the end of the query. The ORDER BY clause accepts the column
name or an alias. By default, the output is sorted in ascending order in the first column of the
first SELECT query.

Note: The ORDER BY clause does not recognize the column names of the second SELECT
query. To avoid confusion over column names, it is a common practice to ORDER BY column
positions.

For example, in the following statement, the output will be shown in ascending order of
job_id.

SELECT employee_id, job_id,salary

FROM employees

UNION

SELECT employee_id, job_id,0

FROM job_history

ORDER BY 2;

If you omit ORDER BY, by default, the output will be sorted in ascending order of
employee_id. You cannot use the columns from the second query to sort the output.

Oracle Database 12c: SQL Workshop I 9 - 28

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

Using the ORDER BY Clause in Set Operations

• The ORDER BY clause can appear only once at the end of
the compound query.

• Component queries cannot have individual ORDER BY
clauses.

• The ORDER BY clause recognizes only the columns of the
first SELECT query.

• By default, the first column of the first SELECT query is
used to sort the output in an ascending order.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 E

ga
bi

 S
ol

ut
io

ns
 u

se
 o

nl
y

TH
ES

E
eK

IT
 M

AT
ER

IA
LS

 A
R

E
FO

R
 Y

O
U

R
 U

SE
 IN

 T
H

IS
 C

LA
SS

R
O

O
M

 O
N

LY
.

C
O

PY
IN

G
 e

KI
T

M
AT

ER
IA

LS
 F

R
O

M
 T

H
IS

 C
O

M
PU

TE
R

 IS
 S

TR
IC

TL
Y

PR
O

H
IB

IT
ED

Answer: a, c

Oracle Database 12c: SQL Workshop I 9 - 29

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

Quiz

Identify the two set operator guidelines.
a. The expressions in the SELECT lists must match in

number.

b. Parentheses may not be used to alter the sequence of
execution.

c. The data type of each column in the second query must
match the data type of its corresponding column in the first
query.

d. The ORDER BY clause can be used only once in a
compound query, unless a UNION ALL operator is used.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 E

ga
bi

 S
ol

ut
io

ns
 u

se
 o

nl
y

TH
ES

E
eK

IT
 M

AT
ER

IA
LS

 A
R

E
FO

R
 Y

O
U

R
 U

SE
 IN

 T
H

IS
 C

LA
SS

R
O

O
M

 O
N

LY
.

C
O

PY
IN

G
 e

KI
T

M
AT

ER
IA

LS
 F

R
O

M
 T

H
IS

 C
O

M
PU

TE
R

 IS
 S

TR
IC

TL
Y

PR
O

H
IB

IT
ED

• The UNION operator returns all the distinct rows selected by each query in the
compound query. Use the UNION operator to return all rows from multiple tables and
eliminate any duplicate rows.

• Use the UNION ALL operator to return all rows from multiple queries. Unlike the case
with the UNION operator, duplicate rows are not eliminated and the output is not sorted
by default.

• Use the INTERSECT operator to return all rows that are common to multiple queries.

• Use the MINUS operator to return rows returned by the first query that are not present in
the second query.

• Remember to use the ORDER BY clause only at the very end of the compound
statement.

• Make sure that the corresponding expressions in the SELECT lists match in number and
data type.

Oracle Database 12c: SQL Workshop I 9 - 30

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

Summary

In this lesson, you should have learned how to use:
• UNION to return all distinct rows

• UNION ALL to return all rows, including duplicates

• INTERSECT to return all rows that are shared by both
queries

• MINUS to return all distinct rows that are selected by the
first query, but not by the second

• ORDER BY only at the very end of the statement

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 E

ga
bi

 S
ol

ut
io

ns
 u

se
 o

nl
y

TH
ES

E
eK

IT
 M

AT
ER

IA
LS

 A
R

E
FO

R
 Y

O
U

R
 U

SE
 IN

 T
H

IS
 C

LA
SS

R
O

O
M

 O
N

LY
.

C
O

PY
IN

G
 e

KI
T

M
AT

ER
IA

LS
 F

R
O

M
 T

H
IS

 C
O

M
PU

TE
R

 IS
 S

TR
IC

TL
Y

PR
O

H
IB

IT
ED

In this practice, you write queries using the set operators.

Oracle Database 12c: SQL Workshop I 9 - 31

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

Practice 9: Overview

In this practice, you create reports by using:
• The UNION operator

• The INTERSECT operator

• The MINUS operator

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 E

ga
bi

 S
ol

ut
io

ns
 u

se
 o

nl
y

TH
ES

E
eK

IT
 M

AT
ER

IA
LS

 A
R

E
FO

R
 Y

O
U

R
 U

SE
 IN

 T
H

IS
 C

LA
SS

R
O

O
M

 O
N

LY
.

C
O

PY
IN

G
 e

KI
T

M
AT

ER
IA

LS
 F

R
O

M
 T

H
IS

 C
O

M
PU

TE
R

 IS
 S

TR
IC

TL
Y

PR
O

H
IB

IT
ED

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 E

ga
bi

 S
ol

ut
io

ns
 u

se
 o

nl
y

TH
ES

E
eK

IT
 M

AT
ER

IA
LS

 A
R

E
FO

R
 Y

O
U

R
 U

SE
 IN

 T
H

IS
 C

LA
SS

R
O

O
M

 O
N

LY
.

C
O

PY
IN

G
 e

KI
T

M
AT

ER
IA

LS
 F

R
O

M
 T

H
IS

 C
O

M
PU

TE
R

 IS
 S

TR
IC

TL
Y

PR
O

H
IB

IT
ED

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

Managing Tables Using DML Statements

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 E

ga
bi

 S
ol

ut
io

ns
 u

se
 o

nl
y

TH
ES

E
eK

IT
 M

AT
ER

IA
LS

 A
R

E
FO

R
 Y

O
U

R
 U

SE
 IN

 T
H

IS
 C

LA
SS

R
O

O
M

 O
N

LY
.

C
O

PY
IN

G
 e

KI
T

M
AT

ER
IA

LS
 F

R
O

M
 T

H
IS

 C
O

M
PU

TE
R

 IS
 S

TR
IC

TL
Y

PR
O

H
IB

IT
ED

In this lesson, you learn how to use the data manipulation language (DML) statements to
insert rows into a table, update existing rows in a table, and delete existing rows from a table.
You also learn how to control transactions with the COMMIT, SAVEPOINT, and ROLLBACK
statements.

Oracle Database 12c: SQL Workshop I 10 - 2

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

Objectives

After completing this lesson, you should be able to do the
following:

• Describe each data manipulation language (DML)
statement

• Control transactions

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 E

ga
bi

 S
ol

ut
io

ns
 u

se
 o

nl
y

TH
ES

E
eK

IT
 M

AT
ER

IA
LS

 A
R

E
FO

R
 Y

O
U

R
 U

SE
 IN

 T
H

IS
 C

LA
SS

R
O

O
M

 O
N

LY
.

C
O

PY
IN

G
 e

KI
T

M
AT

ER
IA

LS
 F

R
O

M
 T

H
IS

 C
O

M
PU

TE
R

 IS
 S

TR
IC

TL
Y

PR
O

H
IB

IT
ED

Oracle Database 12c: SQL Workshop I 10 - 3

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

Lesson Agenda

• Adding new rows in a table
– INSERT statement

• Changing data in a table
– UPDATE statement

• Removing rows from a table:
– DELETE statement

– TRUNCATE statement

• Database transactions control using COMMIT, ROLLBACK,
and SAVEPOINT

• Read consistency
• FOR UPDATE clause in a SELECT statement

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 E

ga
bi

 S
ol

ut
io

ns
 u

se
 o

nl
y

TH
ES

E
eK

IT
 M

AT
ER

IA
LS

 A
R

E
FO

R
 Y

O
U

R
 U

SE
 IN

 T
H

IS
 C

LA
SS

R
O

O
M

 O
N

LY
.

C
O

PY
IN

G
 e

KI
T

M
AT

ER
IA

LS
 F

R
O

M
 T

H
IS

 C
O

M
PU

TE
R

 IS
 S

TR
IC

TL
Y

PR
O

H
IB

IT
ED

Data manipulation language (DML) is a core part of SQL. When you want to add, update, or
delete data in the database, you execute a DML statement. A collection of DML statements
that form a logical unit of work is called a transaction.

Consider a banking database. When a bank customer transfers money from a savings
account to a checking account, the transaction might consist of three separate operations:
decreasing the savings account, increasing the checking account, and recording the
transaction in the transaction journal. The Oracle server must guarantee that all the three SQL
statements are performed to maintain the accounts in proper balance. When something
prevents one of the statements in the transaction from executing, the other statements of the
transaction must be undone.

Note

• Most of the DML statements in this lesson assume that no constraints on the table are
violated. Constraints are discussed later in this course.

• In SQL Developer, click the Run Script icon or press [F5] to run the DML statements.
The feedback messages will be shown on the Script Output tabbed page.

Oracle Database 12c: SQL Workshop I 10 - 4

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

Data Manipulation Language

• A DML statement is executed when you:
– Add new rows to a table

– Modify existing rows in a table

– Remove existing rows from a table

• A transaction consists of a collection of DML statements
that form a logical unit of work.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 E

ga
bi

 S
ol

ut
io

ns
 u

se
 o

nl
y

TH
ES

E
eK

IT
 M

AT
ER

IA
LS

 A
R

E
FO

R
 Y

O
U

R
 U

SE
 IN

 T
H

IS
 C

LA
SS

R
O

O
M

 O
N

LY
.

C
O

PY
IN

G
 e

KI
T

M
AT

ER
IA

LS
 F

R
O

M
 T

H
IS

 C
O

M
PU

TE
R

 IS
 S

TR
IC

TL
Y

PR
O

H
IB

IT
ED

The graphic in the slide illustrates the addition of a new department to the DEPARTMENTS
table.

Oracle Database 12c: SQL Workshop I 10 - 5

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

Adding a New Row to a Table

DEPARTMENTS
New
row

Insert new row
into the

DEPARTMENTS table.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 E

ga
bi

 S
ol

ut
io

ns
 u

se
 o

nl
y

TH
ES

E
eK

IT
 M

AT
ER

IA
LS

 A
R

E
FO

R
 Y

O
U

R
 U

SE
 IN

 T
H

IS
 C

LA
SS

R
O

O
M

 O
N

LY
.

C
O

PY
IN

G
 e

KI
T

M
AT

ER
IA

LS
 F

R
O

M
 T

H
IS

 C
O

M
PU

TE
R

 IS
 S

TR
IC

TL
Y

PR
O

H
IB

IT
ED

You can add new rows to a table by issuing the INSERT statement.

In the syntax:

table Is the name of the table

column Is the name of the column in the table to populate

value Is the corresponding value for the column

Note: This statement with the VALUES clause adds only one row at a time to a table.

Oracle Database 12c: SQL Workshop I 10 - 6

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

INSERT Statement Syntax

• Add new rows to a table by using the INSERT statement:

• With this syntax, only one row is inserted at a time.

INSERT INTO table [(column [, column...])]
VALUES (value [, value...]);

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 E

ga
bi

 S
ol

ut
io

ns
 u

se
 o

nl
y

TH
ES

E
eK

IT
 M

AT
ER

IA
LS

 A
R

E
FO

R
 Y

O
U

R
 U

SE
 IN

 T
H

IS
 C

LA
SS

R
O

O
M

 O
N

LY
.

C
O

PY
IN

G
 e

KI
T

M
AT

ER
IA

LS
 F

R
O

M
 T

H
IS

 C
O

M
PU

TE
R

 IS
 S

TR
IC

TL
Y

PR
O

H
IB

IT
ED

Because you can insert a new row that contains values for each column, the column list is not
required in the INSERT clause. However, if you do not use the column list, the values must be
listed according to the default order of the columns in the table, and a value must be provided
for each column.

DESCRIBE departments

For clarity, use the column list in the INSERT clause.
Enclose character and date values within single quotation marks; however, it is not
recommended that you enclose numeric values within single quotation marks.

Oracle Database 12c: SQL Workshop I 10 - 7

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

Inserting New Rows

• Insert a new row containing values for each column.

• List values in the default order of the columns in the table.
• Optionally, list the columns in the INSERT clause.

• Enclose character and date values within single quotation
marks.

INSERT INTO departments(department_id,
department_name, manager_id, location_id)

VALUES (70, 'Public Relations', 100, 1700);

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 E

ga
bi

 S
ol

ut
io

ns
 u

se
 o

nl
y

TH
ES

E
eK

IT
 M

AT
ER

IA
LS

 A
R

E
FO

R
 Y

O
U

R
 U

SE
 IN

 T
H

IS
 C

LA
SS

R
O

O
M

 O
N

LY
.

C
O

PY
IN

G
 e

KI
T

M
AT

ER
IA

LS
 F

R
O

M
 T

H
IS

 C
O

M
PU

TE
R

 IS
 S

TR
IC

TL
Y

PR
O

H
IB

IT
ED

Be sure that you can use null values in the targeted column by verifying the Null status with
the DESCRIBE command.

The Oracle server automatically enforces all data types, data ranges, and data integrity
constraints. Any column that is not listed explicitly obtains a null value in the new row unless
we have default values for the missing columns that are used.

Common errors that can occur during user input are checked in the following order:
• Mandatory value missing for a NOT NULL column
• Duplicate value violating any unique or primary key constraint
• Any value violating a CHECK constraint
• Referential integrity maintained for foreign key constraint
• Data type mismatches or values too wide to fit in column

Note: Use of the column list is recommended because it makes the INSERT statement more
readable and reliable, or less prone to mistakes.

Method Description

Implicit Omit the column from the column list.

Explicit Specify the NULL keyword in the VALUES list;
specify the empty string ('') in the VALUES list for character strings and dates.

Oracle Database 12c: SQL Workshop I 10 - 8

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

Inserting Rows with Null Values

• Implicit method: Omit the column from the
column list.

• Explicit method: Specify the NULL keyword in the VALUES
clause.

INSERT INTO departments
VALUES (100, 'Finance', NULL, NULL);

INSERT INTO departments (department_id,
department_name)

VALUES (30, 'Purchasing');

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 E

ga
bi

 S
ol

ut
io

ns
 u

se
 o

nl
y

TH
ES

E
eK

IT
 M

AT
ER

IA
LS

 A
R

E
FO

R
 Y

O
U

R
 U

SE
 IN

 T
H

IS
 C

LA
SS

R
O

O
M

 O
N

LY
.

C
O

PY
IN

G
 e

KI
T

M
AT

ER
IA

LS
 F

R
O

M
 T

H
IS

 C
O

M
PU

TE
R

 IS
 S

TR
IC

TL
Y

PR
O

H
IB

IT
ED

You can use functions to enter special values in your table.

The slide example records information for employee Popp in the EMPLOYEES table. It supplies
the current date and time in the HIRE_DATE column. It uses the SYSDATE function that
returns the current date and time of the database server. You may also use the
CURRENT_DATE function to get the current date in the session time zone. You can also use
the USER function when inserting rows in a table. The USER function records the current
username.

Confirming Additions to the Table
SELECT employee_id, last_name, job_id, hire_date, commission_pct

FROM employees

WHERE employee_id = 113;

Note: The hire date may vary from the screenshot and it will fetch data as per the data insert
date.

Oracle Database 12c: SQL Workshop I 10 - 9

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

Inserting Special Values

The SYSDATE function records the current date and time.

INSERT INTO employees (employee_id,
first_name, last_name,
email, phone_number,
hire_date, job_id, salary,
commission_pct, manager_id,
department_id)

VALUES (113,
'Louis', 'Popp',
'LPOPP', '515.124.4567',
SYSDATE, 'AC_ACCOUNT', 6900,
NULL, 205, 110);

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 E

ga
bi

 S
ol

ut
io

ns
 u

se
 o

nl
y

TH
ES

E
eK

IT
 M

AT
ER

IA
LS

 A
R

E
FO

R
 Y

O
U

R
 U

SE
 IN

 T
H

IS
 C

LA
SS

R
O

O
M

 O
N

LY
.

C
O

PY
IN

G
 e

KI
T

M
AT

ER
IA

LS
 F

R
O

M
 T

H
IS

 C
O

M
PU

TE
R

 IS
 S

TR
IC

TL
Y

PR
O

H
IB

IT
ED

The DD-MON-RR format is generally used to insert a date value. With the RR format, the
system provides the correct century automatically.

You may also supply the date value in the DD-MON-YYYY format. This is recommended
because it clearly specifies the century and does not depend on the internal RR format logic of
specifying the correct century.

If a date must be entered in a format other than the default format (for example, with another
century or a specific time), you must use the TO_DATE function.

The example in the slide records information for employee Raphealy in the EMPLOYEES table.
It sets the HIRE_DATE column to be February 3, 2003.

Oracle Database 12c: SQL Workshop I 10 - 10

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

Inserting Specific Date and Time Values

• Add a new employee.

• Verify your addition.

INSERT INTO employees
VALUES (114,

'Den', 'Raphealy',
'DRAPHEAL', '515.127.4561',
TO_DATE('FEB 3, 2003', 'MON DD, YYYY'),
'SA_REP', 11000, 0.2, 100, 60);

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 E

ga
bi

 S
ol

ut
io

ns
 u

se
 o

nl
y

TH
ES

E
eK

IT
 M

AT
ER

IA
LS

 A
R

E
FO

R
 Y

O
U

R
 U

SE
 IN

 T
H

IS
 C

LA
SS

R
O

O
M

 O
N

LY
.

C
O

PY
IN

G
 e

KI
T

M
AT

ER
IA

LS
 F

R
O

M
 T

H
IS

 C
O

M
PU

TE
R

 IS
 S

TR
IC

TL
Y

PR
O

H
IB

IT
ED

You can save commands with substitution variables to a file and execute the commands in
the file. The example in the slide records information for a department in the DEPARTMENTS
table.

Run the script file and you are prompted for input for each of the ampersand (&) substitution
variables. After entering a value for the substitution variable, click the OK button. The values
that you input are then substituted into the statement. This enables you to run the same script
file over and over, but supply a different set of values each time you run it.

Oracle Database 12c: SQL Workshop I 10 - 11

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

INSERT INTO departments

(department_id, department_name, location_id)

VALUES (&department_id, '&department_name',&location);

Creating a Script

• Use the & substitution in a SQL statement to prompt for
values.

• & is a placeholder for the variable value.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 E

ga
bi

 S
ol

ut
io

ns
 u

se
 o

nl
y

TH
ES

E
eK

IT
 M

AT
ER

IA
LS

 A
R

E
FO

R
 Y

O
U

R
 U

SE
 IN

 T
H

IS
 C

LA
SS

R
O

O
M

 O
N

LY
.

C
O

PY
IN

G
 e

KI
T

M
AT

ER
IA

LS
 F

R
O

M
 T

H
IS

 C
O

M
PU

TE
R

 IS
 S

TR
IC

TL
Y

PR
O

H
IB

IT
ED

You can use the INSERT statement to add rows to a table where the values are derived from
existing tables. In the example in the slide, for the INSERT INTO statement to work, you must
have already created the sales_reps table using the CREATE TABLE statement. CREATE
TABLE is discussed in the lesson titled “ Introduction to "Introduction to Data Definition
Language.”
In place of the VALUES clause, you use a subquery.

Syntax
INSERT INTO table [column (, column)] subquery;

In the syntax:
table Is the name of the table

column Is the name of the column in the table to populate

subquery Is the subquery that returns rows to the table
The number of columns and their data types in the column list of the INSERT clause must
match the number of values and their data types in the subquery. Zero or more rows are
added depending on the number of rows returned by the subquery. To create a copy of the
rows of a table, use SELECT * in the subquery:

INSERT INTO copy_emp
SELECT *
FROM employees;

Oracle Database 12c: SQL Workshop I 10 - 12

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

Copying Rows
from Another Table

• Write your INSERT statement with a subquery:

• Do not use the VALUES clause.

• Match the number of columns in the INSERT clause to
those in the subquery.

• Inserts all the rows returned by the subquery in the table,
sales_reps.

INSERT INTO sales_reps(id, name, salary, commission_pct)
SELECT employee_id, last_name, salary, commission_pct
FROM employees
WHERE job_id LIKE '%REP%';

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 E

ga
bi

 S
ol

ut
io

ns
 u

se
 o

nl
y

TH
ES

E
eK

IT
 M

AT
ER

IA
LS

 A
R

E
FO

R
 Y

O
U

R
 U

SE
 IN

 T
H

IS
 C

LA
SS

R
O

O
M

 O
N

LY
.

C
O

PY
IN

G
 e

KI
T

M
AT

ER
IA

LS
 F

R
O

M
 T

H
IS

 C
O

M
PU

TE
R

 IS
 S

TR
IC

TL
Y

PR
O

H
IB

IT
ED

Oracle Database 12c: SQL Workshop I 10 - 13

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

Lesson Agenda

• Adding new rows in a table
– INSERT statement

• Changing data in a table
– UPDATE statement

• Removing rows from a table:
– DELETE statement

– TRUNCATE statement

• Database transactions control using COMMIT, ROLLBACK,
and SAVEPOINT

• Read consistency
• FOR UPDATE clause in a SELECT statement

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 E

ga
bi

 S
ol

ut
io

ns
 u

se
 o

nl
y

TH
ES

E
eK

IT
 M

AT
ER

IA
LS

 A
R

E
FO

R
 Y

O
U

R
 U

SE
 IN

 T
H

IS
 C

LA
SS

R
O

O
M

 O
N

LY
.

C
O

PY
IN

G
 e

KI
T

M
AT

ER
IA

LS
 F

R
O

M
 T

H
IS

 C
O

M
PU

TE
R

 IS
 S

TR
IC

TL
Y

PR
O

H
IB

IT
ED

The slide illustrates changing the department number for employees in department 60 to
department 80.

Oracle Database 12c: SQL Workshop I 10 - 14

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

Changing Data in a Table

EMPLOYEES

Update rows in the EMPLOYEES table:

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 E

ga
bi

 S
ol

ut
io

ns
 u

se
 o

nl
y

TH
ES

E
eK

IT
 M

AT
ER

IA
LS

 A
R

E
FO

R
 Y

O
U

R
 U

SE
 IN

 T
H

IS
 C

LA
SS

R
O

O
M

 O
N

LY
.

C
O

PY
IN

G
 e

KI
T

M
AT

ER
IA

LS
 F

R
O

M
 T

H
IS

 C
O

M
PU

TE
R

 IS
 S

TR
IC

TL
Y

PR
O

H
IB

IT
ED

You can modify the existing values in a table by using the UPDATE statement.

In the syntax:

table Is the name of the table

column Is the name of the column in the table to populate

value Is the corresponding value or subquery for the column

condition Identifies the rows to be updated and is composed of column names,
expressions, constants, subqueries, and comparison operators

Confirm the update operation by querying the table to display the updated rows.

For more information, see the section on “UPDATE” in Oracle Database SQL Language
Reference for 12c database.

Note: In general, use the primary key column in the WHERE clause to identify a single row for
update. Using other columns can unexpectedly cause several rows to be updated. For
example, identifying a single row in the EMPLOYEES table by name is dangerous, because
more than one employee may have the same name.

Oracle Database 12c: SQL Workshop I 10 - 15

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

UPDATE Statement Syntax

• Modify existing values in a table with the UPDATE
statement:

• Update more than one row at a time (if required).

UPDATE table
SET column = value [, column = value, ...]
[WHERE condition];

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 E

ga
bi

 S
ol

ut
io

ns
 u

se
 o

nl
y

TH
ES

E
eK

IT
 M

AT
ER

IA
LS

 A
R

E
FO

R
 Y

O
U

R
 U

SE
 IN

 T
H

IS
 C

LA
SS

R
O

O
M

 O
N

LY
.

C
O

PY
IN

G
 e

KI
T

M
AT

ER
IA

LS
 F

R
O

M
 T

H
IS

 C
O

M
PU

TE
R

 IS
 S

TR
IC

TL
Y

PR
O

H
IB

IT
ED

The UPDATE statement modifies the values of a specific row or rows if the WHERE clause is
specified. The example in the slide shows the transfer of employee 113(Popp) to department 50.

If you omit the WHERE clause, values for all the rows in the table are modified. Examine the
updated rows in the COPY_EMP table.

SELECT last_name, department_id
FROM copy_emp;

For example, an employee who was an SA_REP has now changed his job to an IT_PROG.
Therefore, his JOB_ID needs to be updated and the commission field needs to be set to NULL.

UPDATE employees
SET job_id = 'IT_PROG', commission_pct = NULL
WHERE employee_id = 114;

Note: The COPY_EMP table has the same data as the EMPLOYEES table.

…

Oracle Database 12c: SQL Workshop I 10 - 16

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

Updating Rows in a Table

• Values for a specific row or rows are modified if you
specify the WHERE clause:

• Values for all the rows in the table are modified if you omit
the WHERE clause:

• Specify SET column_name= NULL to update a column
value to NULL.

UPDATE employees
SET department_id = 50
WHERE employee_id = 113;

UPDATE copy_emp
SET department_id = 110;

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 E

ga
bi

 S
ol

ut
io

ns
 u

se
 o

nl
y

TH
ES

E
eK

IT
 M

AT
ER

IA
LS

 A
R

E
FO

R
 Y

O
U

R
 U

SE
 IN

 T
H

IS
 C

LA
SS

R
O

O
M

 O
N

LY
.

C
O

PY
IN

G
 e

KI
T

M
AT

ER
IA

LS
 F

R
O

M
 T

H
IS

 C
O

M
PU

TE
R

 IS
 S

TR
IC

TL
Y

PR
O

H
IB

IT
ED

Oracle Database 12c: SQL Workshop I 10 - 17

You can update multiple columns in the SET clause of an UPDATE statement by writing
multiple subqueries. The syntax is as follows:

UPDATE table
SET column =

(SELECT column
FROM table
WHERE condition)

[,
column =

(SELECT column
FROM table
WHERE condition)]

[WHERE condition] ;

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

Updating Two Columns with a Subquery

Update employee 113’s job and salary to match those of
employee 205.

UPDATE employees
SET (job_id,salary) = (SELECT job_id,salary

FROM employees
WHERE employee_id = 205)

WHERE employee_id = 103;

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 E

ga
bi

 S
ol

ut
io

ns
 u

se
 o

nl
y

TH
ES

E
eK

IT
 M

AT
ER

IA
LS

 A
R

E
FO

R
 Y

O
U

R
 U

SE
 IN

 T
H

IS
 C

LA
SS

R
O

O
M

 O
N

LY
.

C
O

PY
IN

G
 e

KI
T

M
AT

ER
IA

LS
 F

R
O

M
 T

H
IS

 C
O

M
PU

TE
R

 IS
 S

TR
IC

TL
Y

PR
O

H
IB

IT
ED

You can use the subqueries in the UPDATE statements to update values in a table. The
example in the slide updates the COPY_EMP table based on the values from the EMPLOYEES
table. It changes the department number of all employees with employee 200’s job ID to
employee 100’s current department number.

Oracle Database 12c: SQL Workshop I 10 - 18

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

UPDATE copy_emp
SET department_id = (SELECT department_id

FROM employees
WHERE employee_id = 100)

WHERE job_id = (SELECT job_id
FROM employees
WHERE employee_id = 200);

Updating Rows Based on Another Table

Use the subqueries in the UPDATE statements to update row
values in a table based on values from another table:

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 E

ga
bi

 S
ol

ut
io

ns
 u

se
 o

nl
y

TH
ES

E
eK

IT
 M

AT
ER

IA
LS

 A
R

E
FO

R
 Y

O
U

R
 U

SE
 IN

 T
H

IS
 C

LA
SS

R
O

O
M

 O
N

LY
.

C
O

PY
IN

G
 e

KI
T

M
AT

ER
IA

LS
 F

R
O

M
 T

H
IS

 C
O

M
PU

TE
R

 IS
 S

TR
IC

TL
Y

PR
O

H
IB

IT
ED

Oracle Database 12c: SQL Workshop I 10 - 19

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

Lesson Agenda

• Adding new rows in a table
– INSERT statement

• Changing data in a table
– UPDATE statement

• Removing rows from a table:
– DELETE statement

– TRUNCATE statement

• Database transactions control using COMMIT, ROLLBACK,
and SAVEPOINT

• Read consistency
• FOR UPDATE clause in a SELECT statement

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 E

ga
bi

 S
ol

ut
io

ns
 u

se
 o

nl
y

TH
ES

E
eK

IT
 M

AT
ER

IA
LS

 A
R

E
FO

R
 Y

O
U

R
 U

SE
 IN

 T
H

IS
 C

LA
SS

R
O

O
M

 O
N

LY
.

C
O

PY
IN

G
 e

KI
T

M
AT

ER
IA

LS
 F

R
O

M
 T

H
IS

 C
O

M
PU

TE
R

 IS
 S

TR
IC

TL
Y

PR
O

H
IB

IT
ED

The Contracting department has been removed from the DEPARTMENTS table (assuming no
constraints on the DEPARTMENTS table are violated), as shown by the graphic in the slide.

Oracle Database 12c: SQL Workshop I 10 - 20

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

Delete a row from the DEPARTMENTS table:

Removing a Row from a Table

DEPARTMENTS

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 E

ga
bi

 S
ol

ut
io

ns
 u

se
 o

nl
y

TH
ES

E
eK

IT
 M

AT
ER

IA
LS

 A
R

E
FO

R
 Y

O
U

R
 U

SE
 IN

 T
H

IS
 C

LA
SS

R
O

O
M

 O
N

LY
.

C
O

PY
IN

G
 e

KI
T

M
AT

ER
IA

LS
 F

R
O

M
 T

H
IS

 C
O

M
PU

TE
R

 IS
 S

TR
IC

TL
Y

PR
O

H
IB

IT
ED

You can remove existing rows from a table by using the DELETE statement.

In the syntax:

table Is the name of the table

condition Identifies the rows to be deleted, and is composed of column names,
expressions, constants, subqueries, and comparison operators

Note: If no rows are deleted, the message “0 rows deleted” is returned (on the Script Output
tab in SQL Developer).

For more information, see the section on “DELETE” in Oracle Database SQL Language
Reference for 12c database.

Oracle Database 12c: SQL Workshop I 10 - 21

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

DELETE Statement

You can remove existing rows from a table by using the
DELETE statement:

DELETE [FROM] table
[WHERE condition];

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 E

ga
bi

 S
ol

ut
io

ns
 u

se
 o

nl
y

TH
ES

E
eK

IT
 M

AT
ER

IA
LS

 A
R

E
FO

R
 Y

O
U

R
 U

SE
 IN

 T
H

IS
 C

LA
SS

R
O

O
M

 O
N

LY
.

C
O

PY
IN

G
 e

KI
T

M
AT

ER
IA

LS
 F

R
O

M
 T

H
IS

 C
O

M
PU

TE
R

 IS
 S

TR
IC

TL
Y

PR
O

H
IB

IT
ED

You can delete specific rows by specifying the WHERE clause in the DELETE statement. The
first example in the slide deletes the Accounting department from the DEPARTMENTS table.
You can confirm the delete operation by displaying the deleted rows using the SELECT
statement.

SELECT *
FROM departments
WHERE department_name = 'Finance';

However, if you omit the WHERE clause, all rows in the table are deleted. The second example
in the slide deletes all rows from the COPY_EMP table, because no WHERE clause was
specified.

Example

Remove rows identified in the WHERE clause.
DELETE FROM employees WHERE employee_id = 114;

DELETE FROM departments WHERE department_id IN (30, 40);

Oracle Database 12c: SQL Workshop I 10 - 22

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

Deleting Rows from a Table

• Specific rows are deleted if you specify the WHERE clause:

• All rows in the table are deleted if you omit the WHERE
clause:

DELETE FROM departments
WHERE department_name = 'Finance';

DELETE FROM copy_emp;

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 E

ga
bi

 S
ol

ut
io

ns
 u

se
 o

nl
y

TH
ES

E
eK

IT
 M

AT
ER

IA
LS

 A
R

E
FO

R
 Y

O
U

R
 U

SE
 IN

 T
H

IS
 C

LA
SS

R
O

O
M

 O
N

LY
.

C
O

PY
IN

G
 e

KI
T

M
AT

ER
IA

LS
 F

R
O

M
 T

H
IS

 C
O

M
PU

TE
R

 IS
 S

TR
IC

TL
Y

PR
O

H
IB

IT
ED

You can use the subqueries to delete rows from a table based on values from another table.
The example in the slide deletes all the employees in a department, where the department
name contains the string Public.

The subquery searches the DEPARTMENTS table to find the department number based on the
department name containing the string Public. The subquery then feeds the department
number to the main query, which deletes rows of data from the EMPLOYEES table based on
this department number.

Oracle Database 12c: SQL Workshop I 10 - 23

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

Deleting Rows Based
on Another Table

Use the subqueries in the DELETE statements to remove rows
from a table based on values from another table:

DELETE FROM employees
WHERE department_id IN

(SELECT department_id
FROM departments
WHERE department_name

LIKE '%Public%');

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 E

ga
bi

 S
ol

ut
io

ns
 u

se
 o

nl
y

TH
ES

E
eK

IT
 M

AT
ER

IA
LS

 A
R

E
FO

R
 Y

O
U

R
 U

SE
 IN

 T
H

IS
 C

LA
SS

R
O

O
M

 O
N

LY
.

C
O

PY
IN

G
 e

KI
T

M
AT

ER
IA

LS
 F

R
O

M
 T

H
IS

 C
O

M
PU

TE
R

 IS
 S

TR
IC

TL
Y

PR
O

H
IB

IT
ED

A more efficient method of emptying a table is by using the TRUNCATE statement.
You can use the TRUNCATE statement to quickly remove all rows from a table or cluster.
Removing rows with the TRUNCATE statement is faster than removing them with the DELETE
statement for the following reasons:

• The TRUNCATE statement is a data definition language (DDL) statement and generates
no rollback information. Rollback information is covered later in this lesson.

