Oracle Database 12c: SQL
Workshop |

Student Guide - Volume |

D80190GC10
Edition 1.0
August 2013
D83122

ORACLE

Author
Dimpi Rani Sarmah

Technical Contributors
and Reviewers

Nancy Greenberg
Swarnapriya Shridhar
Bryan Roberts

Laszlo Czinkoczki
KimSeong Loh

Brent Dayley

Jim Spiller
Christopher Wensley

Anjulaponni Azhagulekshmi
Subbiahpillai

Manish Pawar
Clair Bennett

Yanti Chang

Joel Goodman
Gerlinde Frenzen
Diganta Choudhury

Editors
Vijayalakshmi Narasimhan
Raj Kumar

Graphic Designer
Seema Bopaiah

Publisher
Jobi Varghese

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

Disclaimer

This document contains proprietary information and is protected by copyright and
other intellectual property laws. You may copy and print this document solely for your
own use in an Oracle training course. The document may not be modified or altered
in any way. Except where your use constitutes "fair use" under copyright law, you
may not use, share, download, upload, copy, print, display, perform, reproduce,
publish, license, post, transmit, or distribute this document in whole or in part without
the express authorization of Oracle.

The information contained in this document is subject to change without notice. If you
find any problems in the document, please report them in writing to: Oracle University,
500 Oracle Parkway, Redwood Shores, California 94065 USA. This document is not
warranted to be error-free.

Restricted Rights Notice

If this documentation is delivered to the United States Government or anyone using
the documentation on behalf of the United States Government, the following notice is
applicable:

U.S. GOVERNMENT RIGHTS

The U.S. Government's rights to use, modify, reproduce, release, perform, display, or
disclose these training materials are restricted by the terms of the applicable Oracle
license agreement and/or the applicable U.S. Government contract.

Trademark Notice

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names
may be trademarks of their respective owners.

Contents

1 Introduction
Lesson Objectives 1-2
Lesson Agenda 1-3
Course Objectives 1-4
Course Agenda 1-5
Appendices and Practices Used in the Course 1-7
Lesson Agenda 1-8
Oracle Database 12c: Focus Areas 1-9
Oracle Database 12c¢ 1-10
Oracle Fusion Middleware 1-12
Oracle Enterprise Manager Cloud Control 1-13
Oracle Cloud 1-14
Oracle Cloud Services 1-15
Cloud Deployment Models 1-16
Lesson Agenda 1-17
Relational and Object Relational Database Management Systems 1-18
Data Storage on Different Media 1-19
Relational Database Concept 1-20
Definition of a Relational Database 1-21
Data Models 1-22
Entity Relationship Model 1-23
Entity Relationship Modeling Conventions 1-25
Relating Multiple Tables 1-27
Relational Database Terminology 1-29
Lesson Agenda 1-31
Using SQL to Query Your Database 1-32
SQL Statements Used in the Course 1-33
Development Environments for SQL 1-34
Lesson Agenda 1-35
Human Resources (HR) Schema 1-36
Tables Used in the Course 1-37
Lesson Agenda 1-38
Oracle Database Documentation 1-39
Additional Resources 1-40
Summary 1-41
Practice 1: Overview 1-42

2 Retrieving Data Using the SQL SELECT Statement
Objectives 2-2
Lesson Agenda 2-3
Capabilities of SQL SELECT Statements 2-4
Basic SELECT Statement 2-5
Selecting All Columns 2-6
Selecting Specific Columns 2-7
Writing SQL Statements 2-8
Column Heading Defaults 2-9
Lesson Agenda 2-10
Arithmetic Expressions 2-11
Using Arithmetic Operators 2-12
Operator Precedence 2-13
Defining a Null Value 2-14
Null Values in Arithmetic Expressions 2-15
Lesson Agenda 2-16
Defining a Column Alias 2-17
Using Column Aliases 2-18
Lesson Agenda 2-19
Concatenation Operator 2-20
Literal Character Strings 2-21
Using Literal Character Strings 2-22
Alternative Quote (q) Operator 2-23
Duplicate Rows 2-24
Lesson Agenda 2-25
Displaying the Table Structure 2-26
Using the DESCRIBE Command 2-27
Quiz 2-28
Summary 2-29
Practice 2: Overview 2-30

3 Restricting and Sorting Data
Objectives 3-2
Lesson Agenda 3-3
Limiting Rows Using a Selection 3-4
Limiting the Rows That Are Selected 3-5
Using the WHERE Clause 3-6
Character Strings and Dates 3-7
Comparison Operators 3-8
Using Comparison Operators 3-9
Range Conditions Using the BETWEEN Operator 3-10

Membership Condition Using the IN Operator 3-11
Pattern Matching Using the LIKE Operator 3-12
Combining Wildcard Characters 3-13

Using the NULL Conditions 3-14

Defining Conditions Using the Logical Operators 3-15
Using the AND Operator 3-16

Using the OR Operator 3-17

Using the NOT Operator 3-18

Lesson Agenda 3-19

Rules of Precedence 3-20

Lesson Agenda 3-22

Using the ORDER BY Clause 3-23

Sorting 3-24

Lesson Agenda 3-26

SQL Row Limiting Clause 3-27

Using SQL Row Limiting Clause in a Query 3-28

SQL Row Limiting Clause Example 3-29

Lesson Agenda 3-30

Substitution Variables 3-31

Using the Single-Ampersand Substitution Variable 3-33
Character and Date Values with Substitution Variables 3-35
Specifying Column Names, Expressions, and Text 3-36
Using the Double-Ampersand Substitution Variable 3-37
Lesson Agenda 3-38

Using the DEFINE Command 3-39

Using the VERIFY Command 3-40

Quiz 3-41

Summary 3-42

Practice 3: Overview 3-43

Using Single-Row Functions to Customize Output
Objectives 4-2

Lesson Agenda 4-3

SQL Functions 4-4

Two Types of SQL Functions 4-5
Single-Row Functions 4-6

Lesson Agenda 4-8

Character Functions 4-9
Case-Conversion Functions 4-11
Using Case-Conversion Functions 4-12
Character-Manipulation Functions 4-13

Using the Character-Manipulation Functions 4-14
Lesson Agenda 4-15

Nesting Functions 4-16

Nesting Functions: Example 4-17

Lesson Agenda 4-18

Numeric Functions 4-19

Using the ROUND Function 4-20

Using the TRUNC Function 4-21

Using the MOD Function 4-22

Lesson Agenda 4-23

Working with Dates 4-24

RR Date Format 4-25

Using the SYSDATE Function 4-27
Arithmetic with Dates 4-28

Using Arithmetic Operators with Dates 4-29
Lesson Agenda 4-30

Date-Manipulation Functions 4-31

Using Date Functions 4-32

Using ROUND and TRUNC Functions with Dates 4-33
Quiz 4-34

Summary 4-35

Practice 4: Overview 4-36

Using Conversion Functions and Conditional Expressions
Objectives 5-2

Lesson Agenda 5-3

Conversion Functions 5-4

Implicit Data Type Conversion 5-5

Explicit Data Type Conversion 5-7

Lesson Agenda 5-9

Using the TO_CHAR Function with Dates 5-10

Elements of the Date Format Model 5-11

Using the TO_CHAR Function with Dates 5-14

Using the TO_CHAR Function with Numbers 5-15

Using the TO_NUMBER and TO_DATE Functions 5-18
Using TO_CHAR and TO_DATE Functions with the RR Date Format 5-20
Lesson Agenda 5-21

General Functions 5-22

NVL Function 5-23

Using the NVL Function 5-24

Using the NVL2 Function 5-25

Vi

Using the NULLIF Function 5-26
Using the COALESCE Function 5-27
Lesson Agenda 5-30

Conditional Expressions 5-31
CASE Expression 5-32

Using the CASE Expression 5-33
DECODE Function 5-34

Using the DECODE Function 5-35
Quiz 5-37

Summary 5-38

Practice 5: Overview 5-39

Reporting Aggregated Data Using the Group Functions
Objectives 6-2

Lesson Agenda 6-3

What Are Group Functions? 6-4

Types of Group Functions 6-5

Group Functions: Syntax 6-6

Using the AVG and SUM Functions 6-7

Using the MIN and MAX Functions 6-8

Using the COUNT Function 6-9

Using the DISTINCT Keyword 6-10

Group Functions and Null Values 6-11

Lesson Agenda 6-12

Creating Groups of Data 6-13

Creating Groups of Data: GROUP BY Clause Syntax 6-14
Using the GROUP BY Clause 6-15

Grouping by More Than One Column 6-17

Using the GROUP BY Clause on Multiple Columns 6-18
lllegal Queries Using Group Functions 6-19

Restricting Group Results 6-21

Restricting Group Results with the HAVING Clause 6-22
Using the HAVING Clause 6-23

Lesson Agenda 6-25

Nesting Group Functions 6-26

Quiz 6-27

Summary 6-28

Practice 6: Overview 6-29

Vil

7 Displaying Data from Multiple Tables Using Joins
Objectives 7-2
Lesson Agenda 7-3
Obtaining Data from Multiple Tables 7-4
Types of Joins 7-5
Joining Tables Using SQL:1999 Syntax 7-6
Qualifying Ambiguous Column Names 7-7
Lesson Agenda 7-8
Creating Natural Joins 7-9
Retrieving Records with Natural Joins 7-10
Creating Joins with the USING Clause 7-11
Joining Column Names 7-12
Retrieving Records with the USING Clause 7-13
Using Table Aliases with the USING Clause 7-14
Creating Joins with the ON Clause 7-15
Retrieving Records with the ON Clause 7-16
Creating Three-Way Joins with the ON Clause 7-17
Applying Additional Conditions to a Join 7-18
Lesson Agenda 7-19
Joining a Table to Itself 7-20
Self-Joins Using the ON Clause 7-21
Lesson Agenda 7-22
Nonequijoins 7-23
Retrieving Records with Nonequijoins 7-24
Lesson Agenda 7-25
Returning Records with No Direct Match Using OUTER Joins 7-26
INNER Versus OUTER Joins 7-27
LEFT OUTER JOIN 7-28
RIGHT OUTER JOIN 7-29
FULL OUTER JOIN 7-30
Lesson Agenda 7-31
Cartesian Products 7-32
Generating a Cartesian Product 7-33
Creating Cross Joins 7-34
Quiz 7-35
Summary 7-36
Practice 7: Overview 7-37

viii

8 Using Subqueries to Solve Queries
Objectives 8-2
Lesson Agenda 8-3
Using a Subquery to Solve a Problem 8-4
Subquery Syntax 8-5
Using a Subquery 8-6
Rules for Using Subqueries 8-7
Types of Subqueries 8-8
Lesson Agenda 8-9
Single-Row Subqueries 8-10
Executing Single-Row Subqueries 8-11
Using Group Functions in a Subquery 8-12
HAVING Clause with Subqueries 8-13
What Is Wrong with This Statement? 8-14
No Rows Returned by the Inner Query 8-15
Lesson Agenda 8-16
Multiple-Row Subqueries 8-17
Using the ANY Operator in Multiple-Row Subqueries 8-18
Using the ALL Operator in Multiple-Row Subqueries 8-19
Using the EXISTS Operator 8-20
Lesson Agenda 8-21
Null Values in a Subquery 8-22
Quiz 8-24
Summary 8-25
Practice 8: Overview 8-26

9 Using the Set Operators
Objectives 9-2
Lesson Agenda 9-3
Set Operators 9-4
Set Operator Rules 9-5
Oracle Server and Set Operators 9-6
Lesson Agenda 9-7
Tables Used in This Lesson 9-8
Lesson Agenda 9-12
UNION Operator 9-13
Using the UNION Operator 9-14
UNION ALL Operator 9-16
Using the UNION ALL Operator 9-17
Lesson Agenda 9-18
INTERSECT Operator 9-19

Using the INTERSECT Operator 9-20

Lesson Agenda 9-21

MINUS Operator 9-22

Using the MINUS Operator 9-23

Lesson Agenda 9-24

Matching the SELECT Statements 9-25
Matching the SELECT Statement: Example 9-26
Lesson Agenda 9-27

Using the ORDER BY Clause in Set Operations 9-28
Quiz 9-29

Summary 9-30

Practice 9: Overview 9-31

Managing Tables Using DML Statements
Objectives 10-2

Lesson Agenda 10-3

Data Manipulation Language 10-4

Adding a New Row to a Table 10-5

INSERT Statement Syntax 10-6

Inserting New Rows 10-7

Inserting Rows with Null Values 10-8

Inserting Special Values 10-9

Inserting Specific Date and Time Values 10-10
Creating a Script 10-11

Copying Rows from Another Table 10-12
Lesson Agenda 10-13

Changing Data in a Table 10-14

UPDATE Statement Syntax 10-15

Updating Rows in a Table 10-16

Updating Two Columns with a Subquery 10-17
Updating Rows Based on Another Table 10-18
Lesson Agenda 10-19

Removing a Row from a Table 10-20

DELETE Statement 10-21

Deleting Rows from a Table 10-22

Deleting Rows Based on Another Table 10-23
TRUNCATE Statement 10-24

Lesson Agenda 10-25

Database Transactions 10-26

Database Transactions: Start and End 10-27
Advantages of COMMIT and ROLLBACK Statements 10-28

11

Explicit Transaction Control Statements 10-29
Rolling Back Changes to a Marker 10-30
Implicit Transaction Processing 10-31

State of the Data Before COMMIT or ROLLBACK 10-33

State of the Data After COMMIT 10-34

Committing Data 10-35

State of the Data After ROLLBACK 10-36

State of the Data After ROLLBACK: Example 10-37
Statement-Level Rollback 10-38

Lesson Agenda 10-39

Read Consistency 10-40

Implementing Read Consistency 10-41

Lesson Agenda 10-42

FOR UPDATE Clause in a SELECT Statement 10-43
FOR UPDATE Clause: Examples 10-44

Quiz 10-46

Summary 10-47

Practice 10: Overview 10-48

Introduction to Data Definition Language
Objectives 11-2

Lesson Agenda 11-3

Database Objects 11-4

Naming Rules 11-5

Lesson Agenda 11-6

Data Types 11-7

Datetime Data Types 11-9
DEFAULT Option 11-10

Lesson Agenda 11-11

CREATE TABLE Statement 11-12
Creating Tables 11-13

Lesson Agenda 11-14

Including Constraints 11-15
Constraint Guidelines 11-16
Defining Constraints 11-17

NOT NULL Constraint 11-19
UNIQUE Constraint 11-20
PRIMARY KEY Constraint 11-22
FOREIGN KEY Constraint 11-23
FOREIGN KEY Constraint: Keywords 11-25
CHECK Constraint 11-26

Xi

CREATE TABLE: Example 11-27
Violating Constraints 11-28
Lesson Agenda 11-30

Creating a Table Using a Subquery 11-31
Lesson Agenda 11-33

ALTER TABLE Statement 11-34
Adding a Column 11-36
Modifying a Column 11-37
Dropping a Column 11-38

SET UNUSED Option 11-39
Read-Only Tables 11-41

Lesson Agenda 11-42

Dropping a Table 11-43

Quiz 11-44

Summary 11-45

Practice 11: Overview 11-46

Table Descriptions

Using SQL Developer

Objectives B-2

What Is Oracle SQL Developer? B-3
Specifications of SQL Developer B-4

SQL Developer 3.2 Interface B-5

Creating a Database Connection B-7
Browsing Database Objects B-10
Displaying the Table Structure B-11
Browsing Files B-12

Creating a Schema Object B-13

Creating a New Table: Example B-14
Using the SQL Worksheet B-15

Executing SQL Statements B-19

Saving SQL Scripts B-20

Executing Saved Script Files: Method 1 B-21
Executing Saved Script Files: Method 2 B-22
Formatting the SQL Code B-23

Using Snippets B-24

Using Snippets: Example B-25

Using Recycle Bin B-26

Debugging Procedures and Functions B-27
Database Reporting B-28

Xii

Creating a User-Defined Report B-29
Search Engines and External Tools B-30
Setting Preferences B-31

Resetting the SQL Developer Layout B-33
Data Modeler in SQL Developer B-34
Summary B-35

Using SQL*Plus

Objectives C-2

SQL and SQL*Plus Interaction C-3

SQL Statements Versus SQL*Plus Commands C-4
Overview of SQL*Plus C-5

Logging In to SQL*Plus C-6

Displaying the Table Structure C-7
SQL*Plus Editing Commands C-9

Using LIST, n, and APPEND C-11

Using the CHANGE Command C-12
SQL*Plus File Commands C-13

Using the SAVE, START Commands C-14
SERVEROUTPUT Command C-15

Using the SQL*Plus SPOOL Command C-16
Using the AUTOTRACE Command C-17
Summary C-18

Commonly Used SQL Commands
Objectives D-2

Basic SELECT Statement D-3
SELECT Statement D-4

WHERE Clause D-5

ORDER BY Clause D-6

GROUP BY Clause D-7

Data Definition Language D-8
CREATE TABLE Statement D-9
ALTER TABLE Statement D-10
DROP TABLE Statement D-11
GRANT Statement D-12

Privilege Types D-13

REVOKE Statement D-14
TRUNCATE TABLE Statement D-15
Data Manipulation Language D-16
INSERT Statement D-17

Xiii

UPDATE Statement Syntax D-18

DELETE Statement D-19

Transaction Control Statements D-20

COMMIT Statement D-21

ROLLBACK Statement D-22

SAVEPOINT Statement D-23

Joins D-24

Types of Joins D-25

Qualifying Ambiguous Column Names D-26
Natural Join D-27

Equijoins D-28

Retrieving Records with Equijoins D-29
Additional Search Conditions Using the AND and WHERE Operators D-30
Retrieving Records with Nonequijoins D-31
Retrieving Records by Using the USING Clause D-32
Retrieving Records by Using the ON Clause D-33
Left Outer Join D-34

Right Outer Join D-35

Full Outer Join D-36

Self-Join: Example D-37

Cross Join D-38

Summary D-39

Xiv

Ajuo asn suonn|og Igeb3 pue AjisiaAlun ajpoelO

ORACLE

Introduction
Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

d3119diHOdd ATLOIELS SI d3.LNdINOD SIHL INOHA STVIHALVIA LIX® ONIAJOD "ATTNO INOOHSSY1O SIHL NI 3SN dNOA J04 FHV SIVIHALVIN 1IM9 3S3HL

Lesson Objectives

After completing this lesson, you should be able to do the
following:
- Define the goals of the course
- List the features of Oracle Database 12c¢
- Describe the salient features of Oracle Cloud
« Discuss the theoretical and physical aspects of a relational
database
« Describe Oracle server’s implementation of RDBMS and
object relational database management system
(ORDBMS)
« Identify the development environments that can be used
for this course

 Describe the database and schema used in this course

ORACLE

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

In this lesson, you gain an understanding of the relational database management system
(RDBMS) and the object relational database management system (ORDBMS). You are also
introduced to Oracle SQL Developer and SQL*Plus as development environments used for
executing SQL statements, and for formatting and reporting purposes.

Oracle Database 12c¢: SQL Workshop | 1 -2

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS COMPUTER IS STRICTLY PROHIBITED

Lesson Agenda

« Course objectives, agenda, and appendixes used in the
course

» Overview of Oracle Database 12c¢ and related products

« Overview of relational database management concepts
and terminologies

* Introduction to SQL and its development environments

 The Human Resource(HR) Schema and the tables used in
the Course

 Oracle database 12c¢ SQL Documentation and Additional
Resources

ORACLE

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

Oracle Database 12c: SQL Workshop | 1-3

Oracle University and Egabi Solutions use only

Course Objectives

After completing this course, you should be able to:

 Identify the major components of Oracle Database

« Retrieve row and column data from tables with the SELECT
statement

» Create reports of sorted and restricted data

- Employ SQL functions to generate and retrieve customized
data

* Run complex queries to retrieve data from multiple tables

« Run data manipulation language (DML) statements to
update data in Oracle Database

« Run data definition language (DDL) statements to create
and manage schema objects

ORACLE

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

This course offers you an introduction to the Oracle Database technology. In this class, you
learn the basic concepts of relational databases and the powerful SQL programming
language. This course provides the essential SQL skills that enable you to write queries
against single and multiple tables, manipulate data in tables, create database objects, and
query metadata.

Oracle Database 12c: SQL Workshopl 1-4

Course Agenda

« Day1:
— Introduction
— Retrieving Data Using the SQL SELECT Statement
— Restricting and Sorting Data
— Using Single-Row Functions to Customize Output
« Day 2:
— Using Conversion Functions and Conditional Expressions
— Reporting Aggregated Data Using the Group Functions
— Displaying Data from Multiple Tables Using Joins
— Using Subqueries to Solve Queries

ORACLE

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

Oracle Database 12c¢: SQL Workshopl 1-5

Course Agenda

- Day 3:
— Using the Set Operators
— Managing Tables Using DML Statements
— Introduction to Data Definition Language

ORACLE

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

Oracle Database 12c¢: SQL Workshopl 1-6

Appendices and Practices Used in the Course

* Appendix A: Table Descriptions
« Appendix B: Using SQL Developer
* Appendix C: Using SQL*Plus
* Appendix D: Commonly Used SQL Commands
« Activity Guide
— Practices and Solutions
— Additional Practices and Solutions

ORACLE

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

Oracle Database 12c¢: SQL Workshopl 1-7

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS COMPUTER IS STRICTLY PROHIBITED

Lesson Agenda

 Course objectives, agenda, and appendixes used in the
course

* Overview of Oracle Database 12c¢ and related products

« Overview of relational database management concepts
and terminologies

* Introduction to SQL and its development environments

 The Human Resource(HR) Schema and the tables used in
this course

 Oracle database 12c¢ SQL Documentation and Additional
Resources

ORACLE

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

Oracle Database 12c: SQL Workshop | 1-8

Oracle University and Egabi Solutions use only

Oracle Database 12c: Focus Areas

ORACLE 1 26‘
DATABASE

Infrastructure Information
Grids Management

Oracle Cloud

ORACLE
Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

Oracle Database 12c offers extensive features across the following focus areas:

Infrastructure Grids: The Infrastructure Grid technology of Oracle enables pooling of
low-cost servers and storage to form systems that deliver the highest quality of service
in terms of manageability, high availability, and performance. Oracle Database 12¢
consolidates and extends the benefits of grid computing. Apart from taking full
advantage of grid computing, Oracle Database 11g has unique change assurance
features to manage changes in a controlled and cost effective manner.

Information Management: Oracle Database 12¢ extends the existing information
management capabilities in content management, information integration, and
information life-cycle management areas. Oracle provides content management of
advanced data types such as Extensible Markup Language (XML), text, spatial,
multimedia, medical imaging, and semantic technologies.

Application Development: Oracle Database 12¢ has capabilities to use and manage
all the major application development environments such as PL/SQL, Java/JDBC, .NET
and Windows, PHP, SQL Developer, and Application Express.

Oracle Cloud: The Oracle Cloud is an enterprise cloud for business. It provides an
integrated collection of application and platform cloud services that are based upon best
in class products and open Java and SQL standards.

Oracle Database 12c¢: SQL Workshopl 1-9

Oracle Database 12c¢

ORACLE
DATABASE

Manageability
High availability
Performance
Security

Information integration

ORACLE

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

Organizations need to support multiple terabytes of information for users who demand fast
and secure access to business applications round the clock. The database systems must be
reliable and must be able to recover quickly in the event of any kind of failure. Oracle
Database 12c is designed along the following feature areas to help organizations manage
infrastructure grids easily and deliver high-quality service:

+ Manageability: By using some of the change assurance, management automation, and
fault diagnostics features, the database administrators (DBAs) can increase their
productivity, reduce costs, minimize errors, and maximize quality of service. Some of the
useful features that promote better management are Database Replay facility, the SQL
Performance Analyzer, and the Automatic SQL Tuning facility. Real-Time Database
Operations Monitoring.

» Enterprise Manager Database Express 12c is a web-based tool for managing Oracle
databases. Enterprise Manager Database Express greatly simplifies database
performance diagnostics by consolidating the relevant database performance screens
into a consolidated view called Database Performance Hub. DBAs get a single,
consolidated view of the current real-time and historical view of the database
performance across multiple dimensions such as database load, monitored SQL and
PL/SQL, and Active Session History (ASH) in a single page for the selected time period.

Oracle Database 12c¢: SQL Workshopl 1-10

High availability: By using the high availability features, you can reduce the risk of
down time and data loss. These features improve online operations and enable faster
database upgrades.

Performance: By using capabilities such as SecureFiles, compression for online
transaction processing (OLTP), Real Application Clusters (RAC) optimizations, Result
Caches, and so on, you can greatly improve the performance of your database. Oracle
Database 12c enables organizations to manage large, scalable, transactional, and data
warehousing systems that deliver fast data access using low-cost modular storage.

Security: Oracle Database 12c¢ helps organizations protect their information with unique
secure configurations, data encryption and masking, and sophisticated auditing
capabilities. It delivers a secure and scalable platform for reliable and fast access to all
types of information by using the industry-standard interfaces.

Information integration: Oracle Database 12c has many features to better integrate
data throughout the enterprise. It also supports advanced information life-cycle
management capabilities. This helps you manage the changing data in your database.

Oracle Database 12c¢: SQL Workshop | 1 -11

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS COMPUTER IS STRICTLY PROHIBITED

Oracle Fusion Middleware

Portfolio of leading, standards-based, and customer-proven software products
that spans a range of tools and services from Java EE and developer tools,

through integration services, business intelligence, collaboration, and content
management |

User Interaction

Web 2.0 Portal, Rich Inmternet Apps, Mobile,
Search, Desktop, Presence, VolP
Enterprise Perfformance Management
Planning. Budgeting, Financial Managemeant
& Reporting, Scorecards

Business Intelligence

Enterprise Management

Data Integration, Query & Analysis, OLAP
Dashboards, Repors, Alerts, Real-Time Prowvisioning,. Diagnostics,
Tuning, Configuration

Co-ﬂent Management Management

4

Identity Management

Web Content, Documents, Digital Assets,
Imaging. Records, Information Rights

Unified SOA Development
Tool & Framework x SOA & Process Management
by ESB, BPEL PM, Workflow, BAM, Rules,

Bz2B, MDM, Registry, SOA Governance

“ - Application Server

. Prowvisioning, Access
Java EE, Web Services, Complex Event Management, Federation,
Processing, XTP. RFID & Sensors, SIP

Audit, Directory
%- @ Grid Infrastructure

'%‘% == Application Clusters, In-Memory Data

& Grid, Common Metadata Services

ORACLE

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

Oracle Fusion Middleware is a comprehensive and well-integrated family of products that
offers complete support for development, deployment, and management of Service-Oriented
Architecture (SOA). SOA facilitates the development of modular business services that can be
easily integrated and reused, thereby reducing development and maintenance costs, and
providing higher quality of services. Oracle Fusion Middleware’s pluggable architecture
enables you to leverage your investments in any existing application, system, or technology.
Its unbreakable core technology minimizes the disruption caused by planned or unplanned
outages.
Some of the products from the Oracle Fusion Middleware family include:

« Application Server: Java EE, Web Services

« SOA and Process Management: BPEL Process Manager, SOA Governance

« Development Tools: Oracle Application Development Framework, JDeveloper, SOA

Suite

« Business Intelligence: Oracle Business Activity Monitoring, Oracle Data Integrator

» Enterprise Management: Enterprise Manager

« Identity Management: Oracle Identity Management

« Content Management: Oracle Content Database Suite

« User Interaction: Portal, Rich Internet Apps

Oracle Database 12c: SQL Workshop | 1-12

Oracle University and Egabi Solutions use only

Oracle Enterprise Manager Cloud Control

- Create and manage a complete set of cloud services.
« Manage all phases of cloud life cycle.

« Manage the entire cloud stack

* Monitor the health of all components

« Identify, understand, and resolve business problems

applicatio”

((((((((((((((((((
ssssss

nnnnnnnnnnnnnnnnnn

Milldllé‘l\"“'e ‘‘‘‘‘‘‘‘‘‘‘‘‘
Database
Operating System

Oracle Enterprrise Manager

:ir:vu:rlsMachine 5“, . é} - @ 7
Storane User — . - Servloe
Complete life cycle Complete stack Complete integration
Self-Service IT | Simple and Automated | Business-Driven
ORACLE

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

Enterprise Manager Cloud Control is a management tool that provides monitoring and
management capabilities for Oracle and non-Oracle components. It is a complete, integrated,
and business-driven cloud management solution in a single product, which is referred to as

“Total Cloud Control.”
Using Enterprise Manager Cloud Control, you can:
+ Create and manage a complete set of cloud services, including: Infrastructure-as-a-
service, Database-as-a-service, Platform-as-a-service, and others
» Manage all phases of cloud life cycle
+ Manage the entire cloud stack: from application to disk, including engineered systems
(Exa series) and with integrated support capabilities
» Monitor the health of all components, the hosts that they run on, and the key business
processes that they support

» ldentify, understand, and resolve business problems through the unified and correlated
management of User Experience, Business Transactions, and Business Services
across all your packaged and custom applications

Oracle Database 12c¢: SQL Workshop | 1-13

ORACLE

Oracle Cloud

The Oracle Cloud is an enterprise cloud for business. It
consists of many different services which share some common
characteristics:

* On-demand self-service
« Resource pooling

* Rapid elasticity

* Measured service

« Broad network access

www.cloud.oracle.com

CcLouD

Transform your business with Oracle Cloud = Trit

PPN W P W W I R e

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

The Oracle Cloud is an enterprise cloud for business. It provides an integrated collection of
application and platform cloud services that are based upon best-in-class products and open
Java and SQL standards. The top two benefits of cloud computing are speed and cost.

As a result, the applications and databases deployed in the Oracle Cloud are portable and
you can be easily moved them to or from a private cloud or on-premise environment.

All Cloud Services can be provisioned through a self-service interface. Users can get
their Cloud Services delivered on an integrated development and deployment platform
with tools to rapidly extend and create new services.

Oracle Cloud services are built on Oracle Exalogic Elastic Cloud and Oracle Exadata
Database Machine, together offering a platform that delivers extreme performance,
redundancy, and scalability.

Here are five essential characteristics of Oracle Cloud services:

On-demand self-service: Provisioning, monitoring, and management control

Resource pooling: Implies sharing and a level of abstraction between consumers and
services

Rapid elasticity: Ability to quickly scale up or down as needed

Measured service: Metering utilization for either internal chargeback (private cloud) or
external billing (public cloud)

Broad network access: Access through a browser on any networked device

Oracle Database 12c¢: SQL Workshop |l 1 -14

Oracle Cloud Services

Oracle Cloud provides three types of services:
- Software as a Service (SaaS)

- Platform as a Service (PaaS)

« Infrastructure as a Service (laaS)

ORACLE

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

(SaaS) generally refers to applications that are delivered to end users over the Internet.
Oracle CRM On Demand is an example of a SaaS offering that provides both multitenant as
well as single-tenant options, depending on the customer’s preferences.

(PaaS) generally refers to an application development and deployment platform delivered as
a service to developers, enabling them to quickly build and deploy a SaaS application to end
users. The platform typically includes databases, middleware, and development tools, all
delivered as a service via the Internet

(laaS) refers to computing hardware (servers, storage, and network) delivered as a service.
This service typically includes the associated software as well as operating systems,
virtualization, clustering, and so on. Examples of laaS in the public cloud include Amazon’s
Elastic Compute Cloud (EC2) and Simple Storage Service (S3).

The database cloud is built within an enterprise’s private cloud environment, as a PaaS
model. The database cloud provides on-demand access to database services in a self-
service, elastically scalable, and metered manner. The database cloud offers compelling
advantages in cost, quality of service, and agility. You can deploy a database within a virtual
machine in a laaS platform.

You can rapidly deploy Database clouds on Oracle Exadata which is a preintegrated and
optimized hardware platform that supports both OLTP and DW workloads.

Oracle Database 12c¢: SQL Workshop | 1-15

Cloud Deployment Models

Cloud

Public Deployment :D Private
cloud <:| Models cloud

U

Hybrid
cloud

ORACLE
Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

Private cloud: A single organization uses a private cloud, which it typically controls,
manages, and hosts in private data centers. However, the organization can also
outsource hosting and operation to a third-party service provider. Amazon’s Virtual
Private Cloud is an example of a private cloud in an external provider setting

Public cloud: Multiple organizations(tenants) uses private cloud on a shared basis;
hosted and managed by a third-party service provider. Example: Amazon Elastic
Compute Cloud (EC2), IBM's Blue Cloud, Sun Cloud, Google AppEngine, etc.

Community cloud: A group of related organizations, who want to make use of a
common cloud computing environment uses the community cloud. It is managed by the
participating organizations or by a third-party managed service provider. It is hosted
internally or externally. Example: A community might consist of the different branches of
the military, all the universitiesin a given region, or all the suppliers to a large
manufacturer.

Hybrid cloud: A single organization that wants to adopt both private and public clouds
for a single application uses the hybrid cloud. A third model, the hybrid cloud, is
maintained by both internal and external providers For example, an organization might
use a public cloud service, such as Amazon Simple Storage Service (Amazon S3) for
archived data but continue to maintain in-house(private cloud) storage for operational
customer data.

Oracle Database 12c¢: SQL Workshop | 1-16

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS COMPUTER IS STRICTLY PROHIBITED

Lesson Agenda

 Course objectives, agenda, and appendixes used in the
course

* Overview of Oracle Database 12c¢ and related products

« Overview of relational database management concepts
and terminologies

* Introduction to SQL and its development environments

 The Human Resource(HR) Schema and the tables used in
this course

 Oracle database 12c¢ SQL Documentation and Additional
Resources

ORACLE

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

Oracle Database 12c: SQL Workshop | 1-17

Oracle University and Egabi Solutions use only

Relational and Object Relational
Database Management Systems

« Relational model and object relational model
- User-defined data types and objects

* Fully compatible with relational database

- Supports multimedia and large objects

- High-quality database server features

ORACLE 1 20

DATABAS E

ORACLE
Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

The Oracle server supports both the relational and the object relational database models.

The Oracle server extends the data-modeling capabilities to support an object relational
database model that provides object-oriented programming, complex data types, complex
business objects, and full compatibility with the relational world.

