Oracle Database 11g: Develop
PL/SQL Program Units

Volume Il « Student Guide

D49986GC12
Edition 1.2
April 2009
D59430

ORACLE’

Author
Lauran K. Serhal

Technical Contributors

and Reviewers

Don Bates

Claire Bennett
Zarko Cesljas
Purjanti Chang
Ashita Dhir

Peter Driver
Gerlinde Frenzen
Steve Friedberg
Nancy Greenberg
Thomas Hoogerwerf
Akira Kinutani
Chaitanya Koratamaddi
Timothy Leblanc
Bryn Llewellyn
Lakshmi Narapareddi
Essi Parast

Alan Paulson
Manish Pawar
Srinivas Putrevu
Bryan Roberts

Grant Spencer
Tulika Srivastava
Glenn Stokol

Jenny Tsai-Smith
Lex Van Der Werff
Ted Witiuk

Graphic Designer
Asha Thampy

Editors

Nita Pavitran
Aju Kumar

Publisher

Sheryl Domingue
Syed Ali

Copyright © 2009, Oracle. All rights reserved.

Disclaimer

This document contains proprietary information and is protected by copyright and
other intellectual property laws. You may copy and print this document solely for your
own use in an Oracle training course. The document may not be modified or altered in
any way. Except where your use constitutes "fair use" under copyright law, you may
not use, share, download, upload, copy, print, display, perform, reproduce, publish,
license, post, transmit, or distribute this document in whole or in part without the
express authorization of Oracle.

The information contained in this document is subject to change without notice. If you
find any problems in the document, please report them in writing to: Oracle University,
500 Oracle Parkway, Redwood Shores, California 94065 USA. This document is not
warranted to be error-free.

Restricted Rights Notice

If this documentation is delivered to the United States Government or anyone using
the documentation on behalf of the United States Government, the following notice is
applicable:

U.S. GOVERNMENT RIGHTS

The U.S. Government's rights to use, modify, reproduce, release, perform, display, or
disclose these training materials are restricted by the terms of the applicable Oracle
license agreement and/or the applicable U.S. Government contract.

Trademark Notice

Oracle is a registered trademark of Oracle Corporation and/or its affiliates. Other
names may be trademarks of their respective owners.

Contents

Preface

1 Introduction
Lesson Objectives 1-2
Lesson Agenda 1-3
Course Objectives 1-4
Course Agenda 1-5
The Human Resources (HR) Schema That Is Used in This Course 1-7
Class Account Information 1-8
Appendixes Used in This Course 1-9
PL/SQL Development Environments 1-10
What Is Oracle SQL Developer? 1-11
Coding PL/SQL in SQL*Plus 1-12
Coding PL/SQL in Oracle JDeveloper 1-13
Lesson Agenda 1-14
Starting SQL Developer and Creating a Database Connection 1-15
Creating Schema Objects 1-16
Using the SQL Worksheet 1-17
Executing SQL Statements 1-19
Saving SQL Scripts 1-20
Executing Saved Script Files: Method 1 1-21
Executing Saved SQL Scripts: Method 2 1-22
Creating an Anonymous Block 1-23
Editing the PL/SQL Code 1-24
Lesson Agenda 1-25
Oracle 11g SQL and PL/SQL Documentation 1-26
Additional Resources 1-27
Summary 1-28
Practice 1 Overview: Getting Started 1-29

2 Creating Procedures
Objectives 2-2
Lesson Agenda 2-3
Creating a Modularized Subprogram Design 2-4
Creating a Layered Subprogram Design 2-5
Modularizing Development with PL/SQL Blocks 2-6

Anonymous Blocks: Overview 2-7

PL/SQL Execution Environment 2-8

What Are PL/SQL Subprograms? 2-9

The Benefits of Using PL/SQL Subprograms 2-10

Differences Between Anonymous Blocks and Subprograms 2-11

Lesson Agenda 2-12

What Are Procedures? 2-13

Creating Procedures: Overview 2-14

Creating Procedures with the SQL CREATE OR REPLACE Statement 2-15

Creating Procedures Using SQL Developer 2-16

Compiling Procedures and Displaying Compilation Errors in SQL Developer 2-17

Correcting Compilation Errors in SQL Developer 2-18

Naming Conventions of PL/SQL Structures Used in This Course 2-19

What Are Parameters and Parameter Modes? 2-20

Formal and Actual Parameters 2-21

Procedural Parameter Modes 2-22

Comparing the Parameter Modes 2-23

Using the IN Parameter Mode: Example 2-24

Using the ouT Parameter Mode: Example 2-25

Using the IN 0OUT Parameter Mode: Example 2-26

Viewing the OUT Parameters: Using the DBMS OUTPUT.PUT LINE
Subroutine 2-27

Viewing oUT Parameters: Using SQL*Plus Host Variables 2-28

Available Notations for Passing Actual Parameters 2-29

Passing Actual Parameters: Creating the add_dept Procedure 2-30

Passing Actual Parameters: Examples 2-31

Using the DEFAULT Option for the Parameters 2-32

Calling Procedures 2-34

Calling Procedures Using SQL Developer 2-35

Lesson Agenda 2-36

Handled Exceptions 2-37

Handled Exceptions: Example 2-38

Exceptions Not Handled 2-39

Exceptions Not Handled: Example 2-40

Removing Procedures: Using the DROP SQL Statement or SQL Developer 2-41

Viewing Procedure Information Using the Data Dictionary Views 2-42

Viewing Procedure Information Using SQL Developer 2-43

Quiz 2-44

Summary 2-45

Practice 2 Overview: Creating,
Compiling, and Calling Procedures 2-46

Creating Functions

Objectives 3-2

Overview of Stored Functions 3-3

Creating Functions 3-4

The Difference Between Procedures and Functions 3-5

Creating and Running Functions: Overview 3-6

Creating and Invoking a Stored Function Using the CREATE FUNCTION Statement:
Example 3-7

Using Different Methods for Executing Functions 3-8

Creating and Compiling Functions Using SQL Developer 3-10

Executing Functions Using SQL Developer 3-11

Advantages of User-Defined Functions in SQL Statements 3-12

Using a Function in a SQL Expression: Example 3-13

Calling User-Defined Functions in SQL Statements 3-14

Restrictions When Calling Functions from SQL Expressions 3-15

Controlling Side Effects When Calling Functions from SQL Expressions 3-16

Restrictions on Calling Functions from SQL: Example 3-17

Named and Mixed Notation from SQL 3-18

Named and Mixed Notation from SQL: Example 3-19

Removing Functions: Using the DROP SQL Statement or SQL Developer 3-20

Viewing Functions Using Data Dictionary Views 3-21

Quiz 3-22

Summary 3-23

Practice 3: Overview 3-24

Creating Packages

Objectives 4-2

Lesson Agenda 4-3

What Are PL/SQL Packages? 4-4

Advantages of Using Packages 4-5

Components of a PL/SQL Package 4-7

The Visibility of a Package’s Components 4-8

Developing PL/SQL Packages: Overview 4-9

Lesson Agenda 4-10

Creating the Package Specification: Using the CREATE PACKAGE Statement 4-11
Creating the Package Specification: Using SQL Developer 4-12
Creating the Package Body: Using SQL Developer 4-13
Example of a Package Specification: comm pkg 4-14

Creating the Package Body 4-15

Example of a Package Body: comm pkg 4-16

Invoking the Package Subprograms: Examples 4-17

Invoking the Package Subprograms: Using SQL Developer 4-18
Creating and Using Bodiless Packages 4-19

Removing Packages: Using SQL Developer or the SQL DROP Statement 4-20
Viewing Packages Using the Data Dictionary 4-21

Guidelines for Writing Packages 4-22

Quiz 4-23

Summary 4-24

Practice 4 Overview: Creating and Using Packages 4-25

Working with Packages

Objectives 5-2

Lesson Agenda 5-3

Overloading Subprograms in PL/SQL 5-4

Overloading Procedures Example: Creating the Package Specification 5-6
Overloading Procedures Example: Creating the Package Body 5-7
Overloading and the STANDARD Package 5-8

lllegal Procedure Reference 5-9

Using Forward Declarations to Solve lllegal Procedure Reference 5-10
Initializing Packages 5-11

Using Package Functions in SQL 5-12

Controlling Side Effects of PL/SQL Subprograms 5-13

Package Function in SQL: Example 5-14

Lesson Agenda 5-15

Persistent State of Packages 5-16

Persistent State of Package Variables: Example 5-18

Persistent State of a Package Cursor: Example 5-19

Executing the CURS_PKG Package 5-21

Using PL/SQL Tables of Records in Packages 5-22

Quiz 5-23

Summary 5-24

Practice 5: Overview 5-25

Using Oracle-Supplied Packages in Application Development
Objectives 6-2

Lesson Agenda 6-3

Using Oracle-Supplied Packages 6-4

Examples of Some Oracle-Supplied Packages 6-5

Lesson Agenda 6-6

Vi

How the DBMS OUTPUT Package Works 6-7

Using the UTL FILE Package to Interact with Operating System Files 6-8
File Processing Using the UTL_FILE Package: Overview 6-9

Using the Available Declared Exceptions in the UTL_FILE Package 6-10
FOPEN and IS OPEN Functions: Example 6-11

Using UTL_FILE: Example 6-13

What Is the UTL,. MAIL Package? 6-15

Setting Up and Using the UTL._MAIL: Overview 6-16

Summary of UTL._MAIL Subprograms 6-17

Installing and Using UTL._MAIL 6-18

The SEND Procedure Syntax 6-19

The SEND ATTACH RAW Procedure 6-20

Sending Email with a Binary Attachment: Example 6-21

The SEND ATTACH VARCHAR2 Procedure 6-23

Sending Email with a Text Attachment: Example 6-24

Quiz 6-26

Summary 6-27

Practice 6: Overview 6-28

Using Dynamic SQL

Objectives 7-2

Lesson Agenda 7-3

Execution Flow of SQL 7-4

Working With Dynamic SQL 7-5

Using Dynamic SQL 7-6

Native Dynamic SQL (NDS) 7-7

Using the EXECUTE IMMEDIATE Statement 7-8

Available Methods for Using NDS 7-9

Dynamic SQL with a DDL Statement: Examples 7-11
Dynamic SQL with DML Statements 7-12

Dynamic SQL with a Single-Row Query: Example 7-13
Dynamic SQL with a Multirow Query: Example 7-14
Declaring Cursor Variables 7-15

Executing a PL/SQL Anonymous Block Dynamically 7-16
Using Native Dynamic SQL to Compile PL/SQL Code 7-17
Lesson Agenda 7-18

Using the DBMS SQL Package 7-19

Using the DBMS sQL Package Subprograms 7-20

Using DBMS_sSQL with a DML Statement: Deleting Rows 7-22
Using DBMS_SQL with a Parameterized DML Statement 7-23

Vii

Dynamic SQL Functional Completeness 7-24

Quiz 7-25

Summary 7-26

Practice 7 Overview: Using Native Dynamic SQL 7-27

Design Considerations for PL/SQL Code

Objectives 8-2

Lesson Agenda 8-3

Standardizing Constants and Exceptions 8-4

Standardizing Exceptions 8-5

Standardizing Exception Handling 8-6

Standardizing Constants 8-7

Local Subprograms 8-8

Definer’s Rights Versus Invoker’s Rights 8-9

Specifying Invoker’s Rights: Setting AUTHID to CURRENT USER 8-10
Autonomous Transactions 8-11

Features of Autonomous Transactions 8-12

Using Autonomous Transactions: Example 8-13

Lesson Agenda 8-15

Using the NOocopY Hint 8-16

Effects of the NocopPY Hint 8-17

When Does the PL/SQL Compiler Ignore the NoCcoPY Hint? 8-18
Using the PARALLEL ENABLE Hint 8-19

Using the Cross-Session PL/SQL Function Result Cache 8-20
Enabling Result-Caching for a Function 8-21

Declaring and Defining a Result-Cached Function: Example 8-22
Using the DETERMINISTIC Clause with Functions 8-24
Lesson Agenda 8-25

Bulk Binding 8-26

Using Bulk Binding: Syntax and Keywords 8-27

Bulk Binding FORALL: Example 8-29

Using BULK COLLECT INTO with Queries 8-31

Using BULK COLLECT INTO with Cursors 8-32

Using BULK COLLECT INTO with a RETURNING Clause 8-33
FORALL Support for Sparse Collections 8-34

Using Bulk Binds in Sparse Collections 8-35

Using Bulk Bind with Index Array 8-36

Using the RETURNING Clause 8-37

Quiz 8-38

viii

Summary 8-39
Practice 8: Overview 8-40

Creating Triggers

Objectives 9-2

What Are Triggers? 9-3

Defining Triggers 9-4

Trigger Event Types 9-5

Application and Database Triggers 9-6

Business Application Scenarios for Implementing Triggers 9-7
Available Trigger Types 9-8

Trigger Event Types and Body 9-9

Creating DML Triggers Using the CREATE TRIGGER Statement 9-10
Specifying the Trigger Firing (Timing) 9-11

Statement-Level Triggers Versus Row-Level Triggers 9-12

Creating DML Triggers Using SQL Developer 9-13

Trigger-Firing Sequence: Single-Row Manipulation 9-14
Trigger-Firing Sequence: Multirow Manipulation 9-15

Creating a DML Statement Trigger Example: SECURE_EMP 9-16
Testing Trigger SECURE _EMP 9-17

Using Conditional Predicates 9-18

Creating a DML Row Trigger 9-19

Using OLD and NEW Qualifiers 9-20

Using OLD and NEW Qualifiers: Example 9-21

Using oLD and NEW Qualifiers: Example Using AUDIT EMP 9-22
Using the WHEN Clause to Fire a Row Trigger Based on a Condition 9-23
Summary of the Trigger Execution Model 9-24

Implementing an Integrity Constraint with an After Trigger 9-25
INSTEAD OF Triggers 9-26

Creating an INSTEAD OF Trigger: Example 9-27

Creating an INSTEAD OF Trigger to Perform DML on Complex Views 9-28
The Status of a Trigger 9-30

Creating a Disabled Trigger 9-31

Managing Triggers Using the ALTER and DROP SQL Statements 9-32
Managing Triggers Using SQL Developer 9-33

Testing Triggers 9-34

Viewing Trigger Information 9-35

Using USER_TRIGGERS 9-36

Quiz 9-37

Summary 9-38
Practice 9 Overview: Creating Statement and Row Triggers 9-39

10 Creating Compound, DDL, and Event Database Triggers
Objectives 10-2
What Is a Compound Trigger? 10-3
Working with Compound Triggers 10-4
The Benefits of Using a Compound Trigger 10-5
Timing-Point Sections of a Table Compound Trigger 10-6
Compound Trigger Structure for Tables 10-7
Compound Trigger Structure for Views 10-8
Compound Trigger Restrictions 10-9
Trigger Restrictions on Mutating Tables 10-10
Mutating Table: Example 10-11
Using a Compound Trigger to Resolve the Mutating Table Error 10-13
Using a Compound Trigger to Resolve the Mutating Table Error 10-14
Comparing Database Triggers to Stored Procedures 10-15
Comparing Database Triggers to Oracle Forms Triggers 10-16
Creating Triggers on DDL Statements 10-17
Creating Database-Event Triggers 10-18
Creating Triggers on System Events 10-19
LOGON and LOGOFF Triggers: Example 10-20
CALL Statements in Triggers 10-21
Benefits of Database-Event Triggers 10-22
System Privileges Required to Manage Triggers 10-23
Guidelines for Designing Triggers 10-24
Quiz 10-25
Summary 10-26
Practice 10: Overview 10-27

11 Using the PL/SQL Compiler
Objectives 11-2
Lesson Agenda 11-3
Using the PL/SQL Compiler 11-4
Changes in the PL/SQL Compiler 11-5
Lesson Agenda 11-6
Initialization Parameters for PL/SQL Compilation 11-7
Using the Initialization Parameters for PL/SQL Compilation 11-8
The New Compiler Settings Since Oracle 10g 11-11
Displaying the PL/SQL Initialization Parameters 11-12
Displaying and Setting the PL/SQL Initialization Parameters 11-13

12

Changing PL/SQL Initialization Parameters: Example 11-14
Lesson Agenda 11-15
Overview of PL/SQL Compile-Time Warnings for Subprograms 11-16
Benefits of Compiler Warnings 11-18
Categories of PL/SQL Compile-Time Warning Messages 11-19
Setting the Warning Messages Levels 11-20
Setting Compiler Warning Levels: Using PLSQL WARNINGS 11-21
Setting Compiler Warning Levels: Using PLSQL WARNINGS, Examples 11-22
Setting Compiler Warning Levels: Using PLSQL WARNINGS in SQL
Developer 11-23
Viewing the Current Setting of PLSQL._ WARNINGS 11-24
Viewing the Compiler Warnings: Using SQL Developer, SQL*Plus, or Data Dictionary
Views 11-25
SQL*Plus Warning Messages: Example 11-26
Guidelines for Using PLSQL_WARNINGS 11-27
Lesson Agenda 11-28
Setting Compiler Warning Levels: Using the DBMS WARNING Package 11-29
Using the DBMS WARNING Package Subprograms 11-31
The DBMS_WARNING Procedures: Syntax, Parameters, and Allowed
Values 11-32
The DBMS WARNING Procedures: Example 11-33
The DBMS_ WARNING Functions: Syntax, Parameters, and Allowed Values 11-34
The DBMS_WARNING Functions: Example 11-35
Using DBMS WARNING: Example 11-36
Using the New PLW 06009 Warning Message 11-38
The New PLW 06009 Warning: Example 11-39
Quiz 11-40
Summary 11-41
Practice 11: Overview 11-42

Managing PL/SQL Code

Objectives 12-2

Lesson Agenda 12-3

What Is Conditional Compilation? 12-4

How Does Conditional Compilation Work? 12-5

Using Selection Directives 12-6

Using Predefined and User-Defined Inquiry Directives 12-7

The PLSQL CCFLAGS Parameter and the Inquiry Directive 12-8

Displaying the PLSQL_CCFLAGS Initialization Parameter Setting 12-9

The PLSQL CCFLAGS Parameter and the Inquiry Directive: Example 12-10

Xi

Using Conditional Compilation Error Directives to Raise User-Defined Errors 12-11
Using Static Expressions with Conditional Compilation 12-12

The DBMS DB VERSION Package: Boolean Constants 12-13

The DBMS DB VERSION Package Constants 12-14

Using Conditional Compilation with Database Versions: Example 12-15
Using DBMS PREPROCESSOR Procedures to Print or Retrieve Source Text 12-17
Lesson Agenda 12-18

What Is Obfuscation? 12-19

Benefits of Obfuscating 12-20

What’s New in Dynamic Obfuscating Since Oracle 10g? 12-21
Nonobfuscated PL/SQL Code: Example 12-22

Obfuscated PL/SQL Code: Example 12-23

Dynamic Obfuscation: Example 12-24

The PL/SQL Wrapper Utility 12-25

Running the Wrapper Utility 12-26

Results of Wrapping 12-27

Guidelines for Wrapping 12-28

DBMS DDL Package Versus the Wrap Utility 12-29

Quiz 12-30

Summary 12-31

Practice 12: Overview 12-32

13 Managing Dependencies
Objectives 13-2
Overview of Schema Object Dependencies 13-3
Dependencies 13-4
Direct Local Dependencies 13-5
Querying Direct Object Dependencies: Using the USER DEPENDENCIES
View 13-6
Querying an Object’s Status 13-7
Invalidation of Dependent Objects 13-8
Schema Object Change That Invalidates Some Dependents: Example 13-9
Schema Object Change That Invalidates Some Dependents: Example 13-10
Displaying Direct and Indirect Dependencies 13-11
Displaying Dependencies Using the DEPTREE View 13-12
More Precise Dependency Metadata in Oracle Database 11g 13-13
Fine-Grained Dependency Management 13-14
Fine-Grained Dependency Management: Example 1 13-15
Fine-Grained Dependency Management: Example 2 13-17
Impact of Redefining Synonyms Before Oracle Database 10g 13-18

Xii

Changes to Synonym Dependencies Starting with Oracle Database 10g 13-19
Maintaining Valid PL/SQL Program Units and Views 13-20

Another Scenario of Local Dependencies 13-21

Guidelines for Reducing Invalidation 13-22

Object Revalidation 13-23

Remote Dependencies 13-24

Concepts of Remote Dependencies 13-25

Setting the REMOTE_DEPENDENCIES MODE Parameter 13-26

Remote Procedure B Compiles at 8:00 AM 13-27

Local Procedure A Compiles at 9:00 AM 13-28

Execute Procedure A 13-29

Remote Procedure B Recompiled at 11:00 AM 13-30

Execute Procedure A 13-31

Signature Mode 13-32

Recompiling a PL/SQL Program Unit 13-33

Unsuccessful Recompilation 13-34

Successful Recompilation 13-35

Recompiling Procedures 13-36

Packages and Dependencies: Subprogram References the Package 13-37
Packages and Dependencies: Package Subprogram References Procedure 13-38
Quiz 13-39

Summary 13-40

Practice 13 Overview: Managing Dependencies in Your Schema 13-41

Appendix A: Practice Solutions
Appendix B: Table Descriptions

Appendix C: Using SQL Developer
Objectives C-2
What Is Oracle SQL Developer? C-3
Specifications of SQL Developer C-4
Installing SQL Developer C-5
SQL Developer 1.2 Interface C-6
Creating a Database Connection C-7
Browsing Database Objects C-10
Creating a Schema Object C-11
Creating a New Table: Example C-12
Using the SQL Worksheet C-13
Executing SQL Statements C-16
Saving SQL Scripts C-17

xiii

Executing Saved Script Files: Method 1 C-18
Executing Saved Script Files: Method 2 C-19
Executing SQL Statements C-20

Formatting the SQL Code C-21

Using Snippets C-22

Using Snippets: Example C-23

Using SQL*Plus C-24

Debugging Procedures and Functions C-25
Database Reporting C-26

Creating a User-Defined Report C-27
Search Engines and External Tools C-28
Setting Preferences C-29

Specifications of SQL Developer 1.5.3 C-30
Installing SQL Developer 1.5.3 C-31

SQL Developer 1.5.3 Interface C-32
Summary C-34

Appendix D: Review of PL/SQL
Block Structure for AnonymousPL/SQL Blocks D-2
Declaring PL/SQL Variables D-3
Declaring Variables with the $TYPE Attribute: Examples D-4
Creating a PL/SQL Record D-5
$ROWTYPE Attribute: Examples D-6
Creating a PL/SQL Table D-7
SELECT Statements in PL/SQL: Example D-8
Inserting Data: Example D-9
Updating Data: Example D-10
Deleting Data: Example D-11
COMMIT and ROLLBACK Statements D-12
SQL Cursor Attributes D-13
IF, THEN, and ELSIF Statements: Example D-14
Basic Loop: Example D-15
FOR Loop: Example D-16
WHILE Loop: Example D-17
Controlling Explicit Cursors D-18
Declaring the Cursor: Example D-19
Opening the Cursor D-20
Fetching Data from the Cursor: Examples D-21
Closing the Cursor D-22
Explicit Cursor Attributes D-23

Xiv

Cursor FOR Loops: Example D-24

FOR UPDATE Clause: Example D-25

WHERE CURRENT OF Clause: Example D-26

Trapping Predefined Oracle Server Errors D-27

Trapping Predefined Oracle Server Errors: Example D-28
Non-Predefined Error D-29

User-Defined Exceptions: Example D-30

RAISE APPLICATION_ ERROR Procedure D-31

Appendix E: Using SQL*Plus
Objectives E-2
SQL and SQL*Plus Interaction E-3
SQL Statements Versus SQL*Plus Commands E-4
Overview of SQL*Plus E-5
Logging In to SQL*Plus: Available Methods E-6
Customizing the SQL*Plus Environment E-7
Displaying Table Structure E-8
SQL*Plus Editing Commands E-10
Using LIST, n,and APPEND E-12
Using the CHANGE Command E-13
SQL*Plus File Commands E-14
Using the SAVE, START, and EDIT Commands E-15
SQL*Plus Enhancements Since Oracle Database 10g E-17
Changes to the SERVEROUTPUT Command E-18
White Space Support in File and Path Names in Windows E-19
Predefined SQL*Plus Variables E-20
Using the New Predefined SQL*Plus Variables: Examples E-21
The sHOWw Command and the New RECYCLEBIN Clause E-22
The sHOW Command and the RECYCLEBIN Clause: Example E-23
Using the SQL*Plus spooL, Command E-24
Using the SQL*Plus sPooL. Command: Examples E-25
The copy Command: New Error Messages E-26
Change in the DESCRIBE Command Behavior E-29
The SET PAGES[IZE] Command E-30
The sQLPLUS Program and the Compatibility Option E-31
Using the AUTOTRACE Command E-32
Displaying a Plan Table Using the DBMS XPLAN.DISPLAY Package
Function E-33
Summary E-34

XV

Appendix F: Studies for Implementing Triggers
Objectives F-2
Controlling Security Within the Server F-3
Controlling Security with a Database Trigger F-4
Enforcing Data Integrity Within the Server F-5
Protecting Data Integrity with a Trigger F-6
Enforcing Referential Integrity Within the Server F-7
Protecting Referential Integrity with a Trigger F-8
Replicating a Table Within the Server F-9
Replicating a Table with a Trigger F-10
Computing Derived Data Within the Server F-11
Computing Derived Values with a Trigger F-12
Logging Events with a Trigger F-13
Summary F-15

Appendix G: Using the DBMS SCHEDULER and HTP Packages
Objectives G-2
Generating Web Pages with the HTP Package G-3
Using the HTP Package Procedures G-4
Creating an HTML File with SQL*Plus G-5
The DBMS SCHEDULER Package G-6
Creating a Job G-8
Creating a Job with Inline Parameters G-9
Creating a Job Using a Program G-10
Creating a Job for a Program with Arguments G-11
Creating a Job Using a Schedule G-12
Setting the Repeat Interval for a Job G-13
Creating a Job Using a Named Program and Schedule G-14
Managing Jobs G-15
Data Dictionary Views G-16
Summary G-17

Appendix H: Review of JDeveloper
JDeveloper H-2
Connection Navigator H-3
Application Navigator H-4
Structure Window H-5
Editor Window H-6
Deploying Java Stored Procedures H-7
Publishing Java to PL/SQL H-8
Creating Program Units H-9

XVi

Compiling H-10

Running a Program Unit H-11

Dropping a Program Unit H-12
Debugging PL/SQL Programs H-13
Setting Breakpoints H-16

Stepping Through Code H-17

Examining and Modifying Variables H-18

Index

Additional Practices

Additional Practice: Solutions

Additional Practices: Table Descriptions and Data

Xvii

XViii
THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Oracle University and ORACLE CORPORATION use only

Appendix A
Practices and Solutions

Table of Contents

Practices fOr LeSSOM 1ociiiiiiiiieciie ettt et s ree e s e e s re e e e aeeeeaveeenes 3
Practice 1: Getting Startedcccueeiuieriieiiieiie ettt ettt s be e 3
Practices fOr LeSSOM 2iciiiiiciiieciie ettt e et e e e s e e e e e e saaeeeeaseeeenree s 20
Practice 2: Creating, Compiling, and Calling Procedurescccoeeevveerciieencieennennnns 20
Practices fOr LeSSOM 3oiiiiiiiiicciie ettt ettt e e e re e e enaee s 31
Practice 3: Creating FUNCHONSoieiiieiiiieeiiecieeeceeeeee et 31
Practices fOr LESSOM 4cooiiiieiieeciee ettt tae e s e e e e e e ree e enaeeeenaee s 36
Practice 4: Creating and Using Packages...........cccceevieriiieniiiiiienieciieeeeieee e 36
Practices fOr LeSSOM S ...uuiiiiiieiiiieeiie ettt et e e e e e et e e esrae e eaaeeeenree s 43
Practice 5: Working with Packagesccccoeviieiiiiiiiiieieeeeeee e 43
Practices fOr LESSOM Occcuiiieiiieciie ettt ettt et e et e e e aa e e esrae e enneeeenree s 73
Practice 6: Using the UTL_FILE Package..........ccccooveeeiieniiniieiieciieeeeeeee e 73
Practices fO1 LESSOM 7 ...uviiiiiieiiiieciie ettt ettt ettt e e et e e e e e esaee e eaneeeenree s 78
Practice 7: Using Native Dynamic SQLcccooiiiiiiiiiiieiieiieeieceeee e 78
Practices fOr LeSSOM §ccoiiiiiiiieiiie ettt ettt e e eree e e e enree s 89
Practice 8: Using Bulk Binding and Autonomous Transactionscc.cceceeveruenneene 89
Practices fOr LeSSOM Ooooiiiiiiiieiie ettt e 111
Practice 9: Creating Statement and ROW TTiggers.........cceevveriieviieniiiiiienieeieeee e 111
Practices fOr LesSON 10ccuuiiiiiiiiiieciie ettt et e e e e e e eere e e 120
Practice 10: Managing Data Integrity Rules and Mutating Table Exceptions............ 120
Practices fOr LesSON 11 ...ttt et 134
Practice 11: Using the PL/SQL Compiler Parameters and Warnings............c..cc.c..... 134
Practices fOr LeSSON 12ccuiiiiiiieciie ettt ettt e e e e eae e e 143
Practice 12: Using Conditional Compilationcccevieeiiienieeiienieeiieieeieeeee e 143
Practices fOr LesSOn 13 .. .ottt et 149
Practice 13: Managing Dependencies in Your Schema..........ccocceveeviniininnincenennen. 149

Oracle Database 11g: Develop PL/SQL Program Units A -2

Practices for Lesson 1

Practice 1: Getting Started

In this practice, you review the available SQL Developer resources. You also learn about
your user account that you will use in this course. You then start SQL Developer, create a
new database connection, and browse your HR tables. You also set some SQL Developer
preferences, execute SQL statements, and execute an anonymous PL/SQL block using
SQL Worksheet. Finally, you access and bookmark the Oracle Database 11g
documentation and other useful Web sites that you can use in this course.

Identifying the Available SQL Developer Resources

1) Familiarize yourself with Oracle SQL Developer as needed using Appendix C: Using
SQL Developer.

2) Access the online SQL Developer Home Page available online at:
http://www.oracle.com/technology/products/database/sql developer/index.html

The SQL Developer Home page is displayed as follows:

@ Oracle SQL Developer - Microsoft Internet Explorer - o] x|

L]

>

development. With SQL Developer, you can browse
Extensions and Plugins database objects, run SQL statements and SQL scripts, and
Products A-Z edit and debug PL/SQL statements. You can also run any
number of provided reports, as well as create and save your own. SQL
TECHNOLOGIES Developer enhances productivity and simplifies your database

Bl & Data Warehousing development tasks. CGracle Develop
Java ;‘:a%;?:r conference for

. cli i
Linux lizk here to ragister

SQAL Developer can connect to any Oracle Database version 9.2.0.1 and

Enterprise Management Oracle SQL Developer is a free graphical tool for database ¥ FREE DOWNLOAD
Applications Technology

Download (7 June '07)
Oracle SQL Developer 1.2

o

MNET later and runs on Windows, Linux and Mac OSX o

Office Testimonials

PHP

Security What is Oracle SQL What is SQL Developer A :“:Drk 5;“{'?"“"3- ‘“B_gm'”"t:ffh?:“"
" 2 j 27 moved from platform-specific, cost ird-

:l\edrl_nce Orientted Architecture Developer 1.2 party tools to Oracle SQL Developer. The

= o - database access our developers need is
Windows Server System \(__T) OTN Forum - WS—LLuhlteur:inersD:cuments mosthy for stored procedure code and data

) === | pp g !
Technologies A-Z 4 browsing and SOL Developer fits the bill.
COMMUNITY i SQL Developer - .
About OTN I ‘;1‘ Exchange || Podeasts & Viewlets S
Oracle ACEs Director Database Engineering, Network
Regional Directors /% 50L Developer o= Tutorials & Oracle b Solutions
Blogs L“ Extensions Exchange i Example (OBE
Podcasts _— i Related Technologies
Events uur:uJ ;:tai:'lleE;In s & Magazine t@ Documentation g
Newsletters - Oracle Database 10

Oracle Magazine Oracle Database 10g Express

| Fle Edt View Favorites Took Help |
J GBack D B |£| |£L| ;_‘1 ‘ /.-\’ Search \;1\?’ Favorites <) - \._,,.
JAddress |f§ﬁ http://wwmw.orade.com/technology/products/database/sql_developer/index.html j Go
JLinks _J) Financial _J ST Curr _JOU _JTOOLs _JDoc& Tech _J 11gPLSQL PU Related Doc _J OCP
PRODUCTS Getting Started D load D i Forums Articles Sample Code Tutorials
Database
Middleware
Developer Tools Oracle SQL Developer

€] ’_l_’__l_’_|‘~_¢] Local intranet

=
/4

Oracle Database 11g: Develop PL/SQL Program Units A -3

Practice 1: Getting Started (continued)

3) Bookmark the page for easier future access.

From the Windows Internet Explorer Address toolbar, click and drag the
Explorer icon onto the Links toolbar. The link is added to your Links toolbar as
follows:

‘A Oracle SQL Developer - Microsoft Internet Explorer) (=] P3|

ORACLE’
TECHNOLOGY NETWORK

PRODUCTS

Database

Middleware

Developer Tools
Enterprise Management
Applications Technology
Extensions and Plugins
Products A-Z

TECHNOLOGIES

Bl & Data Warehousing
Java

Linux

NET

Office

PHP

Security
Senvice-Oriented Architecture
KML

Windows Server System
Technologies A-Z

COMMUNITY
About OTN
Oracle ACEs
Reaional Directors

Getting Started D I

d Do —

J Fle Edit View Favorites Took Help | i
J@Back b _) e |ﬂ @ ;\1 ‘ /;jSearch ‘:‘:‘\'\/ Favorites {‘E Y = = _I

JAddress |@ http://www.orade.com/technology/products/database/sql_developer/index.html ;i Go
JLinks _ I Financial _I ST Curr _JOU _JTOOLs _JDoc& Tech _J11gPLSQL PU Related Doc _J OC ﬂ Oracle SQL Developer B

Sign Out | Account

secure search

Forums Articles

3

Oracle SQL Developer

Oracle SQL Developer is a free graphical tool for database
development. With SQL Developer, you can browse
database objects, run SQL statements and SQL scripts. and

edit and debug PL/SQL statements. You can also run any
numper of provided reports, as well as create and save your own. SQL
Developer enhances productivity and simplifies your database

development tasks.

SQL Developer can connect to any Oracle Database version 9.2.0.1 and
later and runs on Windows, Linux and Mac OSX

3
\(_E:)

f "1 SQL Developer
g A Exchange

<™ 5QL Developer

Developer?

OTN Forum

What is Oracle SQL

3

i’xi_ﬁ

What is SQL Developer
1272

Whitepapers &
Supporting Documents

Podcasts & Viewlets

Tutorials & Oracle by

[[[| [%Lecalintranet

Technology Network

ay

Sample Code Tutorials

¥ FREE DOWNLOAD

Download (7 June '07)
Oracle SQL Developer 1.2

Y

Qracle Develop
The pramier con ference for
developers Clicy here to register

Testimonials

“At Metwork Solutions, the developers have
moved from platform-specific, costly third-
party tools to Oracle SQL Developer. The
database access our developers need is
mostly for stored procedure code and data
browsing and SQL Developer fits the bil ™

Dominic Delmoline
Director Database Engineering, Network
Solutions

[
4

4) Access the SQL Developer tutorial available online at:
http://st-curriculum.oracle.com/tutorial/SQLDeveloper/index.htm

Access the SQL Developer tutorial using the preceding URL. The following page

is displayed:

Oracle Database 11g: Develop PL/SQL Program Units A -4

Practice 1: Getting Started (continued)

‘2 Oracle SQL Developer Tutorial - Microsoft Internet Explorer =1k
| Fie Edt View Favortes Took Help | "
J (PBack ~ (L) ~ |£| \EL[. | /'.-) Search “;\7’ Favories €41 = - i
JAddrE.EE Iféj http://st-curriculum.oracle. comy/tutorial/SQLDeveloper/index.htm ﬂ E Go
@Orac\e SOL Developer Tutorial ;I
@Usin this Tutorial ﬂnw me
@ Product Qverview g
% Installation Addi N Col
Bl i) what to Do First Ing a New Column .
<4p 3
: Creating a Database Connection revious|next
I;! mw Sheila's company wants to keep a record of employee ’
= Fﬂ@ birthdates. To do this, Sheila needs to add a new column,
Building Simple Queries BirthDate, 0 the EMPLOYEES table. This column will have
=] Retrieving Column the oaTE data type. ’
Retrieving Rows ”
Using the Query Builder Help Sheila add a new column to the EMPLOYEES table by ’
= Accessing Multiple Tables using the Table Dialog.

Using Functions to Customize Qutput

Working With Groups of Data e
%Manigulating Data " Show Me and Try It
%Adding PL/SOL Components
%Bui\ding Reports

Summary

-
4 | B

5) Preview and experiment with the available links and demos in the tutorial as needed,
especially the “Creating a Database Connection” and “Accessing Data” links.

To review the section on creating a database connection, click the plus “+” sign
next to the “What to Do First” link to display the “Creating a Database
Connection” link. To review the Creating a Database Connection topic, click the
topic’s link. To review the section on accessing data, click the plus “+” sign next
to the “Accessing Data” link to display the list of available topics. To review any
of the topics, click the topic’s link.

Identifying the Available SQL Developer Resources
1) Start up SQL Developer using the user ID and password that are provided to you by

the instructor such as oraxx where xx is the number assigned to your PC.

Click the SQL Developer icon on your desktop.

Oracle Database 11g: Develop PL/SQL Program Units A -5

Practice 1: Getting Started (continued)

[

SQL Developer

2) Create a database connection using the following information:

a) Connection Name: MyDBConnection

b) Username: oraxx where xx is the number assigned to your PC by the instructor

c) Password: oraxx where xx is the number assigned to your PC by the instructor

d) Hostname: Enter the host name for your PC

e) Port: 1521
f) SID: ORCL

Right-click the Connections icon on the Connections tabbed page, and then
select the New Database Connection option from the shortcut menu. The
New/Select Database Connection window is displayed. Use the preceding
information provided to create the new database connection.
Note: To display the properties of the newly created connection, right-click the
connection name, and then select Properties from the shortcut menu. Substitute
the username, password, host name, and service name with the appropriate
information as provided by your instructor. The following is a sample of the
newly created database connection for student ora61:

Connection Name

Connection Details

Status : Success

Help

& New / Select Database Connection

Connection Narme |MyDBCOnnediDn

Usetnamme | orabl

Pazsword | *****

Save Password

e —
Oracle || Access | MySGL | 5QLServer |

Fale |detaut =

Connhection Type (3) Basic () TMS () Advanced

Hostharme
Poit
G =p

() Service name

| enS468 s oracle . com

[1521

|0rc:|

Save | |

Clear | | Test

| | Connect | | Cancel

Oracle Database 11g: Develop PL/SQL Program Units A -6

Practice 1: Getting Started (continued)

3) Test the new connection. If the Status is Success, connect to the database using this

new connection:

a) Double-click the MyDBConnection icon on the Connections tabbed page.

b) Click the Test button in the New/Select Database Connection window. If the

status is Success, click the Connect button.

F_- Mew f Select Database Connection

Connection Narme ‘ Connection Details Connection Marne |MyDBConnec‘tion

Usermname |0ra51

Password | *****

Save Password

Cracle | Access | MySGQL | SGLServer

Fole defaut

Connection Type (2) Basic () THS () Advanced

Hosthame
Paort
(OF=]

() Service name

Status © Success

| egsd65 us.oracle.com

[1521

|orc|

Help Save
| J |

Clear Test

Cancel

Browsing Your HR Schema Tables

1) Browse the structure of the EMPLOYEES table and display its data.

a) Expand the MyDBConnection connection by clicking the plus sign next to it.

b) Expand the Tables icon by clicking the plus sign next to it.

c) Display the structure of the EMPLOYEES table.

Double-click the EMPLOYEES table. The Columns tab displays the columns in

the EMPLOYEES table as follows:

Oracle Database 11g: Develop PL/SQL Program Units A -7

Practice 1: Getting Started (continued)

F oracle SQL Developer _ ol x|
Fie Edt “iew Mavigae Run Debug Sowce Migrstion Tools Help
BEE 9C XEM O -0 - [
L Connections Reports I [=] | [myDEConnection @EMPLOYEES I (= [
B@Y Columns | Deta | Constraints | Grants | Statistics | Column Statistics | Triggers | Depandencies | Detais | Parttions | Indexes | 6L 2
4R Connectians [=] A 17 acions.. z é‘
=) MyDBCannection 8 column Name ‘ Data Type ‘ Hullable |Da13 Detautt |@ COLUMN I ‘ Primary Key | COMMENTS
1 (3 Tables EMPLOYVEE_ID MUMBER(S,0) Ma (nully 1 1 Primary key of employees table
FIRST_MAME WARCHARZZ0 BYTE) Yes (nully 2 (nuil First neme of the employee. & nat null column.
LAST _MAME WARCHARZ(2S BYTE) Mo (nilly 3 (rull Last name of the employes. A not null column.
B EMPLOYEE D EMAIL VARCHAR2(25 BYTE) No (nuly 4 (ull) Email id of the employes:
E] F\RST_NAM_E PHOME_NUMEER ¥ARCHAR2(20 BYTE) Yes (nully 5 (rull) Phane nurmber of the employes; includes courtry code an
B LasT_mane HIRE_DATE DATE [chully [(rull) Date when the employee started on this job. & not null col
5 ena JOB_ID VARCHAR2(10 BYTE) No (nuly 7 () Current job of the employes; foreign key to job_id column
o g :;CéNE;riUEMBER SALARY NUMBER(S,2) ves (nully 8 (rull) Morthly salary of the employee. Must be gresterthan zer
E JOB_D COMMISSION_PCT NUMBER(2,2) Yes (nully q (hull Cotnmission percentage of the etployes; Only employees
E SALARY | [MANAGER_ID MUMBER(E, 01 Yes (nully 10 (nuil Manager id of the employee, has ssme domain as manage
B commission_pct | |DEPARTMENT JD NUMBER(4,0) ves (nuly 1 (rull) Department id where employee works; foreign key ta dep
- B MANAGER_ID
‘- B DEPARTMENT ID
=-[E JoB_HSTORY
- joes
- LocaTions
- Reclons
B views E2
(0 Indexes q]]
5 B EEET g
- @Funmwuns [‘ Sequencal Elapsed ‘ Source Message
-8 Triggers
B[Types]
== m Sequences
) Eﬁ Materialized Views
== @ Materialized Views Logs
) B Synaryms 4
B g Public Synoryms [=| |Migration Log | Logging Page |
TAELE ORAR1 EMPLOYEES@MyDEConnection | € Editing

2) Browse the EMPLOYEES table and display its data.