• Truncating a table does not fire the delete triggers of the table.

If the table is the parent of a referential integrity constraint, you cannot truncate the table. You
need to disable the constraint before issuing the TRUNCATE statement. Disabling constraints
is covered in the lesson titled “Introduction to DDL Statements.”

Oracle Database 12c: SQL Workshop I 10 - 24

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

TRUNCATE Statement

• Removes all rows from a table, leaving the table empty
and the table structure intact

• Is a data definition language (DDL) statement rather than a
DML statement; cannot easily be undone

• Syntax:

• Example:

TRUNCATE TABLE table_name;

TRUNCATE TABLE copy_emp;

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 E

ga
bi

 S
ol

ut
io

ns
 u

se
 o

nl
y

TH
ES

E
eK

IT
 M

AT
ER

IA
LS

 A
R

E
FO

R
 Y

O
U

R
 U

SE
 IN

 T
H

IS
 C

LA
SS

R
O

O
M

 O
N

LY
.

C
O

PY
IN

G
 e

KI
T

M
AT

ER
IA

LS
 F

R
O

M
 T

H
IS

 C
O

M
PU

TE
R

 IS
 S

TR
IC

TL
Y

PR
O

H
IB

IT
ED

Oracle Database 12c: SQL Workshop I 10 - 25

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

Lesson Agenda

• Adding new rows in a table
– INSERT statement

• Changing data in a table
– UPDATE statement

• Removing rows from a table:
– DELETE statement

– TRUNCATE statement

• Database transactions control using COMMIT, ROLLBACK,
and SAVEPOINT

• Read consistency
• FOR UPDATE clause in a SELECT statement

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 E

ga
bi

 S
ol

ut
io

ns
 u

se
 o

nl
y

TH
ES

E
eK

IT
 M

AT
ER

IA
LS

 A
R

E
FO

R
 Y

O
U

R
 U

SE
 IN

 T
H

IS
 C

LA
SS

R
O

O
M

 O
N

LY
.

C
O

PY
IN

G
 e

KI
T

M
AT

ER
IA

LS
 F

R
O

M
 T

H
IS

 C
O

M
PU

TE
R

 IS
 S

TR
IC

TL
Y

PR
O

H
IB

IT
ED

The Oracle server ensures data consistency based on transactions. Transactions give you
more flexibility and control when changing data, and they ensure data consistency in the
event of user process failure or system failure.

Transactions consist of DML statements that constitute one consistent change to the data. For
example, a transfer of funds between two accounts should include the debit in one account
and the credit to another account of the same amount. Both actions should either fail or
succeed together; the credit should not be committed without the debit.

Transaction Types

Type Description

Data manipulation
language (DML)

Consists of any number of DML statements that the Oracle
server treats as a single entity or a logical unit of work

Data definition
language (DDL)

Consists of only one DDL statement

Data control language
(DCL)

Consists of only one DCL statement

Oracle Database 12c: SQL Workshop I 10 - 26

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

Database Transactions

A database transaction consists of one of the following:

• DML statements that constitute one consistent change to
the data

• One DDL statement

• One data control language (DCL) statement

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 E

ga
bi

 S
ol

ut
io

ns
 u

se
 o

nl
y

TH
ES

E
eK

IT
 M

AT
ER

IA
LS

 A
R

E
FO

R
 Y

O
U

R
 U

SE
 IN

 T
H

IS
 C

LA
SS

R
O

O
M

 O
N

LY
.

C
O

PY
IN

G
 e

KI
T

M
AT

ER
IA

LS
 F

R
O

M
 T

H
IS

 C
O

M
PU

TE
R

 IS
 S

TR
IC

TL
Y

PR
O

H
IB

IT
ED

When does a database transaction start and end?

A transaction begins when the first DML statement is encountered and ends when one of the
following occurs:

• A COMMIT or ROLLBACK statement is issued.

• A DDL statement, such as CREATE, is issued.

• A DCL statement is issued.

• The user exits SQL Developer or SQL*Plus.

• A machine fails or the system crashes.

After one transaction ends, the next executable SQL statement automatically starts the next
transaction.

A DDL statement or a DCL statement is automatically committed and, therefore, implicitly
ends a transaction.

Oracle Database 12c: SQL Workshop I 10 - 27

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

Database Transactions: Start and End

• Begin when the first DML SQL statement is executed.

• End with one of the following events:
– A COMMIT or ROLLBACK statement is issued.

– A DDL or DCL statement executes (automatic commit).

– The user exits SQL Developer or SQL*Plus.

– The system crashes.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 E

ga
bi

 S
ol

ut
io

ns
 u

se
 o

nl
y

TH
ES

E
eK

IT
 M

AT
ER

IA
LS

 A
R

E
FO

R
 Y

O
U

R
 U

SE
 IN

 T
H

IS
 C

LA
SS

R
O

O
M

 O
N

LY
.

C
O

PY
IN

G
 e

KI
T

M
AT

ER
IA

LS
 F

R
O

M
 T

H
IS

 C
O

M
PU

TE
R

 IS
 S

TR
IC

TL
Y

PR
O

H
IB

IT
ED

With the COMMIT and ROLLBACK statements, you have control over making changes to the
data permanent.

Oracle Database 12c: SQL Workshop I 10 - 28

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

Advantages of COMMIT
and ROLLBACK Statements

With COMMIT and ROLLBACK statements, you can:

• Ensure data consistency

• Preview data changes before making changes permanent

• Group logically related operations

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 E

ga
bi

 S
ol

ut
io

ns
 u

se
 o

nl
y

TH
ES

E
eK

IT
 M

AT
ER

IA
LS

 A
R

E
FO

R
 Y

O
U

R
 U

SE
 IN

 T
H

IS
 C

LA
SS

R
O

O
M

 O
N

LY
.

C
O

PY
IN

G
 e

KI
T

M
AT

ER
IA

LS
 F

R
O

M
 T

H
IS

 C
O

M
PU

TE
R

 IS
 S

TR
IC

TL
Y

PR
O

H
IB

IT
ED

You can control the logic of transactions by using the COMMIT, SAVEPOINT, and ROLLBACK
statements.

Note: You cannot COMMIT to a SAVEPOINT. SAVEPOINT is not ANSI-standard SQL.

Statement Description

COMMIT

COMMIT ends the current transaction by making all pending
data changes permanent.

SAVEPOINT name SAVEPOINT name marks a savepoint within the current
transaction.

ROLLBACK ROLLBACK ends the current transaction by discarding all
pending data changes.

ROLLBACK TO
SAVEPOINT name

ROLLBACK TO SAVEPOINT rolls back the current transaction
to the specified savepoint, thereby discarding any changes
and/or savepoints that were created after the savepoint to
which you are rolling back. If you omit the TO SAVEPOINT
clause, the ROLLBACK statement rolls back the entire
transaction. Because savepoints are logical, there is no way
to list the savepoints that you have created.

Oracle Database 12c: SQL Workshop I 10 - 29

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

Explicit Transaction Control Statements

SAVEPOINT B

SAVEPOINT A

DELETE

INSERT

UPDATE

INSERT

COMMITTime

Transaction

ROLLBACK
to SAVEPOINT B

ROLLBACK
to SAVEPOINT A

ROLLBACK

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 E

ga
bi

 S
ol

ut
io

ns
 u

se
 o

nl
y

TH
ES

E
eK

IT
 M

AT
ER

IA
LS

 A
R

E
FO

R
 Y

O
U

R
 U

SE
 IN

 T
H

IS
 C

LA
SS

R
O

O
M

 O
N

LY
.

C
O

PY
IN

G
 e

KI
T

M
AT

ER
IA

LS
 F

R
O

M
 T

H
IS

 C
O

M
PU

TE
R

 IS
 S

TR
IC

TL
Y

PR
O

H
IB

IT
ED

You can create a marker in the current transaction by using the SAVEPOINT statement, which
divides the transaction into smaller sections. You can then discard pending changes up to that
marker by using the ROLLBACK TO SAVEPOINT statement.

Note that if you create a second savepoint with the same name as an earlier savepoint, the
earlier savepoint is deleted.

Oracle Database 12c: SQL Workshop I 10 - 30

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

UPDATE...
SAVEPOINT update_done;

INSERT...
ROLLBACK TO update_done;

Rolling Back Changes to a Marker

• Create a marker in the current transaction by using the
SAVEPOINT statement.

• Roll back to that marker by using the ROLLBACK TO
SAVEPOINT statement.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 E

ga
bi

 S
ol

ut
io

ns
 u

se
 o

nl
y

TH
ES

E
eK

IT
 M

AT
ER

IA
LS

 A
R

E
FO

R
 Y

O
U

R
 U

SE
 IN

 T
H

IS
 C

LA
SS

R
O

O
M

 O
N

LY
.

C
O

PY
IN

G
 e

KI
T

M
AT

ER
IA

LS
 F

R
O

M
 T

H
IS

 C
O

M
PU

TE
R

 IS
 S

TR
IC

TL
Y

PR
O

H
IB

IT
ED

Note: In SQL*Plus, the AUTOCOMMIT command can be toggled ON or OFF. If set to ON, each
individual DML statement is committed as soon as it is executed. You cannot roll back the
changes. If set to OFF, the COMMIT statement can still be issued explicitly. Also, the COMMIT
statement is issued when a DDL statement is issued or when you exit SQL*Plus. The SET
AUTOCOMMIT ON/OFF command is skipped in SQL Developer. DML is committed on a
normal exit from SQL Developer only if you have the Autocommit preference enabled. To
enable Autocommit, perform the following:

• In the Tools menu, select Preferences. In the Preferences dialog box, expand Database
and select Worksheet Parameters.

• In the right pane, select the “Autocommit in SQL Worksheet” option. Click OK.

Status Circumstances
Automatic commit DDL statement or DCL statement issued

SQL Developer or SQL*Plus exited normally, without
explicitly issuing COMMIT or ROLLBACK commands

Automatic rollback Abnormal termination of SQL Developer or SQL*Plus
or system failure

Oracle Database 12c: SQL Workshop I 10 - 31

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

Implicit Transaction Processing

• An automatic commit occurs in the following
circumstances:
– A DDL statement issued

– A DCL statement issued

– Normal exit from SQL Developer or SQL*Plus, without
explicitly issuing COMMIT or ROLLBACK statements

• An automatic rollback occurs when there is an abnormal
termination of SQL Developer or SQL*Plus or a system
failure.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 E

ga
bi

 S
ol

ut
io

ns
 u

se
 o

nl
y

TH
ES

E
eK

IT
 M

AT
ER

IA
LS

 A
R

E
FO

R
 Y

O
U

R
 U

SE
 IN

 T
H

IS
 C

LA
SS

R
O

O
M

 O
N

LY
.

C
O

PY
IN

G
 e

KI
T

M
AT

ER
IA

LS
 F

R
O

M
 T

H
IS

 C
O

M
PU

TE
R

 IS
 S

TR
IC

TL
Y

PR
O

H
IB

IT
ED

Oracle Database 12c: SQL Workshop I 10 - 32

System Failures

When a transaction is interrupted by a system failure, the entire transaction is automatically
rolled back. This prevents the error from causing unwanted changes to the data and returns
the tables to the state at the time of the last commit. In this way, the Oracle server protects the
integrity of the tables.

In SQL Developer, a normal exit from the session is accomplished by selecting Exit from the
File menu. In SQL*Plus, a normal exit is accomplished by entering the EXIT command at the
prompt. Closing the window is interpreted as an abnormal exit.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 E

ga
bi

 S
ol

ut
io

ns
 u

se
 o

nl
y

TH
ES

E
eK

IT
 M

AT
ER

IA
LS

 A
R

E
FO

R
 Y

O
U

R
 U

SE
 IN

 T
H

IS
 C

LA
SS

R
O

O
M

 O
N

LY
.

C
O

PY
IN

G
 e

KI
T

M
AT

ER
IA

LS
 F

R
O

M
 T

H
IS

 C
O

M
PU

TE
R

 IS
 S

TR
IC

TL
Y

PR
O

H
IB

IT
ED

Every data change made during the transaction is temporary until the transaction is
committed.

The state of the data before COMMIT or ROLLBACK statements are issued can be described
as follows:

• Data manipulation operations primarily affect the database buffer; therefore, the
previous state of the data can be recovered.

• The current session can review the results of the data manipulation operations by
querying the tables.

• Other sessions cannot view the results of the data manipulation operations made by the
current session. The Oracle server institutes read consistency to ensure that each
session sees data as it existed at the last commit.

• The affected rows are locked; other session cannot change the data in the affected
rows.

Oracle Database 12c: SQL Workshop I 10 - 33

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

State of the Data Before COMMIT or ROLLBACK

• The previous state of the data can be recovered.

• The current session can review the results of the DML
operations by using the SELECT statement.

• Other sessions cannot view the results of the DML
statements issued by the current session.

• The affected rows are locked; other session cannot
change the data in the affected rows.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 E

ga
bi

 S
ol

ut
io

ns
 u

se
 o

nl
y

TH
ES

E
eK

IT
 M

AT
ER

IA
LS

 A
R

E
FO

R
 Y

O
U

R
 U

SE
 IN

 T
H

IS
 C

LA
SS

R
O

O
M

 O
N

LY
.

C
O

PY
IN

G
 e

KI
T

M
AT

ER
IA

LS
 F

R
O

M
 T

H
IS

 C
O

M
PU

TE
R

 IS
 S

TR
IC

TL
Y

PR
O

H
IB

IT
ED

Make all pending changes permanent by using the COMMIT statement. Here is what happens
after a COMMIT statement:

• Data changes are written to the database.

• The previous state of the data is no longer available with normal SQL queries.

• All sessions can view the results of the transaction.

• The locks on the affected rows are released; the rows are now available for other
sessions to perform new data changes.

• All savepoints are erased.

Oracle Database 12c: SQL Workshop I 10 - 34

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

State of the Data After COMMIT

• Data changes are saved in the database.

• The previous state of the data is overwritten.

• All sessions can view the results.

• Locks on the affected rows are released; those rows are
available for other sessions to manipulate.

• All savepoints are erased.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 E

ga
bi

 S
ol

ut
io

ns
 u

se
 o

nl
y

TH
ES

E
eK

IT
 M

AT
ER

IA
LS

 A
R

E
FO

R
 Y

O
U

R
 U

SE
 IN

 T
H

IS
 C

LA
SS

R
O

O
M

 O
N

LY
.

C
O

PY
IN

G
 e

KI
T

M
AT

ER
IA

LS
 F

R
O

M
 T

H
IS

 C
O

M
PU

TE
R

 IS
 S

TR
IC

TL
Y

PR
O

H
IB

IT
ED

In the example in the slide, a row is deleted from the EMPLOYEES table and a new row is
inserted into the DEPARTMENTS table. The changes are saved by issuing the COMMIT
statement.

Example

Remove departments 290 and 300 in the DEPARTMENTS table and update a row in the
EMPLOYEES table. Save the data change.

DELETE FROM departments
WHERE department_id IN (290, 300);

UPDATE employees
SET department_id = 80
WHERE employee_id = 206;

COMMIT;

Oracle Database 12c: SQL Workshop I 10 - 35

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

COMMIT;

Committing Data

• Make the changes:

• Commit the changes:

DELETE FROM EMPLOYEES
WHERE employee_id=113;

INSERT INTO departments
VALUES (290, 'Corporate Tax', NULL, 1700);

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 E

ga
bi

 S
ol

ut
io

ns
 u

se
 o

nl
y

TH
ES

E
eK

IT
 M

AT
ER

IA
LS

 A
R

E
FO

R
 Y

O
U

R
 U

SE
 IN

 T
H

IS
 C

LA
SS

R
O

O
M

 O
N

LY
.

C
O

PY
IN

G
 e

KI
T

M
AT

ER
IA

LS
 F

R
O

M
 T

H
IS

 C
O

M
PU

TE
R

 IS
 S

TR
IC

TL
Y

PR
O

H
IB

IT
ED

Discard all pending changes by using the ROLLBACK statement, which results in the following:

• Data changes are undone.

• The previous state of the data is restored.

• Locks on the affected rows are released.

Oracle Database 12c: SQL Workshop I 10 - 36

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

DELETE FROM copy_emp;
ROLLBACK ;

State of the Data After ROLLBACK

Discard all pending changes by using the ROLLBACK
statement:

• Data changes are undone.

• Previous state of the data is restored.

• Locks on the affected rows are released.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 E

ga
bi

 S
ol

ut
io

ns
 u

se
 o

nl
y

TH
ES

E
eK

IT
 M

AT
ER

IA
LS

 A
R

E
FO

R
 Y

O
U

R
 U

SE
 IN

 T
H

IS
 C

LA
SS

R
O

O
M

 O
N

LY
.

C
O

PY
IN

G
 e

KI
T

M
AT

ER
IA

LS
 F

R
O

M
 T

H
IS

 C
O

M
PU

TE
R

 IS
 S

TR
IC

TL
Y

PR
O

H
IB

IT
ED

While attempting to remove a record from the TEST table, you may accidentally empty the
table. However, you can correct the mistake, reissue a proper statement, and make the data
change permanent.

Oracle Database 12c: SQL Workshop I 10 - 37

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

State of the Data After ROLLBACK: Example

DELETE FROM test;
4 rows deleted.

ROLLBACK;
Rollback complete.

DELETE FROM test WHERE id = 100;
1 row deleted.

SELECT * FROM test WHERE id = 100;
No rows selected.

COMMIT;
Commit complete.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 E

ga
bi

 S
ol

ut
io

ns
 u

se
 o

nl
y

TH
ES

E
eK

IT
 M

AT
ER

IA
LS

 A
R

E
FO

R
 Y

O
U

R
 U

SE
 IN

 T
H

IS
 C

LA
SS

R
O

O
M

 O
N

LY
.

C
O

PY
IN

G
 e

KI
T

M
AT

ER
IA

LS
 F

R
O

M
 T

H
IS

 C
O

M
PU

TE
R

 IS
 S

TR
IC

TL
Y

PR
O

H
IB

IT
ED

A part of a transaction can be discarded through an implicit rollback if a statement execution
error is detected. If a single DML statement fails during execution of a transaction, its effect is
undone by a statement-level rollback, but the changes made by the previous DML statements
in the transaction are not discarded. They can be committed or rolled back explicitly by the
user.

The Oracle server issues an implicit commit before and after any DDL statement. So, even if
your DDL statement does not execute successfully, you cannot roll back the previous
statement because the server issued a commit.

Terminate your transactions explicitly by executing a COMMIT or ROLLBACK statement.

Oracle Database 12c: SQL Workshop I 10 - 38

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

Statement-Level Rollback

• If a single DML statement fails during execution, only that
statement is rolled back.

• The Oracle server implements an implicit savepoint.

• All other changes are retained.

• The user should terminate transactions explicitly by
executing a COMMIT or ROLLBACK statement.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 E

ga
bi

 S
ol

ut
io

ns
 u

se
 o

nl
y

TH
ES

E
eK

IT
 M

AT
ER

IA
LS

 A
R

E
FO

R
 Y

O
U

R
 U

SE
 IN

 T
H

IS
 C

LA
SS

R
O

O
M

 O
N

LY
.

C
O

PY
IN

G
 e

KI
T

M
AT

ER
IA

LS
 F

R
O

M
 T

H
IS

 C
O

M
PU

TE
R

 IS
 S

TR
IC

TL
Y

PR
O

H
IB

IT
ED

Oracle Database 12c: SQL Workshop I 10 - 39

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

Lesson Agenda

• Adding new rows in a table
– INSERT statement

• Changing data in a table
– UPDATE statement

• Removing rows from a table:
– DELETE statement

– TRUNCATE statement

• Database transactions control using COMMIT, ROLLBACK,
and SAVEPOINT

• Read consistency
• FOR UPDATE clause in a SELECT statement

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 E

ga
bi

 S
ol

ut
io

ns
 u

se
 o

nl
y

TH
ES

E
eK

IT
 M

AT
ER

IA
LS

 A
R

E
FO

R
 Y

O
U

R
 U

SE
 IN

 T
H

IS
 C

LA
SS

R
O

O
M

 O
N

LY
.

C
O

PY
IN

G
 e

KI
T

M
AT

ER
IA

LS
 F

R
O

M
 T

H
IS

 C
O

M
PU

TE
R

 IS
 S

TR
IC

TL
Y

PR
O

H
IB

IT
ED

Database users access the database in two ways:

• Read operations (SELECT statement)

• Write operations (INSERT, UPDATE, DELETE statements)

You need read consistency so that the following occur:

• The database reader and writer are ensured a consistent view of the data.

• Readers do not view data that is in the process of being changed.

• Writers are ensured that the changes to the database are done in a consistent manner.

• Changes made by one writer do not disrupt or conflict with the changes being made by
another writer.

The purpose of read consistency is to ensure that each user sees data as it existed at the last
commit, before a DML operation started.

Note: The same user can log in to different sessions. Each session maintains read
consistency in the manner described above, even if they are the same users.

Oracle Database 12c: SQL Workshop I 10 - 40

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

Read Consistency

• Read consistency guarantees a consistent view of the data
at all times.

• Changes made by one user do not conflict with the
changes made by another user.

• Read consistency ensures that, on the same data:
– Readers do not wait for writers

– Writers do not wait for readers

– Writers wait for writers

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 E

ga
bi

 S
ol

ut
io

ns
 u

se
 o

nl
y

TH
ES

E
eK

IT
 M

AT
ER

IA
LS

 A
R

E
FO

R
 Y

O
U

R
 U

SE
 IN

 T
H

IS
 C

LA
SS

R
O

O
M

 O
N

LY
.

C
O

PY
IN

G
 e

KI
T

M
AT

ER
IA

LS
 F

R
O

M
 T

H
IS

 C
O

M
PU

TE
R

 IS
 S

TR
IC

TL
Y

PR
O

H
IB

IT
ED

Read consistency is an automatic implementation. It keeps a partial copy of the database in
the undo segments. The read-consistent image is constructed from the committed data in the
table and the old data that is being changed and is not yet committed from the undo segment.

When an insert, update, or delete operation is made on the database, the Oracle server takes
a copy of the data before it is changed and writes it to an undo segment.
All readers, except the one who issued the change, see the database as it existed before the
changes started; they view the undo segment’s “snapshot” of the data.

Before the changes are committed to the database, only the user who is modifying the data
sees the database with the alterations. Everyone else sees the snapshot in the undo
segment. This guarantees that readers of the data read consistent data that is not currently
undergoing change.

When a DML statement is committed, the change made to the database becomes visible to
anyone issuing a SELECT statement after the commit is done. The space occupied by the old
data in the undo segment file is freed for reuse.

If the transaction is rolled back, the changes are undone:

• The original, older version of the data in the undo segment is written back to the table.

• All users see the database as it existed before the transaction began.

Oracle Database 12c: SQL Workshop I 10 - 41

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

Implementing Read Consistency

SELECT *
FROM userA.employees;

UPDATE employees
SET salary = 7000
WHERE last_name = 'Grant';

Data
blocks

Undo
segments

Changed
and unchanged
data

Before
change
(“old” data)

User A

User B

Read-
consistent
image

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 E

ga
bi

 S
ol

ut
io

ns
 u

se
 o

nl
y

TH
ES

E
eK

IT
 M

AT
ER

IA
LS

 A
R

E
FO

R
 Y

O
U

R
 U

SE
 IN

 T
H

IS
 C

LA
SS

R
O

O
M

 O
N

LY
.

C
O

PY
IN

G
 e

KI
T

M
AT

ER
IA

LS
 F

R
O

M
 T

H
IS

 C
O

M
PU

TE
R

 IS
 S

TR
IC

TL
Y

PR
O

H
IB

IT
ED

Oracle Database 12c: SQL Workshop I 10 - 42

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

Lesson Agenda

• Adding new rows in a table
– INSERT statement

• Changing data in a table
– UPDATE statement

• Removing rows from a table:
– DELETE statement

– TRUNCATE statement

• Database transactions control using COMMIT, ROLLBACK,
and SAVEPOINT

• Read consistency
• FOR UPDATE clause in a SELECT statement

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 E

ga
bi

 S
ol

ut
io

ns
 u

se
 o

nl
y

TH
ES

E
eK

IT
 M

AT
ER

IA
LS

 A
R

E
FO

R
 Y

O
U

R
 U

SE
 IN

 T
H

IS
 C

LA
SS

R
O

O
M

 O
N

LY
.

C
O

PY
IN

G
 e

KI
T

M
AT

ER
IA

LS
 F

R
O

M
 T

H
IS

 C
O

M
PU

TE
R

 IS
 S

TR
IC

TL
Y

PR
O

H
IB

IT
ED

When you issue a SELECT statement against the database to query some records, no locks
are placed on the selected rows. In general, this is required because the number of records
locked at any given time is (by default) kept to the absolute minimum: only those records that
have been changed but not yet committed are locked. Even then, others will be able to read
those records as they appeared before the change (the “before image” of the data). There are
times, however, when you may want to lock a set of records even before you change them in
your program. Oracle offers the FOR UPDATE clause of the SELECT statement to perform this
locking.

When you issue a SELECT...FOR UPDATE statement, the relational database management
system (RDBMS) automatically obtains exclusive row-level locks on all the rows identified by
the SELECT statement, thereby holding the records “for your changes only.” No one else will
be able to change any of these records until you perform a ROLLBACK or a COMMIT.

You can append the optional keyword NOWAIT to the FOR UPDATE clause to tell the Oracle
server not to wait if the table has been locked by another user. In this case, control will be
returned immediately to your program or to your SQL Developer environment so that you can
perform other work, or simply wait for a period of time before trying again. Without the
NOWAIT clause, your process will block until the table is available, when the locks are
released by the other user through the issue of a COMMIT or a ROLLBACK command.

Oracle Database 12c: SQL Workshop I 10 - 43

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

FOR UPDATE Clause in a SELECT Statement

• Locks the rows in the EMPLOYEES table where job_id is
SA_REP.

• Lock is released only when you issue a ROLLBACK or a
COMMIT.

• If the SELECT statement attempts to lock a row that is
locked by another user, the database waits until the row is
available, and then returns the results of the SELECT
statement.

SELECT employee_id, salary, commission_pct, job_id
FROM employees
WHERE job_id = 'SA_REP'
FOR UPDATE
ORDER BY employee_id;

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 E

ga
bi

 S
ol

ut
io

ns
 u

se
 o

nl
y

TH
ES

E
eK

IT
 M

AT
ER

IA
LS

 A
R

E
FO

R
 Y

O
U

R
 U

SE
 IN

 T
H

IS
 C

LA
SS

R
O

O
M

 O
N

LY
.

C
O

PY
IN

G
 e

KI
T

M
AT

ER
IA

LS
 F

R
O

M
 T

H
IS

 C
O

M
PU

TE
R

 IS
 S

TR
IC

TL
Y

PR
O

H
IB

IT
ED

In the example in the slide, the statement locks rows in the EMPLOYEES table with JOB_ID set
to ST_CLERK and LOCATION_ID set to 1500, and locks rows in the DEPARTMENTS table with
departments in LOCATION_ID set as 1500.

You can use the FOR UPDATE OF column_name to qualify the column that you intend to
change. The OF list of the FOR UPDATE clause does not restrict you to changing only those
columns of the selected rows. Locks are still placed on all rows; if you simply state FOR
UPDATE in the query and do not include one or more columns after the OF keyword, the
database will lock all identified rows across all the tables listed in the FROM clause.

The following statement locks only those rows in the EMPLOYEES table with ST_CLERK
located in LOCATION_ID 1500. No rows are locked in the DEPARTMENTS table:

SELECT e.employee_id, e.salary, e.commission_pct

FROM employees e JOIN departments d

USING (department_id)

WHERE job_id = 'ST_CLERK' AND location_id = 1500

FOR UPDATE OF e.salary

ORDER BY e.employee_id;

Oracle Database 12c: SQL Workshop I 10 - 44

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

FOR UPDATE Clause: Examples

• You can use the FOR UPDATE clause in a SELECT
statement against multiple tables.

• Rows from both the EMPLOYEES and DEPARTMENTS tables
are locked.

• Use FOR UPDATE OF column_name to qualify the column
you intend to change, then only the rows from that specific
table are locked.

SELECT e.employee_id, e.salary, e.commission_pct
FROM employees e JOIN departments d
USING (department_id)
WHERE job_id = 'ST_CLERK'
AND location_id = 1500
FOR UPDATE
ORDER BY e.employee_id;

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 E

ga
bi

 S
ol

ut
io

ns
 u

se
 o

nl
y

TH
ES

E
eK

IT
 M

AT
ER

IA
LS

 A
R

E
FO

R
 Y

O
U

R
 U

SE
 IN

 T
H

IS
 C

LA
SS

R
O

O
M

 O
N

LY
.

C
O

PY
IN

G
 e

KI
T

M
AT

ER
IA

LS
 F

R
O

M
 T

H
IS

 C
O

M
PU

TE
R

 IS
 S

TR
IC

TL
Y

PR
O

H
IB

IT
ED

Oracle Database 12c: SQL Workshop I 10 - 45

In the following example, the database is instructed to wait for five seconds for the row to
become available, and then return control to you.

SELECT employee_id, salary, commission_pct, job_id

FROM employees

WHERE job_id = 'SA_REP'

FOR UPDATE WAIT 5

ORDER BY employee_id;

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 E

ga
bi

 S
ol

ut
io

ns
 u

se
 o

nl
y

TH
ES

E
eK

IT
 M

AT
ER

IA
LS

 A
R

E
FO

R
 Y

O
U

R
 U

SE
 IN

 T
H

IS
 C

LA
SS

R
O

O
M

 O
N

LY
.

C
O

PY
IN

G
 e

KI
T

M
AT

ER
IA

LS
 F

R
O

M
 T

H
IS

 C
O

M
PU

TE
R

 IS
 S

TR
IC

TL
Y

PR
O

H
IB

IT
ED

Answer: b

Oracle Database 12c: SQL Workshop I 10 - 46

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

Quiz

The following statements produce the same results:

a. True

b. False

DELETE FROM copy_emp;

TRUNCATE TABLE copy_emp;

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 E

ga
bi

 S
ol

ut
io

ns
 u

se
 o

nl
y

TH
ES

E
eK

IT
 M

AT
ER

IA
LS

 A
R

E
FO

R
 Y

O
U

R
 U

SE
 IN

 T
H

IS
 C

LA
SS

R
O

O
M

 O
N

LY
.

C
O

PY
IN

G
 e

KI
T

M
AT

ER
IA

LS
 F

R
O

M
 T

H
IS

 C
O

M
PU

TE
R

 IS
 S

TR
IC

TL
Y

PR
O

H
IB

IT
ED

In this lesson, you should have learned how to manipulate data in the Oracle database by
using the INSERT, UPDATE, DELETE, and TRUNCATE statements, as well as how to control
data changes by using the COMMIT, SAVEPOINT, and ROLLBACK statements. You also
learned how to use the FOR UPDATE clause of the SELECT statement to lock rows for your
changes only.

Remember that the Oracle server guarantees a consistent view of data at all times.

Oracle Database 12c: SQL Workshop I 10 - 47

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

Summary

In this lesson, you should have learned how to use the
following statements:

Locks rows identified by the SELECT queryFOR UPDATE clause
in SELECT

Removes all rows from a tableTRUNCATE

Adds a new row to the tableINSERT

Modifies existing rows in the tableUPDATE

Removes existing rows from the tableDELETE

Makes all pending changes permanentCOMMIT

Discards all pending data changesROLLBACK

Is used to roll back to the savepoint markerSAVEPOINT

DescriptionFunction

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 E

ga
bi

 S
ol

ut
io

ns
 u

se
 o

nl
y

TH
ES

E
eK

IT
 M

AT
ER

IA
LS

 A
R

E
FO

R
 Y

O
U

R
 U

SE
 IN

 T
H

IS
 C

LA
SS

R
O

O
M

 O
N

LY
.

C
O

PY
IN

G
 e

KI
T

M
AT

ER
IA

LS
 F

R
O

M
 T

H
IS

 C
O

M
PU

TE
R

 IS
 S

TR
IC

TL
Y

PR
O

H
IB

IT
ED

In this practice, you add rows to the MY_EMPLOYEE table, update and delete data from the
table, and control your transactions. You run a script to create the MY_EMPLOYEE table.

Oracle Database 12c: SQL Workshop I 10 - 48

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

Practice 10: Overview

This practice covers the following topics:

• Inserting rows into the tables

• Updating and deleting rows in the table

• Controlling transactions

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 E

ga
bi

 S
ol

ut
io

ns
 u

se
 o

nl
y

TH
ES

E
eK

IT
 M

AT
ER

IA
LS

 A
R

E
FO

R
 Y

O
U

R
 U

SE
 IN

 T
H

IS
 C

LA
SS

R
O

O
M

 O
N

LY
.

C
O

PY
IN

G
 e

KI
T

M
AT

ER
IA

LS
 F

R
O

M
 T

H
IS

 C
O

M
PU

TE
R

 IS
 S

TR
IC

TL
Y

PR
O

H
IB

IT
ED

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

Introduction to Data Definition Language

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 E

ga
bi

 S
ol

ut
io

ns
 u

se
 o

nl
y

TH
ES

E
eK

IT
 M

AT
ER

IA
LS

 A
R

E
FO

R
 Y

O
U

R
 U

SE
 IN

 T
H

IS
 C

LA
SS

R
O

O
M

 O
N

LY
.