It includes several features for improved performance and functionality of the OLTP
applications, such as better sharing of run-time data structures, larger buffer caches, and
deferrable constraints. Data warehouse applications benefit from enhancements such as
parallel execution of insert, update, and delete operations; partitioning; and parallel-aware
query optimization. The Oracle model supports client/server and Web-based applications that
are distributed and multitiered.

For more information about the relational and object relational model, refer to Oracle
Database Concepts for 10g or 11g database.

Oracle Database 12c¢: SQL Workshop | 1-18

Data Storage on Different Media

B oerarTMENTID [DEPARTMENT_MAME [§ Manacer_ID || LOCATION_ID
1 10 Administration 200 1700
Z 20 Marketing 201 1800
3 50 Shipping CRADE_LEVEL | LowesT_saL |l HIGHEST_saL
4 GOIT 1A . 1ﬂI]III. 2999
5 B0 Sales 2B 3000 5999
& 90 Executive 3|C a0oon 9999
7 110 Accounting 4D 10000 14999
-] 190 Contracting E[E 15000 24999
6F 25000 40000
Electronic Filing cabinet Database
spreadsheet

ORACLE
Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

Every organization has some information needs. A library keeps a list of members, books,
due dates, and fines. A company needs to save information about its employees,
departments, and salaries. These pieces of information are called data.

Organizations can store data in various media and in different formats, such as a hard copy
document in a filing cabinet, or data stored in electronic spreadsheets, or in databases.

A database is an organized collection of information.

To manage databases, you need a database management system (DBMS). A DBMS is a
program that stores, retrieves, and modifies data in databases on request. There are four
main types of databases: hierarchical, network, relational, and (most recently) object
relational.

Oracle Database 12¢: SQL Workshop | 1-19

Relational Database Concept

« Dr. E. F. Codd proposed the relational model for database
systems in 1970.

« ltis the basis for the relational database management
system (RDBMS).

« The relational model consists of the following:
— Collection of objects or relations
— Set of operators to act on the relations
— Data integrity for accuracy and consistency

ORACLE

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

The principles of the relational model were first outlined by Dr. E. F. Codd in a June 1970
paper titted A Relational Model of Data for Large Shared Data Banks. In this paper, Dr. Codd
proposed the relational model for database systems.

The common models used at that time were hierarchical and network, or even simple flat-file
data structures. Relational database management systems (RDBMS) soon became very
popular, especially for their ease of use and flexibility in structure. In addition, a number of
innovative vendors, such as Oracle, supplemented the RDBMS with a suite of powerful,
application development and user-interface products, thereby providing a total solution.

Components of the Relational Model
» Collections of objects or relations that store the data
» A set of operators that can act on the relations to produce other relations
» Data integrity for accuracy and consistency

For more information, refer to An Introduction to Database Systems, Eighth Edition (Addison-
Wesley: 2004), written by Chris Date.

Oracle Database 12c¢: SQL Workshop | 1 -20

Definition of a Relational Database

A relational database is a collection of relations or
two-dimensional tables controlled by the Oracle server.

Oracle
server

LI 1]
| -
o er

Table name: EMPLOYEES Table name: DEPARTMENTS

[empLovEEID | FIRST_NAME |[§ LAST_NAME @ eman] DEPARTMENT_ID |[§ DEPARTMENT_NAME | MANAGER_ID
100 Steven King SKING 10.Administration | 200
101 Meena Kochhar NEOCHHAR 20 Marketing 201
102 Lex De Haan LDEHAAN 50 Shipping 124

ORACLE

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

A relational database uses relations or two-dimensional tables to store information.

For example, you might want to store information about all the employees in your company. In
a relational database, you create several tables to store different pieces of information about
your employees, such as an employee table, a department table, and a salary table.

Oracle Database 12¢: SQL Workshop | 1 -21

Data Models

08—

Model of Entity model of -
system e \
o lant client’s model >
in client’'s
mind
Table model
of entity model Oracle
l |._server
Ccac
I | — -
C1c1c]

Tables on disk

ORACLE
Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

Models are the cornerstone of design. Engineers build a model of a car to work out any
details before putting it into production. In the same manner, system designers develop
models to explore ideas and improve the understanding of database design.

Purpose of Models

Models help to communicate the concepts that are in people’s minds. They can be used to do
the following:

Communicate
Categorize
Describe
Specify
Investigate
Evolve
Analyze
Imitate

The objective is to produce a model that fits a multitude of these uses, can be understood by
an end user, and contains sufficient detail for a developer to build a database system.

Oracle Database 12c¢: SQL Workshop | 1 -22

Entity Relationship Model

« Create an entity relationship diagram from business
specifications or narratives:

EMPLOYEE assianed to DEPARTMENT
#* number _ _g ______ #* number
* name * name
o job title composed of | location
« Scenario:
— “. .. Assign one or more employees to a
department . . .”

— “. .. Some departments do not yet have assigned employees

ORACLE

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

In an effective system, data is divided into discrete categories or entities. An entity
relationship (ER) model is an illustration of the various entities in a business and the
relationships among them. An ER model is derived from business specifications or narratives
and built during the analysis phase of the system development life cycle. ER models separate
the information required by a business from the activities performed within the business.
Although businesses can change their activities, the type of information tends to remain
constant. Therefore, the data structures also tend to be constant.

Oracle Database 12c¢: SQL Workshop | 1 -23

Benefits of ER Modeling

Documents information for the organization in a clear, precise format
Provides a clear picture of the scope of the information requirement
Provides an easily understood pictorial map for database design
Offers an effective framework for integrating multiple applications

Key Components

Entity: An aspect of significance about which information must be known. Examples are
departments, employees, and orders.

Attribute: Something that describes or qualifies an entity. For example, for the employee
entity, the attributes would be the employee number, name, job title, hire date, department
number, and so on. Each of the attributes is either required or optional. This state is called
optionality.

Relationship: A named association between entities showing optionality and degree.
Examples are employees and departments, and orders and items.

Oracle Database 12c¢: SQL Workshop | 1 -24

Entity Relationship Modeling Conventions

Entity: Attribute:
. Singular, unique name ° Singular name

« Lowercase
« Uppercase
. Sopf‘z box * Mandatory marked with “*”

« Optional marked with “0”
« Synonym in parentheses

EMPLOYEE _ DEPARTMENT
number assigned to e number
name |/~ """~ " * name
job title composed of | location

Unique Identifier (UID)

Primary marked with “#”
Secondary marked with “(#)”

ORACLE
Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

Entities
To represent an entity in a model, use the following conventions:
« Singular, unique entity name
» Entity name in uppercase
« Soft box
» Optional synonym names in uppercase within parentheses: ()
Attributes
To represent an attribute in a model, use the following conventions:
« Singularname in lowercase
» Asterisk (*) tag for mandatory attributes (that is, values that must be known)
« Letter “0” tag for optional attributes (that is, values that may be known)

Oracle Database 12c¢: SQL Workshop | 1 -25

Relationships
Each direction of the relationship contains:

« Alabel: For example, taught by or assigned to
» An optionality: Either must be or maybe
» A degree: Either one and only one or one or more

Symbol Description

Dashed line Optional element indicating “maybe”

Solid line Mandatory element indicating “must be”
Crow’s foot Degree element indicating “one or more”
Single line Degree element indicating “one and only one”

Note: The term cardinality is a synonym for the term degree.

Each source entity {may be | must be} in relation {one and only one | one or more} with the
destination entity.

Note: The convention is to read clockwise.
Unique Identifiers

A unique identifier (UID) is any combination of attributes or relationships, or both, that serves to
distinguish occurrences of an entity. Each entity occurrence must be uniquely identifiable.

» Tag each attribute that is part of the UID with a hash sign “#".
« Tag secondary UIDs with a hash sign in parentheses (#).

Oracle Database 12c¢: SQL Workshop | 1 -26

Relating Multiple Tables

- Each row of data in a table can be uniquely identified by a
primary key.
* You can logically relate data from multiple tables using

foreign keys.
Table name: DEPARTMENTS

DEPARTMENT_ID |[{ DEPARTMENT_NAME] MANAGER_ID ([l LOCATION_ID
' 10 Administration [200 1700
Table name: EMPLOYEES Zhjpuarkeing 2o -
50 Shipping 124 1500
EMPLOYEE_ID |[§ FIRST_NAME | LaAST_NAME || DEPARTMENT_ID 60 IT 103 1400
100 Steven King 90 80 Sales 149 2500
101 Neena Kochhar 90 90 Executive 100 1700
102 Lex De Haan 20 110 Accounting 205 1700
103 Alexander Hunold €0 190 Contracting {null) 1700
104 Bruce Ernst &0 A

107 Diana Lorentz 60|

124 Kevin Mourgos 50

141 Trenna Rajz 50

142 Curtis Davies S0

T 1 Primary key
Primary key Foreign key

ORACLE

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

Each table contains data that describes exactly one entity. For example, the EMPLOYEES
table contains information about employees. Categories of data are listed across the top of
each table, and individual cases are listed below. By using a table format, you can readily
visualize, understand, and use information.

Because data about different entities is stored in different tables, you may need to combine
two or more tables to answer a particular question. For example, you may want to know the
location of the department where an employee works. In this scenario, you need information
from the EMPLOYEES table (which contains data about employees) and the DEPARTMENTS
table (which contains information about departments). With an RDBMS, you can relate the
data in one table to the data in another by using the foreign keys. A foreign key is a column
(or a set of columns) that refers to a primary key in the same table or another table.

You can use the ability to relate data in one table to data in another to organize information in
separate, manageable units. Employee data can be kept logically distinct from the department
data by storing it in a separate table.

Oracle Database 12c¢: SQL Workshop | 1 -27

Guidelines for Primary Keys and Foreign Keys
* You cannot use duplicate values in a primary key.
» Primary keys generally cannot be changed.
» Foreign keys are based on data values and are purely logical (not physical) pointers.

» Aforeign key value must match an existing primary key value or unique key value;
otherwise, it must be null.

» Aforeign key must reference either a primary key or a unique key column.

Oracle Database 12c¢: SQL Workshop | 1 -28

Relational Database Terminology

®

g empLoveeo [3 FIRST_NAME 3 LAST_NAMEI@ salarv|l commission_PCT|(H DEPARTMENT_ID
100fsteven King 24000

101|Meena Kochhar 17004
102)lex De Haan 17004
103JAlexander Hunold 2004
104)Eruce Ernst 6000
107Diana Lorentz 4200
124fKevin Mourgos 5500
141|Trenna Rajs 3500
142|Curtis Dawies 31004
143 Randall Matos 2600
144|Peter Wargas 2500
149[Eleni Zlotkey 10500
174[Ellen Abel 11000
176)onathon Taylor Ga00
178Kimberely Grant 7000
200 ennlfer Whalen 4400
@ 201 Michael Hartstein 13000
202|Pat Fay 6000
2055helley Higgins 12000 (nul 110
206fwilliam Cietz 8300 {rull 110§

ORACLE

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

A relational database can contain one or many tables. A table is the basic storage structure of
an RDBMS. A table holds all the data necessary about something in the real world, such as
employees, invoices, or customers.
The slide shows the contents of the EMPLOYEES table or relation. The numbers indicate the
following:
1. Asingle row (or tuple) representing all the data required for a particular employee. Each
row in a table should be identified by a primary key, which permits no duplicate rows.
The order of rows is insignificant; specify the row order when the data is retrieved.
2. A column or attribute containing the employee number. The employee number identifies
a unique employee in the EMPLOYEES table. In this example, the employee number
column is designated as the primary key. A primary key must contain a value and the
value must be unique.
3. A column that is not a key value. A column represents one kind of data in a table; in this

example, the data is the salaries of all the employees. Column order is insignificant
when storing data; specify the column order when the data is retrieved.

Oracle Database 12c¢: SQL Workshop | 1-29

4. A column containing the department number, which is also a foreign key. A foreign key
is a column that defines how tables relate to each other. A foreign key refers to a
primary key or a unique key in the same table or in another table. In the example,
DEPARTMENT ID uniquely identifies a departmentin the DEPARTMENTS table.

5. Afield can be found at the intersection of a row and a column. There can be only one
value in it.

6. A field may have no value init. This is called a null value. In the EMPLOYEES table, only
those employees who have the role of sales representative have a value in the
COMMISSION PCT (commission) field.

Oracle Database 12¢: SQL Workshop | 1-30

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS COMPUTER IS STRICTLY PROHIBITED

Lesson Agenda

 Course objectives, agenda, and appendixes used in the
course

* Overview of Oracle Database 12c¢ and related products

« Overview of relational database management concepts
and terminologies

* Introduction to SQL and its development environments

 The Human Resource(HR) Schema and the tables used in
this course

 Oracle database 12c¢ SQL Documentation and Additional
Resources

ORACLE

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

Oracle Database 12c: SQL Workshop | 1 - 31

Oracle University and Egabi Solutions use only

Using SQL to Query Your Database

Structured query language (SQL) is:

- The ANSI standard language for operating relational
databases

- Efficient, easy to learn, and use

* Functionally complete (With SQL, you can define, retrieve,
and manipulate data in the tables.)

SELECT department name
FROM departments;

[DEPARTMENT_MAME Oracle
Administration < Server

Marketing
Shipping
IT

Sales
Executive

Accounting

Contracting

ORACLE

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

In a relational database, you do not specify the access route to the tables, and you do not
need to know how the data is arranged physically.

To access the database, you execute a structured query language (SQL) statement, which is
the American National Standards Institute (ANSI) standard language for operating relational
databases. SQL is also compliantto ISO Standard (SQL 1999).

SQL is a set of statements with which all programs and users access data in an Oracle
Database. Application programs and Oracle tools often allow users access to the database
without using SQL directly, but these applications, in turn, must use SQL when executing the
user’s request.

SQL provides statements for a variety of tasks, including:
* Queryingdata
» Inserting, updating, and deleting rows in a table
» Creating, replacing, altering, and dropping objects
« Controlling access to the database and its objects
« Guaranteeing database consistency and integrity

SQL unifies all of the preceding tasks in one consistent language and enables you to work
with data at a logical level.

Oracle Database 12c: SQL Workshop | 1 -32

SQL Statements Used in the Course

SELECT

INSERT

UPDATE Data manipulation language (DML)
DELETE

MERGE

CREATE
ALTER
DROP
RENAME
TRUNCATE
COMMENT

Data definition language (DDL)

GRANT Data control language (DCL)
REVOKE

COMMIT
ROLLBACK Transaction contro
SAVEPOINT

ORACLE

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

SQL Statements

SQL statements supported by Oracle comply with industry standards. Oracle Corporation
ensures future compliance with evolving standards by actively involving key personnel in SQL
standards committees. The industry-accepted committees are ANSI and International
Standards Organization (ISO). Both ANSI and ISO have accepted SQL as the standard
language for relational databases.

Statement | Description

SELECT Retrieves data from the database, enters new rows, changes existing rows, and
INSERT removes unwanted rows from tables in the database, respectively. Collectively
UPDATE known as data manipulation language (DML)

DELETE

MERGE

CREATE Sets up, changes, and removes data structures from tables. Collectively known as
ALTER data definition language (DDL)

DROP

RENAME

TRUNCATE

COMMENT

GRANT Provides or removes access rights to both the Oracle Database and the structures
REVOKE within it

COMMIT Manages the changes made by DML statements. Changes to the data can be
ROLLBACK grouped together into logical transactions

SAVEPOINT

Oracle Database 12c¢: SQL Workshop | 1-33

Development Environments for SQL

There are two development environments for this course:
« The primary tool is Oracle SQL Developer.
« SQL*Plus command-line interface can also be used.

oracle@EDRSR25P1:~/Desktop

ols Help
&
O [@orar-2 %]

De it Vew twkse Bn Vesmeng Do

ReEE Ye XE0I0-0

Rco s x| (Repons x File Edit View Search JTerminal Help
3 gf‘h"“’“"f‘ 33 @ued Beni-l Wioracle@EDRSR25P1 Desktop]s sqlplus

SQL*Plus: Release 12.1.08.6.2 Beta on Tue Aug 28 82:86:39 2612

Copyright {c) 1982, 2012, Oracle. ALl rights reserved.

Enter user-name:

SQL Developer SQL*Plus

ORACLE

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

SQL Developer

This course is developed using Oracle SQL Developer as the tool for running the SQL
statements discussed in the examples in the lessons and the practices. SQL Developer is the
default tool for this class.

SQL*Plus

The SQL*Plus environment can also be used to run all SQL commands covered in this
course.

Note

« See Appendix B for information about using SQL Developer, including simple
instructions on installation process.

+ See Appendix C for information about using SQL*Plus.

Oracle Database 12c¢: SQL Workshop | 1 -34

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS COMPUTER IS STRICTLY PROHIBITED

Lesson Agenda

 Course objectives, agenda, and appendixes used in the
course

* Overview of Oracle Database 12c¢ and related products

« Overview of relational database management concepts
and terminologies

* Introduction to SQL and its development environments

« The Human Resource(HR) Schema and the tables used in
this course

 Oracle database 12c¢ SQL Documentation and Additional
Resources

ORACLE

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

Oracle Database 12¢: SQL Workshop | 1-35

Oracle University and Egabi Solutions use only

Human Resources (HR) Schema

DEPARTMENTS
department_id
department name

LOCATIONS
location_id
street address

manager_id postal code
location_id city
state province
| Country id
JOB_HISTORY D1
employee_id EMPLOYEES
Ztr?gt_g:tt: employee_id
jol; id first_name
< last_name COUNTRIES
department_id email country_id
phone_number country_name
hire_date - = region_id
job_id >
salary
commission_pct
JOBS manager_id

job_id

job_title
min_salary
max_salary

\ department_id)

REGIONS

region_id

region_name

ORACLE

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

Human Resources (HR)Schema Description

The Human Resources (HR) schema is a part of the Oracle Sample Schemas that can be
installed in an Oracle Database. The practice sessions in this course use data from the HR
schema.
Table Descriptions
* REGIONS contains rows that represent a region such as America, Asia, and so on.
* COUNTRIES contains rows for countries, each of which is associated with a region.
* LOCATIONS contains the specific address of a specific office, warehouse, or production
site of a company in a particular country.
 DEPARTMENTS shows details about the departments in which the employees work. Each
department may have a relationship representing the department manager in the
EMPLOYEES table.
*+ EMPLOYEES contains details about each employee working for a department. Some
employees may not be assigned to any department.
« JOBS contains the job types that can be held by each employee.
« JOB_HISTORY contains the job history of the employees. If an employee changes
departments within a job or changes jobs within a department, a new row is inserted into
this table with the earlier job information of the employee.

Oracle Database 12c¢: SQL Workshop | 1-36

Tables Used in the Course

EMPLOYEES
B empiovee o [rRsT_naME|f LasT_name |[§ emai [§ eHone_numeer |J HIREDATE | josio | savarv @

1 100 Steven King SKING 515.123.4567 17-JUN-03 AD_PRES 24000

2 101 Neena Kochhar NKOCHHAR 515,123,456 21-SEP-05 AD_WP 17000

3 102 Lex De Haan LDEHAAN 515.123.4568 13-J8N-01 AD_VP 17000

4 103 Alexander Hunold AHUNOLD 590.423.4567 03-1AN-06 AC_MGR 12008

E 104 Bruce Ernst BERNST 580.423.4568 21-M8Y-07 IT_PROG 6000

6 107 Diana Lorentz DLORENTZ 590.423.5567 07-FEB-07 IT_PROG 4200

7 124 Kewin Mourgos KMOURGOS 650.123.5234 16-NOV-07 ST_MAN 5800

8 141 Trenna Rajs TRAJS 650,121.8009 17-0CT-03 ST_CLERK 3500

9 142 Curtis Davies CDAVIES 650.121.2994 29-)8N-05 ST_CLERK 3100

10 143 Randall Matos RMATOS ~ 650.121.2874 15-MAR-06 ST_CLERK 2600

11 144 Peter Vargas PVARGAS 650.121.2004 09-JUL-06 ST_CLERK 2500

12 149 Eleni Zlotkey EZLOTKEY 011.44,1344,429018 20-)AN-08 SA_MAN 10500

13 174Ellen Abel EABEL 011.44.1644.420267 11-MAY-04 SA_REP 11000

14 176 Jonathon Taylor JTAYLOR 011.44.1644.429265 24-MAR-06 SA_REP 8500

15 178 Kinberely Grant KGRANT — 011.44,1644,420263 24-MAY-07 SA_REP 7000

16 200 Jennifer Whalen JWHALEN 515.123.4444 17-5EP-03 AD_ASST 4400

17 201 Michael Hartstein MHARTSTE 515.123.5555 17-FEB-04 MK_MAN 13000

18 202 Pat Fay PFAY 603.123.6666 17-8UG-05 MK_REP 6000

19 205 Shelley Higoins SHIGGINS 515.123.8080 07-JUN-02 AC_MGR 12008

20 206Will1an Gietz WGIETZ 515.123.8181 07-JUN-02 AC_ACCOUNT 8300
@ crape_LeveL | LowesT_saL|f HIGHEST_sAL B oeraRTMENTID || DEPARTMENT_NAME|§ MANACERID || LOCATION_ID
14 ' 1000 2009| | 1 10 Adwinistration 200 1700
ZB 3000 5099 2 20 Marketing 201 1800
3C BO00 3999 3 50 Shipping 124 1500
4D 10000 14999 4 60 IT 103 1400
5 E 15000 24999 5 80 Sales 149 2500

6 F 25000 40000 [90 Executive 100 1700 DE PARTMENTS

7 110 Accounting 205 1700
JOB GR_ADES 8 190 Contracting (null}) 1700

ORACLE

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

The following main tables are used in this course:
+ EMPLOYEES table: Gives details of all the employees
« DEPARTMENTS table: Gives details of all the departments
+ JOB_GRADES table: Gives details of salaries for various grades

Apart from these tables, you will also use the other tables listed in the previous slide such as
the LOCATIONS and the JOB_HISTORY table.

Note: The structure and data for all the tables are provided in Appendix A.

Oracle Database 12c¢: SQL Workshop | 1 -37

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS COMPUTER IS STRICTLY PROHIBITED

Lesson Agenda

 Course objectives, agenda, and appendixes used in the
course

* Overview of Oracle Database 12c¢ and related products

« Overview of relational database management concepts
and terminologies

* Introduction to SQL and its development environments

 The Human Resource(HR) Schema and the tables used in
this course

* Oracle database 12c SQL Documentation and Additional
Resources

ORACLE

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

Oracle Database 12¢c: SQL Workshop | 1 -38

Oracle University and Egabi Solutions use only

Oracle Database Documentation

* Oracle Database New Features Guide

* Oracle Database Reference

« Oracle Database SQL Language Reference

* Oracle Database Concepts

* Oracle Database SQL Developer User's Guide

ORACLE

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

Navigate to http://www.oracle.com/pls/db102/homepage to access the Oracle Database 10g
documentation library.

Navigate to http://www.oracle.com/pls/db112/homepage to access the Oracle Database 11g
documentation library.

Oracle Database 12c¢: SQL Workshop | 1 -39

Additional Resources

For additional information about Oracle Database 12c¢, refer to
the following:

 Oracle Database 12c: New Features eStudies

* Oracle Learning Library:
— http://www.oracle.com/goto/oll

« Qracle Cloud :
— www.cloud.oracle.com

ORACLE

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

Oracle Database 12¢: SQL Workshop | 1-40

Summary

In this lesson, you should have learned that:

Oracle Database 12c extends:
— The benefits of infrastructure grids
— The existing information management capabilities

— The capabilities to use the major application development
environments such as PL/SQL, Oracle Java/JDBC, .NET,
XML, and so on

— Oracle Cloud
« The database is based on ORDBMS

- Relational databases are composed of relations, managed
by relational operations, and governed by data integrity
constraints

- With the Oracle server, you can store and manage
information by using SQL

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

Relational database management systems are composed of objects or relations. They are
managed by operations and governed by data integrity constraints.

Oracle Corporation produces products and services to meet your RDBMS needs. The main
products are the following:

» Oracle Database with which you store and manage information by using SQL

» Oracle Fusion Middleware with which you develop, deploy, and manage modular
business services that can be integrated and reused

» Oracle Enterprise Manager Grid Control, which you use to manage and automate
administrative tasks across sets of systems in a grid environment

SQL

The Oracle server supports ANSI-standard SQL and contains extensions. SQL is the
language that is used to communicate with the server to access, manipulate, and control data.

Oracle Database 12¢: SQL Workshop | 1 -41

Practice 1: Overview

This practice covers the following topics:
- Starting Oracle SQL Developer
- Creating a new database connection
« Browsing the HR tables

ORACLE

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

In this practice, you perform the following:
« Start Oracle SQL Developer and create a new connection to the ora1 account.
* Use Oracle SQL Developer to examine data objects in the ora1 account. The ora1
account contains the HR schema tables.
Note the following location for the lab files:
/home/oracle/labs/sqll/labs

If you are asked to save any lab files, save them in this location.

In any practice, there may be exercises that are prefaced with the phrases “If you have time”
or “If you want an extra challenge.” Work on these exercises only if you have completed all
other exercises within the allocated time and would like a further challenge to your skills.

Perform the practices slowly and precisely. You can experiment with saving and running
command files. If you have any questions at any time, ask your instructor.

Note: All written practices use Oracle SQL Developer as the development environment.
Although it is recommended that you use Oracle SQL Developer, you can also use SQL*Plus
that is available in this course.

Oracle Database 12c: SQL Workshop | 1 -42

Retrieving Data Using
the SQL SELECT Statement

ORACLE

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

Objectives

After completing this lesson, you should be able to do the
following:

« List the capabilities of SQL SELECT statements
 Execute a basic SELECT statement

ORACLE

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

To extract data from the database, you need to use the SQL SELECT statement. However,
you may need to restrict the columns that are displayed. This lesson describes the SELECT
statement that is needed to perform these actions. Further, you may want to create SELECT
statements that can be used more than once.

Oracle Database 12c¢: SQL Workshop | 2 -2

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS COMPUTER IS STRICTLY PROHIBITED

Lesson Agenda

« Capabilities of SQL SELECT Statements

« Arithmetic expressions and NULL values in the SELECT
statement

e Column aliases

» Use of concatenation operator, literal character strings,
alternative quote operator, and the DISTINCT keyword

e DESCRIBE command

ORACLE

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

Oracle Database 12c: SQL Workshop| 2 -3

Oracle University and Egabi Solutions use only

Capabilities of SQL SELECT Statements

Projection Selection

Table 1 Table 1
Join

Table 1 Table 2

ORACLE

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

A SELECT statement retrieves information from the database. With a SELECT statement, you
can do the following:
» Projection: Selects the columns in a table that are returned by a query. Selects a few or
as many of the columns as required.
» Selection: Selects the rows in a table that are returned by a query. Various criteria can
be used to restrict the rows that are retrieved.
« Joins: Brings together data that is stored in different tables by specifying the link
between them. SQL joins are covered in more detail in the lesson titled “Displaying Data
from Multiple Tables Using Joins.”

Oracle Database 12c: SQL Workshop | 2 -4

Basic SELECT Statement

SELECT {*| [DISTINCT] column|expression [alias],...}
FROM table;

* SELECT identifies the columns to be displayed.
* FROM identifies the table containing those columns.

ORACLE

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

In its simplest form, a SELECT statement must include the following:
A SELECT clause, which specifies the columns to be displayed

« A FROM clause, which identifies the table containing the columns that are listed in the
SELECT clause

In the syntax:

SELECT Is a list of one or more columns
* Selects all columns
DISTINCT Suppresses duplicates
column|expression Selects the named column or the expression
alias Gives different headings to the selected columns
FROM table Specifies the table containing the columns

Note: Throughout this course, the words keyword, clause, and statement are used as follows:
» A keyword refers to an individual SQL element—for example, SELECT and FROM are
keywords.
« Aclauseis a part of a SQL statement—for example, SELECT employee id,
last name, and so on.
+ A statementis a combination of two or more clauses—for example, SELECT * FROM

employees.
Oracle Database 12c¢: SQL Workshopl 2-5

Selecting All Columns

SELECT

FROM departments;

B DePARTMENT_ID |[§ DEPARTMENT_NAME |8 MANAGERID | LOCATION_ID
1 10 Administration 200 1700
F. 20 Marketing 201 1800
3 50 Shipping 124 1500
4 80 IT 103 1400
5 80 5ales 149 2500
& S0 Executive 100 1700
7 110 Accounting 205 1700
8 120 Contracting (null) 1700

ORACLE

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

You can display all columns of data in a table by following the SELECT keyword with an
asterisk (*). In the example in the slide, the DEPARTMENTS table contains four columns:
DEPARTMENT ID, DEPARTMENT NAME, MANAGER ID, and LOCATION ID. The table
contains eight rows, one for each department.

You can also display all columns in the table by listing them after the SELECT keyword. For
example, the following SQL statement (like the example in the slide) displays all columns and
all rows of the DEPARTMENTS table:
SELECT department id, department name, manager id, location_ id
FROM departments;

Note: In SQL Developer, you can enter your SQL statement in a SQL Worksheet and click the
“‘Execute Statement” icon or press [F9] to execute the statement. The output displayed on the
Results tabbed page appears as shown in the slide.

Oracle Database 12¢: SQL Workshopl 2-6

Selecting Specific Columns

SELECT |department id, location id
FROM departments;

B oeparTMENT_ID || LOCATION_ID
1 10 1700
2 20 1800
3 50 1500
4 60 1400
5 80 2500
5 90 1700
7 110 1700
8 190 1700

ORACLE

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

You can use the SELECT statement to display specific columns of the table by specifying the
column names, separated by commas. The example in the slide displays all the department
numbers and location numbers from the DEPARTMENTS table.

In the SELECT clause, specify the columns that you want in the order in which you want them
to appear in the output. For example, to display location before department number (from left
to right), you use the following statement:

SELECT location id, department id
FROM departments ;

LoCATION_ID | DEPARTMENT_ID
1 1700 10
2 1800 20
3 1500 50
4 1400 Al

Oracle Database 12c¢: SQL Workshopl 2 -7

Writing SQL Statements

- SQL statements are not case sensitive.

- SQL statements can be entered on one or more lines.
« Keywords cannot be abbreviated or split across lines.
« Clauses are usually placed on separate lines.

* Indents are used to enhance readability.

« In SQL Developer, SQL statements can be optionally
terminated by a semicolon (;). Semicolons are required
when you execute multiple SQL statements.

« In SQL*Plus, you are required to end each SQL statement
with a semicolon (;).

ORACLE

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

Writing SQL Statements
By using the following simple rules and guidelines, you can construct valid statements that
are both easy to read and edit:

« SQL statements are not case sensitive (unless indicated).

« SQL statements can be entered on one or many lines.

« Keywords cannot be split across lines or abbreviated.

» Clauses are usually placed on separate lines for readability and ease of editing.

» Indents should be used to make code more readable.

« Keywords typically are entered in uppercase; all other words, such as table names and
columns names are entered in lowercase.

Executing SQL Statements

In SQL Developer, click the Run Script icon or press [F5] to run the command or commands
in the SQL Worksheet. You can also click the Execute Statement icon or press [F9] to run a
SQL statement in the SQL Worksheet. The Execute Statement icon executes the statement at
the mouse pointerin the Enter SQL Statement box while the Run Script icon executes all the
statements in the Enter SQL Statement box. The Execute Statement icon displays the output
of the query on the Results tabbed page, whereas the Run Script icon emulates the SQL*Plus
display and shows the output on the Script Output tabbed page.

In SQL*Plus, terminate the SQL statement with a semicolon, and then press [Enter] to run the
command. Oracle Database 12c: SQL Workshop| 2 -8

Column Heading Defaults

« SQL Developer:
— Default heading alignment: Left-aligned
— Default heading display: Uppercase
« SQL*Plus:
— Character and Date column headings are left-aligned.
— Number column headings are right-aligned.
— Default heading display: Uppercase

ORACLE

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

In SQL Developer, column headings are displayed in uppercase and are left-aligned.
SELECT last name, hire date, salary
FROM employees;

LaST_NAME |[{| HIRE_DATE|[sALARY
1 King 17-1UN-03 24000
2 Kachhar 21-5EP-05 17000
3 De Haan 13-18N-01 17000
4 Hunold 03-1AN-06 Q000
S5 Ernst 21-MaY 07 OO0
6 Larentz 07-FEB-07 4200
7 Mourgos 1a-hOw-07 5500
& Rajs 17-0CT-03 35010

You can override the column heading display with an alias. Column aliases are covered later
in this lesson.

Oracle Database 12c¢: SQL Workshopl 2-9

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS COMPUTER IS STRICTLY PROHIBITED

Lesson Agenda

« Capabilities of SQL SELECT Statements

* Arithmetic expressions and NULL values in the SELECT
statement

e Column Aliases

» Use of concatenation operator, literal character strings,
alternative quote operator, and the DISTINCT keyword

e DESCRIBE command

ORACLE

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

Oracle Database 12c: SQL Workshop | 2-10

Oracle University and Egabi Solutions use only

Arithmetic Expressions

Create expressions with number and date data by using
arithmetic operators.

Operator Description

+ Add

- Subtract
* Multiply
/ Divide

ORACLE

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

You may need to modify the way in which data is displayed, or you may want to perform
calculations, or look at what-if scenarios. All these are possible using arithmetic expressions.
An arithmetic expression can contain column names, constant numeric values, and the
arithmetic operators.

Arithmetic Operators

The slide lists the arithmetic operators that are available in SQL. You can use arithmetic
operators in any clause of a SQL statement (except the FROM clause).

Note: With the DATE and TIMESTAMP data types, you can use the addition and subtraction
operators only.

Oracle Database 12¢: SQL Workshop | 2 -11

Using Arithmetic Operators

SELECT last name, salary, |salary + 300
FROM employees;

LasT_NAME || saLary |§ saLarv+300 |
1 King 24000 24300
2 Kochhar 17000 17300
3 De Haan 17000 17300

4 Hunold 9000 9300
S Ernst BO00 6300
6 Lorentz 4200 4500
7 Mourgos 5800 6100
8 Rajs 3500 3800
9 Davies 3100 3400
10 Matos 2600 2900

ORACLE

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

The example in the slide uses the addition operator to calculate a salary increase of $300 for
all employees. The slide also displays a SALARY+300 column in the output.

Note that the resultant calculated column, SALARY+300, is not a new column in the
EMPLOYEES table; it is for display only. By default, the name of a new column comes from the
calculation that generated it—in this case, salary+300.