To display the employees’ data, click the Data tab. The EMPLOYEES table data is
displayed as follows:

Oracle Database 11g: Develop PL/SQL Program Units A -8

Practice 1: Getting Started (continued)

28 9o ¥
W connections Elreports
EX R

IR connections
Ba MyDBEConnection

B Tables

I COUNTRIES

72 DEPARTMENTS
=1 EmPLOVEES

B EMPLOYEED
i FRST_NaE
oo B LasT_MamME
- Emal
B PHONE_NUMBER
B HRE_DATE
B JoBD
B saLary

[MANAGER_D
‘- B DEPARTMENT ID
-8 JOB_HISTORY
4 Jops
- LOCATIONS
4 - REGIONS
B[views
(08 Indexes
- L-Ifa Packages
-8 Procedures
@ Functions
B Trigoers
Bl Types
-3 Sequences
53 Materialized Views
B @ Meterialized Views Logs
B SyYnonyms
L i

[+
&
[+
&

2

P N
All Rows Fetched: 107

i B commIssIon_PCT

E—Oracle SQL Developer : TABLE ORA61.EMPLOYEES@MyDBConnection

File Edi Wiew Movigste Run Debug Sowce Mgrstion Tools Hep

&
x

B O-O@ = - 'S
[=])| | myDBConnection | [EEIEMPLOYEES EI@
Columns | Deta | Constraints | Grants | Statistios | Calumn Statistios | Triggers | Dependencies | Details | Parttions | Indeses | 560 |z
= XS R s Fmer‘ |Actluns... ZE&
empLovee D |8 FrsT_name B Last nawe 8 emai [§ pHone woveer [§ rre pate (B w0 [{ satsry [comssio
1 158 Danald acannel DOCONN. BS0 SN7 5533 Z-IUN-E3 BH_OLERK 2600
2 199 Douglas Grart DGRANT B50.507 5544 13JANO0 BH_OLERK 2600
3 200 Jennifer Whalen JAHALEN 5151234444 17ER-BT AD_ASST 4400
4 201 Michael Hartstein MHARTS 515 123 5555 1TFEE-EE MK_MAN 13000
5 202 Pat Fay PFAY B03.123.5668 17-BUG-E7 MK_RER 5000 L
3 203 Susen Mawtiz SMAVRIE 5154237777 DTUN-B4 HR_RER 6500
7 204 Hermann Fimer HEAER 515123 5688 D7UNE4 PR_REP 10000
] 205 Shelley Higgins SHIGENG 5151238080 DPN-B4 AC_MGR 12000
g 206 illiarm Gietz WGIETZ 5151238181 T7-UN-B4 AC_ACC &an0
10 100 Steven ing SHNG 5151234567 1TJUM-ST AD_PRES 24000
1" 101 Neera Kachhar MKQCHH... 5151234560 21-SER-B3 AD_VP 17000
12 102 Lex Die Haan LDEHAAN 515123 4589 13ANE3 AD VP 17000
13 103 Mewander Hunald AHUNOLD 5904234567 D3JANSD IT_PROG 000
14 104 Bruce Ernst BERNST 5904234568 MAY-31 T PROG 6000
15 105 Davviet suistin DALISTIN 540 423 4589 BANET IT_PROG 4a00
18 106 vall Pataballa WPATAE... 5904234560 05 FEB-98 IT_PROG 4800
17 107 Diana Larertz DLORENTZ 5904235567 D7FEE-83 T PROG 4200
18 108 Mancy Greenberg MGREEMEE 515124 4569 17-AUG-94 FI_MGR 12000
13 109 Dariel Faviet DFAVET 5151244169 16-AUG-34 FLACCO... 3000
n 10 dabn Chen JCHEN 5151244268 2B-EEP-GT FILACCO &200
2 11 lsmel Seiarra ISCIARRA 5151244368 SEER-GT FLACCD... 7700
. 2 1M12JoseManuel Ubman IMURMAR 515.124 4459 DTMAR-3E FIACCO... 7800
23 13 Luis Fapp LPOPP 515124 4567 7DECHS FLACCO gann
24 114 Den Raphasly DRAPHE... 5151274561 OP-DECS4 PU_MaM 11000
25 115 Mexander Khoa AKHDO 5151274562 13-MAY-35 PU_CLERK 3100 | |
L 6 116 Shell Fisicia FaDs 515127 456 4 DFCS PLI CIERK a0 | -]
[=][4] i [l
| € Editing

3) Use the SQL Worksheet to select the last names and salaries of all employees whose

annual salary is greater than $10,000. Use both the Execute Statement (F9) and the
Run Script icon (F5) icons to execute the SELECT statement. Review the results of

both methods of executing the SELECT statements in the appropriate tabs.

Note: Take a few minutes to familiarize yourself with the data, or consult Appendix
B, which provides the description and data for all the tables in the HR schema that you
will use in this course.

Display the SQL Worksheet using any of the following two methods:

1.

The Select Connection window is displayed.
2. Select the new MyDBConnection from the Connection drop-down list (if
not already selected), and then click OK.

Select Tools > SQL Worksheet or click the Open SQL Worksheet icon.

Open the sol 01 03.sql file from the D: \1abs\PLPU folder as follows:
Right-click the SQL Worksheet area, and then select Open File. Navigate to
the solns folder, select the sol 01 03.sql file, and then click Open.
Click the Execute Statement (F9) icon (while making sure the cursor is on
any of the SELECT statement lines) on the SQL Worksheet toolbar to execute
the statement. The code and the result are displayed as follows:

Oracle Database 11g: Develop PL/SQL Program Units A -9

Practice 1: Getting Started (continued)

SELECT LAST NAME, SALARY
FROM EMPLOYEES
WHERE SALARY > 10000;

(> Resutts | [Seript Output | T Explain | B sutctrace | EADEMS Outout | @) owa Output
¢ dE

LAST NAME SALARY
Hartstein 13000
Higgins 12000
Eing 26400
Kochhar 17a0a
De Haan 15700
Greenberd 12000
Raphaely 12100
Fussell 14000
Partners 13500
Erraruris 1z000
Cambrault 11000
Zlotkey 10500
Vishney 10500
Ozer 11500
ihel 11000
Taylor 12591. 26
16 rows selected

4) Create and execute a simple anonymous block that outputs “Hello World.”

a) Enable SET SERVEROUTPUT ON to display the output of the DBMS OUTPUT
package statements.

Click the DBMS OUTPUT tab, and then click the Enable DBMS Output icon as
follows:

(> Resutts | (& Script output | EExplain | Eautotrace | DEMS Outout | @) ova Output
¢ H B Buifer Size| 20000 — “pal
b

& Erable DEMS Output |

b) Use the SQL Worksheet area to enter the code for your anonymous block.

Enter the following code in the SQL Worksheet area as shown below.
Alternatively, open the sol 01 04.sql file from the D: \1abs\PLPU
folder as follows: Right-click the SQL Worksheet area, and then select Open

Oracle Database 11g: Develop PL/SQL Program Units A -10

Practice 1: Getting Started (continued)

File. Navigate to the solns folder, select the sol 01 04.sql file, and then
click Open. The code is displayed as follows:

D Wy DEConnection]

ERRRe E8¥vBd ¢ 053549403 seconds

Enter S0L Statement:

BEGIH
DEMS OUTPUT. PUT_LINE('Hello World!'):
EHD ;

c¢) Click the Run Script (F5) icon to run the anonymous block.
The Script Output tab displays the output of the anonymous block as follows:

[MyDEConnection] -

FPEEERO EB@al ¢ 051360828 zeconds WyDEConhection ¥ |
Enter =GL Statement:

BEGIH |
DEMS_O0UTPUT. PUT_LINE('Hello World!'):
EHD ;

1] 1+

a-‘l;tesurts & seript output "ﬁExmain "ﬁmmrace "@DBME Output " @ civia output]
¢ B &

anonhymous block completed
Hello World!

Setting Some SQL Developer Preferences

1) Inthe SQL Developer menu, navigate to Tools > Preferences. The Preferences
window is displayed.

Oracle Database 11g: Develop PL/SQL Program Units A -11

Practice 1: Getting Started (continued)

[E28 Environment Environment
------ Accelerstors Show Solash S ot Starh
(- Code Editar o Splash screen st startup
- Detabase |:| Save AllWhen Deactivating or Exiting
B Debugger Autamatically Feload Externally Modified Files
...... Documentation Silertly Reload When File |z Unmoditied
------ Extenzions
------ File Types Undo Level
B Mligration Marvigation Lewel;
------ PLISGL Compiler Options —
...... PLISGL Debugger Look and Feel: |Oracle b | (Requires restart)
""" SEL*Plus Thetne: |Defaurt - | {Requires restart)
------ SaL Formatter e —
...... Wvieh Browwser and Praxy Line Terminator: |Platfnrm Defaut = | [Applies to new files anly)
Ercoding | cp1252 -

Eeszet Skipped Messages |

| Help | | Ol | | Cancel |

2) Expand the Code Editor option, and then click the Display option to display the
“Code Editor: Display” section. The “Code Editor: Display” section contains general
options for the appearance and behavior of the code editor.

a) Enter 100 in the Right Margin Column text box in the Show Visible Right

Margin section. This renders a right margin that you can set to control the length
of lines of code.

Oracle Database 11g: Develop PL/SQL Program Units A -12

Practice 1: Getting Started (continued)

[F-Environmert = Code Editor: Display
- Accelerstars
- Code Editor [Enahle Te:xt Anti-Aliazing
- Bookmarks
¥ | Show Code Folding Margi
- iZaret Behavior A LB (PR (T

Highlight Active Folding Block

Show Visible Right Margin

= Line Gutter Right Margin Column:

100
- Printing i } —
- Printing HTML Right Margin Calor: | 2 |

oo Byntaw Calors
= Undo Behawvior
[+ Datahase Highlight Enclasing Elock
[+ Debugger
- Documentation
- Extensions
-File Types 0.3 seconds 04 20
[+ Migration

- PLISGL Compiler Options
-~ PLISGL Debugger
e SRl
- 5GEL Formatter
~ ek Broweser and Proxy

Enable Automatic Brace Matching

Highlight Enclozing Parenthesiz
Brace Matching Delay (seconds): I:k_/} |

d

| Help | | O | | Cancel

b) Click the Line Gutter option. The Line Gutter option specifies options for the line
gutter (left margin of the code editor). Select the Show Line Numbers check box
to display the code line numbers.

Oracle Database 11g: Develop PL/SQL Program Units A -13

Practice 1: Getting Started (continued)

[+
- Mooelerators
~Code Editor

EI..

[
[

~Environment

------ Bookmarks

------ Caret Behavior
[+ Code Inzight
------ Dizplay

Lire Gutter
------ Printing
------ Printing HTML
------ Syntax Colors
------ Undo Behavior

- Databaze

~Debugger

- Documentation
~Extenszions

~File Types

[+ Mligration

~PLISGL Compiler Options
- PLISGL Debugger

- SEALAPIUE

- SaL Formatter

- yWiek Broveser and Proxy

re

-

Help

Code Editor: Line Gutter

Show Line Mumbers
Enahle Line Selection by Click-Dragging in Guiter
Line Gutter Colors:

() Use Look and Feel Colors
() Use Editor Colars

() Use Custar Colors:

a a

| | Cancel

3) Click the Worksheet Parameters option under the Database option. In the “Select
default path to look for scripts” text box, specify the D: \1abs\ PLPU folder. This
folder contains the solutions scripts, code examples scripts, and any labs or demos
used in this course.

Oracle Database 11g: Develop PL/SQL Program Units A -14

Practice 1: Getting Started (continued)

I Preferences

- Enwiranment

- Code Editar
- Databasze

- Dehugoer

------ File Types

- hliggration

------ PLISGL Compiler Options
------ PLISGIL Debugder

------ SaL*Plus

Accelerstors

------ Achvanced Parameters
------ Avtotrace Parameters
------ MLS Parameters

------ Ohjectviewer Parameters
------ Third Party JOBC Drivers
------ User Defined Extensions
[

Documentation
Extensions

-SGL Farmatter
“Web Broveser and Proxy

Database: Worksheet Parameters

[] Autocommit in SEL Worksheet

Open a Worksheset on cannect

Mazx Rows to print in & script | 5000

Select default path to look for scripts

[»

|D:1Lab31.PLPLI | | Erowvse |
Thiz iz the directory used when running a script using the @ syntax.
|:| Save Bind variables to dizk on exit

Ok | | Cancel

4) Configure SQL Developer so that you can access SQL*Plus from within SQL
Developer.

a) In the Preferences window, click the SQL*Plus option.

Oracle Database 11g: Develop PL/SQL Program Units A -15

Practice 1: Getting Started (continued)

[#-Enviranment SOL*Plus
- Accelerators
[+ Code Editor
- Database “ | | ST
- Debugger Onindowes, enter the path to the SCLPIUE executable. On UMK, you alzo

~Documentation need to specify the xterm command. For example: Jusrbinfterm -2
o Extensions foraclehinizgiplus

SCL*Pus Executable:

- File Types
[+ Miggration
- PLISGEL Compiler Options
- PLISGL Debugger
*Pluz
- ZEL Formatter
- Weh Brovwser and Prosxy

| Help | | (0.4 | | Cancel |

b) Inthe SQL*Plus Executable text box, enter the path for the SQL*Plus executable.
Note: To find the path for SQL*Plus: Right-click the SQL*Plus icon on your
desktop, select Properties from the shortcut menu, and then copy the SQL*Plus
path from the Target text box but do not include the /nolog at the end of the
Target path.

Oracle Database 11g: Develop PL/SQL Program Units A -16

Practice 1: Getting Started (continued)
splusproperties |

Geperal Shartout | Dptinnsl Fant I La_l,n:nutl En:nln:nrsl I:n:nmpatiI:niIit_l,II

E z0lpluz

Target type: Application

Target location: BIM

Target: wproductt11.7. 0hclient 15BIMY:

Start in: ID:'xLaI:ns'xF'LF'LI

Shartout key: IN arne

Rur: I Marrnal window j

Comment; I

Find Target... | Change lcon... Advanced... |

| k. I Cancel Apply

c) Paste the SQL*Plus path in the SQL*Plus Executable text box.

Oracle Database 11g: Develop PL/SQL Program Units A -17

Practice 1: Getting Started (continued)

n Preferences ||
[Environment SAL*Plus
T Aecelerators SGL*Plus Executable:
- Code Editar
- Database | DriappAdministratorproducti 1.1 Diclient_1 bimslpius 2xe | | Browse.
(- Debugoer OnWindows, enter the path to the SAL*PIUs executable. On UNEC, vou alzo
- Dacurnertation need to specify the xderm command. Far example: srbindiderm -e
e Extensions loraclehinizglplus
- File Types
[+ Migration
- PLISGL Compiler Options
- PLSGL Debugger
o =CIL*Plus
- SGL Formatter

- Wik Browwser and Procy

| Help | | Ok | | Cancel

d) Click OK to accept your changes and to exit the Preferences window.

5) Test accessing SQL*Plus from within SQL Developer, and change the default
background and text colors.

a) Click your Database Connection name in the Connections tab.

b) Select SQL*Plus from the Tools menu. The SQL*Plus command window is
displayed.

c) Enter your password.

d) Change the default screen background and text colors. Click the C:\ icon on the
SQL*Plus command window title bar, and then select Properties from the pop-up
menu.

e) In the Colors tab, select the Screen Background option, and then click the white
color sample from the available color palettes.

f) Select the Screen Text option, and then click the black color sample from the
available color palettes.

g) Click OK. The Apply Properties window is displayed. Select the “Save properties
for future windows with same title” option, and then click OK.

h) Issue the following simple SQL command to test SQL*Plus:

SELECT *
FROM employees;

Oracle Database 11g: Develop PL/SQL Program Units A -18

Practice 1: Getting Started (continued)

6) Familiarize yourself with the labs folder on the D:\ drive:

a) Right-click the SQL Worksheet area, and then select Open File from the shortcut
menu. The Open window is displayed.

b) Ensure that the path that you set in a previous step is the default path that is
displayed in the Open window.

c) How many subfolders do you see in the labs folder?
d) Navigate through the folders, and open a script file without executing the code.

e) Clear the displayed code in the SQL Worksheet area.

Accessing the Oracle Database 11g Release 1 Online Documentation Library

1) Access the Oracle Database 11g Release 1 documentation Web page at:
http://www.oracle.com/pls/db111/homepage

2) Bookmark the page for easier future access.
3) Display the complete list of books available for Oracle Database 11g Release 1.

4) Make a note of the following documentation references that you will use in this
course as needed:

a) Advanced Application Developer’s Guide
b) New Features Guide

¢) PL/SQL Language Reference

d) Oracle Database Reference

e) Oracle Database Concepts

1) SOL Developer User’s Guide

g) SQOL Language Reference Guide

h) SQL*Plus User’s Guide and Reference

Oracle Database 11g: Develop PL/SQL Program Units A -19

Practices for Lesson 2

Practice 2: Creating, Compiling, and Calling Procedures

In this practice, you create, compile, and invoke procedures that issue DML and query
commands. You also learn how to handle exceptions in procedures.

1) Create, compile, and invoke the ADD JOB procedure and review the results.

a) Create a procedure called ADD JOB to insert a new job into the JOBS table.
Provide the ID and job title using two parameters.
Note: You can create the procedure (and other objects) by entering the code in the
SQL Worksheet area, and then click the Run Script (F5) icon. This creates and
compiles the procedure. To find out whether or not the procedure has any errors,
click the procedure name in the procedure node, and then select Compile from the
pop-up menu.

Open the sol 02 01 a.sql file from the D: \1abs\PLPU folder as
follows: Right-click the SQL Worksheet area, and then select Open File.
Navigate to the solns folder, select the sol 02 01 a.sql file, and then
click Open. Click the Run Script (F5) icon on the SQL Worksheet toolbar to
create the procedure. The code and the result are displayed as follows:

[} My DEConnection |E

PEEARS® E§98 ¢ 1 04657626 seconds \MyDEConnection |
Erter SGL Staterment:

CEERATE OR FEPFLACE FROCEDURE add job | -
p_Jjobid jobs.job_id3T¥PE,
p_Jjobtitle jobza.job_titlexT¥PE) IS

TEGIH
IHSERT IHTO jobs (Jjob_id, job_title)
VALUES (p_Jobid, p_Jjobtitle):
COMMIT

EHD add job:

£

4] [+
b W

B> Resutts | & Script Output | BExplain | B autotrace | DEMS Output @1 0w Output
¢ 8 E

FROCEDURE add_job Compiled.

Oracle Database 11g: Develop PL/SQL Program Units A - 20

Practice 2: Creating, Compiling, and Calling Procedures

(continued)

To view the newly created procedure, click the Procedures node in the
Object Navigator, right-click, and then select Refresh from the shortcut

menu. The new procedure is displayed as follows:

I oracle SQL Developer

File Edit “iew Mavigate Run Debug Source Migration Toolz Help

Go@a 90 X8R 0-0- %-

TR Connections Reports]

8]

> MyDBCornection | 5 ADD_I0B |

BW v

4 Cannections

Ea MyDEConnection
[]---lE Tahles

I:I---IE Yigws

({38 Indexes

({1 Packages

B2 A00_JoB
[P_ICEID

L P_JOBTITLE

& aDD_JOB_HISTORY
-2 SECURE_DML
]E@ Functions

-8 Triggers

]E Types

]Eﬂ Sequences

]E Materialized Yiews
]@ Materislized Views Logs
]E’ Synonyms

]Ej Public Synonyms

]@ Databasze Links

(- {38 Public Database Links
[]-"@ Directories

I:I---IE Application Express

[=]

Code | Grants lDependencies l References l Detailz]

& 7 actions..

create or replace PROCEDURE add job |
p_jobid jobs.job_id$TY¥PE,
p_jobtitle jobsz.job_titleiTYPFE] IS

BEGIH
IHSERT IWTO jobs (job_id, job_title)
VALUES (p_jobid, p jobtitle);
COMMIT :

EHD add_job;

-

4]

[»

Procedures

| Editing

b) Compile the code, and then invoke the procedure with IT DBA as the job ID and
Database Administrator as the job title. Query the JOBS table and view

the results.

Right-click the Procedures node in the Object Navigator, and then select
Refresh from the shortcut menu. Right-click the procedure’s name in the
Object Navigator, and then select Compile from the shortcut menu. The

procedure is compiled.

Messages - Log] E]
ADD_JOE Conmpiled
Micyration Lo lLsgging Page lr-.dsssagss (4] [+

Oracle Database 11g: Develop PL/SQL Program Units A - 21

Practice 2: Creating, Compiling, and Calling Procedures
(continued)

To invoke the procedure and then query the JOBS table, load the
sol 02 01 b.sql file from the D: \1abs\PLPU\solns folder. The code
is displayed in the SQL Worksheet as follows:

[hyDEConnection | 53 ADD_JOE

[+~

[} El Eﬁ’? flg\ 'E:‘]' (El % % -é' hyDEConnection "|

Enter SGL Statement:

SELECT * FROM jobs WHERE Jjob_id = 'IT_DBA':

EXECUTE add_jobh ('IT_DBL', 'Databaszse Administrator') .

To invoke the procedure, click the Run Script (F5) icon on the SQL
Worksheet toolbar. The results are displayed as follows:

(> Resutts | (& cript Output | BEplain | Bl autctrace | BDEMS outout | @) owa Outout

7= ="

anonymous block completed
JOE_ID JOE_TITLE MIN_ SALARY Mk SALARY

IT _DEA Datahase Administrator

1 rows szelected

¢) Invoke your procedure again, passing a job ID of ST MAN and a job title of
Stock Manager. What happens and why?

An exception occurs because there is a Unique Kkey integrity constraint on the
JOB_ID column.

Oracle Database 11g: Develop PL/SQL Program Units A - 22

Practice 2: Creating, Compiling, and Calling Procedures
(continued)

[;)' My DEConnection |:

FPERRO® &E&89B ¢ 049675019 seconds MyDEConnection ¥ |
Ertet SQL Staternent:
EXECUTE add job ('3T_MaN', 'Stock Manager') E

(] 2]

%,

B> Resutts || (5] Seript output | B Explain | B sutotrace | RDEMS Output @ ova Output

¢ 8 &

Error starting at line 1 in commatd:

EXECUTE add job ('3T_MAN', 'Stock Manager')

Error report:

OFA4-00001: unique constraint (ORASL.JOE_ID PE) wiolated

ORA-06512: at "ORAGL.ADD_JOE™, line 5

ORA-0A512: at line 1

0oool, 00000 - Munigque constraint (%s5.%3) wiolated"™

*Cause: An UPLATE or INSERT statement attempted to insert a duplicate key.
For Trusted Oracle configured in DEMS MAC mode, wou wmay see
this message if a duplicate entry exists at a different lewvel.

*Action: Either remowe the unique restriction or do not insert the kevy.

2) Create a procedure called UPD_JOB to modify a job in the JOBS table.

a) Create a procedure called UPD_JOB to update the job title. Provide the job ID and

a new title using two parameters. Include the necessary exception handling if no
update occurs.

Open the sol 02 02 a.sql file from the D: \1abs\PLPU\solns folder
as follows: Right-click the SQL Worksheet area, and then select Open File.
Navigate to the solns folder, select the sol 02 02 a.sql file, and then
click Open. Click the Run Script (F5) icon on the SQL Worksheet toolbar to

create the procedure. The code is displayed in the SQL Worksheet area as
follows:

Oracle Database 11g: Develop PL/SQL Program Units A -23

Practice 2: Creating, Compiling, and Calling Procedures
(continued)

Enter SGL Statement:

CEEATE OR. FEFLACE PFROCEDURE upd_job|
p_jobid IN jobs.job_id:TYFE,
p_jobrticle IH jobs.job_title:TYPE] IS I
BEGIH
UPDATE jobs
SET job_title = p_jobtitle
THERE Jjob_id = p_jobid;
IF SOLZNOTFOUND THEH
BAISE_APPLICATION _ERROR(-Z0202, 'No Jjob updated.'):
EHD IF;
EHD upd job;
£

]

.

B> Resutts | (&l Script Output | BExplain | B futotrace | DBEMS Output @ owia output

¢ HdE

PROCEDTRE upd job(Compiled.

b) Compile the procedure. Invoke the procedure to change the job title of the job ID
IT DBAtoData Administrator. Query the JOBS table and view the
results.

Right-click the Procedures node in the Object Navigator, and then select
Refresh from the shortcut menu. Right-click the procedure’s name in the
Object Navigator, and then select Compile from the shortcut menu. The
procedure is compiled.

Messages - Log

ULDL_JOE Compiled

To invoke the procedure and then query the JOBS table, load the

sol 02 02 b.sql file from the D: \1abs\PLPU\solns folder. The code
is displayed in the SQL Worksheet. Click the Run Script (F5) icon on the
SQL Worksheet toolbar to invoke the procedure. The code and the result are
displayed as follows:

Oracle Database 11g: Develop PL/SQL Program Units A -24

Practice 2: Creating, Compiling, and Calling Procedures
(continued)

Erter SGL Statement:

EXECUTE upd_job ('IT_DBA', 'Data Administrator')
SELECT * FROM jobs WHERE job_id = 'IT_DBA';l

<]

.

[Resutts | (2] Seript output HEExmain | B autotrace | @oEms output | @) o output

¢ d &

PROCEDTEE upd_jobi(Compiled.
anonymons block completed

T0E_ID JO0E_TITLE MIN_SALARY Mix SALLRY

IT DEL Data Administrator

1 rows selected

c) Test the exception-handling section of the procedure by trying to update a job that
does not exist. You can use the job ID IT WEB and the job title Web Master.

Enter SGL Statetnent:

EXECUTE upd job ('IT WEE', 'Meb Master')
SELECT * FROM jobs WHERE job_id = 'IT _WEE':

4]

[;"vﬁesults (& seript Outiut | BExpiain | Eavtotrace |@0EMS Output | @) owa Output

¢HdE

Error starting at line 1 in command:
EXECUTE upd_job ('IT_WEEB', 'Web Master')
Error report:

ODR&-20202: No job updated.

ORA-0651Z: at "ORASL.UPD JOE™, line 9
OR&-06512: at line 1

J0E_ID JOE_TITLE NIN_ 3SALLEY Max FALART

0 rows selected

3) Create a procedure called DEL_JOB to delete a job from the JOBS table.

Oracle Database 11g: Develop PL/SQL Program Units A - 25

Practice 2: Creating, Compiling, and Calling Procedures
(continued)

a) Create a procedure called DEL_JOB to delete a job. Include the necessary
exception-handling code if no job is deleted.

Open the sol 02 03 a.sql file from the D: \1abs\PLPU folder as
follows: Right-click the SQL Worksheet area, and then select Open File.
Navigate to the solns folder, select the sol 02 03 a.sql file, and then
click OK. Click the Run Script (F5) icon on the SQL Worksheet toolbar to
create the procedure. The code and the result are displayed as follows:

[B]=0i_02_02_8.s0l

-

=]
FPEEARS® &E&OR ¢ 064385145 seconds MyDEConnection ¥

Enter S0L Staterment:

CREEATE OR. BEPLACE PROCEDURE del job (p_jobid jobs.job_ id%TYPE) IS
BEGIH

DELETE FROM jobs

THERE Jjob_id = p_jobid:

IF SOL:NOTFOUND THEH

RATSE_APPLICATION_ERROR(-Z0203, 'No jobs deleted.');

EHD IF:
EHD LEL_JOE:
/

FY

(]

% 4

B> Resutts | (5] Script outout | BiExplain | B sutotrace | @DEMS Output @ owis, Output

¢ 8 &

PROCEDURE del job Compiled.

b) Compile the code; invoke the procedure using the job ID IT DBA. Query the
JOBS table and view the results.

If the newly created procedure is not displayed in the Object Navigator,
right-click the Procedures node in the Object Navigator, and then select
Refresh from the shortcut menu. Right-click the procedure’s name in the
Object Navigator, and then select Compile from the shortcut menu. The
procedure is compiled.

Measages -Log

DEL_JOE Compiled

To invoke the procedure and then query the JOBS table, load the

sol 02 03 b.sql file from the D: \1abs\PLPU\solns folder. Click the
Run Script (F5) icon on the SQL Worksheet toolbar to invoke the procedure.
The code and the result are displayed as follows:

Oracle Database 11g: Develop PL/SQL Program Units A - 26

Practice 2: Creating, Compiling, and Calling Procedures
(continued)

[B] soi02_03 psqt |

|v

FEERS &E&8vB@d ¢ 0.999717 seconds MyDEConnection ¥

Enter Sl Statement:

EXECUTE del job {'IT DBA')
SELECT * FROM jobs WHERE job _id = 'IT DEA';

l

l;;esurts (&l scriet output H%Explain][ﬁ;-\utmra-:e H@DBMS Output H @ owa Output

¢d3&

anonymous block completed
JOE_ID JOE_TITLE MIN SALARY MaX SALARY

0 rows selected

c) Test the exception-handling section of the procedure by trying to delete a job that
does not exist. Use IT WEB as the job ID. You should get the message that you
included in the exception-handling section of the procedure as the output.

To invoke the procedure and then query the JOBS table, load the

sol 02 03 c.sql file from the D: \1abs\PLPU\solns folder. Click the
Run Script (FS) icon on the SQL Worksheet toolbar to invoke the procedure.
The code and the result are displayed as follows:

Blsol_0z_03 by |

(=]

FEERSe 8RB ¢ 0.50129443 seconds MyDEConnection ¥ |

Erter L Statement:

EXECUTE del job ('IT WEE'}

4]

FY

avResurts &l script output "EExmain l[ﬁmmrace H@Dams Cuteut][@ e Output

= =

Error starting at line 1 in command:
EXECUTE del job ('IT WEE')

Error report:

ORA-Z0203: Mo jobs deleted.
ORA-06512: at "ORAGL.DEL_JOE™, line &
ORA-0651Z2: at line 1

Oracle Database 11g: Develop PL/SQL Program Units A - 27

Practice 2: Creating, Compiling, and Calling Procedures
(continued)

4) Create a procedure called GET EMPLOYEE to query the EMPLOYEES table,

retrieving the salary and job ID for an employee when provided with the employee
ID.

a) Create a procedure that returns a value from the SALARY and JOB_ID columns
for a specified employee ID. Compile the code and remove syntax errors, if any.

Open the sol 02 04 a.sql file from the D: \1abs\PLPU\solns folder

as follows: Right-click the SQL Worksheet area, and then select Open File.
Navigate to the solns folder, select the sol 02 04 a.sql file, and then
click OK. Click the Run Script (F5) icon on the SQL Worksheet toolbar to
create the procedure. The code and the result are displayed as follows:

[B]s01_02_03_csq)

FERARe® GE8WRA ¢ 0.51475264 seconds MyDBConnection ¥ |

[

Enter SGL Statemert:

CEEATE OR REFLACE PROCEDURE get emplovee
(p_empid TH employees.enployee_ id3TYPE,
p_sal 0UT emplovees.salarviTYPE,
p_Job DUT employees.job_id3T¥FE) IS

BEGIHN

SELECT salary, job_id

INTO p_sZal, p_Jjob

FROM enployees

YHERE enployee_id = p_empid:
EHD get_employee;
;

FY

(]

. i

B> Resutts | [l Script output | B Explain | Bl autotrace | RDEMS Output @ ova output

¢ d&E

PROCEDURE get_employee Compiled.

If the newly created procedure is not displayed in the Object Navigator,
right-click the Procedures node in the Object Navigator, and then select
Refresh from the shortcut menu. Right-click the procedure’s name in the
Object Navigator, and then select Compile from the shortcut menu. The
procedure is compiled.

Messages -Log

GET_EMNPLOYEE Compiled

Oracle Database 11g: Develop PL/SQL Program Units A - 28

Practice 2: Creating, Compiling, and Calling Procedures
(continued)

b) Execute the procedure using host variables for the two OUT parameters—one for

the salary and the other for the job ID. Display the salary and job ID for employee
1D 120.

Open the sol 02 04 b.sql file from the D: \1abs\PLPU\solns folder
as follows: Right-click the SQL Worksheet area, and then select Open File.
Navigate to the solns folder, select the sol 02 04 b.sql file, and then
click OK. Click the Run Script (F5) icon on the SQL Worksheet toolbar to
invoke the procedure. The code and the result are displayed as follows:

[B]s0l_02_04_a.sq

FPEEARSeG EOB ¢ 1 51147175 seconds MyDEConnection

|-

Enter S0L Staternent:

VARIABLE w_szalary HUMBER

VARTABLE w_job VARCHIR2 (15

EXECUTIE get_employee(lZ0, :v_salary, :v_Jjob)
PRINT w_salary v_Jjob

Fe

(]

2]

% 4

> Resutts | [E] Script output | BExplain | B futotrace | ADEMS Output @1 oiva, Output

¢HdE

anonymous block completed
v_sgalary

000

c) Invoke the procedure again, passing an EMPLOYEE ID of 300. What happens
and why?

There is no employee in the EMPLOYEES table with an EMPLOYEE ID of
300. The SELECT statement retrieved no data from the database, resulting in
a fatal PL/SQL error: NO DATA FOUND as follows:

Oracle Database 11g: Develop PL/SQL Program Units A -29

Practice 2: Creating, Compiling, and Calling Procedures
(continued)
[B]s0_02_04_bsa | [

FPEERS E8ORB ¢ 04965746 seconds MyDBConrection ¥

Erter Sl Statement:

EXECUTE get_employee (300, :w_=zalary, :v_job) -

1] 2]

a:?esurts &l seriet output HﬁExplain | BB autotrace | @oEms cutput| @ oves outout
¢ B8 5

Error starting at line 1 in commatd:

EXECUTE get_employee (300, :v_salary, :v_Job)
Error report:

OR&-01403: no data found

OR&-06512: at "OR46l.GET_EMPLOYEE", line 6
OR&-06512: at line 1

01403, 00000 - "hno data found”

*Cause:

*hction:

Oracle Database 11g: Develop PL/SQL Program Units A - 30

Practices for Lesson 3

Practice 3: Creating Functions
In this practice/task, you create and invoke stored functions.

1) Create and invoke the GET JOB function to return a job title.

a)

b)

Create and compile a function called GET JOB to return a job title.

Open the sol 03 1 a.sql file from the D: \1abs\PLPU\solns folder.
Click the Run Script (F5) icon on the SQL Worksheet toolbar to create the
function. The code and the result are displayed as follows:

CREATE OR REPLACE FUNCTION get job (p_jobid IN
jobs.job id%$type)
RETURN jobs.job title%type IS
v_title jobs.job title%type;
BEGIN
SELECT job_title
INTO v_title
FROM jobs
WHERE job_id = p jobid;
RETURN v_t itle;
END get job;
/

(> Resuts | [E] Seriet Output | B Explain | B Autotrace | 0EMS Cutput | @) owa Cutput

¢dEa

FUNCTION get_job Compiled.

If the newly created function is not displayed in the Object Navigator, right-
click the Functions node in the Object Navigator, and then select Refresh
from the shortcut menu. Right-click the function’s name in the Object
Navigator, and then select Compile from the shortcut menu. The function is
compiled.

Messages - Log

GET_JOE Compiled

Create a VARCHARR2 host variable called b_title, allowing a length of 35
characters. Invoke the function with job ID SA REP to return the value in the
host variable, and then print the host variable to view the result.

Open the sol 03 01 b.sdql file from the D: \1abs\PLPU\solns folder.
Click the Run Script (F5) icon on the SQL Worksheet toolbar to create the
function. The code and the result are displayed as follows:

Oracle Database 11g: Develop PL/SQL Program Units A - 31

Practice 3: Creating Functions (continued)

VARIABLE b title VARCHAR2 (35)
EXECUTE :b title := get job ('SA REP');
PRINT b _title

[Resuts | (& Seript output | BRExplain | B autotrace | DEMS Output € owa output

¢dE

anonymous block completed
bh_title

Sales Representatiwve

2) Create a function called GET ANNUAL COMP to return the annual salary computed
from an employee’s monthly salary and commission passed as parameters.

a) Create the GET ANNUAL COMP function, which accepts parameter values for the
monthly salary and commission. Either or both values passed can be NULL, but
the function should still return a non-NULL annual salary. Use the following basic
formula to calculate the annual salary:

(salary*12) + (commission pct*salary*12)
Open the sol 03 02 a.sql file from the D: \1abs\PLPU\solns folder.

Click the Run Script (F5) icon on the SQL Worksheet toolbar to create the
function. The code and the result are displayed as follows:

CREATE OR REPLACE FUNCTION get annual comp (
p_sal 1IN employees.salary%TYPE,
p_comm IN employees.commission pct$TYPE)
RETURN NUMBER IS

BEGIN
RETURN (NVL(p_sal,0) * 12 + (NVL(p comm,0) * nvl(p_sal,0)
* 12));
END get annual comp;
/

(> Resutts | (& Seript Cutput | B Explein| B autotrace | ADEMS Output @ owia output

¢BdE

FUNCTION get antual comp | Compiled.

If the newly created function is not displayed in the Object Navigator, right-
click the Functions node in the Object Navigator, and then select Refresh
from the shortcut menu. To compile the function, right-click the function’s
name, and then select Compile from the shortcut menu.

Oracle Database 11g: Develop PL/SQL Program Units A - 32

Practice 3: Creating Functions (continued)

Messages -Log

FET_ANNUAL COMP Compiled

b) Use the function in a SELECT statement against the EMPLOYEES table for
employees in department 30.

Open the sol 03 02 b.sql file from the D: \1abs\PLPU\solns folder.
Click the Run Script (F5) icon on the SQL Worksheet toolbar to create the
function. The code and the result are displayed as follows:

SELECT employee id, last name,
get annual comp (salary,commission pct) "Annual
Compensation"
FROM employees
WHERE department i1d=30

/

[Resuts | (5] script output | B Explain | Bl utotrace | DEMS Output @ ova Output
¢ 8 &

EMPLOYEE_ID LAST NAME Anmmal Compenszation
114 Faphaelvy la3z000

115 ¥hoo 37200

116 EBaida 34500

117 Tohias 33600

115 Himuaro 31z00

119 Colmnenares 30000

& rows selected

3) Create a procedure, ADD EMPLOYEE, to insert a new employee into the
EMPLOYEES table. The procedure should call a VALID DEPTID function to check
whether the department ID specified for the new employee exists in the
DEPARTMENTS table.

a) Create a function called VALID DEPTID to validate a specified department ID
and return a BOOLEAN value of TRUE if the department exists.

Open the sol 03 03 a.sdql file from the D: \1abs\PLPU\solns folder.

Click the Run Script (F5) icon on the SQL Worksheet toolbar to create the
function. The code and the result are displayed as follows:

CREATE OR REPLACE FUNCTION valid deptid(

p _deptid IN departments.department id%TYPE)
RETURN BOOLEAN IS
v_dummy PLS INTEGER;

BEGIN
SELECT 1

Oracle Database 11g: Develop PL/SQL Program Units A -33

Practice 3: Creating Functions (continued)

INTO v_dummy
FROM departments

WHERE department id = p deptid;
RETURN TRUE;
EXCEPTION
WHEN NO_DATA FOUND THEN
RETURN FALSE;
END valid deptid;
/

> Resutts | [Z] Seript Output | TExplsin | B autotrace | BDEMS Output @ owis, Output

¢ 8 &

FUONCTION walid deptid{ Compiled.

If the newly created function is not displayed in the Object Navigator, right-click
the Functions node in the Object Navigator, and then select Refresh from the
shortcut menu. To compile the function, right-click the function’s name, and
then select Compile from the shortcut menu.

[ElMeszsanes - Loy

VALTD DEPTID Compiled

b) Create the ADD EMPLOYEE procedure to add an employee to the EMPLOYEES
table. The row should be added to the EMPLOYEES table if the VALID DEPTID
function returns TRUE; otherwise, alert the user with an appropriate message.
Provide the following parameters:

- first name

- last name

- email

- job:Use 'SA REP' as the default.

- mgr: Use 145 as the default.

- sal: Use 1000 as the default.

- comm: Use 0 as the default.

- deptid: Use 30 as the default.

- Use the EMPLOYEES SEQ sequence to set the employee id column.
- Setthe hire date column to TRUNC (SYSDATE).

Oracle Database 11g: Develop PL/SQL Program Units A - 34

Practice 3: Creating Functions (continued)

Open the sol 03 03 b.sql file from the D: \1abs\PLPU\solns folder.
Click the Run Script (F5) icon on the SQL Worksheet toolbar to create the
procedure. The code and the result are displayed as follows:

CREATE OR REPLACE PROCEDURE add employee (
p_first name employees.first name%TYPE,
p_last name employees.last name3TYPE,

p email employees.email%TYPE,

p_job employees.job id$TYPE DEFAULT 'SA REP',

p_mgr employees.manager id$TYPE DEFAULT 145,

p_sal employees.salary%TYPE DEFAULT 1000,

p_comm employees.commission pct%TYPE DEFAULT O,

p _deptid employees.department id%TYPE DEFAULT 30) IS
BEGIN

IF valid deptid(p deptid) THEN
INSERT INTO employees (employee id, first name, last name,
email,
job_id, manager id, hire date, salary, commission pct,
department id)
VALUES (employees_ seq.NEXTVAL, p_first name, p last name,
p_email,
p_job, p mgr, TRUNC(SYSDATE), p sal, p comm, p deptid);
ELSE
RAISE APPLICATION ERROR (-20204, 'Invalid department ID.
Try again.');
END IF;
END add employee;
/

(> Resuts | [l Serint Output | BExplsin | B autatrace | @0EMS outout | @ owwia Output

= =

FROCEDURE add employes| Compiled.

If the newly created procedure is not displayed in the Object Navigator, right-
click the Procedures node in the Object Navigator, and then select Refresh from
the shortcut menu. To compile the procedure, right-click the procedure’s name,
and then select Compile from the shortcut menu.

Messages - Lag

ADD EMPLOTEE Compiled

c) Call ADD EMPLOYEE for the name 'Jane Harris' in department 15,
leaving other parameters with their default values. What is the result?

Open the sol 03 03 c.sql file from the D: \1abs\PLPU\solns folder,
or enter the following code in the SQL Worksheet area. Click the Run Script

Oracle Database 11g: Develop PL/SQL Program Units A -35

Practice 3: Creating Functions (continued)

d)

(F5) icon on the SQL Worksheet toolbar to invoke the procedure. The code
and the result are displayed as follows:

EXECUTE add_employee('Jane', 'Harris',6 'JAHARRIS',
p_deptid=> 15)

(> Resuits | (& Seript Output | BExplain | B sutotrace | EADEMS Outout | @) owa output

¢ 8 &

Error starting at line 1 in command:

EXECUTE add_employee('Jane', 'Harrisz', 'JAHARRISZ', p_deptid=> 15)
Error report:

O0R4-20204: Inwalid department ID. Try again.

OR4-0651Z2Z: at "ORAG1.ADD EMPLOYEE™, line 17

OR&-06512: at line 1

Add another employee named Joe Harris in department 80, leaving the remaining
parameters with their default values. What is the result?

Open the sol 03 03 d.sql file from the D: \1abs\PLPU\solns folder,
or enter the following code in the SQL Worksheet area, and then click the
Run Script (F5) icon on the SQL Worksheet toolbar to invoke the procedure.
The code and the result are displayed as follows:

EXECUTE add _employee('Joe', 'Harris',6 'JAHARRIS',
p_deptid=> 80)

[Resutts | [E] Scrint output | ElExpisin | B autotrace | DEMS Output @ owia output

¢ dE

anonymous block completed

Oracle Database 11g: Develop PL/SQL Program Units A - 36

Practices for Lesson 4

Practice 4: Creating and Using Packages

In this practice, you create package specifications and package bodies. You then invoke
the constructs in the packages by using sample data.

1) Create a package specification and body called JOB_PKG, containing a copy of your
ADD_JOB, UPD_JOB, and DEL_ JOB procedures as well as your GET JOB function.

Note: Use the code from your previously saved procedures and functions when
creating the package. You can copy the code in a procedure or function, and then
paste the code into the appropriate section of the package.

a) Create the package specification including the procedures and function headings
as public constructs.

Open the sol 04 01 a.sql filein the D: \1abs\PLPU\solns folder, or

copy and paste the following code in the SQL Worksheet area. Click the Run
Script (FS) icon on the SQL Worksheet toolbar to create the package
specification. The code and the result are displayed as follows:

CREATE OR REPLACE PACKAGE job pkg IS

PROCEDURE add_ job (p jobid jobs.job id%TYPE, p_ jobtitle
jobs.job title%TYPE) ;

PROCEDURE del job (p jobid jobs.job id%TYPE) ;

FUNCTION get job (p jobid IN jobs.job id%type) RETURN
jobs.job title%type;

PROCEDURE upd_ job(p jobid IN jobs.job id%TYPE, p jobtitle
IN jobs.job title%TYPE) ;
END job_ pkg;
/
SHOW ERRORS

[Resutts | (& Seript output | TRExpiain | Eautotrace | @0EMS Output @ owis, output

¢ d &

PACKAGE EBODY job_pkg Compiled.
No Errors.