C
O

PY
IN

G
 e

KI
T

M
AT

ER
IA

LS
 F

R
O

M
 T

H
IS

 C
O

M
PU

TE
R

 IS
 S

TR
IC

TL
Y

PR
O

H
IB

IT
ED

In this lesson, you are introduced to the data definition language (DDL) statements. You learn
the basics of how to create simple tables, alter them, and remove them. The data types
available in DDL are shown and schema concepts are introduced. Constraints are discussed
in this lesson. Exception messages that are generated from violating constraints during DML
operations are shown and explained.

Oracle Database 12c: SQL Workshop I 11 - 2

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

Objectives

After completing this lesson, you should be able to do the
following:

• Categorize the main database objects

• Review the table structure

• List the data types that are available for columns

• Create a simple table

• Explain how constraints are created at the time of table
creation

• Describe how schema objects work

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 E

ga
bi

 S
ol

ut
io

ns
 u

se
 o

nl
y

TH
ES

E
eK

IT
 M

AT
ER

IA
LS

 A
R

E
FO

R
 Y

O
U

R
 U

SE
 IN

 T
H

IS
 C

LA
SS

R
O

O
M

 O
N

LY
.

C
O

PY
IN

G
 e

KI
T

M
AT

ER
IA

LS
 F

R
O

M
 T

H
IS

 C
O

M
PU

TE
R

 IS
 S

TR
IC

TL
Y

PR
O

H
IB

IT
ED

Oracle Database 12c: SQL Workshop I 11 - 3

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

Lesson Agenda

• Database objects
– Naming rules

• Data types
• CREATE TABLE statement

• Overview of constraints: NOT NULL, UNIQUE, PRIMARY
KEY, FOREIGN KEY, CHECK constraints

• Creating a table using a subquery
• ALTER TABLE statement

• DROP TABLE statement

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 E

ga
bi

 S
ol

ut
io

ns
 u

se
 o

nl
y

TH
ES

E
eK

IT
 M

AT
ER

IA
LS

 A
R

E
FO

R
 Y

O
U

R
 U

SE
 IN

 T
H

IS
 C

LA
SS

R
O

O
M

 O
N

LY
.

C
O

PY
IN

G
 e

KI
T

M
AT

ER
IA

LS
 F

R
O

M
 T

H
IS

 C
O

M
PU

TE
R

 IS
 S

TR
IC

TL
Y

PR
O

H
IB

IT
ED

The Oracle database can contain multiple data structures. Each structure should be outlined
in the database design so that it can be created during the build stage of database
development.

• Table: Stores data

• View: Is a subset of data from one or more tables

• Sequence: Generates numeric values

• Index: Improves the performance of some queries

• Synonym: Gives alternative name to an object

Oracle Table Structures

• Tables can be created at any time, even when users are using the database.

• You do not need to specify the size of a table. The size is ultimately defined by the
amount of space allocated to the database as a whole. It is important, however, to
estimate how much space a table will use over time.

• Table structure can be modified online.

Note: More database objects are available, but are not covered in this course.

Oracle Database 12c: SQL Workshop I 11 - 4

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

Database Objects

Logically represents subsets of data from one or more
tables

View

Generates numeric valuesSequence

Is the basic unit of storage; composed of rows Table

Gives alternative name to an objectSynonym

Improves the performance of some queriesIndex

DescriptionObject

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 E

ga
bi

 S
ol

ut
io

ns
 u

se
 o

nl
y

TH
ES

E
eK

IT
 M

AT
ER

IA
LS

 A
R

E
FO

R
 Y

O
U

R
 U

SE
 IN

 T
H

IS
 C

LA
SS

R
O

O
M

 O
N

LY
.

C
O

PY
IN

G
 e

KI
T

M
AT

ER
IA

LS
 F

R
O

M
 T

H
IS

 C
O

M
PU

TE
R

 IS
 S

TR
IC

TL
Y

PR
O

H
IB

IT
ED

Oracle Database 12c: SQL Workshop I 11 - 5

You name database tables and columns according to the standard rules for naming any
Oracle database object.

• Table names and column names must begin with a letter and be 1–30 characters long.
• Names must contain only the characters A–Z, a–z, 0–9, _ (underscore), $, and # (legal

characters, but their use is discouraged).
• Names must not duplicate the name of another object owned by the same Oracle server

user.
• Names must not be an Oracle server–reserved word.

- You may also use quoted identifiers to represent the name of an object. A quoted
identifier begins and ends with double quotation marks (“”). If you name a schema
object using a quoted identifier, you must use the double quotation marks
whenever you refer to that object. Quoted identifiers can be reserved words,
although this is not recommended.

Naming Guidelines

Use descriptive names for tables and other database objects.
Note: Names are not case-sensitive. For example, EMPLOYEES is treated to be the same
name as eMPloyees or eMpLOYEES. However, quoted identifiers are case-sensitive.

For more information, see the “Schema Object Names and Qualifiers” section in the Oracle
Database SQL Language Reference for 10g or 11g database.

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

Naming Rules

Table names and column names must:

• Begin with a letter

• Be 1–30 characters long

• Contain only A–Z, a–z, 0–9, _, $, and #

• Not duplicate the name of another object owned by the
same user

• Not be an Oracle server–reserved word

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 E

ga
bi

 S
ol

ut
io

ns
 u

se
 o

nl
y

TH
ES

E
eK

IT
 M

AT
ER

IA
LS

 A
R

E
FO

R
 Y

O
U

R
 U

SE
 IN

 T
H

IS
 C

LA
SS

R
O

O
M

 O
N

LY
.

C
O

PY
IN

G
 e

KI
T

M
AT

ER
IA

LS
 F

R
O

M
 T

H
IS

 C
O

M
PU

TE
R

 IS
 S

TR
IC

TL
Y

PR
O

H
IB

IT
ED

Oracle Database 12c: SQL Workshop I 11 - 6

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

Lesson Agenda

• Database objects
– Naming rules

• Data types
• CREATE TABLE statement

• Overview of constraints: NOT NULL, UNIQUE, PRIMARY
KEY, FOREIGN KEY, CHECK constraints

• Creating a table using a subquery
• ALTER TABLE statement

• DROP TABLE statement

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 E

ga
bi

 S
ol

ut
io

ns
 u

se
 o

nl
y

TH
ES

E
eK

IT
 M

AT
ER

IA
LS

 A
R

E
FO

R
 Y

O
U

R
 U

SE
 IN

 T
H

IS
 C

LA
SS

R
O

O
M

 O
N

LY
.

C
O

PY
IN

G
 e

KI
T

M
AT

ER
IA

LS
 F

R
O

M
 T

H
IS

 C
O

M
PU

TE
R

 IS
 S

TR
IC

TL
Y

PR
O

H
IB

IT
ED

When you identify a column for a table, you need to provide a data type for the column. There
are several data types available:

Data Type Description

VARCHAR2(size)

Variable-length character data (A maximum size must be
specified: minimum size is 1.)
Maximum size is:

• 32767 bytes if MAX_SQL_STRING_SIZE = EXTENDED
• 4000 bytes if MAX_SQL_STRING_SIZE = LEGACY

CHAR [(size)] Fixed-length character data of length size bytes (Default and

minimum size is 1; maximum size is 2,000.)

NUMBER [(p,s)] Number having precision p and scale s (Precision is the total
number of decimal digits and scale is the number of digits to
the right of the decimal point; precision can range from 1 to
38, and scale can range from –84 to 127.)

DATE Date and time values to the nearest second between January
1, 4712 B.C., and December 31, 9999 A.D.

Oracle Database 12c: SQL Workshop I 11 - 7

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

Data Types

Data Type Description

VARCHAR2(size) Variable-length character data

CHAR(size) Fixed-length character data

NUMBER(p, s) Variable-length numeric data

DATE Date and time values

LONG Variable-length character data (up to 2 GB)

CLOB Maximum size is (4 gigabytes - 1) *
(DB_BLOCK_SIZE).

RAW and LONG RAW Raw binary data

BLOB Maximum size is (4 gigabytes - 1) *
(DB_BLOCK_SIZE initialization parameter (8
TB to 128 TB)).

BFILE Binary data stored in an external file (up to 4
GB)

ROWID A base-64 number system representing the
unique address of a row in its table

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 E

ga
bi

 S
ol

ut
io

ns
 u

se
 o

nl
y

TH
ES

E
eK

IT
 M

AT
ER

IA
LS

 A
R

E
FO

R
 Y

O
U

R
 U

SE
 IN

 T
H

IS
 C

LA
SS

R
O

O
M

 O
N

LY
.

C
O

PY
IN

G
 e

KI
T

M
AT

ER
IA

LS
 F

R
O

M
 T

H
IS

 C
O

M
PU

TE
R

 IS
 S

TR
IC

TL
Y

PR
O

H
IB

IT
ED

Guidelines

• A LONG column is not copied when a table is created using a subquery.

• A LONG column cannot be included in a GROUP BY or an ORDER BY clause.

• Only one LONG column can be used per table.

• No constraints can be defined on a LONG column.

• You might want to use a CLOB column rather than a LONG column.

Oracle Database 12c: SQL Workshop I 11 - 8

Data Type Description

LONG Variable-length character data (up to 2 GB)

CLOB A character large object containing single-byte or
multibyte characters. Maximum size is (4 gigabytes - 1) *
(DB_BLOCK_SIZE); stores national character set data.

NCLOB A character large object containing Unicode characters.
Both fixed-width and variable-width character sets are
supported, both using the database national character
set. Maximum size is (4 gigabytes - 1) * (database block
size); stores national character set data.

RAW(size) Raw binary data of length size bytes. You must
specify size for a RAW value. Maximum size is:

32767 bytes if MAX_SQL_STRING_SIZE = EXTENDED

4000 bytes if MAX_SQL_STRING_SIZE = LEGACY

LONG RAW Raw binary data of variable length up to 2 gigabytes

BLOB A binary large object. Maximum size is (4 gigabytes - 1) *
(DB_BLOCK_SIZE initialization parameter (8 TB to 128
TB)).

BFILE Binary data stored in an external file (up to 4 GB)

ROWID Base 64 string representing the unique address of a row
in its table. This data type is primarily for values returned
by the ROWID pseudocolumn

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 E

ga
bi

 S
ol

ut
io

ns
 u

se
 o

nl
y

TH
ES

E
eK

IT
 M

AT
ER

IA
LS

 A
R

E
FO

R
 Y

O
U

R
 U

SE
 IN

 T
H

IS
 C

LA
SS

R
O

O
M

 O
N

LY
.

C
O

PY
IN

G
 e

KI
T

M
AT

ER
IA

LS
 F

R
O

M
 T

H
IS

 C
O

M
PU

TE
R

 IS
 S

TR
IC

TL
Y

PR
O

H
IB

IT
ED

Note: These datetime data types are available with Oracle9i and later releases. The datetime
data types are discussed in detail in the lesson titled “Managing Data in Different Time Zones”
in the Oracle Database: SQL Workshop II course.

Also, for more information about the datetime data types, see the sections on “TIMESTAMP
Datatype,” “INTERVAL YEAR TO MONTH Datatype,” and “INTERVAL DAY TO SECOND
Datatype” in Oracle Database SQL Language Reference for 12c database.

Data Type Description

TIMESTAMP Enables storage of time as a date with fractional seconds. It stores the
year, month, day, hour, minute, and the second value of the DATE data
type, as well as the fractional seconds value.
There are several variations of this data type such as WITH TIMEZONE
and WITH LOCALTIMEZONE.

INTERVAL YEAR TO
MONTH

Enables storage of time as an interval of years and months; used to
represent the difference between two datetime values in which the only
significant portions are the year and month

INTERVAL DAY TO
SECOND

Enables storage of time as an interval of days, hours, minutes, and
seconds; used to represent the precise difference between two datetime
values

Oracle Database 12c: SQL Workshop I 11 - 9

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

Datetime Data Types

You can use several datetime data types:

Stored as an interval of years
and months

INTERVAL YEAR TO
MONTH

Stored as an interval of days, hours, minutes,
and seconds

INTERVAL DAY TO
SECOND

Date with fractional secondsTIMESTAMP

DescriptionData Type

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 E

ga
bi

 S
ol

ut
io

ns
 u

se
 o

nl
y

TH
ES

E
eK

IT
 M

AT
ER

IA
LS

 A
R

E
FO

R
 Y

O
U

R
 U

SE
 IN

 T
H

IS
 C

LA
SS

R
O

O
M

 O
N

LY
.

C
O

PY
IN

G
 e

KI
T

M
AT

ER
IA

LS
 F

R
O

M
 T

H
IS

 C
O

M
PU

TE
R

 IS
 S

TR
IC

TL
Y

PR
O

H
IB

IT
ED

When you define a table, you can specify that a column should be given a default value by
using the DEFAULT option. This option prevents null values from entering the columns when a
row is inserted without a value for the column. The default value can be a literal, an
expression, or a SQL function (such as SYSDATE or USER), but the value cannot be the name
of another column or a pseudocolumn (such as NEXTVAL or CURRVAL). The default
expression must match the data type of the column.

Consider the following examples:
INSERT INTO hire_dates values(45, NULL);

The preceding statement will insert the null value rather than the default value.
INSERT INTO hire_dates(id) values(35);

The preceding statement will insert SYSDATE for the HIRE_DATE column.

Note: In SQL Developer, click the Run Script icon or press F5 to run the DDL statements. The
feedback messages will be shown on the Script Output tabbed page.

Oracle Database 12c: SQL Workshop I 11 - 10

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

DEFAULT Option

• Specify a default value for a column during the CREATE
table.

• Literal values, expressions, or SQL functions are legal
values.

• Another column’s name or a pseudocolumn are illegal
values.

• The default data type must match the column data type.

... hire_date DATE DEFAULT SYSDATE, ...

CREATE TABLE hire_dates
(id NUMBER(8),
hire_date DATE DEFAULT SYSDATE);

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 E

ga
bi

 S
ol

ut
io

ns
 u

se
 o

nl
y

TH
ES

E
eK

IT
 M

AT
ER

IA
LS

 A
R

E
FO

R
 Y

O
U

R
 U

SE
 IN

 T
H

IS
 C

LA
SS

R
O

O
M

 O
N

LY
.

C
O

PY
IN

G
 e

KI
T

M
AT

ER
IA

LS
 F

R
O

M
 T

H
IS

 C
O

M
PU

TE
R

 IS
 S

TR
IC

TL
Y

PR
O

H
IB

IT
ED

Oracle Database 12c: SQL Workshop I 11 - 11

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

Lesson Agenda

• Database objects
– Naming rules

• Data types
• CREATE TABLE statement

• Overview of constraints: NOT NULL, UNIQUE, PRIMARY
KEY, FOREIGN KEY, CHECK constraints

• Creating a table using a subquery
• ALTER TABLE statement

• DROP TABLE statement

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 E

ga
bi

 S
ol

ut
io

ns
 u

se
 o

nl
y

TH
ES

E
eK

IT
 M

AT
ER

IA
LS

 A
R

E
FO

R
 Y

O
U

R
 U

SE
 IN

 T
H

IS
 C

LA
SS

R
O

O
M

 O
N

LY
.

C
O

PY
IN

G
 e

KI
T

M
AT

ER
IA

LS
 F

R
O

M
 T

H
IS

 C
O

M
PU

TE
R

 IS
 S

TR
IC

TL
Y

PR
O

H
IB

IT
ED

You create tables to store data by executing the SQL CREATE TABLE statement. This
statement is one of the DDL statements that are a subset of the SQL statements used to
create, modify, or remove Oracle Database structures. These statements have an immediate
effect on the database and they also record information in the data dictionary.

To create a table, a user must have the CREATE TABLE privilege and a storage area in which
to create objects. The database administrator (DBA) uses data control language (DCL)
statements to grant privileges to users.

In the syntax:

schema Is the same as the owner’s name

table Is the name of the table

DEFAULT expr Specifies a default value if a value is omitted in the INSERT
statement

column Is the name of the column

datatype Is the column’s data type and length

Note: The CREATE ANY TABLE privilege is needed to create a table in any schema other
than the user’s schema.

Oracle Database 12c: SQL Workshop I 11 - 12

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

CREATE TABLE Statement

• You must have:
– The CREATE TABLE privilege

– A storage area

• You specify:
– The table name

– The column name, column data type, and column size

CREATE TABLE [schema.]table
(column datatype [DEFAULT expr][, ...]);

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 E

ga
bi

 S
ol

ut
io

ns
 u

se
 o

nl
y

TH
ES

E
eK

IT
 M

AT
ER

IA
LS

 A
R

E
FO

R
 Y

O
U

R
 U

SE
 IN

 T
H

IS
 C

LA
SS

R
O

O
M

 O
N

LY
.

C
O

PY
IN

G
 e

KI
T

M
AT

ER
IA

LS
 F

R
O

M
 T

H
IS

 C
O

M
PU

TE
R

 IS
 S

TR
IC

TL
Y

PR
O

H
IB

IT
ED

The example in the slide creates the DEPT table with four columns: DEPTNO, DNAME, LOC, and
CREATE_DATE. The CREATE_DATE column has a default value. If a value is not provided for
an INSERT statement, the system date is automatically inserted.

To confirm that the table was created, run the DESCRIBE command.

Because creating a table is a DDL statement, an automatic commit takes place when this
statement is executed.

Note: You can view the list of tables that you own by querying the data dictionary. For
example:

select table_name from user_tables;

Using data dictionary views, you can also find information about other database objects such
as views, indexes, and so on. You will learn about data dictionaries in detail in the Oracle
Database: SQL Fundaments II course.

Oracle Database 12c: SQL Workshop I 11 - 13

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

Creating Tables

• Create the table:

• Confirm table creation:

DESCRIBE dept

CREATE TABLE dept
(deptno NUMBER(2),
dname VARCHAR2(14),
loc VARCHAR2(13),
create_date DATE DEFAULT SYSDATE);

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 E

ga
bi

 S
ol

ut
io

ns
 u

se
 o

nl
y

TH
ES

E
eK

IT
 M

AT
ER

IA
LS

 A
R

E
FO

R
 Y

O
U

R
 U

SE
 IN

 T
H

IS
 C

LA
SS

R
O

O
M

 O
N

LY
.

C
O

PY
IN

G
 e

KI
T

M
AT

ER
IA

LS
 F

R
O

M
 T

H
IS

 C
O

M
PU

TE
R

 IS
 S

TR
IC

TL
Y

PR
O

H
IB

IT
ED

Oracle Database 12c: SQL Workshop I 11 - 14

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

Lesson Agenda

• Database objects
– Naming rules

• Data types
• CREATE TABLE statement

• Overview of constraints: NOT NULL, UNIQUE, PRIMARY
KEY, FOREIGN KEY, CHECK constraints

• Creating a table using a subquery
• ALTER TABLE statement

• DROP TABLE statement

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 E

ga
bi

 S
ol

ut
io

ns
 u

se
 o

nl
y

TH
ES

E
eK

IT
 M

AT
ER

IA
LS

 A
R

E
FO

R
 Y

O
U

R
 U

SE
 IN

 T
H

IS
 C

LA
SS

R
O

O
M

 O
N

LY
.

C
O

PY
IN

G
 e

KI
T

M
AT

ER
IA

LS
 F

R
O

M
 T

H
IS

 C
O

M
PU

TE
R

 IS
 S

TR
IC

TL
Y

PR
O

H
IB

IT
ED

The Oracle server uses constraints to prevent invalid data entry into tables.

You can use constraints to do the following:

• Enforce rules on the data in a table whenever a row is inserted, updated, or deleted from
that table. The constraint must be satisfied for the operation to succeed.

• Prevent the dropping of a table if there are dependencies from other tables.

• Provide rules for Oracle tools, such as Oracle Developer.

Data Integrity Constraints

Constraint Description

NOT NULL Specifies that the column cannot contain a null value

UNIQUE Specifies a column or combination of columns whose
values must be unique for all rows in the table

PRIMARY KEY Uniquely identifies each row of the table

FOREIGN KEY Establishes and enforces a referential integrity between
the column and a column of the referenced table such
that values in one table match values in another table.

CHECK Specifies a condition that must be true

Oracle Database 12c: SQL Workshop I 11 - 15

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

Including Constraints

• Constraints enforce rules at the table level.

• Constraints ensure the consistency and integrity of the
database.

• The following constraint types are valid:
– NOT NULL

– UNIQUE

– PRIMARY KEY

– FOREIGN KEY

– CHECK

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 E

ga
bi

 S
ol

ut
io

ns
 u

se
 o

nl
y

TH
ES

E
eK

IT
 M

AT
ER

IA
LS

 A
R

E
FO

R
 Y

O
U

R
 U

SE
 IN

 T
H

IS
 C

LA
SS

R
O

O
M

 O
N

LY
.

C
O

PY
IN

G
 e

KI
T

M
AT

ER
IA

LS
 F

R
O

M
 T

H
IS

 C
O

M
PU

TE
R

 IS
 S

TR
IC

TL
Y

PR
O

H
IB

IT
ED

All constraints are stored in the data dictionary. Constraints are easy to reference if you give
them a meaningful name. Constraint names must follow the standard object-naming rules,
except that the name cannot be the same as another object owned by the same user. If you
do not name your constraint, the Oracle server generates a name with the format SYS_Cn,
where n is an integer so that the constraint name is unique.

Constraints can be defined at the time of table creation or after the creation of the table. You
can define a constraint at the column or table level. Functionally, a table-level constraint is the
same as a column-level constraint.

For more information, see the section on “Constraints” in Oracle Database SQL Language
Reference for 12c database.

Oracle Database 12c: SQL Workshop I 11 - 16

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

Constraint Guidelines

• You can name a constraint or the Oracle server generates
a name by using the SYS_Cn format.

• Create a constraint at either of the following times:
– At the same time as the creation of the table

– After the creation of the table

• Define a constraint at the column or table level.

• View a constraint in the data dictionary.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 E

ga
bi

 S
ol

ut
io

ns
 u

se
 o

nl
y

TH
ES

E
eK

IT
 M

AT
ER

IA
LS

 A
R

E
FO

R
 Y

O
U

R
 U

SE
 IN

 T
H

IS
 C

LA
SS

R
O

O
M

 O
N

LY
.

C
O

PY
IN

G
 e

KI
T

M
AT

ER
IA

LS
 F

R
O

M
 T

H
IS

 C
O

M
PU

TE
R

 IS
 S

TR
IC

TL
Y

PR
O

H
IB

IT
ED

The slide gives the syntax for defining constraints when creating a table. You can create
constraints at either the column level or table level. Constraints defined at the column level
are included when the column is defined. Table-level constraints are defined at the end of the
table definition, and must refer to the column or columns on which the constraint pertains in a
set of parentheses. It is mainly the syntax that differentiates the two; otherwise, functionally, a
column-level constraint is the same as a table-level constraint.

NOT NULL constraints must be defined at the column level.

Constraints that apply to more than one column must be defined at the table level.

In the syntax:

schema Is the same as the owner’s name

table Is the name of the table

DEFAULT expr Specifies a default value to be used if a value is omitted in the
INSERT statement

column Is the name of the column

datatype Is the column’s data type and length

column_constraint Is an integrity constraint as part of the column definition

table_constraint Is an integrity constraint as part of the table definition

Oracle Database 12c: SQL Workshop I 11 - 17

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

Defining Constraints

• Syntax:

• Column-level constraint syntax:

• Table-level constraint syntax:

CREATE TABLE [schema.]table
(column datatype [DEFAULT expr]
[column_constraint],
...
[table_constraint][,...]);

column,...
[CONSTRAINT constraint_name] constraint_type
(column, ...),

column [CONSTRAINT constraint_name] constraint_type,

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 E

ga
bi

 S
ol

ut
io

ns
 u

se
 o

nl
y

TH
ES

E
eK

IT
 M

AT
ER

IA
LS

 A
R

E
FO

R
 Y

O
U

R
 U

SE
 IN

 T
H

IS
 C

LA
SS

R
O

O
M

 O
N

LY
.

C
O

PY
IN

G
 e

KI
T

M
AT

ER
IA

LS
 F

R
O

M
 T

H
IS

 C
O

M
PU

TE
R

 IS
 S

TR
IC

TL
Y

PR
O

H
IB

IT
ED

Constraints are usually created at the same time as the table. Constraints can be added to a
table after its creation and also be temporarily disabled.

Both examples in the slide create a primary key constraint on the EMPLOYEE_ID column of
the EMPLOYEES table.

1. The first example uses the column-level syntax to define the constraint.

2. The second example uses the table-level syntax to define the constraint.

More details about the primary key constraint are provided later in this lesson.

Oracle Database 12c: SQL Workshop I 11 - 18

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

Defining Constraints

• Example of a column-level constraint:

• Example of a table-level constraint:

CREATE TABLE employees(
employee_id NUMBER(6)
CONSTRAINT emp_emp_id_pk PRIMARY KEY,

first_name VARCHAR2(20),
...);

CREATE TABLE employees(
employee_id NUMBER(6),
first_name VARCHAR2(20),
...
job_id VARCHAR2(10) NOT NULL,
CONSTRAINT emp_emp_id_pk
PRIMARY KEY (EMPLOYEE_ID));

1

2

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 E

ga
bi

 S
ol

ut
io

ns
 u

se
 o

nl
y

TH
ES

E
eK

IT
 M

AT
ER

IA
LS

 A
R

E
FO

R
 Y

O
U

R
 U

SE
 IN

 T
H

IS
 C

LA
SS

R
O

O
M

 O
N

LY
.

C
O

PY
IN

G
 e

KI
T

M
AT

ER
IA

LS
 F

R
O

M
 T

H
IS

 C
O

M
PU

TE
R

 IS
 S

TR
IC

TL
Y

PR
O

H
IB

IT
ED

The NOT NULL constraint ensures that the column contains no null values. Columns without
the NOT NULL constraint can contain null values by default. NOT NULL constraints must be
defined at the column level. In the EMPLOYEES table, the EMPLOYEE_ID column inherits a
NOT NULL constraint because it is defined as a primary key. Otherwise, the LAST_NAME,
EMAIL, HIRE_DATE, and JOB_ID columns have the NOT NULL constraint enforced on them.

Note: Primary key constraint is discussed in detail later in this lesson.

Oracle Database 12c: SQL Workshop I 11 - 19

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

NOT NULL Constraint

Ensures that null values are not permitted for the column:

NOT NULL constraint
(Primary Key enforces NOT
NULL constraint.)

Absence of NOT NULL constraint
(Any row can contain a null value
for this column.)NOT NULL

constraint

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 E

ga
bi

 S
ol

ut
io

ns
 u

se
 o

nl
y

TH
ES

E
eK

IT
 M

AT
ER

IA
LS

 A
R

E
FO

R
 Y

O
U

R
 U

SE
 IN

 T
H

IS
 C

LA
SS

R
O

O
M

 O
N

LY
.

C
O

PY
IN

G
 e

KI
T

M
AT

ER
IA

LS
 F

R
O

M
 T

H
IS

 C
O

M
PU

TE
R

 IS
 S

TR
IC

TL
Y

PR
O

H
IB

IT
ED

A UNIQUE key integrity constraint requires that every value in a column or a set of columns
(key) be unique—that is, no two rows of a table can have duplicate values in a specified
column or a set of columns. The column (or set of columns) included in the definition of the
UNIQUE key constraint is called the unique key. If the UNIQUE constraint comprises more
than one column, that group of columns is called a composite unique key.

UNIQUE constraints enable the input of nulls unless you also define NOT NULL constraints for
the same columns. In fact, any number of rows can include nulls for columns without the NOT
NULL constraints because nulls are not considered equal to anything. A null in a column (or in
all columns of a composite UNIQUE key) always satisfies a UNIQUE constraint.

Note: Because of the search mechanism for the UNIQUE constraints on more than one
column, you cannot have identical values in the non-null columns of a partially null composite
UNIQUE key constraint.

Oracle Database 12c: SQL Workshop I 11 - 20

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

UNIQUE Constraint

EMPLOYEES
UNIQUE constraint

INSERT INTO

Not allowed: already exists

Allowed

…

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 E

ga
bi

 S
ol

ut
io

ns
 u

se
 o

nl
y

TH
ES

E
eK

IT
 M

AT
ER

IA
LS

 A
R

E
FO

R
 Y

O
U

R
 U

SE
 IN

 T
H

IS
 C

LA
SS

R
O

O
M

 O
N

LY
.

C
O

PY
IN

G
 e

KI
T

M
AT

ER
IA

LS
 F

R
O

M
 T

H
IS

 C
O

M
PU

TE
R

 IS
 S

TR
IC

TL
Y

PR
O

H
IB

IT
ED

UNIQUE constraints can be defined at the column level or table level. You define the
constraint at the table level when you want to create a composite unique key. A composite
key is defined when there is not a single attribute that can uniquely identify a row. In that
case, you can have a unique key that is composed of two or more columns, the combined
value of which is always unique and can identify rows.

The example in the slide applies the UNIQUE constraint to the EMAIL column of the
EMPLOYEES table. The name of the constraint is EMP_EMAIL_UK.

Note: The Oracle server enforces the UNIQUE constraint by implicitly creating a unique index
on the unique key column or columns.

Oracle Database 12c: SQL Workshop I 11 - 21

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

UNIQUE Constraint

Defined at either the table level or the column level:

CREATE TABLE employees(
employee_id NUMBER(6),
last_name VARCHAR2(25) NOT NULL,
email VARCHAR2(25),
salary NUMBER(8,2),
commission_pct NUMBER(2,2),
hire_date DATE NOT NULL,

...
CONSTRAINT emp_email_uk UNIQUE(email));

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 E

ga
bi

 S
ol

ut
io

ns
 u

se
 o

nl
y

TH
ES

E
eK

IT
 M

AT
ER

IA
LS

 A
R

E
FO

R
 Y

O
U

R
 U

SE
 IN

 T
H

IS
 C

LA
SS

R
O

O
M

 O
N

LY
.

C
O

PY
IN

G
 e

KI
T

M
AT

ER
IA

LS
 F

R
O

M
 T

H
IS

 C
O

M
PU

TE
R

 IS
 S

TR
IC

TL
Y

PR
O

H
IB

IT
ED

A PRIMARY KEY constraint creates a primary key for the table. Only one primary key can be
created for each table. The PRIMARY KEY constraint is a column or a set of columns that
uniquely identifies each row in a table. This constraint enforces the uniqueness of the column
or column combination, and ensures that no column that is part of the primary key can contain
a null value.

Note: Because uniqueness is part of the primary key constraint definition, the Oracle server
enforces the uniqueness by implicitly creating a unique index on the primary key column or
columns.

Oracle Database 12c: SQL Workshop I 11 - 22

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

PRIMARY KEY Constraint

DEPARTMENTS
PRIMARY KEY

INSERT INTO
Not allowed
(null value)

Not allowed
(50 already exists)

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 E

ga
bi

 S
ol

ut
io

ns
 u

se
 o

nl
y

TH
ES

E
eK

IT
 M

AT
ER

IA
LS

 A
R

E
FO

R
 Y

O
U

R
 U

SE
 IN

 T
H

IS
 C

LA
SS

R
O

O
M

 O
N

LY
.

C
O

PY
IN

G
 e

KI
T

M
AT

ER
IA

LS
 F

R
O

M
 T

H
IS

 C
O

M
PU

TE
R

 IS
 S

TR
IC

TL
Y

PR
O

H
IB

IT
ED

The FOREIGN KEY (or referential integrity) constraint designates a column or a combination of
columns as a foreign key, and establishes a relationship with a primary key or a unique key in
the same table or a different table.

In the example in the slide, DEPARTMENT_ID has been defined as the foreign key in the
EMPLOYEES table (dependent or child table); it references the DEPARTMENT_ID column of the
DEPARTMENTS table (the referenced or parent table).

Guidelines

• A foreign key value must match an existing value in the parent table or be NULL.

• Foreign keys are based on data values and are purely logical, rather than physical,
pointers.

Oracle Database 12c: SQL Workshop I 11 - 23

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

FOREIGN KEY Constraint

DEPARTMENTS

EMPLOYEES

FOREIGN
KEY

INSERT INTO Not allowed
(9 does not

exist)
Allowed

…

…

PRIMARY
KEY

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 E

ga
bi

 S
ol

ut
io

ns
 u

se
 o

nl
y

TH
ES

E
eK

IT
 M

AT
ER

IA
LS

 A
R

E
FO

R
 Y

O
U

R
 U

SE
 IN

 T
H

IS
 C

LA
SS

R
O

O
M

 O
N

LY
.

C
O

PY
IN

G
 e

KI
T

M
AT

ER
IA

LS
 F

R
O

M
 T

H
IS

 C
O

M
PU

TE
R

 IS
 S

TR
IC

TL
Y

PR
O

H
IB

IT
ED

FOREIGN KEY constraints can be defined at the column or table constraint level. A composite
foreign key must be created by using the table-level definition.

The example in the slide defines a FOREIGN KEY constraint on the DEPARTMENT_ID column
of the EMPLOYEES table, using table-level syntax. The name of the constraint is
EMP_DEPT_FK.

The foreign key can also be defined at the column level, provided that the constraint is based
on a single column. The syntax differs in that the keywords FOREIGN KEY do not appear. For
example:

CREATE TABLE employees

(...

department_id NUMBER(4) CONSTRAINT emp_deptid_fk

REFERENCES departments(department_id),

...

)

Oracle Database 12c: SQL Workshop I 11 - 24

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

FOREIGN KEY Constraint

Defined at either the table level or the column level:

CREATE TABLE employees(
employee_id NUMBER(6),
last_name VARCHAR2(25) NOT NULL,
email VARCHAR2(25),
salary NUMBER(8,2),
commission_pct NUMBER(2,2),
hire_date DATE NOT NULL,

...
department_id NUMBER(4),
CONSTRAINT emp_dept_fk FOREIGN KEY (department_id)
REFERENCES departments(department_id),

CONSTRAINT emp_email_uk UNIQUE(email));

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 E

ga
bi

 S
ol

ut
io

ns
 u

se
 o

nl
y

TH
ES

E
eK

IT
 M

AT
ER

IA
LS

 A
R

E
FO

R
 Y

O
U

R
 U

SE
 IN

 T
H

IS
 C

LA
SS

R
O

O
M

 O
N

LY
.