Note: The Oracle server ignores blank spaces before and after the arithmetic operator.
Operator Precedence

If an arithmetic expression contains more than one operator, multiplication and division are
evaluated first. If operators in an expression are of the same priority, evaluation is done from
left to right.

You can use parentheses to force the expression that is enclosed by the parentheses to be
evaluated first.

Rules of Precedence
» Multiplication and division occur before addition and subtraction.
» Operators of the same priority are evaluated from left to right.
« Parentheses are used to override the default precedence or to clarify the statement.

Oracle Database 12c¢: SQL Workshop | 2 -12

Operator Precedence

SELECT last name, salary, |12*salary+100 (:)
FROM employees;

@ LasT_name | saiarv [12vsALARY+100
1 King 24000 288100
2 Kochhar 17000 204100
3 De Haan 17000 204100
4 Hunold 9000 108100
SELECT last name, salary, |12* (salary+100) (:)
FROM employees;

1 King 24000 289200
2 Kochhar 17000 205200
3 De Haan 17000 205200
4 Hunold 9000 109200

ORACLE

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

The first example in the slide displays the last name, salary, and annual compensation of
employees. It calculates the annual compensation by multiplying the monthly salary with 12,
plus a one-time bonus of $100. Note that multiplication is performed before addition.

Note: Use parentheses to reinforce the standard order of precedence and to improve clarity.
For example, the expression in the slide can be written as (12*salary) +100 with no

change in the result.
Using Parentheses

You can override the rules of precedence by using parentheses to specify the desired order in
which the operators are to be executed.

The second example in the slide displays the last name, salary, and annual compensation of
employees. It calculates the annual compensation as follows: adding a monthly bonus of $100
to the monthly salary, and then multiplying that subtotal with 12. Because of the parentheses,
addition takes priority over multiplication.

Oracle Database 12c¢: SQL Workshop | 2-13

Defining a Null Value

* Null is a value that is unavailable, unassigned, unknown,
or inapplicable.

* Null is not the same as zero or a blank space.

SELECT last name, job id, salary, |commission pct
FROM employees;
B asTmame|§ Joeo [[§ saLary |l commMission_PCT

1 King AD_PRES 24000 (null)
Z Kochhar AD_WP 17000 (null)
3 De Haan AD_WP 17000 (nu1)
12 Z1otkey SA_MAN 10500 0.2
13 Abel S&_REP 11000 0.3
14 Taylor SA_REFP 8600 0.2
15 Grant S&_REP 7000 0.15
18 Fay MK_REP 6000 (null)
19 Higgins AC_MGR 12008 nulll
20 Gietz AC_ACCOUNT 8300 (null)

ORACLE

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

If a row lacks a data value for a particular column, that value is said to be null or to contain a
null.

Null is a value that is unavailable, unassigned, unknown, or inapplicable. Null is not the same
as zero or a blank space. Zero is a number and blank space is a character.

Columns of any data type can contain nulls. However, some constraints (NOT NULL and
PRIMARY KEY) prevent nulls from being used in the column.

In the COMMISSION PCT column in the EMPLOYEES table, notice that only a sales manager
or sales representative can earn a commission. Other employees are not entitled to earn
commissions. A null represents that fact.

Note: By default, SQL Developer uses the literal, (null), to identify null values. However, you
can set it to something more relevant to you. To do so, select Preferences from the Tools
menu. In the Preferences dialog box, expand the Database node. Click Advanced Parameters
and on the right pane, for the “Display Null value As,” enter the appropriate value.

Oracle Database 12c¢: SQL Workshop | 2 -14

Null Values in Arithmetic Expressions

Arithmetic expressions containing a null value evaluate to null.

SELECT last name, 1l2*salary*commission pct
FROM employees;

B LasT_NAME |[ﬂ 12"SALARY"COMMISSION_PCT |
1 King (null)
2 Kochhar (nul1}
3 De Haan {null)

12 Z1otkey 25200

13 Abel 39600
14 Taylor 20640
15 Grant 12600

17 Hartstein (nu11)
18 Fay (null)
19 Higgins (null)
20 Gietz (null)

ORACLE

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

If any column value in an arithmetic expression is null, the result is null. For example, if you
attempt to perform division by zero, you get an error. However, if you divide a number by null,
the resultis a null or unknown.

In the example in the slide, employee Whalen does not get any commission. Because the
COMMISSION_ PCT column in the arithmetic expression is null, the result is null.

For more information, see the section on “Basic Elements of Oracle SQL” in Oracle Database
SQL Language Reference for 12c¢ database.

Oracle Database 12c¢: SQL Workshop | 2-15

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS COMPUTER IS STRICTLY PROHIBITED

Lesson Agenda

« Capabilities of SQL SELECT Statements

* Arithmetic expressions and NULL values in the SELECT
statement

« Column aliases

» Use of concatenation operator, literal character strings,
alternative quote operator, and the DISTINCT keyword

e DESCRIBE command

ORACLE

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

Oracle Database 12c: SQL Workshop| 2-16

Oracle University and Egabi Solutions use only

Defining a Column Alias

A column alias:
* Renames a column heading
* Is useful with calculations
« Immediately follows the column name (There can also be
the optional As keyword between the column name and
the alias.)

* Requires double quotation marks if it contains spaces or
special characters, or if it is case-sensitive

ORACLE

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

When displaying the result of a query, SQL Developer normally uses the name of the selected
column as the column heading. This heading may not be descriptive and, therefore, may be
difficult to understand. You can change a column heading by using a column alias.

Specify the alias after the column in the SELECT list using blank space as a separator. By
default, alias headings appear in uppercase. If the alias contains spaces or special characters
(such as # or $), or if it is case-sensitive, enclose the alias in double quotation marks (“).

Oracle Database 12c¢: SQL Workshop | 2 -17

Using Column Aliases

SELECT last name AS [name], commission pct
FROM employees;

I; NAME I; COMM

1 King (nul1)
2 Kochhar (nul1)
3 De Haan (nul1)
4 Hunold (nul1)

SELECT last name["Name"| , salary*12 ["Annual Salary"]
FROM employees;

MName @ Annual Salar\;l
1 King 288000
2 Kochhar 204000
3 De Haan 204000
4 Hunold 108000

ORACLE

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

The first example displays the names and the commission percentages of all the employees.
Note that the optional AS keyword has been used before the column alias name. The result of
the query is the same whether the AS keyword is used or not. Also, note that the SQL
statement has the column aliases, name and comm, in lowercase, whereas the result of the
query displays the column headings in uppercase. As mentioned in the preceding slide,
column headings appear in uppercase by default.

The second example displays the last names and annual salaries of all the employees.
Because Annual Salary contains a space, it has been enclosed in double quotation marks.
Note that the column heading in the output is exactly the same as the column alias.

Note: An alias cannot be referenced in the column list that contains the alias definition.

Oracle Database 12¢: SQL Workshop| 2-18

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS COMPUTER IS STRICTLY PROHIBITED

Lesson Agenda

« Capabilities of SQL SELECT Statements

» Arithmetic Expressions and NULL values in SELECT
statement

e Column Aliases

« Use of concatenation operator, literal character strings,
alternative quote operator, and the DISTINCT keyword

e DESCRIBE command

ORACLE

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

Oracle Database 12c: SQL Workshop | 2-19

Oracle University and Egabi Solutions use only

Concatenation Operator

A concatenation operator:
« Links columns or character strings to other columns
* Is represented by two vertical bars (||)
- Creates a resultant column that is a character expression

SELECT last name||job id AS "Employees"
FROM employees;

iﬂ Employees |
1 AbelSA_REP
2 DawviesST_CLERK
3 De HaanaAD_WP
4 ErnstIT_PROG
5 FayMK_REP
6 GietzAC_ACCOUNT
7 GrantSA_REP
8 HartsteinMk_MaN

ORACLE

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

You can link columns to other columns, arithmetic expressions, or constant values to create a
character expression by using the concatenation operator (||). Columns on either side of the
operator are combined to make a single output column.

In the example, LAST NAME and JOB_ID are concatenated, and given the alias Employees.

Note that the last name of the employee and the job code are combined to make a single
output column.

The As keyword before the alias name makes the SELECT clause easier to read.
Null Values with the Concatenation Operator

If you concatenate a null value with a character string, the result is a character string.
LAST NAME || NULL resultsin LAST NAME.

Note: You can also concatenate date expressions with other expressions or columns.

Oracle Database 12c¢: SQL Workshop | 2 -20

Literal Character Strings

 Aliteral is a character, a number, or a date that is included
in the SELECT statement.

 Date and character literal values must be enclosed within
single quotation marks.

- Each character string is output once for each row returned.

ORACLE

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

A literal is a character, a number, or a date that is included in the SELECT list. Itis not a
column name or a column alias. It is printed for each row returned. Literal strings of free-

format text can be included in the query result and are treated the same as a column in the
SELECT list.

The date and character literals must be enclosed within single quotation marks (' '); number
literals need not be enclosed in a similar manner.

Oracle Database 12¢: SQL Workshop | 2 -21

Using Literal Character Strings

SELECT last name |||' is a '|/|job_id
AS "Employee Details"
FROM employees;

_ Employee Details
1 Abel is a SA_REP
2 Davies is a ST_CLERK
3 De Haan is a AD_VP
4 Ernst is a IT_PROG
S Fay is a MK_REP
6 Gietz is a AC_ACCOUNT
7 Grant is a SA_REP
8 Hartstein is a MK_MAN
9 Higgins is a AC_MGR
10 Hunold is a IT_PROG
11 King is a AD_PRES

ORACLE

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

The example in the slide displays the last names and job codes of all employees. The column
has the heading Employee Details. Note the spaces between the single quotation marks in
the SELECT statement. The spaces improve the readability of the output.

In the following example, the last name and salary for each employee are concatenated with a
literal, to give the returned rows more meaning:

SELECT last name ||': 1 Month salary = '||salary Monthly

FROM employees;

MONTHLY
1 King: 1 Month salary = 24000
2 Kochhar: 1 Month salary = 17000
3 De Haan: 1 Month salary = 17000
4 Hunold: 1 Month salary = 9000
5 Ernst: 1 Month salary = &000
6 Lorentz: 1 Month salary = 4200
7 Mourgos: 1 Month salary = 5800

Oracle Database 12c: SQL Workshop | 2 -22

Alternative Quote (q) Operator

« Specify your own quotation mark delimiter.
- Select any delimiter.
* Increase readability and usability.

SELECT department name || g' [Department's Manager Id:]'
| | manager id
AS "Department and Manager"
FROM departments;

E| Department and Manager
1 gdministration Department's Manager Id: 200
2 Marketing Department's Manager Id: 201

3 Shipping Department's Manager Id: 124
4 IT Department's Manager Id: 103

5 Sales Department's Manager Id: 149

6 Executive Department's Manager Id: 100
7 Accounting Department's Manager Id: 2095
8 Contracting Department's Manager Id:

ORACLE

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

Many SQL statements use character literals in expressions or conditions. If the literal itself
contains a single quotation mark, you can use the quote (q) operator and select your own

quotation mark delimiter.
You can choose any convenient delimiter, single-byte or multibyte, or any of the following
characterpairs:[1, {}, (), or <>.

In the example shown, the string contains a single quotation mark, which is normally
interpreted as a delimiter of a character string. By using the g operator, however, brackets []
are used as the quotation mark delimiters. The string between the brackets delimiters is
interpreted as a literal character string.

Oracle Database 12c¢: SQL Workshop | 2 -23

Duplicate Rows

The default display of queries is all rows, including duplicate

rows.
SELECT department id SELECT |[DISTINCT department id
FROM employees; FROM employees;

] DEPARTMENT_ID DEPARTMENT_ID |
' 90 (nu11)
90 90
90 20
60 110
60 50
60 80
50 60
50 10

W < G N e W N
W~ N e W N

ORACLE

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

Unless you indicate otherwise, SQL displays the results of a query without eliminating the
duplicate rows. The first example in the slide displays all the department numbers from the
EMPLOYEES table. Note that the department numbers are repeated.

To eliminate duplicate rows in the result, include the DISTINCT keyword in the SELECT
clause immediately after the SELECT keyword. In the second example in the slide, the
EMPLOYEES table actually contains 20 rows, but there are only seven unique department
numbers in the table.

You can specify multiple columns after the DISTINCT qualifier. The DISTINCT qualifier
affects all the selected columns, and the result is every distinct combination of the columns.
SELECT DISTINCT department id, job_ id

FROM employees;
DEPARTMENT_ID (B JOB_ID
1 110 AC_ACCOUNT
2 90 AD_WP
3 50 ST_CLERK

Note: You .rﬁa.y also specify the keyword UNIQUE, which is a synonym for the keyword
DISTINCT.
Oracle Database 12c¢: SQL Workshop | 2 -24

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS COMPUTER IS STRICTLY PROHIBITED

Lesson Agenda

« Capabilities of SQL SELECT Statements

* Arithmetic expressions and NULL values in the SELECT
statement

e Column aliases

» Use of concatenation operator, literal character strings,
alternative quote operator, and the DISTINCT keyword

e DESCRIBE command

ORACLE

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

Oracle Database 12c: SQL Workshop | 2 -25

Oracle University and Egabi Solutions use only

Displaying the Table Structure

« Use the DESCRIBE command to display the structure of a
table.

* Or, select the table in the Connections tree and use the
Columns tab to view the table structure.

DESC [RIBE] tablename

ra&mneninm_i
QY
= ka myconnection
E-{E5) Tables
46 COUNTRIES
o &
: g Columnsl Data | Constraints | Grants | Statistics | Triggers | Flashback | Dependencies | Details | Indexes | QL
; 0 & 7 @) Actions...
- E| Column Name‘@ Data Type B Nullable | Data Default I@ COLUMN ID :@ Primary Key E] COMMENTS
=& DEPARTMENT_ID MUMEBER{4,0) No {nully 1 1 Primary key column
& B3| pEpARTMENT_N.. VARCHARZ(30 BYTE) No {null) 2 {(nully A not null column tt
MAMACER_ID MUMBER{E,0) Yes {null) 3 (nully Manager_id of a deg
LOCATION_ID MUMBER{4,0) Yes {nully 4 (nully Location id where a

ORACLE

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

You can display the structure of a table by using the DESCRIBE command. The command
displays the column names and the data types, and it shows you whether a column must
contain data (that is, whether the column has a NOT NULL constraint).

In the syntax, table name is the name of any existing table, view, or synonym that is
accessible to the user.

Using the SQL Developer GUl interface, you can select the table in the Connections tree and
use the Columns tab to view the table structure.

Note: DESCRIBE is a SQL *PLUS command supported by SQL Developer. It is abbreviated
as DESC.

Oracle Database 12c¢: SQL Workshop | 2 - 26

Using the DESCRIBE Command

DESCRIBE employees

DESCRIBE Emplovees

Mane Nu11 Twvpe
EMPLOYEE_ID NOT NULL NUMBER(E)
FIRST_MAME WARCHARZ (207
LAST_MNAME NOT MULL WARCHARZ(25)
EMAIL NOT WULL WaRCHARZ({25)
PHONE_MUMBER WARCHARZ (200
HIRE_DATE NOT NULL DATE

JOB_ID NOT NULL “WARCHARZ(10Y)
SalLARY MUMEBER(E, 23
COMMISSION_PCT NUMBER(Z,2)
MANAGER_ID NUMBER(E)
DEPARTMENT_ID NUUMBER (4%

ORACLE

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

The example in the slide displays information about the structure of the EMPLOYEES table
using the DESCRIBE command.

In the resulting display, Null indicates that the values for this column may be unknown. NOT
NULL indicates that a column must contain data. Type displays the data type for a column.

The data types are described in the following table:

Data Type Description

NUMBER (p, s) Number value having a maximum number of digits p, with s
digits to the right of the decimal point

VARCHAR2 (s) Variable-length character value of maximum size s

DATE Date and time value between January 1, 4712 B.C. and

December 31, A.D. 9999

Oracle Database 12c¢: SQL Workshop | 2 - 27

Quiz

|dentify the two SELECT statements that execute successfully.

a.| SELECT first name, last name, job id, salary*12
AS Yearly Sal
FROM employees;

b.| SELECT first name, last name, job id, salary*12
"yvearly sal"
FROM employees;

c.| SELECT first name, last name, job id, salary AS
"yearly sal"
FROM employees;

d.| SELECT first name+last name AS name, job Id,
salary*12 yearly sal
FROM employees;

ORACLE

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

Answer: b, ¢

Oracle Database 12c¢: SQL Workshop | 2 -28

Summary

In this lesson, you should have learned how to:
* Write a SELECT statement that:
— Returns all rows and columns from a table
— Returns specified columns from a table

— Uses column aliases to display more descriptive column
headings

SELECT *|{ [DISTINCT] column|/expression [alias],...}
FROM table;

ORACLE

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

In this lesson, you should have learned how to retrieve data from a database table with the
SELECT statement.

SELECT *|{[DISTINCT] column [alias], ...}
FROM table;

In the syntax:

SELECT Is a list of one or more columns
* Selects all columns
DISTINCT Suppresses duplicates
column|expression Selects the named column or the expression
alias Gives different headings to the selected columns
FROM table Specifies the table containing the columns

Oracle Database 12¢: SQL Workshop | 2 -29

Practice 2: Overview

This practice covers the following topics:
« Selecting all data from different tables
« Describing the structure of tables

« Performing arithmetic calculations and specifying column
names

ORACLE

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

In this practice, you write simple SELECT queries. The queries cover most of the SELECT
clauses and operations that you learned in this lesson.

Oracle Database 12c¢: SQL Workshop | 2-30

Restricting and Sorting Data

ORACLE

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

Objectives

After completing this lesson, you should be able to do the
following:

« Limit the rows that are retrieved by a query
- Sort the rows that are retrieved by a query

« Use ampersand substitution to restrict and sort output at
run time

ORACLE

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

When retrieving data from the database, you may need to do the following:
» Restrict the rows of data that are displayed
+ Specify the order in which the rows are displayed
This lesson explains the SQL statements that you use to perform the actions listed above.

Oracle Database 12c¢: SQL Workshop | 3 -2

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS COMPUTER IS STRICTLY PROHIBITED

Lesson Agenda

* Limiting rows with:
— The WHERE clause

— The comparison operators using =, <=, BETWEEN, IN, LIKE,
and NULL conditions

— Logical conditions using AND, OR, and NOT operators
* Rules of precedence for operators in an expression
« Sorting rows using the ORDER BY clause
« SQL Row limiting clause in a query
« Substitution variables
* DEFINE and VERIFY commands

ORACLE

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

Oracle Database 12¢: SQL Workshopl 3-3

Oracle University and Egabi Solutions use only

Limiting Rows Using a Selection

EMPLOYEES
@ empovee_iD [§ wLasT_namE |l JjoB_iD [El DEPARTMENT_ID
1 100 King AD_PRES 90
2 101 Kochhar AD_VP 90
3 102 De Haan AD_VP 90
4 103 Hunold IT_PROG 60
5 104 Ernst IT_PROG 60
6 107 Lorentz IT_PROG 60
“retrieve all
employees in
department 90” l
@ empLoveE D | LasT_NaME | JobiD || DEPARTMENT_ID
1 100 King AD_PRES 90
2 101 Kochhar AD_WP a0
3 102 De Haan AD_WP a0

ORACLE

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

In the slide example, assume that you want to display all the employees in department 90.
The rows with a value of 90 in the DEPARTMENT _ID column are the only ones that are
returned. This method of restriction is the basis of the WHERE clause in SQL.

Oracle Database 12c¢: SQL Workshop| 3 -4

Limiting the Rows That Are Selected

« Restrict the rows that are returned by using the WHERE
clause:

SELECT *|{ [DISTINCT] column|/expression [alias],...}
FROM table
[WHERE logical expression(s)];

- The WHERE clause follows the FROM clause.

ORACLE

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

You can restrict the rows that are returned from the query by using the WHERE clause. A
WHERE clause contains a condition that must be met and it directly follows the FROM clause. If
the condition is true, the row meeting the condition is returned.

In the syntax:
WHERE Restricts the query to rows that meet a condition

logical expression Is composed of column names,
constants, and a comparison operator. It specifies
a combination of one or more expressions and
Boolean operators, and returns a value of TRUE,
FALSE, Or UNKNOWN.

The WHERE clause can compare values in columns, literal, arithmetic expressions, or
functions. It consists of three elements:

« Column name

« Comparison condition

+ Column name, constant, or list of values

Oracle Database 12c¢: SQL Workshop!| 3 -5

Using the WHERE Clause

SELECT employee id, last name, job_ id, department id
FROM employees

|WHERE department id = 90|;

B empLoveelD | LasT_wame |§ Jos_iD | DEPARTMENT_ID
' 100 King AD_PRES 90
2 101 Kochhar AD_VP a0
102 De Haan AD_VP a0

ORACLE

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

In the example, the SELECT statement retrieves the employee ID, last name, job ID, and
department number of all employees who are in department 90.

Note: You cannot use column alias in the WHERE clause.

Oracle Database 12c¢: SQL Workshop!| 3 -6

Character Strings and Dates

« Character strings and date values are enclosed with single
quotation marks.

« Character values are case-sensitive and date values are
format-sensitive.

« The default date display format is DD-MON-RR.

SELECT last name, job id, department id
FROM employees
WHERE last name

B vast_mame | josio [DEPARTMENT_ID

'Whalen'| ; 1 Whalen AD_ASST 10

SELECT last name
FROM employees f LasT_naME|
WHERE hire date = ['17-OCT-03"'|; 1 Rajs

ORACLE

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

Character strings and dates in the WHERE clause must be enclosed with single quotation
marks (' '). Number constants, however, need not be enclosed with single quotation marks.

All character searches are case-sensitive. In the following example, no rows are returned
because the EMPLOYEES table stores all the last names in mixed case:

SELECT last name, job id, department id

FROM employees

WHERE last name = 'WHALEN';
Oracle databases store dates in an internal numeric format, representing the century, year,
month, day, hours, minutes, and seconds. The default date display is in the DD-MON-RR
format.
Note: For details about the RR format and about changing the default date format, see the

lesson titled “Using Single-Row Functions to Customize Output.” Also, you learn about the
use of single-row functions such as UPPER and LOWER to override the case sensitivity in the

same lesson.

Oracle Database 12c¢: SQL Workshopl 3 -7

Comparison Operators

Operator Meaning

= Equal to
> Greater than
>= Greater than or equal to
< Less than
<= Less than or equal to
<> Not equal to
BETWEEN Between two values (inclusive)
. .AND. ..
IN (set) Match any of a list of values
LIKE Match a character pattern
IS NULL Is a null value

ORACLE

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

Comparison operators are used in conditions that compare one expression with another value
or expression. They are used in the WHERE clause in the following format:

Syntax
. WHERE expr operator value
Example
. WHERE hire date = '01-JAN-05"
. WHERE salary >= 6000
. WHERE last name = 'Smith'

Remember, an alias cannot be used in the WHERE clause.
Note: The symbols != and "= can also represent the not equal to condition

Oracle Database 12c¢: SQL Workshop| 3-8

Using Comparison Operators

SELECT last name, salary
FROM employees
WHERE salary|<= 3000 |;

@ astmame[§ saLary
1 Hatos 2600
2 Vargas 2500

ORACLE

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

In the example, the SELECT statement retrieves the last name and salary from the
EMPLOYEES table for any employee whose salary is less than or equal to $3,000. Note that
there is an explicit value supplied to the WHERE clause. The explicit value of 3000 is
compared to the salary value in the SALARY column of the EMPLOYEES table.

Oracle Database 12c¢: SQL Workshop!| 3 -9

Range Conditions Using the BETWEEN Operator

Use the BETWEEN operator to display rows based on a range of
values:

SELECT last name, salary
FROM employees

WHERE SalarleETWEEN 2500 AND 3500|;

Lower limit Upper limit
B rast_name | saLery|
1 Rajs ' 3500
2 Davies 2100
3 Matos 2E00
4 Vargas 2500

ORACLE

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

You can display rows based on a range of values using the BETWEEN operator. The range
that you specify contains a lower limit and an upper limit.

The SELECT statement in the slide returns rows from the EMPLOYEES table for any employee
whose salary is between $2,500 and $3,500.

Values that are specified with the BETWEEN operator are inclusive. However, you must specify
the lower limit first.

You can also use the BETWEEN operator on character values:
SELECT last name
FROM employees
WHERE last name BETWEEN 'King' AND 'Smith';

L& ST_R ME
king
kK.ochhar

Lorentz
Matos

Maurgaos

Ty B A T

Rajs

Oracle Database 12c¢: SQL Workshopl 3-10

Membership Condition Using the IN Operator

Use the IN operator to test for values in a list:

SELECT employee id, last name, salary, manager id
FROM employees
WHERE manager id |IN (100, 101, 201)| ;

@ empLovee D [LasT_name [§ saLary |l MANAGERID
1 101 Kochhar 17000 100
2 102 De Haan 17000 100
3 124 Mourgos 5800 100,
4 149 Z1otkey 10500 100
5 201 Hartstein 13000 100
6 200 Whalen 4400 101
7 205 Higgins 12008 101
8 202 Fay 6000 201

ORACLE

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

To test for values in a specified set of values, use the IN operator. The condition defined
using the IN operatoris also known as the membership condition.

The slide example displays employee numbers, last names, salaries, and manager’s
employee numbers for all the employees whose manager’s employee number is 100, 101, or
201.

Note: The set of values can be specified in any random order—for example, (201,100,101).

The IN operator can be used with any data type. The following example returns a row from
the EMPLOYEES table, for any employee whose last name is included in the list of names in
the WHERE clause:

SELECT employee id, manager id, department id
FROM employees
WHERE last name IN ('Hartstein', 'Vargas');

If characters or dates are used in a list, they must be enclosed with single quotation marks

(1)

Note: The IN operator is internally evaluated by the Oracle server as a set of OR conditions,
such as a=valuel or a=value2 or a=value3. Therefore, using the IN operator has no
performance benefits and is used only for logical simplicity.

Oracle Database 12¢: SQL Workshop | 3 -11

Pattern Matching Using the LIKE Operator

« Use the LIKE operator to perform wildcard searches of
valid search string values.
« Search conditions can contain either literal characters or
numbers:
— % denotes zero or more characters.
— __denotes one character.

SELECT first name
FROM employees
WHERE first name|LIKE 'S%' |;

8 FIRST_MNAME
1 Shelley
2 Steven

ORACLE

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

You may not always know the exact value to search for. You can select rows that match a
character pattern by using the LIKE operator. The character pattern—matching operation is
referred to as a wildcard search. Two symbols can be used to construct the search string.

Symbol Description

o\°

Represents any sequence of zero or more characters

Represents any single character

The SELECT statement in the slide returns the first name from the EMPLOYEES table for any
employee whose first name begins with the letter “S.” Note the uppercase “S.” Consequently,

names beginning with a lowercase “s” are not returned.

The LIKE operator can be used as a shortcut for some BETWEEN comparisons. The following

example displays the last names and hire dates of all employees who joined between
January, 2005 and December, 2005:

SELECT last name, hire date LAST—NAME REDTE
FROM employees 1 Kl:ll:hhar‘ 21-5EP-05
WHERE hire date LIKE '305'; Z|Davies 239-JAN-03

3 Fay 17-AUG-05

Oracle Database 12c¢: SQL Workshop | 3 -12

Combining Wildcard Characters

* You can combine the two wildcard characters (%, _) with
literal characters for pattern matching:
SELECT last name

FROM employees
WHERE last name [LIKE ' o%'|;

B LasT_mamME
1 Fochhar

2 Lorentz

3 Mourgos

* You can use the ESCAPE identifier to search for the actual
% and _ symbols.

ORACLE

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

The $ and _ symbols can be used in any combination with literal characters. The example in

the slide displays the names of all employees whose last names have the letter “0” as the
second character.

ESCAPE ldentifier

When you need to have an exact match for the actual ¢ and _ characters, use the ESCAPE

identifier. This option specifies what the escape character is. If you want to search for strings
that contain SA_, you can use the following SQL statement:

SELECT employee id, last name, job id
FROM employees WHERE Jjob id LIKE '%SA\ %' ESCAPE '\';

EMPLOYEEID |[§ LasT_maME|E JoB_ID
1 149 Zlotkey SA_MAN
2 174 Ahel S4_REP
3 176 Taylor 54 _REP
4 178 Grant 54 _REP

The ESCAPE identifier identifies the backslash (\) as the escape character. In the SQL
statement, the escape character precedes the underscore (_). This causes the Oracle server
to interpret the underscore literally.

Oracle Database 12¢: SQL Workshop | 3 -13

Using the NULL Conditions

Test for nulls with the IS NULL operator.

SELECT last name, manager id
FROM employees

WHERE |manager_id IS NULLl;

B LasT_wamE [§ MANAGER_ID
1 Eing {rually

ORACLE

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

The NULL conditions include the IS NULL condition and the IS NOT NULL condition.

The IS NULL condition tests for nulls. A null value means that the value is unavailable,
unassigned, unknown, or inapplicable. Therefore, you cannot test with =, because a null
cannot be equal or unequal to any value. The example in the slide retrieves the last names
and managers of all employees who do not have a manager.
Here is another example: To display the last name, job ID, and commission for all
employees who are not entitled to receive a commission, use the following SQL statement:

SELECT last name, job id, commission pct

FROM employees

WHERE commission pct IS NULL;

LAST_MAME |[{ JoE_ID COMMISSION_PCT
1 King AD_PRES Cnulll
2 Kochhar AD_\P Cnulll
3 De Haan AD_\P (nulll
4 Hunold IT_PROG Cnulll
5 Ernst IT_PROG (nullj
o Lorentz IT_PROG (nulll

Oracle Database 12c¢: SQL Workshop | 3 -14

Defining Conditions Using the Logical Operators

Operator Meaning

AND Returns TRUE if both component conditions
are true

OR Returns TRUE if either component condition
is true

NOT Returns TRUE if the condition is false

ORACLE

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

A logical condition combines the result of two component conditions to produce a single result
based on those conditions or it inverts the result of a single condition. A row is returned only if
the overall result of the conditionis true.

Three logical operators are available in SQL:
« AND
« OR
« NOT

All the examples so far have specified only one condition in the WHERE clause. You can use
several conditions in a single WHERE clause using the AND and OR operators.

Oracle Database 12c¢: SQL Workshop | 3 -15

Using the AND Operator

AND requires both the component conditions to be true:

SELECT employee id, last name, job_ id, salary
FROM employees

WHERE |salary >= 10000

AND job_id LIKE 'S%MAN%'| ;

@ empLoYEELID [LasT_naME | JoBID | sALaRrY
149 Z1otkey SA_MAN 10500
2 201 Hartstein ME_MAN 13000

ORACLE

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

In the example, both the component conditions must be true for any record to be selected.
Therefore, only those employees who have a job title that contains the string ‘MAN’ and earn
$10,000 or more are selected.

All character searches are case-sensitive, that is, no rows are returned if ‘MAN’ is not
uppercase. Further, character strings must be enclosed with quotation marks.

AND Truth Table
The following table shows the results of combining two expressions with AND:

AND TRUE FALSE NULL
TRUE TRUE FALSE NULL
FALSE FALSE FALSE FALSE
NULL NULL FALSE NULL

Oracle Database 12c¢: SQL Workshop| 3 -16

Using the OR Operator

OR requires either component condition to be true:

SELECT employee id, last name, job_ id, salary
FROM employees
WHERE |salary >= 10000

OR job_id LIKE 'S%MAN%'| ;

§ empiovee D [LasT_wame [jos_iD |[§ saLarr |
1 100 King AD_PRES 240010
2 101 Kochhar AD_WP 17000
3 102 De Haan AD_WP 17000
4 124 Mourgos ST_MAN SE00
5 149 Z1otkey SA_MAN 10500
6 174 Abel SA&_REP 11000
7 201 Hartstein ME_MAN 13000
8 205 Higains BC_MGR 12008

ORACLE

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

In the example, either component condition can be true for any record to be selected.
Therefore, any employee who has a job ID that contains the string ‘MAN’ or earns $10,000 or
more is selected.

OR Truth Table
The following table shows the results of combining two expressions with OR:

OR TRUE FALSE NULL
TRUE TRUE TRUE TRUE
FALSE TRUE FALSE NULL
NULL TRUE NULL NULL

Oracle Database 12c¢: SQL Workshop | 3 -17

Using the NOT Operator

SELECT last name, job id
FROM employees
WHERE |job id

NOT IN ('IT_PROG', 'ST_CLERK', 'SA_REP') ;
B Last_wame|§ joeD
1 De Haan AD_VP
2 Fay MK_REP
3 Giletz AC_ACCOUNT
4 Hartstein MK _MAN
5 Higains AC_MGR
& King AD_PRES
7 Kochhar AD_WP
8 Mourgos ST_MAR
9 Whalen AD_ASST
10 27 otkey Si_MAN

ORACLE

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

The example in the slide displays the last name and job ID of all employees whose job ID is
not IT PROG, ST CLERK, or SA_ REP.

NOT Truth Table
The following table shows the result of applying the NOT operator to a condition:

NOT TRUE FALSE NULL
FALSE TRUE NULL

Note: The NOT operator can also be used with other SQL operators, such as BETWEEN, LIKE,
and NULL.

. WHERE job id NOT 1IN ('AC _ACCOUNT', 'AD VP')
. WHERE salary NOT BETWEEN 10000 AND 15000
. WHERE last name NOT LIKE '3%A%'

. WHERE commission pct IS NOT NULL

Oracle Database 12¢: SQL Workshop!| 3 -18

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS COMPUTER IS STRICTLY PROHIBITED

Lesson Agenda

* Limiting rows with:
— The WHERE clause

— The comparison conditions using =, <=, BETWEEN, IN, LIKE,
and NULL operators

— Logical conditions using AND, OR, and NOT operators
* Rules of precedence for operators in an expression
« Sorting rows using the ORDER BY clause
« SQL Row limiting clause in a query
* Substitution variables
« DEFINE and VERIFY commands

ORACLE

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

Oracle Database 12c: SQL Workshop | 3 -19

Oracle University and Egabi Solutions use only

Rules of Precedence

Operator Meaning

1 Arithmetic operators

Concatenation operator

Comparison conditions

IS [NOT] NULL, LIKE, [NOT] IN

[NOT] BETWEEN

Not equal to

NOT logical operator

AND logical operator

Ol | N]Joja]lbdlw] DN

OR logical operator

You can use parentheses to override rules of precedence.