To compile the new package body, right-click the package’s body name in
the Object Navigation tree, and then select Compile from the shortcut menu.
The package body is compiled as shown below:

Messages - Log @=EBreakpoirts

JOE_PECG Body Compiled

b) Create the package body with the implementations for each of the subprograms.

Oracle Database 11g: Develop PL/SQL Program Units A - 37

Practice 4: Creating and Using Packages (continued)

Open the sol 04 01 b.sql file in the D: \1abs\PLPU\solns folder, or
copy and paste the following code in the SQL Worksheet area. Click the Run
Script (F5) icon on the SQL Worksheet toolbar to create the package body.
The code and the result are displayed as follows:

CREATE OR REPLACE PACKAGE BODY job pkg IS
PROCEDURE add_job (
p_jobid jobs.job id%TYPE,
p_jobtitle jobs.job title%TYPE) IS
BEGIN
INSERT INTO jobs (job id, job title)
VALUES (p_jobid, p_ jobtitle);
COMMIT;
END add_job;

PROCEDURE del job (p jobid jobs.job id$TYPE) IS
BEGIN
DELETE FROM jobs
WHERE job id = p jobid;
IF SQL%NOTFOUND THEN
RAISE APPLICATION ERROR (-20203, 'No jobs
deleted.') ;
END IF;
END DEL_JOB;

FUNCTION get job (p jobid IN jobs.job id%type)
RETURN jobs.job title%type IS
v_title jobs.job title%type;
BEGIN
SELECT job title
INTO v _title
FROM jobs
WHERE job id = p jobid;
RETURN v_title;
END get job;

PROCEDURE upd_job (
p_jobid IN jobs.job id$TYPE,
p_jobtitle IN jobs.job title%TYPE) IS
BEGIN
UPDATE jobs
SET job title = p jobtitle
WHERE job id = p jobid;
IF SQL%NOTFOUND THEN
RAISE APPLICATION ERROR(-20202, 'No job updated.');
END TIF;
END upd job;

END job pkg;

Oracle Database 11g: Develop PL/SQL Program Units A - 38

Practice 4: Creating and Using Packages (continued)

c)

d)

/

SHOW ERRORS

Messages - Log @=Ereskpoints

JOE_PEG Body Compiled

Delete the following stand-alone procedures and function you just packaged using
the Procedures and Functions nodes in the Object Navigation tree:

i) The ADD JOB, UPD_JOB, and DEL_JOB procedures
i1) The GET JOB function

To delete a procedure or a function, right-click the procedure’s name or
function’s name in the Object Navigation tree, and then select Drop from the
pop-up menu. The Drop window is displayed. Click Apply to drop the
procedure or function. A confirmation window is displayed.

Invoke your ADD JOB package procedure by passing the values IT SYSAN and
SYSTEMS ANALYST as parameters.

Open the sol 04 01 d.sql filein the D: \1abs\PLPU\solns folder, or
copy and paste the following code in the SQL Worksheet area. Click the Run
Script (F5) icon on the SQL Worksheet toolbar to invoke the package’s
procedure. The code and the result are displayed as follows:

EXECUTE job pkg.add job('IT SYSAN', 'Systems Analyst')

[Resuts | [Soriet Output | B Explain | Bautotrace | DEMS Outout | @ owia Output

¢ 8 &

anonymols block completed

Query the JOBS table to see the result.

Open the sol 04 01 e.sql filein the D: \1abs\PLPU\solns folder, or
copy and paste the following code in the SQL Worksheet area. Click the Run
Script (F5) icon or the Execute Statement (F9) on the SQL Worksheet
toolbar to query the JOBS table. The code and the result (using the Run
Script icon) are displayed as follows:

SELECT *
FROM jobs
WHERE job id = 'IT SYSAN';

Oracle Database 11g: Develop PL/SQL Program Units A -39

Practice 4: Creating and Using Packages (continued)
> Resuts | (& Seript Outout | B Explain | B Autetrace | DEMS Output | @) owia Output
¢ 8 &

JOE_ID JOE_TITLE MIN SALARY Max SALARY

IT_SV¥SAN Jystens Analyst

1l rows selected

2) Create and invoke a package that contains private and public constructs.

a) Create a package specification and a package body called EMP_ PKG that contains
the following procedures and function that you created earlier:

1) ADD EMPLOYEE procedure as a public construct
i1) GET EMPLOYEE procedure as a public construct
ii1) VALID DEPTID function as a private construct

Open the sol 04 02 a.sql filein the D:\1abs\PLPU\solns
folder, or copy and paste the following code in the SQL Worksheet area.
Click the Run Script (F5) icon on the SQL Worksheet toolbar to invoke
the package’s procedure. The code and the result are displayed as
follows:

CREATE OR REPLACE PACKAGE emp pkg IS
PROCEDURE add employee (
p_first name employees.first name%TYPE,
p_last name employees.last name$TYPE,
p _email employees.email%TYPE,
p_job employees.job id%TYPE DEFAULT 'SA REP',
p_mgr employees.manager 1d%TYPE DEFAULT 145,
p_sal employees.salary%$TYPE DEFAULT 1000,
p_comm employees.commission pct%TYPE DEFAULT O,
p_deptid employees.department id%TYPE DEFAULT 30) ;
PROCEDURE get employee (
p_empid IN employees.employee id$TYPE,
p_sal OUT employees.salary3%TYPE,
p _job OUT employees.job id$TYPE) ;
END emp pkg;
/
SHOW ERRORS

CREATE OR REPLACE PACKAGE BODY emp pkg IS
FUNCTION valid deptid(p deptid IN
departments.department id%TYPE) RETURN BOOLEAN IS
v_dummy PLS_INTEGER;
BEGIN
SELECT 1
INTO v_dummy
FROM departments

Oracle Database 11g: Develop PL/SQL Program Units A -40

Practice 4: Creating and Using Packages (continued)

WHERE department id = p deptid;
RETURN TRUE;
EXCEPTION
WHEN NO_DATA FOUND THEN
RETURN FALSE;

END valid deptid;

PROCEDURE add_employee (
p_first name employees.first name%TYPE,
p_last name employees.last name$TYPE,
p email employees.email%TYPE,
p_job employees.job id%TYPE DEFAULT 'SA REP',
p_mgr employees.manager 1d%TYPE DEFAULT 145,
p_sal employees.salary%$TYPE DEFAULT 1000,
p_comm employees.commission pct%TYPE DEFAULT O,
p_deptid employees.department id%TYPE DEFAULT 30) IS
BEGIN
IF valid deptid(p_deptid) THEN
INSERT INTO employees (employee id, first name,
last name, email,
job_id, manager id, hire date, salary,
commission pct, department id)
VALUES (employees seq.NEXTVAL, p first name,
p last name, p email,
p_job, p mgr, TRUNC(SYSDATE), p sal, p comm,
p_deptid);
ELSE
RAISE APPLICATION_ ERROR (-20204, 'Invalid
department ID. Try again.');
END IF;
END add employee;

PROCEDURE get employee (
p_empid IN employees.employee id$TYPE,
p_sal OUT employees.salary%TYPE,
p _job OUT employees.job id$TYPE) IS
BEGIN
SELECT salary, job id
INTO p_sal, p job
FROM employees
WHERE employee id = p_ empid;
END get employee;
END emp pkg;
/
SHOW ERRORS

Oracle Database 11g: Develop PL/SQL Program Units A - 41

Practice 4: Creating and Using Packages (continued)

> Resuts | [&] Script Output | EYExplsin | B sutotrace | DEMS Output @ owa, Output

¢ 3 &

FACKAGE emp pkg Compiled.

HNo Errors.

PACKAGE BODY emp pkg Compiled.
Mo Errors.

b) Invoke the EMP_PKG.ADD EMPLOYEE procedure, using department ID 15 for

employee Jane Harris with the email ID JAHARRIS. Because department ID 15

does not exist, you should get an error message as specified in the exception
handler of your procedure.

Open the sol 04 02 b.sql filein the D: \1abs\PLPU\solns folder, or
copy and paste the following code in the SQL Worksheet area. Click the Run
Script (F5) icon on the SQL Worksheet toolbar to invoke the package’s
procedure. The code and the result are displayed as follows:

EXECUTE emp pkg.add employee('Jane', 'Harris', 'JAHARRIS',
p deptid => 15)

[Resutts | (& Scrint output | B Explain | B autotrace | EDEMS Output @ ovn Output

¢ 8 &

Error starting at line 1 in command:

EXECUTE ewmp pkg.add_ewmployee('dJane', 'Harrisz','J4HARRTS', p_deptid => 15)
Error report:

ORA-Z20204: Inwalid department ID. Try again.

ORA-06512: at "ORAGL.EMP_PEG", line 31

OR&4-06512: at line 1

Invoke the ADD EMPLOYEE package procedure by using department ID 80 for
employee David Smith with the email ID DASMITH.

Open the sol 04 02 c.sql filein the D: \1abs\PLPU\solns folder, or
copy and paste the following code in the SQL Worksheet area. Click the Run
Script (FS) icon on the SQL Worksheet toolbar to invoke the package’s
procedure. The code and the result are displayed as follows:

EXECUTE emp pkg.add employee('David', 'Smith', 'DASMITH',
p _deptid => 80)

Oracle Database 11g: Develop PL/SQL Program Units A -42

Practice 4: Creating and Using Packages (continued)

> Resuts | [l Script output | BExplain | Bautotrace | ADEMS Output | @) owwia output

¢ 8 &

anonynous block completed

d) Query the EMPLOYEES table to verify that the new employee was added.

Open the sol 04 02 d.sql filein the D: \1abs\PLPU\solns folder, or
copy and paste the following code in the SQL Worksheet area. Click the Run
Script (F5) icon or the Execute Statement (F9) on the SQL Worksheet
toolbar to query the EMPLOYEES table. The code and the result (Execute
Statement icon) are displayed as follows:

SELECT *
FROM employees
WHERE last name = 'Smith';

[Results | [F] seript output | EExplsin | B autatrace | E0EMS output | @A owia Output
Fesults:

empeovee 0 | FrsT_vame (8 Last newe [§ eman @ prione noveer [AR pate [§ woe o[B8 saiarv @ commssionpet [B menacer_o B peparTMENT D

1 203 David Smith DASMITH (ruil 2-JUN-07 S4_REP 1000 [1} 145
2 159 Lindsey Strith LSMITH 01144 1345729268 10-MAR-37 S&_RER 8000 0.3 146
3 71 Willizm Strith WSMITH - 011441343 629268 23-FEB-99 S&_REP 7400 015 148

a0
a0
a0

Oracle Database 11g: Develop PL/SQL Program Units A -43

Practices for Lesson 5

Practice 5: Working with Packages

In this practice, you modify an existing package to contain overloaded subprograms and
you use forward declarations. You also create a package initialization block within a
package body to populate a PL/SQL table.

1) Modify the code for the EMP_PKG package that you created in Practice 4 step 2, and
overload the ADD EMPLOYEE procedure.

a) In the package specification, add a new procedure called ADD EMPLOYEE that
accepts the following three parameters:

1) First name
i1) Last name
1i1) Department ID

Open the sol 05 01 a.sql filein the D: \1abs\PLPU\solns folder, or
copy and paste the highlighted part (code in bold-face letters) in the following
code in the SQL Worksheet area. Click the Run Script (F5) icon on the SQL
Worksheet toolbar to invoke the package’s procedure. The code and the
result are displayed as follows:

CREATE OR REPLACE PACKAGE emp pkg IS
PROCEDURE add_employee (
p _first name employees.first name%TYPE,
p_last name employees.last name%TYPE,
p_email employees.email%TYPE,
p_job employees.job id%$TYPE DEFAULT 'SA REP',
p_mgr employees.manager id%TYPE DEFAULT 145,
p_sal employees.salary%$TYPE DEFAULT 1000,
p _comm employees.commission pct%TYPE DEFAULT O,
p deptid employees.department id%TYPE DEFAULT 30) ;

/* New overloaded add employee */

PROCEDURE add employee (
p_first name employees.first name%TYPE,
p_last name employees.last name%TYPE,
p _deptid employees.department id%TYPE) ;

PROCEDURE get employee (
p empid IN employees.employee id%TYPE,
p_sal OUT employees.salary%TYPE,
p _job OUT employees.job id$TYPE) ;
END emp pkg;
/
SHOW ERRORS

Oracle Database 11g: Develop PL/SQL Program Units A -44

Practice 5: Working with Packages (continued)
b) Click Run Script to create the package. Compile the package.

[Resutts | [l Script output | BExplain | B sutotrace | ADEMS Output @howa output

¢ 8 &

PACEAGE emp pkg Compiled.
No Errors.

To compile the package, right-click the package’s name in the Object
Navigator tree, and then select Compile from the shortcut menu. The
package is compiled as shown below:

Messages - Log

EMP TECG Compiled

Implement the new ADD EMPLOYEE procedure in the package body as follows:

1) Format the email address in uppercase characters, using the first letter of the
first name concatenated with the first seven letters of the last name.

ii) The procedure should call the existing ADD EMPLOYEE procedure to perform
the actual INSERT operation using its parameters and formatted email to
supply the values.

ii1) Click Run Script to create the package. Compile the package.

Open the sol 05 01 c.sql filein the D: \1abs\PLPU\solns folder, or
copy and paste the newly added and highlighted part (code in bold-face
letters) in the following code box in the SQL Worksheet area. Click the Run
Script (F5) icon on the SQL Worksheet toolbar to invoke the package’s
procedure. The code and the result are displayed as follows:

CREATE OR REPLACE PACKAGE BODY emp pkg IS
FUNCTION valid deptid(p_deptid IN

departments.department id$TYPE) RETURN BOOLEAN IS

v_dummy PLS INTEGER;
BEGIN
SELECT 1
INTO v_dummy
FROM departments
WHERE department id = p deptid;
RETURN TRUE;
EXCEPTION
WHEN NO_DATA FOUND THEN
RETURN FALSE;
END valid deptid;

PROCEDURE add employee (

p_first name employees.first name%TYPE,

Oracle Database 11g: Develop PL/SQL Program Units A -45

Practice 5: Working with Packages (continued)

p_last name employees.last name$%$TYPE,

p _email employees.email%TYPE,

p_job employees.job id%TYPE DEFAULT 'SA REP',

p_mgr employees.manager 1d%TYPE DEFAULT 145,

p_sal employees.salary%$TYPE DEFAULT 1000,

p_comm employees.commission pct%TYPE DEFAULT O,
p_deptid employees.department id%TYPE DEFAULT 30) IS

BEGIN
IF valid deptid(p deptid) THEN
INSERT INTO employees (employee id, first name, last name,
email, job id, manager id, hire date, salary,
commission pct, department id)
VALUES (employees seq.NEXTVAL, p first name, p last name,
p_email, p job, p _mgr, TRUNC(SYSDATE), p_sal, p comm,
p_deptid) ;
ELSE
RAISE APPLICATION ERROR (-20204, 'Invalid department ID. Try
again.');
END TF;
END add employee;

/* New overloaded add employee procedure */

PROCEDURE add employee (
p_first name employees.first name%TYPE,
p_last name employees.last name%TYPE,
p_deptid employees.department id%TYPE) IS
p_email employees.email%type;
BEGIN
p _email := UPPER(SUBSTR(p first name, 1,
1) | | SUBSTR(p last name, 1, 7));
add employee(p first name, p last name, p email, p deptid =>
p_deptid) ;
END;

/* End declaration of the overloaded add employee procedure */

PROCEDURE get employee (
p_empid IN employees.employee id3%TYPE,
p_sal OUT employees.salary3%TYPE,
p_job OUT employees.job id%TYPE) IS
BEGIN
SELECT salary, job_id
INTO p_sal, p _job
FROM employees
WHERE employee id = p empid;
END get employee;
END emp pkg;
/

Oracle Database 11g: Develop PL/SQL Program Units A - 46

Practice 5: Working with Packages (continued)
| sHOW ERRORS

[Resutts | (& Seript output | TExplain | B sutotrace | ADEMS Output @ ova Output
¢ d &

PACEAGE EBODY emp pkyg Compiled.
No Errors.

To compile the package, right-click the package’s body (or the entire package) name
in the Object Navigator tree, and then select Compile from the shortcut menu. The
package body is compiled as shown below:

Messages - Log

EMP_ PECG Eody Compiled

d) Invoke the new ADD EMPLOYEE procedure using the name Samuel Joplin
to be added to department 30.

Open the sol 05 01 d.sql file in the D: \1abs\PLPU\solns folder, or
copy and paste the following code in the SQL Worksheet area. Click the Run
Script (F5) icon on the SQL Worksheet toolbar to invoke the package’s
procedure. The code and the result are displayed as follows:

EXECUTE emp_ pkg.add employee('Samuel',6 'Joplin', 30)

(> Resutts | (& Script Output | EExplain | B autotrace | DEMS output | @)0wa Output
¢ d &

anonymous block completed

e) Confirm that the new employee was added to the EMPLOYEES table.

Open the sol 05 01 e.sql filein the D: \1abs\PLPU\solns folder, or
copy and paste the following code in the SQL Worksheet area. Click the
Execute Statement (F9) icon on the SQL Worksheet toolbar to execute the
query. The code and the result are displayed as follows:

SELECT +*
FROM employees
WHERE last name = 'Joplin';

[Resuts | (=] seript outpout | EExplain | B Autotrace | (A0EMS Output | @)0wia Output
Resutts:

B ewpiovee 0|8 rrst name (8 cost nome [§ emsi |8 prone moveer [nire oate [sos o |8 seisry [B commssion pct [manscer 0|8 pepartMENT ID

1 209 Samuel Joplin SJOPLIMG - Crully 21 -JUN-07 S&_REP 1000 a 145 30

Oracle Database 11g: Develop PL/SQL Program Units A -47

Practice 5: Working with Packages (continued)
2) Inthe EMP_PKG package, create two overloaded functions called GET EMPLOYEE:

a) In the package specification, add the following functions:

1) The GET EMPLOYEE function that accepts the parameter called p_emp id
based on the employees.employee id$TYPE type. This function
should return EMPLOYEES$ROWTYPE.

i1) The GET EMPLOYEE function that accepts the parameter called
p_family name of type employees.last name%$TYPE. This function
should return EMPLOYEES$ROWTYPE.

Open the sol 05 02 a.sql filein the D: \1abs\PLPU\solns folder, or
copy and paste the newly added and highlighted code (code in bold-face
letters) in the following code box in the SQL Worksheet area.

CREATE OR REPLACE PACKAGE emp pkg IS
PROCEDURE add_employee (
p _first name employees.first name%TYPE,
p_last name employees.last name$TYPE,
p _email employees.email%TYPE,
p_job employees.job id%$TYPE DEFAULT 'SA REP',
p_mgr employees.manager id%TYPE DEFAULT 145,
p_sal employees.salary%TYPE DEFAULT 1000,
p _comm employees.commission pct%TYPE DEFAULT O,
p deptid employees.department id%TYPE DEFAULT 30) ;

PROCEDURE add_employee (
p first name employees.first name%TYPE,
p_last name employees.last name$%$TYPE,
p_deptid employees.department id%TYPE) ;

PROCEDURE get employee (
p_empid IN employees.employee id$TYPE,
p_sal OUT employees.salary3%TYPE,
p_Jjob OUT employees.job id%TYPE) ;

/* New overloaded get employees functions specs starts here: */

FUNCTION get employee(p emp id employees.employee id%type)
return employees%rowtype;

FUNCTION get employee(p family name employees.last name%type)
return employees%rowtype;

/* New overloaded get employees functions specs ends here. */
END emp pkg;

/
SHOW ERRORS

Oracle Database 11g: Develop PL/SQL Program Units A -48

Practice 5: Working with Packages (continued)
b) Click Run Script to re-create and compile the package.

Click the Run Script (F5) icon on the SQL Worksheet toolbar to re-create
the package’s specification. The result is shown below:

[Resuts | (& Script output | EExplain | B avtotrace | oEMS Outout @ ovia output
¢ B &

FACKAGE emp pkyg Compiled.
No Errors.

To compile the package specification, right-click the package’s specification
(or the entire package) name in the Object Navigator tree, and then select
Compile from the shortcut menu. The warning is expected and is for
informational purposes only.

Cu:umpiler - Log E]
Project: CProgram Files\SGL Developer 1 . 2egldeveloperizgldevelopersystemioracle sgldeveloper 1.2.0 2995'Defaultyio

El@ PACKAGE ORABT EMP_PRGENyDECOnnEection
Loy Warning(21 50 PLW-07203: parameter 'P_JOE' may benefit from uze of the NMOCOPY compiler hint

c¢) In the package body:

1) Implement the first GET EMPLOYEE function to query an employee using the
employee’s ID.

i1)) Implement the second GET EMPLOYEE function to use the equality operator
on the value supplied in the p_ family name parameter.

Open the sol 05 02 c.sql file in the D: \1abs\PLPU\solns folder, or
copy and paste the following code in the SQL Worksheet area. The newly
added functions are highlighted in the following code box.

CREATE OR REPLACE PACKAGE emp pkg IS
PROCEDURE add employee (
p_first name employees.first name%TYPE,
p_last name employees.last name$TYPE,
p _email employees.email%TYPE,
p_job employees.job id%TYPE DEFAULT 'SA REP',
p_mgr employees.manager 1d%TYPE DEFAULT 145,
p_sal employees.salary%$TYPE DEFAULT 1000,
p_comm employees.commission pct%TYPE DEFAULT O,
p_deptid employees.department id%TYPE DEFAULT 30) ;

PROCEDURE add_employee (
p_first name employees.first name%TYPE,
p_last name employees.last name$TYPE,
p deptid employees.department id%TYPE) ;

Oracle Database 11g: Develop PL/SQL Program Units A -49

Practice 5: Working with Packages (continued)

PROCEDURE get employee (

p_empid IN employees.employee id3%TYPE,
p_sal OUT employees.salary3%TYPE,
p_Jjob OUT employees.job id%TYPE) ;

/* New overloaded get employees functions specs starts here: */

FUNCTION get employee(p emp id employees.employee id%type)
return employees%rowtype;

FUNCTION get employee(p family name employees.last name%type)
return employees%rowtype;

/* New overloaded get employees functions specs ends here. */

END emp pkg;

/
SHOW ERRORS

CREATE OR REPLACE PACKAGE BODY emp pkg IS
FUNCTION valid deptid(p deptid IN
departments.department id$TYPE) RETURN BOOLEAN IS
v_dummy PLS INTEGER;
BEGIN
SELECT 1
INTO v_dummy
FROM departments
WHERE department id = p deptid;
RETURN TRUE;
EXCEPTION
WHEN NO_DATA FOUND THEN
RETURN FALSE;
END valid deptid;

PROCEDURE add employee (
p first name employees.first name%TYPE,
p_last name employees.last name$%$TYPE,
p _email employees.email%TYPE,
p_job employees.job id%TYPE DEFAULT 'SA REP',
p_mgr employees.manager 1d%TYPE DEFAULT 145,
p_sal employees.salary%$TYPE DEFAULT 1000,
p_comm employees.commission pct%TYPE DEFAULT O,
p_deptid employees.department id%TYPE DEFAULT 30) IS
BEGIN
IF valid deptid(p deptid) THEN
INSERT INTO employees (employee id, first name, last name,
email, job id, manager id, hire date, salary,
commission pct, department id)

Oracle Database 11g: Develop PL/SQL Program Units A - 50

Practice 5: Working with Packages (continued)

VALUES (employees seq.NEXTVAL, p_first name, p last name,
p _email, p job, p mgr, TRUNC(SYSDATE), p_sal, p comm,
p _deptid);
ELSE
RAISE APPLICATION ERROR (-20204, 'Invalid department ID.
Try again.');
END TF;
END add employee;

PROCEDURE add employee (
p_first name employees.first name%TYPE,
p_last name employees.last name$TYPE,
p _deptid employees.department id%TYPE) IS
p _email employees.email%type;
BEGIN
p email := UPPER(SUBSTR(p first name, 1,
1) | |SUBSTR (p_last name, 1, 7));
add _employee(p first name, p last name, p email, p deptid =>
p_deptid);
END;

PROCEDURE get employee (
p empid IN employees.employee id%TYPE,
p_sal OUT employees.salary%TYPE,
p _job OUT employees.job id$%$TYPE) IS
BEGIN
SELECT salary, job id
INTO p_sal, p job
FROM employees
WHERE employee id = p_empid;
END get employee;

/* New get employee function declaration starts here */

FUNCTION get employee(p emp id employees.employee id%type)

return employees%rowtype IS
rec_emp employees%rowtype;

BEGIN
SELECT * INTO rec_emp
FROM employees
WHERE employee id = p emp id;
RETURN rec_emp;

END;

FUNCTION get employee(p family name employees.last name%type)
return employees%rowtype IS
rec_emp employees%rowtype;
BEGIN
SELECT * INTO rec_ emp
FROM employees
WHERE last name = p family name;
RETURN rec_emp;

Oracle Database 11g: Develop PL/SQL Program Units A - 51

Practice 5: Working with Packages (continued)

END;
/* New overloaded get employee function declaration ends here */
END emp pkg;

/
SHOW ERRORS

d) Click Run Script to re-create the package. Compile the package.

Click the Run Script (F5) icon on the SQL Worksheet toolbar to re-create
the package. The result is shown below:

[Resutts | (&l Script output | BExplain | B sutotrace | ADEMS Output @rova output
¢ 83 &

PACKAGE emp pko Compiled.

No Errors.

PACKAGE BODY emp pkg Compiled.
No Errors.

To compile the package, right-click the package’s name in the Object
Navigator tree, and then select Compile from the shortcut menu. If you get a
warning message, that is all right and is meant for informational purposes
only.

Cu:umpiler - Log

Project: CHPrograrm Filest=aL Developer 1. 2egldeveloperzgldeveloperisystemioracle sgldeveloper 1.2.0 29987
=[5 PACKAGE ORAGT EMP_PHG@MyDEConnection

- .ﬂ. Wiarkning(21 50 PLW-O7203: parameter 'P_JOB' tnay behefit frotm uze of the NOCOPY compiler hirt

e) Add a utility procedure PRINT EMPLOYEE to the EMP_PKG package as
follows:

1) The procedure accepts an EMPLOYEES$ROWTYPE as a parameter.

i1) The procedure displays the following for an employee on one line, using the
DBMS_OUTPUT package:

- department id
- employee id

- first _name

- last name

- Jjob_id

- salary

Open the sol 05 02 e.sql filein the D: \1abs\PLPU\solns folder, or

copy and paste the following code in the SQL Worksheet area. The newly
added code is highlighted in the following code box.

Oracle Database 11g: Develop PL/SQL Program Units A - 52

Practice 5: Working with Packages (continued)

-- Package SPECIFICATION

CREATE OR REPLACE PACKAGE emp pkg IS
PROCEDURE add_employee (
p_first name employees.first name%TYPE,
p_last name employees.last name3TYPE,
p_email employees.email%TYPE,
p _job employees.job id$TYPE DEFAULT 'SA REP',
p mgr employees.manager 1d$TYPE DEFAULT 145,
p_sal employees.salary$TYPE DEFAULT 1000,
p_comm employees.commission pct%TYPE DEFAULT O,
p _deptid employees.department id%TYPE DEFAULT 30) ;

PROCEDURE add_employee (
p _first name employees.first name%TYPE,
p_last name employees.last name%TYPE,
p _deptid employees.department id%TYPE) ;

PROCEDURE get employee (
p_empid IN employees.employee id$TYPE,
p_sal OUT employees.salary%TYPE,
p _job OUT employees.job id$TYPE) ;

FUNCTION get employee(p emp id employees.employee id%type)
return employees%rowtype;

FUNCTION get employee(p_ family name
employees.last name%type)
return employees$rowtype;

/* New print employee print employee procedure spec */
PROCEDURE print employee(p rec emp employees%rowtype) ;

END emp pkg;

/
SHOW ERRORS

-- Package BODY

CREATE OR REPLACE PACKAGE BODY emp pkg IS
FUNCTION valid deptid(p deptid IN
departments.department id%TYPE) RETURN BOOLEAN IS
v_dummy PLS INTEGER;
BEGIN
SELECT 1
INTO v_dummy
FROM departments
WHERE department id = p deptid;
RETURN TRUE;
EXCEPTION

Oracle Database 11g: Develop PL/SQL Program Units A - 53

Practice 5: Working with Packages (continued)

WHEN NO_DATA FOUND THEN
RETURN FALSE;

END valid deptid;

PROCEDURE add_employee (
p _first name employees.first name%TYPE,
p_last name employees.last name3TYPE,
p_email employees.email%TYPE,
p_job employees.job id%$TYPE DEFAULT 'SA REP',
p mgr employees.manager 1d$TYPE DEFAULT 145,
p_sal employees.salary$TYPE DEFAULT 1000,
p _comm employees.commission pct%TYPE DEFAULT O,
p _deptid employees.department id%TYPE DEFAULT 30) IS
BEGIN
IF valid deptid(p deptid) THEN
INSERT INTO employees (employee id, first name,
last name, email,
job_id, manager_ id, hire date, salary, commission pct,
department id)
VALUES (employees seq.NEXTVAL, p_ first name,
p_last name, p_email,
p_job, p mgr, TRUNC(SYSDATE), p sal, p_ comm,
p deptid);
ELSE
RAISE APPLICATION ERROR (-20204, 'Invalid department ID.
Try again.');
END IF;
END add employee;

PROCEDURE add_employee (
p _first name employees.first name%TYPE,
p_last name employees.last name3TYPE,
p_deptid employees.department id$TYPE) IS
p_email employees.email%type;
BEGIN
p email := UPPER(SUBSTR(p first name, 1,
1) | | SUBSTR (p last name, 1, 7));
add employee(p first name, p last name, p email, p deptid
=> p deptid) ;
END;

PROCEDURE get employee (
p_empid IN employees.employee id3%TYPE,
p_sal OUT employees.salary3%TYPE,
p_job OUT employees.job id%TYPE) IS
BEGIN
SELECT salary, job_id
INTO p_sal, p job
FROM employees
WHERE employee id = p empid;
END get employee;

Oracle Database 11g: Develop PL/SQL Program Units A - 54

Practice 5: Working with Packages (continued)

FUNCTION get employee(p emp id employees.employee id%type)

return employees%$rowtype IS
rec_emp employees%rowtype;

BEGIN
SELECT * INTO rec_emp
FROM employees
WHERE employee id = p_emp id;
RETURN rec_emp;

END;

FUNCTION get employee (p_ family name
employees.last name%type)

return employees%rowtype IS
rec_emp employees%rowtype;

BEGIN
SELECT * INTO rec_emp
FROM employees
WHERE last name = p_ family name;
RETURN rec_emp;

END;

/* New print employees procedure declaration. */

PROCEDURE print employee(p rec emp employees%rowtype) IS
BEGIN
DBMS_ OUTPUT.PUT LINE(p rec emp.department id |
p_rec_emp.employee id| |’
p_rec emp.first name||' '
p_rec_emp.last name||' '|
p_rec emp.job id||' '||
p_rec emp.salary);

END;

END emp pkg;

/
SHOW ERRORS

f) Click Run Script (F5) to create the package. Compile the package.

Click the Run Script (F5) icon on the SQL Worksheet toolbar to re-create
the package.

[Resutis | [E Seript output | BExplain | B autotrace | DEMS Output @hova Output

¢ B &

PACKEAGE emp pkg Compiled.

No Errors.

PACEAGE BODY emp pkg Compiled.
No Errors.

Oracle Database 11g: Develop PL/SQL Program Units A - 55

Practice 5: Working with Packages (continued)

g)

To compile the package, right-click the package’s name in the Object
Navigator tree, and then select Compile from the shortcut menu.

Messages - Liog

EMP_PEG Compiled

Use an anonymous block to invoke the EMP_PKG.GET EMPLOYEE function
with an employee ID of 100 and family name of 'Joplin'. Use the
PRINT EMPLOYEE procedure to display the results for each row returned.

Open the sol 05 02 g.sql file in the D: \1abs\PLPU\solns folder, or
copy and paste the following code in the SQL Worksheet area. Make sure
that SET SERVEROUTPUT ON is enabled by using the DBMS Output tab.

BEGIN

emp pkg.print employee (emp pkg.get employee(100)) ;

emp pkg.print employee (emp pkg.get employee('Joplin')) ;
END;
/

[Resuts | (& Script Output | EExpsin | B autotrace | DEMS output | @) owia, Output

¢ dE

ahaonymous block completed
90 100 Steven King AD_PRES 24000
30 209 Samuel Joplin 54 REP 1000

3) Because the company does not frequently change its departmental data, you can
improve performance of your EMP_PKG by adding a public procedure,
INIT DEPARTMENTS, to populate a private PL/SQL table of valid department IDs.
Modify the VALID DEPTID function to use the private PL/SQL table contents to
validate department ID values.

Note: The sol 05 03.sqgl solution file script contains the code for steps a, b,
and c.

a)

b)

In the package specification, create a procedure called INIT DEPARTMENTS
with no parameters by adding the following to the package specification section
before the PRINT EMPLOYEES specification:

PROCEDURE init departments;
In the package body, implement the INIT DEPARTMENTS procedure to store all

department IDs in a private PL/SQL index-by table named
valid departments containing BOOLEAN values.

1) Declare the valid departments variable and its type definition
boolean tab type before all procedures in the body. Enter the following
at the beginning of the package body:

Oracle Database 11g: Develop PL/SQL Program Units A - 56

Practice 5: Working with Packages (continued)

TYPE boolean tab type IS TABLE OF BOOLEAN
INDEX BY BINARY INTEGER;
valid departments boolean tab type;

ii) Use the department id column value as the index to create the entry in
the index-by table to indicate its presence, and assign the entry a value of
TRUE. Enter the INIT DEPARTMENTS procedure declaration at the end of
the package body (right after the print employees procedure) as follows:

PROCEDURE init_departments IS

BEGIN
FOR rec IN (SELECT department id FROM departments)
LOOP
valid departments (rec.department id) := TRUE;
END LOOP;
END;

c) In the body, create an initialization block that calls the INIT DEPARTMENTS
procedure to initialize the table as follows:
BEGIN
init departments;
END;

Open the sol 05 03.sql file in the D: \1abs\PLPU\solns folder, or
copy and paste the following code in the SQL Worksheet area. The newly
added code is highlighted in the following code box.

-- Package SPECIFICATION

CREATE OR REPLACE PACKAGE emp pkg IS
PROCEDURE add_employee (
p first name employees.first name%TYPE,
p_last name employees.last name%TYPE,
p _email employees.email%TYPE,
p_job employees.job id%TYPE DEFAULT 'SA REP',
p_mgr employees.manager i1d%TYPE DEFAULT 145,
p_sal employees.salary%TYPE DEFAULT 1000,
p_comm employees.commission pct%TYPE DEFAULT O,
p deptid employees.department id%TYPE DEFAULT 30) ;

PROCEDURE add employee (
p_first name employees.first name%TYPE,
p_last name employees.last name$TYPE,
p _deptid employees.department id%TYPE) ;

PROCEDURE get employee (
p_empid IN employees.employee id3%TYPE,
p_sal OUT employees.salary3%TYPE,
p_Jjob OUT employees.job id%TYPE) ;

FUNCTION get employee(p emp id employees.employee id%type)

Oracle Database 11g: Develop PL/SQL Program Units A - 57

Practice 5: Working with Packages (continued)

return employees$rowtype;

FUNCTION get employee (p family name
employees.last name%type)
return employees$rowtype;

/* New procedure init departments spec */
PROCEDURE init departments;
PROCEDURE print employee(p rec emp employees%rowtype) ;

END emp pkg;

/
SHOW ERRORS

-- Package BODY
CREATE OR REPLACE PACKAGE BODY emp pkg IS
/* New type */

TYPE boolean tab type IS TABLE OF BOOLEAN
INDEX BY BINARY INTEGER;
valid departments boolean tab type;

FUNCTION valid deptid(p deptid IN
departments.department id%TYPE) RETURN BOOLEAN IS
v_dummy PLS_INTEGER;
BEGIN
SELECT 1
INTO v_dummy
FROM departments
WHERE department id = p deptid;
RETURN TRUE;
EXCEPTION
WHEN NO_DATA FOUND THEN
RETURN FALSE;
END valid deptid;

PROCEDURE add_employee (

p _first name employees.first name%TYPE,

p_last name employees.last name3TYPE,

p_email employees.email%TYPE,

p_job employees.job id%$TYPE DEFAULT 'SA REP',

p mgr employees.manager 1d$TYPE DEFAULT 145,

p_sal employees.salary$TYPE DEFAULT 1000,

p _comm employees.commission pct%TYPE DEFAULT O,

p _deptid employees.department id%TYPE DEFAULT 30)
BEGIN

IS

Oracle Database 11g: Develop PL/SQL Program Units A - 58

Practice 5: Working with Packages (continued)

IF valid deptid(p_deptid) THEN

INSERT INTO employees (employee id, first name, last name,
email, job id, manager id, hire date, salary,
commission pct, department id)

VALUES (employees seq.NEXTVAL, p first name, p last name,
p_email, p job, p mgr, TRUNC(SYSDATE), p_sal, p_comm,
p_deptid) ;

ELSE
RAISE APPLICATION ERROR (-20204, 'Invalid department ID.

Try again.');

END TF;

END add employee;

PROCEDURE add_employee (
p first name employees.first name%TYPE,
p_last name employees.last name%TYPE,
p _deptid employees.department id%TYPE) IS
p _email employees.email%type;
BEGIN
p_email := UPPER(SUBSTR(p first name, 1,
1) | |SUBSTR (p_last name, 1, 7));
add employee(p first name, p last name, p email, p deptid
=> p deptid) ;
END;

PROCEDURE get employee (
p _empid IN employees.employee id%TYPE,
p_sal OUT employees.salary3%TYPE,
p_job OUT employees.job id%TYPE) IS
BEGIN
SELECT salary, job_id
INTO p_sal, p _job
FROM employees
WHERE employee id = p_empid;
END get employee;

FUNCTION get employee(p emp id employees.employee id%type)

return employees%rowtype IS
rec_emp employees%rowtype;

BEGIN
SELECT * INTO rec_emp
FROM employees
WHERE employee id = p_emp_ id;
RETURN rec_emp;

END;

FUNCTION get employee(p family name
employees.last name%type)
return employees%rowtype IS
rec_emp employees%rowtype;
BEGIN

Oracle Database 11g: Develop PL/SQL Program Units A - 59

Practice 5: Working with Packages (continued)

SELECT * INTO rec_emp
FROM employees

WHERE last name = p family name;
RETURN rec_ emp;
END;

PROCEDURE print employee(p rec emp employees%rowtype) IS
BEGIN
DBMS OUTPUT.PUT LINE (p rec_emp.department id ||
P rec emp.employee id||' '
P rec emp.first name||' ']
P rec emp.last name||' ']|]|
P rec emp.job id||' '||
P rec emp.salary);
END;

/* New init departments procedure declaration. */

PROCEDURE init departments IS

BEGIN
FOR rec IN (SELECT department id FROM departments)
LOOP
valid departments(rec.department id) := TRUE;
END LOOP;
END;

/* call the new init departments procedure. */

BEGIN
init departments;
END emp pkg;

/
SHOW ERRORS

d) Click Run Script (F5) to create the package. Compile the package.

Click the Run Script (F5) icon on the SQL Worksheet toolbar to re-create
the package.

(> Resuts || (] seript output | BExplain | B Autatrace | GADEMS Outout | @4 owa Output

¢ dE&

PACKAGE emp pkg Compiled.

Mo Errors.

PACEAGE EODY emp pkg Compiled.
Mo Errors.

Oracle Database 11g: Develop PL/SQL Program Units A - 60

Practice 5: Working with Packages (continued)

To compile the package, right-click the package’s name in the Object
Navigation tree, and then select Compile from the shortcut menu.

4) Change the VALID DEPTID validation processing function to use the private
PL/SQL table of department IDs.

a) Modify the VALID DEPTID function to perform its validation by using the
PL/SQL table of department ID values. Click Run Script (F5) to create the
package. Compile the package.

Open the sol 05 04 a.sql filein the D: \1abs\PLPU\solns folder, or
copy and paste the following code in the SQL Worksheet area. The newly
added code is highlighted in the following code box.

-- Package SPECIFICATION

CREATE OR REPLACE PACKAGE emp pkg IS
PROCEDURE add_employee (
p _first name employees.first name%TYPE,
p_last name employees.last name3TYPE,
p_email employees.email%TYPE,
p_job employees.job id%$TYPE DEFAULT 'SA REP',
p mgr employees.manager 1d$TYPE DEFAULT 145,
p_sal employees.salary$TYPE DEFAULT 1000,
p _comm employees.commission pct%TYPE DEFAULT O,
p _deptid employees.department id%TYPE DEFAULT 30) ;

PROCEDURE add_employee (
p _first name employees.first name%TYPE,
p_last name employees.last name%TYPE,
p _deptid employees.department id%TYPE) ;

PROCEDURE get employee (
p_empid IN employees.employee id$TYPE,
p_sal OUT employees.salary%TYPE,
p _job OUT employees.job id$TYPE) ;

FUNCTION get employee(p emp id employees.employee id%type)
return employees%rowtype;

FUNCTION get employee (p family name
employees.last name%type)
return employees$rowtype;
/* New procedure init departments spec */

PROCEDURE init departments;

PROCEDURE print employee(p rec emp employees%rowtype) ;

END emp pkg;

Oracle Database 11g: Develop PL/SQL Program Units A - 61

Practice 5: Working with Packages (continued)

/
SHOW ERRORS

-- Package BODY
CREATE OR REPLACE PACKAGE BODY emp pkg IS

TYPE boolean tab type IS TABLE OF BOOLEAN
INDEX BY BINARY INTEGER;
valid departments boolean tab type;

FUNCTION valid deptid(p deptid IN
departments.department id%TYPE) RETURN BOOLEAN IS
v_dummy PLS INTEGER;
BEGIN
RETURN valid departments.exists(p deptid);
EXCEPTION
WHEN NO_DATA FOUND THEN
RETURN FALSE;
END valid deptid;

PROCEDURE add employee (
p_first name employees.first name%TYPE,
p_last name employees.last name$TYPE,
p _email employees.email%TYPE,
p_job employees.job id%TYPE DEFAULT 'SA REP',
p_mgr employees.manager 1d%TYPE DEFAULT 145,
p_sal employees.salary%$TYPE DEFAULT 1000,
p_comm employees.commission pct%TYPE DEFAULT O,
p_deptid employees.department id%TYPE DEFAULT 30) IS
BEGIN
IF valid deptid(p_deptid) THEN
INSERT INTO employees (employee id, first name,
last name, email, job id, manager id, hire date,
salary, commission pct, department id)
VALUES (employees seq.NEXTVAL, p first name,
p_last name, p email,
p_job, p mgr, TRUNC(SYSDATE), p sal, p comm,p deptid);
ELSE
RAISE APPLICATION ERROR (-20204, 'Invalid department ID.
Try again.');
END TF;
END add employee;

PROCEDURE add_employee (
p_first name employees.first name%TYPE,
p_last name employees.last name$TYPE,
p deptid employees.department id%TYPE) IS
p _email employees.email%type;

BEGIN

Oracle Database 11g: Develop PL/SQL Program Units A - 62

Practice 5: Working with Packages (continued)

p_email := UPPER(SUBSTR(p first name, 1,
1) | | SUBSTR (p last name, 1, 7));
add employee(p first name, p last name, p email, p deptid
=> p_deptid) ;
END;

PROCEDURE get employee (
p_empid IN employees.employee id$TYPE,
p_sal OUT employees.salary3TYPE,
p _job OUT employees.job id$TYPE) IS
BEGIN
SELECT salary, job id
INTO p_sal, p job
FROM employees
WHERE employee id = p_ empid;
END get employee;

FUNCTION get employee(p emp id employees.employee id%type)

return employees%$rowtype IS
rec_emp employees%rowtype;

BEGIN
SELECT * INTO rec_emp
FROM employees
WHERE employee id = p emp id;
RETURN rec_emp;

END;

FUNCTION get employee (p family name
employees.last name%type)

return employees%$rowtype IS
rec_emp employees%rowtype;

BEGIN
SELECT * INTO rec_emp
FROM employees
WHERE last name = p_ family name;
RETURN rec_emp;

END;

PROCEDURE print employee(p rec emp employees%rowtype) IS
BEGIN
DBMS OUTPUT.PUT LINE(p rec emp.department id |
p_rec_emp.employee id| |’
p_rec _emp.first name||'
p_rec_emp.last name||' ']
p_rec _emp.job _id||' '|
p_rec_emp.salary) ;
END;

/* New init departments procedure declaration. */

PROCEDURE init departments IS
BEGIN

Oracle Database 11g: Develop PL/SQL Program Units A - 63

Practice 5: Working with Packages (continued)

FOR rec IN (SELECT department id FROM departments)
LOOP

valid departments (rec.department id) := TRUE;
END LOOP;
END;

/* call the new init departments procedure. */

BEGIN
init departments;
END emp pkg;

/
SHOW ERRORS

b) Test your code by calling ADD EMPLOYEE using the name James Bond in
department 15. What happens?