C
O

PY
IN

G
 e

KI
T

M
AT

ER
IA

LS
 F

R
O

M
 T

H
IS

 C
O

M
PU

TE
R

 IS
 S

TR
IC

TL
Y

PR
O

H
IB

IT
ED

The foreign key is defined in the child table and the table containing the referenced column is
the parent table. The foreign key is defined using a combination of the following keywords:

• FOREIGN KEY is used to define the column in the child table at the table-constraint
level.

• REFERENCES identifies the table and the column in the parent table.

• ON DELETE CASCADE indicates that when a row in the parent table is deleted, the
dependent rows in the child table are also deleted.

• ON DELETE SET NULL indicates that when a row in the parent table is deleted, the
foreign key values are set to null.

The default behavior is called the restrict rule, which disallows the update or deletion of
referenced data.

Without the ON DELETE CASCADE or the ON DELETE SET NULL options, the row in the parent
table cannot be deleted if it is referenced in the child table. And these keyword cannot be
used in column-level syntax.

Oracle Database 12c: SQL Workshop I 11 - 25

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

FOREIGN KEY Constraint: Keywords

• FOREIGN KEY: Defines the column in the child table at the
table-constraint level

• REFERENCES: Identifies the table and column in the parent
table

• ON DELETE CASCADE: Deletes the dependent rows in the
child table when a row in the parent table is deleted

• ON DELETE SET NULL: Converts dependent foreign key
values to null

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 E

ga
bi

 S
ol

ut
io

ns
 u

se
 o

nl
y

TH
ES

E
eK

IT
 M

AT
ER

IA
LS

 A
R

E
FO

R
 Y

O
U

R
 U

SE
 IN

 T
H

IS
 C

LA
SS

R
O

O
M

 O
N

LY
.

C
O

PY
IN

G
 e

KI
T

M
AT

ER
IA

LS
 F

R
O

M
 T

H
IS

 C
O

M
PU

TE
R

 IS
 S

TR
IC

TL
Y

PR
O

H
IB

IT
ED

The CHECK constraint defines a condition that each row must satisfy. The condition can use
the same constructs as the query conditions, with the following exceptions:

• References to the CURRVAL, NEXTVAL, LEVEL, and ROWNUM pseudocolumns

• Calls to SYSDATE, UID, USER, and USERENV functions

• Queries that refer to other values in other rows

A single column can have multiple CHECK constraints that refer to the column in its definition.
There is no limit to the number of CHECK constraints that you can define on a column.

CHECK constraints can be defined at the column level or table level.
CREATE TABLE employees

(...

salary NUMBER(8,2) CONSTRAINT emp_salary_min

CHECK (salary > 0),

...

Oracle Database 12c: SQL Workshop I 11 - 26

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

CHECK Constraint

• It defines a condition that each row must satisfy.

• The following expressions are not allowed:
– References to CURRVAL, NEXTVAL, LEVEL, and ROWNUM

pseudocolumns
– Calls to SYSDATE, UID, USER, and USERENV functions

– Queries that refer to other values in other rows

..., salary NUMBER(2)
CONSTRAINT emp_salary_min

CHECK (salary > 0),...

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 E

ga
bi

 S
ol

ut
io

ns
 u

se
 o

nl
y

TH
ES

E
eK

IT
 M

AT
ER

IA
LS

 A
R

E
FO

R
 Y

O
U

R
 U

SE
 IN

 T
H

IS
 C

LA
SS

R
O

O
M

 O
N

LY
.

C
O

PY
IN

G
 e

KI
T

M
AT

ER
IA

LS
 F

R
O

M
 T

H
IS

 C
O

M
PU

TE
R

 IS
 S

TR
IC

TL
Y

PR
O

H
IB

IT
ED

The example in the slide shows the statement that is used to create the TEACH_EMP table.

Oracle Database 12c: SQL Workshop I 11 - 27

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

CREATE TABLE: Example

CREATE TABLE teach_emp (
empno NUMBER(5) PRIMARY KEY,
ename VARCHAR2(15) NOT NULL,
job VARCHAR2(10),
mgr NUMBER(5),
hiredate DATE DEFAULT (sysdate),
photo BLOB,
sal NUMBER(7,2),
deptno NUMBER(3) NOT NULL

CONSTRAINT admin_dept_fkey REFERENCES
departments(department_id));

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 E

ga
bi

 S
ol

ut
io

ns
 u

se
 o

nl
y

TH
ES

E
eK

IT
 M

AT
ER

IA
LS

 A
R

E
FO

R
 Y

O
U

R
 U

SE
 IN

 T
H

IS
 C

LA
SS

R
O

O
M

 O
N

LY
.

C
O

PY
IN

G
 e

KI
T

M
AT

ER
IA

LS
 F

R
O

M
 T

H
IS

 C
O

M
PU

TE
R

 IS
 S

TR
IC

TL
Y

PR
O

H
IB

IT
ED

When you have constraints in place on columns, an error is returned if you try to violate the
constraint rule. For example, if you try to update a record with a value that is tied to an
integrity constraint, an error is returned.

In the example in the slide, department 55 does not exist in the parent table, DEPARTMENTS,
and so you receive the “parent key not found” violation ORA-02291.

Oracle Database 12c: SQL Workshop I 11 - 28

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

UPDATE employees
SET department_id = 55
WHERE department_id = 110;

Violating Constraints

Department 55 does not exist.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 E

ga
bi

 S
ol

ut
io

ns
 u

se
 o

nl
y

TH
ES

E
eK

IT
 M

AT
ER

IA
LS

 A
R

E
FO

R
 Y

O
U

R
 U

SE
 IN

 T
H

IS
 C

LA
SS

R
O

O
M

 O
N

LY
.

C
O

PY
IN

G
 e

KI
T

M
AT

ER
IA

LS
 F

R
O

M
 T

H
IS

 C
O

M
PU

TE
R

 IS
 S

TR
IC

TL
Y

PR
O

H
IB

IT
ED

If you attempt to delete a record with a value that is tied to an integrity constraint, an error is
returned.

The example in the slide tries to delete department 60 from the DEPARTMENTS table, but it
results in an error because that department number is used as a foreign key in the
EMPLOYEES table. If the parent record that you attempt to delete has child records, you
receive the “child record found” violation ORA-02292.

The following statement works because there are no employees in department 70:
DELETE FROM departments

WHERE department_id = 70;

Oracle Database 12c: SQL Workshop I 11 - 29

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

Violating Constraints

You cannot delete a row that contains a primary key that is
used as a foreign key in another table.

DELETE FROM departments
WHERE department_id = 60;

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 E

ga
bi

 S
ol

ut
io

ns
 u

se
 o

nl
y

TH
ES

E
eK

IT
 M

AT
ER

IA
LS

 A
R

E
FO

R
 Y

O
U

R
 U

SE
 IN

 T
H

IS
 C

LA
SS

R
O

O
M

 O
N

LY
.

C
O

PY
IN

G
 e

KI
T

M
AT

ER
IA

LS
 F

R
O

M
 T

H
IS

 C
O

M
PU

TE
R

 IS
 S

TR
IC

TL
Y

PR
O

H
IB

IT
ED

Oracle Database 12c: SQL Workshop I 11 - 30

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

Lesson Agenda

• Database objects
– Naming rules

• Data types
• CREATE TABLE statement

• Overview of constraints: NOT NULL, UNIQUE, PRIMARY
KEY, FOREIGN KEY, CHECK constraints

• Creating a table using a subquery
• ALTER TABLE statement

• DROP TABLE statement

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 E

ga
bi

 S
ol

ut
io

ns
 u

se
 o

nl
y

TH
ES

E
eK

IT
 M

AT
ER

IA
LS

 A
R

E
FO

R
 Y

O
U

R
 U

SE
 IN

 T
H

IS
 C

LA
SS

R
O

O
M

 O
N

LY
.

C
O

PY
IN

G
 e

KI
T

M
AT

ER
IA

LS
 F

R
O

M
 T

H
IS

 C
O

M
PU

TE
R

 IS
 S

TR
IC

TL
Y

PR
O

H
IB

IT
ED

A second method for creating a table is to apply the AS subquery clause, which both creates
the table and inserts rows returned from the subquery.

In the syntax:
table Is the name of the table
column Is the name of the column, default value, and integrity constraint
subquery Is the SELECT statement that defines the set of rows to be inserted into

the new table
Guidelines

• The table is created with the specified column names, and the rows retrieved by the
SELECT statement are inserted into the table.

• The column definition can contain only the column name and default value.

• If column specifications are given, the number of columns must equal the number of
columns in the subquery SELECT list.

• If no column specifications are given, the column names of the table are the same as
the column names in the subquery.

• The column data type definitions and the NOT NULL constraint are passed to the new
table. Note that only the explicit NOT NULL constraint will be inherited. The PRIMARY
KEY column will not pass the NOT NULL feature to the new column. Any other constraint
rules are not passed to the new table. However, you can add constraints in the column
definition.

Oracle Database 12c: SQL Workshop I 11 - 31

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

Creating a Table Using a Subquery

• Create a table and insert rows by combining the CREATE
TABLE statement and the AS subquery option.

• Match the number of specified columns to the number of
subquery columns.

• Define columns with column names and default values.

CREATE TABLE table
[(column, column...)]

AS subquery;

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 E

ga
bi

 S
ol

ut
io

ns
 u

se
 o

nl
y

TH
ES

E
eK

IT
 M

AT
ER

IA
LS

 A
R

E
FO

R
 Y

O
U

R
 U

SE
 IN

 T
H

IS
 C

LA
SS

R
O

O
M

 O
N

LY
.

C
O

PY
IN

G
 e

KI
T

M
AT

ER
IA

LS
 F

R
O

M
 T

H
IS

 C
O

M
PU

TE
R

 IS
 S

TR
IC

TL
Y

PR
O

H
IB

IT
ED

The example in the slide creates a table named DEPT80, which contains details of all the
employees working in department 80. Notice that the data for the DEPT80 table comes from
the EMPLOYEES table.

You can verify the existence of a database table and check the column definitions by using
the DESCRIBE command.

However, be sure to provide a column alias when selecting an expression. The expression
SALARY*12 is given the alias ANNSAL. Without the alias, the following error is generated:

Oracle Database 12c: SQL Workshop I 11 - 32

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

CREATE TABLE dept80
AS
SELECT employee_id, last_name,

salary*12 ANNSAL,
hire_date

FROM employees
WHERE department_id = 80;

Creating a Table Using a Subquery

DESCRIBE dept80

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 E

ga
bi

 S
ol

ut
io

ns
 u

se
 o

nl
y

TH
ES

E
eK

IT
 M

AT
ER

IA
LS

 A
R

E
FO

R
 Y

O
U

R
 U

SE
 IN

 T
H

IS
 C

LA
SS

R
O

O
M

 O
N

LY
.

C
O

PY
IN

G
 e

KI
T

M
AT

ER
IA

LS
 F

R
O

M
 T

H
IS

 C
O

M
PU

TE
R

 IS
 S

TR
IC

TL
Y

PR
O

H
IB

IT
ED

Oracle Database 12c: SQL Workshop I 11 - 33

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

Lesson Agenda

• Database objects
– Naming rules

• Data types
• CREATE TABLE statement

• Overview of constraints: NOT NULL, UNIQUE, PRIMARY
KEY, FOREIGN KEY, CHECK constraints

• Creating a table using a subquery
• ALTER TABLE statement

• DROP TABLE statement

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 E

ga
bi

 S
ol

ut
io

ns
 u

se
 o

nl
y

TH
ES

E
eK

IT
 M

AT
ER

IA
LS

 A
R

E
FO

R
 Y

O
U

R
 U

SE
 IN

 T
H

IS
 C

LA
SS

R
O

O
M

 O
N

LY
.

C
O

PY
IN

G
 e

KI
T

M
AT

ER
IA

LS
 F

R
O

M
 T

H
IS

 C
O

M
PU

TE
R

 IS
 S

TR
IC

TL
Y

PR
O

H
IB

IT
ED

After you create a table, you may need to change the table structure for any of the following
reasons:

• You omitted a column.

• Your column definition or its name needs to be changed.

• You need to remove columns.

• You want to put the table into the read-only mode

You can do this by using the ALTER TABLE statement.

Oracle Database 12c: SQL Workshop I 11 - 34

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

ALTER TABLE Statement

Use the ALTER TABLE statement to:

• Add a new column

• Modify an existing column definition

• Define a default value for the new column

• Drop a column

• Rename a column

• Change table to read-only status

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 E

ga
bi

 S
ol

ut
io

ns
 u

se
 o

nl
y

TH
ES

E
eK

IT
 M

AT
ER

IA
LS

 A
R

E
FO

R
 Y

O
U

R
 U

SE
 IN

 T
H

IS
 C

LA
SS

R
O

O
M

 O
N

LY
.

C
O

PY
IN

G
 e

KI
T

M
AT

ER
IA

LS
 F

R
O

M
 T

H
IS

 C
O

M
PU

TE
R

 IS
 S

TR
IC

TL
Y

PR
O

H
IB

IT
ED

You can add columns to a table, modify columns, and drop columns from a table by using the
ALTER TABLE statement.

In the syntax:

table Is the name of the table

ADD|MODIFY|DROP Is the type of modification

column Is the name of the column

datatype Is the data type and length of the column

DEFAULT expr Specifies the default value for a column

Oracle Database 12c: SQL Workshop I 11 - 35

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

ALTER TABLE Statement

Use the ALTER TABLE statement to add, modify, or drop
columns:

ALTER TABLE table
ADD (column datatype [DEFAULT expr]

[, column datatype]...);

ALTER TABLE table
MODIFY (column datatype [DEFAULT expr]

[, column datatype]...);

ALTER TABLE table
DROP (column [, column] …);

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 E

ga
bi

 S
ol

ut
io

ns
 u

se
 o

nl
y

TH
ES

E
eK

IT
 M

AT
ER

IA
LS

 A
R

E
FO

R
 Y

O
U

R
 U

SE
 IN

 T
H

IS
 C

LA
SS

R
O

O
M

 O
N

LY
.

C
O

PY
IN

G
 e

KI
T

M
AT

ER
IA

LS
 F

R
O

M
 T

H
IS

 C
O

M
PU

TE
R

 IS
 S

TR
IC

TL
Y

PR
O

H
IB

IT
ED

Oracle Database 12c: SQL Workshop I 11 - 36

Guidelines for Adding a Column
• You can add or modify columns.

• You cannot specify where the column is to appear. The new column becomes the last
column.

The example in the slide adds a column named JOB_ID to the DEPT80 table. The JOB_ID
column becomes the last column in the table.

Note: If a table already contains rows when a column is added, the new column is initially null
or takes the default value for all the rows. You can add a mandatory NOT NULL column to a
table that contains data in the other columns only if you specify a default value. You can add a
NOT NULL column to an empty table without the default value.

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

Adding a Column

• You use the ADD clause to add columns:

• The new column becomes the last column:

ALTER TABLE dept80
ADD (job_id VARCHAR2(9));

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 E

ga
bi

 S
ol

ut
io

ns
 u

se
 o

nl
y

TH
ES

E
eK

IT
 M

AT
ER

IA
LS

 A
R

E
FO

R
 Y

O
U

R
 U

SE
 IN

 T
H

IS
 C

LA
SS

R
O

O
M

 O
N

LY
.

C
O

PY
IN

G
 e

KI
T

M
AT

ER
IA

LS
 F

R
O

M
 T

H
IS

 C
O

M
PU

TE
R

 IS
 S

TR
IC

TL
Y

PR
O

H
IB

IT
ED

Oracle Database 12c: SQL Workshop I 11 - 37

You can modify a column definition by using the ALTER TABLE statement with the MODIFY
clause. Column modification can include changes to a column’s data type, size, and default
value.

Guidelines

• You can increase the width or precision of a numeric column.

• You can increase the width of character columns.

• You can decrease the width of a column if:

- The column contains only null values

- The table has no rows

- The decrease in column width is not less than the existing values in that column

• You can change the data type if the column contains only null values. The exception to
this is CHAR-to-VARCHAR2 conversions, which can be done with data in the columns.

• You can convert a CHAR column to the VARCHAR2 data type or convert a VARCHAR2
column to the CHAR data type only if the column contains null values or if you do not
change the size.

• A change to the default value of a column affects only subsequent insertions to the
table.

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

Modifying a Column

• You can change a column’s data type, size, and default
value.

• A change to the default value affects only subsequent
insertions to the table.

ALTER TABLE dept80
MODIFY (last_name VARCHAR2(30));

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 E

ga
bi

 S
ol

ut
io

ns
 u

se
 o

nl
y

TH
ES

E
eK

IT
 M

AT
ER

IA
LS

 A
R

E
FO

R
 Y

O
U

R
 U

SE
 IN

 T
H

IS
 C

LA
SS

R
O

O
M

 O
N

LY
.

C
O

PY
IN

G
 e

KI
T

M
AT

ER
IA

LS
 F

R
O

M
 T

H
IS

 C
O

M
PU

TE
R

 IS
 S

TR
IC

TL
Y

PR
O

H
IB

IT
ED

You can drop a column from a table by using the ALTER TABLE statement with the DROP
COLUMN clause.

Guidelines

• The column may or may not contain data.
• Using the ALTER TABLE DROP COLUMN statement, only one column can be dropped at a

time.

• The table must have at least one column remaining in it after it is altered.

• After a column is dropped, it cannot be recovered.

• A primary key that is referenced by another column cannot be dropped, unless the
cascade option is added.

• Dropping a column can take a while if the column has a large number of values. In this
case, it may be better to set it to be unused and drop it when there are fewer users on
the system to avoid extended locks.

Note: Certain columns can never be dropped, such as columns that form part of the
partitioning key of a partitioned table or columns that form part of the PRIMARY KEY of an
index-organized table. For more information about index-organized tables and partitioned
tables, refer to Oracle Database Concepts and Oracle Database Administrator’s Guide.

Oracle Database 12c: SQL Workshop I 11 - 38

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

Dropping a Column

Use the DROP COLUMN clause to drop columns that you no
longer need from the table:

ALTER TABLE dept80
DROP (job_id);

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 E

ga
bi

 S
ol

ut
io

ns
 u

se
 o

nl
y

TH
ES

E
eK

IT
 M

AT
ER

IA
LS

 A
R

E
FO

R
 Y

O
U

R
 U

SE
 IN

 T
H

IS
 C

LA
SS

R
O

O
M

 O
N

LY
.

C
O

PY
IN

G
 e

KI
T

M
AT

ER
IA

LS
 F

R
O

M
 T

H
IS

 C
O

M
PU

TE
R

 IS
 S

TR
IC

TL
Y

PR
O

H
IB

IT
ED

The SET UNUSED option marks one or more columns as unused so that they can be dropped
when the demand on system resources is lower. Specifying this clause does not actually
remove the target columns from each row in the table (that is, it does not restore the disk
space used by these columns). Therefore, the response time is faster than if you executed the
DROP clause. Unused columns are treated as if they were dropped, even though their column
data remains in the table’s rows. After a column has been marked as unused, you have no
access to that column. A SELECT * query will not retrieve data from unused columns. In
addition, the names and types of columns marked as unused will not be displayed during a
DESCRIBE statement, and you can add to the table a new column with the same name as an
unused column. The SET UNUSED information is stored in the USER_UNUSED_COL_TABS
dictionary view.

You can specify the ONLINE keyword to indicate that DML operations on the table will be
allowed while marking the column or columns UNUSED. The code example shows the use of
SET UNUSED COLUMN that sets a column unused forever using the ONLINE keyword.

ALTER TABLE dept80 SET UNUSED(hire_date)ONLINE;

Note: The guidelines for setting a column to be UNUSED are similar to those for dropping a
column.

Oracle Database 12c: SQL Workshop I 11 - 39

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

ALTER TABLE <table_name>
SET UNUSED(<column_name> [, <column_name>]);
OR
ALTER TABLE <table_name>
SET UNUSED COLUMN <column_name> [, <column_name>];

SET UNUSED Option

• You use the SET UNUSED option to mark one or more
columns as unused.

• You use the DROP UNUSED COLUMNS option to remove the
columns that are marked as unused.

• You can specify the ONLINE keyword to indicate that DML
operations on the table will be allowed while marking the
column or columns UNUSED.

ALTER TABLE <table_name>
DROP UNUSED COLUMNS;

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 E

ga
bi

 S
ol

ut
io

ns
 u

se
 o

nl
y

TH
ES

E
eK

IT
 M

AT
ER

IA
LS

 A
R

E
FO

R
 Y

O
U

R
 U

SE
 IN

 T
H

IS
 C

LA
SS

R
O

O
M

 O
N

LY
.

C
O

PY
IN

G
 e

KI
T

M
AT

ER
IA

LS
 F

R
O

M
 T

H
IS

 C
O

M
PU

TE
R

 IS
 S

TR
IC

TL
Y

PR
O

H
IB

IT
ED

DROP UNUSED COLUMNS Option

DROP UNUSED COLUMNS removes from the table all columns that are currently marked as
unused. You can use this statement when you want to reclaim the extra disk space from the
unused columns in the table. If the table contains no unused columns, the statement returns
with no errors.

ALTER TABLE dept80

SET UNUSED (last_name);

ALTER TABLE dept80

DROP UNUSED COLUMNS;

Note: You cannot specify the ONLINE clause when marking a column with a DEFERRABLE
constraint as unused. A subsequent DROP UNUSED COLUMNS will physically remove all unused
columns from a table, similar to a DROP COLUMN.

Oracle Database 12c: SQL Workshop I 11 - 40

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 E

ga
bi

 S
ol

ut
io

ns
 u

se
 o

nl
y

TH
ES

E
eK

IT
 M

AT
ER

IA
LS

 A
R

E
FO

R
 Y

O
U

R
 U

SE
 IN

 T
H

IS
 C

LA
SS

R
O

O
M

 O
N

LY
.

C
O

PY
IN

G
 e

KI
T

M
AT

ER
IA

LS
 F

R
O

M
 T

H
IS

 C
O

M
PU

TE
R

 IS
 S

TR
IC

TL
Y

PR
O

H
IB

IT
ED

With Oracle Database 11g, you can specify READ ONLY to place a table in read-only mode.
When the table is in READ ONLY mode, you cannot issue any DML statements that affect the
table or any SELECT ... FOR UPDATE statements. You can issue DDL statements as long as
they do not modify any data in the table. Operations on indexes associated with the table are
allowed when the table is in READ ONLY mode.

Specify READ/WRITE to return a read-only table to read/write mode.

Note: You can drop a table that is in READ ONLY mode. The DROP command is executed only
in the data dictionary, so access to the table contents is not required. The space used by the
table will not be reclaimed until the tablespace is made read/write again, and then the
required changes can be made to the block segment headers, and so on.

For information about the ALTER TABLE statement, see the course titled Oracle Database:
SQL Workshop II.

Oracle Database 12c: SQL Workshop I 11 - 41

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

Read-Only Tables

You can use the ALTER TABLE syntax to:

• Put a table in read-only mode, which prevents DDL or DML
changes during table maintenance

• Put the table back into read/write mode

ALTER TABLE employees READ ONLY;

-- perform table maintenance and then
-- return table back to read/write mode

ALTER TABLE employees READ WRITE;

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 E

ga
bi

 S
ol

ut
io

ns
 u

se
 o

nl
y

TH
ES

E
eK

IT
 M

AT
ER

IA
LS

 A
R

E
FO

R
 Y

O
U

R
 U

SE
 IN

 T
H

IS
 C

LA
SS

R
O

O
M

 O
N

LY
.

C
O

PY
IN

G
 e

KI
T

M
AT

ER
IA

LS
 F

R
O

M
 T

H
IS

 C
O

M
PU

TE
R

 IS
 S

TR
IC

TL
Y

PR
O

H
IB

IT
ED

Oracle Database 12c: SQL Workshop I 11 - 42

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

Lesson Agenda

• Database objects
– Naming rules

• Data types
• CREATE TABLE statement

• Overview of constraints: NOT NULL, UNIQUE, PRIMARY
KEY, FOREIGN KEY, CHECK constraints

• Creating a table using a subquery
• ALTER TABLE statement

• DROP TABLE statement

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 E

ga
bi

 S
ol

ut
io

ns
 u

se
 o

nl
y

TH
ES

E
eK

IT
 M

AT
ER

IA
LS

 A
R

E
FO

R
 Y

O
U

R
 U

SE
 IN

 T
H

IS
 C

LA
SS

R
O

O
M

 O
N

LY
.

C
O

PY
IN

G
 e

KI
T

M
AT

ER
IA

LS
 F

R
O

M
 T

H
IS

 C
O

M
PU

TE
R

 IS
 S

TR
IC

TL
Y

PR
O

H
IB

IT
ED

The DROP TABLE statement moves a table to the recycle bin or removes the table and all its
data from the database entirely. Unless you specify the PURGE clause, the DROP TABLE
statement does not result in space being released back to the tablespace for use by other
objects, and the space continues to count toward the user’s space quota. Dropping a table
invalidates the dependent objects and removes object privileges on the table.

When you drop a table, the database loses all the data in the table and all the indexes
associated with it.

Syntax

DROP TABLE table [PURGE]

In the syntax, table is the name of the table.

Guidelines

• All data is deleted from the table.

• Any views and synonyms remain, but are invalid.

• Any pending transactions are committed.
• Only the creator of the table or a user with the DROP ANY TABLE privilege can remove a

table.

Note: Use the FLASHBACK TABLE statement to restore a dropped table from the recycle bin.
This is discussed in detail in the course titled Oracle Database: SQL Workshop II.

Oracle Database 12c: SQL Workshop I 11 - 43

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

DROP TABLE dept80;

Dropping a Table

• Moves a table to the recycle bin
• Removes the table and all its data entirely if the PURGE

clause is specified

• Invalidates dependent objects and removes object
privileges on the table

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 E

ga
bi

 S
ol

ut
io

ns
 u

se
 o

nl
y

TH
ES

E
eK

IT
 M

AT
ER

IA
LS

 A
R

E
FO

R
 Y

O
U

R
 U

SE
 IN

 T
H

IS
 C

LA
SS

R
O

O
M

 O
N

LY
.

C
O

PY
IN

G
 e

KI
T

M
AT

ER
IA

LS
 F

R
O

M
 T

H
IS

 C
O

M
PU

TE
R

 IS
 S

TR
IC

TL
Y

PR
O

H
IB

IT
ED

Answer: a, b, d

Oracle Database 12c: SQL Workshop I 11 - 44

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

Quiz

To do which three of the following can you use constraints?

a. Enforce rules on the data in a table whenever a row is
inserted, updated, or deleted.

b. Prevent the dropping of a table.

c. Prevent the creation of a table.

d. Prevent the creation of data in a table.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 E

ga
bi

 S
ol

ut
io

ns
 u

se
 o

nl
y

TH
ES

E
eK

IT
 M

AT
ER

IA
LS

 A
R

E
FO

R
 Y

O
U

R
 U

SE
 IN

 T
H

IS
 C

LA
SS

R
O

O
M

 O
N

LY
.

C
O

PY
IN

G
 e

KI
T

M
AT

ER
IA

LS
 F

R
O

M
 T

H
IS

 C
O

M
PU

TE
R

 IS
 S

TR
IC

TL
Y

PR
O

H
IB

IT
ED

In this lesson, you should have learned how to do the following:

CREATE TABLE

• Use the CREATE TABLE statement to create a table and include constraints.

• Create a table based on another table by using a subquery.

DROP TABLE

• Remove rows and a table structure.

• When executed, this statement cannot be rolled back.

Oracle Database 12c: SQL Workshop I 11 - 45

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

Summary

In this lesson, you should have learned how to use the CREATE
TABLE, ALTER TABLE, and DROP TABLE statement to create a
table, modify a table and columns, and include constraints.

• Categorize the main database objects

• Review the table structure

• List the data types that are available for columns

• Create a simple table

• Explain how constraints are created at the time of table
creation

• Describe how schema objects work

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 E

ga
bi

 S
ol

ut
io

ns
 u

se
 o

nl
y

TH
ES

E
eK

IT
 M

AT
ER

IA
LS

 A
R

E
FO

R
 Y

O
U

R
 U

SE
 IN

 T
H

IS
 C

LA
SS

R
O

O
M

 O
N

LY
.

C
O

PY
IN

G
 e

KI
T

M
AT

ER
IA

LS
 F

R
O

M
 T

H
IS

 C
O

M
PU

TE
R

 IS
 S

TR
IC

TL
Y

PR
O

H
IB

IT
ED

You create new tables by using the CREATE TABLE statement and confirm that the new table
was added to the database. You also learn to set the status of a table as READ ONLY, and
then revert to READ/WRITE.

Note: For all DDL and DML statements, click the Run Script icon (or press F5) to execute the
query in SQL Developer. Thus, you get to see the feedback messages on the Script Output
tabbed page. For SELECT queries, continue to click the Execute Statement icon or press F9
to get the formatted output on the Results tabbed page.

Oracle Database 12c: SQL Workshop I 11 - 46

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

Practice 11: Overview

This practice covers the following topics:

• Creating new tables
• Creating a new table by using the CREATE TABLE AS

syntax

• Verifying that tables exist

• Altering tables

• Adding columns

• Dropping columns

• Setting a table to read-only status

• Dropping tables

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 E

ga
bi

 S
ol

ut
io

ns
 u

se
 o

nl
y

TH
ES

E
eK

IT
 M

AT
ER

IA
LS

 A
R

E
FO

R
 Y

O
U

R
 U

SE
 IN

 T
H

IS
 C

LA
SS

R
O

O
M

 O
N

LY
.

C
O

PY
IN

G
 e

KI
T

M
AT

ER
IA

LS
 F

R
O

M
 T

H
IS

 C
O

M
PU

TE
R

 IS
 S

TR
IC

TL
Y

PR
O

H
IB

IT
ED

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

Table Descriptions

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 E

ga
bi

 S
ol

ut
io

ns
 u

se
 o

nl
y

TH
ES

E
eK

IT
 M

AT
ER

IA
LS

 A
R

E
FO

R
 Y

O
U

R
 U

SE
 IN

 T
H

IS
 C

LA
SS

R
O

O
M

 O
N

LY
.

C
O

PY
IN

G
 e

KI
T

M
AT

ER
IA

LS
 F

R
O

M
 T

H
IS

 C
O

M
PU

TE
R

 IS
 S

TR
IC

TL
Y

PR
O

H
IB

IT
ED

Schema Description

Overall Description

The Oracle Database sample schemas portray a sample company that operates worldwide to
fill orders for several different products. The company has three divisions:

• Human Resources: Tracks information about the employees and facilities

• Order Entry: Tracks product inventories and sales through various channels

• Sales History: Tracks business statistics to facilitate business decisions

Each of these divisions is represented by a schema. In this course, you have access to the
objects in all the schemas. However, the emphasis of the examples, demonstrations, and
practices is on the Human Resources (HR) schema.

All scripts necessary to create the sample schemas reside in the
$ORACLE_HOME/demo/schema/ folder.

Human Resources (HR)

This is the schema that is used in this course. In the Human Resource (HR) records, each
employee has an identification number, email address, job identification code, salary, and
manager. Some employees earn commissions in addition to their salary.

The company also tracks information about the jobs within the organization. Each job has an
identification code, job title, and a minimum and maximum salary range for the job. Some
employees have been with the company for a long time and have held different positions
within the company. When an employee resigns, the duration the employee was working for,
the job identification number, and the department are recorded.

The sample company is regionally diverse, so it tracks the locations of its warehouses and
departments. Each employee is assigned to a department, and each department is identified
either by a unique department number or a short name. Each department is associated with
one location, and each location has a full address that includes the street name, postal code,
city, state or province, and the country code.

In places where the departments and warehouses are located, the company records details
such as the country name, currency symbol, currency name, and the region where the country
is located geographically.

Oracle Database 12c: SQL Workshop I A - 2

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 E

ga
bi

 S
ol

ut
io

ns
 u

se
 o

nl
y

TH
ES

E
eK

IT
 M

AT
ER

IA
LS

 A
R

E
FO

R
 Y

O
U

R
 U

SE
 IN

 T
H

IS
 C

LA
SS

R
O

O
M

 O
N

LY
.

C
O

PY
IN

G
 e

KI
T

M
AT

ER
IA

LS
 F

R
O

M
 T

H
IS

 C
O

M
PU

TE
R

 IS
 S

TR
IC

TL
Y

PR
O

H
IB

IT
ED

Human Resources (HR) Table Descriptions

DESCRIBE countries

SELECT * FROM countries

Oracle Database 12c: SQL Workshop I A - 3

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 E

ga
bi

 S
ol

ut
io

ns
 u

se
 o

nl
y

TH
ES

E
eK

IT
 M

AT
ER

IA
LS

 A
R

E
FO

R
 Y

O
U

R
 U

SE
 IN

 T
H

IS
 C

LA
SS

R
O

O
M

 O
N

LY
.

C
O

PY
IN

G
 e

KI
T

M
AT

ER
IA

LS
 F

R
O

M
 T

H
IS

 C
O

M
PU

TE
R

 IS
 S

TR
IC

TL
Y

PR
O

H
IB

IT
ED

DESCRIBE departments

SELECT * FROM departments

Oracle Database 12c: SQL Workshop I A - 4

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 E

ga
bi

 S
ol

ut
io

ns
 u

se
 o

nl
y

TH
ES

E
eK

IT
 M

AT
ER

IA
LS

 A
R

E
FO

R
 Y

O
U

R
 U

SE
 IN

 T
H

IS
 C

LA
SS

R
O

O
M

 O
N

LY
.