ORACLE

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

The rules of precedence determine the order in which expressions are evaluated and
calculated. The table in the slide lists the default order of precedence. However, you can
override the default order by using parentheses around the expressions that you want to
calculate first.

Oracle Database 12c¢: SQL Workshop | 3 -20

Rules of Precedence

SELECT last name, job id, salary
FROM employees

WHERE job id = 'SA REP'
OR.-L::job_id = 'AD PRES' <:>
AND salary > 15000;
B LasT_mame |f] Joeio |§ saLary
1 King AD_PRES 24000
2 Abel SA_REP 11000
3 Taylor SA_REP BE00
4 Cramt SA_REP F000
SELECT last name, job id, salary <:>
FROM employees
WHERE__,(job _id = 'SA REP'
OR _[:Eob_id = 'AD PRES')
AND salary > 15000;

B Lest_named Jjoeio|[f saLary
1 Eing AD_PRES 24000

ORACLE

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

1. Precedence of the AND Operator: Example

In this example, there are two conditions:
- Thefirst condition is that the job ID is AD_PRES and the salary is greater than
$15,000.
- The second condition is that the job ID is SA REP.
Therefore, the SELECT statement reads as follows:

“Select the row if an employee is a president and earns more than $15,000, or if the
employee is a sales representative.”

2. Using Parentheses: Example
In this example, there are two conditions:
- The first condition is that the job ID iSsAD PRES or SA_ REP.
- The second condition is that the salary is greater than $15,000.
Therefore, the SELECT statement reads as follows:

“Select the row if an employee is a president or a sales representative, and if the
employee earns more than $15,000.”

Oracle Database 12c¢: SQL Workshop | 3 -21

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS COMPUTER IS STRICTLY PROHIBITED

Lesson Agenda

* Limiting rows with:
— The WHERE clause

— The comparison conditions using =, <=, BETWEEN, IN, LIKE,
and NULL operators

— Logical conditions using AND, OR, and NOT operators
* Rules of precedence for operators in an expression
« Sorting rows using the ORDER BY clause
« SQL Row limiting clause in a query
* Substitution variables
* DEFINE and VERIFY commands

ORACLE

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

Oracle Database 12c: SQL Workshop | 3 - 22

Oracle University and Egabi Solutions use only

Using the ORDER BY Clause

« Sort the retrieved rows with the ORDER BY clause:
— ASC: Ascending order, default
— DESC: Descending order

e The ORDER BY clause comes last in the SELECT
statement:

SELECT last name, job_id, department id, hire date
FROM employees
ORDER BY hire date |;

g Last_name|§ JoeD |[§ DEPARTMENT.ID |[{l HIRE_DATE
1 De Haan AP 90 13-1AN-01
Z Gietz AC_ACCOUNT 110 07-JUN-02
3 Higoins BC_MGR 110 07-JUN-02
4 King AD_PRES 90 17-JUN-03
S Whalen AD_ASST 10 17-SEP-03
6 Rajs ST_CLERK 50 17-0CT-032

ORACLE

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

The order of rows that are returned in a query result is undefined. The ORDER BY clause can
be used to sort the rows. However, if you use the ORDER BY clause, it must be the last clause
of the SQL statement. Further, you can specify an expression, an alias, or a column position
as the sort condition.

Syntax
SELECT expr
FROM table
[WHERE condition (s)]

[ORDER BY {column, expr, numeric position} [ASC|DESC]];
In the syntax:

ORDER BY specifies the order in which the retrieved rows are displayed
ASC orders the rows in ascending order (This is the default order.)
DESC orders the rows in descending order

If the ORDER BY clause is not used, the sort order is undefined, and the Oracle server may not
fetch rows in the same order for the same query twice. Use the ORDER BY clause to display
the rows in a specific order.

Note: Use the keywords NULLS FIRST or NULLS LAST to specify whether returned rows
containing null values should appear first or last in the ordering sequence.

Oracle Database 12c¢: SQL Workshop | 3 -23

Sorting

- Sorting in descending order:

SELECT last name, job_id, department id, hire date

FROM employees (:)
ORDER BY hire_date DESC]| ;

- Sorting by column alias:

SELECT employee id, last name, salary*12 |annsal

FROM employees (:)
ORDER BY :

ORACLE

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

The default sort order is ascending:
* Numeric values are displayed with the lowest values first (for example, 1 to 999).
» Date values are displayed with the earliest value first (for example, 01-JAN-92 before

01-JAN-95).

» Charactervalues are displayed in the alphabetical order (for example, “A” first and “Z”
last).

* Null values are displayed last for ascending sequences and first for descending
sequences.

* You can also sort by a column that is not in the SELECT list.

Examples
1. Toreverse the order in which the rows are displayed, specify the DESC keyword after
the column name in the ORDER BY clause. The example in the slide sorts the result by
the most recently hired employee.
2. You can also use a column alias in the ORDER BY clause. The slide example sorts the
data by annual salary.
Note: The DESC keyword used here for sorting in descending order should not be confused
with the DESC keyword used to describe table structures.

Oracle Database 12c¢: SQL Workshop | 3 -24

Sorting

« Sorting by using the column’s numeric position:

SELECT last name, job_id, department id, hire date

FROM employees (:)
ORDER BY

- Sorting by multiple columns:

SELECT last name, department id, salary

FROM employees
ORDER BY department id, salary DESC; <:>

ORACLE

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

Examples
3. You can sort query results by specifying the numeric position of the column in the
SELECT clause. The example in the slide sorts the result by the department idas
this column is at the third position in the SELECT clause.
4. You can sort query results by more than one column. The sort limit is the number of
columns in the given table. In the ORDER BY clause, specify the columns and separate

the column names using commas. If you want to reverse the order of a column, specify
DESC after its name. The result of the query example shown in the slide is sorted by

department_id in ascending order and also by salary in descending order.

Oracle Database 12c¢: SQL Workshop | 3 -25

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS COMPUTER IS STRICTLY PROHIBITED

Lesson Agenda

* Limiting rows with:
— The WHERE clause

— The comparison conditions using =, <=, BETWEEN, IN, LIKE,
and NULL operators

— Logical conditions using AND, OR, and NOT operators
* Rules of precedence for operators in an expression
« Sorting rows using the ORDER BY clause
« SQL Row limiting clause in a query
* Substitution variables
* DEFINE and VERIFY commands

ORACLE

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

Oracle Database 12c: SQL Workshop | 3 - 26

Oracle University and Egabi Solutions use only

SQL Row Limiting Clause

* Therow limiting clause allows you to limit the rows
that are returned by the query.

* Queries that order data and then limit row output are
widely used and are often referred to as Top-N queries.

* You can specify the number of rows or percentage of rows
to return with the FETCH FIRST keywords.

* You can use the OFFSET keyword to specify that the
returned rows begin with a row after the first row of the full

result set.

« TheWITH TIES keyword includes additional rows with
the same ordering keys as the last row of the -
row-limited result set (you must specify i

ORDER BY in the query).

ORACLE

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

SQL SELECT syntax is enhanced to allow a row _1imiting clause, which limits the
number of rows that are returned in the result set. The row_1limiting clause provides
both easy-to-understand syntax and expressive power. Limiting the number or rows returned
can be valuable for reporting, analysis, data browsing, and other tasks. Queries that order
data and then limit row output are widely used and are often referred to as Top-N queries.

You can specify the number of rows or percentage of rows to return with the FETCH_FIRST
keywords.

You can use the OFFSET keyword to specify that the returned rows begin with a row after the
first row of the full result set. The WITH TIES keyword includes rows with the same ordering
keys as the last row of the row-limited result set (you must specify ORDER BY in the query).
For consistent results, specify the order by clause to ensure a deterministic sort order.

Therow limiting clause followsthe ANSI SQL international standard for enhanced
compatibility and easier migration.

Oracle Database 12c¢: SQL Workshop | 3 -27

Using SQL Row Limiting Clause in a Query

You can specify the row limiting clause inthe SQL
SELECT statement by placing it after the ORDER BY clause.

Syntax:
subquery: :=
{ query block

| subquery { UNION [ALL] | INTERSECT | MINUS }
subquery

[{ UNION [ALL] | INTERSECT | MINUS } subquery]...
| (subquery)

{

[order by clause]
[OFFSET offset { ROW | ROWS }]

[FETCH { FIRST | NEXT } [{ row count | percent PERCENT
}1 { ROw | ROWS }

{ ONLY | WITH TIES }]

ORACLE

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

You can specify the row _1limiting clause in the SQL SELECT statement by placing it
afterthe ORDER BY clause. Note that an ORDER BY clause is not required.

OFFSET: Use this clause to specify the number of rows to skip before row limiting begins. The
value for offset must be a number. If you specify a negative number, offset is treated as 0. If
you

specify NULL or a number greater than or equal to the number of rows that are returned by the
query, 0 rows are returned.

ROW | ROWS: Use these keywords interchangeably. They are provided for semantic clarity.
FETCH: Use this clause to specify the number of rows or percentage of rows to return.

FIRST | NEXT: Use these keywords interchangeably. They are provided for semantic
clarity.

row_count | percent PERCENT: Use row_count to specify the number of rows to return. Use
percent PERCENT to specify the percentage of the total number of selected rows to return.
The value for percent must be a number.

ONLY | WITH TIES: Specify ONLY to return exactly the specified number of rows or
percentage of rows. Specify WITH TIES to return all rows that have the same sort keys as
the last row of the row-limited result set (WITH TIES requiresan ORDER BY clause).

Oracle Database 12c¢: SQL Workshop | 3 -28

SQL Row Limiting Clause Example

= Script Output X (> Query Resut x

SELECT employee id, first name o 3 B B QL | AllRows Fetched: 5

EMPLOYEE_ID @ FIRST_NAME”
100 Steven
101 Neena
102 Lex
103 Alexander
104 Bruce

FROM employees
ORDER BY employee id
FETCH FIRST ROW NLY ;

A\ 4

LEUIEE I T LU o

SELECT employee id, first name

FROM employees

ORDER BY employee id

OFFSET 5 ROWS FETCH NEXT 5 ROWS ONLY;

1

@ emPLOYEEID | FIRST_NAME
107 Diana
124 Kevin
141 Trenna
142 Curtis
143 Randall

ORACLE

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

nm & W N

The first code example returns the five employees with the lowest employee id.

The second code example returns the five employees with the next set of lowest
employee id.

Note: If employee id is assigned sequentially by the date when the employee joined the
organization, these examples give us the top 5 employees and then employees 6-10, all in
terms of seniority.

Oracle Database 12c¢: SQL Workshop | 3 -29

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS COMPUTER IS STRICTLY PROHIBITED

Lesson Agenda

« Limiting rows with:
— The WHERE clause

— The comparison conditions using =, <=, BETWEEN, IN, LIKE,
and NULL operators

— Logical conditions using AND, OR, and NOT operators
* Rules of precedence for operators in an expression
« Sorting rows using the ORDER BY clause
« SQL Row limiting clause in a query
* Substitution variables
« DEFINE and VERIFY commands

ORACLE

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

Oracle Database 12¢: SQL Workshop| 3 -30

Oracle University and Egabi Solutions use only

Substitution Variables

...salary =7 ...
... department_id =7 ...
% ...last_ name =7 ... -
' | want
— to query
ot .. different -
[. values.
"

.
(L
f,

ORACLE
Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

So far, all the SQL statements were executed with predetermined columns, conditions, and
their values. Suppose that you want a query that lists the employees with various jobs and not
just those whose job IDis SA REP. You can edit the WHERE clause to provide a different
value each time you run the command, but there is also an easier way.

By using a substitution variable in place of the exact values in the WHERE clause, you can run
the same query for different values.

You can create reports that prompt users to supply their own values to restrict the range of
data returned, by using substitution variables. You can embed substitution variables in a
command file or in a single SQL statement. A variable can be thought of as a containerin
which values are temporarily stored. When the statement is run, the stored value is
substituted.

Oracle Database 12¢: SQL Workshop | 3 - 31

Substitution Variables

« Use substitution variables to:

— Temporarily store values with single-ampersand (&) and
double-ampersand (&&) substitution

« Use substitution variables to supplement the following:
— WHERE conditions
— ORDER BY clauses
— Column expressions
— Table names
— Entire SELECT statements

ORACLE

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

You can use single-ampersand (&) substitution variables to temporarily store values.

You can also predefine variables by using the DEFINE command. DEFINE creates and
assigns a value to a variable.

Restricted Ranges of Data: Examples
» Reporting figures only for the current quarter or specified date range
» Reporting on data relevant only to the user requesting the report
» Displaying personnel only within a given department

Other Interactive Effects

Interactive effects are not restricted to direct user interaction with the WHERE clause. The
same principles can also be used to achieve other goals, such as:

+ Obtaining input values from a file rather than from a person
» Passing values from one SQL statement to another

Note: Both SQL Developer and SQL* Plus support substitution variables and the
DEFINE/UNDEFINE commands. Neither SQL Developer nor SQL* Plus support validation
checks (except for data type) on user input. If used in scripts that are deployed to users,
substitution variables can be subverted for SQL injection attacks.

Oracle Database 12c¢: SQL Workshop | 3 -32

Using the Single-Ampersand Substitution
Variable

Use a variable prefixed with an ampersand (&) to prompt the
user for a value:

SELECT employee id, last name, salary, department id
FROM employees

WHERE employee id =|&employee_num|;

” Enter Substitution Variable x

EMPLOYEE_NUM:

oK || Cancel

ORACLE

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

When running a report, users often want to restrict the data that is returned dynamically.
SQL*Plus or SQL Developer provides this flexibility with user variables. Use an ampersand
(&) to identify each variable in your SQL statement. However, you do not need to define the

value of each variable.

Notation Description

&user_variable Indicates a variable in a SQL statement; if the variable does
not exist, SQL*Plus or SQL Developer prompts the user for a
value (the new variable is discarded after it is used.)

The example in the slide creates a SQL Developer substitution variable for an employee
number. When the statement is executed, SQL Developer prompts the user for an employee
number and then displays the employee number, last name, salary, and department number
for that employee.

With the single ampersand, the user is prompted every time the command is executed if the
variable does not exist.

Oracle Database 12c¢: SQL Workshop | 3-33

Using the Single-Ampersand Substitution
Variable

[&) Enter Substitution Variable x

EMPLOYEE_MNLUIM:

[101

, g || cance

@ EMPLOYEEID [LAST_NAME | SALARY | DEPARTMENT_ID
1 101 Kochhar 17000 90

ORACLE

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

When SQL Developer detects that the SQL statement contains an ampersand, you are
prompted to enter a value for the substitution variable that is named in the SQL statement.

After you enter a value and click the OK button, the results are displayed in the Results tab of
your SQL Developer session.

Oracle Database 12c¢: SQL Workshop | 3 -34

Character and Date Values with
Substitution Variables

Use single quotation marks for date and character values:

SELECT last name, department id, salary*12
FROM employees

WHERE job_id =|['&job_title!| ;

~ -
| &) Enter Substitution Variable X

JOB_TITLE:

[T_PrOC]

| OK *‘_J | Cancel J
LAST_NAME |f] DEPARTMENTID |f] saLaRry*12
1 Hunold 60 108000
2 Ernst (A1} F2000
3 Loremtz B0 50400

ORACLE

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

In a WHERE clause, date and character values must be enclosed with single quotation marks.
The same rule applies to the substitution variables.
Enclose the variable with single quotation marks within the SQL statement itself.

The slide shows a query to retrieve the employee names, department numbers, and annual
salaries of all employees based on the job title value of the SQL Developer substitution

variable.

Oracle Database 12c¢: SQL Workshop | 3 -35

Specifying Column Names, Expressions, and Text

SELECT employee id, last name, job_ id,|&column name|
FROM employees

WHERE [&condition |

ORDER BY|&order=column|;

COLUMN_MAME:

salary

Ok *_J CONDITION:

salary>1500|

ORDER_COLUMMN:

| OKk Cancel :Iast_nam g
OK Cancel
| .

ORACLE

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

You can use the substitution variables not only in the WHERE clause of a SQL statement, but
also as substitution for column names, expressions, or text.

Example

The example in the slide displays the employee number, last name, job title, and any other
column that is specified by the user at run time, from the EMPLOYEES table. For each
substitution variable in the SELECT statement, you are prompted to enter a value, and then
click OK to proceed.

If you do not enter a value for the substitution variable, you get an error when you execute the
preceding statement.

Note: A substitution variable can be used anywhere in the SELECT statement, except as the
first word entered at the command prompt.

Oracle Database 12c¢: SQL Workshop | 3 -36

Using the Double-Ampersand
Substitution Variable

Use double ampersand (&&) if you want to reuse the variable
value without prompting the user each time:

SELECT employee id, last name, job_id,l&&column_namel

FROM employees

ORDER BYl&column namel;

E Enter Substitution Variable X

COLUMN_NAME:

department_id|

oK Cancel |
pd L J
B empLoveelo § ast_mame|H josup | DEPARTMENT_ID
200 Whalen AD_ASST 10
2 201 Hartstein rfk_WLA M 20
3 202 Fay MK_REP 20

ORACLE

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

You can use the double-ampersand (&&) substitution variable if you want to reuse the variable
value without prompting the user each time. The user sees the prompt for the value only
once. In the example in the slide, the user is asked to give the value for the variable,
column_name, only once. The value that is supplied by the user (department id)is used
for both display and ordering of data. If you run the query again, you will not be prompted for
the value of the variable.

SQL Developer stores the value that is supplied by using the DEFINE command; it uses it
again whenever you reference the variable name. After a user variable is in place, you need
to use the UNDEFINE command to delete it:

UNDEFINE column_ name;

Double-ampersand can also be used with the ACCEPT command. The ACCEPT command
reads a line of input and stores it in a given user variable.

Example
ACCEPT col name PROMPT 'Please specify the column name:‘

SELECT &&col name
FROM employees
ORDER BY &col name;

Oracle Database 12¢: SQL Workshop | 3 - 37

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS COMPUTER IS STRICTLY PROHIBITED

Lesson Agenda

« Limiting rows with:
— The WHERE clause

— The comparison conditions using =, <=, BETWEEN, IN, LIKE,
and NULL operators

— Logical conditions using AND, OR, and NOT operators
« SQL Row limiting clause in a query
* Rules of precedence for operators in an expression
« Sorting rows using the ORDER BY clause
« Substitution variables
* DEFINE and VERIFY commands

ORACLE

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

Oracle Database 12c¢: SQL Workshop| 3 -38

Oracle University and Egabi Solutions use only

Using the DEFINE Command

* Use the DEFINE command to create and assign a value to
a variable.

« Use the UNDEFINE command to remove a variable.

DEFINElemployee_num|=|200|

SELECT employee id, lasy name, salary, department id
FROM employees v
WHERE employee id =|&employee num |;

UNDEFINE employee num

@ empLOYEELID |[§ LaST_NAME|[J SaLARY] DEPARTMENT_ID
1 200 Whalen 4400 10

ORACLE

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

The example shown creates a substitution variable for an employee number by using the
DEFINE command. At run time, this displays the employee number, name, salary, and

department number for that employee.

Because the variable is created using the SQL Developer DEFINE command, the user is not

prompted to enter a value for the employee number. Instead, the defined variable value is
automatically substituted in the SELECT statement.

The EMPLOYEE NUM substitution variable is present in the session until the user undefines it
or exits the SQL Developer session.

Oracle Database 12¢: SQL Workshop | 3 -39

Using the VERIFY Command

Use the VERIFY command to toggle the display of the
substitution variable, both before and after SQL Developer
replaces substitution variables with values:

SET VERIFY ONl

SELECT employee id, last name, salary
FROM employees
WHERE employee id = &employee num;

A
i ;l Script Output *

I‘f & H B E | Taskcompleted in 6.496 seconds

old: SELECT employee_id, last_name, salary
” Enter Substitution Variable x FROM enplovees

EMPLOYEE_NUM: MEw: SECELT emp E}ree_1 o, lasﬂ:_n;rle1 Salary
FROMW employees

[200] EHERE employee_1d = J00 |

EMFLOYEE_ID LAST_NAME SALARY

Lok || cance | 200 Whalen 4400

ORACLE

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

To confirm the changes in the SQL statement, use the VERIFY command. Setting SET
VERIFY ON forces SQL Developer to display the text of a command after it replaces
substitution variables with values. To see the VERIFY output, you should use the Run Script
(F5)icon in the SQL Worksheet. SQL Developer displays the text of a command after it
replaces substitution variables with values, in the Script Output tab as shown in the slide.

The example in the slide displays the new value of the EMPLOYEE_ID column in the SQL
statement followed by the output.

SQL*Plus System Variables

SQL*Plus uses various system variables that control the working environment. One of the
variables is VERIFY. To obtain a complete list of all the system variables, you can issue the
SHOW ALL command on the SQL*Plus command prompt.

Oracle Database 12c¢: SQL Workshop | 3 -40

Quiz

Which four of the following are valid operators for the WHERE

clause?
a. >=
IS NULL
c. I=
d. IS LIKE
e. IN BETWEEN
£f. <>

ORACLE

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

Answer: a, b, c, f

Oracle Database 12c¢: SQL Workshop | 3 -41

Summary

In this lesson, you should have learned how to:
« Use the WHERE clause to restrict rows of output:
— Use the comparison conditions
— Use the BETWEEN, IN, LIKE, and NULL operators
— Apply the logical AND, OR, and NOT operators
« Use the ORDER BY clause to sort rows of output:

SELECT {*| [DISTINCT] column/expression [alias],...}
FROM table

[WHERE condition(s)]
[ORDER BY {column, expr, alias} [ASC|DESC]] |;

« Use ampersand substitution to restrict and sort output at
run time

ORACLE

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

In this lesson, you should have learned about restricting and sorting rows that are returned by
the SELECT statement. You should also have learned how to implement various operators

and conditions.

By using the substitution variables, you can add flexibility to your SQL statements. This
enables the queries to prompt for the filter condition for the rows during run time.

Oracle Database 12c: SQL Workshop | 3 -42

Practice 3: Overview

This practice covers the following topics:

- Selecting data and changing the order of the rows
that are displayed

« Restricting rows by using the WHERE clause
- Sorting rows by using the ORDER BY clause

« Using substitution variables to add flexibility to your
SQL SELECT statements

ORACLE

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

In this practice, you build more reports, including statements that use the WHERE clause and
the ORDER BY clause. You make the SQL statements more reusable and generic by including
the ampersand substitution.

Oracle Database 12c¢: SQL Workshop | 3 -43

Ajuo asn suoin|og 1geb3 pue AlsiaAlun ajoelO

a3LigIHOdd A1LOIE1S SI d3LNdNOD SIHL INOYA STVIFTILVIN LIM® ONIAJOD "ATNO WOOHSSV1D SIHL NI 3SN dNOA d04 34V STIVIHILYIN LIMS 3SIHL

Using Single-Row Functions to
Customize Output

ORACLE

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

Objectives

After completing this lesson, you should be able to do the
following:

- Describe the various types of functions available in SQL

 Use the character, number, and date functions in SELECT
statements

ORACLE

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

Functions make the basic query block more powerful, and they are used to manipulate data
values. This is the first of two lessons that explore functions. It focuses on single-row
character, number, and date functions.

Oracle Database 12c¢: SQL Workshop | 4 -2

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS COMPUTER IS STRICTLY PROHIBITED

Lesson Agenda

« Single-row SQL functions
» Character functions

* Nesting functions
 Number functions

« Working with dates

» Date functions

ORACLE

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

Oracle Database 12¢: SQL Workshop| 4-3

Oracle University and Egabi Solutions use only

SQL Functions

Input Output
> Function
arg 1 Function performs
action
arg 2
g Result
I:II:I value
O
argn

ORACLE

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

Functions are a very powerful feature of SQL. They can be used to do the following:
» Perform calculations on data
« Modify individual data items
» Manipulate output for groups of rows
« Format dates and numbers for display
» Convert column data types
SQL functions sometimes take arguments and always return a value.

Note: If you want to know whether a function is a SQL:2003 compliant function, refer to the
“Oracle Compliance to Core SQL:2003” section in Oracle Database SQL Language
Reference for 10g or 11g database.

Oracle Database 12c: SQL Workshop | 4 -4

Two Types of SQL Functions

Functions
. Slngle_-row - . Mfultlpl_e-row
functions . unctions
Return one result Return one result
per row per set of rows

ORACLE

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

There are two types of functions:
» Single-row functions
» Multiple-row functions
Single-Row Functions

These functions operate on single rows only and return one result per row. There are different
types of single-row functions. This lesson covers the following functions:

« Character

* Number

« Date

« Conversion
* General

Multiple-Row Functions

Functions can manipulate groups of rows to give one result per group of rows. These
functions are also known as group functions (covered in the lesson titled “Reporting
Aggregated Data Using the Group Functions”).

Note: For more information and a complete list of available functions and their syntax, see the
“Functions” section in Oracle Database SQL Language Reference for 12¢ database.

Oracle Database 12c¢: SQL Workshop| 4 -5

Single-Row Functions

Single-row functions:
« Manipulate data items
* Accept arguments and return one value
« Act on each row that is returned
* Return one result per row
- May modify the data type
« Can be nested
* Accept arguments that can be a column or an expression

function name [(argl, arg2,...)]

ORACLE

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

Single-row functions are used to manipulate data items. They accept one or more arguments
and return one value for each row that is returned by the query. An argument can be one of
the following:

« User-supplied constant

« Variable value

« Column name

» Expression
Features of single-row functions include:

» Acting on each row that is returned in the query

» Returning one result per row

» Possibly returning a data value of a different type than the one that is referenced

» Possibly expecting one or more arguments

« Canbe used in SELECT, WHERE, and ORDER BY clauses; can be nested.
In the syntax:

function name Is the name of the function

argl, arg2 Is any argument to be used by the function. This can be
represented by a column name or expression.

Oracle Database 12c¢: SQL Workshop| 4 -6

Single-Row Functions

Character

Single-row
functions

General

Conversion Date

ORACLE

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

This lesson covers the following single-row functions:

« Character functions: Accept character input and can return both character and number
values
* Number functions: Accept numeric input and return numeric values

« Date functions: Operate on values of the DATE data type (All date functions return a
value of the DATE data type except the MONTHS BETWEEN function, which returns a
number.)

The following single-row functions are discussed in the lesson titled “Using Conversion
Functions and Conditional Expressions”:

« Conversion functions: Convert a value from one data type to another
* General functions:

NVL

NVL2
NULLIF
COALESCE
CASE
DECODE

Oracle Database 12c¢: SQL Workshop | 4 -7

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS COMPUTER IS STRICTLY PROHIBITED

Lesson Agenda

« Single-row SQL functions
* Character functions

* Nesting functions

* Number functions

« Working with dates

» Date functions

ORACLE

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

Oracle Database 12¢: SQL Workshop| 4 -8

Oracle University and Egabi Solutions use only

Character Functions

Character
functions
I I
Case-conversion Character-manipulation
functions functions
LOWER CONCAT
UPPER SUBSTR
INITCAP LENGTH
INSTR
LPAD | RPAD
TRIM
REPLACE

ORACLE

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

Single-row character functions accept character data as input and can return both character
and numeric values. Character functions can be divided into the following:

« Case-conversion functions
« Character-manipulation functions

Function Purpose

LOWER (column|expression) Converts alpha character values to lowercase
UPPER (column|expression) Converts alpha character values to uppercase
INITCAP (column |expression) Converts alpha character values to uppercase for the

first letter of each word; all other letters in lowercase

CONCAT (columnl |expressionl, | Concatenates the first character value to the second
column2 [expression2) character value; equivalent to concatenation operator
{1))

SUBSTR (column|expression,m[| Returns specified characters from character value
,nl) starting at character position m, n characters long (If m
is negative, the count starts from the end of the
character value. If n is omitted, all characters to the
end of the string are returned.)

Note: The functions discussed in this lesson are only some of the available functions.

Oracle Database 12¢: SQL Workshop!| 4-9

Function Purpose

LENGTH (column [expression) Returns the number of characters in the expression
INSTR (column|expression, Returns the numeric position of a named string.
‘string’, [,m], [n]) Optionally, you can provide a position m to start

searching, and the occurrence n of the string. m and n
default to 1, meaning start the search at the beginning
of the string and report the first occurrence.

LPAD (column|expression, n, | Returns an expression left-padded to length of n
'string') characters with a character expression.

RPAD (column|expression, n, | Returns an expression right-padded to length of n
'string') characters with a character expression.

TRIM (leading|trailing[both, | Enables you to trim leading or trailing characters (or
trim _character FROM both) from a character string. If trim_character or
trim source) trim_source is a character literal, you must enclose it
in single quotation marks.

This is a feature that is available in Oracle8i and later

versions.
REPLACE (text, Searches a text expression for a character string and,
search string, if found, replaces it with a specified replacement string

replacement string)

Note: Some of the functions that are fully or partially SQL:2003 compliant are:
* UPPER

¢ LOWER

e TRIM

e LENGTH
e SUBSTR
e INSTR

For more information, refer to the “Oracle Compliance to Core SQL:2003” section in Oracle
Database SQL Language Reference for 10g or 11g database.

Oracle Database 12c¢: SQL Workshopl 4-10

Case-Conversion Functions

These functions convert the case for character strings:

Function Result

LOWER ('SQL Course') sgl course
UPPER ('SQL Course') SQL COURSE
INITCAP ('SQL Course') Sgl Course

ORACLE

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

LOWER, UPPER, and INITCAP are the three case-conversion functions.
e LOWER: Converts mixed-case or uppercase character strings to lowercase
e UPPER: Converts mixed-case or lowercase character strings to uppercase

e INITCAP: Converts the firstletter of each word to uppercase and the remaining letters
to lowercase
SELECT 'The job id for '||UPPER(last name)||' is '
| | LOWER (job_id) AS "EMPLOYEE DETAILS"
FROM employees;

EMPLOYEE DETAILS

1 The job id Tor ABEL is sa_rep

2 The job id Tor DAVIES s st_clerk
3 The job id Tor DE HASN is ad_wp

4 The job id for ERNST is it_prog

S The job id for FAY is mk_rep

6 The job id Tor GIETZ is ac_account
7 The job id Tor GRANT is sa_rep

& The job id Tor HARTSTEIN is mk_man

Oracle Database 12¢: SQL Workshop | 4 -11

Using Case-Conversion Functions

Display the employee number, name, and department number
for employee Higgins:

SELECT employee id, last name, department id
FROM employees
WHERE last name = 'higgins';

|U Lows selected|

SELECT employee id, last name, department id
FROM employees
WHERE |LOWER (last name) = 'higgins'|;

[empLOYEE_ID Iﬂ LAST_NAME | DEPARTMENT_ID
1 205 Higgins 110

ORACLE

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

The slide example displays the employee number, name, and department number of
employee Higgins.
The WHERE clause of the first SQL statement specifies the employee name as higgins.
Because all the data in the EMPLOYEES table is stored in proper case, the name higgins
does not find a match in the table, and no rows are selected.
The WHERE clause of the second SQL statement specifies that the employee name in the
EMPLOYEES table is compared to higgins, converting the LAST NAME column to lowercase
for comparison purposes. Because both names are now lowercase, a match is found and one
row is selected. The WHERE clause can be rewritten in the following manner to produce the
same result:

.. .WHERE last name = 'Higgins'
The name in the output appears as it was stored in the database. To display the name in
uppercase, use the UPPER function in the SELECT statement.

SELECT employee id, UPPER(last name), department id

FROM employees

WHERE INITCAP(last name) = 'Higgins

EMF‘LOYEE_IDl UPPER{LAST_MAME) | DEPARTMENT_ID
1 205 HIGGINS 110

Oracle Database 12c¢: SQL Workshop | 4 -12

Character-Manipulation Functions

These functions manipulate character strings:

Function Result

CONCAT ('Hello', 'World') HelloWorld
SUBSTR ('HelloWorld',1,5) Hello

LENGTH ('HelloWorld"') 10

INSTR ('HelloWorld', 'W') 6

LPAD (salary,10,'*"') *xx**x24000
RPAD (salary, 10, '*'") 24000* ****
REPLACE BLACK and BLUE
("JACK and JUE','J', 'BL"'")

TRIM('H' FROM 'HelloWorld') elloWorld

ORACLE

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

CONCAT, SUBSTR, LENGTH, INSTR, LPAD, RPAD, and TRIM are the character-manipulation
functions that are covered in this lesson.
e CONCAT: Joins values together (You are limited to using two parameters with CONCAT.)
« SUBSTR: Extracts a string of determined length
« LENGTH: Shows the length of a string as a numeric value
« INSTR: Finds the numeric position of a named character
- LPAD: Returns an expression left-padded to the length of n characters with a character
expression
« RPAD: Returns an expression right-padded to the length of n characters with a character
expression
« TRIM: Trims leading or trailing characters (or both) from a character string (If
trim characteror trim source is a character literal, you must enclose it within
single quotation marks.)
Note: You can use functions such as UPPER and LOWER with ampersand substitution. For
example, use UPPER ('&job_title')so thatthe user does not have to enter the job title in
a specific case.

Oracle Database 12c¢: SQL Workshop | 4-13

Using the Character-Manipulation Functions

O,

SELECT employee_id, |CONCAT (first_name, last_name) NAME}
job_id, |LENGTH (last_name)ls

OIO)

[INSTR (last_name, 'a') "Contains 'a'?" |«
FROM employees
WHERE SUBSTR(job id, 4) = 'REP';
[query Resuit *
A 5 @) G soL | Al Rows Fetched: 4 in 0.003 seconds
@ empovee_ID|E NamE @ oD |§ LENCTHQLAST_NAMB (Bl Contains 'a?

1 174E11ensbel SA_REP 4 0

2 174 JonathonTaylor|SA_REP 6 2

3 179 KimberelyGrant|Sa_REP 5 3

4 204 PatFay MK_REP 3 2

® ©

ORACLE

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

The example in the slide displays employee first names and last names joined together, the
length of the employee last name, and the numeric position of the letter “a” in the employee
last name for all employees who have the string, REP, contained in the job ID starting at the
fourth position of the job ID.