Open the sol 05 04 b.sql file in the D: \1abs\PLPU\solns folder, or
copy and paste the following code in the SQL Worksheet area.

EXECUTE emp pkg.add employee('James', 'Bond', 15)

Click the Run Script (F5) icon on the SQL Worksheet toolbar to re-create
the package. The insert operation to add the employee fails with an exception
because department 15 does not exist.

[Resutts || (& Script Cutput | BExplain | B sutotrace | DEMS Output @1 ows, output

¢ 8 &

Error starting at line 1 in commard:

EXECUTE emp_pkg.add employee('dames', 'Bond', 15)
Error report:

0R&-20204: Inwvalid department ID. Try again.
OF&4-06512: at "0RLG1.EMP_PEG™, line 32

OF&4-06512: at "ORLG1.EMP_PEG™, line 43

OR&-0651Z: at line 1

c) Insert a new department. Specify 15 for the department ID and ' Security' for
the department name. Commit and verify the changes.

Open the sol 05 04 c.sql filein the D: \1abs\PLPU\solns folder, or
copy and paste the following code in the SQL Worksheet area. The result is
shown below:

Oracle Database 11g: Develop PL/SQL Program Units A - 64

Practice 5: Working with Packages (continued)

INSERT INTO departments (department id, department name)
VALUES (15, 'Security');
COMMIT;

[Resuts | (] script output | BExplain | B sutotrace | DEMS Gutput @howa output

¢ dE&

1l rows inserted
COMMIT succeeded.

d) Test your code again, by calling ADD EMPLOYEE using the name James Bond
in department 15. What happens?

Open the sol 05 04 d.sql file in the D: \1abs\PLPU\solns folder, or

copy and paste the following code in the SQL Worksheet area. The result is
shown below:

EXECUTE emp pkg.add employee('James',6 'Bond', 15)

[Resutts | (& Script output | BExplsin | B autotracs | [AOEMS Output @howa output

¢ d &

Error starting at line 1 in command:

EXECUTE emp_ pkg.add employee|'James', 'Bond', 15)
Error report:

0RA4-Z20204: Inwalid department ID. Try again.
OR4-06512: at "ORAGL.EMP PEG", line 32

OR&-06512: at "ORAGL.EMP_PEG", line 43

OR&-0651Z: at line 1

The insert operation to add the employee fails with an exception. Department
15 does not exist as an entry in the PL/SQL index-by-table package state
variable.

e) Execute the EMP PKG.INIT DEPARTMENTS procedure to update the internal
PL/SQL table with the latest departmental data.

Open the sol 05 04 e.sql filein the D: \1abs\PLPU\solns folder, or

copy and paste the following code in the SQL Worksheet area. The result is
shown below:

EXECUTE EMP_PKG.INIT DEPARTMENTS

Oracle Database 11g: Develop PL/SQL Program Units A - 65

Practice 5: Working with Packages (continued)

f)

)

B> Resuts | (] Soript Output | TExpiein | B Autotrace | DEMS Cutput @1 owia, Output

¢d&

anonymnous block completed

Test your code by calling ADD EMPLOYEE using the employee name James
Bond, who works in department 15. What happens?

Open the sol 05 04 f.sql filein the D: \1abs\PLPU\solns folder, or

copy and paste the following code in the SQL Worksheet area. The result is
shown below.

EXECUTE emp pkg.add employee('James', 'Bond', 15)

The row is finally inserted because the department 15 record exists in the
database and the package’s PL/SQL index-by table, due to invoking
EMP PKG.INIT DEPARTMENTS, which refreshes the package state data.

B> Resuts | (] Soript Output | TExpiein | B Autotrace | DEMS Cutput @1 owia, Output

¢d&

anonymnous block completed

Delete employee James Bond and department 15 from their respective tables,
commit the changes, and refresh the department data by invoking the
EMP PKG.INIT DEPARTMENTS procedure.

Open the sol 05 04 g.sql file in the D: \1abs\PLPU\solns folder, or

copy and paste the following code in the SQL Worksheet area. The result is
shown below.

DELETE FROM employees

WHERE first name = 'James' AND last name = 'Bond';
DELETE FROM departments WHERE department id = 15;
COMMIT;

EXECUTE EMP_PKG.INIT DEPARTMENTS

> Resutts | (& Script outout | B Explain | B Autotrace | DEMS Output @rowa output

= =

1l rows deleted

1 rows deleted

COMMIT succeeded.
anonhynous block completed

Oracle Database 11g: Develop PL/SQL Program Units A - 66

Practice 5: Working with Packages (continued)

5) Reorganize the subprograms in the package specification and the body so that they
are in alphabetical sequence.

a) Edit the package specification and reorganize subprograms alphabetically. Click
Run Script to re-create the package specification. Compile the package
specification. What happens?

Open the sol 05 05 a.sql file in the D: \1abs\PLPU\solns folder, or
copy and paste the following code in the SQL Worksheet area. Click the Run
Script (FS) icon on the SQL Worksheet toolbar to re-create the package. The
result is shown below. The package’s specification subprograms are already
in an alphabetical order. To compile the package, right-click the package’s
name in the Object Navigation tree, and then select Compile.

CREATE OR REPLACE PACKAGE emp pkg IS
/* the package spec is already in an alphabetical order. */

PROCEDURE add_employee (
p _first name employees.first name%TYPE,
p_last name employees.last name3TYPE,
p_email employees.email%TYPE,
p_job employees.job id%$TYPE DEFAULT 'SA REP',
p mgr employees.manager 1d$TYPE DEFAULT 145,
p_sal employees.salary%$TYPE DEFAULT 1000,
p _comm employees.commission pct%TYPE DEFAULT O,
p _deptid employees.department id%TYPE DEFAULT 30) ;

PROCEDURE add_employee (
p _first name employees.first name%TYPE,
p_last name employees.last name%TYPE,
p _deptid employees.department id%TYPE) ;

PROCEDURE get employee (
p_empid IN employees.employee id$TYPE,
p_sal OUT employees.salary3%TYPE,
p _job OUT employees.job id$TYPE) ;

FUNCTION get employee(p emp id
employees.employee id%type)
return employees%rowtype;
FUNCTION get employee(p_ family name
employees.last name%type)
return employees$rowtype;

PROCEDURE init departments;

PROCEDURE print employee(p rec emp employees%rowtype) ;

Oracle Database 11g: Develop PL/SQL Program Units A - 67

Practice 5: Working with Packages (continued)

END emp pkg;
/

SHOW ERRORS

[Resuts | (&) Script Output | EExpain | B autotrace | @DEMS output | @) cvwia, output

¢ d &

PACEAGE enp pkg Compiled.
Mo Errors.

Messages - Log

EMP_PEG Compiled

b) Edit the package body and reorganize all subprograms alphabetically. Click Run
Script to re-create the package specification. Re-compile the package
specification. What happens?

Open the sol 05 05 b.sql file in the D: \1abs\PLPU\solns folder, or
copy and paste the following code in the SQL Worksheet area. Click the Run
Script (F5) icon on the SQL Worksheet toolbar to re-create the package. The
result is shown below. To compile the package, right-click the package’s
name in the Object Navigation tree, and then select Compile.

-- Package BODY
CREATE OR REPLACE PACKAGE BODY emp pkg IS
TYPE boolean tab type IS TABLE OF BOOLEAN
INDEX BY BINARY INTEGER;
valid departments boolean tab type;

PROCEDURE add_employee (
p _first name employees.first name%TYPE,
p_last name employees.last name%TYPE,
p _email employees.email%TYPE,
p_job employees.job id%$TYPE DEFAULT 'SA REP',
p_mgr employees.manager id%TYPE DEFAULT 145,
p_sal employees.salary%TYPE DEFAULT 1000,
p _comm employees.commission pct%TYPE DEFAULT O,
p deptid employees.department id%TYPE DEFAULT 30) IS
BEGIN
IF valid deptid(p deptid) THEN
INSERT INTO employees (employee id, first name,
last name, email,
job_id, manager id, hire date, salary,
commission pct, department id)
VALUES (employees seq.NEXTVAL, p first name,
p last name, p email,

Oracle Database 11g: Develop PL/SQL Program Units A - 68

Practice 5: Working with Packages (continued)

p_job, p mgr, TRUNC(SYSDATE), p sal, p_ comm,
p deptid);
ELSE

ID. Try again.');
END TF;
END add employee;

PROCEDURE add_employee (
p_first name employees.first name%TYPE,
p_last name employees.last name$TYPE,
p deptid employees.department id%TYPE) IS
p _email employees.email%type;
BEGIN
p email := UPPER(SUBSTR(p first name, 1,
1) | |SUBSTR (p_last name, 1, 7));
add _employee(p first name, p last name, p email,
p_deptid => p deptid);
END;

PROCEDURE get employee (
p_empid IN employees.employee id$TYPE,
p_sal OUT employees.salary%TYPE,
p _job OUT employees.job id$TYPE) IS
BEGIN
SELECT salary, job id
INTO p_sal, p job
FROM employees
WHERE employee id = p_ empid;
END get employee;

FUNCTION get employee(p_emp id
employees.employee id%type)
return employees$rowtype IS
rec_emp employees%rowtype;
BEGIN
SELECT * INTO rec_ emp
FROM employees
WHERE employee id = p emp_ id;
RETURN rec emp;
END;

FUNCTION get employee(p_ family name
employees.last name%type)

return employees$rowtype IS
rec_emp employees%rowtype;

BEGIN
SELECT * INTO rec_ emp
FROM employees
WHERE last name = p family name;
RETURN rec emp;

END;

RAISE APPLICATION ERROR (-20204, 'Invalid department

Oracle Database 11g: Develop PL/SQL Program Units A - 69

Practice 5: Working with Packages (continued)

PROCEDURE init departments IS

BEGIN
FOR rec IN (SELECT department id FROM departments)
LOOP
valid departments (rec.department id) := TRUE;
END LOOP;
END;

PROCEDURE print employee(p rec emp employees%rowtype) IS
BEGIN
DBMS OUTPUT.PUT LINE(p rec emp.department id |

p_rec_emp.employee id| |’
p rec emp.first name||'
p_rec emp.last name||' '|
p_rec emp.job id||' '||
p_rec_emp.salary) ;

END;

FUNCTION valid deptid(p_deptid IN
departments.department id%TYPE) RETURN BOOLEAN IS
v_dummy PLS INTEGER;
BEGIN
RETURN valid departments.exists (p deptid) ;
EXCEPTION
WHEN NO_DATA FOUND THEN
RETURN FALSE;
END valid deptid;

BEGIN
init_ departments;
END emp pkg;

/
SHOW ERRORS

The package does not compile successfully because the VALID DEPTID
function is referenced before it is declared.

[Resutts | [&] Script Output | TlExpiain | Eautatrace | R0ems outout | @) owe output

¢d&

Warning: execution completed with warning
PACKAGE BODY emp pky Compiled.
1648 PL5-00313: 'VALID DEPTID' not declared in this scope

c) Correct the compilation error using a forward declaration in the body for the
appropriate subprogram reference. Click Run Script to re-create the package, and
then recompile the package. What happens?

Oracle Database 11g: Develop PL/SQL Program Units A -70

Practice 5: Working with Packages (continued)

Open the sol 05 05 c.sql filein the D: \1abs\PLPU\solns folder, or
copy and paste the following code in the SQL Worksheet area. The function’s
forward declaration is highlighted in the code box below. Click the Run
Script (F5) icon on the SQL Worksheet toolbar to re-create the package. The
result is shown below. To compile the package, right-click the package’s
name in the Object Navigation tree, and then select Compile.

-- Package BODY

CREATE OR REPLACE PACKAGE BODY emp pkg IS
TYPE boolean tab type IS TABLE OF BOOLEAN
INDEX BY BINARY INTEGER;
valid departments boolean tab type;

/* forward declaration of valid deptid */

FUNCTION valid deptid(p deptid IN
departments.department id%TYPE)
RETURN BOOLEAN;

PROCEDURE add_employee (
p first name employees.first name%TYPE,
p_last name employees.last name$TYPE,
p _email employees.email%TYPE,
p_job employees.job id%TYPE DEFAULT 'SA REP',
p_mgr employees.manager 1d%TYPE DEFAULT 145,
p_sal employees.salary%TYPE DEFAULT 1000,
p_comm employees.commission pct%TYPE DEFAULT O,
p_deptid employees.department id%TYPE DEFAULT 30) IS
BEGIN
IF valid deptid(p deptid) THEN /* valid deptid function
referneced */
INSERT INTO employees (employee id, first name,
last name, email,
job_id, manager id, hire date, salary, commission pct,
department id)
VALUES (employees seq.NEXTVAL, p first name,
p_last name, p_ email,
p_job, p mgr, TRUNC(SYSDATE), p sal, p_ comm,
p_deptid) ;
ELSE
RAISE APPLICATION_ ERROR (-20204, 'Invalid department ID.
Try again.');
END TIF;
END add employee;

PROCEDURE add_employee (
p first name employees.first name%TYPE,
p_last name employees.last name%TYPE,
p _deptid employees.department id%TYPE) IS
p email employees.email%type;

Oracle Database 11g: Develop PL/SQL Program Units A -71

Practice 5: Working with Packages (continued)

BEGIN
p email := UPPER(SUBSTR(p first name, 1,

1) | |SUBSTR (p_last name, 1, 7));
add _employee(p first name, p last name, p email, p_ deptid
=> p_deptid) ;
END;

PROCEDURE get employee (
p_empid IN employees.employee id$TYPE,
p_sal OUT employees.salary%TYPE,
p _job OUT employees.job id$TYPE) IS
BEGIN
SELECT salary, job id
INTO p_sal, p job
FROM employees
WHERE employee id = p_ empid;
END get employee;

FUNCTION get employee(p emp id employees.employee id%type)

return employees$rowtype IS
rec_emp employees%rowtype;

BEGIN
SELECT * INTO rec_ emp
FROM employees
WHERE employee id = p emp id;
RETURN rec emp;

END;

FUNCTION get employee(p_ family name
employees.last name%type)

return employees%$rowtype IS
rec_emp employees%rowtype;

BEGIN
SELECT * INTO rec_emp
FROM employees
WHERE last name = p family name;
RETURN rec_emp;

END;

/* New alphabetical location of function init departments. */

PROCEDURE init departments IS

BEGIN
FOR rec IN (SELECT department id FROM departments)
LOOP
valid departments(rec.department id) := TRUE;
END LOOP;
END;

PROCEDURE print employee(p rec emp employees%rowtype) IS
BEGIN
DBMS_OUTPUT.PUT LINE (p rec emp.department id ||' '||

Oracle Database 11g: Develop PL/SQL Program Units A -72

Practice 5: Working with Packages (continued)

p_rec_emp.employee_id||’ ’}|

p rec emp.first name||' '|
p_rec _emp.last name||' '||
p_rec_emp.job _id||' '||
p_rec_emp.salary) ;

END;

/* New alphabetical location of function valid deptid. */

FUNCTION valid deptid(p deptid IN
departments.department id$TYPE) RETURN BOOLEAN IS
v_dummy PLS INTEGER;
BEGIN
RETURN valid departments.exists(p _deptid) ;
EXCEPTION
WHEN NO_DATA FOUND THEN
RETURN FALSE;
END valid deptid;

BEGIN
init_ departments;
END emp pkg;

/
SHOW ERRORS

A forward declaration for the VALID DEPTID function enables the package
body to compile successfully as shown below:

(> Resuts | [E]seript output | EExplain | B autotrace | EADEMS Output | @)ovia output

¢ 8 &

PACKAGE BODY emp pkg Compiled.
No Errors.

To compile the package, click the package’s name in the Object Navigation tree,
and then select Compile from the pop-up menu.

Messages -Log

ENP_PEG Compiled

Oracle Database 11g: Develop PL/SQL Program Units A -73

Practices for Lesson 6

Practice 6: Using the UTL FILE Package

In this practice, you use the UTL_FILE package to generate a text file report of
employees in each department.

1) Create a procedure called EMPLOYEE REPORT that generates an employee report in
a file in the operating system, using the UTL. FILE package. The report should

generate a list of employees who have exceeded the average salary of their
departments.

a) Your program should accept two parameters. The first parameter is the output
directory. The second parameter is the name of the text file that is written.

Note: Use the directory location value UTL FILE. Add an exception-handling
section to handle errors that may be encountered when using the UTL_FILE
package.

Open the sol 06 01 a.sql filein the D: \1abs\PLPU\solns folder, or
copy and paste the following code in the SQL Worksheet area. Click the Run
Script (F5) icon on the SQL Worksheet toolbar to re-create the procedure.
The result is shown below. To compile the procedure, right-click the
procedure’s name in the Object Navigation tree, and then select Compile.

-- Verify with your instructor that the database initSID.ora
-- file has the directory path you are going to use with this
-- procedure.

-- For example, there should be an entry such as:

-- UTL FILE DIR = /homel/teachX/UTL FILE in your initSID.ora
-- (or the SPFILE)

-- HOWEVER: The course has a directory alias provided called
-- "UTL FILE" that is associated with an appropriate

-- directory. Use the directory alias name in quotes for the
-- first parameter to create a file in the appropriate

-- directory.

CREATE OR REPLACE PROCEDURE employee report (
p_dir IN VARCHAR2, p_filename IN VARCHAR2) IS
f UTL FILE.FILE TYPE;
CURSOR cur avg IS
SELECT last name, department id, salary
FROM employees outer
WHERE salary > (SELECT AVG(salary)
FROM employees inner
GROUP BY outer.department id)
ORDER BY department id;
BEGIN
f := UTL FILE.FOPEN(p dir, p filename, 'W');

Oracle Database 11g: Develop PL/SQL Program Units A -74

Practice 6: Using the UTL_FILE Package (continued)

UTL FILE.PUT LINE(f, 'Employees who earn more than average
salary: ');
UTL_FILE.PUT LINE(f, 'REPORT GENERATED ON ' ||SYSDATE) ;
UTL FILE.NEW LINE(f);
FOR emp IN cur_ avg
LOOP

UTL_FILE.PUT LINE (f,
RPAD (emp.last name, 30) || ' ' ||

LPAD (NVL (TO_CHAR (emp.department id, '9999'),'-"'), 5) || '
||
LPAD (TO_CHAR (emp.salary, '$99,999.00'"'), 12));
END LOOP;

UTL FILE.NEW LINE(f);
UTL _FILE.PUT LINE(f, '*** END OF REPORT ***');
UTL _FILE.FCLOSE(f);

END employee report;

/

b) Click Run Script (F5) to create the procedure. Compile the procedure.

Click the Run Script (F5) icon on the SQL Worksheet toolbar to create the
procedure.

To compile the procedure, right-click the procedure’s name in the Object
Navigator tree, and then select Compile from the shortcut menu.

Message& - Log

EMPLOYEE_REPORT Compiled

2) Invoke the program, using the second parameter with a name such as
sal rptxx.txt, where xx represents your user number (for example, 61, 62, ...,
80, and so on).

Open the sol 06 02.sql file in the D: \1abs\PLPU\solns folder, or copy
and paste the following code in the SQL Worksheet area. Click the Run Script
(F5) icon on the SQL Worksheet toolbar to execute the procedure. The result is
shown below. To compile the procedure, right-click the package’s name in the
Object Navigation tree, and then select Compile from the shortcut menu.

-- For example, if you are student oraé6l, use 61 as a prefix

EXECUTE employee report ('UTL_FILE', 'sal rpt6l.txt')

Oracle Database 11g: Develop PL/SQL Program Units A -75

Practice 6: Using the UTL_FILE Package (continued)

3) Transfer the generated output text file from the host to your desktop client as follows:

a) Double-click the Putty-SFTP icon on your desktop. The Putty SFTP command
window is displayed.

b) At the psftp> prompt, enter the following command substituting the host name
with the host name provided to you by your instructor:

open host name

For example, if you are connecting to a host named vx0114 .us.oracle.com,
enter the following at the prompt:

open vx01l1l4.us.oracle.com

g~ Putty SFTP M=] E3

psftp: no hostname specified; use "open host_name' to connect
psftp> open vxBll4.us.oracle.com

c) Enter oracle as both your username and password.

& Putty SFTP =]

psftp: no hostname specified: use "open host.name" to connect
psftp> open uxBlid._ us_oracle.com

login as: oracle

Using username "oracle’.

oraclefuxBlid4_us_ oracle.com’s password:

Remote working directory iz suvxBlld-soracle
psftp>

Note: After you enter the username, if you get a message about the host key
not being cached in as shown in the following screen capture, enter y at the
following prompt: “Store key in cache? <y/n>_”

Oracle Database 11g: Develop PL/SQL Program Units A -76

Practice 6: Using the UTL_FILE Package (continued)

The server’'s host key is not cached in the registry. You
have no guarantee that the server iz the computer you

think it is.

The server’'s key fingerprint is:

msh—rza 1024 68:f2te?:d4:0fthc:=71:5e:98:5d:70:75:0f the:f2:38
If you trust this host,. enter "y" to add the key to

PuTIY¥Y's cache and carry on connecting.

If you want to carry on connecting just once, without

adding the key to the cache, enter "n".

If you QD not trust this host, press Return to abandon the

R P R

d) To display the list of folders and files in the current directory, issue the 1s
command.

g~ Putty SFTP =]
= s

1 1
1
0 E o g D E 0 0

ol
o o 2 50 S 58

S S e

=

i Rl

==
r

= ol
[TI L 2 ==

o B

= &

e) Change your directory to UTL_FILE using the cd UTL FILE command as
follows:

Oracle Database 11g: Develop PL/SQL Program Units A -77

Practice 6: Using the UTL_FILE Package (continued)

f)

g)

h)

g Putty SFTP H=]
0 = 0 110 m 0
. . 0 Q A ADMIN
0 E 0 Y i COUN
0 E 0 Y 0 :I. [)
0 = 0 1Y i [)

List the contents of the current directory using the 1s command as follows:
g Putty SFTP =l

=
E|

=
=4
=

==
ks
r

=& Bl ol
i =
=

=

= s
= &
=
=

Note the generated output file, sal rpt61l.txt (your file will have a
different prefixed number that corresponds to your db account #).

Transfer the output file from the host to your client machine by issuing the
following command:

get sal rptel.txt

Exit Putty-SFTP by entering bye at the command line or by clicking the close
control on title bar.

Open the transferred file, such as sal rpté61.txt, which you can find in the
D:\Other\putty folder using WordPad. The report is displayed as follows:

Oracle Database 11g: Develop PL/SQL Program Units A -78

Practice 6: Using the UTL_FILE Package (continued)

Beopor wordrod ________ BEK|
File Edt “ew Insert Format Help

Dzd| Sk o &R ®

Employees who earn wore than sverage salary: =

REFORT GENERATED ON 21-JUN-07

Hartstein z0 $13,000.00

Raphaesly 30 §11,000.00

Mavris 40 §6,500.00

Vollman 50 §6,500.00

Kaufling 50 §7,900.00

Teiss 50 §8,000.00

Fripp 50 38,200.00

Hunold &0 §9,000.00

Bacsr o $10,000.00

Tucker {=1u] $10,000.00 —

Livingston 80 48, 4p0.00

Taylor a0 §8,600.00

Hutton =) $8,800.00

Abel =) §11,000.00

Bates =) §7,300.00

Swith =) §7,400.00

Fox =) §9,600.00

Eloom =) $10,000.00

QOzer =) §11,500.00

Ande =) §6,400.00

Lees =) §6,800.00

Russell =) $14,000.00

Partners a0 §13,500.00

Errazuriz a0 §1z2,000.00 ;I
For Help, press F1 s

Oracle Database 11g: Develop PL/SQL Program Units A -79

Practices for Lesson 7

Practice 7: Using Native Dynamic SQL

In this practice, you create a package that uses Native Dynamic SQL to create or drop a
table, and to populate, modify, and delete rows from the table. In addition, you create a
package that compiles the PL/SQL code in your schema, either all the PL/SQL code or
only code that has an INVALID status in the USER_OBJECTS table....

1) Create a package called TABLE PKG that uses Native Dynamic SQL to create or
drop a table, and to populate, modify, and delete rows from the table. The
subprograms should manage optional default parameters with NULL values.

a) Create a package specification with the following procedures:

PROCEDURE make (p_table name VARCHAR2, p col specs VARCHAR2)
PROCEDURE add_row(p table name VARCHAR2, p col values
VARCHAR2, p cols VARCHAR2 := NULL)
PROCEDURE upd row(p_ table name VARCHAR2, p set values
VARCHAR2, p conditions VARCHAR2 := NULL)
PROCEDURE del row(p_ table name VARCHAR2,
p_conditions VARCHAR2 := NULL) ;
PROCEDURE remove (p_table name VARCHAR2)

Open the sol 07 01 a.sql file in the D: \1abs\PLPU\solns folder, or
copy and paste the following code in the SQL Worksheet area. Click the Run
Script (F5) icon on the SQL Worksheet toolbar to create the package
specification. The result is shown below. To compile the package’s
specification, right-click the package’s name in the Object Navigation tree,
and then select Compile.

CREATE OR REPLACE PACKAGE table pkg IS
PROCEDURE make (p_table name VARCHAR2, p col specs

VARCHAR2) ;

PROCEDURE add row(p_ table name VARCHAR2, p col values
VARCHAR2, p_ cols VARCHAR2 := NULL) ;

PROCEDURE upd row(p_table name VARCHAR2, p set values
VARCHAR2, p_ conditions VARCHAR2 := NULL) ;

PROCEDURE del row(p_table name VARCHAR2, p_conditions
VARCHAR2 := NULL) ;

PROCEDURE remove (p_table name VARCHAR2) ;
END table pkg;

/
SHOW ERRORS

Oracle Database 11g: Develop PL/SQL Program Units A - 80

Practice 7: Using Native Dynamic SQL (continued)

(> Resuts | (Bl Script output | BExpiain | B autatrace | RDEMS output | @ owa Output

¢ 8 &

PACKAGE table pkg Compiled.
HNo Errors.

b) Create the package body that accepts the parameters and dynamically constructs
the appropriate SQL statements that are executed using Native Dynamic SQL,
except for the remove procedure. This procedure should be written using the
DBMS_ SQL package.

Open the sol 07 01 b.sql file in the D: \1abs\PLPU\solns folder, or
copy and paste the following code in the SQL Worksheet area. Click the Run
Script (F5) icon on the SQL Worksheet toolbar to create the package
specification. The result is shown below. To compile the package’s
specification, right-click the package’s name in the Object Navigation tree,
and then select Compile.

CREATE OR REPLACE PACKAGE BODY table pkg IS
PROCEDURE execute (p_stmt VARCHAR2) IS
BEGIN

DBMS_OUTPUT.PUT LINE (p stmt) ;
EXECUTE IMMEDIATE p stmt;
END;

PROCEDURE make (p_table name VARCHAR2, p col_ specs VARCHAR2)

IS
v_stmt VARCHAR2 (200) := 'CREATE TABLE '|| p table name ||
"' (' || p_col specs || ")';
BEGIN
execute (v_stmt) ;
END;

PROCEDURE add_ row(p_table name VARCHAR2, p col values

VARCHAR2, p_cols VARCHAR2 := NULL) IS

v_stmt VARCHAR2 (200) := 'INSERT INTO '|| p_table name;
BEGIN

IF p cols IS NOT NULL THEN

v_stmt := v_stmt || ' (' || p_cols || ")';

END IF;

v_stmt := v_stmt || ' VALUES (' || p col values || ")';

execute (v_stmt) ;
END;

PROCEDURE upd row(p_ table name VARCHAR2, p set values
VARCHAR2, p conditions VARCHAR2 := NULL) IS

Oracle Database 11g: Develop PL/SQL Program Units A - 81

Practice 7: Using Native Dynamic SQL (continued)

v_stmt VARCHAR2 (200) := 'UPDATE '|| p_table name || ' SET '
|| p_set values;
BEGIN
IF p conditions IS NOT NULL THEN
v_stmt := v_stmt || ' WHERE ' || p conditions;
END IF;
execute (v_stmt) ;
END;

PROCEDURE del row(p table name VARCHAR2, p conditions

VARCHAR2 := NULL) IS

v_stmt VARCHAR2 (200) := 'DELETE FROM '|| p_table name;
BEGIN

IF p conditions IS NOT NULL THEN

v_stmt := v_stmt || ' WHERE ' || p conditions;

END IF;

execute (v_stmt) ;
END;

PROCEDURE remove (p_table name VARCHAR2) IS
cur_id INTEGER;

v_stmt VARCHAR2 (100) := 'DROP TABLE '||p_table name;
BEGIN
cur_id := DBMS_SQL.OPEN_CURSOR;

DBMS_OUTPUT.PUT LINE (v_stmt) ;
DBMS SQL.PARSE (cur id, v_stmt, DBMS SQL.NATIVE) ;
-- Parse executes DDL statements,no EXECUTE is required.
DBMS_SQL.CLOSE CURSOR (cur id) ;

END;

END table pkg;

/
SHOW ERRORS

(> Resuts | [E Serict output | BExpiain | B Autotrace | DEMS Output | @) 0vis Outout

¢d&

PACEAGE BODY table pkyg Compiled.
No Errors.

Messages - Logy

TABLE_PEG Compiled

c) Execute the MAKE package procedure to create a table as follows:

make ('my contacts', 'id number(4), name
varchar2 (40) ') ;

Oracle Database 11g: Develop PL/SQL Program Units A - 82

Practice 7: Using Native Dynamic SQL (continued)

Open the sol 07 01 c.sql filein the D: \1abs\PLPU\solns folder, or
copy and paste the following code in the SQL Worksheet area. Click the Run
Script (F5) icon on the SQL Worksheet toolbar to create the package
specification. The code and the results are shown below. To compile the
package’s specification, right-click the package’s name in the Object
Navigation tree, and then select Compile.

EXECUTE table pkg.make('my contacts',6 'id number(4), name
varchar2 (40) ')

B> Resutts || (] Seript Output | TExplain | B sutctrace | DEMS Output | @)0wa Output
¢ d &

anonymous block completed

d) Describe the MY CONTACTS table structure.

The code and the results are shown below.

[} My DECannection

FPERRS® E8BBl ¢ 1 34393167 seconds MyDEConn

Enter SQL Statement:

DEZCRIEE my_contacts

{]

.

> Resutts | (5] Script Output | B Explain | B Autotrace | [@A0EMS output | @) o output
¢ d &

DEICRIBE my_ contacts

Hame Null Type

D HITMEER [4)

NAME VARCHARZ [40)

2 rows selected

e) Execute the ADD ROW package procedure to add the following rows:

add row('my contacts','l,''Lauran Serhal''',6 'id, name');
add _row('my contacts','2,''Nancy''',6'id, name');

add_row('my contacts','3,''Sunitha Patel''', 'id,name');
add _row('my contacts','4,''Valli Pataballa''', 'id,name');

Open the sol 07 01 e.sql filein the D: \1abs\PLPU\solns folder, or
copy and paste the following code in the SQL Worksheet area. Click the Run
Script (F5S) icon on the SQL Worksheet toolbar to execute the script. The
result is shown below. To compile the package’s specification, right-click the
package’s name in the Object Navigation tree, and then select Compile.

Oracle Database 11g: Develop PL/SQL Program Units A - 83

Practice 7: Using Native Dynamic SQL (continued)
PERGRO® BB ¢ 052349108 seconds

Erter SGL Statement:

BEGIH
table pkg.add rowi'mwy contacts','l,''Lauran Serhal''','id, name');
table pkg.add row|'my contacts','Z,''Nancy''','id, name'];
table pkg.add rowi'my_contacts','3,''Sunitha Patel''','id,name');
table pkg.add rowi'my_contacts','d,''Walli Fataballa''','id,name'):;
EHD ;
/
4]

;’Resuns [seript Cutput H@Exmain Hﬁmmrace][@DBMS Output" @ o, Output
¢ Hd3E

anonymous block completed

INSERT INTO my contacts (id, name) WVALUES (1,'Lauran 3erhal')
INSERT INTO my contacts (id, name) VALUES (2, 'Nancy')

INGERT INTO my contacts (id,name) WALUES (3, 'Junitha Fatel')
INGERT INTO my contacts (id,name) YALUES (4, 'Valli Pataballa')

f) Query the MY CONTACTS table contents to verify the additions.

The code and result are shown below.

Erter SGL Statement:

SELECT *
FROM mwy_contacts:

a

AIjji-vﬁesurts (& script output HﬁExplain "ﬁgutmrace "@DBMS Cutput H @rowia output

ID NAME

1 Lauran Zerhal

2 Nancy

3 Sunitha Patel

4 Walli Pataballa

4 rows selected

g) Execute the DEL._ROW package procedure to delete a contact with ID value 3.

The code and result are shown below.

Oracle Database 11g: Develop PL/SQL Program Units A -84

Practice 7: Using Native Dynamic SQL (continued)

g El EQ"’ El& @ &l E ﬁ é 0.50992095 seconds

Enter SCL Statemert:

EXECUTE table_pkg.del row('my contacta', 'id=3')

|

B> Resuits | (5 Scriet Outot | EExpisin | B sutotrace | @0EMS Output | @ ovis, output

¢ dE

anonymous block completed
DELETE FROM my_contacts WHERE id=3

h) Execute the UPD_ROW procedure with the following row data:

upd row ('my contacts', 'name=''Nancy Greenberg''',6 'id=2");

The code and result are shown below.

PERAR® &d89B8 ¢ 0.50229031 seconds

Erter SGL Statement:

1|EXEC table pkg.upd row('my contacts', 'name=''Nancy Greenberg''','id=zZ')
z

<]

Ea-‘r;esurts & seript output ”EExmain | B autctrace | @oEms outout | @)0wia Output

=

anonymous block completed
TPDATE my contacts 3ET names='Nancy Greenberg' WHERE id=Z

1) Query the MY CONTACTS table contents to verify the changes.

The code and result are shown below.

Oracle Database 11g: Develop PL/SQL Program Units A -85

Practice 7: Using Native Dynamic SQL (continued)
FERES® &9l ¢ 050275838 seconds

Enter SGL Statement:

1|SELECT *
2|FROM my contacts;
3

]

Ei-‘l;tesurts & seript output "EExmain | B sutctrace | @oems output | @ o Output

In NAME
1 Lauran Serhal
Z Nancy Greenberg

Walli Pataballa

3 rows selected

j) Drop the table by using the remove procedure and describe the MY CONTACTS
table.

The code and result are shown below.

ERRS® &8R3 ¢ 1.22356808 seconds
Enter =G Statement:

EXECUTE table pkg. remove('my contacts')
DESCRIBE my contacts

4

i W

[Resutts || (B Soript Output "EExplain | B autatrace | @oems outout | @)owia Output
¢ B &

anonvymous block completed
DREOP TABELE my_contacts

DESCRIBE my contacts
Name Iall Type

0 rows selected

Oracle Database 11g: Develop PL/SQL Program Units A - 86

Practice 7: Using Native Dynamic SQL (continued)
2) Create a COMPILE PKG package that compiles the PL/SQL code in your schema.

a) In the specification, create a package procedure called MAKE that accepts the
name of a PL/SQL program unit to be compiled.

Open the sol 07 02 a.sql file in the D: \1abs\PLPU\solns folder, or
copy and paste the following code in the SQL Worksheet area. Click the Run
Script (F5) icon on the SQL Worksheet toolbar to create the package
specification. The code and the results are shown below. To compile the
package’s specification, right-click the package’s name in the Object
Navigation tree, and then select Compile.

CREATE OR REPLACE PACKAGE compile pkg IS
PROCEDURE make (p _name VARCHAR2) ;

END compile pkg;

/

SHOW ERRORS

Enter SQL Statement:

CRERTE OR BEPLACE PACEAGE compile_pkg IS
FROCEDURE make (p_name VARCHAR2) ;

EHD compile pko:

/

SHOW ERRORS

4]

..

[Resutts | [F Seript output | BExplsin | B sutotrace | DBMS Output @ 0w Output

¢ 8 &

PACKAGE compile phkg Compiled.
Mo Errors.

Messages -Log

COMPILE_PEG Compiled

b) In the package body, include the following:

1) The EXECUTE procedure used in the TABLE PKG procedure in step 1 of this
practice.

ii) A private function named GET TYPE to determine the PL/SQL object type
from the data dictionary.

- The function returns the type name (use PACKAGE for a package with a
body) if the object exists; otherwise, it should return a NULL.

Oracle Database 11g: Develop PL/SQL Program Units A - 87

Practice 7: Using Native Dynamic SQL (continued)

- In the WHERE clause condition, add the following to the condition to
ensure that only one row is returned if the name represents a PACKAGE,
which may also have a PACKAGE BODY. In this case, you can only
compile the complete package, but not the specification or body as

separate components:
rownum = 1

iii) Create the MAKE procedure by using the following information:

- The MAKE procedure accepts one argument, name, which represents the
object name.

- The MAKE procedure should call the GET TYPE function. If the object
exists, MAKE dynamically compiles it with the ALTER statement.

Open the sol 07 02 b.sql file in the D: \1abs\PLPU\solns folder, or
copy and paste the following code in the SQL Worksheet area. Click the Run
Script (F5) icon on the SQL Worksheet toolbar to create the package body.
The code and the results are shown below. To compile the package’s body,
right-click the package’s name or body in the Object Navigation tree, and
then select Compile.

CREATE OR REPLACE PACKAGE BODY compile pkg IS

PROCEDURE execute (p stmt VARCHAR2) IS
BEGIN
DBMS OUTPUT.PUT LINE (p stmt) ;
EXECUTE IMMEDIATE p stmt;
END;

FUNCTION get type (p_name VARCHAR2) RETURN VARCHAR2 IS
v_proc_type VARCHAR2 (30) := NULL;

BEGIN
/*

* The ROWNUM = 1 is added to the condition
to ensure only one row is returned if the
name represents a PACKAGE, which may also
have a PACKAGE BODY. In this case, we can
only compile the complete package, but not
the specification or body as separate

* components.

*/

SELECT object type INTO v_proc_type
FROM user_ objects
WHERE object name = UPPER(p_ name)
AND ROWNUM = 1;
RETURN v_proc_ type;
EXCEPTION
WHEN NO_ DATA FOUND THEN
RETURN NULL;
END;

* % X X X

Oracle Database 11g: Develop PL/SQL Program Units A - 88

Practice 7: Using Native Dynamic SQL (continued)

PROCEDURE make (p_name VARCHAR2) IS
v_stmt VARCHAR2 (100) ;
v_proc_type VARCHAR2 (30) := get type(p name) ;
BEGIN
IF v_proc_type IS NOT NULL THEN
v_stmt := 'ALTER '|| v_proc type ||' '|| p_name ||’
COMPILE';
execute (v_stmt) ;
ELSE
RAISE APPLICATION ERROR(-20001,
'Subprogram '''|| p name ||''' does not exist');
END IF;
END make;
END compile pkg;
/
SHOW ERRORS

B> Resutts | (5l Scrint output | B Episin | Eautotrace |[RDEMS Output @ o Output
¢ B8 &

PACKAGE BODY compile pkg Compiled.
Ho Errors.

Messages - Log

COMPILE TPEGC Body Compiled

c) Use the COMPILE PKG.MAKE procedure to compile the following:
1) The EMPLOYEE REPORT procedure
ii) The EMP_PKG package
ii1) A nonexistent object called EMP_DATA

Open the sol 07 02 c.sql file in the D: \1abs\PLPU\solns folder, or
copy and paste the following code in the SQL Worksheet area. Click the Run
Script (F5) icon on the SQL Worksheet toolbar to execute the package’s
procedure. The code and the results are shown below.

EXECUTE compile pkg.make('employee report')
EXECUTE compile pkg.make ('emp pkg')
EXECUTE compile pkg.make('emp data')

Oracle Database 11g: Develop PL/SQL Program Units A -89

Practice 7: Using Native Dynamic SQL (continued)

[Resutts | [E] Script outeut | EREpisin | B autotrace | RDBMS output @ v, output

¢ dE

anonymous block completed
ALTER PFROCEDURE employee_report COMPILE

anonymous block completed
ALTER PACEAGE emp pkg COMPILE

Error starting at line 3 in conmand:

EXECUTE compile pkg.make('emp data')

Error report:

0F&-20001: Jubprogram 'ewmp data' does not exist
ORA-06512: at "ORAGL.COMPILE PEG", line 39
OR&-06512: at line 1

Oracle Database 11g: Develop PL/SQL Program Units A -90

Practices for Lesson 8

Practice 8: Using Bulk Binding and Autonomous Transactions
In this practice, you create a package that performs a bulk fetch of employees in a
specified department. The data is stored in a PL/SQL table in the package. You also
provide a procedure to display the contents of the table. In addition, you create the
add_employee procedure that inserts new employees. The procedure uses a local
autonomous subprogram to write a log record each time the add _employee procedure
is called, whether it successfully adds a record or not.

1) Update the EMP_PKG package with a new procedure to query employees in a
specified department.

a) In the package specification:

1) Declare a get employees procedure with a parameter called dept_id,
which is based on the employees.department id column type

i1) Define an index-by PL/SQL type as a TABLE OF EMPLOYEES$ROWTYPE

Open the sol 08 01 a.sql filein the D: \1abs\PLPU\solns folder, or
copy and paste the following code in the SQL Worksheet area. Click the Run
Script (F5) icon on the SQL Worksheet toolbar to create the package
specification. The code and the results are shown below. The newly added code is
highlighted in bold letters in the code box below. To compile the package’s
specification, right-click the package’s name in the Object Navigation tree, and
then select Compile.