C
O

PY
IN

G
 e

KI
T

M
AT

ER
IA

LS
 F

R
O

M
 T

H
IS

 C
O

M
PU

TE
R

 IS
 S

TR
IC

TL
Y

PR
O

H
IB

IT
ED

DESCRIBE employees

SELECT * FROM employees

. . .

Oracle Database 12c: SQL Workshop I A - 5

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 E

ga
bi

 S
ol

ut
io

ns
 u

se
 o

nl
y

TH
ES

E
eK

IT
 M

AT
ER

IA
LS

 A
R

E
FO

R
 Y

O
U

R
 U

SE
 IN

 T
H

IS
 C

LA
SS

R
O

O
M

 O
N

LY
.

C
O

PY
IN

G
 e

KI
T

M
AT

ER
IA

LS
 F

R
O

M
 T

H
IS

 C
O

M
PU

TE
R

 IS
 S

TR
IC

TL
Y

PR
O

H
IB

IT
ED

DESCRIBE job_history

SELECT * FROM job_history

Oracle Database 12c: SQL Workshop I A - 6

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 E

ga
bi

 S
ol

ut
io

ns
 u

se
 o

nl
y

TH
ES

E
eK

IT
 M

AT
ER

IA
LS

 A
R

E
FO

R
 Y

O
U

R
 U

SE
 IN

 T
H

IS
 C

LA
SS

R
O

O
M

 O
N

LY
.

C
O

PY
IN

G
 e

KI
T

M
AT

ER
IA

LS
 F

R
O

M
 T

H
IS

 C
O

M
PU

TE
R

 IS
 S

TR
IC

TL
Y

PR
O

H
IB

IT
ED

DESCRIBE jobs

SELECT * FROM jobs

Oracle Database 12c: SQL Workshop I A - 7

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 E

ga
bi

 S
ol

ut
io

ns
 u

se
 o

nl
y

TH
ES

E
eK

IT
 M

AT
ER

IA
LS

 A
R

E
FO

R
 Y

O
U

R
 U

SE
 IN

 T
H

IS
 C

LA
SS

R
O

O
M

 O
N

LY
.

C
O

PY
IN

G
 e

KI
T

M
AT

ER
IA

LS
 F

R
O

M
 T

H
IS

 C
O

M
PU

TE
R

 IS
 S

TR
IC

TL
Y

PR
O

H
IB

IT
ED

DESCRIBE locations

SELECT * FROM locations

Oracle Database 12c: SQL Workshop I A - 8

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 E

ga
bi

 S
ol

ut
io

ns
 u

se
 o

nl
y

TH
ES

E
eK

IT
 M

AT
ER

IA
LS

 A
R

E
FO

R
 Y

O
U

R
 U

SE
 IN

 T
H

IS
 C

LA
SS

R
O

O
M

 O
N

LY
.

C
O

PY
IN

G
 e

KI
T

M
AT

ER
IA

LS
 F

R
O

M
 T

H
IS

 C
O

M
PU

TE
R

 IS
 S

TR
IC

TL
Y

PR
O

H
IB

IT
ED

DESCRIBE regions

SELECT * FROM regions

Oracle Database 12c: SQL Workshop I A - 9

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 E

ga
bi

 S
ol

ut
io

ns
 u

se
 o

nl
y

TH
ES

E
eK

IT
 M

AT
ER

IA
LS

 A
R

E
FO

R
 Y

O
U

R
 U

SE
 IN

 T
H

IS
 C

LA
SS

R
O

O
M

 O
N

LY
.

C
O

PY
IN

G
 e

KI
T

M
AT

ER
IA

LS
 F

R
O

M
 T

H
IS

 C
O

M
PU

TE
R

 IS
 S

TR
IC

TL
Y

PR
O

H
IB

IT
ED

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 E

ga
bi

 S
ol

ut
io

ns
 u

se
 o

nl
y

TH
ES

E
eK

IT
 M

AT
ER

IA
LS

 A
R

E
FO

R
 Y

O
U

R
 U

SE
 IN

 T
H

IS
 C

LA
SS

R
O

O
M

 O
N

LY
.

C
O

PY
IN

G
 e

KI
T

M
AT

ER
IA

LS
 F

R
O

M
 T

H
IS

 C
O

M
PU

TE
R

 IS
 S

TR
IC

TL
Y

PR
O

H
IB

IT
ED

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

Using SQL Developer

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 E

ga
bi

 S
ol

ut
io

ns
 u

se
 o

nl
y

TH
ES

E
eK

IT
 M

AT
ER

IA
LS

 A
R

E
FO

R
 Y

O
U

R
 U

SE
 IN

 T
H

IS
 C

LA
SS

R
O

O
M

 O
N

LY
.

C
O

PY
IN

G
 e

KI
T

M
AT

ER
IA

LS
 F

R
O

M
 T

H
IS

 C
O

M
PU

TE
R

 IS
 S

TR
IC

TL
Y

PR
O

H
IB

IT
ED

In this appendix, you are introduced to the graphical tool called SQL Developer. You learn
how to use SQL Developer for your database development tasks. You learn how to use SQL
Worksheet to execute SQL statements and SQL scripts.

Oracle Database 12c: SQL Workshop I B - 2

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

Objectives

After completing this appendix, you should be able to:

• List the key features of Oracle SQL Developer

• Identify the menu items of Oracle SQL Developer

• Create a database connection

• Manage database objects

• Use SQL Worksheet

• Save and run SQL scripts

• Create and save reports

• Browse the Data Modeling options in SQL Developer

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 E

ga
bi

 S
ol

ut
io

ns
 u

se
 o

nl
y

TH
ES

E
eK

IT
 M

AT
ER

IA
LS

 A
R

E
FO

R
 Y

O
U

R
 U

SE
 IN

 T
H

IS
 C

LA
SS

R
O

O
M

 O
N

LY
.

C
O

PY
IN

G
 e

KI
T

M
AT

ER
IA

LS
 F

R
O

M
 T

H
IS

 C
O

M
PU

TE
R

 IS
 S

TR
IC

TL
Y

PR
O

H
IB

IT
ED

Oracle SQL Developer is a free graphical tool designed to improve your productivity and
simplify the development of everyday database tasks. With just a few clicks, you can easily
create and debug stored procedures, test SQL statements, and view optimizer plans.

SQL Developer, which is the visual tool for database development, simplifies the following
tasks:

• Browsing and managing database objects

• Executing SQL statements and scripts

• Editing and debugging PL/SQL statements

• Creating reports

You can connect to any target Oracle database schema by using standard Oracle database
authentication. When connected, you can perform operations on objects in the database.

SQL Developer is the interface to administer the Oracle Application Express Listener. The
new interface enables you to specify global settings and multiple database settings with
different database connections for the Application Express Listener. SQL Developer provides
the option to drag and drop objects by table or column name onto the worksheet. It provides
improved DB Diff comparison options, GRANT statements support in the SQL editor, and DB
Doc reporting. Additionally, SQL Developer includes support for Oracle Database 12c
features.

Oracle Database 12c: SQL Workshop I B - 3

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

What Is Oracle SQL Developer?

• Oracle SQL Developer is a graphical tool that enhances
productivity and simplifies database development tasks.

• You can connect to any target Oracle database schema by
using standard Oracle database authentication.

SQL Developer

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 E

ga
bi

 S
ol

ut
io

ns
 u

se
 o

nl
y

TH
ES

E
eK

IT
 M

AT
ER

IA
LS

 A
R

E
FO

R
 Y

O
U

R
 U

SE
 IN

 T
H

IS
 C

LA
SS

R
O

O
M

 O
N

LY
.

C
O

PY
IN

G
 e

KI
T

M
AT

ER
IA

LS
 F

R
O

M
 T

H
IS

 C
O

M
PU

TE
R

 IS
 S

TR
IC

TL
Y

PR
O

H
IB

IT
ED

Oracle SQL Developer is shipped along with Oracle Database 12c Release 1 by default. SQL
Developer is developed in Java, leveraging the Oracle JDeveloper integrated development
environment (IDE). Therefore, it is a cross-platform tool. The tool runs on Windows, Linux,
and Mac operating system (OS) X platforms.

The default connectivity to the database is through the Java Database Connectivity (JDBC)
Thin driver, and therefore, no Oracle Home is required. SQL Developer does not require an
installer and you need to simply unzip the downloaded file. With SQL Developer, users can
connect to Oracle Databases 9.2.0.1 and later, and all Oracle database editions, including
Express Edition.

Note

For Oracle Database 12c Release 1, you will have to download and install SQL Developer.
SQL Developer is freely downloadable from the following link:

http://www.oracle.com/technetwork/developer-tools/sql-developer/downloads/index.html

For instructions on how to install SQL Developer, see the website at:

http://www.oracle.com/technetwork/developer-tools/sql-developer/overview/index.html

Oracle Database 12c: SQL Workshop I B - 4

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

Specifications of SQL Developer

• Is shipped along with Oracle Database 12c Release 1

• Is developed in Java

• Supports Windows, Linux, and Mac OS X platforms

• Enables default connectivity using the JDBC Thin driver

• Connects to Oracle Database version 9.2.0.1 and later

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 E

ga
bi

 S
ol

ut
io

ns
 u

se
 o

nl
y

TH
ES

E
eK

IT
 M

AT
ER

IA
LS

 A
R

E
FO

R
 Y

O
U

R
 U

SE
 IN

 T
H

IS
 C

LA
SS

R
O

O
M

 O
N

LY
.

C
O

PY
IN

G
 e

KI
T

M
AT

ER
IA

LS
 F

R
O

M
 T

H
IS

 C
O

M
PU

TE
R

 IS
 S

TR
IC

TL
Y

PR
O

H
IB

IT
ED

The SQL Developer interface contains three main navigation tabs, from left to right:

• Connections tab: By using this tab, you can browse database objects and users to
which you have access.

• Reports tab: Identified by the Reports icon, this tab enables you to run predefined
reports or create and add your own reports.

• Files tab: Identified by the Files folder icon, this tab enables you to access files from
your local machine without having to use the File > Open menu.

General Navigation and Use

SQL Developer uses the left side for navigation to find and select objects, and the right side to
display information about selected objects. You can customize many aspects of the
appearance and behavior of SQL Developer by setting preferences.

Note: You need to define at least one connection to be able to connect to a database schema
and issue SQL queries or run procedures and functions.

Oracle Database 12c: SQL Workshop I B - 5

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

SQL Developer 3.2 Interface

You must define a
connection to start

using SQL Developer
for running SQL

queries on a
database schema.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 E

ga
bi

 S
ol

ut
io

ns
 u

se
 o

nl
y

TH
ES

E
eK

IT
 M

AT
ER

IA
LS

 A
R

E
FO

R
 Y

O
U

R
 U

SE
 IN

 T
H

IS
 C

LA
SS

R
O

O
M

 O
N

LY
.

C
O

PY
IN

G
 e

KI
T

M
AT

ER
IA

LS
 F

R
O

M
 T

H
IS

 C
O

M
PU

TE
R

 IS
 S

TR
IC

TL
Y

PR
O

H
IB

IT
ED

Menus

The following menus contain standard entries, plus entries for features that are specific to
SQL Developer:

• View: Contains options that affect what is displayed in the SQL Developer interface

• Navigate: Contains options for navigating to panes and for executing subprograms

• Run: Contains the Run File and Execution Profile options that are relevant when a
function or procedure is selected, and also debugging options

• Versioning: Provides integrated support for the following versioning and source control
systems – Concurrent Versions System (CVS) and Subversion

• Tools: Invokes SQL Developer tools such as SQL*Plus, Preferences, and SQL
Worksheet. It also contains options related to migrating third-party databases to Oracle.

Note: The Run menu also contains options that are relevant when a function or procedure is
selected for debugging.

Oracle Database 12c: SQL Workshop I B - 6

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 E

ga
bi

 S
ol

ut
io

ns
 u

se
 o

nl
y

TH
ES

E
eK

IT
 M

AT
ER

IA
LS

 A
R

E
FO

R
 Y

O
U

R
 U

SE
 IN

 T
H

IS
 C

LA
SS

R
O

O
M

 O
N

LY
.

C
O

PY
IN

G
 e

KI
T

M
AT

ER
IA

LS
 F

R
O

M
 T

H
IS

 C
O

M
PU

TE
R

 IS
 S

TR
IC

TL
Y

PR
O

H
IB

IT
ED

A connection is a SQL Developer object that specifies the necessary information for
connecting to a specific database as a specific user of that database. To use SQL Developer,
you must have at least one database connection, which may be existing, created, or imported.

You can create and test connections for multiple databases and for multiple schemas.

By default, the tnsnames.ora file is located in the $ORACLE_HOME/network/admin
directory, but it can also be in the directory specified by the TNS_ADMIN environment variable
or registry value. When you start SQL Developer and open the Database Connections dialog
box, SQL Developer automatically imports any connections defined in the tnsnames.ora file
on your system.

Note: On Windows, if the tnsnames.ora file exists, but its connections are not being used
by SQL Developer, define TNS_ADMIN as a system environment variable.

You can export connections to an XML file so that you can reuse it.

You can create additional connections as different users to the same database or to connect
to the different databases.

Oracle Database 12c: SQL Workshop I B - 7

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

Creating a Database Connection

• You must have at least one database connection to use
SQL Developer.

• You can create and test connections for:
– Multiple databases

– Multiple schemas

• SQL Developer automatically imports any connections
defined in the tnsnames.ora file on your system.

• You can export connections to an Extensible Markup
Language (XML) file.

• Each additional database connection created is listed in
the Connections Navigator hierarchy.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 E

ga
bi

 S
ol

ut
io

ns
 u

se
 o

nl
y

TH
ES

E
eK

IT
 M

AT
ER

IA
LS

 A
R

E
FO

R
 Y

O
U

R
 U

SE
 IN

 T
H

IS
 C

LA
SS

R
O

O
M

 O
N

LY
.

C
O

PY
IN

G
 e

KI
T

M
AT

ER
IA

LS
 F

R
O

M
 T

H
IS

 C
O

M
PU

TE
R

 IS
 S

TR
IC

TL
Y

PR
O

H
IB

IT
ED

To create a database connection, perform the following steps:

1. On the Connections tabbed page, right-click Connections and select New Connection.

2. In the New/Select Database Connection window, enter the connection name. Enter the
username and password of the schema that you want to connect to.

a. From the Role drop-down list, you can select either default or SYSDBA. (You
choose SYSDBA for the sys user or any user with database administrator
privileges.)

b. You can select the connection type as:

Basic: In this type, enter host name and SID for the database that you want to
connect to. Port is already set to 1521. You can also choose to enter the Service
name directly if you use a remote database connection.

TNS: You can select any one of the database aliases imported from the
tnsnames.ora file.

LDAP: You can look up database services in Oracle Internet Directory, which is a
component of Oracle Identity Management.

Advanced: You can define a custom Java Database Connectivity (JDBC) URL to
connect to the database.

Oracle Database 12c: SQL Workshop I B - 8

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

Creating a Database Connection

2

3

1

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 E

ga
bi

 S
ol

ut
io

ns
 u

se
 o

nl
y

TH
ES

E
eK

IT
 M

AT
ER

IA
LS

 A
R

E
FO

R
 Y

O
U

R
 U

SE
 IN

 T
H

IS
 C

LA
SS

R
O

O
M

 O
N

LY
.

C
O

PY
IN

G
 e

KI
T

M
AT

ER
IA

LS
 F

R
O

M
 T

H
IS

 C
O

M
PU

TE
R

 IS
 S

TR
IC

TL
Y

PR
O

H
IB

IT
ED

Local/Bequeath: If the client and database exist on the same computer, a client
connection can be passed directly to a dedicated server process without going
through the listener.

c. Click Test to ensure that the connection has been set correctly.

d. Click Connect.

If you select the Save Password check box, the password is saved to an XML file. So,
after you close the SQL Developer connection and open it again, you are not prompted
for the password.

3. The connection gets added in the Connections Navigator. You can expand the
connection to view the database objects and view object definitions(dependencies,
details, statistics, and so on).

Note: From the same New/Select Database Connection window, you can define connections
to non-Oracle data sources using the Access, MySQL, and SQL Server tabs. However, these
connections are read-only connections that enable you to browse objects and data in that
data source.

Oracle Database 12c: SQL Workshop I B - 9

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 E

ga
bi

 S
ol

ut
io

ns
 u

se
 o

nl
y

TH
ES

E
eK

IT
 M

AT
ER

IA
LS

 A
R

E
FO

R
 Y

O
U

R
 U

SE
 IN

 T
H

IS
 C

LA
SS

R
O

O
M

 O
N

LY
.

C
O

PY
IN

G
 e

KI
T

M
AT

ER
IA

LS
 F

R
O

M
 T

H
IS

 C
O

M
PU

TE
R

 IS
 S

TR
IC

TL
Y

PR
O

H
IB

IT
ED

After you create a database connection, you can use the Connections Navigator to browse
through many objects in a database schema, including Tables, Views, Indexes, Packages,
Procedures, Triggers, and Types.

SQL Developer uses the left side for navigation to find and select objects, and the right side to
display information about the selected objects. You can customize many aspects of the
appearance of SQL Developer by setting preferences.

You can see the definition of the objects broken into tabs of information that is pulled out of
the data dictionary. For example, if you select a table in the Navigator, details about columns,
constraints, grants, statistics, triggers, and so on are displayed on an easy-to-read tabbed
page.

If you want to see the definition of the EMPLOYEES table as shown in the slide, perform the
following steps:

1. Expand the Connections node in the Connections Navigator.

2. Expand Tables.

3. Click EMPLOYEES. By default, the Columns tab is selected. It shows the column
description of the table. Using the Data tab, you can view the table data and also enter
new rows, update data, and commit these changes to the database.

Oracle Database 12c: SQL Workshop I B - 10

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

Browsing Database Objects

Use the Connections Navigator to:
• Browse through many objects in a database schema
• Review the definitions of objects at a glance

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 E

ga
bi

 S
ol

ut
io

ns
 u

se
 o

nl
y

TH
ES

E
eK

IT
 M

AT
ER

IA
LS

 A
R

E
FO

R
 Y

O
U

R
 U

SE
 IN

 T
H

IS
 C

LA
SS

R
O

O
M

 O
N

LY
.

C
O

PY
IN

G
 e

KI
T

M
AT

ER
IA

LS
 F

R
O

M
 T

H
IS

 C
O

M
PU

TE
R

 IS
 S

TR
IC

TL
Y

PR
O

H
IB

IT
ED

In SQL Developer, you can also display the structure of a table using the DESCRIBE
command. The result of the command is a display of column names and data types, as well
as an indication of whether a column must contain data.

Oracle Database 12c: SQL Workshop I B - 11

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

Displaying the Table Structure

Use the DESCRIBE command to display the structure of a table:

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 E

ga
bi

 S
ol

ut
io

ns
 u

se
 o

nl
y

TH
ES

E
eK

IT
 M

AT
ER

IA
LS

 A
R

E
FO

R
 Y

O
U

R
 U

SE
 IN

 T
H

IS
 C

LA
SS

R
O

O
M

 O
N

LY
.

C
O

PY
IN

G
 e

KI
T

M
AT

ER
IA

LS
 F

R
O

M
 T

H
IS

 C
O

M
PU

TE
R

 IS
 S

TR
IC

TL
Y

PR
O

H
IB

IT
ED

Browsing Database Objects

You can use the File Navigator to browse and open system files.

• To view the File Navigator, click the View tab and select Files, or select View > Files.

• To view the contents of a file, double-click a file name to display its contents in the SQL
Worksheet area.

Oracle Database 12c: SQL Workshop I B - 12

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

Browsing Files

Use the File Navigator to explore the file system and open
system files.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 E

ga
bi

 S
ol

ut
io

ns
 u

se
 o

nl
y

TH
ES

E
eK

IT
 M

AT
ER

IA
LS

 A
R

E
FO

R
 Y

O
U

R
 U

SE
 IN

 T
H

IS
 C

LA
SS

R
O

O
M

 O
N

LY
.

C
O

PY
IN

G
 e

KI
T

M
AT

ER
IA

LS
 F

R
O

M
 T

H
IS

 C
O

M
PU

TE
R

 IS
 S

TR
IC

TL
Y

PR
O

H
IB

IT
ED

SQL Developer supports the creation of any schema object by executing a SQL statement in
SQL Worksheet. Alternatively, you can create objects by using the context menus. When
created, you can edit objects using an edit dialog box or one of the many context-sensitive
menus.

As new objects are created or existing objects are edited, the DDL for those adjustments is
available for review. An Export DDL option is available if you want to create the full DDL for
one or more objects in the schema.

The slide shows how to create a table using the context menu. To open a dialog box for
creating a new table, right-click Tables and select New Table. The dialog boxes to create and
edit database objects have multiple tabs, each reflecting a logical grouping of properties for
that type of object.

Oracle Database 12c: SQL Workshop I B - 13

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

Creating a Schema Object

• SQL Developer supports the creation of any schema
object by:
– Executing a SQL statement in SQL Worksheet

– Using the context menu

• Edit the objects by using an edit dialog box or one of the
many context-sensitive menus.

• View the data definition language (DDL) for adjustments
such as creating a new object or editing an existing
schema object.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 E

ga
bi

 S
ol

ut
io

ns
 u

se
 o

nl
y

TH
ES

E
eK

IT
 M

AT
ER

IA
LS

 A
R

E
FO

R
 Y

O
U

R
 U

SE
 IN

 T
H

IS
 C

LA
SS

R
O

O
M

 O
N

LY
.

C
O

PY
IN

G
 e

KI
T

M
AT

ER
IA

LS
 F

R
O

M
 T

H
IS

 C
O

M
PU

TE
R

 IS
 S

TR
IC

TL
Y

PR
O

H
IB

IT
ED

In the Create Table dialog box, if you do not select the Advanced check box, you can create a
table quickly by specifying columns and some frequently used features.

If you select the Advanced check box, the Create Table dialog box changes to one with
multiple options, in which you can specify an extended set of features while you create the
table.

The example in the slide shows how to create the DEPENDENTS table by selecting the
Advanced check box.

To create a new table, perform the following steps:

1. In the Connections Navigator, right-click Tables and select Create TABLE.

2. In the Create Table dialog box, select Advanced.

3. Specify the column information.

4. Click OK.

Although it is not required, you should also specify a primary key by using the Primary Key tab
in the dialog box. Sometimes, you may want to edit the table that you have created; to do so,
right-click the table in the Connections Navigator and select Edit.

Oracle Database 12c: SQL Workshop I B - 14

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

Creating a New Table: Example

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 E

ga
bi

 S
ol

ut
io

ns
 u

se
 o

nl
y

TH
ES

E
eK

IT
 M

AT
ER

IA
LS

 A
R

E
FO

R
 Y

O
U

R
 U

SE
 IN

 T
H

IS
 C

LA
SS

R
O

O
M

 O
N

LY
.

C
O

PY
IN

G
 e

KI
T

M
AT

ER
IA

LS
 F

R
O

M
 T

H
IS

 C
O

M
PU

TE
R

 IS
 S

TR
IC

TL
Y

PR
O

H
IB

IT
ED

When you connect to a database, a SQL Worksheet window for that connection automatically
opens. You can use the SQL Worksheet to enter and execute SQL, PL/SQL, and SQL*Plus
statements. The SQL Worksheet supports SQL*Plus statements to a certain extent. SQL*Plus
statements that are not supported by the SQL Worksheet are ignored and not passed to the
database.

You can specify the actions that can be processed by the database connection associated
with the worksheet, such as:

• Creating a table

• Inserting data

• Creating and editing a trigger

• Selecting data from a table

• Saving the selected data to a file

You can display a SQL Worksheet by using one of the following:

• Select Tools > SQL Worksheet.

• Click the Open SQL Worksheet icon.

Oracle Database 12c: SQL Workshop I B - 15

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

Using the SQL Worksheet

• Use the SQL Worksheet to enter and execute SQL,
PL/SQL, and SQL *Plus statements.

• Specify any actions that can be processed by the database
connection associated with the worksheet.

Or, click the Open
SQL Worksheet
icon.

Select SQL Worksheet
from the Tools menu.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 E

ga
bi

 S
ol

ut
io

ns
 u

se
 o

nl
y

TH
ES

E
eK

IT
 M

AT
ER

IA
LS

 A
R

E
FO

R
 Y

O
U

R
 U

SE
 IN

 T
H

IS
 C

LA
SS

R
O

O
M

 O
N

LY
.

C
O

PY
IN

G
 e

KI
T

M
AT

ER
IA

LS
 F

R
O

M
 T

H
IS

 C
O

M
PU

TE
R

 IS
 S

TR
IC

TL
Y

PR
O

H
IB

IT
ED

You may want to use the shortcut keys or icons to perform certain tasks such as executing a
SQL statement, running a script, and viewing the history of the SQL statements that you have
executed. You can use the SQL Worksheet toolbar that contains icons to perform the
following tasks:

1. Run Statement: Executes the statement where the cursor is located in the Enter SQL
Statement box. You can use bind variables in the SQL statements, but not substitution
variables.

2. Run Script: Executes all the statements in the Enter SQL Statement box by using the
Script Runner. You can use substitution variables in the SQL statements, but not bind
variables.

3. Autotrace: Generates trace information for the statement
4. Explain Plan: Generates the execution plan, which you can see by clicking the Explain

tab
5. SQL Tuning Advisory: Analyzes high-volume SQL statements and offers tuning

recommendations
6. Commit: Writes any changes to the database and ends the transaction
7. Rollback: Discards any changes to the database, without writing them to the database,

and ends the transaction

Oracle Database 12c: SQL Workshop I B - 16

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

Using the SQL Worksheet

2

3

4 6

7

8

95 11

10

1

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 E

ga
bi

 S
ol

ut
io

ns
 u

se
 o

nl
y

TH
ES

E
eK

IT
 M

AT
ER

IA
LS

 A
R

E
FO

R
 Y

O
U

R
 U

SE
 IN

 T
H

IS
 C

LA
SS

R
O

O
M

 O
N

LY
.

C
O

PY
IN

G
 e

KI
T

M
AT

ER
IA

LS
 F

R
O

M
 T

H
IS

 C
O

M
PU

TE
R

 IS
 S

TR
IC

TL
Y

PR
O

H
IB

IT
ED

8. Unshared SQL Worksheet: Creates a separate unshared SQL Worksheet for a
connection

9. To Upper/Lower/InitCap: Changes the selected text to uppercase, lowercase, or
initcap, respectively

10. Clear: Erases the statement or statements in the Enter SQL Statement box
11. SQL History: Displays a dialog box with information about the SQL statements that you

have executed

Oracle Database 12c: SQL Workshop I B - 17

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 E

ga
bi

 S
ol

ut
io

ns
 u

se
 o

nl
y

TH
ES

E
eK

IT
 M

AT
ER

IA
LS

 A
R

E
FO

R
 Y

O
U

R
 U

SE
 IN

 T
H

IS
 C

LA
SS

R
O

O
M

 O
N

LY
.

C
O

PY
IN

G
 e

KI
T

M
AT

ER
IA

LS
 F

R
O

M
 T

H
IS

 C
O

M
PU

TE
R

 IS
 S

TR
IC

TL
Y

PR
O

H
IB

IT
ED

When you connect to a database, a SQL Worksheet window for that connection automatically
opens. You can use the SQL Worksheet to enter and execute SQL, PL/SQL, and SQL*Plus
statements. All SQL and PL/SQL commands are supported as they are passed directly from
the SQL Worksheet to the Oracle database. The SQL*Plus commands that are used in SQL
Developer must be interpreted by the SQL Worksheet before being passed to the database.

The SQL Worksheet currently supports a number of SQL*Plus commands. Commands that
are not supported by the SQL Worksheet are ignored and not sent to the Oracle database.
Through the SQL Worksheet, you can execute the SQL statements and some of the
SQL*Plus commands.

Oracle Database 12c: SQL Workshop I B - 18

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

Using the SQL Worksheet

• Use the SQL Worksheet to enter and execute SQL,
PL/SQL, and SQL*Plus statements.

• Specify any actions that can be processed by the database
connection associated with the worksheet.

Enter SQL
statements.

Results are
shown here.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 E

ga
bi

 S
ol

ut
io

ns
 u

se
 o

nl
y

TH
ES

E
eK

IT
 M

AT
ER

IA
LS

 A
R

E
FO

R
 Y

O
U

R
 U

SE
 IN

 T
H

IS
 C

LA
SS

R
O

O
M

 O
N

LY
.

C
O

PY
IN

G
 e

KI
T

M
AT

ER
IA

LS
 F

R
O

M
 T

H
IS

 C
O

M
PU

TE
R

 IS
 S

TR
IC

TL
Y

PR
O

H
IB

IT
ED

The example in the slide shows the difference in output for the same query when the F9 key
or Execute Statement is used versus the output when F5 or Run Script is used.

Oracle Database 12c: SQL Workshop I B - 19

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

Executing SQL Statements

Use the Enter SQL Statement box to enter single or multiple
SQL statements.

F9 F5

F9

F5

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 E

ga
bi

 S
ol

ut
io

ns
 u

se
 o

nl
y

TH
ES

E
eK

IT
 M

AT
ER

IA
LS

 A
R

E
FO

R
 Y

O
U

R
 U

SE
 IN

 T
H

IS
 C

LA
SS

R
O

O
M

 O
N

LY
.

C
O

PY
IN

G
 e

KI
T

M
AT

ER
IA

LS
 F

R
O

M
 T

H
IS

 C
O

M
PU

TE
R

 IS
 S

TR
IC

TL
Y

PR
O

H
IB

IT
ED

You can save your SQL statements from the SQL Worksheet to a text file. To save the
contents of the Enter SQL Statement box, perform the following steps:

1. Click the Save icon or use the File > Save menu item.

2. In the Save dialog box, enter a file name and the location where you want the file saved.

3. Click Save.

After you save the contents to a file, the Enter SQL Statement window displays a tabbed page
of your file contents. You can have multiple files open at the same time. Each file displays as
a tabbed page.

Script Pathing

You can select a default path to look for scripts and to save scripts. Under Tools >
Preferences > Database > Worksheet Parameters, enter a value in the “Select default path to
look for scripts” field.

Oracle Database 12c: SQL Workshop I B - 20

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

Saving SQL Scripts

Click the Save icon to
save your SQL
statement to a file.

The contents of the saved
file are visible and editable
in your SQL Worksheet
window.

Identify a location,
enter a file name,
and click Save.

1

2

3

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 E

ga
bi

 S
ol

ut
io

ns
 u

se
 o

nl
y

TH
ES

E
eK

IT
 M

AT
ER

IA
LS

 A
R

E
FO

R
 Y

O
U

R
 U

SE
 IN

 T
H

IS
 C

LA
SS

R
O

O
M

 O
N

LY
.

C
O

PY
IN

G
 e

KI
T

M
AT

ER
IA

LS
 F

R
O

M
 T

H
IS

 C
O

M
PU

TE
R

 IS
 S

TR
IC

TL
Y

PR
O

H
IB

IT
ED

To open a script file and display the code in the SQL Worksheet area, perform the following
steps:

1. In the files navigator, select (or navigate to) the script file that you want to open.

2. Double-click the file to open it. The code of the script file is displayed in the SQL
Worksheet area.

3. Select a connection from the connection drop-down list.

4. To run the code, click the Run Script (F5) icon on the SQL Worksheet toolbar. If you
have not selected a connection from the connection drop-down list, a connection dialog
box will appear. Select the connection that you want to use for the script execution.

Alternatively, you can also do the following:

1. Select File > Open. The Open dialog box is displayed.

2. In the Open dialog box, select (or navigate to) the script file that you want to open.

3. Click Open. The code of the script file is displayed in the SQL Worksheet area.

4. Select a connection from the connection drop-down list.

5. To run the code, click the Run Script (F5) icon on the SQL Worksheet toolbar. If you
have not selected a connection from the connection drop-down list, a connection dialog
box will appear. Select the connection that you want to use for the script execution.

Oracle Database 12c: SQL Workshop I B - 21

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

Executing Saved Script Files: Method 1

1. Use the Files tab to locate the script
file that you want to open.

2. Double-click the script to display the
code in the SQL Worksheet.

To run the code, click either:

• Execute Script (F9), or

• Run Script (F5)

1

3
Select a connection from

the drop-down list.

2

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 E

ga
bi

 S
ol

ut
io

ns
 u

se
 o

nl
y

TH
ES

E
eK

IT
 M

AT
ER

IA
LS

 A
R

E
FO

R
 Y

O
U

R
 U

SE
 IN

 T
H

IS
 C

LA
SS

R
O

O
M

 O
N

LY
.

C
O

PY
IN

G
 e

KI
T

M
AT

ER
IA

LS
 F

R
O

M
 T

H
IS

 C
O

M
PU

TE
R

 IS
 S

TR
IC

TL
Y

PR
O

H
IB

IT
ED

To run a saved SQL script, perform the following steps:

1. Use the @ command followed by the location and the name of the file that you want to
run in the Enter SQL Statement window.

2. Click the Run Script icon.

The results from running the file are displayed on the Script Output tabbed page. You can
also save the script output by clicking the Save icon on the Script Output tabbed page. The
File Save dialog box appears and you can identify a name and location for your file.

Oracle Database 12c: SQL Workshop I B - 22

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

Executing Saved Script Files: Method 2

Use the @ command
followed by the location and
name of the file that you
want to execute and click
the Run Script icon.

The output from the
script is displayed on
the Script Output
tabbed page.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 E

ga
bi

 S
ol

ut
io

ns
 u

se
 o

nl
y

TH
ES

E
eK

IT
 M

AT
ER

IA
LS

 A
R

E
FO

R
 Y

O
U

R
 U

SE
 IN

 T
H

IS
 C

LA
SS

R
O

O
M

 O
N

LY
.