Example
Modify the SQL statement in the slide to display the data for those employees whose last
names end with the letter “n.”
SELECT employee id, CONCAT (first name, last name) NAME,
LENGTH (last name), INSTR(last name, 'a') "Contains 'a'?"
FROM employees

WHERE SUBSTR(last name, -1, 1) = 'n';

EMPLOVEE_ID |[§ MAME LENGTH{LAST_MNAME) | Contains 'a%?
1 102 LexDe Haan 7 5
2 200 Jenni ferWhalen 3] 3
3 201 MichaelHartstein o 2

Oracle Database 12c¢: SQL Workshop | 4 -14

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS COMPUTER IS STRICTLY PROHIBITED

Lesson Agenda

« Single-row SQL functions
» Character functions

* Nesting functions
 Number functions

« Working with dates

» Date functions

ORACLE

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

Oracle Database 12c: SQL Workshop| 4-15

Oracle University and Egabi Solutions use only

Nesting Functions

« Single-row functions can be nested to any level.

* Nested functions are evaluated from the deepest level to
the least deep level.

F3 (F2 (,arg2) ,arg3)

Iy Iy a -~

Step 1 = Result
Step 2 = Result 2

Step 3 = Result 3

ORACLE

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

Single-row functions can be nested to any depth. Nested functions are evaluated from the
innermost level to the outermost level. Some examples follow to show you the flexibility of
these functions.

Oracle Database 12c¢: SQL Workshop| 4 -16

Nesting Functions: Example

SELECT last name,

UPPER (CONCAT (SUBSTR (LAST NAME, 1, 8), ' US'))
FROM employees

WHERE department id = 60;

B LasT_NAME B UPPER(CONCAT(SUBSTR(LAST_NAME,1,8),'_US)

1 Hunold HUNOQLD_US
2 Ernst ERMET_US
3 Lorentz LORENTZ_US

ORACLE

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

The example in the slide displays the last names of employees in department 60. The
evaluation of the SQL statement involves three steps:

1. Theinner function retrieves the first eight characters of the last name.
Resultl = SUBSTR (LAST NAME, 1, 8)
2. The outer function concatenates the result with _US.
Result2 = CONCAT (Resultl, ' US')
3. The outermost function converts the results to uppercase.
The entire expression becomes the column heading because no column alias was given.
Example

Display the date of the next Friday that is six months from the hire date. The resulting date
should appear as Friday, July 20th, 2001. Order the results by hire date.

SELECT TO_ CHAR (NEXT DAY (ADD_ MONTHS
(hire date, 6), 'FRIDAY'),
'fmDay, Month ddth, YYYY')
"Next 6 Month Review"

FROM employees

ORDER BY hire date;

Oracle Database 12c¢: SQL Workshop | 4 -17

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS COMPUTER IS STRICTLY PROHIBITED

Lesson Agenda

« Single-row SQL functions
* Character functions

* Nesting functions

* Number functions

« Working with dates

« Date Functions

ORACLE

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

Oracle Database 12c: SQL Workshop | 4-18

Oracle University and Egabi Solutions use only

Numeric Functions

* ROUND: Rounds value to a specified decimal
* TRUNC: Truncates value to a specified decimal
» MOD: Returns remainder of division

Function Result

ROUND (45.926, 2) 45.93
TRUNC (45.926, 2) 45.92
MOD (1600, 300) 100

ORACLE

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

Numeric functions accept numeric input and return numeric values. This section describes
some of the numeric functions.

Function Purpose

ROUND (column|expression, n) | Rounds the column, expression, or value to n decimal
places or, if nis omitted, no decimal places (If nis
negative, numbers to the left of decimal point are rounded.

TRUNC (column|expression, n) | Truncates the column, expression, or value to n decimal
places or, if n is omitted, n defaults to zero

MOD (m, n) Returns the remainder of m divided by n

Note: This list contains only some of the available numeric functions.

For more information, see the “Numeric Functions” section in Oracle Database SQL
Language Reference for 12c database.

Oracle Database 12c¢: SQL Workshop | 4-19

Using the ROUND Function

® @
SELECT| ROUND (45.923, 2)|,| ROUND (45.923, 0)|,

ROUND (45.923, -1) | <§>
FROM DUAL;

* ROUND(45.923,2) | ROUND(45.923, n:. ROUND(45.923, - 11
45,92

ééé

DUAL is a public table that you can use to view results
from functions and calculations.

ORACLE

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

The ROUND function rounds the column, expression, or value to n decimal places. If the
second argument is 0 or is missing, the value is rounded to zero decimal places. If the second
argumentis 2, the value is rounded to two decimal places. Conversely, if the second
argument is —2, the value is rounded to two decimal places to the left (rounded to the nearest
unit of 100).

The ROUND function can also be used with date functions. You will see examples later in this
lesson.

DUAL Table

The DUAL table is owned by the user SYS and can be accessed by all users. It contains one
column, DUMMY, and one row with the value X. The DUAL table is useful when you want to

return a value only once (for example, the value of a constant, pseudocolumn, or expression
that is not derived from a table with user data). The DUAL table is generally used for
completeness of the SELECT clause syntax, because both SELECT and FROM clauses are
mandatory, and several calculations do not need to select from the actual tables.

Oracle Database 12c¢: SQL Workshop | 4 -20

Using the TRUNC Function

® @
SELECT| TRUNC (45.923, 2)|,| TRUNC (45.923)/,

TRUNC (45.923, -1) | <§>
FROM DUAL;

B TruNC(e5.923,2)
1 45 92

éééa

] Tnumc.:45923} TRUMC{45.923, 1;.

ORACLE

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

The TRUNC function truncates the column, expression, or value to n decimal places.

The TRUNC function works with arguments similar to those of the ROUND function. If the
second argument is 0 or is missing, the value is truncated to zero decimal places. If the
second argument is 2, the value is truncated to two decimal places. Conversely, if the second
argumentis —2, the value is truncated to two decimal places to the left. If the second
argumentis —1, the value is truncated to one decimal place to the left.

Like the ROUND function, the TRUNC function can be used with date functions.

Oracle Database 12¢: SQL Workshop | 4 -21

Using the MOD Function

For all employees with the job title of Sales Representative,
calculate the remainder of the salary after it is divided by 5,000.

SELECT last name, salary,|MOD(salary, 5000)
FROM employees

WHERE job_id = 'SA REP';

@ vLasT_mame|[] salarv|§ moD(sALARY,5000)
1 Abel 11000 100
2 Taylor 8600 360
3 Grant FOO0 200

ORACLE

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

The MOD function finds the remainder of the first argument divided by the second argument.

The slide example calculates the remainder of the salary after dividing it by 5,000 for all
employees whose job ID is SA REP.

Note: The MOD function is often used to determine whether a value is odd or even. The MOD
function is also the Oracle hash function.

Oracle Database 12c¢: SQL Workshop | 4 -22

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS COMPUTER IS STRICTLY PROHIBITED

Lesson Agenda

« Single-row SQL functions
» Character functions

* Nesting functions
 Number functions

* Working with dates

« Date functions

ORACLE

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

Oracle Database 12c: SQL Workshop | 4 -23

Oracle University and Egabi Solutions use only

Working with Dates

- The Oracle Database stores dates in an internal numeric
format: century, year, month, day, hours, minutes, and
seconds.

« The default date display format is DD-MON-RR.

— Enables you to store 21st-century dates in the 20th century
by specifying only the last two digits of the year

— Enables you to store 20th-century dates in the
21st century in the same way

SELECT last name,| hire date
FROM employees
WHERE hire date < '01-FEB-08';

[LasT_name|f] HIRE_DATE
1 King 17-JUN-03
2 Kochhar 21-SEP-05

ORACLE

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

The Oracle Database stores dates in an internal numeric format, representing the century,
year, month, day, hours, minutes, and seconds.

The default display and input format for any date is DD-MON-RR. Valid Oracle dates are
between January 1, 4712 B.C., and December 31, 9999 A.D.

In the example in the slide, the HIRE_DATE column output is displayed in the default format
DD-MON-RR. However, dates are not stored in the database in this format. All the components
of the date and time are stored. So, although a HIRE DATE such as 17-JUN-03 is displayed
as day, month, and year, there is also time and century information associated with the date.
The complete data might be June 17, 2003, 5:10:43 PM.

Oracle Database 12c: SQL Workshop | 4 -24

RR Date Format

Current Year Specified Date RR Format YY Format
1995 27-OCT-95 1995 1995
1995 27-OCT-17 2017 1917
2001 27-OCT-17 2017 2017
2001 27-OCT-95 1995 2095

If the specified two-digit year is:

049 50-99
If two digits The return date is in The return date is in
of the currenty 0—49 | the current century the century before the
year are: current one

The return date is in The return date is in
50-99] the century after the the current century
current one

ORACLE

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

The RR date format is similar to the YY element, but you can use it to specify different
centuries. Use the RR date format element instead of YY so that the century of the return value
varies according to the specified two-digit year and the last two digits of the current year. The
table in the slide summarizes the behavior of the RR element.

Current Year Given Date Interpreted (RR) Interpreted (YY)
1994 27-0OCT-95 1995 1995
1994 27-OCT-17 2017 1917
2001 27-OCT-17 2017 2017
2048 27-OCT-52 1952 2052
2051 27-OCT-47 2147 2047

Note the values shown in the last two rows of the above table. As we approach the middle of
the century, then the RR behavior is probably not what you want.

Oracle Database 12c¢: SQL Workshop | 4 -25

This data is stored internally as follows:
CENTURY YEAR MONTH DAY HOUR MINUTE SECOND
19 87 06 17 17 10 43

Centuries and the Year 2000

When a record with a date column is inserted into a table, the century information is picked up
from the SYSDATE function. However, when the date column is displayed on the screen, the

century component is not displayed (by default).

The DATE data type uses 2 bytes for the year information, one for century and one for year.

The century value is always included, whether or not it is specified or displayed. In this case,
RR determines the default value for century on INSERT.

Oracle Database 12c¢: SQL Workshop | 4 - 26

Using the SYSDATE Function

SYSDATE is a function that returns:

« Date
e Time

SELECT sysdate
FROM dual ;

B svspaTe|
1 24-AUG-12

ORACLE

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

SYSDATE is a date function that returns the current database server date and time. You can
use SYSDATE just as you would use any other column name. For example, you can display
the current date by selecting SYSDATE from a table. It is customary to select SYSDATE from a
public table called DUAL.

Note: SYSDATE returns the current date and time set for the operating system on which the

database resides. Therefore, if you are in a place in Australia and connected to a remote
database in a location in the United States (U.S.), the sysdate function will return the U.S.
date and time. In that case, you can use the CURRENT DATE function that returns the current

date in the session time zone.
The CURRENT DATE function and other related time zone functions are discussed in detail in
Oracle Database: SQL Workshop II.

Oracle Database 12c: SQL Workshop | 4 -27

Arithmetic with Dates

 Add to or subtract a number from a date for a resultant
date value.

« Subtract two dates to find the number of days between
those dates.

* Add hours to a date by dividing the number of hours by 24.

ORACLE

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

Because the database stores dates as numbers, you can perform calculations using
arithmetic operators such as addition and subtraction. You can add and subtract number
constants as well as dates.

You can perform the following operations:

Operation Result Description

date + number Date Adds a number of days to a date

date — number Date Subtracts a number of days from a date
date — date Number of days | Subtracts one date from another

date + number/24 Date Adds a number of hours to a date

Oracle Database 12c¢: SQL Workshop | 4 -28

Using Arithmetic Operators
with Dates

SELECT 1ast_name,|(SYSDATE—hire_date)/7 AS WEEKSl

FROM employees
WHERE department id = 90;

B LasT_mamg| weeks

1 King 478.87191755041 708041708041 708041 7080418
2 Kochhar 260, 7 2006084656084656084656084656084656 1
3 De Haan G505, 30048841 798941 79804 1 79804 1 79804 1 798

ORACLE

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

The example in the slide displays the last name and the number of weeks employed for all
employees in department 90. It subtracts the date on which the employee was hired from the
current date (SYSDATE) and divides the result by 7 to calculate the number of weeks that a

worker has been employed.

Note: SYSDATE is a SQL function that returns the current date and time. Your results may
differ depending on the date and time set for the operating system of your local database
when you run the SQL query.

If a more current date is subtracted from an older date, the difference is a negative number.

Oracle Database 12c¢: SQL Workshop | 4 -29

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS COMPUTER IS STRICTLY PROHIBITED

Lesson Agenda

« Single-row SQL functions
* Character functions

* Nesting functions

* Number functions

« Working with dates

« Date functions

ORACLE

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

Oracle Database 12¢c: SQL Workshop | 4 -30

Oracle University and Egabi Solutions use only

Date-Manipulation Functions

Function Result

MONTHS BETWEEN Number of months between two dates
ADD MONTHS Add calendar months to date

NEXT DAY Week day of the date specified

LAST DAY Last day of the month

ROUND Round date

TRUNC Truncate date

ORACLE

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

Date functions operate on Oracle dates. All date functions return a value of the DATE data
type except MONTHS_BETWEEN, which returns a numeric value.

+ MONTHS BETWEEN (datel, date2):Findsthe number of months between datel
and date2. The result can be positive or negative. If date1l is later than date2, the
resultis positive; if datel is earlierthan date2, the resultis negative. The noninteger
part of the result represents a portion of the month.

« ADD MONTHS (date, n):Adds nnumber of calendar months to date. The value of n
must be an integer and can be negative.

« NEXT DAY (date, 'char'):Finds the date of the next specified day of the week
('char') following date. The value of char may be a number representing a day or a
character string.

» LAST DAY (date):Finds the date of the last day of the month that contains date
The above list is a subset of the available date functions. ROUND and TRUNC number functions
can also be used to manipulate the date values as shown below:

« ROUND (datel, ' fmt']):Returns date rounded to the unit that is specified by the
format model £mt. If the format model fmt is omitted, date is rounded to the nearest day.

« TRUNC(datel, 'fmt']):Returns date with the time portion of the day truncated to
the unit that is specified by the format model £mt. If the format model £mt is omitted,
date is truncated to the nearest day.

The format models are covered in detail in the lesson titled “Using Conversion Functions and
Conditional Expressions.”

Oracle Database 12c¢: SQL Workshop | 4 - 31

Using Date Functions

Function Result

MONTHS BETWEEN 19.6774194
("01L-SEP-95','11-JAN-94")

ADD MONTHS ('31-JAN-96',1) '29-FEB-96'"'

NEXT DAY ("01l-SEP-95', 'FRIDAY') '08-SEP-95'"

LAST DAY ("0L-FEB-95"'") '28-FEB-95'"

ORACLE

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

In the example in the slide, the ADD_MONTHS function adds one month to the supplied date
value “31-JAN-96” and returns “29-FEB-96.” The function recognizes the year 1996 as the
leap year and, therefore, returns the last day of the February month. If you change the input
date value to “31-JAN-95,” the function returns “28-FEB-95.”
For example, display the employee number, hire date, number of months employed, six-

month review date, first Friday after hire date, and the last day of the hire month for all
employees who have been employed for fewer than 150 months.

SELECT employee id, hire date, MONTHS_ BETWEEN (SYSDATE, hire date)
NEXT DAY (hire date,

TENURE, ADD MONTHS (hire date, 6) REVIEW,
"FRIDAY'), LAST DAY (hire date)

FROM employees WHERE MONTHS BETWEEN (SYSDATE, hire date) < 150;
DQuery Result *
A B B soL | AN Rows Fetched: 20 in 0.016 seconds
EMPLOYEEID [HIRE_DATE | TEWURE (@ reviEw | NEXT_DAY(HIRE_DATE'FRIDAY) (B LAST_DAY(HIRE_DATE)
1 100 17-1UN-03 110. 100155316606928510155316606929510155 17-DEC-03 20-1UN-03 30-JUN-03
z 101 21-SEP-05 82.97112305854241338112305854241338112306 21-MAR-06 23-SEP-05 30-SEP-05
3 102 13-18K-01 139, 22018757467144563918757467 1445639188 13-JUL-01 19-JAN-01 31-1aN-01
4 10303-18N-06 79, 5517682198327350617A821983273506176822 03-JUL-06 06-JAN-06 31-JAN-06
] 104 21-M&Y-07 62.97112305854241335112305854241338112306 21-NOW-0F 25-MaY-07 I1-MEV-07
6 107 07-FEB-0F 66.422735096176521933273596176521933273596 07-AUG-0F 09-FEB-07 28-FEB-07
7 124 16-NOW-0F 57.13241338112305854241338112305854241338 16-MAY-08 23-NOW-07F 30-NOV-07

Oracle Database 12c: SQL Workshop | 4 -32

Using ROUND and TRUNC Functions with Dates

Assume SYSDATE = '25-JUL-03"':

Function Result

ROUND (SYSDATE, 'MONTH') 01-AUG-03
ROUND (SYSDATE , 'YEAR'") 01-JAN-04
TRUNC (SYSDATE , 'MONTH') 01-JUL-03
TRUNC (SYSDATE , 'YEAR') 01-JAN-03

ORACLE

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

The ROUND and TRUNC functions can be used for number and date values. When used with
dates, these functions round or truncate to the specified format model. Therefore, you can
round dates to the nearest year or month. If the format model is month, dates 1-15 result in
the first day of the current month. Dates 16-31 result in the first day of the next month. If the
format model is year, months 1-6 result in January 1 of the current year. Months 7-12 resultin
January 1 of the next year.

Example

Compare the hire dates for all employees who started in 2004. Display the employee number,
hire date, and starting month using the ROUND and TRUNC functions.
SELECT employee id, hire date,
ROUND (hire date, 'MONTH'), TRUNC (hire date, 'MONTH')
FROM employees
WHERE hire date LIKE '%04

EMPLOVEE_ID || HIRE_DATE || ROUND(HIRE_DATE, MONTHY |B] TRUNC(HIRE_DATE, 'MONTHY
1 174 11-May-04 01-May-04 01 -May-04
z 201 17-FEB-04 01-MAR-04 01-FEB-04

Oracle Database 12¢: SQL Workshop | 4 -33

Quiz

Which four of the following statements are true about single-
row functions?

a. Manipulate data items

Accept arguments and return one value per argument
Act on each row that is returned

Return one result per set of rows

May not modify the data type

Can be nested

Accept arguments that can be a column or an expression

@ 0o a0 o

ORACLE

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

Answer: a, c, f, g

Oracle Database 12c¢: SQL Workshop | 4 -34

Summary

In this lesson, you should have learned how to:
- Perform calculations on data using functions
* Modify individual data items using functions

ORACLE

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

Single-row functions can be nested to any level. Single-row functions can manipulate the
following:

« Character data: LOWER, UPPER, INITCAP, CONCAT, SUBSTR, INSTR, LENGTH

* Number data: ROUND, TRUNC, MOD

« Date values: SYSDATE, MONTHS BETWEEN, ADD MONTHS, NEXT DAY, LAST DAY
Remember the following:

« Date values can also use arithmetic operators.

* ROUND and TRUNC functions can also be used with date values.
SYSDATE and DUAL

SYSDATE is a date function that returns the current date and time. It is customary to select
SYSDATE from a single-row public table called DUAL

Oracle Database 12c¢: SQL Workshop | 4 -35

Practice 4: Overview

This practice covers the following topics:
« Writing a query that displays the current date

« Creating queries that require the use of numeric,
character, and date functions

- Performing calculations of years and months of service for
an employee

ORACLE

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

This practice provides a variety of exercises using different functions that are available for
character, number, and date data types.

Oracle Database 12c¢: SQL Workshop | 4 -36

Using Conversion Functions and
Conditional Expressions

ORACLE

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

Objectives

After completing this lesson, you should be able to do the
following:
« Describe the various types of conversion functions that are
available in SQL
* Use the TO CHAR, TO NUMBER, and TO DATE conversion

functions
* Apply conditional expressions in a SELECT statement

ORACLE

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

This lesson focuses on functions that convert data from one type to another (for example,
conversion from character data to numeric data) and discusses the conditional expressions in
SQL SELECT statements.

Oracle Database 12c¢: SQL Workshop | 5-2

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS COMPUTER IS STRICTLY PROHIBITED

Lesson Agenda

« Implicit and explicit data type conversion
« TO_CHAR, TO DATE, TO NUMBER functions

 General functions:
— NVL
— NVL2
— NULLIF
— COALESCE

« Conditional expressions:
— CASE
— DECODE

ORACLE

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

Oracle Database 12¢: SQL Workshopl 5-3

Oracle University and Egabi Solutions use only

Conversion Functions

Data type
conversion

Implicit data type Explicit data type
conversion conversion

ORACLE

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

In addition to Oracle data types, columns of tables in an Oracle Database can be defined by
using the American National Standards Institute (ANSI), DB2, and SQL/DS data types.
However, the Oracle server internally converts such data types to Oracle data types.

In some cases, the Oracle server receives data of one data type where it expects data of a
different data type. When this happens, the Oracle server can automatically convert the data
to the expected data type. This data type conversion can be done implicitly by the Oracle
server or explicitly by the user.

Implicit data type conversions work according to the rules explained in the following slides.

Explicit data type conversions are performed by using the conversion functions. Conversion
functions convert a value from one data type to another. Generally, the form of the function
names follows the convention data type TO data type. The first data type is the input data

type and the second data type is the output.

Note: Although implicit data type conversionis available, it is recommended that you do the
explicit data type conversion to ensure the reliability of your SQL statements.

Oracle Database 12c¢: SQL Workshop| 5-4

Implicit Data Type Conversion

In expressions, the Oracle server can automatically convert the

following:
From To
VARCHAR2 or CHAR NUMBER
VARCHAR2 or CHAR DATE

ORACLE

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

Oracle server can automatically perform data type conversion in an expression. For example,
the expressionhire date > '01-JAN-90' resultsin the implicit conversion from the
string ' 01-JAN-90"' to a date. Therefore, a VARCHAR?2 or CHAR value can be implicitly
converted to a number or date data type in an expression.

Note: CHAR to NUMBER conversions succeed only if the character string represents a valid
number.

Oracle Database 12c¢: SQL Workshop| 5-5

Implicit Data Type Conversion

For expression evaluation, the Oracle server can automatically
convert the following:

From To
NUMBER VARCHAR2 or CHAR
DATE VARCHAR2 or CHAR

ORACLE

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

In general, the Oracle server uses the rule for expressions when a data type conversion is
needed. For example, the expression grade = 2 results in the implicit conversion of the
number 2 to the string “2” because grade is a CHAR (2) column.

Oracle Database 12c¢: SQL Workshop| 5-6

Explicit Data Type Conversion

TO_NUMBER TO_DATE

OO

NUMBER CHARACTER DATE

S

TO CHAR TO CHAR

ORACLE

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

SQL provides three functions to convert a value from one data type to another:

Function Purpose

TO_CHAR (number [date [, fmt [, | Converts a number or date value to a VARCHAR2
nlsparams]]) character string with the format model £mt

Number conversion: The nlsparams
parameter specifies the following characters,
which are returned by number format elements:

e Decimal character

e Group separator

e Local currency symbol

¢ International currency symbol

If nlsparams or any other parameter is omitted,
this function uses the default parameter values
for the session.

Oracle Database 12c¢: SQL Workshopl 5-7

Function Purpose

TO NUMBER (char /[, fmt [,

nlsparams]]) Converts a character string containing digits to a

number in the format specified by the optional format
model fmt.

The nlsparams parameter has the same purpose in
this function as in the TO CHAR function for number
conversion.

TO DATE (char/[, fmt [, nlsparam

s17) Converts a character string representing a date to a

date value according to £mt that is specified. If fmt
is omitted, the format is DD-MON-YY.

The nlsparams parameter has the same purpose in
this function as in the TO_CHAR function for date
conversion.

Note: The list of functions mentioned in this lesson includes only some of the available
conversion functions.

For more information, see the “Conversion Functions” section in Oracle Database SQL
Language Reference for 12c database.

Oracle Database 12c¢: SQL Workshop| 5-8

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS COMPUTER IS STRICTLY PROHIBITED

Lesson Agenda

« Implicit and explicit data type conversion
* TO CHAR, TO DATE, TO NUMBER functions

« (General functions:

NVL

NVL2
NULLIF
COALESCE

« Conditional expressions:

ORACLE

CASE
DECODE

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

Oracle Database 12¢: SQL Workshopl 5-9

Oracle University and Egabi Solutions use only

Using the To CHAR Function with Dates

TO_CHAR (date/[, ' format model'])

The format model:
« Must be enclosed with single quotation marks
* |Is case-sensitive
« Caninclude any valid date format element

 Has an £fm element to remove padded blanks or suppress
leading zeros

* Is separated from the date value by a comma

ORACLE

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

TO_CHAR converts a datetime data type to a value of VARCHAR2 data type in the format
specified by the format_model. A format model is a character literal that describes the format
of datetime stored in a character string. For example, the datetime format model for the string
'11-Nov-2000"'is 'DD-Mon-YYYY'. You can use the TO CHAR function to convert a date

from its default format to the one that you specify.
Guidelines
+ The format model must be enclosed with single quotation marks and is case-sensitive.

« The format model can include any valid date format element. But be sure to separate
the date value from the format model with a comma.

« The names of days and months in the output are automatically padded with blanks.

+ Toremove padded blanks or to suppress leading zeros, use the fill mode £m element.
SELECT employee id, TO CHAR(hire date, 'MM/YY') Month Hired
FROM employees
WHERE last name = 'Higgins';

EMPLOYEE_ID || MOMTH_HIRED
1 205 06,02

Oracle Database 12c¢: SQL Workshopl 5-10

Elements of the Date Format Model

Element Result

YYYY Full year in numbers

YEAR Year spelled out (in English)

MM Two-digit value for the month

MONTH Full name of the month

MON Three-letter abbreviation of the month

DY Three-letter abbreviation of the day of the week
DAY Full name of the day of the week

DD Numeric day of the month

ORACLE

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

Oracle Database 12¢: SQL Workshop | 5 -11

Elements of the Date Format Model

- Time elements format the time portion of the date:

HH24 :MI:SS AM 15:45:32 PM

« Add character strings by enclosing them with double
quotation marks:

DD "of" MONTH 12 of OCTOBER

* Number suffixes spell out numbers:

ddspth fourteenth

ORACLE

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

Use the formats that are listed in the following tables to display time information and literals,
and to change numerals to spelled numbers.

Element Description

AM or PM Meridian indicator

A.M. or P.M. Meridian indicator with periods
HH or HH12 12 hour format

HH24 24 hour format

Mi Minute (0-59)

SS Second (0-59)

SSSSS Seconds past midnight (0—86399)

Oracle Database 12c¢: SQL Workshop | 5-12

Other Formats

Element Description
/., Punctuation is reproduced in the result.
“of the” Quoted string is reproduced in the result.

Specifying Suffixes to Influence Number Display

Element Description

TH Ordinal number (for example, DDTH for 4TH)

SP Spelled-out number (for example, DDSP for FOUR)

SPTH or THSP Spelled-out ordinal numbers (for example, DDSPTH for
FOURTH)

Oracle Database 12c¢: SQL Workshop | 5-13

Using the TO CHAR Function with Dates

SELECT last name,

TO_CHAR (hire date, 'fmDD Month YYYY')
AS HIREDATE

FROM employees;

B LasT_name|l HiReDATE

1 King 17 June 2003

2 Kochhar 21 September 2005
3 De Haan 13 January 2001
4 Hunold 3 January 2006

5 Ernst 21 May 2007

6 Lorentz 7 February 2007
7 Wourgos 16 Movember 2007
8 Rajs 17 October 2003

ORACLE

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

The SQL statement in the slide displays the last names and hire dates for all the employees.
The hire date appears as 17 June 2003.

Example
Modify the example in the slide to display the dates in a format that appears as “Seventeenth
of June 2003 12:00:00 AM.”

SELECT 1last name,

TO_CHAR (hire date,

'fmDdspth "of" Month YYYY fmHH:MI:SS AM')
HIREDATE
FROM employees;

LasT_MAME | HIREDATE
1 King Seventeenth of June 2003 12:00:00 AM
¢ Kochhar Twenty-First of September 2005 12:00:00 AM

Notice that the month follows the format model specified; in other words, the first letter is
capitalized and the rest are in lowercase.

Oracle Database 12c¢: SQL Workshop |l 5 -14

Using the TO CHAR Function with Numbers

TO_CHAR (number [, 'format model'])

These are some of the format elements that you can use with
the TO CHAR function to display a number value as a

character:
9 Represents a number
0 Forces a zero to be displayed
$ Places a floating dollar sign
L Uses the floating local currency symbol
Prints a decimal point
/ Prints a comma as a thousands indicator

ORACLE

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

When working with number values, such as character strings, you should convert those
numbers to the character data type using the TO _CHAR function, which translates a value of
NUMBER data type to VARCHAR?2 data type. This technique is especially useful with
concatenation.

Oracle Database 12c¢: SQL Workshop | 5-15

Number Format Elements

If you are converting a number to the character data type, you can use the following format

elements:
Element | Description Example Result
9 Numeric position (number of 9s determine display | 999999 1234
width)
0 Display leading zeros 099999 001234
$ Floating dollar sign $999999 $1234
L Floating local currency symbol L999999 FF1234
D Returns the decimal character in the specified 9999D99 1234.00
position. The default is a period (.).
. Decimal point in position specified 999999.99 1234.00
G Returns the group separator in the specified 9G999 1,234
position. You can specify multiple group
separators in a number format model.
, Comma in position specified 999,999 1,234
MI Minus signs to right (negative values) 999999MI 1234-
PR Parenthesize negative numbers 999999PR <1234>
EEEE Scientific notation (format must specify four Es) 99.999EEEE | 1.234E+03
U Returns in the specified position the “Euro” (or U9999 €1234
other) dual currency
V Multiply by 10 n times (n = number of 9s after V) [9999V99 123400
S Returns the negative or positive value S9999 -1234 or
+1234
B Display zero values as blank, not 0 B9999.99 1234.00

Oracle Database 12c¢: SQL Workshop | 5-16

Using the TO CHAR Function with Numbers

SELECTlTO_CHAR(Salary, '$99,999.00') SALARY |

FROM employees
WHERE last name = 'Ernst';

ﬁ SALARY
1 $6,000.00

ORACLE

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

» The Oracle server displays a string of number signs (#) in place of a whole number
whose digits exceed the number of digits provided in the format model.

« The Oracle server rounds the stored decimal value to the number of decimal places
provided in the format model.

Oracle Database 12c¢: SQL Workshop | 5-17

Using the TO NUMBER and TO DATE Functions

« Convert a character string to a number format using the
TO_ NUMBER function:

TO_NUMBER (char([, 'format model'])

« Convert a character string to a date format using the
TO_DATE function:

TO_DATE (char[, 'format model'])

 These functions have an £x modifier. This modifier

specifies the exact match for the character argument and
date format model of a TO DATE function.

ORACLE

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

You may want to convert a character string to either a number or a date. To accomplish this
task, use the TO NUMBER or TO_DATE functions. The format model that you select is based

on the previously demonstrated format elements.

The £x modifier specifies the exact match for the character argument and date format model
of a TO_DATE function:

» Punctuation and quoted text in the character argument must exactly match (except for
case) the corresponding parts of the format model.

« The character argument cannot have extra blanks. Without £x, the Oracle server
ignores extra blanks.

» Numeric data in the character argument must have the same number of digits as the
corresponding element in the format model. Without £x, the numbers in the character

argument can omit leading zeros.

Oracle Database 12c¢: SQL Workshop!| 5-18

Example

Display the name and hire date for all employees who started on May 24, 2007. There are two
spaces after the month May and before the number 24 in the following example. Because the
fx modifier is used, an exact match is required and the spaces after the word May are not

recognized:
SELECT last name, hire date
FROM employees
WHERE hire date = TO DATE('May 24, 2007', 'fxMonth DD, YYYY');

The resulting error output looks like this:

ORA-0L185E8: a non-numeric character was found where a numeric was expected
01858, 00000 - "a non-numeric character was found where a numeric was expected"
*Cause: The input datato be converted using a date format model was
incorrect. The input data did not contain a number where a number was
required by the format model.
*Action: Fix the input data or the date format model to make sure the
elements match in number and type. Then retry the aperation.

To see the output, correct the query by deleting the extra space between ‘May’ and 24’.
SELECT last name, hire date
FROM employees
WHERE hire date = TO DATE('May 24, 2007', 'fxMonth DD, YYYY');

LasT_NAME | HIRE_DATE |
1 Grant 24 -MaY-07

Oracle Database 12¢: SQL Workshop | 5-19

Using TO CHAR and TO DATE Functions
with the RR Date Format

To find employees hired before 1990, use the RR date format,
which produces the same results whether the command is run
in 1999 or now:

SELECT last name, TO_CHAR(hire date, 'DD-Mon-YYYY')
FROM employees
WHERE hire date < TO DATE('0l1-Jan-90', 'DD-Mon-RR') ;

@ vLasT_mNaME [§ TO_CHAR(HIRE_DATE,'DD-MON-YYYY")
1 Popp 03-Feb-1989

ORACLE

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

To find employees who were hired before 1990, the RR format can be used. Because the
current year is greater than 1999, the RR format interprets the year portion of the date from

1950 to 1999.
Alternatively, the following command, results in no rows being selected because the YY
format interprets the year portion of the date in the current century (2090).

SELECT last name, TO CHAR (hire date, 'DD-Mon-yyyy')

FROM employees

WHERE TO DATE (hire date, 'DD-Mon-yy') < '01-Jan-90';

[:}Quer"y' Fesult %
& & i Bk soL | Al Rows Fetched: 0 in 0.002 seconds

I LAST_N... TO_CH...

Notice that no rows are retrieved from the above query.

Oracle Database 12c¢: SQL Workshop | 5 -20

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS COMPUTER IS STRICTLY PROHIBITED

Lesson Agenda

« Implicit and explicit data type conversion
 TO_CHAR, TO DATE, TO NUMBER functions
* General functions:
— NVL
— NVL2
— NULLIF
— COALESCE
« Conditional expressions:
— CASE
— DECODE

ORACLE

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

Oracle Database 12c: SQL Workshop | 5 - 21

Oracle University and Egabi Solutions use only

General Functions

The following functions work with any data type and pertain to
using nulls:

* NVL (exprl, expr2)

* NVL2 (exprl, expr2, expr3)

* NULLIF (exprl, expr2)

* COALESCE (exprl, expr2, ..., exprn)

ORACLE

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

These functions work with any data type and pertain to the use of null values in the
expression list.