CREATE OR REPLACE PACKAGE emp pkg IS
TYPE emp tab type IS TABLE OF employees%ROWTYPE;

PROCEDURE add employee (
p first name employees.first name%TYPE,
p_last name employees.last name$TYPE,
p email employees.email%TYPE,
p_job employees.job id%TYPE DEFAULT 'SA REP',
p_mgr employees.manager 1d%TYPE DEFAULT 145,
p_sal employees.salary%$TYPE DEFAULT 1000,
p_comm employees.commission pct%TYPE DEFAULT O,
p_deptid employees.department id%$TYPE DEFAULT 30) ;

PROCEDURE add employee (
p_first name employees.first name%TYPE,
p_last name employees.last name$TYPE,
p _deptid employees.department id%TYPE) ;

PROCEDURE get employee (
p_empid IN employees.employee id3%TYPE,
p_sal OUT employees.salary3%TYPE,
p _job OUT employees.job id$TYPE) ;

Oracle Database 11g: Develop PL/SQL Program Units A - 91

Practice 8: Using Bulk Binding and Autonomous Transactions
(continued)

FUNCTION get employee(p emp id employees.employee id%type)
return employees%rowtype;

FUNCTION get employee(p_ family name
employees.last name%type)
return employees$rowtype;

PROCEDURE get employees(p dept id
employees.department id%type);

PROCEDURE init departments;
PROCEDURE print employee(p rec emp employees%rowtype) ;
END emp pkg;

/
SHOW ERRORS

[Resuts || [E] script output | TExplain | B autetrace | ADEMS Output @ 0w, Output
¢ H &

PACKAGE emp pky Compiled.
Mo Errors.

Cumpiler - Log

Project: CProgram Files\SGL Developer 1. 2vgldeveloperizgldeveloperisystemaracle sgldeveloper.1.2.0 2995 Defautvvork spaceProject
BNE}PACKAGEORAETEMR}KG@MyDBCmmedmn
Ly Warning(26 20 PLW-07203: parameter 'P_JOB' may benefit fram use of the MOCOPY compiler hirt

b) In the package body:

1) Define a private variable called emp table based on the type defined in the
specification to hold employee records

i1) Implement the get employees procedure to bulk fetch the data into the
table.

Open the sol 08 01 b.sql filein the D: \1abs\PLPU\solns folder, or
copy and paste the following code in the SQL Worksheet area. Click the Run
Script (F5) icon on the SQL Worksheet toolbar to create the package body. The
code and the results are shown below. The newly added code is highlighted in
bold letters in the code box below. To compile the package’s body, right-click the
package’s (or body) name in the Object Navigation tree, and then select
Compile.

CREATE OR REPLACE PACKAGE BODY emp pkg IS
TYPE boolean tab type IS TABLE OF BOOLEAN

Oracle Database 11g: Develop PL/SQL Program Units A -92

Practice 8: Using Bulk Binding and Autonomous Transactions
(continued)

INDEX BY BINARY INTEGER;
valid departments boolean tab type;

emp table emp tab type;

PROCEDURE add_employee (
p_first name employees.first name%TYPE,
p_last name employees.last name3TYPE,
p_email employees.email%TYPE,
p _job employees.job id$TYPE DEFAULT 'SA REP',
p mgr employees.manager 1d$TYPE DEFAULT 145,
p_sal employees.salary$TYPE DEFAULT 1000,
p_comm employees.commission pct%TYPE DEFAULT O,
p _deptid employees.department id%TYPE DEFAULT 30) IS
BEGIN
IF valid deptid(p deptid) THEN

INSERT INTO employees (employee id, first name,
last name, email,
job_id, manager id, hire date, salary, commission pct,
department id)
VALUES (employees seq.NEXTVAL, p_ first name,
p last name, p email,
p job, p mgr, TRUNC(SYSDATE), p sal, p comm,
p deptid);
ELSE
RAISE APPLICATION ERROR (-20204, 'Invalid department ID.
Try again.');
END IF;
END add employee;

PROCEDURE add_employee (
p_first name employees.first name%TYPE,
p_last name employees.last name3TYPE,
p deptid employees.department id%TYPE) IS
p email employees.email%type;
BEGIN
p email := UPPER(SUBSTR(p first name, 1,
1) | |SUBSTR (p_last name, 1, 7));
add employee(p first name, p last name, p email, p deptid
=> p deptid) ;
END;

PROCEDURE get employee (

p_empid IN employees.employee id$TYPE,

p_sal OUT employees.salary3%TYPE,

p_job OUT employees.job id%TYPE) IS
BEGIN

SELECT salary, job id

INTO p_sal, p job

FROM employees

WHERE employee id = p_empid;

Oracle Database 11g: Develop PL/SQL Program Units A -93

Practice 8: Using Bulk Binding and Autonomous Transactions
(continued)

END get employee;

FUNCTION get employee(p emp id employees.employee id%type)

return employees%$rowtype IS
rec_emp employees%rowtype;

BEGIN
SELECT * INTO rec_emp
FROM employees
WHERE employee id = p emp id;
RETURN rec_emp;

END;

FUNCTION get employee(p family name
employees.last name%type)
return employees%rowtype IS

rec_emp employees%rowtype;
BEGIN
SELECT * INTO rec_emp
FROM employees
WHERE last name = p_ family name;
RETURN rec_emp;
END;

/* New get employees procedure. */

PROCEDURE get employees(p dept id
employees.department id%type) IS
BEGIN
SELECT * BULK COLLECT INTO emp table
FROM EMPLOYEES
WHERE department id = p dept id;
END;

PROCEDURE init departments IS

BEGIN
FOR rec IN (SELECT department id FROM departments)
LOOP
valid departments (rec.department id) := TRUE;
END LOOP;
END;

PROCEDURE print employee(p_rec emp employees%rowtype) IS
BEGIN
DBMS OUTPUT.PUT LINE(p rec_emp.department id |
p_rec_emp.employee id| |’
p_rec emp.first name||'
p_rec emp.last name||' '|
p_rec emp.job id||' '||
p_rec emp.salary) ;
END;

Oracle Database 11g: Develop PL/SQL Program Units A -94

Practice 8: Using Bulk Binding and Autonomous Transactions
(continued)

FUNCTION valid deptid(p_ deptid IN
departments.department id%TYPE) RETURN BOOLEAN IS
v_dummy PLS INTEGER;
BEGIN
RETURN valid departments.exists(p_deptid) ;
EXCEPTION
WHEN NO_DATA FOUND THEN
RETURN FALSE;
END valid deptid;

BEGIN
init departments;

END emp pkg;

/
SHOW ERRORS

[Results | [l scriet output | TExplain | B Autotrace | EADEMS Output @1 owis, output
¢ HdE

PACKAGE BODY emp pky Compiled.
Ho Errors.

[E]compier - Log

Praoject: CProgram Files\SGL Developer 1. 2sgldeveloperisgldeveloperisystemioracle soldeveloper.1.2.0 2895 DefaulyvorkspaceProject1
EHE‘/ PACKAGE ORABT EMP_PKGE@MyDEConnection
Loy Warning(24 51 PLW-07T203: parameter 'P_JOB' may benefit from use of the NOCOPY cormpiler hint

c) Create a new procedure in the specification and body, called
show employees, that does not take arguments. The procedure displays the
contents of the private PL/SQL table variable (if any data exists). Use the
print employee procedure that you created in an earlier practice. To view the
results, click the Enable DBMS Output icon in the DBMS Output tab in SQL
Developer, if you have not already done so.

Open the sol 08 01 c.sql filein the D: \1abs\PLPU\solns folder, or
copy and paste the following code in the SQL Worksheet area. Click the Run
Script (F5) icon on the SQL Worksheet toolbar to re-create the package with
the new procedure. The code and the results are shown below. To compile
the package, right-click the package’s name in the Object Navigation tree,
and then select Compile.

-- Package SPECIFICATION

CREATE OR REPLACE PACKAGE emp pkg IS
TYPE emp tab type IS TABLE OF employees%ROWTYPE;

Oracle Database 11g: Develop PL/SQL Program Units A -95

Practice 8: Using Bulk Binding and Autonomous Transactions
(continued)

PROCEDURE add_employee (
p first name employees.first name%TYPE,
p_last name employees.last name$TYPE,
p _email employees.email%TYPE,
p_job employees.job id%TYPE DEFAULT 'SA REP',
p_mgr employees.manager 1d%TYPE DEFAULT 145,
p_sal employees.salary%TYPE DEFAULT 1000,
p_comm employees.commission pct%TYPE DEFAULT O,
p_deptid employees.department id$TYPE DEFAULT 30) ;

PROCEDURE add_employee (
p first name employees.first name%TYPE,
p_last name employees.last name$TYPE,
p _deptid employees.department id%TYPE) ;

PROCEDURE get employee (
p_empid IN employees.employee id3%TYPE,
p_sal OUT employees.salary3%TYPE,
p_Jjob OUT employees.job id%TYPE) ;

FUNCTION get employee(p emp id employees.employee id%type)
return employees%rowtype;

FUNCTION get employee (p family name
employees.last name%type)
return employees%rowtype;

PROCEDURE get employees(p_dept id
employees.department id%type) ;

PROCEDURE init departments;
PROCEDURE print employee(p rec emp employees%rowtype) ;
PROCEDURE show employees;

END emp pkg;

/
SHOW ERRORS

-- Package BODY

CREATE OR REPLACE PACKAGE BODY emp pkg IS
TYPE boolean tab type IS TABLE OF BOOLEAN
INDEX BY BINARY INTEGER;

valid departments boolean tab type;
emp_ table emp tab type;
FUNCTION valid deptid(p_ deptid IN
departments.department id%TYPE)

Oracle Database 11g: Develop PL/SQL Program Units A - 96

Practice 8: Using Bulk Binding and Autonomous Transactions
(continued)

RETURN BOOLEAN;

PROCEDURE add_employee (
p _first name employees.first name%TYPE,
p_last name employees.last name%TYPE,
p_email employees.email%TYPE,
p_Jjob employees.job id%$TYPE DEFAULT 'SA REP',
p_mgr employees.manager id%TYPE DEFAULT 145,
p_sal employees.salary$TYPE DEFAULT 1000,
p _comm employees.commission pct%TYPE DEFAULT O,
p deptid employees.department id%TYPE DEFAULT 30) IS
BEGIN
IF valid deptid(p deptid) THEN
INSERT INTO employees (employee id, first name,
last name, email,
job_id, manager_ id, hire date, salary, commission pct,
department id)
VALUES (employees seq.NEXTVAL, p first name,
p_last name, p_email,
p_job, p mgr, TRUNC(SYSDATE), p sal, p_ comm,
p_deptid) ;
ELSE
RAISE APPLICATION ERROR (-20204, 'Invalid department ID.
Try again.');
END IF;
END add employee;

PROCEDURE add_employee (
p _first name employees.first name%TYPE,
p_last name employees.last name%TYPE,
p_deptid employees.department id$TYPE) IS
p_email employees.email%type;
BEGIN
p email := UPPER(SUBSTR(p first name, 1,
1) | | SUBSTR (p last name, 1, 7));
add employee(p first name, p last name, p email, p deptid
=> p deptid) ;
END;

PROCEDURE get employee (
p_empid IN employees.employee id3%TYPE,
p_sal OUT employees.salary3%TYPE,
p_job OUT employees.job id%TYPE) IS
BEGIN
SELECT salary, job_id
INTO p_sal, p _job
FROM employees
WHERE employee id = p empid;
END get employee;

FUNCTION get employee(p _emp id employees.employee id%type)

Oracle Database 11g: Develop PL/SQL Program Units A -97

Practice 8: Using Bulk Binding and Autonomous Transactions
(continued)

return employees%rowtype IS
rec_emp employees%rowtype;
BEGIN
SELECT * INTO rec_emp
FROM employees
WHERE employee id = p_emp_ id;
RETURN rec_ emp;
END;

FUNCTION get employee(p family name
employees.last name%type)

return employees%rowtype IS
rec_emp employees%rowtype;

BEGIN
SELECT * INTO rec_emp
FROM employees
WHERE last name = p family name;
RETURN rec_ emp;

END;

PROCEDURE get employees(p_dept id
employees.department id%type) IS
BEGIN
SELECT * BULK COLLECT INTO emp table
FROM EMPLOYEES
WHERE department id = p dept id;
END;

PROCEDURE init departments IS

BEGIN
FOR rec IN (SELECT department id FROM departments)
LOOP
valid departments(rec.department id) := TRUE;
END LOOP;
END;

PROCEDURE print employee(p rec emp employees%rowtype) IS
BEGIN
DBMS OUTPUT.PUT LINE(p rec emp.department id |

p_rec_emp.employee id| |’
p_rec emp.first name||'
p_rec_emp.last name||' ']
p_rec _emp.job _id||' '||
p_rec_emp.salary) ;

END;

PROCEDURE show employees IS
BEGIN
IF emp table IS NOT NULL THEN

Oracle Database 11g: Develop PL/SQL Program Units A -98

Practice 8: Using Bulk Binding and Autonomous Transactions
(continued)

DBMS OUTPUT.PUT LINE('Employees in Package table');
FOR i IN 1 .. emp table.COUNT

LOOP
print employee(emp table(i));
END LOOP;
END IF;
END show employees;

FUNCTION valid deptid(p_deptid IN
departments.department id%TYPE)
RETURN BOOLEAN IS
v_dummy PLS INTEGER;
BEGIN
RETURN valid departments.exists(p deptid) ;
EXCEPTION
WHEN NO_DATA FOUND THEN
RETURN FALSE;
END valid deptid;

BEGIN
init_ departments;
END emp pkg;

/
SHOW ERRORS

[Resutts | [& Script Output | Explain | B autctrace | B0EMS output | @ owia output

¢ d &

PACKAGE emp pkg Compiled.

No Errors.

PACEKAGE EODY emp_pkg Compiled.
No Errors.

Messages - Log

JOE_PEG Body Compiled

d) Invoke the emp pkg.get employees procedure for department 30, and then
invoke emp pkg.show employees. Repeat this for department 60.

Open the sol 08 01 d.sql filein the D: \1abs\PLPU\solns folder, or
copy and paste the following code in the SQL Worksheet area. Click the Run
Script (F5) icon on the SQL Worksheet toolbar to invoke the package’s
procedures. The code and the results are shown below:

EXECUTE emp pkg.get employees(30)
EXECUTE emp_ pkg.show employees

Oracle Database 11g: Develop PL/SQL Program Units A -99

Practice 8: Using Bulk Binding and Autonomous Transactions
(continued)

EXECUTE emp pkg.get employees(60)
EXECUTE emp_ pkg.show employees

> Resutts | (5] Script utput | B Esplsin | Eautotrace |[ADEMS Output @rovia Output

¢ B8 &

anonymwous block completed

anonymous hlock completed

Euployees in Package table

30 209 Jamuel Joplin 34 FEP 1000

30 114 Den Raphaely PU_MAN 11000

30 115 Alexander Fhoo PU_CLERE 3100
30 116 5helli Baida PU_CLERFK 2900

30 117 3igal Tobias FPU_CLEFK Z&800

30 11§ Guy Himuro PU_CLERE 2600

30 119 Karen Colmenares PU_CLERE 2500

anonymwous block completed

anonywous block completed

Euployees in Package table

60 103 Alexander Hunold IT_PROG 2000
60 104 Bruce Ernst IT_PROG &000

60 105 Dawvid Austin IT _PROG 4500

60 106 Valli Pataballa IT_PROG 4800
60 107 Diana Lorents IT PROG 4200

2) Your manager wants to keep a log whenever the add_employee procedure in the
package is invoked to insert a new employee into the EMPLOYEES table.

a) First, load and execute the D: \1labs\PLPU\solns\sol 08 02 a.sqgl
script to create a log table called LOG_NEWEMP, and a sequence called
log newemp seq.

Open the sol 08 02 a.sql filein the D: \1abs\PLPU\solns folder, or

copy and paste the following code in the SQL Worksheet area. Click the Run
Script (F5) icon on the SQL Worksheet toolbar to run the script. The code
and the results are shown below.

CREATE TABLE log newemp (
entry id NUMBER(6) CONSTRAINT log newemp pk PRIMARY KEY,
user_id VARCHAR2 (30),
log time DATE,
name VARCHAR2 (60)
)

CREATE SEQUENCE log newemp_ seq;

Oracle Database 11g: Develop PL/SQL Program Units A -100

Practice 8: Using Bulk Binding and Autonomous Transactions
(continued)

B> Resutts | (5l script output | B Espisin | Eautotrace |[@DEMS Output @ ovva output

¢ d&

CEEATE TABLE succeeded.
CEEATE SEQUENCE succeeded.

b) Inthe EMP_ PKG package body, modify the add employee procedure, which
performs the actual INSERT operation. Add a local procedure called
audit newemp as follows:

1) The audit newemp procedure must use an autonomous transaction to
insert a log record into the LOG_NEWEMP table.

i1) Store the USER, the current time, and the new employee name in the log table
TOW.

iii) Use log _newemp_seq to set the entry id column.

Note: Remember to perform a COMMIT operation in a procedure with an
autonomous transaction.

Open the sol 08 02 b.sql file in the D: \1abs\PLPU\solns folder, or
copy and paste the following code in the SQL Worksheet area. The newly
added code is highlighted in bold letters in the following code box. Click the
Run Script (F5) icon on the SQL Worksheet toolbar to run the script. The
code and the results are shown below. To compile the package, right-click the
package’s name in the Object Navigation tree, and then select Compile.

-- Package SPECIFICATION

CREATE OR REPLACE PACKAGE emp pkg IS

TYPE emp tab type IS TABLE OF employees%ROWTYPE;

PROCEDURE add employee (
p_first name employees.first name%TYPE,
p_last name employees.last name$%$TYPE,
p _email employees.email%TYPE,
p_job employees.job id%TYPE DEFAULT 'SA REP',
p_mgr employees.manager 1d%TYPE DEFAULT 145,
p_sal employees.salary%$TYPE DEFAULT 1000,
p_comm employees.commission pct%TYPE DEFAULT O,
p_deptid employees.department id$TYPE DEFAULT 30) ;

PROCEDURE add_employee (
p_first name employees.first name%TYPE,
p_last name employees.last name%TYPE,

Oracle Database 11g: Develop PL/SQL Program Units A - 101

Practice 8: Using Bulk Binding and Autonomous Transactions
(continued)

p_deptid employees.department id%TYPE) ;

PROCEDURE get employee (
p _empid IN employees.employee id%TYPE,
p_sal OUT employees.salary3%TYPE,
p_job OUT employees.job id%TYPE) ;

FUNCTION get employee(p _emp id employees.employee id%type)
return employees$rowtype;

FUNCTION get employee(p family name
employees.last name%type)
return employees%rowtype;

PROCEDURE get employees(p_dept id
employees.department id%type) ;

PROCEDURE init departments;

PROCEDURE print employee(p rec emp employees%rowtype) ;
PROCEDURE show employees;

END emp pkg;

/
SHOW ERRORS

-- Package BODY

CREATE OR REPLACE PACKAGE BODY emp pkg IS
TYPE boolean tab type IS TABLE OF BOOLEAN
INDEX BY BINARY INTEGER;

valid departments boolean tab type;
emp table emp tab type;

FUNCTION valid deptid(p deptid IN
departments.department id%TYPE)
RETURN BOOLEAN;

PROCEDURE add_employee (
p _first name employees.first name%TYPE,
p_last name employees.last name%TYPE,
p_email employees.email%TYPE,
p_job employees.job id%$TYPE DEFAULT 'SA REP',
p_mgr employees.manager id%TYPE DEFAULT 145,
p_sal employees.salary$TYPE DEFAULT 1000,
p _comm employees.commission pct%TYPE DEFAULT O,
p deptid employees.department id%TYPE DEFAULT 30) IS

-- New local procedure

Oracle Database 11g: Develop PL/SQL Program Units A - 102

Practice 8: Using Bulk Binding and Autonomous Transactions
(continued)

PROCEDURE audit newemp IS
PRAGMA AUTONOMOUS TRANSACTION;

user id VARCHAR2 (30) := USER;
BEGIN
INSERT INTO log newemp (entry id, user id, log time,
name)
VALUES (log newemp seq.NEXTVAL, user id,
sysdate,p first name||' '||p last name);
COMMIT;

END audit newemp;

BEGIN -- add_employee
IF valid deptid(p deptid) THEN
INSERT INTO employees (employee id, first name,
last name, email,
job_id, manager_ id, hire date, salary, commission pct,
department id)
VALUES (employees seq.NEXTVAL, p_ first name,
p_last name, p_email,
p_job, p mgr, TRUNC(SYSDATE), p sal, p_ comm,
p deptid);
ELSE
RAISE APPLICATION ERROR (-20204, 'Invalid department ID.
Try again.');
END IF;
END add employee;

PROCEDURE add_employee (
p _first name employees.first name%TYPE,
p_last name employees.last name3TYPE,
p_deptid employees.department id$TYPE) IS
p_email employees.email%type;
BEGIN
p email := UPPER(SUBSTR(p first name, 1,
1) | | SUBSTR (p last name, 1, 7));
add employee(p first name, p last name, p email, p deptid
=> p deptid) ;
END;

PROCEDURE get employee (
p_empid IN employees.employee id3%TYPE,
p_sal OUT employees.salary3%TYPE,
p_job OUT employees.job id%TYPE) IS
BEGIN
SELECT salary, job_id
INTO p_sal, p job
FROM employees
WHERE employee id = p empid;
END get employee;

Oracle Database 11g: Develop PL/SQL Program Units A -103

Practice 8: Using Bulk Binding and Autonomous Transactions
(continued)

FUNCTION get employee(p emp id employees.employee id%type)
return employees%rowtype IS
rec_emp employees%rowtype;
BEGIN
SELECT * INTO rec_emp
FROM employees
WHERE employee id = p_emp_ id;
RETURN rec_emp;
END;

FUNCTION get employee(p family name
employees.last name%type)

return employees%rowtype IS
rec_emp employees%rowtype;

BEGIN
SELECT * INTO rec_emp
FROM employees
WHERE last name = p family name;
RETURN rec_emp;

END;

/* New get employees procedure. */

PROCEDURE get employees(p dept id
employees.department id%type) IS
BEGIN
SELECT * BULK COLLECT INTO emp table
FROM EMPLOYEES
WHERE department id = p dept id;
END;

PROCEDURE init_departments IS

BEGIN
FOR rec IN (SELECT department id FROM departments)
LOOP
valid departments (rec.department id) := TRUE;
END LOOP;
END;

PROCEDURE print employee(p rec emp employees%rowtype) IS
BEGIN
DBMS OUTPUT.PUT LINE(p rec_ emp.department id |

p_rec_emp.employee id| |’
p_rec_emp.first name||'
p_rec_emp.last name||'
p_rec_emp.job _id||' '|
p _rec emp.salary) ;

END;

PROCEDURE show_ employees IS
BEGIN

Oracle Database 11g: Develop PL/SQL Program Units A - 104

Practice 8: Using Bulk Binding and Autonomous Transactions
(continued)

IF emp table IS NOT NULL THEN
DBMS OUTPUT.PUT LINE('Employees in Package table');

FOR 1 IN 1 .. emp table.COUNT
LOOP
print employee (emp table(i));
END LOOP;
END TF;

END show employees;

FUNCTION valid deptid(p_deptid IN
departments.department id$TYPE)
RETURN BOOLEAN IS
v_dummy PLS INTEGER;
BEGIN
RETURN valid departments.exists (p deptid) ;
EXCEPTION
WHEN NO_DATA FOUND THEN
RETURN FALSE;
END valid deptid;

BEGIN
init_ departments;
END emp pkg;
/
SHOW ERRORS

[Resutts || [Z] Seript output | BExpiain | B sutotrace | DEMS Output @rowis output

= =t

PACEAGE emp pko Compiled.

No Errors.

PACKAGE BODY emp_pky Compiled.
No Errors.

Messages - Log

EMP_PEG Compiled

c) Modify the add employee procedure to invoke audit emp before it
performs the insert operation.

Open the sol 08 02 c.sql filein the D: \1abs\PLPU\solns folder, or
copy and paste the following code in the SQL Worksheet area. The newly
added code is highlighted in bold letters in the following code box. Click the
Run Script (F5) icon on the SQL Worksheet toolbar to run the script. The

Oracle Database 11g: Develop PL/SQL Program Units A - 105

Practice 8: Using Bulk Binding and Autonomous Transactions
(continued)

code and the results are shown below. To compile the package, right-click the
package’s name in the Object Navigation tree, and then select Compile.

-- Package SPECIFICATION

CREATE OR REPLACE PACKAGE emp pkg IS

TYPE emp tab type IS TABLE OF employees%ROWTYPE;

PROCEDURE add_employee (
p_first name employees.first name%TYPE,
p_last name employees.last name$TYPE,
p email employees.email%TYPE,
p_job employees.job id%TYPE DEFAULT 'SA REP',
p_mgr employees.manager 1d%TYPE DEFAULT 145,
p_sal employees.salary%$TYPE DEFAULT 1000,
p_comm employees.commission pct%TYPE DEFAULT O,
p_deptid employees.department id%TYPE DEFAULT 30) ;

PROCEDURE add_employee (
p_first name employees.first name%TYPE,
p_last name employees.last name3TYPE,
p_deptid employees.department id$TYPE) ;

PROCEDURE get employee (
p empid IN employees.employee id%TYPE,
p_sal OUT employees.salary%TYPE,
p_job OUT employees.job id%TYPE) ;

FUNCTION get employee(p emp id employees.employee id%type)
return employees$rowtype;

FUNCTION get employee(p_ family name
employees.last name%type)

return employees$rowtype;

PROCEDURE get employees (p dept id
employees.department id%type) ;

PROCEDURE init departments;
PROCEDURE print employee(p rec emp employees%rowtype) ;
PROCEDURE show_employees;

END emp pkg;

/
SHOW ERRORS

Oracle Database 11g: Develop PL/SQL Program Units A - 106

Practice 8: Using Bulk Binding and Autonomous Transactions
(continued)

-- Package BODY

CREATE OR REPLACE PACKAGE BODY emp pkg IS
TYPE boolean tab type IS TABLE OF BOOLEAN
INDEX BY BINARY INTEGER;

valid departments boolean tab type;
emp_ table emp tab type;

FUNCTION valid deptid(p_deptid IN
departments.department id$TYPE)
RETURN BOOLEAN;

PROCEDURE add_employee (
p first name employees.first name%TYPE,
p_last name employees.last name%TYPE,
p _email employees.email%TYPE,
p_job employees.job id%TYPE DEFAULT 'SA REP',
p_mgr employees.manager id%TYPE DEFAULT 145,
p_sal employees.salary%TYPE DEFAULT 1000,
p_comm employees.commission pct%TYPE DEFAULT O,
p deptid employees.department id%TYPE DEFAULT 30) IS

PROCEDURE audit newemp IS
PRAGMA AUTONOMOUS TRANSACTION;

user id VARCHAR2 (30) := USER;
BEGIN
INSERT INTO log newemp (entry id, user id, log time,
name)
VALUES (log newemp seq.NEXTVAL, user id,
sysdate,p first name||' '||p_last name) ;

COMMIT;
END audit_ newemp;

BEGIN -- add employee
IF valid deptid(p deptid) THEN
audit newemp;
INSERT INTO employees (employee id, first name,
last name, email,
job_id, manager id, hire date, salary, commission pct,
department id)
VALUES (employees seq.NEXTVAL, p first name,
p_last name, p_ email,
p_job, p mgr, TRUNC(SYSDATE), p sal, p_ comm,
p_deptid) ;
ELSE
RAISE APPLICATION ERROR (-20204, 'Invalid department ID.
Try again.');
END TIF;
END add employee;

Oracle Database 11g: Develop PL/SQL Program Units A - 107

Practice 8: Using Bulk Binding and Autonomous Transactions
(continued)

PROCEDURE add_employee (
p first name employees.first name%TYPE,

p_last name employees.last name$TYPE,
p _deptid employees.department id%TYPE) IS
p _email employees.email%type;
BEGIN
p _email := UPPER(SUBSTR(p first name, 1,
1) | |SUBSTR (p_last name, 1, 7));
add_employee (p first name, p last name, p _email, p deptid
=> p_deptid);
END;

PROCEDURE get employee (
p _empid IN employees.employee id%TYPE,
p_sal OUT employees.salary%TYPE,
p_job OUT employees.job id%TYPE) IS
BEGIN
SELECT salary, job id
INTO p_sal, p _job
FROM employees
WHERE employee id = p_empid;
END get employee;

FUNCTION get employee(p emp id employees.employee id%type)
return employees%rowtype IS
rec_emp employees%rowtype;
BEGIN
SELECT * INTO rec_emp
FROM employees
WHERE employee id = p_emp_ id;
RETURN rec_emp;
END;

FUNCTION get employee(p family name
employees.last name$type)

return employees%rowtype IS
rec_emp employees%rowtype;

BEGIN
SELECT * INTO rec_emp
FROM employees
WHERE last name = p family name;
RETURN rec_ emp;

END;

PROCEDURE get employees(p_dept id
employees.department id%type) IS
BEGIN
SELECT * BULK COLLECT INTO emp table
FROM EMPLOYEES
WHERE department id = p dept id;

Oracle Database 11g: Develop PL/SQL Program Units A -108

Practice 8: Using Bulk Binding and Autonomous Transactions
(continued)

END;

PROCEDURE init departments IS

BEGIN
FOR rec IN (SELECT department id FROM departments)
LOOP
valid departments (rec.department id) := TRUE;
END LOOP;
END;

PROCEDURE print employee(p rec emp employees%rowtype) IS
BEGIN
DBMS OUTPUT.PUT LINE(p rec emp.department id |

p_rec_emp.employee id| |’
p rec emp.first name||'
p_rec emp.last name||' '|
p_rec emp.job id||' '||
p_rec_emp.salary) ;

END;

PROCEDURE show_employees IS
BEGIN
IF emp table IS NOT NULL THEN
DBMS OUTPUT.PUT LINE ('Employees in Package table');

FOR 1 IN 1 .. emp table.COUNT
LOOP
print employee (emp table(i));
END LOOP;
END IF;

END show employees;

FUNCTION valid deptid(p deptid IN
departments.department id%TYPE)
RETURN BOOLEAN IS
v_dummy PLS INTEGER;
BEGIN
RETURN valid departments.exists (p deptid) ;
EXCEPTION
WHEN NO_ DATA FOUND THEN

RETURN FALSE;
END valid deptid;
BEGIN
init departments;
END emp pkg;
/
SHOW ERRORS

Oracle Database 11g: Develop PL/SQL Program Units A - 109

Practice 8: Using Bulk Binding and Autonomous Transactions
(continued)

(> Resuts | (& Script output | B Explain | B autotrace | @DEMS output | @ owa Output

¢B8&

PACKAGE emp_pkg Compiled.

Ho Errors.

PACKAGE BODY emp pkg Compiled.
Ho Errors.

Messages - Log

EMP DEGC Compiled

d) Invoke the add employee procedure for these new employees: Max Smart
in department 20 and Clark Kent in department 10. What happens?

Open the sol 08 02 d.sql file in the D: \1abs\PLPU\solns folder, or
copy and paste the following code in the SQL Worksheet area. Click the Run
Script (F5) icon on the SQL Worksheet toolbar to run the script. The code
and the results are shown below.

EXECUTE emp pkg.add employee('Max', 'Smart',6 20)
EXECUTE emp pkg.add employee('Clark', 'Kent', 10)

B> Resuts | (5] Script output | B Explsin | B avtatrace | ADEMS Output @ owe output

¢ dE

anonymous block completed
anonymous block completed

Both insert statements complete successfully. The log table has two log
records as shown in the next step.

e) Query the two EMPLOYEES records added, and the records in the LOG_NEWEMP
table. How many log records are present?

Open the sol 08 02 e.sql file in the D: \1abs\PLPU\solns folder, or
copy and paste the following code in the SQL Worksheet area. Click the Run
Script (F5) icon on the SQL Worksheet toolbar to run the script. The code
and the results are shown below.

select department id, employee id, last name, first name
from employees
where last name in ('Kent', 'Smart');

select * from log newemp;

Oracle Database 11g: Develop PL/SQL Program Units A -110

Practice 8: Using Bulk Binding and Autonomous Transactions
(continued)

[Resuts | [E] scriet outout | EYExpisin | B autotrace | FDEMS Cutput @ ovia Output

¢ da

DEPARTMENT ID EMPLOYEE_ID LAST NAME FIRAT NAME
10 o Eent Clark

20 211 Zmart Max

ENTEY_ID USER_ID LOG_TIME NAME
1 ORAGL 2a-JuN-07 Max Smart
Z ORAGL Za-JuN-07 Clark Fent

2 rows selected

There are two log records, one for Smart and another for Kent.

f) Execute a ROLLBACK statement to undo the insert operations that have not been
committed. Use the same queries from step 2 e. as follows:

1) Use the first query to check whether the employee rows for Smart and Kent
have been removed.

ii) Use the second query to check the log records in the LOG_NEWEMP table.
How many log records are present? Why?

ROLLBACK;

[Resutts | [E Seript output | BExpisin | B sutotrace | EDEMS Cutput @ ovua Output
¢ B8 &

ROLLEACE succeeded.

Oracle Database 11g: Develop PL/SQL Program Units A - 111

Practice 8: Using Bulk Binding and Autonomous Transactions
(continued)
[B]s0l_08_02_e.5q1

FPERRS® 898 ¢ 0.99529454 seconds

Enter SGEL Staternent:

1| select department id, employee id, last name, first name
Zl from emplovees
J|where last_name in ('Eent', 'Smart']):

4

iselect * from log newemp:

f

{]

%
> Resuts | (5] Script utput | BExpiein | Eautotrace | RDBMS Output o Output%
¢ B8 E
DEPARTMENT ID EMPLOYEE_ID LAST_NAME FIRST NAME

ENTEY_ID URER_ID LOG_TIME HAME
1 ORAGL Z22-JUN-07 Hax 3Smart
2 ORAGL 2a-JUuN-07 Clark Kent

2 rows selected

The two employee records are removed (rolled back). The two log records
remain in the log table because they were inserted using an autonomous
transaction, which is unaffected by the rollback performed in the main
transaction.

Oracle Database 11g: Develop PL/SQL Program Units A -112

Practices for Lesson 9

Practice 9: Creating Statement and Row Triggers

In this practice, you create statement and row triggers. You also create procedures that
are invoked from within the triggers.

1) The rows in the JOBS table store a minimum and maximum salary allowed for
different JOB_ID values. You are asked to write code to ensure that employees’
salaries fall in the range allowed for their job type, for insert and update operations.

a) Create a procedure called CHECK SALARY as follows:

1) The procedure accepts two parameters, one for an employee’s job ID string
and the other for the salary.

ii)) The procedure uses the job ID to determine the minimum and maximum
salary for the specified job.

ii1) If the salary parameter does not fall within the salary range of the job,
inclusive of the minimum and maximum, then it should raise an application
exception, with the message “Invalid salary <sal>. Salaries
for job <jobid> must be between <min> and <max>".
Replace the various items in the message with values supplied by parameters
and variables populated by queries. Save the file.

Open the sol 09 01 a.sql filein the D: \1abs\PLPU\solns folder, or
copy and paste the following code in the SQL Worksheet area. Click the Run
Script (F5) icon on the SQL Worksheet toolbar to run the script. The code and
the results are shown below. To compile the procedure, right-click the
procedure’s name in the Object Navigation tree, and then select Compile.

CREATE OR REPLACE PROCEDURE check salary (p_the job VARCHAR2,
p_the salary NUMBER) IS

v_minsal jobs.min salary%type;

v_maxsal jobs.max salary%type;
BEGIN

SELECT min_salary, max salary INTO v_minsal, v_maxsal

FROM jobs

WHERE job id = UPPER (p the job);

IF p the salary NOT BETWEEN v _minsal AND v maxsal THEN

RAISE APPLICATION ERROR(-20100,

'Invalid salary $' ||p _the salary ||'. ']|]
'Salaries for job '|| p_the job ||
' must be between $'|| v _minsal ||' and $' || v_maxsal);
END IF;
END;
/

SHOW ERRORS

Oracle Database 11g: Develop PL/SQL Program Units A -113

Practice 9: Creating Statement and Row Triggers (continued)

B> Resutts | (5] Seriet output | BExplain | B sutotrace | EDEMS Cutput @ o Output

¢ HdE

PROCEDURE check salary Compiled.
Mo Errors.

Messages - Liog

CHECE SALARY Compiled

b) Create a trigger called CHECK SALARY TRG on the EMPLOYEES table that
fires before an INSERT or UPDATE operation on each row:

i) The trigger must call the CHECK SALARY procedure to carry out the business
logic.

i1) The trigger should pass the new job ID and salary to the procedure
parameters.

Open the sol 09 01 b.sql filein the D: \1abs\PLPU\solns folder, or
copy and paste the following code in the SQL Worksheet area. Click the Run
Script (F5) icon on the SQL Worksheet toolbar to run the script. The code
and the results are shown below. To compile the trigger, right-click the
trigger’s name in the Object Navigation tree, and then select Compile.

CREATE OR REPLACE TRIGGER check salary trg
BEFORE INSERT OR UPDATE OF job_id, salary
ON employees
FOR EACH ROW
BEGIN

check salary(:new.job id, :new.salary);
END;
/
SHOW ERRORS

> Resuts || [E] Soript Outout | B Explain | B autotrace | IDEMS Output @ ovva output

¢ d &

TRIGGER check_salary trg Compiled.
Mo Errors.

Messages - Log

CHECE SALARY TRG Compiled

2) Test the CHECK SAL TRG trigger using the following cases:

Oracle Database 11g: Develop PL/SQL Program Units A - 114

Practice 9: Creating Statement and Row Triggers (continued)

a) Using your EMP_PKG.ADD EMPLOYEE procedure, add employee Eleanor
Beh to department 30. What happens and why?

Open the sol 09 02 a.sql filein the D: \1abs\PLPU\solns folder, or
copy and paste the following code in the SQL Worksheet area. Click the Run
Script (F5) icon on the SQL Worksheet toolbar to run the script. The code
and the results are shown below.

EXECUTE emp pkg.add employee('Eleanor', 'Beh', 30)

[Resutts | [E script output | B Expisin | B atotrace | RDEMS Cutput @ owis, output

¢ 3 &

Error starting at line 1 in conmand:

EXECUTE emp pkg.add employeel'Eleanor', 'Beh', 30)

Error report:

OFA4-20100: Inwalid salary §1000. Salaries for job 34 FEEP must be hetween $6000 and §l2000
ORA-06512: at "ORASL.CHECK_JALARY™, line 9

ORA-06512: at "ORAGSL.CHECK_SALARY TREG™, line 2

OR&4-04055: error during execution of trigger 'ORA6L.CHECE SALARY TRG'

ORA-06512: at "ORAGL.EMP_PEG™, line 35

OF4-06512: at "ORAS1.EMP_PEG™, line 5l

OR&-06512: at line 1

The trigger raises an exception because the EMP_PKG.ADD EMPLOYEE
procedure invokes an overloaded version of itself that uses the default salary of
$1,000 and a default job ID of SA REP. However, the JOBS table stores a
minimum salary of $ 6,000 for the SA REP type.

b) Update the salary of employee 115 to $2,000. In a separate update operation,
change the employee job ID to HR_REP. What happens in each case?

Open the sol 09 02 b.sql file in the D: \1abs\PLPU\solns folder, or
copy and paste the following code in the SQL Worksheet area. Click the Run
Script (F5) icon on the SQL Worksheet toolbar to run the script. The code
and the results are shown below. To compile the package, right-click the
package’s name in the Object Navigation tree, and then select Compile.

UPDATE employees
SET salary = 2000
WHERE employee id = 115;

UPDATE employees
SET job id = 'HR REP'
WHERE employee id = 115;

Oracle Database 11g: Develop PL/SQL Program Units A - 115

Practice 9: Creating Statement and Row Triggers (continued)

[Resutts | [E] seript output | BExplsin | B autatrace | @Dems Output @ owa output

¢ B E

Error starting at line 1 in command:
UPDATE employess
S3ET salary = 2000
WHEPE ewmployee_id = 115
Error report:
30L Error: OB&-2Z0100: Inwvalid salary £2000. Zalaries for job PU_CLERE must be between 2500 and 5500
ORA4-0651E2: at "ORAGL.CHECK _SALARY™, line 9
ORA4-0651E2: at "ORAGL.CHECK _SALARY TRG", line 2
0FA-04088: error during execution of trigger 'OFAGL.CHECK JFALARY TRG'

Error starting at line 5 in command:
UPDATE employess
5ET job_id = 'HR_REP'
WHEFE ewmployee_id = 115
Error report:
30L Error: OB&4&-2Z0100: Inwvalid salary §3100. Ralaries for job HR_REF must be between £4000 and 59000
ORA4-0651E2: at "ORAGL.CHECK _SALARY™, line 9
OR4-06512: at "ORAGL.CHECK _SALARY TRG", line 2
OFA4-04088: error during execution of trigger 'ORAGl.CHECE_SALARY TRG'

The first update statement fails to set the salary to $2,000. The check salary
trigger rule fails the update operation because the new salary for employee 115
is less than the minimum allowed for the PU_CLERK job ID.

The second update fails to change the employee’s job because the current
employee’s salary of $3,100 is less than the minimum for the new HR_REP job
ID.

¢) Update the salary of employee 115 to $2,800. What happens?

Open the sol 09 02 c.sql filein the D: \1abs\PLPU\solns folder, or
copy and paste the following code in the SQL Worksheet area. Click the Run
Script (F5) icon on the SQL Worksheet toolbar to run the script. The code
and the results are shown below.

UPDATE employees
SET salary = 2800
WHERE employee id = 115;

[Resuts | (] Script output | BEpiain | Bautotrace | @DBMS Outout @A o Cutput
¢ d &

1 rows updated

The update operation is successful because the new salary falls within the
acceptable range for the current job ID.

Oracle Database 11g: Develop PL/SQL Program Units A - 116

Practice 9: Creating Statement and Row Triggers (continued)

3) Update the CHECK SALARY TRG trigger to fire only when the job ID or salary
values have actually changed.

a) Implement the business rule using a WHEN clause to check whether the JOB_ID
or SALARY values have changed.

Note: Make sure that the condition handles the NULL in the
OLD.column name values if an INSERT operation is performed; otherwise, an
insert operation will fail.

Open the sol 09 03 a.sql filein the D: \1abs\PLPU\solns folder, or
copy and paste the following code in the SQL Worksheet area. Click the Run
Script (F5) icon on the SQL Worksheet toolbar to run the script. The code
and the results are shown below. To compile the trigger, right-click the
trigger’s name in the Object Navigation tree, and then click Compile.

CREATE OR REPLACE TRIGGER check salary trg
BEFORE INSERT OR UPDATE OF job id, salary
ON employees FOR EACH ROW
WHEN (new.job id <> NVL(old.job id,'?') OR
new.salary <> NVL(old.salary,0))

BEGIN

check_salary(:new.job_id, :new.salary);
END;
/
SHOW ERRORS

(> Resutts | [& serivt output | B Explain | B utotrace | DEMS Output @ ovva Output

¢ d &

TRIGGER check_salary trg Compiled.
No Errors.

Messages - Log

CHECE ZALARY TRG Compiled

b) Test the trigger by executing the EMP_PKG.ADD EMPLOYEE procedure with the
following parameter values:

p first name: 'Eleanor'

p_last name: 'Beh'

- p Email: 'EBEH'

p_Job: 'IT_PROG'

p_Sal: 5000

Oracle Database 11g: Develop PL/SQL Program Units A -117

Practice 9: Creating Statement and Row Triggers (continued)

Open the sol 09 03 b.sql file in the D: \1abs\PLPU\solns folder, or
copy and paste the following code in the SQL Worksheet area. Click the Run

Script (F5) icon on the SQL Worksheet toolbar to run the script. The code
and the results are shown below.

BEGIN
emp pkg.add employee('Eleanor', 'Beh', 'EBEH',
job => 'IT PROG', sal => 5000);
END;
/

[Resutts | & Seriet output | BiExpisin | B autotrace | DEMS Output @ owia Output

¢ Bda

anonynous block completed

c) Update employees with the IT PROG job by incrementing their salary by $2,000.
What happens?

Open the sol 09 03 c.sql filein the D: \1abs\PLPU\solns folder, or
copy and paste the following code in the SQL Worksheet area. Click the Run

Script (F5) icon on the SQL Worksheet toolbar to run the script. The code
and the results are shown below.