C
O

PY
IN

G
 e

KI
T

M
AT

ER
IA

LS
 F

R
O

M
 T

H
IS

 C
O

M
PU

TE
R

 IS
 S

TR
IC

TL
Y

PR
O

H
IB

IT
ED

You may want to format the indentation, spacing, capitalization, and line separation of the
SQL code. SQL Developer has a feature for formatting SQL code.

To format the SQL code, right-click in the statement area and select Format.

In the example in the slide, before formatting, the SQL code has the keywords not capitalized
and the statement not properly indented. After formatting, the SQL code is beautified with the
keywords capitalized and the statement properly indented.

Oracle Database 12c: SQL Workshop I B - 23

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

Formatting the SQL Code

Before
formatting

After
formatting

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 E

ga
bi

 S
ol

ut
io

ns
 u

se
 o

nl
y

TH
ES

E
eK

IT
 M

AT
ER

IA
LS

 A
R

E
FO

R
 Y

O
U

R
 U

SE
 IN

 T
H

IS
 C

LA
SS

R
O

O
M

 O
N

LY
.

C
O

PY
IN

G
 e

KI
T

M
AT

ER
IA

LS
 F

R
O

M
 T

H
IS

 C
O

M
PU

TE
R

 IS
 S

TR
IC

TL
Y

PR
O

H
IB

IT
ED

You may want to use certain code fragments when you use the SQL Worksheet or create or
edit a PL/SQL function or procedure. SQL Developer has a feature called Snippets. Snippets
are code fragments such as SQL functions, optimizer hints, and miscellaneous PL/SQL
programming techniques. You can drag snippets to the Editor window.

To display Snippets, select View > Snippets.

The Snippets window is displayed on the right. You can use the drop-down list to select a
group. A Snippets button is placed in the right window margin, so that you can display the
Snippets window if it becomes hidden.

Oracle Database 12c: SQL Workshop I B - 24

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

Using Snippets

Snippets are code fragments that may be just syntax or
examples.

When you place your cursor here, it
shows the Snippets window. From the

drop-down list, you can select the
functions category that you want.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 E

ga
bi

 S
ol

ut
io

ns
 u

se
 o

nl
y

TH
ES

E
eK

IT
 M

AT
ER

IA
LS

 A
R

E
FO

R
 Y

O
U

R
 U

SE
 IN

 T
H

IS
 C

LA
SS

R
O

O
M

 O
N

LY
.

C
O

PY
IN

G
 e

KI
T

M
AT

ER
IA

LS
 F

R
O

M
 T

H
IS

 C
O

M
PU

TE
R

 IS
 S

TR
IC

TL
Y

PR
O

H
IB

IT
ED

To insert a Snippet into your code in a SQL Worksheet or in a PL/SQL function or procedure,
drag the snippet from the Snippets window to the desired place in your code. Then you can
edit the syntax so that the SQL function is valid in the current context. To see a brief
description of a SQL function in a tool tip, place the cursor over the function name.

The example in the slide shows that CONCAT(char1, char2)is dragged from the Character
Functions group in the Snippets window. Then the CONCAT function syntax is edited and the
rest of the statement is added as in the following:

SELECT CONCAT(first_name, last_name)

FROM employees;

Oracle Database 12c: SQL Workshop I B - 25

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

Using Snippets: Example

Inserting a
snippet

Editing the
snippet

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 E

ga
bi

 S
ol

ut
io

ns
 u

se
 o

nl
y

TH
ES

E
eK

IT
 M

AT
ER

IA
LS

 A
R

E
FO

R
 Y

O
U

R
 U

SE
 IN

 T
H

IS
 C

LA
SS

R
O

O
M

 O
N

LY
.

C
O

PY
IN

G
 e

KI
T

M
AT

ER
IA

LS
 F

R
O

M
 T

H
IS

 C
O

M
PU

TE
R

 IS
 S

TR
IC

TL
Y

PR
O

H
IB

IT
ED

Oracle Database 12c: SQL Workshop I B - 26

The recycle bin is a data dictionary table containing information about dropped objects.
Dropped tables and any associated objects such as indexes, constraints, nested tables, and
the likes are not removed and still occupy space. They continue to count against user space
quotas, until specifically purged from the recycle bin or the unlikely situation where they must
be purged by the database because of tablespace space constraints.

To use the Recycle Bin, perform the following steps:

1. In the Connections navigator, select (or navigate to) the Recycle Bin.

2. Expand Recycle Bin and click the object name. The object details are displayed in the
SQL Worksheet area.

3. Click the Actions drop-down list and select the operation you want to perform on the
object.

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

Using Recycle Bin

The Recycle bin holds objects that have been dropped.

1

2

3

4

Purge: Removes the object
from the Recycle bin and
deletes it.

Flashback to Before Drop:
Moves the object from the
Recycle bin back to its
appropriate place in the
Connections navigator display.

Select the operations
from the drop-down
Actions list.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 E

ga
bi

 S
ol

ut
io

ns
 u

se
 o

nl
y

TH
ES

E
eK

IT
 M

AT
ER

IA
LS

 A
R

E
FO

R
 Y

O
U

R
 U

SE
 IN

 T
H

IS
 C

LA
SS

R
O

O
M

 O
N

LY
.

C
O

PY
IN

G
 e

KI
T

M
AT

ER
IA

LS
 F

R
O

M
 T

H
IS

 C
O

M
PU

TE
R

 IS
 S

TR
IC

TL
Y

PR
O

H
IB

IT
ED

In SQL Developer, you can debug PL/SQL procedures and functions. Using the Debug menu
options, you can perform the following debugging tasks:

• Find Execution Point goes to the next execution point.

• Resume continues execution.

• Step Over bypasses the next method and goes to the next statement after the method.

• Step Into goes to the first statement in the next method.

• Step Out leaves the current method and goes to the next statement.

• Step to End of Method goes to the last statement of the current method.

• Pause halts execution, but does not exit, thus allowing you to resume execution.

• Terminate halts and exits the execution. You cannot resume execution from this point;
instead, to start running or debugging from the beginning of the function or procedure,
click the Run or Debug icon on the Source tab toolbar.

• Garbage Collection removes invalid objects from the cache in favor of more frequently
accessed and more valid objects.

These options are also available as icons on the Debugging tab of the output window.

Oracle Database 12c: SQL Workshop I B - 27

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

Debugging Procedures and Functions

• Use SQL Developer to debug
PL/SQL functions and
procedures.

• Use the Compile for Debug
option to perform a PL/SQL
compilation so that the
procedure can be debugged.

• Use the Debug menu options to
set breakpoints, and to perform
step into, step over tasks.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 E

ga
bi

 S
ol

ut
io

ns
 u

se
 o

nl
y

TH
ES

E
eK

IT
 M

AT
ER

IA
LS

 A
R

E
FO

R
 Y

O
U

R
 U

SE
 IN

 T
H

IS
 C

LA
SS

R
O

O
M

 O
N

LY
.

C
O

PY
IN

G
 e

KI
T

M
AT

ER
IA

LS
 F

R
O

M
 T

H
IS

 C
O

M
PU

TE
R

 IS
 S

TR
IC

TL
Y

PR
O

H
IB

IT
ED

SQL Developer provides many reports about the database and its objects. These reports can
be grouped into the following categories:

• About Your Database reports
• Database Administration reports
• Table reports
• PL/SQL reports
• Security reports
• XML reports
• Jobs reports
• Streams reports
• All Objects reports
• Data Dictionary reports
• User-Defined reports

To display reports, click the Reports tab on the left of the window. Individual reports are
displayed in tabbed panes on the right of the window; for each report, you can select (using a
drop-down list) the database connection for which to display the report. For reports about
objects, the objects shown are only those visible to the database user associated with the
selected database connection, and the rows are usually ordered by Owner. You can also
create your own user-defined reports.

Oracle Database 12c: SQL Workshop I B - 28

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

Database Reporting

SQL Developer provides a number of predefined reports about
the database and its objects.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 E

ga
bi

 S
ol

ut
io

ns
 u

se
 o

nl
y

TH
ES

E
eK

IT
 M

AT
ER

IA
LS

 A
R

E
FO

R
 Y

O
U

R
 U

SE
 IN

 T
H

IS
 C

LA
SS

R
O

O
M

 O
N

LY
.

C
O

PY
IN

G
 e

KI
T

M
AT

ER
IA

LS
 F

R
O

M
 T

H
IS

 C
O

M
PU

TE
R

 IS
 S

TR
IC

TL
Y

PR
O

H
IB

IT
ED

User-defined reports are reports created by SQL Developer users. To create a user-defined
report, perform the following steps:

1. Right-click the User Defined Reports node under Reports and select Add Report.

2. In the Create Report dialog box, specify the report name and the SQL query to retrieve
information for the report. Then click Apply.

In the example in the slide, the report name is specified as emp_sal. An optional description
is provided indicating that the report contains details of employees with salary >= 10000.
The complete SQL statement for retrieving the information to be displayed in the user-defined
report is specified in the SQL box. You can also include an optional tool tip to be displayed
when the cursor stays briefly over the report name in the Reports navigator display.

You can organize user-defined reports in folders and you can create a hierarchy of folders
and subfolders. To create a folder for user-defined reports, right-click the User Defined
Reports node or any folder name under that node and select Add Folder. Information about
user-defined reports, including any folders for these reports, is stored in a file named
UserReports.xml in the directory for user-specific information.

Oracle Database 12c: SQL Workshop I B - 29

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

Creating a User-Defined Report

Create and save user-defined reports for repeated use.

Organize reports in folders.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 E

ga
bi

 S
ol

ut
io

ns
 u

se
 o

nl
y

TH
ES

E
eK

IT
 M

AT
ER

IA
LS

 A
R

E
FO

R
 Y

O
U

R
 U

SE
 IN

 T
H

IS
 C

LA
SS

R
O

O
M

 O
N

LY
.

C
O

PY
IN

G
 e

KI
T

M
AT

ER
IA

LS
 F

R
O

M
 T

H
IS

 C
O

M
PU

TE
R

 IS
 S

TR
IC

TL
Y

PR
O

H
IB

IT
ED

To enhance the productivity of developers, SQL Developer has added quick links to popular
search engines and discussion forums such as AskTom, Google, and so on. Also, you have
shortcut icons to some of the frequently used tools such as Notepad, Microsoft Word, and
Dreamweaver, available to you.

You can add external tools to the existing list or even delete shortcuts to the tools that you do
not use frequently. To do so, perform the following steps:

1. From the Tools menu, select External Tools.

2. In the External Tools dialog box, select New to add new tools. Select Delete to remove
any tool from the list.

Oracle Database 12c: SQL Workshop I B - 30

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

Search Engines and External Tools

Links to popular search
engines and discussion

forums

Shortcut to switch
between connections

1

2

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 E

ga
bi

 S
ol

ut
io

ns
 u

se
 o

nl
y

TH
ES

E
eK

IT
 M

AT
ER

IA
LS

 A
R

E
FO

R
 Y

O
U

R
 U

SE
 IN

 T
H

IS
 C

LA
SS

R
O

O
M

 O
N

LY
.

C
O

PY
IN

G
 e

KI
T

M
AT

ER
IA

LS
 F

R
O

M
 T

H
IS

 C
O

M
PU

TE
R

 IS
 S

TR
IC

TL
Y

PR
O

H
IB

IT
ED

You can customize many aspects of the SQL Developer interface and environment by
modifying SQL Developer preferences according to your needs. To modify SQL Developer
preferences, select Tools, and then Preferences.

The preferences are grouped into the following categories:

• Environment

• Change Management parameter

• Code Editors

• Compare and Merge

• Database

• Data Miner

• Data Modeler

• Debugger

• Extensions

• External Editor

• File Types

• Migration

Oracle Database 12c: SQL Workshop I B - 31

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

Setting Preferences

• Customize the SQL Developer interface and environment.

• In the Tools menu, select Preferences.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 E

ga
bi

 S
ol

ut
io

ns
 u

se
 o

nl
y

TH
ES

E
eK

IT
 M

AT
ER

IA
LS

 A
R

E
FO

R
 Y

O
U

R
 U

SE
 IN

 T
H

IS
 C

LA
SS

R
O

O
M

 O
N

LY
.

C
O

PY
IN

G
 e

KI
T

M
AT

ER
IA

LS
 F

R
O

M
 T

H
IS

 C
O

M
PU

TE
R

 IS
 S

TR
IC

TL
Y

PR
O

H
IB

IT
ED

• Mouseover Popups

• Shortcut Keys

• Unit Test Parameters

• Versioning

• Web Browser and Proxy

• XML Schemas

Oracle Database 12c: SQL Workshop I B - 32

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 E

ga
bi

 S
ol

ut
io

ns
 u

se
 o

nl
y

TH
ES

E
eK

IT
 M

AT
ER

IA
LS

 A
R

E
FO

R
 Y

O
U

R
 U

SE
 IN

 T
H

IS
 C

LA
SS

R
O

O
M

 O
N

LY
.

C
O

PY
IN

G
 e

KI
T

M
AT

ER
IA

LS
 F

R
O

M
 T

H
IS

 C
O

M
PU

TE
R

 IS
 S

TR
IC

TL
Y

PR
O

H
IB

IT
ED

While working with SQL Developer, if the Connections Navigator disappears or if you cannot
dock the Log window in its original place, perform the following steps to fix the problem:

1. Exit SQL Developer.

2. Open a terminal window and use the locate command to find the location of
windowinglayout.xml.

3. Go to the directory that has windowinglayout.xml and delete it.

4. Restart SQL Developer.

Oracle Database 12c: SQL Workshop I B - 33

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

Resetting the SQL Developer Layout

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 E

ga
bi

 S
ol

ut
io

ns
 u

se
 o

nl
y

TH
ES

E
eK

IT
 M

AT
ER

IA
LS

 A
R

E
FO

R
 Y

O
U

R
 U

SE
 IN

 T
H

IS
 C

LA
SS

R
O

O
M

 O
N

LY
.

C
O

PY
IN

G
 e

KI
T

M
AT

ER
IA

LS
 F

R
O

M
 T

H
IS

 C
O

M
PU

TE
R

 IS
 S

TR
IC

TL
Y

PR
O

H
IB

IT
ED

Using the integrated version of the SQL Developer Data Modeler, you can:

• Create, open, import, and save a database design

• Create, modify, and delete Data Modeler objects

To display Data Modeler in a pane, click Tools, and then Data Modeler. The Data Modeler
menu under Tools includes additional commands, for example, that enable you to specify
design rules and preferences.

Oracle Database 12c: SQL Workshop I B - 34

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

Data Modeler in SQL Developer

SQL Developer includes an integrated version of SQL
Developer Data Modeler.

The File > Data
Modeler menu options
allow you to open,
save, and print design
models.

The Tools > Data
Modeler menu
options provide the
administration and
wizard options.

The View > Data
Modeler menu
options provide
navigation and view
options.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 E

ga
bi

 S
ol

ut
io

ns
 u

se
 o

nl
y

TH
ES

E
eK

IT
 M

AT
ER

IA
LS

 A
R

E
FO

R
 Y

O
U

R
 U

SE
 IN

 T
H

IS
 C

LA
SS

R
O

O
M

 O
N

LY
.

C
O

PY
IN

G
 e

KI
T

M
AT

ER
IA

LS
 F

R
O

M
 T

H
IS

 C
O

M
PU

TE
R

 IS
 S

TR
IC

TL
Y

PR
O

H
IB

IT
ED

SQL Developer is a free graphical tool to simplify database development tasks. Using SQL
Developer, you can browse, create, and edit database objects. You can use SQL Worksheet
to run SQL statements and scripts. SQL Developer enables you to create and save your own
special set of reports for repeated use.

Oracle Database 12c: SQL Workshop I B - 35

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

Summary

In this appendix, you should have learned how to use SQL
Developer to do:

• Browse, create, and edit database objects

• Execute SQL statements and scripts in SQL Worksheet

• Create and save custom reports

• Browse the Data Modeling options in SQL Developer

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 E

ga
bi

 S
ol

ut
io

ns
 u

se
 o

nl
y

TH
ES

E
eK

IT
 M

AT
ER

IA
LS

 A
R

E
FO

R
 Y

O
U

R
 U

SE
 IN

 T
H

IS
 C

LA
SS

R
O

O
M

 O
N

LY
.

C
O

PY
IN

G
 e

KI
T

M
AT

ER
IA

LS
 F

R
O

M
 T

H
IS

 C
O

M
PU

TE
R

 IS
 S

TR
IC

TL
Y

PR
O

H
IB

IT
ED

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 E

ga
bi

 S
ol

ut
io

ns
 u

se
 o

nl
y

TH
ES

E
eK

IT
 M

AT
ER

IA
LS

 A
R

E
FO

R
 Y

O
U

R
 U

SE
 IN

 T
H

IS
 C

LA
SS

R
O

O
M

 O
N

LY
.

C
O

PY
IN

G
 e

KI
T

M
AT

ER
IA

LS
 F

R
O

M
 T

H
IS

 C
O

M
PU

TE
R

 IS
 S

TR
IC

TL
Y

PR
O

H
IB

IT
ED

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

Using SQL*Plus

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 E

ga
bi

 S
ol

ut
io

ns
 u

se
 o

nl
y

TH
ES

E
eK

IT
 M

AT
ER

IA
LS

 A
R

E
FO

R
 Y

O
U

R
 U

SE
 IN

 T
H

IS
 C

LA
SS

R
O

O
M

 O
N

LY
.

C
O

PY
IN

G
 e

KI
T

M
AT

ER
IA

LS
 F

R
O

M
 T

H
IS

 C
O

M
PU

TE
R

 IS
 S

TR
IC

TL
Y

PR
O

H
IB

IT
ED

You might want to create SELECT statements that can be used repeatedly. This appendix
covers the use of SQL*Plus commands to execute SQL statements. You learn how to format
output using SQL*Plus commands, edit SQL commands, and save scripts in SQL*Plus.

Oracle Database 12c: SQL Workshop I C - 2

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

Objectives

After completing this appendix, you should be able to do the
following:

• Log in to SQL*Plus

• Edit SQL commands

• Format the output using SQL*Plus commands

• Interact with script files

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 E

ga
bi

 S
ol

ut
io

ns
 u

se
 o

nl
y

TH
ES

E
eK

IT
 M

AT
ER

IA
LS

 A
R

E
FO

R
 Y

O
U

R
 U

SE
 IN

 T
H

IS
 C

LA
SS

R
O

O
M

 O
N

LY
.

C
O

PY
IN

G
 e

KI
T

M
AT

ER
IA

LS
 F

R
O

M
 T

H
IS

 C
O

M
PU

TE
R

 IS
 S

TR
IC

TL
Y

PR
O

H
IB

IT
ED

SQL and SQL*Plus

SQL is a command language that is used for communication with the Oracle server from any
tool or application. Oracle SQL contains many extensions. When you enter a SQL statement,
it is stored in a part of memory called the SQL buffer and remains there until you enter a new
SQL statement. SQL*Plus is an Oracle tool that recognizes and submits SQL statements to
the Oracle9i Server for execution. It contains its own command language.
Features of SQL

• Can be used by a range of users, including those with little or no programming
experience

• Is a nonprocedural language
• Reduces the amount of time required for creating and maintaining systems
• Is an English-like language

Features of SQL*Plus
• Accepts ad hoc entry of statements
• Accepts SQL input from files
• Provides a line editor for modifying SQL statements
• Controls environmental settings
• Formats query results into basic reports
• Accesses local and remote databases

Oracle Database 12c: SQL Workshop I C - 3

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

SQL and SQL*Plus Interaction

Buffer

Server

SQL statements

Query results

SQL
scripts

SQL*Plus

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 E

ga
bi

 S
ol

ut
io

ns
 u

se
 o

nl
y

TH
ES

E
eK

IT
 M

AT
ER

IA
LS

 A
R

E
FO

R
 Y

O
U

R
 U

SE
 IN

 T
H

IS
 C

LA
SS

R
O

O
M

 O
N

LY
.

C
O

PY
IN

G
 e

KI
T

M
AT

ER
IA

LS
 F

R
O

M
 T

H
IS

 C
O

M
PU

TE
R

 IS
 S

TR
IC

TL
Y

PR
O

H
IB

IT
ED

The following table compares SQL and SQL*Plus:

SQL SQL*Plus

Is a language for communicating with the
Oracle server to access data

Recognizes SQL statements and sends
them to the server

Is based on American National Standards
Institute (ANSI)–standard SQL

Is the Oracle-proprietary interface for
executing SQL statements

Manipulates data and table definitions in the
database

Does not allow manipulation of values in the
database

Is entered into the SQL buffer on one or
more lines

Is entered one line at a time, not stored in
the SQL buffer

Does not have a continuation character Uses a dash (–) as a continuation character
if the command is longer than one line

Cannot be abbreviated Can be abbreviated

Uses a termination character to execute
commands immediately

Does not require termination characters;
executes commands immediately

Uses functions to perform some formatting Uses commands to format data

Oracle Database 12c: SQL Workshop I C - 4

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

SQL Statements Versus SQL*Plus Commands

SQL

• A language

• ANSI-standard

• Keywords cannot be
abbreviated.

• Statements manipulate
data and table definitions
in the database.

SQL
statements

SQL
buffer

SQL*Plus
commands

SQL*Plus
buffer

SQL*Plus

• An environment

• Oracle-proprietary

• Keywords can be
abbreviated.

• Commands do not
allow manipulation of
values in the database.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 E

ga
bi

 S
ol

ut
io

ns
 u

se
 o

nl
y

TH
ES

E
eK

IT
 M

AT
ER

IA
LS

 A
R

E
FO

R
 Y

O
U

R
 U

SE
 IN

 T
H

IS
 C

LA
SS

R
O

O
M

 O
N

LY
.

C
O

PY
IN

G
 e

KI
T

M
AT

ER
IA

LS
 F

R
O

M
 T

H
IS

 C
O

M
PU

TE
R

 IS
 S

TR
IC

TL
Y

PR
O

H
IB

IT
ED

SQL*Plus

SQL*Plus is an environment in which you can:

• Execute SQL statements to retrieve, modify, add, and remove data from the database

• Format, perform calculations on, store, and print query results in the form of reports

• Create script files to store SQL statements for repeated use in the future

SQL*Plus commands can be divided into the following main categories:

Category Purpose

Environment Affect the general behavior of SQL statements for the session

Format Format query results

File manipulation Save, load, and run script files

Execution Send SQL statements from the SQL buffer to the Oracle server

Edit Modify SQL statements in the buffer

Interaction Create and pass variables to SQL statements, print variable
values, and print messages to the screen

Miscellaneous Connect to the database, manipulate the SQL*Plus environment,
and display column definitions

Oracle Database 12c: SQL Workshop I C - 5

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

Overview of SQL*Plus

• Log in to SQL*Plus.

• Describe the table structure.

• Edit your SQL statement.

• Execute SQL from SQL*Plus.

• Save SQL statements to files and append SQL statements
to files.

• Execute saved files.

• Load commands from the file to buffer to edit.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 E

ga
bi

 S
ol

ut
io

ns
 u

se
 o

nl
y

TH
ES

E
eK

IT
 M

AT
ER

IA
LS

 A
R

E
FO

R
 Y

O
U

R
 U

SE
 IN

 T
H

IS
 C

LA
SS

R
O

O
M

 O
N

LY
.

C
O

PY
IN

G
 e

KI
T

M
AT

ER
IA

LS
 F

R
O

M
 T

H
IS

 C
O

M
PU

TE
R

 IS
 S

TR
IC

TL
Y

PR
O

H
IB

IT
ED

How you invoke SQL*Plus depends on the type of operating system that you are running
Oracle Database on.

To log in from a Linux environment, perform the following steps:

1. Right-click your Linux desktop and select terminal.
2. Enter the sqlplus command shown in the slide.

3. Enter the username, password, and database name.

In the syntax:
username Your database username
password Your database password (Your password is visible if you enter it here.)
@database The database connect string

Note: To ensure the integrity of your password, do not enter it at the operating system
prompt. Instead, enter only your username. Enter your password at the password prompt.

Oracle Database 12c: SQL Workshop I C - 6

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

sqlplus [username[/password[@database]]]

Logging In to SQL*Plus

1

2

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 E

ga
bi

 S
ol

ut
io

ns
 u

se
 o

nl
y

TH
ES

E
eK

IT
 M

AT
ER

IA
LS

 A
R

E
FO

R
 Y

O
U

R
 U

SE
 IN

 T
H

IS
 C

LA
SS

R
O

O
M

 O
N

LY
.

C
O

PY
IN

G
 e

KI
T

M
AT

ER
IA

LS
 F

R
O

M
 T

H
IS

 C
O

M
PU

TE
R

 IS
 S

TR
IC

TL
Y

PR
O

H
IB

IT
ED

In SQL*Plus, you can display the structure of a table using the DESCRIBE command. The
result of the command is a display of column names and data types, as well as an indication if
a column must contain data.

In the syntax:

tablename The name of any existing table, view, or synonym that is accessible to
the user

To describe the DEPARTMENTS table, use the following command:
SQL> DESCRIBE DEPARTMENTS

Name Null Type

----------------------- -------- ---------------

DEPARTMENT_ID NOT NULL NUMBER(4)

DEPARTMENT_NAME NOT NULL VARCHAR2(30)

MANAGER_ID NUMBER(6)

LOCATION_ID NUMBER(4)

Oracle Database 12c: SQL Workshop I C - 7

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

Displaying the Table Structure

Use the SQL*Plus DESCRIBE command to display the structure
of a table:

DESC[RIBE] tablename

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 E

ga
bi

 S
ol

ut
io

ns
 u

se
 o

nl
y

TH
ES

E
eK

IT
 M

AT
ER

IA
LS

 A
R

E
FO

R
 Y

O
U

R
 U

SE
 IN

 T
H

IS
 C

LA
SS

R
O

O
M

 O
N

LY
.

C
O

PY
IN

G
 e

KI
T

M
AT

ER
IA

LS
 F

R
O

M
 T

H
IS

 C
O

M
PU

TE
R

 IS
 S

TR
IC

TL
Y

PR
O

H
IB

IT
ED

The example in the slide displays information about the structure of the DEPARTMENTS table.
In the result:

Null: Specifies whether a column must contain data (NOT NULL indicates that a column
must contain data.)

Type: Displays the data type for a column

Oracle Database 12c: SQL Workshop I C - 8

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

Displaying the Table Structure

Name Null Type
----------------------- -------- ------------
DEPARTMENT_ID NOT NULL NUMBER(4)
DEPARTMENT_NAME NOT NULL VARCHAR2(30)
MANAGER_ID NUMBER(6)
LOCATION_ID NUMBER(4)

DESCRIBE departments

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 E

ga
bi

 S
ol

ut
io

ns
 u

se
 o

nl
y

TH
ES

E
eK

IT
 M

AT
ER

IA
LS

 A
R

E
FO

R
 Y

O
U

R
 U

SE
 IN

 T
H

IS
 C

LA
SS

R
O

O
M

 O
N

LY
.

C
O

PY
IN

G
 e

KI
T

M
AT

ER
IA

LS
 F

R
O

M
 T

H
IS

 C
O

M
PU

TE
R

 IS
 S

TR
IC

TL
Y

PR
O

H
IB

IT
ED

SQL*Plus commands are entered one line at a time and are not stored in the SQL buffer.

Guidelines

• If you press Enter before completing a command, SQL*Plus prompts you with a line
number.

• You terminate the SQL buffer either by entering one of the terminator characters
(semicolon or slash) or by pressing Enter twice. The SQL prompt appears.

Command Description
A[PPEND] text Adds text to the end of the current line
C[HANGE] / old / new Changes old text to new in the current line
C[HANGE] / text / Deletes text from the current line
CL[EAR] BUFF[ER] Deletes all lines from the SQL buffer
DEL Deletes current line
DEL n Deletes line n
DEL m n Deletes lines m to n inclusive

Oracle Database 12c: SQL Workshop I C - 9

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

SQL*Plus Editing Commands

• A[PPEND] text

• C[HANGE] / old / new

• C[HANGE] / text /

• CL[EAR] BUFF[ER]

• DEL

• DEL n

• DEL m n

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 E

ga
bi

 S
ol

ut
io

ns
 u

se
 o

nl
y

TH
ES

E
eK

IT
 M

AT
ER

IA
LS

 A
R

E
FO

R
 Y

O
U

R
 U

SE
 IN

 T
H

IS
 C

LA
SS

R
O

O
M

 O
N

LY
.

C
O

PY
IN

G
 e

KI
T

M
AT

ER
IA

LS
 F

R
O

M
 T

H
IS

 C
O

M
PU

TE
R

 IS
 S

TR
IC

TL
Y

PR
O

H
IB

IT
ED

Note: You can enter only one SQL*Plus command for each SQL prompt. SQL*Plus
commands are not stored in the buffer. To continue a SQL*Plus command on the next line,
end the first line with a hyphen (-).

Command Description
I[NPUT] Inserts an indefinite number of lines
I[NPUT] text Inserts a line consisting of text
L[IST] Lists all lines in the SQL buffer
L[IST] n Lists one line (specified by n)
L[IST] m n Lists a range of lines (m to n) inclusive
R[UN] Displays and runs the current SQL statement in the buffer
n Specifies the line to make the current line
n text Replaces line n with text
0 text Inserts a line before line 1

Oracle Database 12c: SQL Workshop I C - 10

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

SQL*Plus Editing Commands

• I[NPUT]

• I[NPUT] text

• L[IST]

• L[IST] n

• L[IST] m n

• R[UN]

• n

• n text

• 0 text

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 E

ga
bi

 S
ol

ut
io

ns
 u

se
 o

nl
y

TH
ES

E
eK

IT
 M

AT
ER

IA
LS

 A
R

E
FO

R
 Y

O
U

R
 U

SE
 IN

 T
H

IS
 C

LA
SS

R
O

O
M

 O
N

LY
.

C
O

PY
IN

G
 e

KI
T

M
AT

ER
IA

LS
 F

R
O

M
 T

H
IS

 C
O

M
PU

TE
R

 IS
 S

TR
IC

TL
Y

PR
O

H
IB

IT
ED

• Use the L[IST] command to display the contents of the SQL buffer. The asterisk (*)
beside line 2 in the buffer indicates that line 2 is the current line. Any edits that you
made apply to the current line.

• Change the number of the current line by entering the number (n) of the line that you
want to edit. The new current line is displayed.

• Use the A[PPEND] command to add text to the current line. The newly edited line is
displayed. Verify the new contents of the buffer by using the LIST command.

Note: Many SQL*Plus commands, including LIST and APPEND, can be abbreviated to just
their first letter. LIST can be abbreviated to L; APPEND can be abbreviated to A.

Oracle Database 12c: SQL Workshop I C - 11

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

Using LIST, n, and APPEND

LIST
1 SELECT last_name
2* FROM employees

1
1* SELECT last_name

A , job_id
1* SELECT last_name, job_id

LIST
1 SELECT last_name, job_id
2* FROM employees

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 E

ga
bi

 S
ol

ut
io

ns
 u

se
 o

nl
y

TH
ES

E
eK

IT
 M

AT
ER

IA
LS

 A
R

E
FO

R
 Y

O
U

R
 U

SE
 IN

 T
H

IS
 C

LA
SS

R
O

O
M

 O
N

LY
.

C
O

PY
IN

G
 e

KI
T

M
AT

ER
IA

LS
 F

R
O

M
 T

H
IS

 C
O

M
PU

TE
R

 IS
 S

TR
IC

TL
Y

PR
O

H
IB

IT
ED

• Use L[IST] to display the contents of the buffer.

• Use the C[HANGE] command to alter the contents of the current line in the SQL buffer.
In this case, replace the employees table with the departments table. The new
current line is displayed.

• Use the L[IST] command to verify the new contents of the buffer.

Oracle Database 12c: SQL Workshop I C - 12

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

Using the CHANGE Command

LIST
1* SELECT * from employees

c/employees/departments
1* SELECT * from departments

LIST

1* SELECT * from departments

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 E

ga
bi

 S
ol

ut
io

ns
 u

se
 o

nl
y

TH
ES

E
eK

IT
 M

AT
ER

IA
LS

 A
R

E
FO

R
 Y

O
U

R
 U

SE
 IN

 T
H

IS
 C

LA
SS

R
O

O
M

 O
N

LY
.

C
O

PY
IN

G
 e

KI
T

M
AT

ER
IA

LS
 F

R
O

M
 T

H
IS

 C
O

M
PU

TE
R

 IS
 S

TR
IC

TL
Y

PR
O

H
IB

IT
ED

SQL statements communicate with the Oracle server. SQL*Plus commands control the
environment, format query results, and manage files. You can use the commands described
in the following table:

Command Description

SAV[E] filename [.ext]
[REP[LACE]APP[END]]

Saves the current contents of the SQL buffer to a file.
Use APPEND to add to an existing file; use REPLACE to
overwrite an existing file. The default extension is
.sql.

GET filename [.ext]

Writes the contents of a previously saved file to the
SQL buffer. The default extension for the file name is
.sql.

STA[RT] filename [.ext] Runs a previously saved command file

@ filename Runs a previously saved command file (same as
START)

ED[IT]

Invokes the editor and saves the buffer contents to a
file named afiedt.buf

ED[IT] [filename[.ext]] Invokes the editor to edit the contents of a saved file
SPO[OL] [filename[.ext]|
OFF|OUT]

Stores query results in a file. OFF closes the spool file.
OUT closes the spool file and sends the file results to
the printer.

EXIT Quits SQL*Plus

Oracle Database 12c: SQL Workshop I C - 13

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

SQL*Plus File Commands

• SAVE filename

• GET filename

• START filename

• @ filename

• EDIT filename

• SPOOL filename

• EXIT

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 E

ga
bi

 S
ol

ut
io

ns
 u

se
 o

nl
y

TH
ES

E
eK

IT
 M

AT
ER

IA
LS

 A
R

E
FO

R
 Y

O
U

R
 U

SE
 IN

 T
H

IS
 C

LA
SS

R
O

O
M

 O
N

LY
.