Function Description
NVL Converts a null value to an actual value
NVL2 If exprl is not null, NVL2 returns expr2. If exprl is null, NVL2

returns expr3. The argument expr1 can have any data type.

NULLIF Compares two expressions and returns null if they are equal; returns
the first expression if they are not equal

COALESCE | Returns the first non-null expression in the expression list

Note: For more information about the hundreds of functions available, see the “Functions”
section in Oracle Database SQL Language Reference for 12c database.

Oracle Database 12c¢: SQL Workshop | 5 -22

NVL Function

Converts a null value to an actual value:

« Data types that can be used are date, character, and
number.

« Data types must match:
— NVL (commission pct,0)
— NVL (hire date, '01-JAN-97"')
— NVL(job_ id, 'No Job Yet!')

ORACLE

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

To convert a null value to an actual value, use the NVL function.
Syntax
NVL (exprl, expr2)
In the syntax:
« exprlis the source value or expression that may contain a null
« expr2is the target value for converting the null

You can use the NVL function with any data type, but the return value is always the same as
the data type of expri.

NVL Conversions for Various Data Types

Data Type Conversion Example

NUMBER NVL (number column, 9)

DATE NVL (date column, '01-JAN-95")

CHAR or VARCHAR2 NVL (character column, 'Unavailable')

Oracle Database 12c¢: SQL Workshop | 5 -23

Using the NVL Function

7\

SELECT last name, salary,|NVL(commission4pct, O)t' K1)

ksalary*12) + (salary*12*NVL (commission pct, 0)) AN_SALF-<:>
FROM employees;

B asT_name| saarv|§ nvicommission_pcT,0) | AN_saL
1 King 24000 0 288000
2 Kochhar 17000 0 204000
3 De Haan 17000 0 204000
4 Hunold 9000 0 108000
S Ernst 6000 0 72000
6 Lorentz 4200 0 50400
7 Mourgos 5800 0 69600
8 Rajs 3500 0 42000,
9 pavies 3100 0 37200

10 Matos 2600 0 31200

ORACLE

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

To calculate the annual compensation of all employees, you need to multiply the monthly
salary by 12 and then add the commission percentage to the result:

SELECT last name, salary, commission pct,
(salary*12) + (salary*l2*commission pct) AN SAL
FROM employees;

LasT_MAME | sarary (B commission_pcT | An_saL
1 King 2000 Cnully Cnu1la
Z Kochhar 17000 Cnulld Cnulld
14 Tavwlor SE00 o.2 123840
15 Grant T 0.15 SIEE00
1a Whalen LY alel a1l Cnullo
17 Hartstein 130 cnulld tnUll1a
15 Faw Sjelale] Cnul1n U1l
19 Higagins 12008 Cnulln U1l
20 Gietz S200 Cnulln U1l

Notice that the annual compensation is calculated for only those employees who earn a

commission. If any column value in an expression is null, the result is null. To calculate values

for all employees, you must convert the null value to a number before applying the arithmetic

operator. In the example in the slide, the NVL function is used to convert null values to zero.
Oracle Database 12c: SQL Workshop | 5 -24

Using the NVL2 Function

N
SELECT last name, salary, |commission pct 1

NVL2 (commission pct, (:)
'SAL+COMM', 'SAL') income

FROM employees WHERE department id IN (50, 80) ;

8 rasT_name |l savarv|§ commission_pcT [income
1 Wourgos | 5800. {nu]]}.SAL
2 Rajs 3500 Cnu11) SaL
3 Dawies 3100 (Aull1) SAL
4 Matos 2600 (w11} SAL
5 Vargas 2500 (w117 SAL
6 Z1otTkey 10500 0, 2 SAL+COMM
7 Abel 11000 0.3 54l +C0MH
& Taylor 8500 0.2 SAL+COMM

ORACLE

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

The NVL2 function examines the first expression. If the first expression is not null, the NVL2

function returns the second expression. If the first expression is null, the third expression is
returned.

Syntax
NVL2 (exprl, expr2, expr3)
In the syntax:
« exprlis the source value or expression that may contain a null
o expr2isthe value thatis returnedif expr1 is not null
o expr3isthe value thatis returned if expr1 is null
In the example shown in the slide, the COMMISSION PCT column is examined. If a value is

detected, the text literal value of SAL+COMM is returned. If the COMMISSION PCT column
contains a null value, the text literal value of SAL is returned.

Note: The argument expr1 can have any data type. The arguments expr2 and expr3 can
have any data types except LONG.

Oracle Database 12c¢: SQL Workshop | 5 -25

Using the NULLIF Function

SELECT first name, [LENGTH(first name) "exprl",
last name, [LENGTH(last name) '"expr2", *————(:)
[NULLIF (LENGTH (first_name), LENGTH (last_name)) result.@_<:>
FROM employees;

B FrsT_MaME | expri || LasT_nAME § exprz [RESULT
1 Ellen | 5 Abel | 4 5
2 Curtis & Davies & {rally
3 Lex 3 De Haan 7 3
4 Bruce 5 Ernst 5 {ruull)
5 Pat 3 Fay 3 {ruull)
& Wfilliam T Gietz 5 7
7 Eimbereky 9 Crant 5]
& Michael 7 Hartstein E 7
9 Shelley 7 Higgins 7 {rually

® O

ORACLE

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

The NULLIF function compares two expressions.

Syntax
NULLIF (exprl, expr2)

In the syntax:

+ NULLIF compares exprl and expr?2. If they are equal, the function returns null. If they
are not, the function returns expr1. However, you cannot specify the literal NULL for
exprl.

In the example shown in the slide, the length of the first name in the EMPLOYEES table is
compared to the length of the last name in the EMPLOYEES table. When the lengths of the
names are equal, a null value is displayed. When the lengths of the names are not equal, the
length of the first name is displayed.

Oracle Database 12c¢: SQL Workshop | 5 - 26

Using the COALESCE Function

- The advantage of the COALESCE function over the NVL
function is that the COALESCE function can take multiple
alternate values.

« If the first expression is not null, the COALESCE function
returns that expression; otherwise, it does a COALESCE of
the remaining expressions.

ORACLE

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

The COALESCE function returns the first non-null expression in the list.
Syntax
COALESCE (exprl, expr2, ... exprn)
In the syntax:
. exprl returns this expression if it is not null
. expr2 returns this expression if the first expression is null and this expression is not null
. exprn returns this expression if the preceding expressions are null
Note that all expressions must be of the same data type.

Oracle Database 12c¢: SQL Workshop | 5 -27

Using the COALESCE Function

SELECT last name, employee id,

COALESCE (TO_CHAR (commission pct) ,TO CHAR (manager id),
'No commission and no manager')

FROM employees;

] LAST_NAME_E] EMPLOYEE_!D_H COALESCE(TO_CHAR(COMMISSION_PCT), TO_CHAR(MANAGER_ID),'NOCOMMISSIONANDNOMANAGER') |
1 King 100 No commission and no manager
2 Kochhar 101 100
3 De Haan 102 100
4 Hunold 103102
13 Ahel 174 .3
14 Taylor 176 .2
15 Grant 178 .15
16 Whalen 200101
17 Hartstein 201 100
18 Fay 202 201
19 Higgins 205101
20 Gietz 206 205

ORACLE

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

In the example shown in the slide, if the manager id value is not null, it is displayed. If the
manager_id valueis null, the commission pct is displayed. If the manager idand
commission pct values are null, “No commission and no manager” is displayed. Note that
TO_CHAR function is applied so that all expressions are of the same data type.

Oracle Database 12c¢: SQL Workshop | 5 -28

Example

For the employees who do not get any commission, your organization wants to give a salary
increment of $2,000 and for employees who get commission, the query should compute the
new salary that is equal to the existing salary added to the commission amount.
SELECT last name, salary, commission pct,
COALESCE ((salary+ (commission pct*salary)), salary+2000) "New
Salary"

FROM employees;
Note: Examine the output. For employees who do not get any commission, the New Salary

column shows the salary incremented by $2,000 and for employees who get commission, the
New Salary column shows the computed commission amount added to the salary.

LasT_MAME ([sacary B commission_pcT (B MewSalary

1 King 24000 Cnully 26000
2 Kochhar 17000 Cnulll 19000
3 De Haan 17000 (nulld 19000
4 Hunold Q000 Chully 11000
5 Ernst G000 Cnully 000
6 Lorentz 4200 nulll G200
¥ Mourgos SE00 (nulld TEOO
g Rajs 3500 Chully 5500
9 Davies 3100 nulll 5100
10 Matos 2600 Cnulll Aa00
11 vargas 2500 nulld 4500
12 Zlotkey 10500 0.2 12600
13 Ahel 110000 0.2 14300
14 Tawlaor B0 0.2 10320
15 Grant F000 0,15 8050
la Whalen 4400 Chully ad00
17 Hartstein 13000 Cnully 15000
15 Fay A0 Cnulll BO00
1% Higgins 12008 (nulld 14008
20 Gietz 8300 Chully 10300

Oracle Database 12c¢: SQL Workshop | 5-29

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS COMPUTER IS STRICTLY PROHIBITED

Lesson Agenda

« Implicit and explicit data type conversion
« TO_CHAR, TO DATE, TO NUMBER functions

 General functions:
— NVL
— NVL2
— NULLIF
— COALESCE

« Conditional expressions:
— CASE
— DECODE

ORACLE

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

Oracle Database 12¢c: SQL Workshop | 5-30

Oracle University and Egabi Solutions use only

Conditional Expressions

* Provide the use of the IF-THEN-ELSE logic within a SQL
statement.

* Use two methods:
— CASE expression
— DECODE function

ORACLE

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

The two methods that are used to implement conditional processing (IF- THEN-ELSE logic) in
a SQL statement are the CASE expression and the DECODE function.

Note: The CASE expression complies with the ANSI SQL. The DECODE function is specific to
Oracle syntax.

Oracle Database 12¢: SQL Workshop | 5 - 31

CASE Expression

Facilitates conditional inquiries by doing the work of an
IF-THEN-ELSE statement:

CASE expr WHEN comparison exprl THEN return exprl
[WHEN comparison expr2 THEN return expr2
WHEN comparison exprn THEN return exprn
ELSE else expr]

END

ORACLE

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

CASE expressions allow you to use the IF-THEN-ELSE logic in SQL statements without
having to invoke procedures.

In a simple CASE expression, the Oracle server searches for the first WHEN ... THEN pair
for which expr is equal to comparison_ expr and returns return expr. If none of the
WHEN ... THEN pairs meet this condition, and if an ELSE clause exists, the Oracle server

returns else expr. Otherwise, the Oracle server returns a null. You cannot specify the literal
NULL for all the return_exprs and the else expr.

The expressions expr and comparison expr must be of the same data type, which can be
CHAR, VARCHAR2, NCHAR, or NVARCHAR2, NUMBER, BINARY FLOAT,or BINARY DOUBLE
or must all have a numeric datatype. All of the return values (return_expr) must be of the
same data type.

If all expressions have a numeric datatype, then Oracle determines the argument with the
highest numeric precedence, implicitly converts the remaining arguments to that datatype,
and returns that datatype.

Oracle Database 12c¢: SQL Workshop | 5 -32

Using the CASE Expression

Facilitates conditional inquiries by doing the work of an

IF-THEN-ELSE statement:

SELECT last name, job id, salary,

CASE job_id WHEN 'IT PROG' THEN 1.10*salary
WHEN 'ST CLERK' THEN l.15*salary
WHEN 'SA REP' THEN 1.20*salary

ELSE salary END "REVISED SALARY"

FROM emglozee A

B asT_name|f josio (B saLaRY [§ REVISED_SALARY

1 King AD_PRES 24000 24000
4 Hunold IT_PROG 5000 9900
5 Ernst IT_PROG 6000 6600
6 Lorentz IT_PROG 4200 4620}
7 Mourgos ST_MEN 5800 5800)
8 Rajs ST_CLERK 3500 4025
2 Davies ST_CLERK 3100 3565]
10 Matos ST_CLERK 2600 25990
11 Vargas ST_CLERK 2500 2875
13 Abel SA_REP 11000 13200
14 Taylor SA_REP 8500 10320
15 Grant SA_REFP Fielele] E400)

ORACLE

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

In the SQL statement in the slide, the value of JOB_ID is decoded. If JOB_ IDis IT PROG,
the salary increase is 10%; if JOB_IDis ST CLERK, the salary increaseis 15%; if JOB_IDis
SA REP, the salary increase is 20%. For all other job roles, there is no increase in salary.

The same statement can be written with the DECODE function.

The following code is an example of the searched CASE expression. In a searched CASE
expression, the search occurs from left to right until an occurrence of the listed condition is
found, and then it returns the return expression. If no condition is found to be true, and if an
ELSE clause exists, the return expression in the ELSE clause is returned; otherwise, a NULL is
returned.

SELECT last name, salary,

(CASE WHEN salary<5000 THEN 'Low'
WHEN salary<10000 THEN 'Medium'
WHEN salary<20000 THEN 'Good'
ELSE 'Excellent'

END) qualified salary

FROM employees;

Oracle Database 12¢: SQL Workshop | 5-33

DECODE Function

Facilitates conditional inquiries by doing the work of a CASE
expression or an IF-THEN-ELSE statement:

DECODE(col/expression, searchl, resultl

[, search2, result2,...,]
[, default])

ORACLE
Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

The DECODE function decodes an expression in a way similar to the IF-THEN-ELSE logic
thatis used in various languages. The DECODE function decodes expression after

comparing it to each search value. If the expression is the same as search, result is
returned.

If the default value is omitted, a null value is returned where a search value does not match
any of the result values.

Oracle Database 12c¢: SQL Workshop | 5 -34

Using the DECODE Function

SELECT last name, job id, salarvy,

DECODE (job_id, 'IT PROG', 1.1l0*salary,
'ST CLERK', l1.15*salary,
'SA REP', 1.20*salary,

salary)
REVISED SALARY
FROM employees;

| @ LasT_name [l JoBiD | SALaRY [REVISED_SALARY
4 Hunold IT_PROG 9000 9900
5 Ernst IT_PROG GO0 GE0:
6 Lorentz IT_PROG 4200 462
7 Mourgos ST_MAN 5800 SBO0)
8 Rajs ST_CLERK 3500 4025
9 Davies ST_CLERK 3100) 3569
10 Matos ST_CLERK 2600 2990)
11 Vargas ST_CLERK 2500 2875
12 ZTotkey SA_MAN 10500 1050
13 Abel S#_REP 11000 13200
14 Taylor S#_REP 8600 10320
15 Grant S#_REP 7000 8400

ORACLE

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

In the SQL statement in the slide, the value of JOB_ID is tested. If JOB_IDis IT PROG, the
salary increase is 10%; if JOB_IDis ST CLERK, the salary increase is 15%; if JOB_IDis
SA REP, the salary increase is 20%. For all other job roles, there is no increase in salary.

The same statement can be expressed in pseudocode as an IF-THEN-ELSE statement:

IF job id = 'IT_ PROG' THEN salary = salary*1.10
IF job id = 'ST CLERK' THEN salary = salary*1.15
IF job id = 'SA REP' THEN salary = salary*1.20

ELSE salary = salary

Oracle Database 12¢: SQL Workshop | 5-35

Using the DECODE Function

Display the applicable tax rate for each employee in

department 80:
SELECT last name, salary,
DECODE (TRUNC(Salary/ZOOO, 0),
0, 0.00,
1, 0.09,
2, 0.20,
3, 0.30,
4, 0.40,
5, 0.42,
6, 0.44,
0.45) TAX RATE
FROM employees
WHERE department id = 80;

ORACLE

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

This slide shows another example using the DECODE function. In this example, you determine

the tax rate for each employee in department 80 based on the monthly salary. The tax rates
are as follows:

Monthly Salary Range Tax Rate
$0.00-1,999.99 00%
$2,000.00-3,999.99 09%
$4,000.00-5,999.99 20%
$6,000.00-7,999.99 30%
$8,000.00-9,999.99 40%
$10,000.00-11,999.99 42%
$12,200.00-13,999.99 44%
$14,000.00 or greater 45%

LasT_MaME (B salary |[f Tax RaTE

1 Zlotkey 10500 0,42
g fhel 11000 .42
3 Tawlar B0 0.4

Oracle Database 12c¢: SQL Workshop | 5-36

Quiz

The TO NUMBER function converts either character strings or
date values to a number in the format specified by the optional
format model.

a. True
b. False

ORACLE

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

Answer: b

Oracle Database 12c¢: SQL Workshop | 5 -37

Summary

In this lesson, you should have learned how to:
« Alter date formats for display using functions

« Convert column data types using functions
« Use NVL functions

« Use IF-THEN-ELSE logic and other conditional
expressions in a SELECT statement

ORACLE

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

Remember the following:

« Conversion functions can convert character, date, and numeric values: TO CHAR,
TO DATE, TO_NUMBER

« There are several functions that pertain to nulls, including NVL, NVL2, NULLIF, and
COALESCE.

« The IF-THEN-ELSE logic can be applied within a SQL statement by using the CASE
expression or the DECODE function.

Oracle Database 12¢c: SQL Workshop | 5-38

Practice 5: Overview

This practice covers the following topics:
« Creating queries that use TO CHAR, TO DATE, and other
DATE functions

« Creating queries that use conditional expressions such as
DECODE and CASE

ORACLE

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

This practice provides a variety of exercises using TO_CHAR and TO_DATE functions, and
conditional expressions such as DECODE and CASE. Remember that for nested functions, the
results are evaluated from the innermost function to the outermost function.

Oracle Database 12c¢: SQL Workshop | 5-39

Ajuo asn suoin|og 1geb3 pue AlsiaAlun ajoelO

a3LigIHOdd A1LOIE1S SI d3LNdNOD SIHL INOYA STVIFTILVIN LIM® ONIAJOD "ATNO WOOHSSV1D SIHL NI 3SN dNOA d04 34V STIVIHILYIN LIMS 3SIHL

Reporting Aggregated Data
Using the Group Functions

ORACLE

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

Objectives

After completing this lesson, you should be able to do the
following:
« Identify the available group functions
- Describe the use of group functions
« Group data by using the GROUP BY clause
* Include or exclude grouped rows by using the HAVING
clause

ORACLE

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

This lesson further addresses functions. It focuses on obtaining summary information (such
as averages) for groups of rows. It discusses how to group rows in a table into smaller sets
and how to specify search criteria for groups of rows.

Oracle Database 12¢: SQL Workshop | 6 -2

Lesson Agenda

* Group functions:
— Types and syntax
— Use AVG, SUM, MIN, MAX, COUNT
— Use the DISTINCT keyword within group functions
— NULL values in a group function
* Grouping rows:
— GROUP BY clause
— HAVING clause

« Nesting group functions

ORACLE

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

Oracle Database 12¢: SQL Workshop | 6 -3

What Are Group Functions?

Group functions operate on sets of rows to give one result per

group.
EMPLOYEES
@ oerartMenT_D|§ saLary
1 10) 4400
2 20) 13000
3 20) 6000
4 110 12000
5 110 8300
L an 24000 . _
7 so| 17000l M@ximum salary in
2 so| 17000 EMPLOYEES table
9 &0 4000
10 60) 6000
18 g0l 11000
19 80 8600
£0 {rully 7000

ORACLE

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

Unlike single-row functions, group functions operate on sets of rows to give one result per
group. These sets may comprise the entire table or the table split into groups.

Oracle Database 12¢: SQL Workshop| 6 -4

Types of Group Functions

e AVG
* COUNT
e MAX
—-
e MIN) Group I
functions
e SUM
e LISTAGG
* STDDEV

* VARIANCE

ORACLE

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

Each of the functions accepts an argument. The following table identifies the options that you
can use in the syntax:

Function Description
AVG ([DISTINCT |ALL] n) Average value of n, ignoring null values
COUNT Number of rows, where expr evaluates to

something other than null (count all selected
rows using *, including duplicates and rows

with nulls)
MAX ([DISTINCT |ALL] expr) Maximum value of expr, ignoring null values
MIN ([DISTINCT|ALL] expr) Minimum value of expr, ignoring null values
STDDEV ([DISTINCT|ALL] n) Standard deviation of n, ignoring null values
SUM ([DISTINCT |ALL] n) Sum values of n, ignoring null values
LISTAGG Orders data within each group specified in

the ORDER BY clause and then concatenates
the values of the measure column
VARIANCE ([DISTINCT |ALL] n) Variance of n, ignoring null values

Oracle Database 12¢: SQL Workshop!| 6 -5

Group Functions: Syntax

SELECT group function (column),
FROM table
[WHERE condition] ;

ORACLE

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

The group function is placed after the SELECT keyword. You may have multiple group
functions separated by commas.

Syntax:
group function([DISTINCT |ALL] expr)

Guidelines for using the group functions:

* DISTINCT makes the function consider only nonduplicate values; ALL makes it
consider every value, including duplicates. The default is ALL and, therefore, does not

need to be specified.
« The data types for the functions with an expr argument may be CHAR, VARCHAR?2,
NUMBER, Or DATE.

» All group functions ignore null values. To substitute a value for null values, use the NVL,
NVL2, COALESCE, CASE, or DECODE functions.

Oracle Database 12¢: SQL Workshop| 6 -6

Using the AvG and sUM Functions

You can use AVG and SUM for numeric data.

SELECT |AVG (salary), MAX(salary),
MIN (salary), SUM(salary)
FROM employees

WHERE job id LIKE 'S%REP%';

°

LH AVCESALART) | MaxisaLARY) [MINGSALARY) [§ SUM{SALART)
1 8150 11000 6000 32600

ORACLE
Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

You can use the AVG, SUM, MIN, and MAX functions against the columns that can store

numeric data. The example in the slide displays the average, highest, lowest, and sum of
monthly salaries for all sales representatives.

Oracle Database 12¢: SQL Workshopl 6 -7

Using the MIN and MAX Functions

You can use MIN and MAX for numeric, character, and date
data types.

SELECTlMIN(hire date), MAX (hire date)l

FROM employees;

i MIM{HIRE=DATE:|;*] MAX{HIRE_DATE}[
1 13-JaN-01 29-1AN-08

ORACLE

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

You can use the MAX and MIN functions for numeric, character, and date data types. The
example in the slide displays the most junior and most senior employees.
The following example displays the employee last name that is first and the employee last
name that is last in an alphabetic list of all employees:

SELECT MIN(last name), MAX(last name)

FROM employees;

MIN(LAST_MAME) ([mMaxiLasT_MaME)
1 Abel Elotkey

Note: The AVG, SUM, VARIANCE, and STDDEV functions can be used only with numeric data
types. MAX and MIN cannot be used with LOB or LONG data types.

Oracle Database 12c¢: SQL Workshop| 6 -8

Using the COUNT Function

COUNT (*) returns the number of rows in a table:

| FROM employees
WHERE department id = 50;

@ SELECT| COUNT (*)

B counT
1 5

COUNT (expr) returns the number of rows with non-null values
for expr:

SELECT |COUNT (commission pct)]

(:) FROM employees
WHERE department id = 50;

@ counT(coMMISSION_PCT) |
1 0

ORACLE

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

The COUNT function has three formats:
e COUNT (*)
e COUNT (expr)
e COUNT (DISTINCT expr)

COUNT (*) returns the number of rows in a table that satisfy the criteria of the SELECT

statement, including duplicate rows and rows containing null values in any of the columns. If a
WHERE clause is included in the SELECT statement, COUNT (*) returns the number of rows
that satisfy the condition in the WHERE clause.

In contrast, COUNT (expr) returns the number of non-null values that are in the column
identified by expr.

COUNT (DISTINCT expr) returns the number of unique, non-null values that are in the
column identified by expr.

Examples
1. The example in the slide displays the number of employees in department 50.

2. The example in the slide displays the number of employees in department 50 who can
earn a commission.

Oracle Database 12c¢: SQL Workshop| 6 -9

Using the DISTINCT Keyword

* COUNT (DISTINCT expr) returns the number of distinct
non-null values of expr.

« To display the number of distinct department values in the
EMPLOYEES table:

SELECT [COUNT (DISTINCT department id) |
FROM employees;

E] COUNT{DISTINCTDEPARTMENT_ID)
1 7

ORACLE

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

Use the DISTINCT keyword to suppress the counting of any duplicate values in a column.

The example in the slide displays the number of distinct department values that are in the
EMPLOYEES table.

Oracle Database 12¢: SQL Workshop | 6-10

Group Functions and Null Values

Group functions ignore null values in the column:

@

SELECT |AVG (commission_pct) |
FROM employees;

B AvVGICOMMISSION_PCT)
1 0.2125

The NVL function forces group functions to include null values:

<:> SELECT |AVG (NVL (commission pct, 0))
FROM employees;

B AVGINVLICOMMISSION_PCT,O))
1 0.0425

ORACLE

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

All group functions ignore null values in the column.
However, the NVL function forces group functions to include null values.

Examples

1. The average is calculated based on only those rows in the table in which a valid value is
stored in the COMMISSION PCT column. The average is calculated as the total
commission that is paid to all employees divided by the number of employees receiving
a commission (four).

2. Theaverage is calculated based on all rows in the table, regardless of whether null
values are stored in the COMMISSION PCT column. The average is calculated as the
total commission that is paid to all employees divided by the total number of employees
in the company (20).

Oracle Database 12¢: SQL Workshop | 6 - 11

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS COMPUTER IS STRICTLY PROHIBITED

Lesson Agenda

« Group functions:

Types and syntax

Use AVG, SUM, MIN, MAX, COUNT

Use DISTINCT keyword within group functions
NULL values in a group function

* Grouping rows:

GROUP BY clause
HAVING clause

« Nesting group functions

ORACLE

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

Oracle Database 12c: SQL Workshop | 6 -12

Oracle University and Egabi Solutions use only

Creating Groups of Data

EMPLOYEES

1ﬂ DEF’*"*‘““”% 5”";“4'22 . Average salary in the

. = EMPLOYEES table for

3 20 goop| 9500 each department

4 50 2500 r =

. — — § DEPARTMENT_ID | AVC(SALARY)

6 50 s100| 3500 ' L ==
2 20 a500

7 50 5500 3 80 19333.333333333333..

g 50 5800 4 110 10150

3 60 2000 c400 = — 3500

10 60 ity 6 80 10033.333333333333.

11 G0 4200 7 10 4400,

12 g0 11000 10033 8 &0 5400

13 g0 a0

18 110 8300

19 110 12000

20 {rually 7000

ORACLE

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

Until this point in the discussion, all group functions have treated the table as one large group
of information. At times, however, you need to divide the table of information into smaller
groups. This can be done by using the GROUP BY clause.

Oracle Database 12c¢: SQL Workshop | 6-13

Creating Groups of Data: GROUP BY Clause Syntax

You can divide rows in a table into smaller groups by using the
GROUP BY clause.

SELECT column, group function (column)
FROM table
[WHERE condition]

[GROUP BY group by expression]
[ORDER BY column] ;

ORACLE

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

You can use the GROUP BY clause to divide the rows in a table into groups. You can then use
the group functions to return summary information for each group.

In the syntax:
group by expression Specifies the columns whose values determine the basis
for grouping rows

Guidelines

» Ifyouinclude a group functionin a SELECT clause, you cannot select individual column
as well, unless the individual column appears in the GROUP BY clause. You receive an
error message if you fail to include the column list in the GROUP BY clause.

* Using a WHERE clause, you can exclude rows before dividing them into groups.
* You can substitute column by an Expression in the SELECT statement.

* You must include the columns in the GROUP BY clause.

* You cannot use a column alias in the GROUP BY clause.

Oracle Database 12c¢: SQL Workshop | 6 - 14

Using the GROUP BY Clause

All the columns in the SELECT list that are not in group
functions must be in the GROUP BY clause.

SELECT department id,|AVG(salary)
FROM employees
|GROUP BY department id |;

@ DEPARTMENT_ID [J AVG(SALARY)
(1) 7000
90 19333.3333333333333333333333333333333333

1

2

3 20 9500
4 110 10154
S 50 3500
3 80 10033.3333333333333333333333333333333333
7 60 5400
8 10 4400

ORACLE

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

When using the GROUP BY clause, make sure that all columns in the SELECT list that are not
group functions are included in the GROUP BY clause. The example in the slide displays the
department number and the average salary for each department. Here is how this SELECT
statement, containing a GROUP BY clause, is evaluated:

* The SELECT clause specifies the columns to be retrieved, as follows:
- Department number column in the EMPLOYEES table
- The average of all salaries in the group that you specified in the GROUP BY clause

« The FrROM clause specifies the tables that the database must access: the EMPLOYEES
table.

« The WHERE clause specifies the rows to be retrieved. Because there is no WHERE
clause, all rows are retrieved by default.

« The GROUP BY clause specifies how the rows should be grouped. The rows are
grouped by department number, so the AVG function that is applied to the salary column
calculates the average salary for each department.

Note: To order the query results in ascending or descending order, include the ORDER BY
clause in the query.

Oracle Database 12c¢: SQL Workshop | 6 -15

Using the GROUP BY Clause

The GROUP BY column does not have to be in the SELECT list.

SELECT AVG (salary)
FROM employees
GROUP BY department id| ;

B AvGEALARY

7000
19333.3333333333333333333333333333333333
9500

10154

3500
10033.3333333333333333333333333333333333
6400

4400

W o~ N s W N

ORACLE

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

The GROUP BY column does not have to be in the SELECT clause. For example, the SELECT
statement in the slide displays the average salaries for each department without displaying
the respective department numbers. Without the department numbers, however, the results
do not look meaningful.
You can also use the group function in the ORDER BY clause:

SELECT department id, AVG(salary)

FROM employees

GROUP BY department id

ORDER BY AVG (salary) ;

B DEPaRTMEMT_ID B AvcisaLarT
1 50 3500
2 10 4400
3 &0 B400
4 (Ul FOO0
5 20 5500
3 80 10033.33333333333333333332332332333233333
7 110 10154
8 00 189333.3333333333333333333233333333333333

Oracle Database 12c¢: SQL Workshop| 6 -16

Grouping by More Than One Column

EMPLOYEES Add the salaries in the EMPLOYEES
table for each job, grouped by
P& RTMEN J
@ oDerarTMENTD [§ JoBD | saLamy department.

1 10 AD_ASST 4400
2 20 ME_M&MN 13000 @ DEPA&RTMENMT_ID @ JOBID || SUM(SALARY)
3 20 ME_REF s000 1 110 AC_ACCOUNT B300
4 S0 5T_CLERE 2500 z 110 AC_MGR 12008
5 S0 ST_CLERE 2600 3 10 AD_ASST 4400
B 50 5T_CLERE 3100 4 Q0 AD_PRES 24000
7 S0 ST_CLERE 3500 g5 Qo AD_WP 34000
. =L e L S 6 60 IT_PROG 19200
9 B0 IT_PROG Q000] 200 MK_MEN 13000
10 60 IT_PROG £000 8 20 MK_REP 6000
11 B0 IT_PROGC 4200 g 80 SALMAN 10500

12 80 SA_REP 11000
- 10 B0 SA_REP 196800

13 80 S5A_REP ga00
11 {null) SA_REP TO00

14 80 5A_MAMN 10500
1z S0 ST_CLERK 11700
13 50 ST_WAN S800

19 110 AC_MGR 12000

20 {nully 54 _REP Fooo

ORACLE

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

Sometimes, you need to see results for groups within groups. The slide shows a report that
displays the total salary that is paid to each job title in each department.
The EMPLOYEES table is grouped first by the department number, and then by the job title
within that grouping. For example, the four stock clerks in department 50 are grouped
together, and a single result (total salary) is produced for all stock clerks in the group.
The following SELECT statement returns the result shown in the slide:

SELECT department id, job id, sum(salary)

FROM employees

GROUP BY department id, job_id

ORDER BY job id;

Oracle Database 12c¢: SQL Workshop | 6 -17

Using the GROUP BY Clause on Multiple Columns

SELECT department id, job id, SUM(salary)
FROM employees

WHERE department id > 40

[GROUP BY department id, job id|

ORDER BY department id;

8 oeparTMenTD [§ joep |@ sumeaarn |
1 S0 5T_CLERE 11700
2 50 ST_MAN 5800
3 60 IT_PROG 19200
4 80 SA_MEN 10500
s 80 SA_REP 19600
& a0 AD_PRES 24000
7 ag Ab_WF 3000
8 110 AC_ACCOUNT 8300
9 110 AC_MGR 12008

ORACLE

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

You can return summary results for groups and subgroups by listing multiple GROUP BY
columns. The GROUP BY clause groups rows but does not guarantee the order of the result
set. To order the groupings, use the ORDER BY clause.

In the example in the slide, the SELECT statement that contains a GROUP BY clause is
evaluated as follows:

+ The SELECT clause specifies the column to be retrieved:
- DEPARTMENT ID inthe EMPLOYEES table
- JOB IDinthe EMPLOYEES table
- The sum of all salaries in the group that you specified in the GROUP BY clause

+ The FROM clause specifies the tables that the database must access: the EMPLOYEES
table.

+ The WHERE clause reduces the result set to those rows where department ID is greater
than 40.

+ The GROUP BY clause specifies how you must group the resulting rows:

- First, the rows are grouped by the DEPARTMENT 1ID.

- Second, the rows are grouped by JOB ID inthe DEPARTMENTID groups.
« The ORDER BY clause sorts the results by department ID.

Note: The suM function is applied to the salary column for all job IDs in the result set in each
DEPARTMENT ID group. Also, note thatthe SA REP row is not returned. The DEPARTMENT
ID for this row is NULL and, therefore, does not meet the WHERE condition.

Oracle Database 12¢: SQL Workshop| 6-18

lllegal Queries Using Group Functions

Any column or expression in the SELECT list that is not an
aggregate function must be in the GROUP BY clause:

SELECT department id, COUNT (last name)
FROM employees;

L ORA-00937: not a single-group group function A GROUP BY clause must be added to
00937 00000 - "not a single=-group group function”
count the last names for each

department id.

SELECT department id, job id, COUNT (last name)
FROM employees
GROUP BY department id;

L Either add job_id in the GROUP BY or

ORA-00979: not a CROUP BY expression remove the job id column from the
00979, 00000 - “not a GROUP BY expression® -

SELECT list.