UPDATE employees
SET salary = salary + 2000
WHERE job id = 'IT PROG';

[Resutts | [Z] Seript output | EExplain | B Autetrace | @0DEMS outout @ v output

¢B8&

Error starting at line 1 in command:
UPDATE employees
3ET salary = salary + 2000
WHERE job_id = 'IT_PROG'
Error report:
SQL Error: OR&-Z0100: Invalid zalary §11000. Jalaries for job IT _PROG must be between £4000 and $10000
ORA-0651E: at "ORAGL.CHECK_SALARY", line 9
OR4-0651Z: at "ORL61l.CHECK 2AaLARY TEG™, line Z
OFRA-04085: error during execution of trigger 'ORA6L.CHECK 3ALARY TRG'

An employee’s salary in the specified job type exceeds the maximum salary for
that job type. No employee salaries in the IT PROG job type are updated.

d) Update the salary to $9,000 for Eleanor Beh.

Oracle Database 11g: Develop PL/SQL Program Units A -118

Practice 9: Creating Statement and Row Triggers (continued)

Open the sol 09 03 d.sql file in the D: \1abs\PLPU\solns folder, or
copy and paste the following code in the SQL Worksheet area. Click the Run
Script (F5) icon on the SQL Worksheet toolbar to run the script. The code
and the results are shown below.

UPDATE employees
SET salary = 9000
WHERE employee id = (SELECT employee id
FROM employees
WHERE last name = 'Beh');

[Resutts | [F Script output | B Explsin | B sutotrace | DBMS Output @rowa Output

¢ B &

1 rows updated

Hint: Use an UPDATE statement with a subquery in the WHERE clause. What
happens?

e) Change the job of Eleanor Beh to ST MAN using another UPDATE statement
with a subquery. What happens?

Open the sol 09 03 e.sql filein the D: \1abs\PLPU\solns folder, or

copy and paste the following code in the SQL Worksheet area. Click the Run
Script (F5) icon on the SQL Worksheet toolbar to run the script. The code
and the results are shown below.

UPDATE employees

set job_id = 'ST MAN'
WHERE employee id = (SELECT employee id
FROM employees
WHERE last name = 'Beh');

Oracle Database 11g: Develop PL/SQL Program Units A -119

Practice 9: Creating Statement and Row Triggers (continued)

[Resutts | [E] scrint output | BRExplain | B autotrace | RDEMS output @ v output

¢ dE

Error starting at line 1 in conmand:
UPDATE enployees
get Job_id = '3T MaN'
WHEFE employee_id = (SELECT employee_id
FROM enployees
WHERE last_name = 'Eeh')
Error report:
3QL Error: ORA-Z0100: Inwalid salary $2000. Jalaries for job 3T _MAN must he hetween 5500 and 3500
ORA4-06512: at "ORAS1.CHECE_3ALARY™, line 9
OR4-06512: at "ORASL.CHECE 3ALARY TRG™, line 2
0FR4-04085: error during execution of trigger 'OR4cl.CHECE JALARY TRG'

The maximum salary of the new job type is less than the employee’s current salary;
therefore, the update operation fails.

4) You are asked to prevent employees from being deleted during business hours.

a) Write a statement trigger called DELETE _EMP_TRG on the EMPLOYEES table to

prevent rows from being deleted during weekday business hours, which are from
9:00 AM to 6:00 PM.

Open the sol 09 04 a.sql filein the D: \1abs\PLPU\solns folder, or
copy and paste the following code in the SQL Worksheet area. Click the Run
Script (F5) icon on the SQL Worksheet toolbar to run the script. The code
and the results are shown below. To compile the trigger, right-click the
trigger’s name in the Object Navigation tree, and then click Compile.

CREATE OR REPLACE TRIGGER delete emp trg
BEFORE DELETE ON employees

DECLARE

the day VARCHAR2 (3) := TO CHAR (SYSDATE, 'DY');

the hour PLS INTEGER := TO NUMBER (TO_ CHAR (SYSDATE, 'HH24'));
BEGIN

IF (the hour BETWEEN 9 AND 18) AND (the day NOT IN
('"SAT','SUN')) THEN

RAISE APPLICATION_ ERROR(-20150,
'Employee records cannot be deleted during the business
hours of 9AM and 6PM') ;
END TIF;
END;
/
SHOW ERRORS

[Resutts || & scrist output | ERExpizin Bautotrace | Roems output | @ ows, output

¢ 8 &

TRIGGER delete_emp_ trg Compiled.
Mo Errors.

Oracle Database 11g: Develop PL/SQL Program Units A -120

Practice 9: Creating Statement and Row Triggers (continued)

Me&sage& - Log

DELETE_EMP TEG Compiled

b) Attempt to delete employees with JOB_ID of SA REP who are not assigned to a
department.

Hint: This is employee Grant with ID 178.

Open the sol 09 04 b.sql file in the D: \1abs\PLPU\solns folder, or
copy and paste the following code in the SQL Worksheet area. Click the Run
Script (F5) icon on the SQL Worksheet toolbar to run the script. The code
and the results are shown below. To compile the trigger, right-click the
trigger’s name in the Object Navigation tree, and then click Compile.

DELETE FROM employees
WHERE job id = 'SA REP'
AND department id IS NULL;

[Resutts | [E] Script output | B Exptain | 3 avtntrace | @0EMS Output @ owia Output

¢ dE

Error starting at line 1 in command:
DELETE FEOM emplovees

WHEFE job_id = 'S4 REP'

AND department_id I3 NULL
Error report:

ORA-06512: at "ORAGL.DELETE_ENP_TRG™, line &
0FA-0405858: error during execution of trigger 'ORAGL.DELETE EMP_TRG:'

30L Error: ORA-20150: Employee records cannot be deleted during the business hours of 94N and 6FHM

Oracle Database 11g: Develop PL/SQL Program Units A -121

Practices for Lesson 10

Practice 10: Managing Data Integrity Rules and Mutating Table
Exceptions

In this practice, you implement a simple business rule for ensuring data integrity of
employees’ salaries with respect to the valid salary range for their jobs. You create a
trigger for this rule. During this process, your new triggers cause a cascading effect with
triggers created in the practice section of the previous lesson. The cascading effect results
in a mutating table exception on the JOBS table. You then create a PL/SQL package and
additional triggers to solve the mutating table issue.

1) Employees receive an automatic increase in salary if the minimum salary for a job is
increased to a value larger than their current salaries. Implement this requirement
through a package procedure called by a trigger on the JOBS table. When you
attempt to update the minimum salary in the JOBS table and try to update the
employees’ salaries, the CHECK SALARY trigger attempts to read the JOBS table,
which is subject to change, and you get a mutating table exception that is resolved by
creating a new package and additional triggers.

a. Update your EMP_PKG package (that you last updated in Practice 8) as
follows:

1. Add a procedure called SET SALARY that updates the employees’
salaries.

ii. The SET SALARY procedure accepts the following two parameters:
The job ID for those salaries that may have to be updated, and the new
minimum salary for the job ID

Open the sol 10 01 a.sql filein the D: \1abs\PLPU\solns folder, or
copy and paste the following code in the SQL Worksheet area. Click the Run
Script (F5) icon on the SQL Worksheet toolbar to run the script. The code and
the results are shown as follows. To compile the trigger, right-click the package’s
name in the Object Navigation tree, and then click Compile. The newly added
code is highlighted in bold letters in the following code box.

-- Package SPECIFICATION

CREATE OR REPLACE PACKAGE emp pkg IS

TYPE emp tab type IS TABLE OF employees%ROWTYPE;

PROCEDURE add_employee (
p_first name employees.first name%TYPE,
p_last name employees.last name3TYPE,
p_email employees.email%TYPE,
p _job employees.job id%$TYPE DEFAULT 'SA REP',
p_mgr employees.manager 1d%TYPE DEFAULT 145,

Oracle Database 11g: Develop PL/SQL Program Units A - 122

Practice 10: Managing Data Integrity Rules and Mutating Table
Exceptions (continued)

p_sal employees.salary%$TYPE DEFAULT 1000,
p_comm employees.commission pct%TYPE DEFAULT O,

p _deptid employees.department id%TYPE DEFAULT 30) ;

PROCEDURE add_employee (
p _first name employees.first name%TYPE,
p_last name employees.last name%TYPE,
p_deptid employees.department id$TYPE) ;

PROCEDURE get employee (
p empid IN employees.employee id%TYPE,
p_sal OUT employees.salary%TYPE,
p _job OUT employees.job id$TYPE) ;

FUNCTION get employee(p emp id employees.employee id%type)
return employees%rowtype;

FUNCTION get employee(p_ family name
employees.last name%type)
return employees$rowtype;

PROCEDURE get employees(p_dept id
employees.department id%type) ;

PROCEDURE init departments;
PROCEDURE print employee(p rec emp employees%rowtype) ;
PROCEDURE show_employees;
/* New set salary procedure */
PROCEDURE set salary(p jobid VARCHAR2, p min salary NUMBER) ;
END emp pkg;
/
SHOW ERRORS
-- Package BODY
CREATE OR REPLACE PACKAGE BODY emp pkg IS

TYPE boolean tab type IS TABLE OF BOOLEAN
INDEX BY BINARY INTEGER;

valid departments boolean tab type;
emp_ table emp tab type;

FUNCTION valid deptid(p deptid IN
departments.department id$TYPE)
RETURN BOOLEAN;

Oracle Database 11g: Develop PL/SQL Program Units A -123

Practice 10: Managing Data Integrity Rules and Mutating Table
Exceptions (continued)

PROCEDURE add_employee (
p first name employees.first name%TYPE,

p_last name employees.last name$TYPE,

p _email employees.email%TYPE,

p_job employees.job id%TYPE DEFAULT 'SA REP',

p_mgr employees.manager 1d%TYPE DEFAULT 145,

p_sal employees.salary%$TYPE DEFAULT 1000,

p_comm employees.commission pct%TYPE DEFAULT O,
p_deptid employees.department id%TYPE DEFAULT 30) IS

PROCEDURE audit newemp IS
PRAGMA AUTONOMOUS TRANSACTION;

user id VARCHAR2 (30) := USER;
BEGIN
INSERT INTO log newemp (entry id, user id, log time,
name)
VALUES (log newemp seq.NEXTVAL, user id,
sysdate,p first name||' '||p_last name) ;

COMMIT;
END audit newemp;

BEGIN -- add_employee
IF valid deptid(p_deptid) THEN
audit newemp;
INSERT INTO employees (employee id, first name,
last name, email,
job_id, manager id, hire date, salary, commission pct,
department id)
VALUES (employees seq.NEXTVAL, p first name,
p_last name, p_ email,
p_job, p mgr, TRUNC(SYSDATE), p sal, p comm,
p_deptid) ;
ELSE
RAISE APPLICATION_ ERROR (-20204, 'Invalid department ID.
Try again.');
END TF;
END add employee;

PROCEDURE add_employee (
p _first name employees.first name%TYPE,
p_last name employees.last name%TYPE,
p _deptid employees.department id%TYPE) IS
p _email employees.email%type;
BEGIN
p_email := UPPER(SUBSTR(p first name, 1,
1) | |SUBSTR (p_last name, 1, 7));
add employee(p first name, p last name, p email, p deptid
=> p deptid) ;
END;

PROCEDURE get employee (

Oracle Database 11g: Develop PL/SQL Program Units A - 124

Practice 10: Managing Data Integrity Rules and Mutating Table
Exceptions (continued)

p_empid IN employees.employee id3%TYPE,

p_sal OUT employees.salary%TYPE,

p_job OUT employees.job id%TYPE) IS
BEGIN

SELECT salary, job id

INTO p_sal, p job

FROM employees

WHERE employee id = p_empid;
END get employee;

FUNCTION get employee(p emp id employees.employee id%type)
return employees%rowtype IS
rec_emp employees%rowtype;
BEGIN
SELECT * INTO rec_emp
FROM employees
WHERE employee id = p_emp_ id;
RETURN rec_ emp;
END;

FUNCTION get employee(p_ family name
employees.last name%type)

return employees%rowtype IS
rec_emp employees%rowtype;

BEGIN
SELECT * INTO rec_emp
FROM employees
WHERE last name = p family name;
RETURN rec_ emp;

END;

PROCEDURE get employees(p_dept id
employees.department id%type) IS
BEGIN
SELECT * BULK COLLECT INTO emp table
FROM EMPLOYEES
WHERE department id = p dept id;
END;

PROCEDURE init departments IS

BEGIN
FOR rec IN (SELECT department id FROM departments)
LOOP
valid departments(rec.department id) := TRUE;
END LOOP;
END;

PROCEDURE print employee(p rec emp employees%rowtype) IS
BEGIN
DBMS OUTPUT.PUT LINE(p rec emp.department id ||' '||
p_rec_emp.employee id||' '||

Oracle Database 11g: Develop PL/SQL Program Units A - 125

Practice 10: Managing Data Integrity Rules and Mutating Table
Exceptions (continued)

p_rec_emp.first name
p_rec emp.last name|

p_rec emp.job id||' '||
p_rec emp.salary) ;

B ‘||

END;

PROCEDURE show_employees IS
BEGIN
IF emp table IS NOT NULL THEN
DBMS OUTPUT.PUT LINE ('Employees in Package table');

FOR 1 IN 1 .. emp table.COUNT
LOOP
print employee (emp table(i));
END LOOP;
END IF;

END show employees;

FUNCTION valid deptid(p_deptid IN
departments.department id%TYPE)
RETURN BOOLEAN IS
v_dummy PLS INTEGER;
BEGIN
RETURN valid departments.exists(p _deptid) ;
EXCEPTION
WHEN NO_DATA FOUND THEN
RETURN FALSE;
END valid deptid;

/* New set salary procedure */

PROCEDURE set salary(p jobid VARCHAR2, p min salary NUMBER)
CURSOR cur emp IS
SELECT employee id
FROM employees
WHERE job id = p jobid AND salary < p min salary;
BEGIN
FOR rec_emp IN cur_ emp
LOOP
UPDATE employees
SET salary = p min salary
WHERE employee id = rec emp.employee id;
END LOOP;
END set salary;

BEGIN
init departments;
END emp pkg;

/
SHOW ERRORS

IS

Oracle Database 11g: Develop PL/SQL Program Units A - 126

Practice 10: Managing Data Integrity Rules and Mutating Table
Exceptions (continued)

[Resuits | [&] script output | B Expisin | B autatrace | @0EMS Output @rowe Output

¢ dE&E

PACKAGE emp_pkg Compiled.

Mo Errors.

PACKAGE BODY emp pkg Compiled.
Mo Errors.

b. Create a row trigger named UPD_MINSALARY TRG on the JOBS table that
invokes the EMP_PKG.SET SALARY procedure, when the minimum salary
in the JOBS table is updated for a specified job ID.

Open the sol 10 01 b.sql filein the D: \1abs\PLPU\solns
folder, or copy and paste the following code in the SQL Worksheet area.
Click the Run Script (F5) icon on the SQL Worksheet toolbar to run the
script. The code and the results are shown below. To compile the trigger,
right-click the trigger’s name in the Object Navigation tree, and then
click Compile. The code and the results are shown below.

CREATE OR REPLACE TRIGGER upd minsalary trg
AFTER UPDATE OF min salary ON JOBS
FOR EACH ROW
BEGIN
emp pkg.set salary(:new.job id, :new.min_salary) ;
END;
/
SHOW ERRORS

[Resutts | [Z] Seript outout | BRExpisin | B sutotrace | EDEMS Cutput @ owia output

¢ dE

TRIGGER upd minsalary tryg Compiled.
No Errors.

c. Write a query to display the employee ID, last name, job ID, current salary,
and minimum salary for employees who are programmers—that is, their
JOB_IDis 'IT_PROG'. Then, update the minimum salary in the JOBS table
to increase it by $1,000. What happens?

Open the sol 10 01 c.sql filein the D: \1abs\PLPU\solns folder, or
copy and paste the following code in the SQL Worksheet area. Click the Run

Script (F5) icon on the SQL Worksheet toolbar to run the script. The code
and the results are shown below.

Oracle Database 11g: Develop PL/SQL Program Units A -127

Practice 10: Managing Data Integrity Rules and Mutating Table
Exceptions (continued)

SELECT employee id, last name, salary
FROM employees
WHERE job id = 'IT PROG';

UPDATE jobs
SET min salary = min salary + 1000
WHERE job id = 'IT PROG';

[Resutts | [E] script outout | BRExpisin | B autotrace | EDEMS Output @ owis Output

¢ d &

EMPLOYEE_ID L&3T_NAME SALARY
103 Hunold 9000
104 Ernst 000
105 huztin 45300
106 Patahalla 4800
107 Lorentz 4200
z14 Beh 9000

G rows selected

Error starting at line 5 in commatd:
UPDATE jobs
SET min salary = nin salary + 1000

WHEFE job_id = 'IT_PROG'

Error report:

50L Error: 0ORA-04091: table 0ORAGL.JOBS iz mutating, trigoger/functionh may hot see it

ORA-06512: at "ORAGLl.CHECK SALARY™, line 5

OF&-06512: at "O0RLOl.CHECK JALARY TRG™, line &

0F&4-04085: error during execution of trigger 'ORA6].CHECE_SALARY TRG'

ORA-06512: at "ORASL.EMP_PEG™, line 143

OF&-06512: at "ORAGL.TPD MINJALARY TRG™, line &

0F&4-04088: error during execution of trigger '0ORA6L.UTPD_MINSALARY TRG'

04091, 00000 - "tcable %s3.%3 15 mutating, triggersfunction may not see it"”

*Cause: 4 trigger (or a user defined plsgl function that is referenced in
this statement) attempted to look at (or modify) a table that was
in the niddle of being modified by the statement which fired it.

*Action: Rewrite the trigger {(or function) so it does not read that table.

The update of themin salary column for job 'IT PROG' fails because the
UPD_ MINSALARY TRG trigger on the JOBS table attempts to update the
employees’ salaries by calling the EMP_PKG.SET SALARY procedure. The
SET_ SALARY procedure causes the CHECK SALARY TRG trigger to fire (a
cascading effect). The CHECK SALARY TRG calls the CHECK SALARY
procedure, which attempts to read the JOBS table data, this encountering the
mutating table exception on the JOBS table, which is the table that is subject to
the original update operation.

Oracle Database 11g: Develop PL/SQL Program Units A -128

Practice 10: Managing Data Integrity Rules and Mutating Table
Exceptions (continued)

2) To resolve the mutating table issue, create a JOBS_PKG package to maintain in
memory a copy of the rows in the JOBS table. Next, modify the CHECK SALARY
procedure to use the package data rather than issue a query on a table that is mutating
to avoid the exception. However, you must create a BEFORE INSERT OR
UPDATE statement trigger on the EMPLOYEES table to initialize the JOBS PKG
package state before the CHECK SALARY row trigger is fired.

a. Create a new package called JOBS PKG with the following specification:

PROCEDURE initialize;

FUNCTION get minsalary(jobid VARCHAR2) RETURN NUMBER;

FUNCTION get maxsalary(jobid VARCHAR2) RETURN NUMBER;

PROCEDURE set minsalary(jobid VARCHAR2,min_ salary
NUMBER) ;

PROCEDURE set maxsalary(jobid VARCHAR2,max_salary
NUMBER) ;

Open the sol 10 02 a.sql filein the D:\1abs\PLPU\solns
folder, or copy and paste the following code in the SQL Worksheet area.
Click the Run Script (F5) icon on the SQL Worksheet toolbar to run the
script. The code and the results are shown below. To compile the
package’s specification, right-click the package’s name or body in the
Object Navigator tree, and then Select Compile.

CREATE OR REPLACE PACKAGE jobs pkg IS
PROCEDURE initialize;
FUNCTION get minsalary(p jobid VARCHAR2) RETURN NUMBER;
FUNCTION get maxsalary(p jobid VARCHAR2) RETURN NUMBER;
PROCEDURE set minsalary(p_jobid VARCHAR2, p min salary
NUMBER) ;
PROCEDURE set maxsalary(p jobid VARCHAR2, p max salary
NUMBER) ;
END jobs pkg;
/
SHOW ERRORS

[Resutts | (& seript output | BEpisin | B autotrace | EDEMS Output @ v Output

¢dE&

PACKAGE jobs_pkg Compiled.
No Errors.

b. Implement the body of JOBS PKG as follows:

1. Declare a private PL/SQL index-by table called jobs tab type
that is indexed by a string type based on the JOBS.JOB_ID%TYPE.

Oracle Database 11g: Develop PL/SQL Program Units A -129

Practice 10: Managing Data Integrity Rules and Mutating Table
Exceptions (continued)

ii. Declare a private variable called jobstab based on the
jobs tab type.

iii. The INITIALIZE procedure reads the rows in the JOBS table by
using a cursor loop, and uses the JOB_ID value for the jobstab
index that is assigned its corresponding row.

iv. The GET MINSALARY function uses a p_jobid parameter as an
index to the jobstab and returns the min_salary for that element.

v. The GET MAXSALARY function uses ap_jobid parameter as an
index to the jobstab and returns the max salary for that element.

vi. The SET MINSALARY procedure uses its p_jobid as an index to
the jobstab to set themin_ salary field of its element to the value
in the min salary parameter.

vii. The SET MAXSALARY procedure uses its p_jobid as an index to
the jobstab to set the max_salary field of its element to the value
in the max salary parameter.

Open the sol 10 02 b.sql filein the D: \1abs\PLPU\solns
folder, or copy and paste the following code in the SQL Worksheet area.
Click the Run Script (F5) icon on the SQL Worksheet toolbar to run the
script. The code and the results are shown below. To compile the
package’s body, right-click the package’s name or body in the Object
Navigator tree, and then Select Compile.

CREATE OR REPLACE PACKAGE BODY jobs_pkg IS
TYPE jobs tab type IS TABLE OF jobs%rowtype
INDEX BY jobs.job id%type;
jobstab jobs tab type;

PROCEDURE initialize IS

BEGIN
FOR rec_job IN (SELECT * FROM jobs)
LOOP
jobstab (rec_job.job _id) := rec_job;
END LOOP;

END initialize;

FUNCTION get minsalary(p jobid VARCHAR2) RETURN NUMBER IS
BEGIN

RETURN jobstab(p jobid) .min salary;
END get minsalary;

FUNCTION get maxsalary(p jobid VARCHAR2) RETURN NUMBER IS
BEGIN

RETURN jobstab (p jobid) .max salary;
END get maxsalary;

Oracle Database 11g: Develop PL/SQL Program Units A -130

Practice 10: Managing Data Integrity Rules and Mutating Table
Exceptions (continued)

PROCEDURE set minsalary(p jobid VARCHAR2, p min salary
NUMBER) IS
BEGIN
jobstab (p jobid) .max salary := p min salary;
END set minsalary;

PROCEDURE set maxsalary(p_jobid VARCHAR2, p max_salary
NUMBER) IS
BEGIN
jobstab (p jobid) .max salary := p max salary;
END set maxsalary;

END jobs pkg;
/
SHOW ERRORS

> Resuits || [E] Script Outout | B Explain | B Autotrace | DEMS tutput @ ovva Output

¢ d &

PACKAGE BODY Jjobs_pkg Compiled.
Mo Errors.

Messages -Log

JOE_PEG Compiled

c. Copy the CHECK SALARY procedure from Practice 10, Exercise 1a, and
modify the code by replacing the query on the JOBS table with statements to
set the local minsal and maxsal variables with values from the
JOBS_ PKG data by calling the appropriate GET *SALARY functions. This
step should eliminate the mutating trigger exception.

Open the sol 10 02 c.sql filein the D: \1abs\PLPU\solns
folder, or copy and paste the following code in the SQL Worksheet area.
Click the Run Script (F5) icon on the SQL Worksheet toolbar to run the
script. The code and the results are shown below. To compile the
procedure, right-click the procedure’s name in the Object Navigator, and
then select Compile.

CREATE OR REPLACE PROCEDURE check salary (p_the job VARCHAR2,
p_the salary NUMBER) IS

v_minsal jobs.min salary%type;

v_maxsal jobs.max salary%type;
BEGIN

/*

Oracle Database 11g: Develop PL/SQL Program Units A - 131

Practice 10: Managing Data Integrity Rules and Mutating Table
Exceptions (continued)

** Commented out to avoid mutating trigger exception on the
JOBS table
SELECT min salary, max salary INTO v_minsal, v_maxsal

FROM jobs
WHERE job id = UPPER(p the job) ;
*/

v_minsal := jobs pkg.get minsalary (UPPER(p the job));
v_maxsal := jobs pkg.get maxsalary (UPPER(p the job));
IF p_the salary NOT BETWEEN v_minsal AND v_maxsal THEN
RAISE APPLICATION_ ERROR(-20100,
'Invalid salary $'||p_the salary||'. '||
'Salaries for job '|| p _the job ||
' must be between $'|| v_minsal ||' and $' || v_maxsal);
END IF;
END;
/
SHOW ERRORS

> Resutts || [F Seript output | EExplain | B Autotrace | BDEMS Outout @1 0w output

¢ Hd&

PROCEDURE check_salary Compiled.
Mo Errors.

Messages -Log

CHECE_SALARY Compiled

d. Implement a BEFORE INSERT OR UPDATE statement trigger called
INIT JOBPKG_ TRG that uses the CALL syntax to invoke the
JOBS_ PKG.INITIALIZE procedure to ensure that the package state is
current before the DML operations are performed.

Open the sol 10 02 d.sql filein the D: \1abs\PLPU\solns
folder, or copy and paste the following code in the SQL Worksheet area.
Click the Run Script (F5) icon on the SQL Worksheet toolbar to run the
script. The code and the results are shown below. To compile the trigger,
right-click the trigger’s name in the Object Navigator, and then select
Compile.

CREATE OR REPLACE TRIGGER init jobpkg trg
BEFORE INSERT OR UPDATE ON jobs

CALL jobs pkg.initialize

/

SHOW ERRORS

Oracle Database 11g: Develop PL/SQL Program Units A - 132

Practice 10: Managing Data Integrity Rules and Mutating Table
Exceptions (continued)

[Resuts | [E] scriet outout | EYExpisin | B autotrace | @0EMS output @ owia Output

¢ 8 &

TRIGGER init_Jjobpkg_trg Compiled.
Mo Errors.

Elmeszages - Log

INIT_JOEPEG TRG Compiled

e. Test the code changes by executing the query to display the employees who
are programmers, and then issue an update statement to increase the minimum
salary of the IT PROG job type by 1,000 in the JOBS table. Follow this up
with a query on the employees with the IT PROG job type to check the
resulting changes. Which employees’ salaries have been set to the minimum
for their jobs?

Open the sol 10 02 e.sql filein the D: \1abs\PLPU\solns

folder, or copy and paste the following code in the SQL Worksheet area.
Click the Run Script (F5) icon on the SQL Worksheet toolbar to run the
script. The code and the results are shown below.

SELECT employee id, last name, salary
FROM employees
WHERE job id = 'IT PROG';

UPDATE jobs
SET min salary = min_salary + 1000
WHERE job_id = 'IT PROG';

SELECT employee id, last name, salary
FROM employees
WHERE job id = 'IT PROG';

Oracle Database 11g: Develop PL/SQL Program Units A -133

Practice 10: Managing Data Integrity Rules and Mutating Table
Exceptions (continued)

[Resuits || [=] Scriet Outout | EYExplain | B Autatrace | ADEMS Output | @4 Owia, Output

¢ d &

EMPFLOYEE ID LAST MAME SALARY
1035 Hunold lufula]
104 Ernst [u]uln]
105 Austin 4500
106 Pataballa 4500
107 Lorent= 4200
214 Eeh 9000

G rows selected

1 rows updated

EMPLOYEE_ID LAST_NAME SALARY
103 Hunold a00a0
104 Ernzst G000
105 Auztin so0n
10& Pataballa Looo
107 Lorentz Looo
214 Ech 2000

& rows selected

The employees with last names Austin, Pataballa, and Lorentz have all
had their salaries updated. No exception occurred during this process, and you
implemented a solution for the mutating table trigger exception.

3) Because the CHECK SALARY procedure is fired by CHECK SALARY TRG before
inserting or updating an employee, you must check whether this still works as
expected.

a. Test this by adding a new employee using EMP_PKG.ADD EMPLOYEE with
the following parameters: (‘Steve’, ‘Morse’, ‘SMORSE’, and
sal => 6500). What happens?

Open the sol 10 03 a.sql filein the D: \1abs\PLPU\solns folder, or
copy and paste the following code in the SQL Worksheet area. Click the Run
Script (F5) icon on the SQL Worksheet toolbar to run the script. The code
and the results are shown below.

EXECUTE emp pkg.add employee('Steve', 'Morse', 'SMORSE', p_ sal
=> 6500)

Oracle Database 11g: Develop PL/SQL Program Units A - 134

Practice 10: Managing Data Integrity Rules and Mutating Table
Exceptions (continued)

[Resuts || [E] Soript Outout | BExpiain | B)autotrace | CADEMS Output | @) owia Output
P = =

anonymous block completed

b. To correct the problem encountered when adding or updating an employee:

i. Create a BEFORE INSERT OR UPDATE statement trigger called
EMPLOYEE INITJOBS TRG onthe EMPLOYEES table that calls the
JOBS PKG.INITIALIZE procedure.

ii. Use the CALL syntax in the trigger body.

c. Test the trigger by adding employee Steve Morse again. Confirm the inserted
record in the EMPLOYEES table by displaying the employee ID, first and last
names, salary, job ID, and department ID.

Open the sol 10 03 c.sql file in the D: \1abs\PLPU\solns folder, or
copy and paste the following code in the SQL Worksheet area. Click the Run
Script (FS) icon on the SQL Worksheet toolbar to run the script. The code
and the results are shown below.

ENPLOYEE ID FIRST HNAHME LAST HNAHME SALARY

1 rows selected

‘| L

Oracle Database 11g: Develop PL/SQL Program Units A - 135

Practices for Lesson 11

Practice 11: Using the PL/SQL Compiler Parameters and
Warnings

In this practice, you display the compiler initialization parameters. You then enable
native compilation for your session and compile a procedure. You then suppress all
compiler-warning categories and then restore the original session-warning settings.
Finally, you identify the categories for some compiler-warning message numbers.

1) Createandruna lab 11 01 script to display the following information about
compiler-initialization parameters by using the

USER_PLSQL OBJECT_SETTINGS data dictionary view. Note the settings for the

ADD JOB_HISTORY object.

Note: Use the Execute Statement (F9) icon to display the results in the Results tab.

a) Object name
b) Object type
c) The object’s compilation mode

d) The compilation optimization level

Open the sol 11 01.sdql file in the D: \1abs\PLPU\solns folder, or copy

and paste the following code in the SQL Worksheet area. Click the Execute

Statement (F9) icon on the SQL Worksheet toolbar to run the query. The code

and a sample of the result are shown below.

SELECT name, type,plsgl code type as code_ type,
plsgl optimize level as opt 1vl
FROM user plsgl object settings;

Oracle Database 11g: Develop PL/SQL Program Units A - 136

Practice 11: Using the PL/SQL Compiler Parameters and
Warnings (continued)

(= Resutts | [F] Script output | E)Explain | B autatrace | ADBMS Outout | @A ow,
Results

MAME | TYPE conE_TvPE Bl oPT_LwL
g

9 GET_AMNUAL_COMP FUMCTION INTERPRETED 2

10 EMP_PKG PACKAGE BODY INTERPRETED 2

11 EMP_PKG PACKAGE INTERPRETED 2

12 EMP_LIST PROCEDURE INTERPRETED 2

13 EMP_ACTIONS PACKAGE BODY INTERPRETED 2

14 EMP_ACTIONS PACKAGE INTERPRETED 2

15 EMPLOYEE_REPORT ~ PROCEDURE IMTERPRETED 2

16 DEPTREE_FILL PROCEDURE INTERPRETED 2

17 DEL_JOB PROCEDURE INTERPRETED 2

16 DELETE_EMP_TRG TRIGGER INTERPRETED 2

19 COMPILE_PKG PACKAGE BODY INTERPRETED 2

20 COMPILE_PKG PACKAGE INTERPRETED 2

21 CHECK_SaLARY_TRG TRIGGER INTERPRETED 2

22 CHECK Sal ARY PROCEDURE _ INTERPRETED. 2

23 ADD_JOB_HISTORY PROCEDURE INTERPRETED 2

24 ADD_EMPLOYEE PROCEDURE INTERPRETED 2

2) Alter the PLSQL CODE_TYPE parameter to enable native compilation for your
session, and compile ADD JOB_HISTORY.

a) Execute the ALTER SESSION command to enable native compilation for the
session.

Open the sol 11 02 a.sql filein the D: \1abs\PLPU\solns folder, or
copy and paste the following code in the SQL Worksheet area. Click the Run
Script (F5) icon on the SQL Worksheet toolbar to run the query. The code
and the results are shown below.

ALTER SESSION SET PLSQL CODE TYPE = 'NATIVE';

[Resuts || [E script output | BExplain | B utotrace | @0BMS Output @ owia output

¢ 8 E&

ALTER SER3ION 3ET succeeded.

Oracle Database 11g: Develop PL/SQL Program Units A -137

Practice 11: Using the PL/SQL Compiler Parameters and
Warnings (continued)
b) Compile the ADD JOB_ HISTORY procedure.

Open the sol 11 02 b.sql file in the D: \1abs\PLPU\solns folder, or

copy and paste the following code in the SQL Worksheet area. Click the Run
Script (F5) icon on the SQL Worksheet toolbar to run the query. The code
and the results are shown below.

ALTER PROCEDURE add job history COMPILE;

> Resuts | [E] Serit Output | TExpiain | B autotrace | BDEMS Output | @) ovia Output

¢d3E

ALTER PROCEDURE add job_history succeeded.

c) Rerunthe sol 11 01 script. Note the PLSQL CODE TYPE parameter.

SELECT name, type, plsqgl code type as code type,
plsgl optimize level as opt 1vl
FROM user plsgl object settings;

[Resuts | [F] script output | EExplain | $autatrace | A0EMS outout | @4 0w
Resufts:
JBorewe @ tvee 8 cooeTvee [l optivi]
9 GET_ANMUAL_COMP FUNCTION INTERPRETED 2
10 EMP_PKE PACKAGE BODY INTERPRETED 2
11 EMP_PKG PACKAGE INTERPRETED 2
12 EMP_LIST PROCEDURE INTERPRETED 2
13 EMP_ACTIONS PACKAGE BODY INTERPRETED 2
14 EMP_ACTIONS PACKAGE INTERPRETED 2
15 EMPLOYEE_REPORT ~ PROCEDURE INTERPRETED 2
16 DEPTREE_FILL PROCEDURE INTERPRETED 2
17 DEL_JOB PROCEDURE INTERPRETED 2
18 DELETE_EMP_TRG TRIGGER INTERPRETED 2
19 COMPILE_PKG PACKAGE BODY INTERPRETED 2
20 COMPILE_PKG PACKAGE INTERPRETED 2
21 CHECK_SALARY_TRG TRIGGER INTERPRETED 2
e CHECR Sn] B PRy ELLIEE INTEEPEETELD 2
23 ADD_JOB HISTORY PROCEDURE MATIVE 2
24 ADD_EMPLOYEE PROCEDURE INTERPRETED 2
25 waLD_DEPTID FUNCTION INTERPRETED 2

d) Switch compilation to use interpreted compilation mode as follows:

Oracle Database 11g: Develop PL/SQL Program Units A -138

Practice 11: Using the PL/SQL Compiler Parameters and
Warnings (continued)

3)

4)

ALTER SESSION SET PLSQL CODE TYPE = 'INTERPRETED';

Use the Tools > Preferences > PL/SQL Compiler Options region to disable all
compiler warnings categories.

¥ Preferences

- Environmert PL/SOL Compiler Options
Apcelerstors [#] Generate PLISGL Debug Inforrmati

[30:..:,13 Editar =ENErae E0LG INTormation

[+ Databaze N
[Dehugger ALL |D|5-£‘-B|-E 'l
- Dcumentation INFORMATIONAL \DISAELE |
- Extensions JE—
File Types SEVERE \DISAELE |
- Migration PERFORMANCE \DISABLE |
B PL/S0L Compiler Options —_—
< PLISGIL Debugger
- SOL*PIUS
w2E0 Formstter
el Broveser and Proxy

| Help | | Ok | | Cancel

Select DISABLE for all four PL/SQL compiler warnings categories, and then
click OK.

Edit, examine, and execute the 1ab_11 04.sqgl script to create the
UNREACHABLE_CODE procedure. Click the Run Script icon (F5) to create the
procedure. Use the procedure name in the Navigation tree to compile the procedure.

Open the sol 11 04.sdql file in the D: \1abs\PLPU\solns folder, or copy
and paste the following code in the SQL Worksheet area. Click the Run Script
(F5) icon on the SQL Worksheet toolbar to run the query. The code and the
results are shown below.

CREATE OR REPLACE PROCEDURE unreachable code AS
c¢_x CONSTANT BOOLEAN := TRUE;
BEGIN
IF c_x THEN
DBMS OUTPUT.PUT LINE('TRUE') ;
ELSE

Oracle Database 11g: Develop PL/SQL Program Units A - 139

Practice 11: Using the PL/SQL Compiler Parameters and
Warnings (continued)

DBMS_OUTPUT.PUT LINE ('FALSE') ;
END IF;

END unreachable code;

/

> Resutts | (& Serint outeut | BEpisin | B avtotrace | @DEMS Output @ owia Output

¢ HdE

FROCEDURE unreachable code Compiled.

Mesaages - Log

UNEREACHAELE CODE Compiled

Migration Log Logging Page Meszages

5) What are the compiler warnings that are displayed in the Compiler — Log tab, if any?

None, because you disabled the compiler warnings in step 3.

6) Enable all compiler-warning messages for this session using the Preferences window.

Oracle Database 11g: Develop PL/SQL Program Units A - 140

Practice 11: Using the PL/SQL Compiler Parameters and
Warnings (continued)

7)

F Preferences

- Environmert PL/SOL Compiler Options
s Accelerators
[+ Code Editor
[+ Databaze
[Debugger ALl |ENAB|—E e’ |
- Documentation
- Extensions
- File Types SEVERE |ENABLE |
[+ Migration

i PL/SGL Compiler Options
< PLISGIL Debugger
o BELPlUE
w2E0 Formstter
el Broveser and Proxy

Generate PLISGL Debug Infarmation

NFORMATIONAL |EMABLE |

PERFORMANCE |EnsBLE |

| Help | | Ok J | Cancel

Select ENABLE for all four PL/SQL compiler warnings, and then click OK.

Recompile the UNREACHABLE_CODE procedure using the Object Navigation tree.
What compiler warnings are displayed, if any?

Right-click the procedure’s name in the Object Navigation tree, and then select
Compile. Note the messages displayed in the Messages and Compiler subtabs in
the Compiler — Log tab.

Messages - Log

UNREACHAELE CODE Compiled (with warnings)

Migration Log Logging Page Messages Compiler

Oracle Database 11g: Develop PL/SQL Program Units A - 141

Practice 11: Using the PL/SQL Compiler Parameters and
Warnings (continued)

8)

9)

Compiler - Loy
Praoject: CProgram Files\SGL Developer 1. 2sgldeveloperisgldeyeloperisy stemioracle sqldeveloper 1.2.0 2995 DefaultWorkspaceProject1 jor
El@ F‘ROCEDURE ORAGT UMREACHABLE_CODE@MyDEConnection

Lo By Warning(8,5) PLW-0B002; Unreachable code

Migration Log Logging Page Compiler Mezsages

Use the USER_ERRORS data dictionary view to display the compiler-warning
messages details as follows.

DESCRIBE user errors

DEZCRIEE user_errors

Hame ll Type

HAME NOT MNULL VARCHARZ(30)
TYPE VARCHARZ (1Z)
SEQUENCE NOT NULL NUMEEE

LINE NOT NULL NUMEEE
POSITION NOT NULL NUMEEER

TEXT NOT NULL VARCHARZ (4000}
ATTRIEUTE VARCHARZ (9]
HE554AGE_NUMEER NUMEER

8 rows selected

SELECT *
FROM user errors;

[Resutts || [F] seriot Output | B Explzin | Bautctrace | EDEMS Output | @1ons, output
Results:
MAME | TvPE |@ SEGIENCE | LINE @ POSITION \ TEXT | ATTRIBUTE @ MESSAGE_NUMBER
1 EnR_LIST PROCEDURE 2 i 0 PLW-D501 % deprecated parameter PLSGL DEBU forces PLEGL OPTIMIZE LEWEL <=1 WARNING 6013
2 EMP_LIST PROCEDLIRE 1 il 1 FLY-0601 5 parameter PLSGL_DEBLG is deprecated, uss PLEGL_OPTMIZE_LEVEL =1 WARNING [
3 UNREACHABLE_CODE PROCEDURE 1 7 5 PLW-05002: Unreachable code WIARNING 6002

Create a script named warning msgs that uses the EXECUTE DBMS_ OUTPUT
and the DBMS WARNING packages to identify the categories for the following
compiler-warning message numbers: 5050, 6075, and 7100.

Open the sol 11 09.sql file in the D: \1abs\PLPU\solns folder, or copy
and paste the following code in the SQL Worksheet area. Click the Run Script
(F5) icon on the SQL Worksheet toolbar to run the query. The code and the
results are shown below.

Oracle Database 11g: Develop PL/SQL Program Units A - 142

Practice 11: Using the PL/SQL Compiler Parameters and
Warnings (continued)

EXECUTE
DBMS OUTPUT.PUT LINE (DBMS WARNING.GET_ CATEGORY (&message)) ;

Enter Substitution X|

MESSAGE:
| |

| (0.4 | | Cancel |

Enter Substitution X|

MESSAGE:

5050 |

| (% %J | Cancel |

> Resuts | B seriet output H'EExplain | B utotrace | @A0EMS output | @ ovwia Output

¢ dE

anonymous block completed
SEVERE

EXECUTE
DBMS OUTPUT.PUT LINE (DBMS WARNING.GET CATEGORY (&message)) ;

Enter Substitution X|

MESSAGE:
| |

| Ok | | Cancel |

Oracle Database 11g: Develop PL/SQL Program Units A - 143

Practice 11: Using the PL/SQL Compiler Parameters and
Warnings (continued)

Enter Substitution V. X|

MESSAGE:

507 |

o [omes

(> Resutts | [Soriet Cutput HﬁExmain][ﬁAutntrace H@DEMS Cutput H @ ovia output

¢ HdE

anonywous block completed
INFORMATIONAL

EXECUTE
DBMS_ OUTPUT.PUT LINE (DBMS WARNING.GET_ CATEGORY (&message)) ;

Enter Substitution V. X|

MESSAGE:
| |

[oc J [coes]

Enter Substitution V. X|

MESSAGE:

7100 |

[o ([cmen |

[Resutts | [l Soript cutput "ﬁExmain | B autotrace | @0EMS Output | @ owa Outout

¢ dE

anonywous block completed
PERFORMANCE

Oracle Database 11g: Develop PL/SQL Program Units A - 144

Practices for Lesson 12

Practice 12: Using Conditional Compilation

In this practice, you create a package and a procedure that use conditional compilation. In
addition, you use the appropriate package to retrieve the postprocessed source text of the
PL/SQL unit. You also obfuscate some PL/SQL code.

1)

Examine and then execute the 1ab_ 12 01.sqgl script. This script sets flags for
displaying debugging code and tracing information. The script also creates the
my pkg package and the circle area procedure.

Open the sol 12 01.sql file in the D: \1abs\PLPU\solns folder, or copy
and paste the following code in the SQL Worksheet area. Click the Run Script
(F5) icon on the SQL Worksheet toolbar to run the script. The code and the
results are shown below. To compile the package, right-click the package’s name
in the Object Navigator tree, and then select Compile. To compile the procedure,
right-click the procedure’s name in the Object Navigator tree, and then select
Compile.