C
O

PY
IN

G
 e

KI
T

M
AT

ER
IA

LS
 F

R
O

M
 T

H
IS

 C
O

M
PU

TE
R

 IS
 S

TR
IC

TL
Y

PR
O

H
IB

IT
ED

SAVE

Use the SAVE command to store the current contents of the buffer in a file. Thus, you can
store frequently used scripts for use in the future.

START

Use the START command to run a script in SQL*Plus. You can also, alternatively, use the
symbol @ to run a script.

@my_query

Oracle Database 12c: SQL Workshop I C - 14

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

Using the SAVE, START Commands

LIST
1 SELECT last_name, manager_id, department_id
2* FROM employees

SAVE my_query
Created file my_query

START my_query

LAST_NAME MANAGER_ID DEPARTMENT_ID
------------------------- ---------- -------------
King 90
Kochhar 100 90
...
107 rows selected.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 E

ga
bi

 S
ol

ut
io

ns
 u

se
 o

nl
y

TH
ES

E
eK

IT
 M

AT
ER

IA
LS

 A
R

E
FO

R
 Y

O
U

R
 U

SE
 IN

 T
H

IS
 C

LA
SS

R
O

O
M

 O
N

LY
.

C
O

PY
IN

G
 e

KI
T

M
AT

ER
IA

LS
 F

R
O

M
 T

H
IS

 C
O

M
PU

TE
R

 IS
 S

TR
IC

TL
Y

PR
O

H
IB

IT
ED

Most of the PL/SQL programs perform input and output through SQL statements, to store data
in database tables or query those tables. All other PL/SQL input/output is done through APIs
that interact with other programs. For example, the DBMS_OUTPUT package has procedures,
such as PUT_LINE. To see the result outside of PL/SQL requires another program, such as
SQL*Plus, to read and display the data passed to DBMS_OUTPUT.

SQL*Plus does not display DBMS_OUTPUT data unless you first issue the SQL*Plus command
SET SERVEROUTPUT ON as follows:

SET SERVEROUTPUT ON

Note

• SIZE sets the number of bytes of the output that can be buffered within the Oracle
Database server. The default is UNLIMITED. n cannot be less than 2000 or greater than
1,000,000.

• For additional information about SERVEROUTPUT, see Oracle Database PL/SQL User's
Guide and Reference 12c.

Oracle Database 12c: SQL Workshop I C - 15

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

SERVEROUTPUT Command

• Use the SET SERVEROUT[PUT] command to control
whether to display the output of stored procedures or
PL/SQL blocks in SQL*Plus.

• The DBMS_OUTPUT line length limit is increased from 255
bytes to 32767 bytes.

• The default size is now unlimited.
• Resources are not preallocated when SERVEROUTPUT is

set.
• Because there is no performance penalty, use UNLIMITED

unless you want to conserve physical memory.

SET SERVEROUT[PUT] {ON | OFF} [SIZE {n | UNL[IMITED]}]
[FOR[MAT] {WRA[PPED] | WOR[D_WRAPPED] | TRU[NCATED]}]

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 E

ga
bi

 S
ol

ut
io

ns
 u

se
 o

nl
y

TH
ES

E
eK

IT
 M

AT
ER

IA
LS

 A
R

E
FO

R
 Y

O
U

R
 U

SE
 IN

 T
H

IS
 C

LA
SS

R
O

O
M

 O
N

LY
.

C
O

PY
IN

G
 e

KI
T

M
AT

ER
IA

LS
 F

R
O

M
 T

H
IS

 C
O

M
PU

TE
R

 IS
 S

TR
IC

TL
Y

PR
O

H
IB

IT
ED

The SPOOL command stores query results in a file or optionally sends the file to a printer. The
SPOOL command has been enhanced. You can now append to, or replace an existing file,
where previously you could use SPOOL only to create (and replace) a file. REPLACE is the
default.

To spool the output generated by commands in a script without displaying the output on
screen, use SET TERMOUT OFF. SET TERMOUT OFF does not affect the output from
commands that run interactively.

You must use quotation marks around file names that contain white space. To create a valid
HTML file using SPOOL APPEND commands, you must use PROMPT or a similar command to
create the HTML page header and footer. The SPOOL APPEND command does not parse
HTML tags. SET SQLPLUSCOMPAT[IBILITY] to 9.2 or earlier to disable the CREATE,
APPEND, and SAVE parameters.

Oracle Database 12c: SQL Workshop I C - 16

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

Using the SQL*Plus SPOOL Command

SPO[OL] [file_name[.ext] [CRE[ATE] | REP[LACE] |
APP[END]] | OFF | OUT]

Option Description

file_name[.ext] Spools output to the specified file name

CRE[ATE] Creates a new file with the name specified

REP[LACE] Replaces the contents of an existing file. If the file
does not exist, REPLACE creates the file.

APP[END] Adds the contents of the buffer to the end of the file
that you specify

OFF Stops spooling

OUT Stops spooling and sends the file to your computer’s
standard (default) printer

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 E

ga
bi

 S
ol

ut
io

ns
 u

se
 o

nl
y

TH
ES

E
eK

IT
 M

AT
ER

IA
LS

 A
R

E
FO

R
 Y

O
U

R
 U

SE
 IN

 T
H

IS
 C

LA
SS

R
O

O
M

 O
N

LY
.

C
O

PY
IN

G
 e

KI
T

M
AT

ER
IA

LS
 F

R
O

M
 T

H
IS

 C
O

M
PU

TE
R

 IS
 S

TR
IC

TL
Y

PR
O

H
IB

IT
ED

EXPLAIN shows the query execution path by performing an EXPLAIN PLAN. STATISTICS
displays SQL statement statistics. The formatting of your AUTOTRACE report may vary
depending on the version of the server to which you are connected and the configuration of
the server. The DBMS_XPLAN package provides an easy way to display the output of the
EXPLAIN PLAN command in several predefined formats.

Note

• For additional information about the package and subprograms, refer to Oracle
Database PL/SQL Packages and Types Reference 12c.

• For additional information about the EXPLAIN PLAN, refer to Oracle Database SQL
Reference 12c.

• For additional information about Execution Plans and the statistics, refer to Oracle
Database Performance Tuning Guide 12c.

Oracle Database 12c: SQL Workshop I C - 17

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

Using the AUTOTRACE Command

• It displays a report after the successful execution of SQL
DML statements such as SELECT, INSERT, UPDATE, or
DELETE.

• The report can now include execution statistics and the
query execution path.

SET AUTOT[RACE] {ON | OFF | TRACE[ONLY]} [EXP[LAIN]]
[STAT[ISTICS]]

SET AUTOTRACE ON
-- The AUTOTRACE report includes both the optimizer
-- execution path and the SQL statement execution
-- statistics

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 E

ga
bi

 S
ol

ut
io

ns
 u

se
 o

nl
y

TH
ES

E
eK

IT
 M

AT
ER

IA
LS

 A
R

E
FO

R
 Y

O
U

R
 U

SE
 IN

 T
H

IS
 C

LA
SS

R
O

O
M

 O
N

LY
.

C
O

PY
IN

G
 e

KI
T

M
AT

ER
IA

LS
 F

R
O

M
 T

H
IS

 C
O

M
PU

TE
R

 IS
 S

TR
IC

TL
Y

PR
O

H
IB

IT
ED

SQL*Plus is an execution environment that you can use to send SQL commands to the
database server and to edit and save SQL commands. You can execute commands from the
SQL prompt or from a script file.

Oracle Database 12c: SQL Workshop I C - 18

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

Summary

In this appendix, you should have learned how to use SQL*Plus
as an environment to do the following:

• Execute SQL statements

• Edit SQL statements

• Format the output

• Interact with script files

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 E

ga
bi

 S
ol

ut
io

ns
 u

se
 o

nl
y

TH
ES

E
eK

IT
 M

AT
ER

IA
LS

 A
R

E
FO

R
 Y

O
U

R
 U

SE
 IN

 T
H

IS
 C

LA
SS

R
O

O
M

 O
N

LY
.

C
O

PY
IN

G
 e

KI
T

M
AT

ER
IA

LS
 F

R
O

M
 T

H
IS

 C
O

M
PU

TE
R

 IS
 S

TR
IC

TL
Y

PR
O

H
IB

IT
ED

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

Commonly Used SQL Commands

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 E

ga
bi

 S
ol

ut
io

ns
 u

se
 o

nl
y

TH
ES

E
eK

IT
 M

AT
ER

IA
LS

 A
R

E
FO

R
 Y

O
U

R
 U

SE
 IN

 T
H

IS
 C

LA
SS

R
O

O
M

 O
N

LY
.

C
O

PY
IN

G
 e

KI
T

M
AT

ER
IA

LS
 F

R
O

M
 T

H
IS

 C
O

M
PU

TE
R

 IS
 S

TR
IC

TL
Y

PR
O

H
IB

IT
ED

This lesson explains how to obtain data from one or more tables using the SELECT statement,
how to use DDL statements to alter the structure of data objects, how to manipulate data in
the existing schema objects by using the DML statements, how to manage the changes made
by DML statements, and how to use joins to display data from multiple tables using SQL:1999
join syntax.

Oracle Database 12c: SQL Workshop I D - 2

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

Objectives

After completing this appendix, you should be able to:
• Execute a basic SELECT statement

• Create, alter, and drop a table using the data definition
language (DDL) statements

• Insert, update, and delete rows from one or more tables
using data manipulation language (DML) statements

• Commit, roll back, and create save points using the
transaction control statements

• Perform join operations on one or more tables

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 E

ga
bi

 S
ol

ut
io

ns
 u

se
 o

nl
y

TH
ES

E
eK

IT
 M

AT
ER

IA
LS

 A
R

E
FO

R
 Y

O
U

R
 U

SE
 IN

 T
H

IS
 C

LA
SS

R
O

O
M

 O
N

LY
.

C
O

PY
IN

G
 e

KI
T

M
AT

ER
IA

LS
 F

R
O

M
 T

H
IS

 C
O

M
PU

TE
R

 IS
 S

TR
IC

TL
Y

PR
O

H
IB

IT
ED

In its simplest form, a SELECT statement must include the following:

• A SELECT clause, which specifies the columns to be displayed

• A FROM clause, which identifies the table containing the columns that are listed in the
SELECT clause

In the syntax:

SELECT Is a list of one or more columns

* Selects all columns

DISTINCT Suppresses duplicates

column|expression Selects the named column or the expression

alias Gives different headings to the selected columns

FROM table Specifies the table containing the columns

Note: Throughout this course, the words keyword, clause, and statement are used as follows:
• A keyword refers to an individual SQL element—for example, SELECT and FROM are

keywords.
• A clause is a part of a SQL statement (for example, SELECT employee_id,

last_name).

• A statement is a combination of two or more clauses (for example, SELECT * FROM
employees).

Oracle Database 12c: SQL Workshop I D - 3

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

Basic SELECT Statement

• Use the SELECT statement to:
– Identify the columns to be displayed

– Retrieve data from one or more tables, object tables, views,
object views, or materialized views

• A SELECT statement is also known as a query because it
queries a database.

• Syntax:

SELECT {*|[DISTINCT] column|expression [alias],...}
FROM table;

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 E

ga
bi

 S
ol

ut
io

ns
 u

se
 o

nl
y

TH
ES

E
eK

IT
 M

AT
ER

IA
LS

 A
R

E
FO

R
 Y

O
U

R
 U

SE
 IN

 T
H

IS
 C

LA
SS

R
O

O
M

 O
N

LY
.

C
O

PY
IN

G
 e

KI
T

M
AT

ER
IA

LS
 F

R
O

M
 T

H
IS

 C
O

M
PU

TE
R

 IS
 S

TR
IC

TL
Y

PR
O

H
IB

IT
ED

Oracle Database 12c: SQL Workshop I D - 4

You can display all columns of data in a table by following the SELECT keyword with an
asterisk (*) or by listing all the column names after the SELECT keyword. The first example in
the slide displays all the rows from the job_history table. Specific columns of the table can
be displayed by specifying the column names, separated by commas. The second example in
the slide displays the manager_id and job_id columns from the employees table.

In the SELECT clause, specify the columns in the order in which you want them to appear in
the output. For example, the following SQL statement displays the location_id column
before displaying the department_id column:

SELECT location_id, department_id FROM departments;

Note: You can enter your SQL statement in a SQL Worksheet and click the Run Statement
icon or press F9 to execute a statement in SQL Developer. The output displayed on the
Results tabbed page appears as shown in the slide.

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

SELECT Statement

• Select all columns:

• Select specific columns:

…

SELECT *
FROM job_history;

SELECT manager_id, job_id
FROM employees;

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 E

ga
bi

 S
ol

ut
io

ns
 u

se
 o

nl
y

TH
ES

E
eK

IT
 M

AT
ER

IA
LS

 A
R

E
FO

R
 Y

O
U

R
 U

SE
 IN

 T
H

IS
 C

LA
SS

R
O

O
M

 O
N

LY
.

C
O

PY
IN

G
 e

KI
T

M
AT

ER
IA

LS
 F

R
O

M
 T

H
IS

 C
O

M
PU

TE
R

 IS
 S

TR
IC

TL
Y

PR
O

H
IB

IT
ED

Oracle Database 12c: SQL Workshop I D - 5

The WHERE clause specifies a condition to filter rows, producing a subset of the rows in the
table. A condition specifies a combination of one or more expressions and logical (Boolean)
operators. It returns a value of TRUE, FALSE, or NULL. The example in the slide retrieves the
location_id of the marketing department.

The WHERE clause can also be used to update or delete data from the database.

For example:
UPDATE departments

SET department_name = 'Administration'

WHERE department_id = 20;

and
DELETE from departments

WHERE department_id =20;

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

WHERE Clause

• Use the optional WHERE clause to:
– Filter rows in a query

– Produce a subset of rows

• Syntax:

• Example:

SELECT * FROM table
[WHERE condition];

SELECT location_id from departments
WHERE department_name = 'Marketing';

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 E

ga
bi

 S
ol

ut
io

ns
 u

se
 o

nl
y

TH
ES

E
eK

IT
 M

AT
ER

IA
LS

 A
R

E
FO

R
 Y

O
U

R
 U

SE
 IN

 T
H

IS
 C

LA
SS

R
O

O
M

 O
N

LY
.

C
O

PY
IN

G
 e

KI
T

M
AT

ER
IA

LS
 F

R
O

M
 T

H
IS

 C
O

M
PU

TE
R

 IS
 S

TR
IC

TL
Y

PR
O

H
IB

IT
ED

The ORDER BY clause specifies the order in which the rows should be displayed. The rows
can be sorted in ascending or descending fashion. By default, the rows are displayed in
ascending order.

The example in the slide retrieves rows from the employees table ordered first by ascending
order of department_id, and then by descending order of salary.

Oracle Database 12c: SQL Workshop I D - 6

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

ORDER BY Clause

• Use the optional ORDER BY clause to specify the row order.

• Syntax:

• Example:

SELECT * FROM table
[WHERE condition]

[ORDER BY {<column>|<position> } [ASC|DESC] [, ...]];

SELECT last_name, department_id, salary
FROM employees
ORDER BY department_id ASC, salary DESC;

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 E

ga
bi

 S
ol

ut
io

ns
 u

se
 o

nl
y

TH
ES

E
eK

IT
 M

AT
ER

IA
LS

 A
R

E
FO

R
 Y

O
U

R
 U

SE
 IN

 T
H

IS
 C

LA
SS

R
O

O
M

 O
N

LY
.

C
O

PY
IN

G
 e

KI
T

M
AT

ER
IA

LS
 F

R
O

M
 T

H
IS

 C
O

M
PU

TE
R

 IS
 S

TR
IC

TL
Y

PR
O

H
IB

IT
ED

Oracle Database 12c: SQL Workshop I D - 7

The GROUP BY clause is used to group selected rows based on the value of expr(s) for
each row. The clause groups rows but does not guarantee order of the result set. To order the
groupings, use the ORDER BY clause.

Any SELECT list elements that are not included in aggregation functions must be included in
the GROUP BY list of elements. This includes both columns and expressions. The database
returns a single row of summary information for each group.

The example in the slide returns the minimum and maximum salaries for each department in
the employees table.

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

GROUP BY Clause

• Use the optional GROUP BY clause to group columns that
have matching values into subsets.

• Each group has no two rows having the same value for the
grouping column or columns.

• Syntax:

• Example:

SELECT <column1, column2, ... column_n>
FROM table
[WHERE condition]
[GROUP BY <column> [, ...]]
[ORDER BY <column> [, ...]] ;

SELECT department_id, MIN(salary), MAX (salary)
FROM employees
GROUP BY department_id ;

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 E

ga
bi

 S
ol

ut
io

ns
 u

se
 o

nl
y

TH
ES

E
eK

IT
 M

AT
ER

IA
LS

 A
R

E
FO

R
 Y

O
U

R
 U

SE
 IN

 T
H

IS
 C

LA
SS

R
O

O
M

 O
N

LY
.

C
O

PY
IN

G
 e

KI
T

M
AT

ER
IA

LS
 F

R
O

M
 T

H
IS

 C
O

M
PU

TE
R

 IS
 S

TR
IC

TL
Y

PR
O

H
IB

IT
ED

Oracle Database 12c: SQL Workshop I D - 8

DDL statements enable you to alter the attributes of an object without altering the applications
that access the object. You can also use DDL statements to alter the structure of objects
while database users are performing work in the database. These statements are most
frequently used to:

• Create, alter, and drop schema objects and other database structures, including the
database itself and database users

• Delete all the data in schema objects without removing the structure of these objects

• Grant and revoke privileges and roles

Oracle Database implicitly commits the current transaction before and after every DDL
statement.

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

Data Definition Language

• DDL statements are used to define, structurally change,
and drop schema objects.

• The commonly used DDL statements are:

– CREATE TABLE, ALTER TABLE, and DROP TABLE

– GRANT, REVOKE

– TRUNCATE

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 E

ga
bi

 S
ol

ut
io

ns
 u

se
 o

nl
y

TH
ES

E
eK

IT
 M

AT
ER

IA
LS

 A
R

E
FO

R
 Y

O
U

R
 U

SE
 IN

 T
H

IS
 C

LA
SS

R
O

O
M

 O
N

LY
.

C
O

PY
IN

G
 e

KI
T

M
AT

ER
IA

LS
 F

R
O

M
 T

H
IS

 C
O

M
PU

TE
R

 IS
 S

TR
IC

TL
Y

PR
O

H
IB

IT
ED

Use the CREATE TABLE statement to create a table in the database. To create a table, you
must have the CREATE TABLE privilege and a storage area in which to create objects.

The table owner and the database owner automatically gain the following privileges on the
table after it is created:

• INSERT

• SELECT

• REFERENCES

• ALTER

• UPDATE

The table owner and the database owner can grant the preceding privileges to other users.

Oracle Database 12c: SQL Workshop I D - 9

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

CREATE TABLE Statement

• Use the CREATE TABLE statement to create a table in the
database.

• Syntax:

• Example:

CREATE TABLE tablename (
{column-definition | Table-level constraint}
[, {column-definition | Table-level constraint}] *)

CREATE TABLE teach_dept (
department_id NUMBER(3) PRIMARY KEY,
department_name VARCHAR2(10));

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 E

ga
bi

 S
ol

ut
io

ns
 u

se
 o

nl
y

TH
ES

E
eK

IT
 M

AT
ER

IA
LS

 A
R

E
FO

R
 Y

O
U

R
 U

SE
 IN

 T
H

IS
 C

LA
SS

R
O

O
M

 O
N

LY
.

C
O

PY
IN

G
 e

KI
T

M
AT

ER
IA

LS
 F

R
O

M
 T

H
IS

 C
O

M
PU

TE
R

 IS
 S

TR
IC

TL
Y

PR
O

H
IB

IT
ED

The ALTER TABLE statement allows you to make changes to an existing table.

You can:

• Add a column to a table

• Add a constraint to a table

• Modify an existing column definition

• Drop a column from a table

• Drop an existing constraint from a table
• Increase the width of the VARCHAR and CHAR columns

• Change a table to have read-only status

Example 1 in the slide adds a new column called location_id to the teach_dept table.

Example 2 updates the existing department_name column from VARCHAR2(10) to
VARCHAR2(30), and adds a NOT NULL constraint to it.

Oracle Database 12c: SQL Workshop I D - 10

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

ALTER TABLE Statement

• Use the ALTER TABLE statement to modify the definition of
an existing table in the database.

• Example1:

• Example 2:

ALTER TABLE teach_dept
ADD location_id NUMBER NOT NULL;

ALTER TABLE teach_dept
MODIFY department_name VARCHAR2(30) NOT NULL;

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 E

ga
bi

 S
ol

ut
io

ns
 u

se
 o

nl
y

TH
ES

E
eK

IT
 M

AT
ER

IA
LS

 A
R

E
FO

R
 Y

O
U

R
 U

SE
 IN

 T
H

IS
 C

LA
SS

R
O

O
M

 O
N

LY
.

C
O

PY
IN

G
 e

KI
T

M
AT

ER
IA

LS
 F

R
O

M
 T

H
IS

 C
O

M
PU

TE
R

 IS
 S

TR
IC

TL
Y

PR
O

H
IB

IT
ED

The DROP TABLE statement allows you to remove a table and its contents from the database,
and pushes it to the recycle bin. Dropping a table invalidates dependent objects and removes
object privileges on the table.

Use the PURGE clause along with the DROP TABLE statement to release back to the
tablespace the space allocated for the table. You cannot roll back a DROP TABLE statement
with the PURGE clause, nor can you recover the table if you have dropped it with the PURGE
clause.

The CASCADE CONSTRAINTS clause allows you to drop the reference to the primary key and
unique keys in the dropped table.

Oracle Database 12c: SQL Workshop I D - 11

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

DROP TABLE Statement

• The DROP TABLE statement removes the table and all its
data from the database.

• Example:

• DROP TABLE with the PURGE clause drops the table and
releases the space that is associated with it.

• The CASCADE CONSTRAINTS clause drops all referential
integrity constraints from the table.

DROP TABLE teach_dept;

DROP TABLE teach_dept PURGE;

DROP TABLE teach_dept CASCADE CONSTRAINTS;

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 E

ga
bi

 S
ol

ut
io

ns
 u

se
 o

nl
y

TH
ES

E
eK

IT
 M

AT
ER

IA
LS

 A
R

E
FO

R
 Y

O
U

R
 U

SE
 IN

 T
H

IS
 C

LA
SS

R
O

O
M

 O
N

LY
.

C
O

PY
IN

G
 e

KI
T

M
AT

ER
IA

LS
 F

R
O

M
 T

H
IS

 C
O

M
PU

TE
R

 IS
 S

TR
IC

TL
Y

PR
O

H
IB

IT
ED

You can use the GRANT statement to:

• Assign privileges to a specific user or role, or to all users, to perform actions on
database objects

• Grant a role to a user, to PUBLIC, or to another role

Before you issue a GRANT statement, check that the derby.database.sql Authorization
property is set to True. This property enables the SQL Authorization mode. You can grant
privileges on an object if you are the owner of the database.

You can grant privileges to all users by using the PUBLIC keyword. When PUBLIC is
specified, the privileges or roles affect all current and future users.

Oracle Database 12c: SQL Workshop I D - 12

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

GRANT Statement

• The GRANT statement assigns privilege to perform the
following operations:
– Insert or delete data

– Create a foreign key reference to the named table or to a
subset of columns from a table

– Select data, a view, or a subset of columns from a table

– Create a trigger on a table

– Execute a specified function or procedure

• Example:

GRANT SELECT any table to PUBLIC;

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 E

ga
bi

 S
ol

ut
io

ns
 u

se
 o

nl
y

TH
ES

E
eK

IT
 M

AT
ER

IA
LS

 A
R

E
FO

R
 Y

O
U

R
 U

SE
 IN

 T
H

IS
 C

LA
SS

R
O

O
M

 O
N

LY
.

C
O

PY
IN

G
 e

KI
T

M
AT

ER
IA

LS
 F

R
O

M
 T

H
IS

 C
O

M
PU

TE
R

 IS
 S

TR
IC

TL
Y

PR
O

H
IB

IT
ED

Oracle Database 12c: SQL Workshop I D - 13

Oracle Database provides a variety of privilege types to grant privileges to a user or role:

• Use the ALL PRIVILEGES privilege type to grant all privileges to the user or role for the
specified table.

• Use the DELETE privilege type to grant permission to delete rows from the specified
table.

• Use the INSERT privilege type to grant permission to insert rows into the specified table.

• Use the REFERENCES privilege type to grant permission to create a foreign key
reference to the specified table.

• Use the SELECT privilege type to grant permission to perform SELECT statements on a
table or view.

• Use the UPDATE privilege type to grant permission to use the UPDATE statement on the
specified table.

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

Privilege Types

Assign the following privileges using the GRANT statement:

• ALL PRIVILEGES

• DELETE

• INSERT

• REFERENCES

• SELECT

• UPDATE

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 E

ga
bi

 S
ol

ut
io

ns
 u

se
 o

nl
y

TH
ES

E
eK

IT
 M

AT
ER

IA
LS

 A
R

E
FO

R
 Y

O
U

R
 U

SE
 IN

 T
H

IS
 C

LA
SS

R
O

O
M

 O
N

LY
.

C
O

PY
IN

G
 e

KI
T

M
AT

ER
IA

LS
 F

R
O

M
 T

H
IS

 C
O

M
PU

TE
R

 IS
 S

TR
IC

TL
Y

PR
O

H
IB

IT
ED

The REVOKE statement removes privileges from a specific user (or users) or role to perform
actions on database objects. It performs the following operations:

• Revokes a role from a user, from PUBLIC, or from another role

• Revokes privileges for an object if you are the owner of the object or the database
owner

Note: To revoke a role or system privilege, you must have been granted the privilege with the
ADMIN OPTION.

Oracle Database 12c: SQL Workshop I D - 14

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

REVOKE Statement

• Use the REVOKE statement to remove privileges from a
user to perform actions on database objects.

• Revoke a system privilege from a user:

• Revoke a role from a user:

REVOKE DROP ANY TABLE
FROM hr;

REVOKE dw_manager
FROM sh;

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 E

ga
bi

 S
ol

ut
io

ns
 u

se
 o

nl
y

TH
ES

E
eK

IT
 M

AT
ER

IA
LS

 A
R

E
FO

R
 Y

O
U

R
 U

SE
 IN

 T
H

IS
 C

LA
SS

R
O

O
M

 O
N

LY
.

C
O

PY
IN

G
 e

KI
T

M
AT

ER
IA

LS
 F

R
O

M
 T

H
IS

 C
O

M
PU

TE
R

 IS
 S

TR
IC

TL
Y

PR
O

H
IB

IT
ED

The TRUNCATE TABLE statement deletes all the rows from a specific table. Removing rows
with the TRUNCATE TABLE statement can be more efficient than dropping and re-creating a
table. Dropping and re-creating a table:

• Invalidates the dependent objects of the table

• Requires you to re-grant object privileges

• Requires you to re-create indexes, integrity constraints, and triggers.

• Re-specify its storage parameters

The TRUNCATE TABLE statement spares you from these efforts.

Note: You cannot roll back a TRUNCATE TABLE statement.

Oracle Database 12c: SQL Workshop I D - 15

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

TRUNCATE TABLE Statement

• Use the TRUNCATE TABLE statement to remove all the
rows from a table.

• Example:

• By default, Oracle Database performs the following tasks:
– Deallocates space used by the removed rows
– Sets the NEXT storage parameter to the size of the last

extent removed from the segment by the truncation process

TRUNCATE TABLE employees_demo;

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 E

ga
bi

 S
ol

ut
io

ns
 u

se
 o

nl
y

TH
ES

E
eK

IT
 M

AT
ER

IA
LS

 A
R

E
FO

R
 Y

O
U

R
 U

SE
 IN

 T
H

IS
 C

LA
SS

R
O

O
M

 O
N

LY
.

C
O

PY
IN

G
 e

KI
T

M
AT

ER
IA

LS
 F

R
O

M
 T

H
IS

 C
O

M
PU

TE
R

 IS
 S

TR
IC

TL
Y

PR
O

H
IB

IT
ED

Data Manipulation Language (DML) statements enable you to query or change the contents
of an existing schema object. These statements are most frequently used to:

• Add new rows of data to a table or view by specifying a list of column values or using a
subquery to select and manipulate existing data

• Change column values in the existing rows of a table or view

• Remove rows from tables or views

A collection of DML statements that forms a logical unit of work is called a transaction. Unlike
DDL statements, DML statements do not implicitly commit the current transaction.

Oracle Database 12c: SQL Workshop I D - 16

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

Data Manipulation Language

• DML statements query or manipulate data in the existing
schema objects.

• A DML statement is executed when:
– New rows are added to a table by using the INSERT

statement
– Existing rows in a table are modified using the UPDATE

statement
– Existing rows are deleted from a table by using the DELETE

statement

• A transaction consists of a collection of DML statements
that form a logical unit of work.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 E

ga
bi

 S
ol

ut
io

ns
 u

se
 o

nl
y

TH
ES

E
eK

IT
 M

AT
ER

IA
LS

 A
R

E
FO

R
 Y

O
U

R
 U

SE
 IN

 T
H

IS
 C

LA
SS

R
O

O
M

 O
N

LY
.

C
O

PY
IN

G
 e

KI
T

M
AT

ER
IA

LS
 F

R
O

M
 T

H
IS

 C
O

M
PU

TE
R

 IS
 S

TR
IC

TL
Y

PR
O

H
IB

IT
ED

The INSERT statement adds rows to a table. Make sure to insert a new row containing values
for each column and to list the values in the default order of the columns in the table.
Optionally, you can also list the columns in the INSERT statement.

For example:
INSERT INTO job_history (employee_id, start_date, end_date, job_id)
VALUES (120,'25-JUL-06','12-FEB_08','AC_ACCOUNT');

The syntax discussed in the slide allows you to insert a single row at a time. The VALUES
keyword assigns the values of expressions to the corresponding columns in the column list.

Oracle Database 12c: SQL Workshop I D - 17

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

INSERT Statement

• Use the INSERT statement to add new rows to a table.

• Syntax:

• Example:

INSERT INTO table [(column [, column...])]
VALUES (value [, value...]);

INSERT INTO departments
VALUES (200,'Development',104,1400);

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 E

ga
bi

 S
ol

ut
io

ns
 u

se
 o

nl
y

TH
ES

E
eK

IT
 M

AT
ER

IA
LS

 A
R

E
FO

R
 Y

O
U

R
 U

SE
 IN

 T
H

IS
 C

LA
SS

R
O

O
M

 O
N

LY
.

C
O

PY
IN

G
 e

KI
T

M
AT

ER
IA

LS
 F

R
O

M
 T

H
IS

 C
O

M
PU

TE
R

 IS
 S

TR
IC

TL
Y

PR
O

H
IB

IT
ED

Oracle Database 12c: SQL Workshop I D - 18

The UPDATE statement modifies the existing values in a table. Confirm the update operation
by querying the table to display the updated rows. You can modify a specific row or rows by
specifying the WHERE clause.

For example:
UPDATE employees

SET salary = 17500

WHERE employee_id = 102;

In general, use the primary key column in the WHERE clause to identify the row to update. For
example, to update a specific row in the employees table, use employee_id to identify the
row instead of employee_name, because more than one employee may have the same
name.

Note: Typically, the condition keyword is composed of column names, expressions,
constants, subqueries, and comparison operators.

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

UPDATE Statement Syntax

• Use the UPDATE statement to modify the existing rows in a
table.

• Update more than one row at a time (if required).

• Example:

• Specify SET column_name= NULL to update
a column value to NULL.

UPDATE table
SET column = value [, column = value, ...]
[WHERE condition];

UPDATE copy_emp
SET

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 E

ga
bi

 S
ol

ut
io

ns
 u

se
 o

nl
y

TH
ES

E
eK

IT
 M

AT
ER

IA
LS

 A
R

E
FO

R
 Y

O
U

R
 U

SE
 IN

 T
H

IS
 C

LA
SS

R
O

O
M

 O
N

LY
.

C
O

PY
IN

G
 e

KI
T

M
AT

ER
IA

LS
 F

R
O

M
 T

H
IS

 C
O

M
PU

TE
R

 IS
 S

TR
IC

TL
Y

PR
O

H
IB

IT
ED

Oracle Database 12c: SQL Workshop I D - 19

The DELETE statement removes existing rows from a table. You must use the WHERE
clause to delete a specific row or rows from a table based on the condition. The condition
identifies the rows to be deleted. It may contain column names, expressions, constants,
subqueries, and comparison operators.

The first example in the slide deletes the finance department from the departments table. You
can confirm the delete operation by using the SELECT statement to query the table.

SELECT *

FROM departments

WHERE department_name = 'Finance';

If you omit the WHERE clause, all rows in the table are deleted. For example:
DELETE FROM copy_emp;

The preceding example deletes all the rows from the copy_emp table.

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

DELETE Statement

• Use the DELETE statement to delete the existing rows from
a table.

• Syntax:

• Write the DELETE statement using the WHERE clause to
delete specific rows from a table.

DELETE [FROM] table
[WHERE condition];

DELETE FROM departments
WHERE department_name = 'Finance';

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 E

ga
bi

 S
ol

ut
io

ns
 u

se
 o

nl
y

TH
ES

E
eK

IT
 M

AT
ER

IA
LS

 A
R

E
FO

R
 Y

O
U

R
 U

SE
 IN

 T
H

IS
 C

LA
SS

R
O

O
M

 O
N

LY
.