ORACLE

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

Whenever you use a mixture of individual items (DEPARTMENT_ID) and group functions
(COUNT) in the same SELECT statement, you must include a GROUP BY clause that specifies
the individual items (in this case, DEPARTMENT _ID). If the GROUP BY clause is missing, the
error message “not a single-group group function” appears and an asterisk (*) points to the
offending column. You can correct the error in the first example in the slide by adding the
GROUP BY clause:

SELECT department id, count (last name)

FROM employees

GROUP BY department id;
Any column or expression in the SELECT list that is not an aggregate function must be in the
GROUP BY clause. In the second example in the slide, job_id is neither in the GROUP BY
clause nor is it being used by a group function, so there is a “not a GROUP BY expression”
error. You can correct the error in the second slide example by adding job_id in the GROUP
BY clause.

SELECT department id, job id, COUNT (last name)
FROM employees
GROUP BY department id, job_ id;

Oracle Database 12¢: SQL Workshop| 6 -19

lllegal Queries Using Group Functions

* You cannot use the WHERE clause to restrict groups.
* You use the HAVING clause to restrict groups.
* You cannot use group functions in the WHERE clause.

SELECT department id, AVG(salary)
FROM employees

WHERE AVG (salary) > 8000

GROUP BY department id;

ORA-00934: group function is not allowed here C t th
00934, 00000 - "group function is not allowed here® annot use the
*Cause: WHERE clause to

Action: restrict groups

Error at Line: 3 Column: 9

ORACLE

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

The WHERE clause cannot be used to restrict groups. The SELECT statement in the example
in the slide results in an error because it uses the WHERE clause to restrict the display of the
average salaries of those departments that have an average salary greater than $8,000.
However, you can correct the error in the example by using the HAVING clause to restrict
groups:

SELECT department id, AVG(salary)

FROM employees

GROUP BY department id

HAVING AVG(salary) > 8000;

DEP&RTMENT_ID B AvG(saLaRT)

1 90 19333.33333333333333333333333333333332333
Z 20 5500
3 110 10154
d4

B0 10033,3333333333333333333333333333333333

Oracle Database 12c¢: SQL Workshop | 6 -20

Restricting Group Results

EMPLOYEES

§ oeparTMENTID [§ saLary|
1 10 4400
¢ 20] 13000 The maximum salary per
- - pin department when it is
2 2 2 greater than $10,000
5 S0 2600
& 50 3100
7 50 3500 @ DEPaRTMENTID |[§ Max(sALARY)
& 50 5800 - 20 13000
8 60 9000 - 80 24000
10 &0 5000 E 110 12000
11 &0 4200 4 80 11000
12 au| 11000
13 80 g600
15 110 &300)
19 110[12000
20 frin 7000

ORACLE

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

You use the HAVING clause to restrict groups in the same way that you use the WHERE clause
to restrict the rows that you select. To find the maximum salary in each of the departments
that have a maximum salary greater than $10,000, you need to do the following:

1. Find the average salary for each department by grouping by department number.
2. Restrict the groups to those departments with a maximum salary greater than $10,000.

Oracle Database 12¢: SQL Workshop | 6 - 21

Restricting Group Results with the HAVING Clause

When you use the HAVING clause, the Oracle server restricts
groups as follows:

1. Rows are grouped.
2. The group function is applied.
3. Groups matching the HAVING clause are displayed.

SELECT column, group function
FROM table
[WHERE condition]

[GROUP BY group by expression]
[[HAVING group_condition] |
[ORDER BY column] ;

ORACLE

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

You use the HAVING clause to specify the groups that are to be displayed, thus further
restricting the groups on the basis of aggregate information.

In the syntax, group condition restricts the groups of rows returned to those groups for
which the specified condition is true.

The Oracle server performs the following steps when you use the HAVING clause:
1. Rows are grouped.
2. The group function is applied to the group.
3. The groups that match the criteria in the HAVING clause are displayed.

The HAVING clause can precede the GROUP BY clause, but it is recommended that you place
the GROUP BY clause first because it is more logical. Groups are formed and group functions
are calculated before the HAVING clause is applied to the groups in the SELECT list.

Note: The WHERE clause restricts rows, whereas the HAVING clause restricts groups.

Oracle Database 12c¢: SQL Workshop | 6 - 22

Using the HAVING Clause

SELECT department id, MAX(salary)
FROM employees

GROUP BY department id

[HAVING _ MAX (salary)>10000];

DEPARTMENT_ID || MAX(SALARY)
1 o0 24000
2 20 13000
3 110 12008
4 80 11000

ORACLE

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

The example in the slide displays the department numbers and maximum salaries for those
departments with a maximum salary greater than $10,000.

You can use the GROUP BY clause without using a group function in the SELECT list. If you
restrict rows based on the result of a group function, you must have a GROUP BY clause as
well as the HAVING clause.

The following example displays the department numbers and average salaries for those
departments with a maximum salary greater than $10,000:

SELECT department id, AVG(salary)

FROM employees

GROUP BY department id

HAVING max (salary) >10000;

DEPARTMENT_ID [awcsaLaRy)

1 80 19333, 3333333333333333333333333333333333
Z 20 8500
3 110 10154
4

80 10033,3333333333333333333333333333333333

Oracle Database 12c¢: SQL Workshop | 6 -23

Using the HAVING Clause

SELECT job_id, SUM(salary) PAYROLL
FROM employees

WHERE job_id NOT LIKE 'S%REP
GROUP BY job_ id

[HAVING SUM (salary) > 13000 |
ORDER BY SUM (salary) ;

o\°

d Josio|§ PavrOLL|

1 IT_PROG 19200
2 AD_PRES 24000
3 AD_WP 34000

ORACLE

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

The example in the slide displays the JOB ID and total monthly salary for each job that has

a total payroll exceeding $13,000. The example excludes sales representatives and sorts the
list by the total monthly salary.

Oracle Database 12c¢: SQL Workshop | 6 - 24

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS COMPUTER IS STRICTLY PROHIBITED

Lesson Agenda

« Group functions:
— Types and syntax
— Use AVG, SUM, MIN, MAX, COUNT
— Use DISTINCT keyword within group functions
— NULL values in a group function
* Grouping rows:
— GROUP BY clause
— HAVING clause

* Nesting group functions

ORACLE

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

Oracle Database 12c: SQL Workshop | 6 -25

Oracle University and Egabi Solutions use only

Nesting Group Functions

Display the maximum average salary:

SELECT |MAX (AVG(salary))|
FROM employees
GROUP BY department id;

B max@veEaLarn)
1 19333.3333333333333333333333333333333333

ORACLE

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

Group functions can be nested to a depth of two functions. The example in the slide
calculates the average salary for each department id and then displays the maximum

average salary.
Note that GROUP BY clause is mandatory when nesting group functions.

Oracle Database 12c¢: SQL Workshop | 6 - 26

Quiz

|dentify the two guidelines for group functions and the GROUP
BY clause.

a. You cannot use a column alias in the GROUP BY clause.

b. The GROUP BY column must be in the SELECT clause.

c. By using a WHERE clause, you can exclude rows before
dividing them into groups.

d. The GROUP BY clause groups rows and ensures order of
the result set.

e. If you include a group function in a SELECT clause, you
must include a GROUP BY clause.

ORACLE

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

Answer: a, c

Oracle Database 12c¢: SQL Workshop | 6 - 27

Summary

In this lesson, you should have learned how to:

« Use the group functions COUNT, MAX, MIN, SUM, and AVG
* Write queries that use the GROUP BY clause

* Write queries that use the HAVING clause

SELECT column, group function
FROM table
[WHERE condition]

[GROUP BY group by expression]
[HAVING group condition]
[ORDER BY column] ;

ORACLE

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

There are several group functions available in SQL, such as AvG, COUNT, MAX, MIN, SUM,
STDDEV, and VARIANCE.

You can create subgroups by using the GROUP BY clause. Further, groups can be restricted
using the HAVING clause.

Place the HAVING and GROUP BY clauses after the WHERE clause in a statement. The order of
the GROUP BY and HAVING clauses following the WHERE clause is not important. You can
have either the GROUP BY clause or the HAVING clause first as long as they follow the
WHERE clause. Place the ORDER BY clause at the end.
The Oracle server evaluates the clauses in the following order:

1. If the statement contains a WHERE clause, the server establishes the candidate rows.

2. The server identifies the groups that are specified in the GROUP BY clause.

3. The HAVING clause further restricts result groups that do not meet the group criteriain

the HAVING clause.

Note: For a complete list of the group functions, see Oracle Database SQL Language
Reference for 12c¢ database.

Oracle Database 12c¢: SQL Workshop | 6 - 28

Practice 6: Overview

This practice covers the following topics:
- Writing queries that use the group functions
- Grouping by rows to achieve more than one result
« Restricting groups by using the HAVING clause

ORACLE

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

In this practice, you learn to use group functions and select groups of data.

Oracle Database 12c¢: SQL Workshop | 6 -29

Ajuo asn suoin|og 1geb3 pue AlsiaAlun ajoelO

a3LigIHOdd A1LOIE1S SI d3LNdNOD SIHL INOYA STVIFTILVIN LIM® ONIAJOD "ATNO WOOHSSV1D SIHL NI 3SN dNOA d04 34V STIVIHILYIN LIMS 3SIHL

Displaying Data
from Multiple Tables Using Joins

ORACLE

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

Objectives

After completing this lesson, you should be able to do the
following:
- Write SELECT statements to access data from more than
one table using equijoins and nonequijoins
- Join a table to itself by using a self-join
* View data that generally does not meet a join condition by
using OUTER joins

* Generate a Cartesian product of all rows from two or more
tables

ORACLE

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

This lesson explains how to obtain data from more than one table. A join is used to view
information from multiple tables. Therefore, you can join tables together to view information
from more than one table.

Note: Information about joins is found in the “SQL Queries and Subqueries: Joins” section in
Oracle Database SQL Language Reference for 12c database.

Oracle Database 12c¢: SQL Workshop | 7 -2

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS COMPUTER IS STRICTLY PROHIBITED

Lesson Agenda

« Types of JOINS and its syntax
« Natural join
« Join with the USING Clause
« Join with the oN Clause
« Self-join
* Nonequijoins
* OUTER join:
— LEFT OUTER join
— RIGHT OUTER join
— FULL OUTER join

« Cartesian product
— Cross join

ORACLE

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

Oracle Database 12c: SQL Workshop | 7 -3

Oracle University and Egabi Solutions use only

Obtaining Data from Multiple Tables

EMPLOYEES DEPARTMENTS
§ emriovee o |§ LasT_wame|® oeparTMENT_ID B oeparTmenT_D|[§ DeparTMENT Mame|f LocaTion D
1 2000whalen 10 1| 1 Administration 1700
2 z01|Hartstein 20) z 24 Marketing 1800
3 20fFay 20 3 sq shipping 1500
4 e 1400
5 & sales 2500
18 174{Abel &0 5 o Executive 1700
19 ”jﬁf""r 20 7 114 Accounting 1700
20 178)Grant {null 8 161 Contracting 1700

| |

B emproveeD | oerarTMENT_ID [E DEPARTMENT_MAME
1 E'GIJI 10 Administration
2 201 20 Marketing
3 202 20 Marketing
4 124 50 Shipping
13 205 110 Accounting
1 2086 110 Accounting

ORACLE

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

Sometimes you need to use data from more than one table. In the example in the slide, the
report displays data from two separate tables:

+ Employee IDs exist in the EMPLOYEES table.
« Department IDs exist in both the EMPLOYEES and DEPARTMENTS tables.
* Department names exist in the DEPARTMENTS table.

To produce the report, you need to link the EMPLOYEES and DEPARTMENTS tables, and
access data from both of them.

Oracle Database 12c: SQL Workshopl 7 -4

Types of Joins

Joins that are compliant with the SQL:1999 standard include
the following:
« Natural join with the NATURAL JOIN clause
« Join with the USING Clause
« Join with the ON Clause
* OUTER joins:
— LEFT OUTER JOIN

— RIGHT OUTER JOIN
— FULL OUTER JOIN

« Cross joins

ORACLE

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

To join tables, you can use a join syntax that is compliant with the SQL:1999 standard.

Note
» Before the Oracle9irelease, the join syntax was different from the American National
Standards Institute (ANSI) standards. The SQL:1999-compliant join syntax does not
offer any performance benefits over the Oracle-proprietary join syntax that existed in the
prior releases.

» The following slide discusses the SQL:1999 join syntax.

Oracle Database 12c¢: SQL Workshopl 7 -5

Joining Tables Using SQL:1999 Syntax

Use a join to query data from more than one table:

SELECT tablel.column, table2.column
FROM tablel

[NATURAL JOIN table2] |

[JOIN table2 USING (column name)] |
[JOIN table2

ON (tablel.column name = table2.column name)] |
[LEFT |RIGHT | FULL OUTER JOIN table2
ON (tablel.column name = table2.column name)] |

[CROSS JOIN table2];

ORACLE

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

In the syntax:
* tablel.column denotes the table and the column from which data is retrieved
*+ NATURAL JOIN joins two tables based on the same column name

*+ JOIN table2 USING column name performs an equijoin based on the column
name

* JOIN table2 ON tablel.column name = table2.column name performs
an equijoin based on the condition in the ON clause

* LEFT/RIGHT/FULL OUTER is used to perform OUTER joins
« CROSS JOIN returns a Cartesian product from the two tables

For more information, see the section titled “SELECT” in Oracle Database SQL Language
Reference for 12c¢ database.

Oracle Database 12c¢: SQL Workshopl 7 -6

Qualifying Ambiguous Column Names

- Use table prefixes to qualify column names that are in
multiple tables.

« Use table prefixes to increase the speed of parsing of the
statement .

* Instead of full table name prefixes, use table aliases.

- Table alias gives a table a shorter name:
— Keeps SQL code smaller, uses less memory

« Use column aliases to distinguish columns that have
identical names, but reside in different tables.

ORACLE

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

When joining two or more tables, you need to qualify the names of the columns with the table
name to avoid ambiguity. Without the table prefixes, the DEPARTMENT ID column inthe
SELECT list could be from either the DEPARTMENTS table or the EMPLOYEES table. It is
necessary to add the table prefix to execute your query. If there are no common column
names between the two tables, there is no need to qualify the columns. However, using the
table prefix increases the speed of parsing of the statement , because you tell the Oracle
server exactly where to find the columns.

However, qualifying column names with table names can be time consuming, particularly if
the table names are lengthy. Instead, you can use table aliases. Just as a column alias gives
a column another name, a table alias gives a table another name. Table aliases help to keep
SQL code smaller, therefore, using less memory.

The table name is specified in full, followed by a space, and then the table alias. For example,
the EMPLOYEES table can be given an alias of e, and the DEPARTMENTS table an alias of d.

Guidelines
» Table aliases can be up to 30 characters in length, but shorter aliases are better than
longer ones.

« Ifatable alias is used for a particular table name in the FROM clause, that table alias
must be substituted for the table name throughout the SELECT statement.

« Table aliases should be meaningful.
« Thetable alias is valid for only the current SELECT statement.

Oracle Database 12c¢: SQL Workshopl 7 -7

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS COMPUTER IS STRICTLY PROHIBITED

Lesson Agenda

 Types of JOINS and its syntax
* Natural join
* Join with the USING Clause
« Join with the oN Clause
« Self-join
« Nonequijoins
* OUTER join:
— LEFT OUTER join
— RIGHT OUTER join
— FULL OUTER join

« Cartesian product
— Cross join

ORACLE

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

Oracle Database 12c: SQL Workshop | 7 -8

Oracle University and Egabi Solutions use only

Creating Natural Joins

e The NATURAL JOIN clause is based on all the columns in
the two tables that have the same name.

* It selects rows from the two tables that have equal values
in all matched columns.

« If the columns having the same names have different data
types, an error is returned.

ORACLE

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

You can join tables automatically based on the columns in the two tables that have matching
data types and names. You do this by using the NATURAL JOIN keywords.

Note: The join can happen on only those columns that have the same names and data types
in both tables. If the columns have the same name but different data types, the NATURAL
JOIN syntax causes an error.

Oracle Database 12c¢: SQL Workshopl 7-9

Retrieving Records with Natural Joins

SELECT employee id,last name,department id,
department name

from employees

NATURAL JOIN

departments;

[empLOYEEID] LAST_NAME

@l DEPARTMENT_ID |[§ DEPARTMENT_NAME |

1 101 Kochhar 90 Executive
2 102 De Haan 90 Executive
3 104 Ernst 60 IT
4 107 Lorentz 60 IT
5 141 Rajs 50 Shipping
6 142 Davies 50 Shipping
7 143 Matos 50 Shipping
] 144 Vargas 50 Shipping
9 174 Abel B0 Sales

10 176 Taylor 80 5ales

11 202 Fay 20 Marketing

12 206 Gietz 110 Accounting

ORACLE

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

In the example in the slide, the DEPARTMENTS table is joined to the EMPLOYEES table by the
DEPARTMENT ID column, which is the only column of the same name in both tables. If other
common columns were present, the join would have used them all.

Natural Joins with a WHERE Clause
Additional restrictions on a natural join are implemented by using a WHERE clause. The
following example limits the rows of output to those with a department 1D equal to 20 or 50:

SELECT department id, department name,

location_id, city

FROM departments

NATURAL JOIN locations

WHERE department id IN (20, 50);

DEPARTMENT_ID | DEPARTMENT_MaME |[{ LocaTion_iD(E v ||
1 20 Marketing 1800 Toronto
z 50 Shipping 1500 South San Francisco

Oracle Database 12¢: SQL Workshop | 7 -10

Creating Joins with the USING Clause

« If several columns have the same names but the data
types do not match, use the USING clause to specify the

columns for the equijoin.

* Use the USING clause to match only one column when
more than one column matches.

 The NATURAL JOIN and USING clauses are mutually
exclusive.

ORACLE

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

Natural joins use all columns with matching names and data types to join the tables. The
USING clause can be used to specify only those columns that should be used for an equijoin.

Oracle Database 12¢: SQL Workshop | 7 -11

Joining Column Names

EMPLOYEES DEPARTMENTS
[ﬁ EMPLOYEE_ID lﬂ DEPARTMENT_ID @ DEPARTMENT_ID _ DEPARTMENT_NAME |

1 200f 10 1 10 Administration

2 201 20 —I = 20 Marketing

3 202 20 3 50 Shipping

4 205 110 4 60T

5 206 110 5 80 Sales

3 100 =11} [90 Executive

7 101 a0 7 110 Accounting

] 103 a0 il 190 Contracting

8 1034 &0

10 104| &0 [

I Primary key
Foreign key

ORACLE

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

To determine an employee’s department name, you compare the value in the
DEPARTMENT ID column in the EMPLOYEES table with the DEPARTMENT ID valuesin the
DEPARTMENTS table. The relationship between the EMPLOYEES and DEPARTMENTS tables is
an equijoin; that is, values in the DEPARTMENT _ID column in both the tables must be equal.
Frequently, this type of join involves primary and foreign key complements.

Note: Equijoins are also called simple joins or inner joins.

Oracle Database 12c¢: SQL Workshop | 7 -12

Retrieving Records with the USING Clause

SELECT employee id, last name,
location id, department id

FROM employees JOIN departments

USING (departmentiid) ;

B empLoveElD (f] LasT_naMe | LOCATIONID [§ DEPARTMENT_ID
1/ 200 Whalen ' 1700 10
Z 201 Hartstein 1800 20
3 202 Fay 1800 20
4 144 Vargas 1500 50
=1 143 Matos 1500 S50
& 142 Davies 1500 50
7 141 Rajs 1500 50
-] 124 Mourgos 1500 50
18 206 Gietz 1700 110
19 205 Higgins 1700 110

ORACLE

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

In the example in the slide, the DEPARTMENT ID columns in the EMPLOYEES and
DEPARTMENTS tables are joined and thus the LOCATION ID of the department where an
employee works is shown.

Oracle Database 12c¢: SQL Workshop | 7 -13

Using Table Aliases with the USING Clause

* Do not qualify a column that is used in the USING clause.

« If the same column is used elsewhere in the SQL
statement, do not alias it.

SELECT 1l.city, d.department name

FROM locations 1 JOIN departments d
USING (location_id)

WHERE d.location id = 1400;

ORA-25154: column part of USING clause cannot have qualifier

25154, 00000 - "column part of USING clause cannot have qualifier”

*Cause: Columnsthat are used for a named=join (either a NATURAL join
or a join with a USING clause) cannot have an explicit qualifier.

*Action: Remove the gualifier,

Error at Line: 4 Column: 6

ORACLE

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

When joining with the USING clause, you cannot qualify a column that is used in the USING
clause itself. Furthermore, if that column is used anywhere in the SQL statement, you cannot
alias it. For example, in the query mentioned in the slide, you should not alias the
location_idcolumn in the WHERE clause because the column is used in the USING clause.

The columns that are referenced in the USING clause should not have a qualifier (table name
or alias) anywhere in the SQL statement. For example, the following statement is valid:

SELECT l.city, d.department name
FROM locations 1 JOIN departments d USING (location 1id)
WHERE location id = 1400;

The columns that are common in both the tables, but not used in the USING clause, must be
prefixed with a table alias; otherwise, you get the “column ambiguously defined” error.

In the following statement, manager idis presentin both the employees and
departments table; if manager id is not prefixed with a table alias, it gives a “column
ambiguously defined” error.

The following statement is valid:
SELECT first name, d.department name, d.manager id
FROM employees e JOIN departments d USING (department id)
WHERE department id = 50;

Oracle Database 12c¢: SQL Workshop | 7 -14

Creating Joins with the oN Clause

« The join condition for the natural join is basically an
equijoin of all columns with the same name.

« Use the ON clause to specify arbitrary conditions or specify
columns to join.

« The join condition is separated from other search
conditions.

* The ON clause makes code easy to understand.

ORACLE

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

Use the ON clause to specify a join condition. With this, you can specify join conditions
separate from any search or filter conditions in the WHERE clause.

Oracle Database 12¢: SQL Workshop | 7 -15

Retrieving Records with the ON Clause

SELECT e.employee id, e.last name, e.department id,
d.department id, d.location_id
FROM employees e JOIN departments d

ON (e .department id = d.department id)l;

@ empoveelo [§ wast_mame§ oeparTmenTD i oEParTMEnT_IO_1|§ LocaTioniD

1 200 Whalen 10 10 1700
4 201 HartsTein 20 20 1300
3 202 Fay 20 20 1800
4 124 Mourgos S50 50 1500
5 144 Vargas S0 50 1500
& 143 Hatos 50 50 1500
7 142 Davies S0 30 1500
g 141 Rais 30 3 1500
9 107 Lorentz 60 60 1400
10 104 Ernst B0 60 1400
11 103 Hunold &0 60 1400

ORACLE

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

In this example, the DEPARTMENT _ID columns in the EMPLOYEES and DEPARTMENTS table
are joined using the ON clause. Wherever a department ID in the EMPLOYEES table equals a
department ID in the DEPARTMENTS table, the row is returned. The table alias is necessary to
qualify the matching column names.

You can also use the ON clause to join columns that have different names. The parenthesis
around the joined columns, as in the example in the slide, (e.department id =
d.department 1id) is optional. So, even ON e.department id = d.department id
will work.

Note: When you use the Execute Statement icon to run the query, SQL Developer suffixes a
‘_1"to differentiate between the two department ids.

Oracle Database 12c¢: SQL Workshop| 7 -16

Creating Three-Way Joins with the oN Clause

SELECT employee id, city, department name
FROM employees e

JOIN departments d
ON d.department id = e.department id
JOIN locations 1
ON d.location id = l.location id;
B ewpLoveeo |§ oy § DEPARTMENT_NAME
1 100 Seattle Executive
2 101 Seattle Executive
3 102 Seattle Executive
4 103 Southlake IT
=1 104 Southlake IT
3] 107 Southlake IT
7 124 South 5an Francizco Shipping
-] 141 South 5an Francizco Shipping
9 142 South 3an Francisco Shipping

ORACLE

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

A three-way join is a join of three tables. The optimizer decides the execution of the join as
well as the order. Here, the first join to be performed is EMPLOYEES JOIN DEPARTMENTS.
The first join condition can reference columns in EMPLOYEES and DEPARTMENTS but cannot
reference columns in LOCATIONS. The second join condition can reference columns from all

three tables.
Note: The code example in the slide can also be accomplished with the USING clause:
SELECT e.employee id, 1l.city, d.department name
FROM employees e
JOIN departments d
USING (department id)
JOIN locations 1
USING (location id) ;

Oracle Database 12c¢: SQL Workshop | 7 -17

Applying Additional Conditions to a Join

Use the AND clause or the WHERE clause to apply additional
conditions:

SELECT e.employee id, e.last name, e.department id,
d.department id, d.location_id
FROM employees e JOIN departments d

ON (e.department id = d.department id)
AND e.manager 1id = 149 |;
Or

SELECT e.employee id, e.last name, e.department id,
d.department id, d.location_id

FROM employees e JOIN departments d

ON (e.department id = d.department id)

WHERE e.manager_ id = 149 |;

ORACLE

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

You can apply additional conditions to the join.

The example shown performs a join on the EMPLOYEES and DEPARTMENTS tables and, in
addition, displays only employees who have a manager ID of 149. To add additional
conditions to the ON clause, you can add AND clauses. Alternatively, you can use a WHERE
clause to apply additional conditions.

Both the queries produce the same output

B EmPLOVEELID ([LasT_MAME | DEPARTMEMT_ID |8 DEPARTMENT_ID_1 |[LOCATHJNJD||
1 174 Abhel B0 a0 2500
2 176 Taylor B0 B0 250100

Oracle Database 12c¢: SQL Workshop| 7 -18

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS COMPUTER IS STRICTLY PROHIBITED

Lesson Agenda

 Types of JOINS and its syntax
« Natural join
« Join with the USING Clause
« Join with the oN Clause
« Self-join
* Nonequijoins
* OUTER join:
— LEFT OUTER join
— RIGHT OUTER join
— FULL OUTER join

« Cartesian product
— Cross join

ORACLE

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

Oracle Database 12c: SQL Workshop | 7 -19

Oracle University and Egabi Solutions use only

Joining a Table to Itself

EMPLOYEES (WORKER) EMPLOYEES (MANAGER)
B empioveeio | LasT_NAME [§] MAMACERID EMPLOYEEID | LAST_NAME
' 200 Whalen | 101 200 Whalen

201 Hartstein 100 201 Hartstein
202 Fay 201 202 Fay

205 Higgins 101 205 Higgins
206 Gietz 205 206 Cietz
100 King rully 100 Eing

101 Kochhar 100 101 Kochhar
102 De Haan 100 102 De Haan
103 Hunold 102 103 Hunold
104 Ernst 103 104 Ernst

Iy '

MANAGER_ID in the WORKER table is equal to
EMPLOYEE_ID in the MANAGER table.

ORACLE

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

Sometimes you need to join a table to itself. To find the name of each employee’s manager,
you need to join the EMPLOYEES table to itself, or perform a self-join. For example, to find the
name of Ernst’'s manager, you need to:

« Find Ernst in the EMPLOYEES table by looking at the LAST NAME column

« Find the manager number for Ernst by looking at the MANAGER ID column. Ernst’s
manager number is 103.
« Find the name of the manager with EMPLOYEE ID 103 by looking at the LAST NAME
column. Hunold’s employee number is 103, so Hunold is Ernst’'s manager.
In this process, you look in the table twice. The first time you look in the table to find Ernst in

the LAST NAME column and the MANAGER ID value of 103. The second time you look in the
EMPLOYEE ID column to find 103 and the LAST NAME column to find Hunold.

Oracle Database 12c¢: SQL Workshop | 7 -20

Self-Joins Using the ON Clause

SELECT worker.last name emp, manager.last name mgr
FROM employees worker JOIN employees manager
ON (worker .manager id = manager.employee id) ;

g evp 8 mcr
1 Hunold De Haan

2 Fay Hartstein
3 Gietz Higgins
4 Lorentz Hunald
5 Ernst Hunald

6 Zlotkey King
7 Mourgos King
8 Kochhar Eing

ORACLE

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

The ON clause can also be used to join columns that have different names, within the same
table or in a different table.

The example shown is a self-join of the EMPLOYEES table, based on the EMPLOYEE ID and
MANAGER_ID columns.

Note: The parentheses around the joined columns as in the example in the slide,
(worker .manager id = manager.employee id) is optional.So, even ON
worker.manager id = manager.employee id will work.

Oracle Database 12¢: SQL Workshop | 7 -21

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS COMPUTER IS STRICTLY PROHIBITED

Lesson Agenda

 Types of JOINS and its syntax
« Natural join
« Join with the USING Clause
« Join with the oN Clause
« Self-join
* Nonequijoins
* OUTER join:
— LEFT OUTER join
— RIGHT OUTER join
— FULL OUTER join

« Cartesian product
— Cross join

ORACLE

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

Oracle Database 12c: SQL Workshop | 7 - 22

Oracle University and Egabi Solutions use only

Nonequijoins

EMPLOYEES JOB_GRADES
d LasT_name]f§ saLary B crapeLevel [LowesT_saL |l HIGHEST_saL
1 Whalen 4400 1A 1000 2999
2 Hartstein 13000 2B 3000 5999
3 Fay 5000 » &000 9999
4 Higgins 12000 4 D 10000 14999
5 Cietz g300 & E 15000 24999
& King 24000 6 F 25000 40000
7 Koachhar 17000
e o] The JOB_GRADES table defines the
[o LOWEST SALand HIGHEST SAL range
of values for each GRADE LEVEL.
19 Taylor 8600 Therefore, the GRADE LEVEL column can
20 |Grank 7000 be used to assign grades to each

employee.

ORACLE

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

A nonequijoin is a join condition containing something other than an equality operator.

The relationship between the EMPLOYEES table and the JOB_GRADES table is an example of
a nonequijoin. The SALARY column in the EMPLOYEES table ranges between the values in the
LOWEST SAL and HIGHEST SAL columns of the JOB_GRADES table. Therefore, each

employee can be graded based on their salary. The relationship is obtained using an operator
other than the equality (=) operator.

Oracle Database 12c¢: SQL Workshop | 7 -23

Retrieving Records with Nonequijoins

SELECT e.last name, e.salary, j.grade level
FROM employees e JOIN job grades j

ON e.salary

BETWEEN j.lowest sal AND j.highest salj;

8 wasT_name]§ saiarv (8 cRaDE_LEVEL
1 Vargas 2300 A
Z Matos 2000 A
3 Dawies 100 B
4 Rajs 35008
S Lorentz 42008
& Whalen 4400 B
7 Mourgos SB00 B
& Ernst G000 C
9 Fay G000 C

10 Grant TO00 C

ORACLE

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

The example in the slide creates a nonequijoin to evaluate an employee’s salary grade. The
salary must be between any pair of the low and high salary ranges.

It is important to note that all employees appear exactly once when this query is executed. No
employee is repeated in the list. There are two reasons for this:

« None of the rows in the JOB_GRADES table contain grades that overlap. That is, the
salary value for an employee can lie only between the low salary and high salary values
of one of the rows in the salary grade table.

» All of the employees’ salaries lie within the limits provided by the job grade table. That
is, no employee earns less than the lowest value contained in the LOWEST SAL column
or more than the highest value contained in the HIGHEST SAL column.

Note: Other conditions (such as <= and >=) can be used, but BETWEEN is the simplest.
Remember to specify the low value first and the high value last when using the BETWEEN
condition. The Oracle server translates the BETWEEN condition to a pair of AND conditions.
Therefore, using BETWEEN has no performance benefits, but should be used only for logical

simplicity.
Table aliases have been specified in the slide example for performance reasons, not because
of possible ambiguity.

Oracle Database 12c: SQL Workshop | 7 -24

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS COMPUTER IS STRICTLY PROHIBITED

Lesson Agenda

 Types of JOINS and its syntax
« Natural join
« Join with the USING Clause
« Join with the ON Clause
« Self-join
* Nonequijoins
* OUTER join:
— LEFT OUTER join
— RIGHT OUTER join
— FULL OUTER join

« Cartesian product
— Cross join

ORACLE

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

Oracle Database 12c: SQL Workshop | 7 -25

Oracle University and Egabi Solutions use only

Returning Records with No Direct Match
Using OUTER Joins

DEPARTMENTS Equijoin with EMPLOYEES
DEPARTMENT_NAME [[] DEPARTMENT_ID B CEPARTMENT_ID B LAST_NAME
1 Administration 10 1 lﬂ.wmlen
2 Marketing 20 F2 20 Hartstein
3 Shipping s0 3 20 Fay
41T &0 4 110 Higgins
5 Sales &0 5 110 GCietz
6 Executive =i} B 20 King
7 Accounting 110 r 90 Eochhar
& Contracting I 190 g 90 De Haan
9 60 Hunold

1 10 &0 Ernst
There are no employees
in department 190. L e bl

19 80 Taylor

Employee “Grant” has I

not been assigned a
department ID.

ORACLE

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

If a row does not satisfy a join condition, the row does not appear in the query result.
In the slide example, a simple equijoin condition is used on the EMPLOYEES and
DEPARTMENTS tables to return the result on the right. The result set does not contain the
following:
» Department 1D 190, because there are no employees with that department 1D recorded
in the EMPLOYEES table

+ The employee with the last name of Grant, because this employee has not been
assigned a department ID

To return the department record that does not have any employees, or employees that do not
have an assigned department, you can use an OUTER join.

Oracle Database 12c¢: SQL Workshop | 7 - 26

INNER Versus OUTER Joins

* In SQL:1999, the join of two tables returning only matched
rows is called an INNER join.

« Ajoin between two tables that returns the results of the
INNER join as well as the unmatched rows from the left (or

right) table is called a left (or right) OUTER join.

« Ajoin between two tables that returns the results of an
INNER join as well as the results of a left and right join is a

full OUTER join.