ALTER SESSION SET PLSQL CCFLAGS = 'my debug:FALSE,
my tracing:FALSE';

CREATE OR REPLACE PACKAGE my pkg AS
SUBTYPE my real IS

SIF DBMS DB VERSION.VERSION < 10 $THEN NUMBER; -- check
database version
SELSE BINARY DOUBLE;
SEND
my pi my real; my e my real;
END my pkg;
/
CREATE OR REPLACE PACKAGE BODY my pkg AS
BEGIN
SIF DBMS DB VERSION.VERSION < 10 S$THEN
my pi := 3.14016408289008292431940027343666863227;
my e := 2.71828182845904523536028747135266249775;
SELSE
my pi := 3.14016408289008292431940027343666863227d;
my e := 2.718281828459045235360287471352662497754d;
SEND
END my pkg;
/

CREATE OR REPLACE PROCEDURE circle area(radius my pkg.my real)
IS

my area my pkg.my real;

my datatype VARCHAR2 (30) ;

BEGIN
my area := my pkg.my pi * radius;
DBMS_OUTPUT.PUT LINE('Radius: ' || TO_CHAR (radius)

Oracle Database 11g: Develop PL/SQL Program Units A - 145

Practice 12: Using Conditional Compilation (continued)

|| ' Area: ' || TO _CHAR (my area));
SIF S$smy debug S$THEN

-- if my debug is TRUE, run some debugging code

SELECT DATA TYPE INTO my datatype FROM USER_ ARGUMENTS
WHERE OBJECT NAME = 'CIRCLE AREA' AND ARGUMENT NAME =
'RADIUS' ;
DBMS_ OUTPUT.PUT LINE('Datatype of the RADIUS argument is:
" || my datatype) ;
SEND
END;
/

B> Resutts | [F Seript Output | BExpisin | B Autotrace | EDEMS Output @ ovia Output

¢ B3 &

ALTER 3EZSION 3ET succeeded.

PACEAGE my pkg Compiled.

PACEAGE BODY my_ pkg Compiled.
PEOCEDURE circle_areairadius Compiled.

2) Use the DBMS PREPROCESSOR subprogram to retrieve the postprocessed source

text of the PL/SQL unit after processing the conditional compilation directives from
lab 12 01.

Open the sol 12 02.sql file in the D: \1abs\PLPU\solns folder, or copy
and paste the following code in the SQL Worksheet area. Click the Run Script

(F5) icon on the SQL Worksheet toolbar to run the script. The code and the
results are shown below.

-- The code example assumes you are the student with the
-- account ora70. Substitute ora70 with your account
-- information.

CALL DBMS PREPROCESSOR.PRINT POST PROCESSED SOURCE ('PACKAGE',
'"ORA70', 'MY PKG');

(> Resutts | & Script output | EExplain | Bautotrace | R0BMS output @ v, Output

¢ 8&

CALL DEMZ_PREPROCEZS0R. PRINT_POST_PROCESSED_SOURCE ('PACKAGE', succeeded.

Oracle Database 11g: Develop PL/SQL Program Units A - 146

Practice 12: Using Conditional Compilation (continued)
3) Create a PL/SQL script that uses the DBMS DB _VERSION constant with conditional

4)

compilation. The code should test for the Oracle database version:

a) If the database version is less than or equal to 10.1, it should display the following
error message:
Unsupported database release.

b) If the database version is 11.1 or higher, it should display the following message:
Release 11.1 is supported.

Open the sol 12 03.sql file in the D: \1abs\PLPU\solns folder, or
copy and paste the following code in the SQL Worksheet area. Click the Run

Script (F5) icon on the SQL Worksheet toolbar to run the script. The code
and the results are shown below.

BEGIN
$IF DBMS DB VERSION.VER LE 10 1 $THEN
SERROR 'unsupported database release.' SEND

SELSE
DBMS_OUTPUT.PUT LINE ('Release ' || DBMS_DB_VERSION.VERSION
N
DBMS DB VERSION.RELEASE || ' is
supported. ') ;

-- Note that this COMMIT syntax is newly supported in 10.2
COMMIT WRITE IMMEDIATE NOWAIT;

SEND

END;

/

[Resutts | [Script output | B Exptein | B avtotrace | Boems output @iovee Output

¢ HdE

anonymous block completed
Release 11.1 iz supported.

Consider the following code in the 1ab_12 04 .sql script that uses

CREATE_ WRAPPED to dynamically create and wrap a package specification and a
package body in a database. Edit the 1ab_12 04.sqgl script to add the needed
code to obfuscate the PL/SQL code. Save and then execute the script.

DECLARE
-- the package text variable contains the text to create
-- the package spec and body

package text VARCHAR2 (32767) ;

FUNCTION generate spec (pkgname VARCHAR2) RETURN VARCHAR2
AS

BEGIN
RETURN 'CREATE PACKAGE ' || pkgname || ' AS
PROCEDURE raise salary (emp_ id NUMBER, amount NUMBER) ;

Oracle Database 11g: Develop PL/SQL Program Units A - 147

Practice 12: Using Conditional Compilation (continued)

PROCEDURE fire employee (emp id NUMBER) ;
END ' || pkgname || ';';
END generate spec;
FUNCTION generate body (pkgname VARCHAR2) RETURN VARCHAR2
AS
BEGIN
RETURN 'CREATE PACKAGE BODY ' || pkgname || ' AS
PROCEDURE raise salary (emp_ id NUMBER, amount
NUMBER) IS
BEGIN
UPDATE employees SET salary = salary + amount
WHERE employee id = emp id;
END raise salary;

PROCEDURE fire employee (emp id NUMBER) IS
BEGIN
DELETE FROM employees WHERE employee id = emp id;
END fire employee;
END ' || pkgname || ';';
END generate_ body;

a) Generate the package specification while passing the emp actions parameter.
b) Create and wrap the package specification.
c) Generate the package body.
d) Create and wrap the package body.
e) Call a procedure from the wrapped package as follows:
CALL emp_ actions.raise salary (120, 100);

f) Use the USER _SOURCE data dictionary view to verify that the code is hidden as
follows:

SELECT text FROM USER_ SOURCE WHERE name = 'EMP_ ACTIONS';

Open the soln 12 04.sql file in the D: \1abs\PLPU\solns folder, or
copy and paste the following code in the SQL Worksheet area. Click the Run
Script (F5) icon on the SQL Worksheet toolbar to run the script. The code
and the results are shown below.

DECLARE
-- the package text variable contains the text to create the
package spec and body
package text VARCHAR2 (32767) ;
FUNCTION generate spec (pkgname VARCHAR2) RETURN VARCHAR2 AS
BEGIN
RETURN 'CREATE PACKAGE ' || pkgname || ' AS
PROCEDURE raise salary (emp id NUMBER, amount NUMBER) ;
PROCEDURE fire employee (emp id NUMBER) ;
END ' || pkgname || ';';

Oracle Database 11g: Develop PL/SQL Program Units A - 148

Practice 12: Using Conditional Compilation (continued)

END generate_ spec;
FUNCTION generate body (pkgname VARCHAR2) RETURN VARCHAR2 AS

BEGIN
RETURN 'CREATE PACKAGE BODY ' || pkgname || ' AS
PROCEDURE raise salary (emp_ id NUMBER, amount NUMBER)
IS
BEGIN
UPDATE employees SET salary = salary + amount WHERE
employee id = emp id;
END raise salary;
PROCEDURE fire employee (emp id NUMBER) IS
BEGIN
DELETE FROM employees WHERE employee id = emp id;
END fire employee;
END ' || pkgname || ';';
END generate body;

BEGIN

-- generate package spec
package text := generate spec('emp actions');

-- create and wrap the package spec
SYS.DBMS DDL.CREATE WRAPPED (package text);

-- generate package body
package text := generate body('emp actions');

-- create and wrap the package body
SYS.DBMS DDL.CREATE WRAPPED (package text);

END;
/

-- call a procedure from the wrapped package
CALL emp_ actions.raise salary (120, 100);

-- Use the USER SOURCE data dictionary view to verify that --
the code is hidden as follows:

SELECT text FROM USER SOURCE WHERE name = 'EMP_ ACTIONS';

Oracle Database 11g: Develop PL/SQL Program Units A - 149

Practice 12: Using Conditional Compilation (continued)
[Resutts | [E] script output | T Expisin | B autotrace | B DEMS Cutput @ owis, output
¢ dé&

anonymous block completed
CALL emp actions.raise salary(lz20, succeeded.

PACKAGE emp_actions wrapped
a000000

2d ba

J/SHL9EHr al 0qRCh 2T 2pal yEEwg tnd 9 TOE9b9cWEdi 46 SZ20fpHe tUruHS LCanp o ggF+ac
THMrgisghcnCrenCALMT OWES vopapMEALRT 1pD 0y FE g+ laZ0vFur rgl 7EEX £I9npp 30y
Gor¥7I9GI+o0kHOTIiVzHA7CAD0sgqHab01EY]

PACKAGE BODY emp_actions wrapped

alooooo

369

abcd

ahcd

abcd

ahcd

abcd

ahcd

abcd

ahcd

abcd

ahcd

abcd

ahcd

abcd

ahcd

abcd

b

178 10f
Qr07IITUletMehwTnsy0dc ATy ETrg /BE7cus£C /GRETY /S5 0Ubul 1wf 5gW=EQTo LARWWYTT
ELFnHHWFELS fwrRbcnd tahJKsVECE 0oy ShE0pSQpolz 0H YodNEvIRI Y34 t¥Egdo £C A C anb
Lewl+36g6kh66s qa+l7FI tlglinus A SMepdilsh FeLwZ+cM1kx IPQkEBrub lnalTS CO0a2 = YEE S
GT7bwCyPrajbgileESPCSLvwtals9dwi O3 Z3053CKOZEoN<Ndd==

Z rows selected

Oracle Database 11g: Develop PL/SQL Program Units A - 150

Practices for Lesson 13

Practice 13: Managing Dependencies in Your Schema

In this practice, you use the DEPTREE_FILL procedure and the IDEPTREE view to
investigate dependencies in your schema. In addition, you recompile invalid procedures,
functions, packages, and views.

)

Create a tree structure showing all dependencies involving your add_employee
procedure and your valid deptid function.

Note: add employee and valid deptid were created in the lesson titled
“Creating Functions.” You can run the solution scripts for Practice 3 if you need to
create the procedure and function.

a) Load and execute the ut 1dtree. sql script, which is located in the
D:\lab\labs folder.

Open the utldtree.sql file in the D: \1abs\PLPU\solns folder, or
copy and paste the following code in the SQL Worksheet area. Click the Run
Script (F5) icon on the SQL Worksheet toolbar to run the script. The code
and the results are shown below.

Rem

Rem $Header: utldtree.sqgl,v 1.2 1992/10/26 16:24:44 RKOOI Stab
$

Rem

Rem Copyright (c) 1991 by Oracle Corporation

Rem NAME

Rem deptree.sgl - Show objects recursively dependent on

Rem given object

Rem DESCRIPTION

Rem This procedure, view and temp table will allow you to
see Rem all objects that are (recursively) dependent on the
given Rem object.

Rem Note: you will only see objects for which you have

Rem permission.

Rem Examples:

Rem execute deptree fill ('procedure', 'scott', 'billing');
Rem select * from deptree order by seq#;

Rem

Rem execute deptree fill('table', 'scott', 'emp');

Rem select * from deptree order by seq#;

Rem

Rem execute deptree fill ('package body',6 'scott',

Rem 'accts_payable') ;

Rem select * from deptree order by seq#;

Rem

Oracle Database 11g: Develop PL/SQL Program Units A - 151

Practice 13: Managing Dependencies in Your Schema
(continued)

Rem A prettier way to display this information than
Rem select * from deptree order by seq#;

Rem is

Rem select * from ideptree;

Rem This shows the dependency relationship via indenting.
Rem Notice that no order by clause is needed with ideptree.
Rem RETURNS

Rem

Rem NOTES

Rem Run this script once for each schema that needs this
Rem utility.

Rem MODIFIED (MM/DD/YY)

Rem rkooi 10/26/92 - owner -> schema for SQL2

Rem glumpkin 10/20/92 - Renamed from DEPTREE.SQL

Rem rkooi 09/02/92 - change ORU errors

Rem rkooi 06/10/92 - add rae errors

Rem rkooi 01/13/92 - wupdate for sys vs. regular user
Rem rkooi 01/10/92 - fix ideptree

Rem rkooi 01/10/92 - Better formatting, add ideptree
view

Rem rkooi 12/02/91 - deal with cursors

Rem rkooi 10/19/91 - Creation

DROP SEQUENCE deptree seqg

/
CREATE SEQUENCE deptree seq cache 200
/* cache 200 to make sequence faster */

/

DROP TABLE deptree temptab

/

CREATE TABLE deptree temptab

(
object id number,
referenced object id number,
nest level number,
seqg# number

)
/
CREATE OR REPLACE PROCEDURE deptree fill (type char, schema
char, name char) IS

obj id number;
BEGIN

DELETE FROM deptree temptab;

COMMITT;

SELECT object id INTO obj id FROM all objects

WHERE owner = upper (deptree fill.schema)

AND object name = upper (deptree fill.name)
AND object type = upper (deptree fill.type);
INSERT INTO deptree temptab

Oracle Database 11g: Develop PL/SQL Program Units A - 152

Practice 13: Managing Dependencies in Your Schema
(continued)

VALUES (obj id, 0, 0, 0);
INSERT INTO deptree temptab
SELECT object id, referenced object id,
level, deptree seqg.nextval
FROM public_ dependency
CONNECT BY PRIOR object id = referenced object id
START WITH referenced object id = deptree fill.obj id;
EXCEPTION
WHEN no_data found then
raise application error(-20000, 'ORU-10013: ' ||
type || ' ' || schema || '.' || name || ' was not
found. ') ;
END;
/

DROP VIEW deptree
/

SET ECHO ON

REM This view will succeed i1f current user is sys. This view
REM shows which shared cursors depend on the given object. If
REM the current user is not sys, then this view get an error
REM either about lack of privileges or about the non-existence
of REM table xS$kglxs.

SET ECHO OFF
CREATE VIEW sys.deptree
(nested level, type, schema, name, seq#)
AS
SELECT d.nest level, o.object type, o.owner, o.object name,
d.seqg#
FROM deptree temptab d, dba objects o
WHERE d.object id = o.object id (+)

UNION ALL
SELECT d.nest level+1l, 'CURSOR', '<shared>',
"1 | |c.kglnaobj||'""', d.seg#+.5

FROM deptree temptab d, x$kgldp k, x$kglob g, objs$ o, user$
u, xS$kglob c,
x$kglxs a
WHERE d.object id = o.obj#
AND o.name = g.kglnaobj

AND o.owner# = u.user#

AND u.name = g.kglnaown

AND g.kglhdadr = k.kglrfhdl

AND k.kglhdadr = a.kglhdadr /* make sure it is not a

transitive */
AND k.kgldepno = a.kglxsdep /* reference, but a direct
one */
AND k.kglhdadr =
AND c.kglhdnsp =

Q

.kglhdadr
/* a cursor */

o

Oracle Database 11g: Develop PL/SQL Program Units A -153

Practice 13: Managing Dependencies in Your Schema
(continued)

/

SET ECHO ON

REM This view will succeed if current user is not sys. This

view

REM does *not* show which shared cursors depend on the given
REM object.

REM If the current user is sys then this view will get an
error

REM indicating that the view already exists (since prior view
REM create will have succeeded) .

SET ECHO OFF
CREATE VIEW deptree
(nested level, type, schema, name, seq#)
AS
select d.nest level, o.object type, o.owner, o.object name,
d.seqg#
FROM deptree temptab d, all objects o
WHERE d.object _id = o.object id (+)

/
DROP VIEW ideptree
/
CREATE VIEW ideptree (dependencies)
AS

SELECT lpad(' ',3*(max(nested level))) || max(nvl (type, '<no
permissions"')

|| * ' || schema || decode(type, NULL, '', '.') || name)

FROM deptree
GROUP BY seqg# /* So user can omit sort-by when selecting
from ideptree */

/

Oracle Database 11g: Develop PL/SQL Program Units A - 154

Practice 13: Managing Dependencies in

(continued)

Your Schema

¢ 8 &

[Resuts || & Scriot Output | BExplain | B autotrace |@DEMS Output @ ovia output

Error starting at line 47 in conwmand:
DEOF SEQUENCE deptree_sedq
Error report:

FhAction:
CREATE SEQUENCE succeeded.
Error starting at line 53 in command:

DEOP TAELE deptree_temptab
Error report:

30L Error: ORL4-0094Z: table or wiew does not exist
0094z, 00000 - "table or wiew does not exist”
*Cause:

*hction:

CREATE TABLE succeeded.
Warning: execution completed with warning
PROCEDTRE deptree_f£ill Compiled.

Error starting at line 88 in conwmand:
DROP VIEW deptree
Error report:

30L Error: OR4-0094Z: table or wiew does not exist
00942, 00000 - "table or wview does not exist”
*Cause:

*hction:

FEM This wiew will succeed if current user is sys.

FEM showsz which shared cursorz depend on the given object.

SET ECHO OFF

30L Error: 0RA-02Z289: sequence does not exist
02259. 00000 - "sequence does not exist™
*Cause: The specified secuence does not exist, or the user does

not have the redquired priwvilege to perform this operation.
Make sure the sedquence name iz correct, and that you hawve
the right to perform the desired operation on this sedquence.

This view

If FEM the current user iz not sy3, then this wiew get an error

FEM either about lack of privileges or about the non-existence of REM table xfkglxs.

Oracle Database 11g: Develop PL/SQL Program Units A - 155

Practice 13: Managing Dependencies in Your Schema
(continued)

Error starting at line 98 in command:
CREATE VIEW =vs.deptree
(nested_lewel, type, schema, name, Sedq#)
a5
FELECT d.nest_lewel, o.ohject type, o.owner, o.object name, d.sedq#
FROM deptree_temptab d, dba objects o
WHERE d.object_id = o.object_id i+)

THION ALL
FELECT d.nest_lewel+l, 'CUR3I0OR', '<shareds=', '"'|lc.kglnachi|['"', d.zedqé+.5
FROM deptree_temptab d, xskgldp k, xfkglob g, obis o, users u, xfkglob o,
®5kglxs a

WHERE d.object_id = o.obj#
AND o.nane = g.kglnaoh]

AND 0.0Tmer# = U.usSer#

AND u.namne = g.kglnaown

AND g.kglhdadr = k.kglrfhdl

AND k.kglhdadr = a.kglhdadr /% make sure it iz not a transitiwve */
AND k.kgldepno = a.kglxadep /% reference, bqtsa direct one */

AND k.kglhdadr = c.kglhdadr

AND c.kglhdnsp = 0 /% a cursor */
Error at Command Line:l02 Column:?
Error report:
50L Error: 0ORL-00942: tahle or wiew does not exist
00942, 00000 - "table or wiew does not exist”
*Cause:
*hction:
FEM This wiew will succeed if current user is not sys. This wiew

FEM does *not* show which shared cursors depend on the giwven

FEM object.

FEM If the current user is sys then this view will get an error

FEM indicating that the wiew already exists (since prior wiew

FEM create will hawe succeeded).

SET ECHO OFF

CREATE ¥IEW succeeded.

Error starting at line 136 in command:

DROP VIEW ideptrees

Error report:

30L Error: 0ORA-0094Z: table or wiew does not exist
0094z, 00000 - "table or wiew does not exisc™
*Cause:

*hction:

CREATE WIEW succeeded.

Oracle Database 11g: Develop PL/SQL Program Units A - 156

Practice 13: Managing Dependencies in Your Schema
(continued)

b) Execute the deptree £ill procedure for the add employee procedure.

Open the sol 13 01 b.sql filein the D: \1abs\PLPU\solns folder, or

copy and paste the following code in the SQL Worksheet area. Click the Run
Script (F5) icon on the SQL Worksheet toolbar to run the script. The code
and the results are shown below.

EXECUTE deptree fill ('PROCEDURE', USER, 'add employee')

[Resutts | [E] script outeut | B Expisin | B avtotrace | R DEMS Output @ ovva, Ooutput

¢ HdE

anonymous block completed

c) Query the IDEPTREE view to see your results.

Open the sol 13 01 c.sql filein the D: \1abs\PLPU\solns folder, or
copy and paste the following code in the SQL Worksheet area. Click the Run

Script (FS) icon on the SQL Worksheet toolbar to run the script. The code
and the results are shown below.

SELECT * FROM IDEPTREE;

B> Resutts | [Scriet output | B Explain | B avtotrace |ADEMS Output @ owis output
¢ BH 5

DEFENDENCIES

PROCEDURE ORAAL.ADD EMPLOYEE

1l rows selected

d) Execute the deptree £fill procedure for the valid deptid function.

Open the sol 13 01 d.sql file in the D: \1abs\PLPU\solns folder, or
copy and paste the following code in the SQL Worksheet area. Click the Run

Script (F5) icon on the SQL Worksheet toolbar to run the script. The code
and the results are shown below.

EXECUTE deptree fill ('FUNCTION', USER, 'valid deptid!')

Oracle Database 11g: Develop PL/SQL Program Units A - 157

Practice 13: Managing Dependencies in Your Schema
(continued)

B> Resutts | (5] Scrint output | BExplsin | B autotrace | ADEMS Output @rowea output

¢ B8 &

anonymwous block completed

e) Query the IDEPTREE view to see your results.

Open the sol 13 01 e.sql filein the D: \1abs\PLPU\solns folder, or
copy and paste the following code in the SQL Worksheet area. Click the
Execute Statement (F9) icon on the SQL Worksheet toolbar to run the script.
The code and the results are shown below.

SELECT * FROM IDEPTREE;

[Resuts | (& soript Output | EEplain | B avtetrace | E0EMS Output | @) owia Output
Rezufts

DEPENDENCIES |
1 PROCEDURE ORAG1 ADD_EMPLOYEE
2 FUNCTION OR&F1 \ALID_DEPTID

If you have time, complete the following exercise:
2) Dynamically validate invalid objects.
a) Make a copy of your EMPLOYEES table, called EMPS.

Open the sol 13 02 a.sql filein the D: \1abs\PLPU\solns folder, or

copy and paste the following code in the SQL Worksheet area. Click the Run
Script (F5) icon on the SQL Worksheet toolbar to run the script. The code
and the results are shown below.

CREATE TABLE emps AS
SELECT * FROM employees;

[Resutt= | [l Scrint outout | B Exptein | B avtatrace | @0EMS output @rovee output

¢d&

CEEATE TABLE succeeded.

b) Alter your EMPLOYEES table and add the column TOTSAL with data type
NUMBER (9, 2).

Oracle Database 11g: Develop PL/SQL Program Units A - 158

Practice 13: Managing Dependencies in Your Schema
(continued)

Open the sol 13 02 b.sql file in the D: \1abs\PLPU\solns folder, or

copy and paste the following code in the SQL Worksheet area. Click the Run
Script (F5) icon on the SQL Worksheet toolbar to run the script. The code
and the results are shown below.

ALTER TABLE employees
ADD (totsal NUMBER(9,2));

[Resuts | (Bl script output | BExpiein | Eautotrace | @DBMS output @ ovia Output

¢ d &

ALTEER TABLE employess succeeded.

c) Create and save a query to display the name, type, and status of all invalid objects.

Open the sol 13 02 c.sql filein the D: \1abs\PLPU\solns folder, or
copy and paste the following code in the SQL Worksheet area. Click the
Execute Statement (F9) icon on the SQL Worksheet toolbar to run the script.
The code and the results are shown below.

SELECT object name, object type, status
FROM USER OBJECTS
WHERE status = 'INVALID';

[Resutts | [script Output | EExplain | B autotrace | ADEMS
Resufts:
OBJECT MAME | OBJECT_TYPE | STATUS |
1 EMP_PKG PACKAGE NV SLID
2 EMP_PKG PACKAGE BODY INVALID
3 GET_EMPLOYEE PROCEDURE [NV SLID
4 SECURE_EMPLOYEES TRIGGER I SLID
5 UPDATE_JOB_HISTORY TRIGGER [NV SLID
& CHECK_S&LARY_TRG TRIGGER I SLID
7 DELETE_EMP_TRG TRIGGER [NV SLID
& MY_PHG PACKAGE BODY INVALID
9 EMP_ACTIONS PACKAGE BODY INVALID

d) Inthe compile pkg (created in Practice 7 in the lesson titled “Using Dynamic
SQL”), add a procedure called recompi le that recompiles all invalid
procedures, functions, and packages in your schema. Use Native Dynamic SQL to
alter the invalid object type and compile it.

Oracle Database 11g: Develop PL/SQL Program Units A - 159

Practice 13: Managing Dependencies in Your Schema
(continued)

Open the sol 13 02 d.sql filein the D: \1abs\PLPU\solns folder, or
copy and paste the following code in the SQL Worksheet area. Click the Run
Script (F5) icon on the SQL Worksheet toolbar to run the script. The code
and the results are shown below. The newly added code is highlighted in bold
letters in the following code box.

CREATE OR REPLACE PACKAGE compile pkg IS
PROCEDURE make (name VARCHAR2) ;
PROCEDURE recompile;

END compile pkg;

/

SHOW ERRORS

CREATE OR REPLACE PACKAGE BODY compile pkg IS

PROCEDURE execute (stmt VARCHAR2) IS
BEGIN
DBMS_OUTPUT.PUT_LINE(Stmt);
EXECUTE IMMEDIATE stmt;
END;

FUNCTION get type(name VARCHAR2) RETURN VARCHAR2 IS
proc type VARCHAR2 (30) := NULL;

BEGIN
/*

* The ROWNUM = 1 is added to the condition
to ensure only one row is returned if the
name represents a PACKAGE, which may also
have a PACKAGE BODY. In this case, we can
only compile the complete package, but not
the specification or body as separate

* components.

*/

SELECT object type INTO proc_ type
FROM user_ objects
WHERE object name = UPPER (name)
AND ROWNUM = 1;
RETURN proc_type;
EXCEPTION
WHEN NO_DATA FOUND THEN
RETURN NULL;
END;

O

PROCEDURE make (name VARCHAR2) IS

stmt VARCHAR2 (100) ;
proc_type VARCHAR2(30) := get type (name);
BEGIN
IF proc type IS NOT NULL THEN
stmt := 'ALTER '|| proc type ||' '|| name ||' COMPILE';

Oracle Database 11g: Develop PL/SQL Program Units A - 160

Practice 13: Managing Dependencies in Your Schema
(continued)

execute (stmt) ;

ELSE
RAISE APPLICATION ERROR(-20001,
'Subprogram '''|| name ||''' does not exist');
END IF;
END make;

PROCEDURE recompile IS
stmt VARCHAR2 (200) ;
obj name user objects.object name%type;
obj type user objects.object type%type;
BEGIN
FOR objrec IN (SELECT object name, object type
FROM user objects
WHERE status = 'INVALID'
AND object type <> 'PACKAGE BODY')

LOOP
stmt := 'ALTER '|| objrec.object type ||' '|
objrec.object name ||' COMPILE';
execute (stmt) ;
END LOOP;

END recompile;

END compile pkg;

/
SHOW ERRORS

(> Resutts | [E] Serint output | BExpisin | B sutotrace | EDEMS Cutput @ ovva output

¢ 3 &

PACKAGE compile pkg Compiled.

No Errors.

PACEAGE BODY compile_pkg Compiled.
No Errors.

e) Execute the compile pkg.recompile procedure.

Open the sol 13 02 e.sql filein the D: \1abs\PLPU\solns folder, or
copy and paste the following code in the SQL Worksheet area. Click the Run

Script (F5) icon on the SQL Worksheet toolbar to run the script. The code
and the results are shown below.

EXECUTE compile pkg.recompile

Oracle Database 11g: Develop PL/SQL Program Units A - 161

Practice 13: Managing Dependencies in Your Schema
(continued)

[Resutts | [l scriet output | B Explsin | B Autotrace | @DEMS Output @i, output

= =

anonymous block conpleted

ALTER PACKALGE EMF PEG COMPILE

ALTER PROCEDUFE GET_EMPLOYEE COMPILE
ALTER. TRIGGER SECURE_EMPLOYEES COMPILE
ALTER TRIGGEE UPDATE_JOE_HISTORY COMPILE
ALTER TRIGGER CHECE_ SALARY TRG COMPILE
ALTER TRIGGEE DELETE_EMP_TRG COMPILE

f) Run the script file that you created in step 3 c. to check the status column value.
Do you still have objects with an INVALID status?

Open the sol 13 02 £f.sql file in the D: \1abs\PLPU\solns folder, or
copy and paste the following code in the SQL Worksheet area. Click the Run

Script (F5) icon on the SQL Worksheet toolbar to run the script. The code
and the results are shown below.

SELECT object name, object type, status
FROM USER_OBJECTS
WHERE status = 'INVALID';

[Resuts | [F] Seript output | TExpisin | B autctrace | ADEMS output | @) 0w Output
Resuts:
OBJECT_MAME | OBJECT TYPE | STATUS |
1 EMP_ACTIONS PACKAGE BODY INWALID

Oracle Database 11g: Develop PL/SQL Program Units A - 162

Table Descriptions

Copyright © 2009, Oracle. All rights reserved.

Schema Description
Overall Description

The Oracle database sample schemas portray a sample company that operates worldwide to fill
orders for several different products. The company has three divisions:

* Human Resources: Tracks information about the employees and facilities

* Order Entry: Tracks product inventories and sales through various channels

» Sales History: Tracks business statistics to facilitate business decisions

Each of these divisions is represented by a schema. In this course, you have access to the objects
in all the schemas. However, the emphasis of the examples, demonstrations, and practices is on
the Human Resources (HR) schema.

All scripts necessary to create the sample schemas reside in the
SORACLE_HOME/demo/schema/ folder.

Human Resources (HR)

This is the schema that is used in this course. In the Human Resource (HR) records, each
employee has an identification number, email address, job identification code, salary, and
manager. Some employees earn commissions in addition to their salary.

The company also tracks information about jobs within the organization. Each job has an
identification code, job title, and a minimum and maximum salary range for the job. Some
employees have been with the company for a long time and have held different positions within
the company. When an employee resigns, the duration the employee was working, the job
identification number, and the department are recorded.

The sample company is regionally diverse, so it tracks the locations of its warehouses and
departments. Each employee is assigned to a department, and each department is identified
either by a unique department number or a short name. Each department is associated with one
location, and each location has a full address that includes the street name, postal code, city,
state or province, and the country code.

In places where the departments and warehouses are located, the company records details such
as the country name, currency symbol, currency name, and the region where the country is
located geographically.

Oracle Database 11g: Develop PL/SQL Program Units B -2

The HR Entity Relationship Diagram

HR

(JOB_HISTORY)

employee_id

DEPARTMENTS
department_id
department_name
manager _id
location_id

N\ 1
EMPLOYEES

start_date — o
end_date employee_id
job_id first_name
department id last_name
<V email
phone_number
| hire_date

JOBS —_—— .q salary

job_id

job_title
min_salary
max=salary

job_id

commission_pct
manager_id

(LOCATIONS)
location_id
street_address
postal_code
city
state_province

\ country id

COUNTRIES

country_id
country_name
region_id

A\ 74

\ department _id)

REGIONS

region_id

region_name

Oracle Database 11g: Develop PL/SQL Program Units B -3

The Human Resources (HR) Table Descriptions

DESCRIBE countries

Name Null? Type
COUNTRY_ID NOT NULL CHAR(2)
COUNTRY_NAME UARCHAR2(40)
REGION_ID NUMBER

SELECT * FROM countries

COUNTRY _ID |COLINTRY_NAME |REGION_ID
1 AR Argerting 2
2401 Auztralia 3
3BE Eelgium 1
4ER Erazil 2
SCA Canada 2
ECH Switzetland 1
TN China 3
5DE Germarny 1
9Dk Denmark 1
10EG Egrypt 4
11FR France 1
12HK Hongkong 3
1310 Izrael 4
141M Ircliz 3
1517 ftaly 1
16.JP Japan 3
17 K et 4
15 Wl hexico 2
19 MG Migetia 4
20 ML Metherlands 1
215G Singapare 3
221K United Kingdom 1
23U United States of ... 2
24 M Zambia 4
29 00 Zimbaknve 4

Oracle Database 11g: Develop PL/SQL Program Units B -4

The Human Resources (HR) Table Descriptions (continued)

DESCRIBE departments

Name Null? Type
DEPARTHENT_ID NOT NULL NUMBER(4)
DEPARTHENT _NAME NOT NULL UARCHAR2(30)
MANAGER_ID NUMBER(6)
LOCATION_ID NUMBER(%)

SELECT * FROM departments

DEPARTHMEMNT _IC |DEP.&RTMENT_NAME |r-.-1.ﬂ-.N.ﬂ.GER_ID LCCATICM_IC

1 10 Administration 200 1700
2 20 Marketing 2m 1500
3 30 Purchasing 114 1700
4 40 Human Resources 203 2400
5 50 Shipping 121 1500
G 60T 103 1400
7 70 Public Relations 204 2700
g 50 Sales 145 2500
9 90 Executive 100 1700
10 100 Finance 1085 1700
11 110 Accounting 205 1700
12 120 Treasury (1011} 1700
13 130 Corporate Tax (1011} 1700
14 140 Cantral And Credit (rilly 1700
15 150 Shareholder Services (1011} 1700
16 160 Benefits (rilly 1700
17 170 Manufacturing (1011} 1700
18 180 Construction (1011} 1700
19 180 Contracting (1011} 1700
20 200 Operations (1011} 1700
21 21017 Suppoart (rilly 1700
22 220 MO (rilly 1700
23 23017 Helpdesk (rilly 1700
24 240 Government Sales (1011} 1700
25 230 Retail Sales (rilly 1700
26 260 Recruiting (1011} 1700
27 270 Paryrall (rilly 1700
25 950 Education (rilly 2500
249 280 Training (1011} 2400

Oracle Database 11g: Develop PL/SQL Program Units B -5

DESCRIBE employees

EMPLOYEE_ID
FIRST_NAME
LAST_NAME
EMAIL
PHONE_NUMBER
HIRE_DATE
JOB_ID

SALARY
COMMISSION_PCT
MANAGER_ID
DEPARTHMENT_ID

SELECT * FROM employees

The Human Resources (HR) Table Descriptions (continued)

Null®? Type

NOT NULL NUMBER(S&)
UARCHAR2(20)

NOT NULL UARCHARZ2(25)

NOT NULL UARCHARZ(25)
UARCHARZ(20)

NOT NULL DATE

NOT NULL UARCHARZ2(10)
NUMBER(8,2)
NUMBER(2,2)
NUMBER(E)
NUMBER(4)

EMPLOYEE_ID |FIRST_NAME |LAST_NAME |EMAIL |F‘HONE_NLIMEFER HRE_DATE |JOE_ID

|SALARY |COMMISSION_PCT MANAGER_ID | DEPARTMENT _ID

1 100 Steven King
1 100 Steven King
3 102 Lex De Haan
4 103 Alexander Hunold
a2 104 Bruce Ernst
-1 105 David Austin
T 106 Yalli Pataballa
g 107 Diana Lorentz
g 108 Mancy Greenbery
10 109 Daniel Fawviet
1 110 John Chen
12 111 lemael Sciarra
13 112 Jose Manuel Urtnan
14 113 Luis Popp
15 114 Den Raphaely
16 115 Alexander Khaoo
17 116 Sheli Eiica
18 117 Sigal Tohias
19 118 Guy Hiruiro
20 118 Karen Colmenares
21 120 Matthewn: Wiz
22 121 &darn Fripp
23 122 Pavyarm Kaufling
24 123 Shanta “allman
25 124 Wevin Mourgos
26 125 Julia Mavyer
27 126 Irene ikkilingni
28 127 James Landry
29 128 Steven arkle
30 128 Laura Bizzot
3 130 Mozhe Atkinzan
32 131 James darlow
33 132 T Clgon
34 133 Jason tdallin
35 134 Michas! Rogers
36 133 Ki Gee
37 136 Hazel Philtanker
38 137 Renzke Lachuwing

SHING
SHIMNG
LDE...

AHUL.
BER...

DALl
VRA
DLO...
MGR..
DFA ..
JCHEM
I15CI.

Jhl

LPCPP
DRA..
AKH..

=BAlL..

STO..

GHIM...

KCO...

AFFIL..
PKA...
SW0
KO
JMA
Ik ..
JLA
Shid, .
LEIZ...
MAT ..
U

TJoL...

Jhdd
MRO..
KGEE
HPHI....
RLA ..

215123 4567
315123 4567
515123 4569
290,423 4567
290,423 4563
590.423 4569
590.423 4560
290,423 5567
515124 4569
515124 4169
315.124.4269
515124 4369
515124 4469
313124 4567
515127 4561
515127 4562
15127 4563
515127 4564
515127 4565
215127 4566
B50.123.1234
B50.123.2234
G30.123.3234
G30.123.4234
B50.123.5234
6301241214
G30.124 1224
650124 1334
6301241434
G30.124.5234
B50.124 6234
G30.124.7234
6301248234
B50.127.1934
6501271634
B30127.1734
B50.127 1634
6501211234

17-JUN-57
17-JUN-57
13-JaMN-93
03-JAaN-90
21-MAY-3
258-JUn-97
05-FEB-95
07-FEB-99
17-21G-94
16-A1G-94
28-SEP-97
30-SEP-97
O7-MAR-95
07-DEC-98
07-DEC-94
18-MAY-95
24-DEC-97
24-JU-97
15-MON-95
10-AG-99
18-JUL-96
10-4PR-97
07-MAY-25
10-0CT-97
16-MON-93
16-JUL-97
23-SEP-98
14-J4M-95
03-MAR-00
20-AU0-97
30-0CT-97
16-FEB-97
10-4PR-93
14-JUN-96
26-A1G-95
12-DEC-98
0&-FEE-00
14-JUL-85

£D_PRES
AD_PRES
AD_NP
IT_PROG
IT_PROG
IT_PROG
IT_PROG
IT_PROG
FI_MGR
FI_ACCOUNT
FI_ACCOUNT
FI_ACCOUNT
FI_ACCOUNT
FI_ACCOUNT
PL_MAN
PU_CLERK
PLU_CLERK,
PU_CLERK
PU_CLERK
PL_CLERK
ST_MAN
ST_MAN
ST_MAN
ST_MAN
ST_MAN
ST_CLERK
ST_CLERK
ST_CLERK
ST_CLERK
ST_CLERK
ST_CLERK
ST_CLERK
ST_CLERK
ST_CLERK
ST_CLERK
ST_CLERK
ST_CLERK
ST_CLERK

24000 (nul) (hull)
24000 (null) (null)
17000 (null) 100
000 (nul) 102
BO00 (null) 103
4500 (null) 103
4800 (null) 103
4200 (null) 103
12000 (null) 1M
5000 (null) 108
g200 (null) 108
7700 (null) 108
7800 (null) 108
fa00 (null) 108
11000 (null) 100
00 (null) 114
2800 (null) 114
2800 (null) 114
2600 (null) 114
2500 (nul) 114
5000 (null) 100
g200 (null) 100
7800 (nul) 100
f500 (null) 100
5800 (null) 100
3200 (nul) 120
2700 (null) 120
2400 (null) 120
2200 (nul) 120
3300 (null) 121
2800 (null) 121
2500 (nul) 121
2100 (null) 121
3300 (null) 122
2900 (null) 122
2400 (null) 122
2200 (null) 122
3600 (null) 123

an
a0
an
&0
&0
&0
60
&0
100
100
100
100
100
100
30
30
30
30
30
30
a0
a0
a0
a0
a0
a0
a0
a0
a0
a0
a0
a0
a0
a0
a0
a0
a0
a0

Oracle Database 11g: Develop PL/SQL Program Units B -6

The Human Resources (HR) Table Descriptions (continued)

Employees (continued)

39 135 Stephen Stiles S3TIL.. 6301212034 26-0CT-97 ST_CLERK 3200 (ol 123 a0
40 133 Jahn Sen JSED 6504212019 12-FEB-95 ST_CLERK 2700 (huily 123 a0
41 140 Joshus Patel JPAT. BS0121.1834 06-4PR-958 ST_CLERK 2500 (rwiry 123 a0
42 141 Trenna Rajs TRAJZ 630.121.8009 17-0CT-93 ST_CLERK 300 (il 124 a0
43 142 Curtis Davigs CDA.. B30121.2934 29-J8M-97 ST_CLERK iy Juli] (ol 124 a0
44 143 Randall hatos Fhda, . 6501212874 15-MAR-95 ST_CLERK 2600 (ruly 124 a0
45 144 Peter Vargss PWA . BS0121 2004 09-JUL-88 ST_CLERK 2500 (rwily 124 a0
45 145 John Ruzzel JRUL 01144134442 01-0CT-85 54 _MAN 14000 04 100 a0
a7 146 Karen Partners KPA.. 011441344 46 03-JAN-97 SA_MAN 13300 03 100 a0
45 147 Alberto Errazuriz AER... 01144 1344 42 10-MAR-97 54 _hAK 12000 03 100 a0
43 145 Gerald Carnbrault GCA 01144 1344 81 15-0CT-99 54 _hAN 11000 03 100 a0
a0 149 Eleni Zlothey EZL.. 01144134442, 29-JAN-00 SA_MAN 10300 0z 100 a0
a1 130 Peter Tucker PTU... 01144134412, 30-JAN-97 SA_REP 10000 03 143 a0
52 151 David Bernstein DEE... 01144134434 . 24-MAR-97 S&_REP Q=00 nzs 145 a0
53 152 Peter Hall PHALL 011 44 1344 47 . 20-A1G-97 54 _REP Q000 nzs 145 a0
54 153 Christopher Clzen COL... 011441344 45 . 30-MAR-93 S&_REP a000 0z 145 a0
a3 134 Manette Cambrautt MCA.. 01144134495, 09-DEC-98 SA_REP 00 0z 143 a0
56 155 Qliver Tuvault QT 011 441344 45 . 23-MNON-99 54 _REP To00 015 145 a0
a7 156 Janette King JEIMG 011 44 134542 0 30-JAN-96 Sa_REP 10000 03s 146 a0
558 157 Patrick Sully PSS 01144134592 . 04-MAR-96 S&_REP 9500 03s 146 a0
a9 133 Allan McEwen AMC.. 01144134582, 01-AUG-96 SA_REP 000 033 145 a0
&0 139 Lindzey Smith LShdl.. 011 44 134372 10-MAR-97 SA_REP 000 03 146 a0
&1 160 Louise Daran LD . 011 44 134562 15-DEC-97 Sa_REP Ta00 03 146 a0
62 161 Sarath Sewvall SSE.. 01144134552 03-MNOY-93 Sa_REP Fo00 nzs 146 a0
63 162 Clara Vighhey CWIS.. 01144134612, 11 —NO\-."—EIT-: S:’-_REP 10300 nzs 147 a0
G4 163 Danielle Greene DGR 01144 134622 19-MAR-99 SA_REP 2300 013 147 a0
65 164 Mattea Marvinz hibds, 011 44 134632 . 24-JAN-00 5S4 _REP 7200 01 147 a0
66 165 David Lee DLEE 01144 134652, 23-FEB-00 Sa_REP E300 01 147 a0
&7 166 Sundar Ancle SAN.. 011441346 62... 24-MAR-00 SA_REP £400 01 147 a0
63 167 Amit Banda ABA.. 01144134672, 21-APR-00 SA_REP g200 01 147 a0
=] 165 Liza Czer LOZER 011 44 134392 . 11-MAR-97 S&_REP 11500 nzs 148 a0
70 163 Harrizon Eilootn HEL.. 01144134382 . 23-MAR-98 Sa_REP 10000 0z 148 a0
71 170 Tayler Fox TFOX 01144134372, 24-JAN-98 SA_REP 9600 0z 143 a0
72 171 Willizm Smith Wiz, 011 44 134362, 23-FEB-99 SA_REP 7400 013 143 a0
73 172 Elizabeth Bates EBA_ .. 01144134352 . 24-MAR-99 S&_REP 300 015 148 a0
74 173 Sundita Kurnar pll, 01144134322 2 -APR-O0 S4 REP £100 04 143 a0