C
O

PY
IN

G
 e

KI
T

M
AT

ER
IA

LS
 F

R
O

M
 T

H
IS

 C
O

M
PU

TE
R

 IS
 S

TR
IC

TL
Y

PR
O

H
IB

IT
ED

Oracle Database 12c: SQL Workshop I D - 20

A transaction is a sequence of SQL statements that Oracle Database treats as a single unit.
Transaction control statements are used in a database to manage the changes made by DML
statements and to group these statements into transactions.

Each transaction is assigned a unique transaction_id and it groups SQL statements so
that they are either all committed, which means they are applied to the database, or all rolled
back, which means they are undone from the database.

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

Transaction Control Statements

• Transaction control statements are used to manage the
changes made by DML statements.

• The DML statements are grouped into transactions.

• Transaction control statements include:
– COMMIT

– ROLLBACK

– SAVEPOINT

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 E

ga
bi

 S
ol

ut
io

ns
 u

se
 o

nl
y

TH
ES

E
eK

IT
 M

AT
ER

IA
LS

 A
R

E
FO

R
 Y

O
U

R
 U

SE
 IN

 T
H

IS
 C

LA
SS

R
O

O
M

 O
N

LY
.

C
O

PY
IN

G
 e

KI
T

M
AT

ER
IA

LS
 F

R
O

M
 T

H
IS

 C
O

M
PU

TE
R

 IS
 S

TR
IC

TL
Y

PR
O

H
IB

IT
ED

Oracle Database 12c: SQL Workshop I D - 21

The COMMIT statement ends the current transaction by making all the pending data changes
permanent. It releases all row and table locks, and erases any savepoints that you may have
marked since the last commit or rollback. The changes made using the COMMIT statement are
visible to all users.

Oracle recommends that you explicitly end every transaction in your application programs
with a COMMIT or ROLLBACK statement, including the last transaction, before disconnecting
from Oracle Database. If you do not explicitly commit the transaction and the program
terminates abnormally, the last uncommitted transaction is automatically rolled back.

Note: Oracle Database issues an implicit COMMIT before and after any data definition
language (DDL) statement.

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

COMMIT Statement

• Use the COMMIT statement to:
– Permanently save the changes made to the database during

the current transaction

– Erase all savepoints in the transaction

– Release transaction locks

• Example:

INSERT INTO departments
VALUES (201, 'Engineering', 106, 1400);
COMMIT;

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 E

ga
bi

 S
ol

ut
io

ns
 u

se
 o

nl
y

TH
ES

E
eK

IT
 M

AT
ER

IA
LS

 A
R

E
FO

R
 Y

O
U

R
 U

SE
 IN

 T
H

IS
 C

LA
SS

R
O

O
M

 O
N

LY
.

C
O

PY
IN

G
 e

KI
T

M
AT

ER
IA

LS
 F

R
O

M
 T

H
IS

 C
O

M
PU

TE
R

 IS
 S

TR
IC

TL
Y

PR
O

H
IB

IT
ED

Oracle Database 12c: SQL Workshop I D - 22

The ROLLBACK statement undoes work done in the current transaction. To roll back the
current transaction, no privileges are necessary.

Using ROLLBACK with the TO SAVEPOINT clause performs the following operations:

• Rolls back only the portion of the transaction after the savepoint

• Erases all savepoints created after that savepoint. The named savepoint is retained, so
you can roll back to the same savepoint multiple times.

Using ROLLBACK without the TO SAVEPOINT clause performs the following operations:

• Ends the transaction

• Undoes all the changes in the current transaction

• Erases all savepoints in the transaction

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

ROLLBACK Statement

• Use the ROLLBACK statement to undo changes made to the
database during the current transaction.

• Use the TO SAVEPOINT clause to undo a part of the
transaction after the savepoint.

• Example:
UPDATE employees
SET salary = 7000
WHERE last_name = 'Ernst';
SAVEPOINT Ernst_sal;

UPDATE employees
SET salary = 12000
WHERE last_name = 'Mourgos';

ROLLBACK TO SAVEPOINT Ersnt_sal;

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 E

ga
bi

 S
ol

ut
io

ns
 u

se
 o

nl
y

TH
ES

E
eK

IT
 M

AT
ER

IA
LS

 A
R

E
FO

R
 Y

O
U

R
 U

SE
 IN

 T
H

IS
 C

LA
SS

R
O

O
M

 O
N

LY
.

C
O

PY
IN

G
 e

KI
T

M
AT

ER
IA

LS
 F

R
O

M
 T

H
IS

 C
O

M
PU

TE
R

 IS
 S

TR
IC

TL
Y

PR
O

H
IB

IT
ED

The SAVEPOINT statement identifies a point in a transaction to which you can later roll back.
You must specify a distinct name for each savepoint. If you create a second savepoint with
the same identifier as an earlier savepoint, the earlier savepoint is erased.

After a savepoint has been created, you can either continue processing, commit your work,
roll back the entire transaction, or roll back to the savepoint.

A simple rollback or commit erases all savepoints. When you roll back to a savepoint, any
savepoints marked after that savepoint are erased. The savepoint to which you have rolled
back is retained.

When savepoint names are reused within a transaction, the Oracle Database moves
(overrides) the save point from its old position to the current point in the transaction.

Oracle Database 12c: SQL Workshop I D - 23

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

SAVEPOINT Statement

• Use the SAVEPOINT statement to name and mark the
current point in the processing of a transaction.

• Specify a name to each savepoint.

• Use distinct savepoint names within a transaction to avoid
overriding.

• Syntax:

SAVEPOINT savepoint;

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 E

ga
bi

 S
ol

ut
io

ns
 u

se
 o

nl
y

TH
ES

E
eK

IT
 M

AT
ER

IA
LS

 A
R

E
FO

R
 Y

O
U

R
 U

SE
 IN

 T
H

IS
 C

LA
SS

R
O

O
M

 O
N

LY
.

C
O

PY
IN

G
 e

KI
T

M
AT

ER
IA

LS
 F

R
O

M
 T

H
IS

 C
O

M
PU

TE
R

 IS
 S

TR
IC

TL
Y

PR
O

H
IB

IT
ED

When data from more than one table in the database is required, a join condition is used.
Rows in one table can be joined to rows in another table according to common values that
exist in the corresponding columns (usually primary and foreign key columns).

To display data from two or more related tables, write a simple join condition in the WHERE
clause.

In the syntax:

table1.column Denotes the table and column from which data is retrieved
table1.column1 = Is the condition that joins (or relates) the tables together
table2.column2

Guidelines
• When writing a SELECT statement that joins tables, precede the column name with the

table name for clarity and to enhance database access.

• If the same column name appears in more than one table, the column name must be
prefixed with the table name.

• To join n tables together, you need a minimum of n-1 join conditions. For example, to
join four tables, a minimum of three joins is required. This rule may not apply if your
table has a concatenated primary key, in which case more than one column is required
to uniquely identify each row.

Oracle Database 12c: SQL Workshop I D - 24

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

Joins

Use a join to query data from more than one table:

• Write the join condition in the WHERE clause.

• Prefix the column name with the table name when the
same column name appears in more than one table.

SELECT table1.column, table2.column
FROM table1, table2
WHERE table1.column1 = table2.column2;

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 E

ga
bi

 S
ol

ut
io

ns
 u

se
 o

nl
y

TH
ES

E
eK

IT
 M

AT
ER

IA
LS

 A
R

E
FO

R
 Y

O
U

R
 U

SE
 IN

 T
H

IS
 C

LA
SS

R
O

O
M

 O
N

LY
.

C
O

PY
IN

G
 e

KI
T

M
AT

ER
IA

LS
 F

R
O

M
 T

H
IS

 C
O

M
PU

TE
R

 IS
 S

TR
IC

TL
Y

PR
O

H
IB

IT
ED

To join tables, you can use Oracle’s join syntax.

Note: Before the Oracle9i release, the join syntax was proprietary. The SQL:1999–compliant
join syntax does not offer any performance benefits over the Oracle-proprietary join syntax.

Oracle Database 12c: SQL Workshop I D - 25

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

Types of Joins

• Natural join

• Equijoin

• Nonequijoin

• Outer join

• Self-join

• Cross join

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 E

ga
bi

 S
ol

ut
io

ns
 u

se
 o

nl
y

TH
ES

E
eK

IT
 M

AT
ER

IA
LS

 A
R

E
FO

R
 Y

O
U

R
 U

SE
 IN

 T
H

IS
 C

LA
SS

R
O

O
M

 O
N

LY
.

C
O

PY
IN

G
 e

KI
T

M
AT

ER
IA

LS
 F

R
O

M
 T

H
IS

 C
O

M
PU

TE
R

 IS
 S

TR
IC

TL
Y

PR
O

H
IB

IT
ED

When joining two or more tables, you need to qualify the names of the columns with the table
name to avoid ambiguity. Without the table prefixes, the DEPARTMENT_ID column in the
SELECT list could be from either the DEPARTMENTS table or the EMPLOYEES table. Therefore,
it is necessary to add the table prefix to execute your query. If there are no common column
names between the two tables, there is no need to qualify the columns. However, using a
table prefix improves performance, because you tell the Oracle server exactly where to find
the columns.
Qualifying column names with table names can be very time consuming, particularly if table
names are lengthy. Therefore, you can use table aliases, instead of table names. Just as a
column alias gives a column another name, a table alias gives a table another name. Table
aliases help to keep SQL code smaller, thereby using less memory.
The table name is specified in full, followed by a space, and then the table alias. For example,
the EMPLOYEES table can be given an alias of e, and the DEPARTMENTS table an alias of d.

Guidelines
• Table aliases can be up to 30 characters in length, but shorter aliases are better than

longer ones.

• If a table alias is used for a particular table name in the FROM clause, that table alias
must be substituted for the table name throughout the SELECT statement.

• Table aliases should be meaningful.

• A table alias is valid only for the current SELECT statement.

Oracle Database 12c: SQL Workshop I D - 26

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

Qualifying Ambiguous Column Names

• Use table prefixes to qualify column names that are in
multiple tables.

• Use table prefixes to improve performance.

• Use table aliases, instead of full table name prefixes.

• Table aliases give a table a shorter name.
– This keeps SQL code smaller and uses less memory.

• Use column aliases to distinguish columns that have
identical names, but reside in different tables.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 E

ga
bi

 S
ol

ut
io

ns
 u

se
 o

nl
y

TH
ES

E
eK

IT
 M

AT
ER

IA
LS

 A
R

E
FO

R
 Y

O
U

R
 U

SE
 IN

 T
H

IS
 C

LA
SS

R
O

O
M

 O
N

LY
.

C
O

PY
IN

G
 e

KI
T

M
AT

ER
IA

LS
 F

R
O

M
 T

H
IS

 C
O

M
PU

TE
R

 IS
 S

TR
IC

TL
Y

PR
O

H
IB

IT
ED

You can join tables automatically based on the columns in the two tables that have matching
data types and names. You do this by using the NATURAL JOIN keywords.

Note: The join can happen only on those columns that have the same names and data types
in both tables. If the columns have the same name but different data types, the NATURAL
JOIN syntax causes an error.

In the example in the slide, the COUNTRIES table is joined to the LOCATIONS table by the
COUNTRY_ID column, which is the only column of the same name in both tables. If other
common columns were present, the join would have used them all.

Oracle Database 12c: SQL Workshop I D - 27

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

Natural Join

• The NATURAL JOIN clause is based on all the columns in
the two tables that have the same name.

• It selects rows from tables that have the same names and
data values of columns.

• Example:

SELECT country_id, location_id, country_name,city
FROM countries NATURAL JOIN locations;

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 E

ga
bi

 S
ol

ut
io

ns
 u

se
 o

nl
y

TH
ES

E
eK

IT
 M

AT
ER

IA
LS

 A
R

E
FO

R
 Y

O
U

R
 U

SE
 IN

 T
H

IS
 C

LA
SS

R
O

O
M

 O
N

LY
.

C
O

PY
IN

G
 e

KI
T

M
AT

ER
IA

LS
 F

R
O

M
 T

H
IS

 C
O

M
PU

TE
R

 IS
 S

TR
IC

TL
Y

PR
O

H
IB

IT
ED

An equijoin is a join with a join condition containing an equality operator. An equijoin
combines rows that have equivalent values for the specified columns. To determine an
employee’s department name, you compare the values in the DEPARTMENT_ID column in the
EMPLOYEES table with the DEPARTMENT_ID values in the DEPARTMENTS table. The
relationship between the EMPLOYEES and DEPARTMENTS tables is an equijoin; that is, values
in the DEPARTMENT_ID column in both tables must be equal. Often, this type of join involves
primary and foreign key complements.

Note: Equijoins are also called simple joins.

Oracle Database 12c: SQL Workshop I D - 28

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

Equijoins

EMPLOYEES DEPARTMENTS

Foreign key

Primary key

…

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 E

ga
bi

 S
ol

ut
io

ns
 u

se
 o

nl
y

TH
ES

E
eK

IT
 M

AT
ER

IA
LS

 A
R

E
FO

R
 Y

O
U

R
 U

SE
 IN

 T
H

IS
 C

LA
SS

R
O

O
M

 O
N

LY
.

C
O

PY
IN

G
 e

KI
T

M
AT

ER
IA

LS
 F

R
O

M
 T

H
IS

 C
O

M
PU

TE
R

 IS
 S

TR
IC

TL
Y

PR
O

H
IB

IT
ED

In the example in the slide:

• The SELECT clause specifies the column names to retrieve:

- Employee last name, employee ID, and department ID, which are columns in the
EMPLOYEES table

- Department ID and location ID, which are columns in the DEPARTMENTS table

• The FROM clause specifies the two tables that the database must access:

- EMPLOYEES table

- DEPARTMENTS table

• The WHERE clause specifies how the tables are to be joined:
e.department_id = d.department_id

Because the DEPARTMENT_ID column is common to both tables, it must be prefixed with the
table alias to avoid ambiguity. Other columns that are not present in both the tables need not
be qualified by a table alias, but it is recommended for better performance.

Note: When you use the Execute Statement icon to run the query, SQL Developer suffixes a
“_1” to differentiate between the two DEPARTMENT_IDs.

Oracle Database 12c: SQL Workshop I D - 29

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

SELECT e.employee_id, e.last_name, e.department_id,
d.department_id, d.location_id

FROM employees e JOIN departments d
ON e.department_id = d.department_id;

Retrieving Records with Equijoins

…

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 E

ga
bi

 S
ol

ut
io

ns
 u

se
 o

nl
y

TH
ES

E
eK

IT
 M

AT
ER

IA
LS

 A
R

E
FO

R
 Y

O
U

R
 U

SE
 IN

 T
H

IS
 C

LA
SS

R
O

O
M

 O
N

LY
.

C
O

PY
IN

G
 e

KI
T

M
AT

ER
IA

LS
 F

R
O

M
 T

H
IS

 C
O

M
PU

TE
R

 IS
 S

TR
IC

TL
Y

PR
O

H
IB

IT
ED

In addition to the join, you may have criteria for your WHERE clause to restrict the rows in
consideration for one or more tables in the join. The example in the slide performs a join on
the DEPARTMENTS and LOCATIONS tables and, in addition, displays only those departments
with ID equal to 20 or 50. To add additional conditions to the ON clause, you can add AND
clauses. Alternatively, you can use a WHERE clause to apply additional conditions.

Both queries produce the same output.

Oracle Database 12c: SQL Workshop I D - 30

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

Additional Search Conditions
Using the AND and WHERE Operators

SELECT d.department_id, d.department_name, l.city
FROM departments d JOIN locations l
ON d.location_id = l.location_id
AND d.department_id IN (20, 50);

SELECT d.department_id, d.department_name, l.city
FROM departments d JOIN locations l
ON d.location_id = l.location_id
WHERE d.department_id IN (20, 50);

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 E

ga
bi

 S
ol

ut
io

ns
 u

se
 o

nl
y

TH
ES

E
eK

IT
 M

AT
ER

IA
LS

 A
R

E
FO

R
 Y

O
U

R
 U

SE
 IN

 T
H

IS
 C

LA
SS

R
O

O
M

 O
N

LY
.

C
O

PY
IN

G
 e

KI
T

M
AT

ER
IA

LS
 F

R
O

M
 T

H
IS

 C
O

M
PU

TE
R

 IS
 S

TR
IC

TL
Y

PR
O

H
IB

IT
ED

The example in the slide creates a nonequijoin to evaluate an employee’s salary grade. The
salary must be between any pair of the low and high salary ranges.
It is important to note that all employees appear exactly once when this query is executed. No
employee is repeated in the list. There are two reasons for this:

• None of the rows in the job grade table contain grades that overlap. That is, the salary
value for an employee can lie only between the low salary and high salary values of one
of the rows in the salary grade table.

• All of the employees’ salaries lie within the limits that are provided by the job grade
table. That is, no employee earns less than the lowest value contained in the
LOWEST_SAL column or more than the highest value contained in the HIGHEST_SAL
column.

Note: Other conditions (such as <= and >=) can be used, but BETWEEN is the simplest.
Remember to specify the low value first and the high value last when using the BETWEEN
condition. The Oracle server translates the BETWEEN condition to a pair of AND conditions.
Therefore, using BETWEEN has no performance benefits, but should be used only for logical
simplicity.
Table aliases have been specified in the example in the slide for performance reasons, not
because of possible ambiguity.

Oracle Database 12c: SQL Workshop I D - 31

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

SELECT e.last_name, e.salary, j.grade_level
FROM employees e JOIN job_grades j
ON e.salary

BETWEEN j.lowest_sal AND j.highest_sal;

Retrieving Records with Nonequijoins

…

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 E

ga
bi

 S
ol

ut
io

ns
 u

se
 o

nl
y

TH
ES

E
eK

IT
 M

AT
ER

IA
LS

 A
R

E
FO

R
 Y

O
U

R
 U

SE
 IN

 T
H

IS
 C

LA
SS

R
O

O
M

 O
N

LY
.

C
O

PY
IN

G
 e

KI
T

M
AT

ER
IA

LS
 F

R
O

M
 T

H
IS

 C
O

M
PU

TE
R

 IS
 S

TR
IC

TL
Y

PR
O

H
IB

IT
ED

In the example in the slide, the COUNTRY_ID columns in the COUNTRIES and LOCATIONS
tables are joined and thus the LOCATION_ID of the location where an employee works is
shown.

Oracle Database 12c: SQL Workshop I D - 32

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

Retrieving Records by Using the USING Clause

• You can use the USING clause to match only one column
when more than one column matches.

• You cannot specify this clause with a NATURAL join.

• Do not qualify the column name with a table name or table
alias.

• Example:

SELECT country_id, country_name, location_id, city
FROM countries JOIN locations
USING (country_id) ;

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 E

ga
bi

 S
ol

ut
io

ns
 u

se
 o

nl
y

TH
ES

E
eK

IT
 M

AT
ER

IA
LS

 A
R

E
FO

R
 Y

O
U

R
 U

SE
 IN

 T
H

IS
 C

LA
SS

R
O

O
M

 O
N

LY
.

C
O

PY
IN

G
 e

KI
T

M
AT

ER
IA

LS
 F

R
O

M
 T

H
IS

 C
O

M
PU

TE
R

 IS
 S

TR
IC

TL
Y

PR
O

H
IB

IT
ED

Oracle Database 12c: SQL Workshop I D - 33

Use the ON clause to specify a join condition. With this, you can specify join conditions
separate from any search or filter conditions in the WHERE clause.

In this example, the EMPLOYEE_ID columns in the EMPLOYEES and JOB_HISTORY tables are
joined using the ON clause. Wherever an employee ID in the EMPLOYEES table equals an
employee ID in the JOB_HISTORY table, the row is returned. The table alias is necessary to
qualify the matching column names.

You can also use the ON clause to join columns that have different names. The parentheses
around the joined columns, as in the example in the slide, (e.employee_id =
j.employee_id), is optional. So, even ON e.employee_id = j.employee_id will work.

Note: When you use the Execute Statement icon to run the query, SQL Developer suffixes a
‘_1’ to differentiate between the two employee_ids.

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

Retrieving Records by Using the ON Clause

• The join condition for the natural join is basically an
equijoin of all columns with the same name.

• Use the ON clause to specify arbitrary conditions or specify
columns to join.

• The ON clause makes code easy to understand.

SELECT e.employee_id, e.last_name, j.department_id,
FROM employees e JOIN job_history j
ON (e.employee_id = j.employee_id);

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 E

ga
bi

 S
ol

ut
io

ns
 u

se
 o

nl
y

TH
ES

E
eK

IT
 M

AT
ER

IA
LS

 A
R

E
FO

R
 Y

O
U

R
 U

SE
 IN

 T
H

IS
 C

LA
SS

R
O

O
M

 O
N

LY
.

C
O

PY
IN

G
 e

KI
T

M
AT

ER
IA

LS
 F

R
O

M
 T

H
IS

 C
O

M
PU

TE
R

 IS
 S

TR
IC

TL
Y

PR
O

H
IB

IT
ED

This query retrieves all the rows in the COUNTRIES table, which is the left table, even if there
is no match in the LOCATIONS table.

Oracle Database 12c: SQL Workshop I D - 34

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

Left Outer Join

• A join between two tables that returns all matched rows, as
well as the unmatched rows from the left table is called a
LEFT OUTER JOIN.

• Example:

SELECT c.country_id, c.country_name, l.location_id, l.city
FROM countries c LEFT OUTER JOIN locations l
ON (c.country_id = l.country_id) ;

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 E

ga
bi

 S
ol

ut
io

ns
 u

se
 o

nl
y

TH
ES

E
eK

IT
 M

AT
ER

IA
LS

 A
R

E
FO

R
 Y

O
U

R
 U

SE
 IN

 T
H

IS
 C

LA
SS

R
O

O
M

 O
N

LY
.

C
O

PY
IN

G
 e

KI
T

M
AT

ER
IA

LS
 F

R
O

M
 T

H
IS

 C
O

M
PU

TE
R

 IS
 S

TR
IC

TL
Y

PR
O

H
IB

IT
ED

This query retrieves all the rows in the DEPARTMENTS table, which is the table at the right,
even if there is no match in the EMPLOYEES table.

Oracle Database 12c: SQL Workshop I D - 35

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

Right Outer Join

• A join between two tables that returns all matched rows, as
well as the unmatched rows from the right table is called a
RIGHT OUTER JOIN.

• Example:

SELECT e.last_name, d.department_id, d.department_name
FROM employees e RIGHT OUTER JOIN departments d
ON (e.department_id = d.department_id) ;

…

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 E

ga
bi

 S
ol

ut
io

ns
 u

se
 o

nl
y

TH
ES

E
eK

IT
 M

AT
ER

IA
LS

 A
R

E
FO

R
 Y

O
U

R
 U

SE
 IN

 T
H

IS
 C

LA
SS

R
O

O
M

 O
N

LY
.

C
O

PY
IN

G
 e

KI
T

M
AT

ER
IA

LS
 F

R
O

M
 T

H
IS

 C
O

M
PU

TE
R

 IS
 S

TR
IC

TL
Y

PR
O

H
IB

IT
ED

This query retrieves all the rows in the EMPLOYEES table, even if there is no match in the
DEPARTMENTS table. It also retrieves all the rows in the DEPARTMENTS table, even if there is
no match in the EMPLOYEES table.

Oracle Database 12c: SQL Workshop I D - 36

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

Full Outer Join

• A join between two tables that returns all matched rows, as
well as the unmatched rows from both tables is called a
FULL OUTER JOIN.

• Example:

SELECT e.last_name, d.department_id, d.manager_id,
d.department_name
FROM employees e FULL OUTER JOIN departments d
ON (e.manager_id = d.manager_id) ;

…

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 E

ga
bi

 S
ol

ut
io

ns
 u

se
 o

nl
y

TH
ES

E
eK

IT
 M

AT
ER

IA
LS

 A
R

E
FO

R
 Y

O
U

R
 U

SE
 IN

 T
H

IS
 C

LA
SS

R
O

O
M

 O
N

LY
.

C
O

PY
IN

G
 e

KI
T

M
AT

ER
IA

LS
 F

R
O

M
 T

H
IS

 C
O

M
PU

TE
R

 IS
 S

TR
IC

TL
Y

PR
O

H
IB

IT
ED

Sometimes you need to join a table to itself. To find the name of each employee’s manager,
you need to join the EMPLOYEES table to itself, or perform a self-join. The example in the slide
joins the EMPLOYEES table to itself. To simulate two tables in the FROM clause, there are two
aliases, namely worker and manager, for the same table, EMPLOYEES.

In this example, the WHERE clause contains the join that means “where a worker’s manager ID
matches the employee ID for the manager.”

Oracle Database 12c: SQL Workshop I D - 37

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

Self-Join: Example

SELECT worker.last_name || ' works for '

|| manager.last_name

FROM employees worker JOIN employees manager

ON worker.manager_id = manager.employee_id

ORDER BY worker.last_name;

…

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 E

ga
bi

 S
ol

ut
io

ns
 u

se
 o

nl
y

TH
ES

E
eK

IT
 M

AT
ER

IA
LS

 A
R

E
FO

R
 Y

O
U

R
 U

SE
 IN

 T
H

IS
 C

LA
SS

R
O

O
M

 O
N

LY
.

C
O

PY
IN

G
 e

KI
T

M
AT

ER
IA

LS
 F

R
O

M
 T

H
IS

 C
O

M
PU

TE
R

 IS
 S

TR
IC

TL
Y

PR
O

H
IB

IT
ED

The CROSS JOIN syntax specifies the cross product. It is also known as a Cartesian product.
A cross join produces the cross product of two relations, and is essentially the same as the
comma-delimited Oracle Database notation.

You do not specify any WHERE condition between the two tables in the CROSS JOIN.

Oracle Database 12c: SQL Workshop I D - 38

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

Cross Join

• A CROSS JOIN is a JOIN operation that produces the
Cartesian product of two tables.

• Example:

…

SELECT department_name, city

FROM department CROSS JOIN location;

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 E

ga
bi

 S
ol

ut
io

ns
 u

se
 o

nl
y

TH
ES

E
eK

IT
 M

AT
ER

IA
LS

 A
R

E
FO

R
 Y

O
U

R
 U

SE
 IN

 T
H

IS
 C

LA
SS

R
O

O
M

 O
N

LY
.

C
O

PY
IN

G
 e

KI
T

M
AT

ER
IA

LS
 F

R
O

M
 T

H
IS

 C
O

M
PU

TE
R

 IS
 S

TR
IC

TL
Y

PR
O

H
IB

IT
ED

There are many commonly used commands and statements in SQL. It includes the DDL
statements, DML statements, transaction control statements, and joins.

Oracle Database 12c: SQL Workshop I D - 39

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

Summary

In this appendix, you should have learned how to use:
• The SELECT statement to retrieve rows from one or more

tables

• DDL statements to alter the structure of objects

• DML statements to manipulate data in the existing schema
objects

• Transaction control statements to manage the changes
made by DML statements

• Joins to display data from multiple tables

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 E

ga
bi

 S
ol

ut
io

ns
 u

se
 o

nl
y

TH
ES

E
eK

IT
 M

AT
ER

IA
LS

 A
R

E
FO

R
 Y

O
U

R
 U

SE
 IN

 T
H

IS
 C

LA
SS

R
O

O
M

 O
N

LY
.

C
O

PY
IN

G
 e

KI
T

M
AT

ER
IA

LS
 F

R
O

M
 T

H
IS

 C
O

M
PU

TE
R

 IS
 S

TR
IC

TL
Y

PR
O

H
IB

IT
ED

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 E

ga
bi

 S
ol

ut
io

ns
 u

se
 o

nl
y

TH
ES

E
eK

IT
 M

AT
ER

IA
LS

 A
R

E
FO

R
 Y

O
U

R
 U

SE
 IN

 T
H

IS
 C

LA
SS

R
O

O
M

 O
N

LY
.

C
O

PY
IN

G
 e

KI
T

M
AT

ER
IA

LS
 F

R
O

M
 T

H
IS

 C
O

M
PU

TE
R

 IS
 S

TR
IC

TL
Y

PR
O

H
IB

IT
ED

	Oracle Database 12c: SQL Workshop I - Student Guide - Volume II
	Table of Contents
	Lesson 9: Using the Set Operators
	Objectives
	Lesson Agenda
	Set Operators
	Set Operator Rules
	Oracle Server and Set Operators
	Lesson Agenda
	Tables Used in This Lesson
	Lesson Agenda
	UNION Operator
	Using the UNION Operator
	UNION ALL Operator
	Using the UNION ALL Operator
	Lesson Agenda
	INTERSECT Operator
	Using the INTERSECT Operator
	Lesson Agenda
	MINUS Operator
	Using the MINUS Operator
	Lesson Agenda
	Matching the SELECT Statements
	Matching the SELECT Statement: Example
	Lesson Agenda
	Using the ORDER BY Clause in Set Operations
	Quiz
	Summary
	Practice 9: Overview

	Lesson 10: Managing Tables Using DML Statements
	Objectives
	Lesson Agenda
	Data Manipulation Language
	Adding a New Row to a Table
	INSERT Statement Syntax
	Inserting New Rows
	Inserting Rows with Null Values
	Inserting Special Values
	Inserting Specific Date and Time Values
	Creating a Script
	Copying Rows from Another Table
	Lesson Agenda
	Changing Data in a Table
	UPDATE Statement Syntax
	Updating Rows in a Table
	Updating Two Columns with a Subquery
	Updating Rows Based on Another Table
	Lesson Agenda
	Removing a Row from a Table
	DELETE Statement
	Deleting Rows from a Table
	Deleting Rows Based on Another Table
	TRUNCATE Statement
	Lesson Agenda
	Database Transactions
	Database Transactions: Start and End
	Advantages of COMMIT and ROLLBACK Statements
	Explicit Transaction Control Statements
	Rolling Back Changes to a Marker
	Implicit Transaction Processing
	State of the Data Before COMMIT or ROLLBACK
	State of the Data After COMMIT
	Committing Data
	State of the Data After ROLLBACK
	State of the Data After ROLLBACK: Example
	Statement-Level Rollback
	Lesson Agenda
	Read Consistency
	Implementing Read Consistency
	Lesson Agenda
	FOR UPDATE Clause in a SELECT Statement
	FOR UPDATE Clause: Examples
	Quiz
	Summary
	Practice 10: Overview

	Lesson 11: Introduction to Data Definition Language
	Objectives
	Lesson Agenda
	Database Objects
	Naming Rules
	Lesson Agenda
	Data Types
	Datetime Data Types
	DEFAULT Option
	Lesson Agenda
	CREATE TABLE Statement
	Creating Tables
	Lesson Agenda
	Including Constraints
	Constraint Guidelines
	Defining Constraints
	NOT NULL Constraint
	UNIQUE Constraint
	PRIMARY KEY Constraint
	FOREIGN KEY Constraint
	FOREIGN KEY Constraint: Keywords
	CHECK Constraint
	CREATE TABLE: Example
	Violating Constraints
	Lesson Agenda
	Creating a Table Using a Subquery
	Lesson Agenda
	ALTER TABLE Statement
	Adding a Column
	Modifying a Column
	Dropping a Column
	SET UNUSED Option
	Read-Only Tables
	Lesson Agenda
	Dropping a Table
	Quiz
	Summary
	Practice 11: Overview

	Appendix A: Table Descriptions
	Schema Description
	Human Resources (HR) Table Descriptions

	Appendix B: Using SQL Developer
	Objectives
	What Is Oracle SQL Developer?
	Specifications of SQL Developer
	SQL Developer 3.2 Interface
	Creating a Database Connection
	Creating a Database Connection
	Browsing Database Objects
	Displaying the Table Structure
	Browsing Files
	Creating a Schema Object
	Creating a New Table: Example
	Using the SQL Worksheet
	Executing SQL Statements
	Saving SQL Scripts
	Executing Saved Script Files: Method 1
	Executing Saved Script Files: Method 2
	Formatting the SQL Code
	Using Snippets
	Using Snippets: Example
	Using Recycle Bin
	Debugging Procedures and Functions
	Database Reporting
	Creating a User-Defined Report
	Search Engines and External Tools
	Setting Preferences
	Resetting the SQL Developer Layout
	Data Modeler in SQL Developer
	Summary

	Appendix C: Using SQL*Plus
	Objectives
	SQL and SQL*Plus Interaction
	SQL Statements Versus SQL*Plus Commands
	Overview of SQL*Plus
	Logging In to SQL*Plus
	Displaying the Table Structure
	SQL*Plus Editing Commands
	Using LIST
	Using the CHANGE Command
	SQL*Plus File Commands
	Using the SAVE
	SERVEROUTPUT Command
	Using the SQL*Plus SPOOL Command
	Using the AUTOTRACE Command
	Summary

	Appendix D: Commonly Used SQL Commands
	Objectives
	Basic SELECT Statement
	SELECT Statement
	WHERE Clause
	ORDER BY Clause
	GROUP BY Clause
	Data Definition Language
	CREATE TABLE Statement
	ALTER TABLE Statement
	DROP TABLE Statement
	GRANT Statement
	Privilege Types
	REVOKE Statement
	TRUNCATE TABLE Statement
	Data Manipulation Language
	INSERT Statement
	UPDATE Statement Syntax
	DELETE Statement
	Transaction Control Statements
	COMMIT Statement
	ROLLBACK Statement
	SAVEPOINT Statement
	Joins
	Types of Joins
	Qualifying Ambiguous Column Names
	Natural Join
	Equijoins
	Retrieving Records with Equijoins
	Additional Search Conditions Using the AND and WHERE Operators
	Retrieving Records with Nonequijoins
	Retrieving Records by Using the USING Clause
	Retrieving Records by Using the ON Clause
	Left Outer Join
	Right Outer Join
	Full Outer Join
	Self-Join: Example
	Cross Join
	Summary