ORACLE

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

Joining tables with the NATURAL JOIN, USING, or ON clauses results in an INNER join. Any

unmatched rows are not displayed in the output. To return the unmatched rows, you can use
an OUTER join. An OUTER join returns all rows that satisfy the join condition and also returns

some or all of those rows from one table for which no rows from the other table satisfy the join
condition.
There are three types of OUTER joins:

e LEFT OUTER

e RIGHT OUTER

e FULL OUTER

Oracle Database 12c¢: SQL Workshop | 7 -27

LEFT OUTER JOIN

SELECT e.last name, e.department id, d.department name
FROM employees e|LEFT OUTER JOIN |departments d
ON (e.department id = d.department id) ;

B asT_wame|f] DEPARTMENT_ID (] DEPARTMENT_MAME
1 1.n'l.ll'mln.*rwu | lﬂ.ﬁxdministration
2 Fay 20 Marketing
3 Hartstein 20 Marketing
4 Vargas S0 Shipping
5 Matos 50 Shipping
16 Eochhar 90 Executive
17 King 90 Executive
18 Cietz 110 Accounting
19 Higgins 110 Accounting
20 Cramt {rll {roall)

ORACLE

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

This query retrieves all the rows in the EMPLOYEES table, which is the left table, even if there
is no match in the DEPARTMENTS table.

Oracle Database 12c¢: SQL Workshop | 7 -28

RIGHT OUTER JOIN

SELECT e.last name, d.department id, d.department name
FROM employees e|RIGHT OUTER JOINIdepartments d

ON (e.department id = d.department id) ;
il LasT_wamE |f DEPARTMENT_ID [DEPARTMENT_NAME

1 Whalen | lu.Administraaitrn
2 Hartstein 20 Marketing
3 Fay 20 Marketing
4 Davies 50 Shipping
5 Wargas 50 Shipping
& Rajs 50 Shipping
7 Mourgos 50 Shipping
8 Matos 50 Shipping

18 Higgins 110 Accounting

19 GCietz 110 Accounting

20 {nully 190 Contracting

ORACLE

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

This query retrieves all the rows in the DEPARTMENTS table, which is the table at the right,
even if there is no match in the EMPLOYEES table.

Oracle Database 12c¢: SQL Workshop | 7 -29

FULL OUTER JOIN

SELECT e.last name, d.department id, d.department name
FROM employees e|FULL OUTER JOIN |departments d
ON (e.department id = d.department id) ;

LAST_NAME | DEPARTMENT_ID [§ DEPARTMENT_NAME |
1 King 90 Executive
2 Kochhar 90 Executive
3 De Haan 90 Executive
4 Hunold 60 IT
15 Grant {nu11) (nulld
16 Whalen 10 Administration
17 Hartstein 20 Marketing
18 Fay 20 Marketing
19 Higogins 110 Accounting
20 Gietz 110 Accounting
21 (null) 190 Contracting

ORACLE

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

This query retrieves all rows in the EMPLOYEES table, even if there is no match in the
DEPARTMENTS table. It also retrieves all rows in the DEPARTMENTS table, even if there is no
match in the EMPLOYEES table.

Oracle Database 12¢: SQL Workshop | 7 -30

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS COMPUTER IS STRICTLY PROHIBITED

Lesson Agenda

 Types of JOINS and its syntax
« Natural join
« Join with the USING Clause
« Join with the oN Clause
« Self-join
* Nonequijoins
* OUTER join:
— LEFT OUTER join
— RIGHT OUTER join
— FULL OUTER join

» Cartesian product
— Cross join

ORACLE

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

Oracle Database 12c: SQL Workshop | 7 - 31

Oracle University and Egabi Solutions use only

Cartesian Products

* A Cartesian product is formed when:
— Ajoin condition is omitted
— Ajjoin condition is invalid
— All rows in the first table are joined to all rows in the second
table

« Always include a valid join condition if you want to avoid a
Cartesian product.

ORACLE

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

When a join condition is invalid or omitted completely, the resultis a Cartesian product, in
which all combinations of rows are displayed. All rows in the first table are joined to all rows in
the second table.

A Cartesian product tends to generate a large number of rows and the result is rarely useful.
You should, therefore, always include a valid join condition unless you have a specific need to
combine all rows from all tables.

Cartesian products are useful for some tests when you need to generate a large number of
rows to simulate a reasonable amount of data.

Oracle Database 12c¢: SQL Workshop | 7 -32

Generating a Cartesian Product

EMPLOYEES (20 rows) DEPARTMENTS (8 rows)
@ empLoveeD [LasT_naME § DEPARTMENT_ID [DEPARTMENT_ID |[§ DEPARTMENT_NAME [{ LOCATIONID
1 200 Whalen 10 1 10 Administration 1700
2 201 Hartstein 20 2 20 Marketing 1800
3 202 Fay z0 3 50 Shipping 1500
4 205 Higgins 110 4 60 1T 1400
5 80 Sales 2500
10 176 Taylor 30 3 90 Executive 1700
7 110 Accounting 1700
20 178 Grant {null)
g 1590 Contracting 1700
Cartesian product: EMPLOYEE_ID | DEPARTMENT_ID [LOCATION_ID
1 200 10 1700
20 x 8 =160 rows 2 201 20 1700
21 200 10 1800
22 201 20 1800
159 176 80 1700
160 178 {nully 1700

ORACLE

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

A Cartesian product is generated if a join condition is omitted. The example in the slide
displays the employee last name and the department name from the EMPLOYEES and
DEPARTMENTS tables. Because no join condition was specified, all rows (20 rows) from the
EMPLOYEES table are joined with all rows (8 rows) in the DEPARTMENTS table, thereby
generating 160 rows in the output.

Oracle Database 12¢: SQL Workshop | 7 -33

Creating Cross Joins

« The CROSS JOIN clause produces the cross-product of
two tables.

« This is also called a Cartesian product between the two
tables.

SELECT last name, department name
FROM employees
|CROSS JOIN departmentsl;

B LesT_name { DEPARTMENT_MAME
1 Abel Administration
2 Davies Administration
3 De Haan Administration
4 Ernst Administration
S Fay Administration
158 Vargas Contracting
159 Whalen Contracting
160 Zlotkey Contracting

ORACLE

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

The example in the slide produces a Cartesian product of the EMPLOYEES and DEPARTMENTS
tables.

The CROSS JOIN technique can be applied to many situations usefully. For example, to
return total labor cost by office by month, even if month X has no labor cost, you can do a
cross join of Offices with a table of all Months.

It is a good practice to explicitly state CROSS JOIN in your SELECT when you intend to create

a Cartesian product. Therefore, it is very clear that you intend for this to happen and it is not
the result of missing joins.

Oracle Database 12c¢: SQL Workshop | 7 - 34

Quiz

If you join a table to itself, what kind of join are you using?
Nonequijoins

Left OUTER join

Right OUTER join

Full OUTER join

Self joins

Natural joins

Cartesian products

@ "0 a0 T oW

ORACLE

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

Answer: e

Oracle Database 12c¢: SQL Workshop | 7 -35

Summary

In this lesson, you should have learned how to use joins to
display data from multiple tables by using:

« Equijoins

* Nonequijoins

* OUTER joins

« Self-joins

« Crossjoins

« Natural joins

« Full (or two-sided) OUTER joins

ORACLE

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

There are multiple ways to join tables.
Types of Joins

« Equijoins

* Nonequijoins

* OUTER joins

» Self-joins

» Crossjoins

* Natural joins

* Full (or two-sided) OUTER joins
Cartesian Products

A Cartesian product results in the display of all combinations of rows. This is done by either
omitting the WHERE clause or specifying the CROSS JOIN clause.

Table Aliases
« Table aliases speed up database access.
« Table aliases can help to keep SQL code smaller by conserving memory.
« Table aliases are sometimes mandatory to avoid column ambiguity.

Oracle Database 12c¢: SQL Workshop | 7 -36

Practice 7: Overview

This practice covers the following topics:
« Joining tables using an equijoin
« Performing outer and self-joins
« Adding conditions

ORACLE

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

This practice is intended to give you experience in extracting data from more than one table
using the SQL:1999—compliant joins.

Oracle Database 12c¢: SQL Workshop | 7 - 37

Ajuo asn suoin|og 1geb3 pue AlsiaAlun ajoelO

a3LigIHOdd A1LOIE1S SI d3LNdNOD SIHL INOYA STVIFTILVIN LIM® ONIAJOD "ATNO WOOHSSV1D SIHL NI 3SN dNOA d04 34V STIVIHILYIN LIMS 3SIHL

Using Subqueries to Solve Queries

ORACLE

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

Objectives

After completing this lesson, you should be able to do the
following:
* Define subqueries
« Describe the types of problems that the subqueries can
solve
- List the types of subqueries
* Write single-row and multiple-row subqueries

ORACLE

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

In this lesson, you learn about the more advanced features of the SELECT statement. You can
write subqueries in the WHERE clause of another SQL statement to obtain values based on an
unknown conditional value. This lesson also covers single-row subqueries and multiple-row

subqueries.

Oracle Database 12c¢: SQL Workshop | 8 -2

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS COMPUTER IS STRICTLY PROHIBITED

Lesson Agenda

« Subquery: Types, syntax, and guidelines
« Single-row subqueries:

— Group functions in a subquery

— HAVING clause with subqueries

* Multiple-row subqueries
— Use ALL or ANY operator.

« Using the EXISTS operator
* Null values in a subquery

ORACLE

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

Oracle Database 12¢: SQL Workshopl 8 -3

Oracle University and Egabi Solutions use only

Using a Subquery to Solve a Problem

Who has a salary greater than Abel's?

Main query:

Which employees have salaries greater than Abel’s

“1' '7 salary? T

Subquery: ‘

Q,‘? What is Abel’s salary?

[

ORACLE

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

Suppose you want to write a query to find out who earns a salary greater than Abel’s salary.

To solve this problem, you need two queries: one to find how much Abel earns, and a second
query to find who earns more than that amount.

You can solve this problem by combining the two queries, placing one query inside the other
query.

The inner query (or subquery) returns a value that is used by the outer query (or main query).
The execution plan of the query depends on the optimizer's decision on the structure of the
subquery.

Oracle Database 12c¢: SQL Workshop| 8 -4

Subquery Syntax

- The subquery (inner query) executes before the main
query (outer query).
« The result of the subquery is used by the main query.

SELECT select list

FROM table

WHERE expr operator
(SELECT select list
FROM table) ;

ORACLE

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

A subquery is a SELECT statement that is embedded in the clause of another SELECT
statement. You can build powerful statements out of simple ones by using subqueries. They
can be very useful when you need to select rows from a table with a condition that depends
on the data in the table itself.

You can place the subquery in a number of SQL clauses, including the following:
e WHERE clause
e HAVING clause
e FROM clause
In the syntax:
operatorincludes a comparison condition such as >, =, or IN

Note: Comparison conditions fall into two classes: single-row operators (>, =, >=, <, <>, <=)
and multiple-row operators (IN, ANY, ALL, EXISTS).

The subquery is often referred to as a nested SELECT, sub-SELECT, or inner SELECT
statement. The subquery generally executes first, and its output is used to complete the query
condition for the main (or outer) query.

Oracle Database 12c¢: SQL Workshop| 8 -5

Using a Subquery

SELECT last name, salary
FROM employees

WHERE salary > 11000 <
(SELECT salary

FROM employees

WHERE last name = 'Abel')

B LasT_name [§] saLary
1 King 24000
2 Kochhar 17000
3 De Haan 17000
4 Hartstein 13000
5 Higgins 12008

ORACLE

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

In the slide, the inner query determines the salary of employee Abel. The outer query takes

the result of the inner query and uses this result to display all the employees who earn more
than employee Abel.

Oracle Database 12c¢: SQL Workshop| 8 -6

Rules for Using Subqueries

* Enclose subqueries in parentheses.

« Place subqueries on the right side of the comparison
condition for readability. (However, the subquery can
appear on either side of the comparison operator.)

« Use single-row operators with single-row subqueries and
multiple-row operators with multiple-row subqueries.

ORACLE

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

* A subquery must be enclosed in parentheses.

» Place the subquery on the right side of the comparison condition for readability.
However, the subquery can appear on either side of the comparison operator.

» Two classes of comparison conditions are used in subqueries: single-row operators and
multiple-row operators.

Oracle Database 12¢: SQL Workshopl 8 -7

Types of Subqueries

- Single-row subquery

Main query
returns
Subquery » ST CLERK
« Multiple-row subquery
Main query
returns
Subquery , ST_CLERK
SA MAN

ORACLE
Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

» Single-row subqueries: Queries that return only one row from the inner SELECT
statement

« Multiple-row subqueries: Queries that return more than one row from the inner
SELECT statement

Note: There are also multiple-column subqueries, which are queries that return more than
one column from the inner SELECT statement. These are covered in the Oracle Database:
SQL Workshop Il course.

Oracle Database 12c¢: SQL Workshop| 8 -8

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS COMPUTER IS STRICTLY PROHIBITED

Lesson Agenda

« Subquery: Types, syntax, and guidelines
- Single-row subqueries:

— Group functions in a subquery

— HAVING clause with subqueries

* Multiple-row subqueries
— Use ALL or ANY operator

« Using the EXISTS operator
* Null values in a subquery

ORACLE

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

Oracle Database 12¢: SQL Workshopl 8-9

Oracle University and Egabi Solutions use only

Single-Row Subqueries

* Return only one row
« Use single-row comparison operators

Operator Meaning

= Equal to

> Greater than

>= Greater than or equal to
< Less than

<= Less than or equal to
<> Not equal to

ORACLE

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

A single-row subquery is one that returns one row from the inner SELECT statement. This
type of subquery uses a single-row operator. The slide gives a list of single-row operators.

Example
Display the employees whose job ID is the same as that of employee 141:
SELECT last name, job id
FROM employees
WHERE job id =
(SELECT job_id
FROM employees
WHERE employee id = 141);

B LasT_mame | joBiD
1 Rajs ST_CLERK
Z Dawies ST_CLERK
3 Matas ST_CLERK
4 ‘arngas ST_CLERK

Oracle Database 12¢: SQL Workshop!| 8 -10

Executing Single-Row Subqueries

SELECT last name, job id, salary

FROM employees

WHERE job id = < 1 SA_REP
(SELECT job id

FROM employees

WHERE last name = 'Taylor')
AND salary > « . 8600

(SELECT salary

FROM employees

WHERE last name = 'Taylor') ;

d LasT_name|f§ JoeiD [§ saLary
1 Abel 5A_REP 11000

ORACLE

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

A SELECT statement can be considered as a query block. The example in the slide displays
employees who do the same job as “Taylor,” but earn more salary than him.

The example consists of three query blocks: the outer query and two inner queries. The inner
query blocks are executed first, producing the query results SA_REP and 8600, respectively.

The outer query block is then processed and uses the values that were returned by the inner

queries to complete its search conditions.

Both inner queries return single values (SA_REP and 8600, respectively), so this SQL
statement is called a single-row subquery.

Note: The outer and inner queries can get data from different tables.

Oracle Database 12¢: SQL Workshop | 8 -11

Using Group Functions in a Subquery

SELECT last name, job id, salary
FROM employees

WHERE salary = <+ 2°%0
(SELECT MIN(salary)
FROM employees) ;

B vast_mame|l josuo B savary
1 Wargas ST_CLERE 2500

ORACLE

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

You can display data from a main query by using a group function in a subquery to return a
single row. The subquery is in parentheses and is placed after the comparison condition.
The example in the slide displays the employee last name, job ID, and salary of all

employees whose salary is equal to the minimum salary. The MIN group function returns a
single value (2500) to the outer query.

Oracle Database 12c¢: SQL Workshop | 8 -12

HAVING Clause with Subqueries

The Oracle server executes the subqueries first.

 The Oracle server returns results into the HAVING clause
of the main query.

SELECT department id, MIN(salary)
FROM employees

GROUP BY department id
[HAVING MIN (salary)| > <«
(SELECT MIN (salary)
FROM employees
WHERE department id = 50)|;

2500

@ DEPARTMENTID [[§ MIN(SALARY)
1 (1 7000
2 20 17000
3 20 H000
4 110 8300
5 80 8600
6 60 4200
7 10 4400

ORACLE

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

You can use subqueries not only in the WHERE clause, but also in the HAVING clause. The
Oracle server executes the subquery and the results are returned into the HAVING clause of
the main query.

The SQL statement in the slide displays all the departments that have a minimum salary
greater than that of department 50.

Example

Find the job with the lowest average salary.
SELECT job_id, AVG(salary)

FROM employees
GROUP BY job id
HAVING AVG (salary) = (SELECT MIN (AVG (salary))

FROM employees
GROUP BY job id) ;

Job_ID (B aveisalary
1 ST_CLERK 7925

Oracle Database 12c¢: SQL Workshop| 8 -13

What Is Wrong with This Statement?

SELECT employee id, last name
FROM employees
WHERE |sa1ary|=

(SELECT MIN(salary)
FROM employees
|SROUP BY department_id)|;

ORA-01427: single-row subquery returns more than one row))
01427, 00000 - "single-row subquery returns more than one row' Smgle—row operator with

*Lause: ;
multiple-row subquer
*Action: P q y

ORACLE

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

A common error with subqueries occurs when more than one row is returned for a single-row
subquery.
In the SQL statement in the slide, the subquery contains a GROUP BY clause, which implies

that the subquery will return multiple rows, one for each group that it finds. In this case, the
results of the subquery are 4400, 6000, 2500, 4200, 7000, 17000, and 8300.

The outer query takes those results and uses them in its WHERE clause. The WHERE clause
contains an equal (=) operator, a single-row comparison operator that expects only one value.
The = operator cannot accept more than one value from the subquery and, therefore,
generates the error.

To correct this error, change the = operator to IN.

Oracle Database 12c¢: SQL Workshop | 8 -14

No Rows Returned by the Inner Query

SELECT last name, job id
FROM employees
WHERE job id =

(SELECT job id
FROM employees
WHERE last name = 'Haas');

l}Qutr'r Result X
o 3 @ @ s0L | Al Rows Ferched: 0in 0.003 seconas OUDQuEry returns no rows because
[8 s J§ soso | there is no employee named “Haas.”

ORACLE

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

Another common problem with subqueries occurs when no rows are returned by the inner
query.
In the SQL statement in the slide, the subquery contains a WHERE clause. Presumably, the

intention is to find the employee whose name is Haas. The statement is correct, but selects

no rows when executed because there is no employee named Haas. Therefore, the subquery
returns no rows.

The outer query takes the results of the subquery (null) and uses these results in its WHERE
clause. The outer query finds no employee with a job ID equal to NULL, and so returns no

rows. If a job existed with a value of null, the row is not returned because comparison of two
null values yields a null; therefore, the WHERE condition is not true.

Oracle Database 12c¢: SQL Workshop| 8 -15

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS COMPUTER IS STRICTLY PROHIBITED

Lesson Agenda

« Subquery: Types, syntax, and guidelines
« Single-row subqueries:

— Group functions in a subquery

— HAVING clause with subqueries

* Multiple-row subqueries
— Use IN, ALL, Or ANY

* Using the EXISTS operator
* Null values in a subquery

ORACLE

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

Oracle Database 12c: SQL Workshop| 8 -16

Oracle University and Egabi Solutions use only

Multiple-Row Subqueries

* Return more than one row
« Use multiple-row comparison operators

Operator Meaning

IN Equal to any member in the list

ANY Must be preceded by =, !=, >, <, <=, >=. Returns
TRUE if at least one element exists in the result-set
of the Subquery for which the relation is TRUE.

ALL Must be preceded by =, !=, >, <, <=, >=. Returns
TRUE if the relation is TRUE for all elements in the
result set of the Subquery.

ORACLE

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

Subqueries that return more than one row are called multiple-row subqueries. You use a
multiple-row operator, instead of a single-row operator, with a multiple-row subquery. The
multiple-row operator expects one or more values:

SELECT last name, salary, department id

FROM employees

WHERE salary IN (SELECT MIN (salary)
FROM employees
GROUP BY department id) ;

Example
Find the employees who earn the same salary as the minimum salary for each department.

The inner query is executed first, producing a query result. The main query block is then
processed and uses the values that were returned by the inner query to complete its search
condition. In fact, the main query appears to the Oracle server as follows:

SELECT last name, salary, department id

FROM employees

WHERE salary IN (2500, 4200, 4400, 6000, 7000, 8300,
8600, 17000);

Oracle Database 12c¢: SQL Workshop | 8 -17

Using the ANY Operator
in Multiple-Row Subqueries

SELECT employee id, last name, job id, salary
FROM employees 9000, 6000, 4200

WHERE salary <[ANY] ,

(SELECT salary

FROM employees

WHERE Jjob _id = 'IT PROG')
AND job_id <> 'IT PROG';

B empioveE D | LasT_mame | josip |§ saLary

1 144 Vargas ST_CLERK 2500

2 143 Matos ST_CLERE. Za00

3 142 Davies ST_CLERK. 3100

4 141 Rajs ST_CLERK 500

5 200 Whalen AD_ASST 4400

9 206 Gietz AC_ACCOUNT 300

10 176 Taylor A _REP ga00

ORACLE

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

The ANY operator (and its synonym, the SOME operator) compares a value to each value
returned by a subquery. The slide example displays employees who are not IT programmers
and whose salary is less than that of any IT programmer. The maximum salary that a
programmer earns is $9,000.

» <ANY means less than the maximum.
« >ANY means more than the minimum.
* =ANY is equivalentto IN.

Oracle Database 12c¢: SQL Workshop | 8 -18

Using the ALL Operator
in Multiple-Row Subqueries

SELECT employee id, last name, job id, salary
FROM employees 9000, 6000, 4200

WHERE salary <[ALL] ,

(SELECT salary

FROM employees

WHERE Jjob_id = 'IT PROG')
AND job_id <> 'IT PROG';
B empoveeo | rasT_mame |§ joe_io |f saLary
1 141 Rajs ST_CLERK 3500
2 142 Davies ST_CLERE. 3100
3 143 Matos ST_CLERK. 2600
4 144 Vargas ST_CLERK 2500

ORACLE

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

The ALL operator compares a value to every value returned by a subquery. The example in

the slide displays employees whose salary is less than the salary of all employees with a job
IDof IT PROG and whose job is not IT PROG.

>ALL means more than the maximum and <ALL means less than the minimum.
The NOT operator can be used with IN, ANY, and ALL operators.

Oracle Database 12c¢: SQL Workshop| 8 -19

Using the EXISTs Operator

SELECT employee id,salary, last name FROM employees M
WHERE EXISTS

(SELECT employee id FROM employees W

WHERE (W.manager id=M.employee id) AND W.salary > 10000) ;

@ empLovEEID [SALARY|[§ LAST_MAME
100 24000 Eing
149 10500 21 otkey
101 17000 Kochhar

W

SELECT * FROM departments

WHERE NOT EXISTS

(SELECT * FROM employees

WHERE employees.department id=departments.department id) ;

lﬂ DEF‘ARTMENTJDE] DEP&P.THENT_N&ME[Q HAN&CER_JDH LOCATION_ID
1 190 Contracting {rally 1700

ORACLE

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

The EXISTS operator is used in queries where the query result depends on whether or not
certain rows exist in a table. It evaluates to TRUE if the subquery returns at least one row.

The first example in the slide displays managers in the EMPLOYEES table who earns a salary
more than 10000.For each row in EMPLOYEES table, the condition is checked whether there
exists a manager_id who earns a salary more than 10000.

The second example in the slide displays departments that have no employees. For each row
in the DEPARTMENTS table, the condition is checked whether there exists a row in the
EMPLOYEES table that has the same department ID. In case no such row exists, the condition

is satisfied for the row under consideration and it is selected. If there exists a corresponding
row in the EMPLOYEES table, the row is not selected.

Oracle Database 12c¢: SQL Workshop | 8 -20

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS COMPUTER IS STRICTLY PROHIBITED

Lesson Agenda

« Subquery: Types, syntax, and guidelines
« Single-row subqueries:

— Group functions in a subquery

— HAVING clause with subqueries

* Multiple-row subqueries
— Use ALL or ANY operator

« Using the EXISTS operator
* Null values in a subquery

ORACLE

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

Oracle Database 12c: SQL Workshop | 8 - 21

Oracle University and Egabi Solutions use only

Null Values in a Subquery

SELECT emp.last name

FROM employees emp

WHERE emp.employee id NOT IN
(SELECT mgr.manager id
FROM employees mgr) ;

[}Quew Result =
A 5§ B saL | AlRows Fetched: 0in 0,051 seconds Subquery returns no rows because
one of the values returned by a

subquery is Null.

ORACLE

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

The SQL statement in the slide attempts to display all the employees who do not have any
subordinates. Logically, this SQL statement should have returned 12 rows. However, the SQL
statement does not return any rows. One of the values returned by the inner query is a null
value and, therefore, the entire query returns no rows.

The reason is that all conditions that compare a null value result in a null. So whenever null
values are likely to be part of the results set of a subquery, do not use the NOT IN operator.
The NOT IN operatoris equivalentto <> ALL.

Notice that the null value as part of the results set of a subquery is not a problem if you use
the IN operator. The IN operatoris equivalentto =ANY. For example, to display the
employees who have subordinates, use the following SQL statement:
SELECT emp.last name
FROM employees emp
WHERE emp.employee id 1IN
(SELECT mgr.manager id
FROM employees mgr) ;

Oracle Database 12c¢: SQL Workshop | 8 -22

Alternatively, a WHERE clause can be included in the subquery to display all employees who
do not have any subordinates:
SELECT last name FROM employees
WHERE employee id NOT IN
(SELECT manager id
FROM employees
WHERE manager_ id IS NOT NULL) ;

Oracle Database 12c¢: SQL Workshop | 8 -23

Quiz

Using a subquery is equivalent to performing two sequential
queries and using the result of the first query as the search
values in the second query.

a. True
b. False

ORACLE

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

Answer: a

Oracle Database 12c¢: SQL Workshop | 8 -24

Summary

In this lesson, you should have learned how to:
- |dentify when a subquery can help solve a problem
« Write subqueries when a query is based on unknown

values
SELECT select list
FROM table
WHERE expr operator
(SELECT select list
FROM table) ;

ORACLE

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

In this lesson, you should have learned how to use subqueries. A subquery is a SELECT
statement that is embedded in the clause of another SQL statement. Subqueries are useful
when a query is based on a search criterion with unknown intermediate values.
Subqueries have the following characteristics:
« Can pass one row of data to a main statement that contains a single-row operator, such
as =, <>, >, >=,<,0r=
« Can pass multiple rows of data to a main statement that contains a multiple-row
operator, such as IN
» Are processed first by the Oracle server, after which the WHERE or HAVING clause uses
the results
« Can contain group functions

Oracle Database 12c¢: SQL Workshop | 8 - 25

Practice 8: Overview

This practice covers the following topics:

« Creating subqueries to query values based on unknown
criteria

« Using subqueries to find out the values that exist in one set
of data and not in another

ORACLE

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

In this practice, you write complex queries using nested SELECT statements.

For practice questions, you may want to create the inner query first. Make sure that it runs
and produces the data that you anticipate before you code the outer query.

Oracle Database 12c¢: SQL Workshop | 8 - 26

	Oracle Database 12c: SQL Workshop I - Student Guide - Volume I
	Table of Contents
	Lesson 1: Introduction
	Lesson Objectives
	Lesson Agenda
	Course Objectives
	Course Agenda
	Appendices and Practices Used in the Course
	Lesson Agenda
	Oracle Database 12c: Focus Areas
	Oracle Database 12c
	Oracle Fusion Middleware
	Oracle Enterprise Manager Cloud Control
	Oracle Cloud
	Oracle Cloud Services
	Cloud Deployment Models
	Lesson Agenda
	Relational and Object Relational Database Management Systems
	Data Storage on Different Media
	Relational Database Concept
	Definition of a Relational Database
	Data Models
	Entity Relationship Model
	Entity Relationship Modeling Conventions
	Relating Multiple Tables
	Relational Database Terminology
	Lesson Agenda
	Using SQL to Query Your Database
	SQL Statements Used in the Course
	Development Environments for SQL
	Lesson Agenda
	Human Resources (HR) Schema
	Tables Used in the Course
	Lesson Agenda
	Oracle Database Documentation
	Additional Resources
	Summary
	Practice 1: Overview

	Lesson 2: Retrieving Data Using the SQL SELECT Statement
	Objectives
	Lesson Agenda
	Capabilities of SQL SELECT Statements
	Basic SELECT Statement
	Selecting All Columns
	Selecting Specific Columns
	Writing SQL Statements
	Column Heading Defaults
	Lesson Agenda
	Arithmetic Expressions
	Using Arithmetic Operators
	Operator Precedence
	Defining a Null Value
	Null Values in Arithmetic Expressions
	Lesson Agenda
	Defining a Column Alias
	Using Column Aliases
	Lesson Agenda
	Concatenation Operator
	Literal Character Strings
	Using Literal Character Strings
	Alternative Quote (q) Operator
	Duplicate Rows
	Lesson Agenda
	Displaying the Table Structure
	Using the DESCRIBE Command
	Quiz
	Summary
	Practice 2: Overview

	Lesson 3: Restricting and Sorting Data
	Objectives
	Lesson Agenda
	Limiting Rows Using a Selection
	Limiting the Rows That Are Selected
	Using the WHERE Clause
	Character Strings and Dates
	Comparison Operators
	Using Comparison Operators
	Range Conditions Using the BETWEEN Operator
	Membership Condition Using the IN Operator
	Pattern Matching Using the LIKE Operator
	Combining Wildcard Characters
	Using the NULL Conditions
	Defining Conditions Using the Logical Operators
	Using the AND Operator
	Using the OR Operator
	Using the NOT Operator
	Lesson Agenda
	Rules of Precedence
	Lesson Agenda
	Using the ORDER BY Clause
	Sorting
	Lesson Agenda
	SQL Row Limiting Clause
	Using SQL Row Limiting Clause in a Query
	SQL Row Limiting Clause Example
	Lesson Agenda
	Substitution Variables
	Using the Single-Ampersand Substitution Variable
	Character and Date Values with Substitution Variables
	Specifying Column Names
	Using the Double-Ampersand Substitution Variable
	Lesson Agenda
	Using the DEFINE Command
	Using the VERIFY Command
	Quiz
	Summary
	Practice 3: Overview

	Lesson 4: Using Single-Row Functions to Customize Output
	Objectives
	Lesson Agenda
	SQL Functions
	Two Types of SQL Functions
	Single-Row Functions
	Lesson Agenda
	Character Functions
	Case-Conversion Functions
	Using Case-Conversion Functions
	Character-Manipulation Functions
	Using the Character-Manipulation Functions
	Lesson Agenda
	Nesting Functions
	Nesting Functions: Example
	Lesson Agenda
	Numeric Functions
	Using the ROUND Function
	Using the TRUNC Function
	Using the MOD Function
	Lesson Agenda
	Working with Dates
	RR Date Format
	Using the SYSDATE Function
	Arithmetic with Dates
	Using Arithmetic Operators with Dates
	Lesson Agenda
	Date-Manipulation Functions
	Using Date Functions
	Using ROUND and TRUNC Functions with Dates
	Quiz
	Summary
	Practice 4: Overview

	Lesson 5: Using Conversion Functions and Conditional Expressions
	Objectives
	Lesson Agenda
	Conversion Functions
	Implicit Data Type Conversion
	Explicit Data Type Conversion
	Lesson Agenda
	Using the TO_CHAR Function with Dates
	Elements of the Date Format Model
	Using the TO_CHAR Function with Dates
	Using the TO_CHAR Function with Numbers
	Using the TO_NUMBER and TO_DATE Functions
	Using TO_CHAR and TO_DATE Functions with the RR Date Format
	Lesson Agenda
	General Functions
	NVL Function
	Using the NVL Function
	Using the NVL2 Function
	Using the NULLIF Function
	Using the COALESCE Function
	Lesson Agenda
	Conditional Expressions
	CASE Expression
	Using the CASE Expression
	DECODE Function
	Using the DECODE Function
	Quiz
	Summary
	Practice 5: Overview

	Lesson 6: Reporting Aggregated Data Using the Group Functions
	Objectives
	Lesson Agenda
	What Are Group Functions?
	Types of Group Functions
	Group Functions: Syntax
	Using the AVG and SUM Functions
	Using the MIN and MAX Functions
	Using the COUNT Function
	Using the DISTINCT Keyword
	Group Functions and Null Values
	Lesson Agenda
	Creating Groups of Data
	Creating Groups of Data: GROUP BY Clause Syntax
	Using the GROUP BY Clause
	Grouping by More Than One Column
	Using the GROUP BY Clause on Multiple Columns
	Illegal Queries Using Group Functions
	Restricting Group Results
	Restricting Group Results with the HAVING Clause
	Using the HAVING Clause
	Lesson Agenda
	Nesting Group Functions
	Quiz
	Summary
	Practice 6: Overview

	Lesson 7: Displaying Data from Multiple Tables Using Joins
	Objectives
	Lesson Agenda
	Obtaining Data from Multiple Tables
	Types of Joins
	Joining Tables Using SQL:1999 Syntax
	Qualifying Ambiguous Column Names
	Lesson Agenda
	Creating Natural Joins
	Retrieving Records with Natural Joins
	Creating Joins with the USING Clause
	Joining Column Names
	Retrieving Records with the USING Clause
	Using Table Aliases with the USING Clause
	Creating Joins with the ON Clause
	Retrieving Records with the ON Clause
	Creating Three-Way Joins with the ON Clause
	Applying Additional Conditions to a Join
	Lesson Agenda
	Joining a Table to Itself
	Self-Joins Using the ON Clause
	Lesson Agenda
	Nonequijoins
	Retrieving Records with Nonequijoins
	Lesson Agenda
	Returning Records with No Direct Match Using OUTER Joins
	INNER Versus OUTER Joins
	LEFT OUTER JOIN
	RIGHT OUTER JOIN
	FULL OUTER JOIN
	Lesson Agenda
	Cartesian Products
	Generating a Cartesian Product
	Creating Cross Joins
	Quiz
	Summary
	Practice 7: Overview

	Lesson 8: Using Subqueries to Solve Queries
	Objectives
	Lesson Agenda
	Using a Subquery to Solve a Problem
	Subquery Syntax
	Using a Subquery
	Rules for Using Subqueries
	Types of Subqueries
	Lesson Agenda
	Single-Row Subqueries
	Executing Single-Row Subqueries
	Using Group Functions in a Subquery
	HAVING Clause with Subqueries
	What Is Wrong with This Statement?
	No Rows Returned by the Inner Query
	Lesson Agenda
	Multiple-Row Subqueries
	Using the ANY Operator in Multiple-Row Subqueries
	Using the ALL Operator in Multiple-Row Subqueries
	Using the EXISTS Operator
	Lesson Agenda
	Null Values in a Subquery
	Quiz
	Summary
	Practice 8: Overview