Oracle Database 11g: Develop PL/SQL Program Units B -7

The Human Resources (HR) Table Descriptions (continued)

Employees (continued

75 174 Ellen Abel EABEL 011 .44 1644 42 11-MAY-56 S4_REP 11000 03 143 a0
76 175 Alyzza Huttan AHUL. 011.44 1644 42 19-MAR-97 SA_REP ga00 0zs 143 a0
EEd 176 Jonathon Tavylor JTAL 01 .441644 42, 24-MAR-98 =2 _REP ae00 0z 149 an
7 177 Jack Livingston JLMIL.. 01144 1644 42 23-APR-38 SA_REP G400 0z 149 a0
7a 178 Kimberely Grant KGR 011 .44 1644 42 24-MAY-58 52 _REP 7000 015 143 (ruly
a0 1749 Charles Johnzan ClO. 011 .44 1644 42 D4-JAM-00 54 _REP G200 01 143 a0
g1 180 Winston Taylar WTA 650507 9876 24-18M-93 SH_CLERK 3200 (rl) 120 a0
a2 181 Jean Fleaur JFLE... G30.507 9377 23-FEB-98 SH_CLERK 3100 (il 120 a0
83 152 Martha Sullivan ML 630507 9375 21-JUN-33 SH_CLERK 2300 (il 120 a0
g4 183 Girard Geoni GGE... 6505079379 03-FEE-00 SH_CLERK 2800 (rully 120 a0
85 184 Nandita Sarchand MZ&. . 6505091876 27-JAN-96 SH_CLERK 4200 (rl) 121 a0
a5 183 Alexis Bull ABULL 650.500.2376 20-FEB-97 SH_CLERK 4100 (nuil) 121 a0
av 186 Julia Delinger JDEL... 6305093376 24-JUN-95 SH_CLERK 3400 (il 121 a0
et} 187 Anthary Cahrio ACH . 6305094376 07-FEB-33 SH_CLERK 3000 (il 121 a0
&3 188 Kelly Chung KCH... 6505051876 14-JUN-97 SH_CLERK 3800 (rully 122 a0
an 189 Jennifer Diilly JDILLY B50.505. 2876 13-AUG-97 SH_CLERK 3600 (rl) 122 a0
1 190 Timothy Gates TGA.,. 6305033376 11-JUL-98 SH_CLERK 2900 (nuil) 122 a0
az 191 Randall Perkinz RPE... 6305034876 19-DEC-99 SH_CLERK 2300 (il 122 a0
a3 192 Zarah Bell SBELL 630.501.1876 04-FEB-96 SH_CLERK 4000 (il 123 a0
a4 193 Britney Everatt BEY ... 6505012376 03-MAR-97 SH_CLERK 3400 (rully 123 a0
a5 194 Sarmuel MzCain SMC... B50.501 3876 01-JUL-98 SH_CLERK 3200 (rl) 123 a0
a5 193 Yance Jones WO, B30.501.4876 17-MAR-29 SH_CLERK 2800 (nuil) 123 a0
av 196 Alana Wizlzh A, B30.3507.8811 24-APR-93 SH_CLERK 3100 (il 124 a0
a5 197 Kevin Feeney KFEE... B30.507 9322 23-MAY-85 SH_CLERK 3000 (il 124 a0
a3 195 Donald CZonnell D, BS0.507 9833 21-JUN-99 SH_CLERK 2600 (rully 124 a0
100 199 Douglas Grart DGR... 650507 9344 13-JAN-00 SH_CLERK 2600 (rl) 124 a0
10 200 Jennifer Wihaleh JeH. 5151234444 17-SEP-87 AD_ASET 4400 (nuil) 101 10
102 201 Michael Hartztein MHA.. 313.123.5335 17-FEB-96 MK_MAN 13000 (il 100 20
103 202 Pat Fary PFAY 603123 6666 17-AUG-97 MK _REP G000 (il 2m 20
104 203 Susan hdaeeris S, S15123 7777 07-JUN-94 HR_RER G500 (rully 101 40
105 204 Hertnatn Baer HE&... 5151235383 0O7-JUn-94 PR_REP 10000 (rl) 101 70
108 203 Shelley Higiging SHIG... 5151238080 07-Jun-94 - AC MGR 12000 (nuil) 101 110
107 206 Wyillizm etz Wil S15123.8518 O7-Jun-84 AC ACCOURT a300 (il 203 110

Oracle Database 11g: Develop PL/SQL Program Units B -8

The Human Resources (HR) Table Descriptions (continued)

DESCRIBE job history

Name Null? Type
EMPLOYEE_ID NOT NULL NUMBER(6)
START_DATE NOT NULL DATE
END_DATE NOT NULL DATE

JOB_ID NOT NULL UARCHAR2{(10)
DEPARTHENT_ID NUMBER(%)

SELECT * FROM job_ history

EMPLOYEE ID [START_DATE [END_DATE |JOB_ID DER&RTMENT_ID
1 102 13-JAN-93 24-JUL-95 IT_PROG B0
2 101 21-SEP-83 27-OCT-93 AC_ACCOUNT 110
3 101 28-0CT-93 15-MAR-97 AC_MGR 110
4 201 17.-FEB-95 19-DEC-99 MK_REP 20
5 114 24 MAR-95 31-DEC-33 ST_CLERK 50
B 122 01-JAN-99 31-DEC-93 ST_CLERK 50
7 20017-SEP-B7 17-JUN-93 AD_ASST a0
& 176 24-MAR-95 31-DEC-98 S&_REP a0
] 176 01-JAN-93 31-DEC-99 S&_MAN a0

10 200 01-JUL-94 31-DEC-98 AC_ACCOUNT a0

Oracle Database 11g: Develop PL/SQL Program Units B -9

The Human Resources (HR) Table Descriptions (continued)

DESCRIBE jobs

Name Null®? Type

JOB_ID NOT NULL UARCHARZ2(10)
JOB_TITLE NOT NULL UARCHARZ2(35)
MIN_SALARY NUMBER(6)
HAX_SALARY NUMBER(6)

SELECT * FROM jobs

JOB_ID |-_IOEH_TITLE MIN_SaLARY |MAX_SALARY

1 AD_PRES President 20000 40000
24D WP Administration Vice President 15000 30000
JAD_ASST Administration Assistant 3000 G000
4 FI_MiGR Finance Manager 200 16000
S F_ACCaUMT Accountant 4200 000
G &C_MGR Accounting Manager 200 16000
T AC_ACCOUMT Public Accountant 4200 000
S 5A_hAN Sales Manager 10000 20000
95A_REF Sales Representative G000 12000
10 PU_MAN Purchasing Manager oo 15000
11 PU_CLERK Purchasing Clerk 2500 5500
125T_MAN Stock Manager 2500 G500
135T_CLERK Stock Clerk 2000 000
14 SH_CLERK Shipping Clerk 2500 5500
15T_PROG Programmer 4000 10000
16 M _MAN Marketing Manager 9000 15000
17 MK _REP Marketing Reprezentative 4000 Q000
18HR_REP Human Rezources Reprezentative 4000 Q000
19PR_REP Public Relations Reprezentative 4500 10500

Oracle Database 11g: Develop PL/SQL Program Units B -10

The Human Resources (HR)

DESCRIBE locations

JOB_ID
JOB_TITLE

MIN_SALARY
MAX_SALARY

SELECT * FROM locations

Table Descriptions (continued)

NOT NULL UARCHAR2(10)
NOT NULL UARCHAR2(35)
NUMBER(6)
NUMBER(6)

W~ M th B W k=

i
12
13
14
13
16
17
18
19
20
al
22
23

LOCATION_|D |STREET_ADDRESS

POSTAL_CODE | CITY

STATE_PROMWIMCE | COUMTRY _ID

1000 1297 “ia Cola di Rie
1100 93091 Calle della Testa
1200 201 7 Shinjuku-ku

1300 9450 Katniva-cho

1400 2014 Jabberwocky Rd
1500 2011 Irteriors Bhvd

1600 2007 Zagora St

1700 2004 Charade Rd

1800 147 Spadina Ave

1900 6092 Boxwood St

2000 40-5-12 Laogianggen
2100 1293 Vileparle (E)

2200 12-98 Yictoria Street
2300 198 Clemerti Motth

2400 8204 Arthur St

2500 Magdalen Centre, The Cxford Science Park
2600 9702 Chester Road

2700 Schwanthalerstr. 7031
2800 Rua Frei Caneca 1360
2800 20 Rue des Corps-Saints
3000 Murtenstrasse 921

3100 Pieter Breughelstrast 537
3200 Marizno Escobedo 9991

00339
10934
1689
G323
26192
99236
S0090
93199
WS 2LT
WY 9T2
190518
430231
2901
540193
[l
Cx9 976
09629350293
80925
01307-002
1730
3095
30295k
11932

Rama
Wenice
Tokyo
Hirozhima
Southlake
South San Francisco
South Brunswwick
Sesttle
Taranto
Whitehaorse
Eeijing
Bombay
Sydney
Singapore
Landan
Crefard
Stretford
hunich
Sao Paulo
GEneva
Bern
Irecht
Mexico City

(rwll) IT

(rwll) IT

Tokya Prefecture JP
(rwll) JP
Texas s
Californiz s
Mewy Jersey U=
Wiazhington U=
Cirtario A
Y ukan A
(rwll) Zh
Maharashtra [

Mew South Wisles AL
(rwll) =G
(rwll) Ik
Crefard (]
Manchester (]
Bavaria DE
Sao Paulo BR
GENEVE ZH
BE ZH
Itrecht ML

Distrito Federal, [LES

Oracle Database 11g: Develop PL/SQL Program Units B - 11

The Human Resources (HR) Table Descriptions (continued)

DESCRIBE regions

Name Null? Type
REGION_ID NOT NULL NUMBER
REGION_NAME UARCHAR2(25)

SELECT * FROM locations

REGICMN_ID |REGION_NAME
1 Europe

2 Americas
3 Aszia
4 Middle East and Africa

B T S

Oracle Database 11g: Develop PL/SQL Program Units B -12

Using SQL Developer

Copyright © 2009, Oracle. All rights reserved.

Objectives

After completing this appendix, you should be able to do the
following:

« List the key features of Oracle SQL Developer
« Install Oracle SQL Developer 1.2.1

* ldentify menu items of Oracle SQL Developer
« Create a database connection

« Manage database objects

« Use SQL Worksheet

« Save and Run SQL scripts

« Create and save reports

* Install and use Oracle SQL Developer 1.5.3

Copyright © 2009, Oracle. All rights reserved.

Objectives

In this appendix, you are introduced to the graphical tool called SQL Developer. You learn how
to use SQL Developer for your database development tasks. You learn how to use SQL
Worksheet to execute SQL statements and SQL scripts.

Oracle Database 11g: Develop PL/SQL Program Units C -2

What Is Oracle SQL Developer?

« Oracle SQL Developer is a graphical tool that enhances
productivity and simplifies database development tasks.

* You can connect to any target Oracle database schema by
using standard Oracle database authentication.

SQL Developer

Copyright © 2009, Oracle. All rights reserved.

What Is Oracle SQL Developer?

Oracle SQL Developer is a free graphical tool designed to improve your productivity and
simplify the development of everyday database tasks. With just a few clicks, you can easily
create and debug stored procedures, test SQL statements, and view optimizer plans.

SQL Developer, the visual tool for database development, simplifies the following tasks:
* Browsing and managing database objects
» Executing SQL statements and scripts
» Editing and debugging PL/SQL statements
* Creating reports

You can connect to any target Oracle database schema by using standard Oracle database
authentication. When connected, you can perform operations on objects in the database.

Note: The SQL Developer 1.2 release is called the Migration release because it tightly
integrates with Developer Migration Workbench that provides users with a single point to
browse database objects and data in third-party databases, and to migrate from these databases to
Oracle. You can also connect to schemas for selected third-party (non-Oracle) databases such as
MySQL, Microsoft SQL Server, and Microsoft Access, and you can view metadata and data in
these databases.

Additionally, SQL Developer includes support for Oracle Application Express 3.0.1 (Oracle
APEX).

Oracle Database 11g: Develop PL/SQL Program Units C -3

Specifications of SQL Developer

* Developed in Java
* Supports Windows, Linux, and Mac OS X platforms
« Default connectivity by using the JDBC Thin driver

* Does not require an installer

— Unzip the downloaded SQL Developer kit and double-click
sqgldeveloper.exe to start SQL Developer.

 Connects to Oracle Database version 9.2.0.1 and later

* Freely downloadable from the following link:

— http://www.oracle.com/technology/products/database/sql_de
veloper/index.html

* Needs JDK 1.5 installed on your system that can be
downloaded from the following link:

— http://java.sun.com/javase/downloads/index_jdk5.jsp

Copyright © 2009, Oracle. All rights reserved.

Specifications of SQL Developer

Oracle SQL Developer is developed in Java leveraging the Oracle JDeveloper integrated
development environment (IDE). Therefore, it is a cross-platform tool. The tool runs on
Windows, Linux, and Mac operating system (OS) X platforms. You can install SQL Developer
on the Database Server and connect remotely from your desktop, thus avoiding client/server
network traffic.

Default connectivity to the database is through the Java Database Connectivity (JDBC) Thin
driver, and therefore, no Oracle Home is required. SQL Developer does not require an installer
and you need to simply unzip the downloaded file. With SQL Developer, users can connect to
Oracle Databases 9.2.0.1 and later, and all Oracle database editions including Express Edition.

SQL Developer can be downloaded with the following packaging options:
* Oracle SQL Developer for Windows (option to download with or without JDK 1.5)
* Oracle SQL Developer for Multiple Platforms (you should have JDK 1.5 already installed)
* Oracle SQL Developer for Mac OS X platforms (you should have JDK 1.5 already
installed)
* Oracle SQL Developer RPM for Linux (you should have JDK 1.5 already installed)

Oracle Database 11g: Develop PL/SQL Program Units C -4

Installing SQL Developer

Download the Oracle SQL Developer kit and unzip into any
directory on your machine.

--

§ B C:Asqldevelopern
. File Edit View Favorites Tools Help f
g g : — »
Extracting rt.jar : @ Back ~ () ¥ - search | [Folders
. Address |@ Csgldeveloper V| G0
Folders x 3
[ERs] -ldeveloper S cmmcer | 5 |developer
@ ide E 1KE
25 jdbe
> [jdev
B idk i sgldeveloper. exe
3 lib
= i r;w upgrade_guidelines, bk
[rdbms b == | TextDocument
< > < >

Copyright © 2009, Oracle. All rights reserved.

Installing SQL Developer

Oracle SQL Developer does not require an installer. To install SQL Developer, you need an
unzip tool.

To install SQL Developer, perform the following steps:
1. Create a folder as <local drives>:\SQL Developer.
2. Download the SQL Developer kit from
http://www.oracle.com/technology/products/database/sql developer/index.html.
3. Unzip the downloaded SQL Developer kit into the folder created in step 1.

To start SQL Developer, go to <local drives:\SQL Developer, and double-click
sgldeveloper.exe.

Notes: SQL Developer 1.2 is already installed on the classroom machine. The installation kit for
SQL Developer 1.5.3 is also on the classroom machine. You may use either version of SQL
Developer in this course. Instructions for installing SQL Developer version 1.5.3 are available at
the end of this appendix.

Oracle Database 11g: Develop PL/SQL Program Units C -5

SQL Developer 1.2 Interface

’1 Uracle SQL Developer
Eile Edit Miew MNavigate Bun Debug Sowrce Migrstion Tools Help

FoEa 9o XEBE 0-0- S-
;aﬂCUnnecﬁDns ' Repur‘[s | I E]\
B0Y

=
sladdiug E

Cohnections

You must define a
connection to start
- using SQL Developer
for running SQL queries |
on a database schema.

=hull= Editing

Copyright © 2009, Oracle. All rights reserved.

SQL Developer 1.2 Interface

SQL Developer has two main navigation tabs:
« Connections Navigator: By using this, you can browse database objects and users to
which you have access.
* Reports tab: By using this tab, you can run predefined reports or create and add your own
reports.
SQL Developer uses the left side for navigation to find and select objects, and the right side to
display information about selected objects. You can customize many aspects of the appearance
and behavior of SQL Developer by setting preferences. The following menus contain standard
entries, plus entries for features specific to SQL Developer:
* View: Contains options that affect what is displayed in the SQL Developer interface
» Navigate: Contains options for navigating to panes and in the execution of subprograms
* Run: Contains the Run File and Execution Profile options that are relevant when a
function or procedure is selected
* Debug: Contains options that are relevant when a function or procedure is selected for
debugging
* Source: Contains options for use when you edit functions and procedures
* Migration: Contains options related to migrating third-party databases to Oracle
* Tools: Invokes SQL Developer tools such as SQL*Plus, Preferences, and SQL Worksheet
Note: You need to define at least one connection to be able to connect to a database schema and
issue SQL queries or run procedures/functions.

Oracle Database 11g: Develop PL/SQL Program Units C -6

Creating a Database Connection

* You must have at least one database connection to use
SQL Developer.
* You can create and test connections for:
— Multiple databases
— Multiple schemas
« SQL Developer automatically imports any connections
defined in the tnsnames . ora file on your system.
* You can export connections to an Extensible Markup
Language (XML) file.
« Each additional database connection created is listed in
the Connections Navigator hierarchy.

Copyright © 2009, Oracle. All rights reserved.

Creating a Database Connection

A connection is a SQL Developer object that specifies the necessary information for connecting
to a specific database as a specific user of that database. To use SQL Developer, you must have
at least one database connection, which may be existing, created, or imported.

You can create and test connections for multiple databases and for multiple schemas.
By default, the tnsnames . ora file is located in the SORACLE HOME/network/admin
directory, but it can also be in the directory specified by the TNS ADMIN environment variable

or registry value. When you start SQL Developer and display the Database Connections dialog
box, SQL Developer automatically imports any connections defined in the tnsnames . ora file
on your system.

Note: On Windows, if the tnsnames . ora file exists but its connections are not being used by
SQL Developer, define TNS ADMIN as a system environment variable.

You can export connections to an XML file so that you can reuse it later.

You can create additional connections as different users to the same database or to connect to the
different databases.

Oracle Database 11g: Develop PL/SQL Program Units C -7

Creating a Database Connection

I Oracle 5QL Developer,
Fil= Edit “iew Navigate Bun Debug
oEE 9C XEg
TR connections _I_?E[:-E[‘t_s] o 2

E ?& ’_, Connection M...|Connection D..J Connection Matne ‘myconnacﬂon ‘
* u

Username ‘hr ‘

i’ﬂ Connections

vy Connection k Password ‘ & ‘

Dconnections Reports ‘: l‘ll‘lECﬁDI‘lS [2ave Password

E ’\fﬂ -? WMMISQLSHV&”
) connections \3 |
S8 B connection Bole |d3fa"'“ 'l

{3 Tables Connection Type () Basic () TNS () Advanced I
- [Views

i% :::,::es Has e [x0108 s oracle.com
-8 Procedures Port
(i Functions

|
|
]EB Triggers [OF:=)] |urc\ |
|

[1521

H- (3 Types

[+
[
[
[*
£
[
[
[+
- Sequences () Service name |
- {5 Materialized Views
[
£
[+
[#
[+
£
[
[*
[

]ﬁ Materislized Views Logs
| E} Synonyms Status : Success
-3 Public Synonyms R e
]@ Dstabase Links Help Save ‘ | Clear | ‘ Teat %;‘ | Connect | ‘ Cancel

]@ Public Database Links
£ 1@ Directories

]E Hhil Schemas

£ Recycle Bin

-8 Other Users

Copyright © 2009, Oracle. All rights reserved.

Creating a Database Connection (continued)

To create a database connection, perform the following steps:
1. On the Connections tabbed page, right-click Connections and select New Connection.
2. Inthe New/Select Database Connection window, enter the connection name. Enter the
username and password of the schema that you want to connect to.
1. From the Role drop-down box, you can select either default or SYSDBA (you choose
SYSDBA for the sys user or any user with database administrator privileges).
2. You can select the connection type as:
- Basic: In this type, enter hostname and SID for the database you want to
connect to. Port is already set to 1521. Or you can also choose to enter the Service
name directly if you use a remote database connection.
- TNS: You can select any one of the database aliases imported from the
tnsnames.ora file.
- Advanced: You can define a custom Java Database Connectivity (JDBC)
URL to connect to the database.
3. Click Test to ensure that the connection has been set correctly.
4. Click Connect.

Oracle Database 11g: Develop PL/SQL Program Units C -8

Creating a Database Connection (continued)

If you select the Save Password check box, the password is saved to an XML file. So,
after you close the SQL Developer connection and open it again, you are not prompted
for the password.

3. The connection gets added in the Connections Navigator. You can expand the
connection to view the database objects and view object definitions, for example,
dependencies, details, statistics, and so on.

Note: From the same New/Select Database Connection window, you can define connections

to non-Oracle data sources using the Access, MySQL, and SQL Server tabs. However, these

connections are read-only connections that enable you to browse objects and data in that data
source.

Oracle Database 11g: Develop PL/SQL Program Units C -9

Browsing Database Objects

Use the Connections Navigator to:
* Browse through many objects in a database schema
* Review the definitions of objects at a glance

TR Connections Reports | 21| [myconnection | EEMPLOYEES
EYTR ¢ [cotumns | Dats | constrairts | Grarts | Statistics | Column Statistics | Trid|
4 Connections L= " I"/T EB HETE.
Ela myconnection Column Matme | Dita Type | Mullzhle |Data Defautt |
=3 %3'33 EMPLOYEE_ID MUMBER(S,0) Mo (i)
& Gl FIRST _MAME YARCHARZ(20 BYTE) Yes (nully
LAST_MAME WARCHARZ(25 BYTE) Mo (il
EmAIL WVARCHARZIZ2S BYTE) Mo [rill)
o PHOME_MUMEBER: VARCHARZ(Z0BYTE) Yes [rill)
3 HIRE_DATE DATE Ma (il
JOE_ID WARCHARZ(10 BYTE) Mo (nwin
-8 views
SALARY MUMBER(S 2 Yes (il
(08 Indexes
£53-{8 Packages COMMISSION_PCT NUMBER(2,2) Ves ()
-8 Procedures MAMAGER_|D MUMEER(E,0) Yes (i)
E]'"E@ Functions DEPARTREMT_ID MUMBER(4,00 Yes [ruill)
-8 Triggers —
I:I""|.—|§| Types |
—

Copyright © 2009, Oracle. All rights reserved.

Browsing Database Objects

After you create a database connection, you can use the Connections Navigator to browse
through many objects in a database schema including Tables, Views, Indexes, Packages,
Procedures, Triggers, and Types.

SQL Developer uses the left side for navigation to find and select objects, and the right side to
display information about the selected objects. You can customize many aspects of the
appearance of SQL Developer by setting preferences.

You can see the definition of the objects broken into tabs of information that is pulled out of the
data dictionary. For example, if you select a table in the Navigator, the details about columns,
constraints, grants, statistics, triggers, and so on are displayed on an easy-to-read tabbed page.

If you want to see the definition of the EMPLOYEES table as shown in the slide, perform the
following steps:
1. Expand the Connections node in the Connections Navigator.
2. Expand Tables.
3. Click EMPLOYEES. By default, the Columns tab is selected. It shows the column
description of the table. Using the Data tab, you can view the table data and also enter new
rows, update data, and commit these changes to the database.

Oracle Database 11g: Develop PL/SQL Program Units C -10

Creating a Schema Object

« SQL Developer supports the creation of any schema
object by:
— Executing a SQL statement in SQL Worksheet
— Using the context menu
« Edit the objects by using an edit dialog or one of the many
context-sensitive menus.
* View the data definition language (DDL) for adjustments
such as creating a new object or editing an existing
schema object.

Eﬂc.:.nnecmns Repms
EL N |
E_JTI Connections

EI% myconnection

E Tahles
{_EE Wi

Copyright © 2009, Oracle. All rights reserved.

Creating a Schema Object

SQL Developer supports the creation of any schema object by executing a SQL statement in
SQL Worksheet. Alternatively, you can create objects using the context menus. When created,
you can edit the objects using an edit dialog or one of the many context-sensitive menus.

B pew Table. ..

As new objects are created or existing objects are edited, the DDL for those adjustments is
available for review. An Export DDL option is available if you want to create the full DDL for
one or more objects in the schema.

The slide shows how to create a table using the context menu. To open a dialog box for creating
a new table, right-click Tables and select New Table. The dialog boxes to create and edit
database objects have multiple tabs, each reflecting a logical grouping of properties for that type
of object.

Oracle Database 11g: Develop PL/SQL Program Units C - 11

Creating a New Table: Example

¥ Create Table @

Schema: |HR - | A cdvanced @
Mame: DEPEMDEMTS il
Table Type: () Mormal () External () Index Organized () Temporary (Transaction) () Temporary (Session)

o Columns Columns: Column Properties

& | [|
= Unigue Constraints FIRST MAME — -

- Fareign Heys LAST_NAME | ® | Datatype: (2 Simple () Complex

- Check Constraints RELATICN

R Ee— - Type: | MUMEER M
“Column Sequences .

- Storage Options | =i | Brecision: | |

- Lob Parameters o Scale: | |
= Partitioning
- Partition Definitions

E‘------Sub;:nslr‘['rtion Templates

e Comment Detauit: | |

DD Cannat be MULL
Comment;
1=
|| =
-
| Help | Ok J | Cancel |

Copyright © 2009, Oracle. All rights reserved.

Creating a New Table: Example

In the Create Table dialog box, if you do not select the Advanced check box, you can create a
table quickly by specifying columns and some frequently used features.

If you select the Advanced check box, the Create Table dialog box changes to one with multiple
options, in which you can specify an extended set of features while you create the table.

The example in the slide shows how to create the DEPENDENTS table by selecting the
Advanced check box.

To create a new table, perform the following steps:
1. Inthe Connections Navigator, right-click Tables.
2. Select Create TABLE.
3. In the Create Table dialog box, select Advanced.
4. Specify column information.
5. Click OK.

Although it is not required, you should also specify a primary key by using the Primary Key tab
in the dialog box. Sometimes, you may want to edit the table that you have created; to do so,
right-click the table in the Connections Navigator and select Edit.

Oracle Database 11g: Develop PL/SQL Program Units C -12

Using the SQL Worksheet

« Use the SQL Worksheet to enter and execute SQL,
PL/SQL, and SQL *Plus statements.

« Specify any actions that can be processed by the database
connection associated with the worksheet.

I oracle SQL Developer : MyDBConnection

File Edit “iew Mavigate BRun Debuy Source Migration sl

=8 Help

EHae 9@ ¥ Q-0 8

2l connections Reports] E] D hyDECo External Tools...

|§. L@ Y [= El & Preferences... é

@ connections Enter SEL S| @] Evport DOL (and Data)

=) a MyDEConnection 1 = — A

-3 Tebkes L Click the Open SQL
| BB vews — Worksheet icon.

DBCo = 0
Source Migration T Help

Select SQL Q-Of [

Worksheet from the = DM!DBCWI Open SGL Warkshest |
> F2 e ¢

Tools menu, or

Copyright © 2009, Oracle. All rights reserved.

Using the SQL Worksheet

When you connect to a database, a SQL Worksheet window for that connection automatically
opens. You can use the SQL. Worksheet to enter and execute SQL, PL/SQL, and SQL*Plus
statements. The SQL Worksheet supports SQL*Plus statements to a certain extent. SQL*Plus
statements that are not supported by the SQL Worksheet are ignored and not passed to the
database.

You can specify actions that can be processed by the database connection associated with the
worksheet, such as:

» Creating a table

* Inserting data

» Creating and editing a trigger

» Selecting data from a table

» Saving the selected data to a file

You can display a SQL Worksheet by using one of the following:
* Select Tools > SQL Worksheet.
* Click the Open SQL Worksheet icon.

Oracle Database 11g: Develop PL/SQL Program Units C -13

Using the SQL Worksheet

®0 00 _

D*mvlﬁbwmwln e ane
[:} ..J ﬁ? flg\ ﬁ (El 'E':i 1!.-.3 d/’ mydbconnection "|

Elfer Sl ftatomert
YOO ® ©

1] [*]
. 4

[Resutts | Els::npt Output | BExplain ﬁAmmrace] @DBMS Output | | @ omia Output]

N

Results:

Copyright © 2009, Oracle. All rights reserved.

Using the SQL Worksheet (continued)

You may want to use the shortcut keys or icons to perform certain tasks such as executing a SQL
statement, running a script, and viewing the history of SQL statements that you have executed.
You can use the SQL Worksheet toolbar that contains icons to perform the following tasks:

1. Execute Statement: Executes the statement where the cursor is located in the Enter SQL
Statement box. You can use bind variables in the SQL statements, but not substitution
variables.

2. Run Script: Executes all statements in the Enter SQL Statement box by using the Script
Runner. You can use substitution variables in the SQL statements, but not bind variables.

3. Commit: Writes any changes to the database and ends the transaction

4. Rollback: Discards any changes to the database, without writing them to the database, and
ends the transaction

5. Cancel: Stops the execution of any statements currently being executed

6. SQL History: Displays a dialog box with information about SQL statements that you have
executed

7. Execute Explain Plan: Generates the execution plan, which you can see by clicking the
Explain tab

8. Autotrace: Generates trace information for the statement

9. Clear: Erases the statement or statements in the Enter SQL Statement box

Oracle Database 11g: Develop PL/SQL Program Units C - 14

Using the SQL Worksheet

« Use the SQL Worksheet to enter and execute SQL,
PL/SQL, and SQL*Plus statements.

« Specify any actions that can be processed by the database
connection associated with the worksheet.

myorvecton | &
>PERR0® Gwl ¢ myconnection ~ |
Enter SQL Statement: |
| =
- . Enter SQL
statements.
A;l - ;
[Resuts "ElScrlpi ompm]%Expmm | QAmmrace | @DBMS Output | QOWA._.._:
Results:
- »Results are
shown here.

Copyright © 2009, Oracle. All rights reserved.

Using the SQL Worksheet (continued)

When you connect to a database, a SQL Worksheet window for that connection automatically
opens. You can use the SQL. Worksheet to enter and execute SQL, PL/SQL, and SQL*Plus
statements. All SQL and PL/SQL commands are supported as they are passed directly from the
SQL Worksheet to the Oracle database. SQL*Plus commands used in the SQL Developer have
to be interpreted by the SQL Worksheet before being passed to the database.

The SQL Worksheet currently supports a number of SQL*Plus commands. Commands not
supported by the SQL Worksheet are ignored and are not sent to the Oracle database. Through
the SQL Worksheet, you can execute SQL statements and some of the SQL*Plus commands.

You can display a SQL Worksheet by using any of the following two options:
* Select Tools > SQL Worksheet.
* Click the Open SQL Worksheet icon.

Oracle Database 11g: Develop PL/SQL Program Units C -15

Executing SQL Statements

Use the Enter SQL Statement box to enter single or multiple
SQL statements.

D MyDEConnection

FPERARSe 88 ¢ 203304029 seconds

Enter SGL Statement: |

1|SELECT last name, salary
Use the Enter SQL ‘/ Z|FROM employees
Statement bOX tO 3|WHERE salary > 10000;
4
enter Slngle or S|SELECT last_name "Name", salary*l: "hnnual Salary”
multiple sQL &[FROM employees;|
statements. i
.. 4 |
[Resuts | & script outout IEExplain) autctrace | @0Ems Output | @ ovwa Output
¢ dE
Ozer 11500
dhel 11000
. L—a
View the results on 15 rows selected
the Script Output
Name Anmual Salary
tabbed page.
OConnell 31z00
Grant 31z00
Thalen 52800

Copyright © 2009, Oracle. All rights reserved.

Executing SQL Statements

In the SQL Worksheet, you can use the Enter SQL Statement box to enter single or multiple
SQL statements. For a single statement, the semicolon at the end is optional.

When you enter the statement, the SQL keywords are automatically highlighted. To execute a
SQL statement, ensure that your cursor is within the statement and click the Execute Statement
icon. Alternatively, you can press the F9 key.

To execute multiple SQL statements and see the results, click the Run Script icon. Alternatively,
you can press the F5 key.

In the example in the slide, because there are multiple SQL statements, the first statement is
terminated with a semicolon. The cursor is in the first statement, and therefore, when the
statement is executed, results corresponding to the first statement are displayed in the Results
box.

Oracle Database 11g: Develop PL/SQL Program Units C - 16

Saving SQL Scripts

Enter a file name and
identify a location to

statement to a file. save the file, and
PZveloper : MyDBConnection click Save.

Fil= Edit « Mavigate Run Debuy Source Migration Tools Help
G 2= xam o0 -0- -

Click the Save icon to
save your SQL

A connections Reports] [=]| | [MyDEConnection
P save
EX FERERe® &d89B
Locati . -

- MyDBCannection [«] [Erter SQL Stetement: Loestien:] pLahs |0 % [EE

- = e

E‘ Tahles | 1|SELECT last_name, salary E:z:ﬂjx

e COUNTRIES 2|FROM employees [Jabs

[DEPARTMENTS 3|[VHERE salary > 10000: Applcation || [sans
—= @ Bl code_12.22_as sql

code_12_23_ae sql

The contents of the
saved file are visible
and editable in your
SQL Worksheet
window.

il name: | salary._regort

Fiie type: | SGL Seript ("5} -

D salary_report.sgl]

> % EV EE ﬁ &I E ﬂ 0 $| | sawe | coneat |

Enter SGIL Statement:

1|SELECT last_name, salary
Z2|/FROM euployees
3|VHERE salary > 10000;

Copyright © 2009, Oracle. All rights reserved.

Saving SQL Scripts
You can save your SQL statements from the SQL Worksheet into a text file. To save the
contents of the Enter SQL Statement box, follow these steps:
1. Click the Save icon or use the File > Save menu item.
2. Inthe Windows Save dialog box, enter a file name and the location where you want the

file saved.
3. Click Save.

After you save the contents to a file, the Enter SQL Statement window displays a tabbed page of
your file contents. You can have multiple files open at the same time. Each file displays as a
tabbed page.

Script Pathing

You can select a default path to look for scripts and to save scripts. Under Tools > Preferences >
Database > Worksheet Parameters, enter a value in the “Select default path to look for scripts”
field.

Oracle Database 11g: Develop PL/SQL Program Units C -17

Executing Saved Script Files: Method 1

[stucert 41 |

FERRO AwWiE ¢ Right-click in the SQL

e SQLS‘E‘E’;”' Worksheet area, and select
9 Open File from the shortcut
B menu.

an =TT i o |

&, print File R —

Peresits | @ ciear e [

To run the code, click
the Run Script (F5) icon.

Code_D0_13_nsel
A code_n0_13_s.5q1
=l code_oo_14_s.59

‘ code_01_09_nsq

bele_01_09_sa. 55
bete_01_03_sb sql
bele_01_10_sa.s5
bede_01_10_sh.sq (= student 41]
brie_01 _11_sa.sel

HEpPRe dwm ¢

be_01_13_nsgl
. " TRun Script (F5) }
CI|Ck Open E‘I_E'#I'Efg;mmiﬂm getemp IS -- header

tide 0 _13_s.50)
code 01 15 sa.s
File name: | code_00_11 _s &or emp_id employees.euployee idstype;
Iname euployees, last_namektype;
File Lype: | SGL Soript (*.sa) BEGIH

Select (or navigate
to) the script file that
you want to open.

emp_id := 100;
Help | Cpen !gl Canc| SELECT last name IHTD lname
FROM EMPLOYEES
WHERE employee id = emp_id;
DEMZ_OUTPUT.PUT_LINE('Last name: '||lname);
EHD ;

Copyright © 2009, Oracle. All rights reserved.

Executing Saved Script Files: Method 1

To open a script file and display the code in the SQL Worksheet area, perform the following:
1. Right-click in the SQL Worksheet area, and select Open File from the menu. The Open
dialog box is displayed.
2. In the Open dialog box, select (or navigate to) the script file that you want to open.
Click Open. The code of the script file is displayed in the SQL Worksheet area.
4. To run the code, click the Run Script (F5) icon on the SQL Worksheet toolbar.

W

Oracle Database 11g: Develop PL/SQL Program Units C -18

Executing Saved Script Files: Method 2

Use the @ command
followed by the location and
name of the file you want to
execute, and click the Run
Script icon.

D hiyDEConnection

[ERae 5:?/»(0 v m—

Enter SQL Statemernt:

r 1/BD:\LABS) salary_report| o

The output from the ‘
script is displayed on .
the Script Output FS — 1

B> Resuts| | Bl serint Output "tExplain | B autotrace | Boams outout | @ ovin outout |
tabbed page. ﬁg

Vishney 10500
Ozer 11500
Abel Liooo

[»]

15 rows selected

Copyright © 2009, Oracle. All rights reserved.

Executing Saved Script Files: Method 2

To run a saved SQL script, perform the following:
1. Use the @ command, followed by the location, and name of the file you want to run, in the
Enter SQL Statement window.
2. Click the Run Script icon.

The results from running the file are displayed on the Script Output tabbed page. You can also
save the script output by clicking the Save icon on the Script Output tabbed page. The Windows
File Save dialog box appears and you can identify a name and location for your file.

Oracle Database 11g: Develop PL/SQL Program Units C -19

Executing SQL Statements

Use the Enter SQL Statement box to enter single or multiple
SQL statements.

[). myconnection |

€)—>[El=<f5) sun <

Erter SGL Statemert:

SELECT emplovee_id, last_name
FROM employees;

L~ urts-h
[= Resutt= F9>Output ﬁExplain ﬁ " E El
R EMPLOYEE_ID LAST HAME
EMPLOYEE_ID| LAST MAME b ______]
1 100 King 100 King
2 101 Kochhar 101 Kochhar
3 102 D& Haan 10z De Haan
103 Hunald
4 103 Hunold
104 Ernst
D O s 105 iustin

Copyright © 2009, Oracle. All rights reserved.

Executing SQL Statements

The example in the slide shows the difference in output for the same query when the [F9] key or
Execute Statement is used versus the output when [F5] or Run Script is used.

Oracle Database 11g: Develop PL/SQL Program Units C -20

Formatting the SQL Code
Enter SGL Statement:
Before _ select last _name, salary from employees
1 N [vhere zalary <=3000;
formattlng = Execute Statemert Fa
H Exzecute Explain Plan FE&
ﬁ Autctrace F10
E| Fun Script F&
] [Cpen File Ctrl-0
— = i Chrl-S
[Resutts %Scrim Coutput 'E ssiclile ™
Results: &b print File Etrl-P
& Clear CikD
L
& seL History F
W ocw CtrlX,
Copy Ctrl-C
Paste Crl-wf
Select &l Ctrl-A
1 =11 = V]| A—
E Fortmat SGL..
Describe F4
SELECT last name, |4
After _ salary
formattlng FROM emplovyees L
THERE =alary <= 3000; -

Copyright © 2009, Oracle. All rights reserved.

Formatting the SQL Code

You may want to beautify the indentation, spacing, capitalization, and line separation of the
SQL code. SQL Developer has a feature for formatting SQL code.

To format the SQL code, right-click in the statement area, and select Format SQL.

In the example in the slide, before formatting, the SQL code has the keywords not capitalized
and the statement not properly indented. After formatting, the SQL code is beautified with the
keywords capitalized and the statement properly indented.

Oracle Database 11g: Develop PL/SQL Program Units C - 21

Using Snippets

Snippets are code fragments that may be just syntax or

examples.
When you place your cursor here,
Bl R il sl e -l el it shows the Snippets window
i connections - Q- ®H-ls From the drop-down list, you can
= = select the functions category you
Log i+ Shift L 2 goryy
L I want.
4611 5]
Debuger] ?3] lEﬁ] 0 myconnect) 2. =
ot ' (mycomecis =) snippets 60 &
Run Manacer % o —
¥ Status Bar il - kS
Aggregate Functions bt i i
Toolbars 4 :
Aggregate Functions -
@E} Refrezh Character Functions
- Conversion Functions
Jf Reports L Date Formats
. . -
ﬁ Find DB Chject | = |— DratesTime Functions
Mureric Functions
Optimizer Hints -

Copyright © 2009, Oracle. All rights reserved.

Using Snippets
You may want to use certain code fragments when you use the SQL Worksheet or create or edit
a PL/SQL function or procedure. SQL Developer has the feature called Snippets. Snippets are
code fragments such as SQL functions, Optimizer hints, and miscellaneous PL/SQL
programming techniques. You can drag snippets into the Editor window.

To display Snippets, select View > Snippets.

The Snippets window is displayed at the right side. You can use the drop-down list to select a
group. A Snippets button is placed in the right window margin, so that you can display the
Snippets window if it becomes hidden.

Oracle Database 11g: Develop PL/SQL Program Units C -22

Using Snippets: Example

|} myconnection] |E] IESnippe’cs }
FERERe &d89B ¢ | &
Inserting a Erter SQL Statemart: Chatacter Functions
. g > SELECT CONCAT (charl, charZ) = CHREN)
sShi p pet COMCATIChar!, char2)
INITC.AP(Char)
LCWWER(char)
LPADCexprT, N, exprz)
Erter AL Statement: Character Functions
. SELECT CONCAT(first name, last_name) |- CHR(m
Edltmg the o |FROM employees; CONCAT(char!, char2)
snippet

Copyright © 2009, Oracle. All rights reserved.

Using Snippets: Example
To insert a Snippet into your code in a SQL Worksheet or in a PL/SQL function or procedure,
drag the snippet from the Snippets window into the desired place in your code. Then you can
edit the syntax so that the SQL function is valid in the current context. To see a brief description

of a SQL function in a tool tip, place the cursor over the function name.
The example in the slide shows that CONCAT (charl, char2)is dragged from the Character
Functions group in the Snippets window. Then the CONCAT function syntax is edited and the

rest of the statement is added as in the following:
SELECT CONCAT (first name, last name)

FROM employees;

Oracle Database 11g: Develop PL/SQL Program Units C -23

Using SQL*Plus

* You can invoke the SQL*Plus command-line interface from
SQL Developer.

 Close all the SQL Worksheets to enable the SQL*Plus
menu option.

¥ Oracle SQL Developer

File Edit Wiew Mavigate BRun Debuy Source BEEES Help
FeEe 9o xan o NETHEN
Connections | . | ¥ SQL*Plus Location PrOVIde the
- EEm = I t- f th
@ 1\\—'@ T SEL*PIus Executable: oca Ion o e
i:m Connections |c:\oracle\bin\sqlplus| i i Erowee. . f » Sqlplus . exe
B . O inc , enter the path to the SGL*P H
Ela mycnnnectmn e:em:al;:soi U?\Irl)(,z:u alsi n:edto . flle only the
.59 T et e e e £ o first time you
Help | | Ok _J | Cancel InVOke
SQL*Plus.

Copyright © 2009, Oracle. All rights reserved.

Using SQL*Plus

The SQL Worksheet supports most of the SQL*Plus statements. SQL*Plus statements must be
interpreted by the SQL Worksheet before being passed to the database; any SQL*Plus
statements that are not supported by the SQL Worksheet are ignored and not passed to the
database. To display the SQL*Plus command window, from the Tools menu, select SQL*Plus.
To use this feature, the system on which you use SQL Developer must have an Oracle home
directory or folder, with a SQL*Plus executable under that location. If the location of the
SQL*Plus executable is not already stored in your SQL Developer preferences, you are asked to
specify its location.

For example, some of the SQL*Plus statements that are not supported by SQL Worksheet are:
« append
e archive
« attribute
« break

For the complete list of SQL*Plus statements that are either supported or not supported by SQL
Worksheet, refer to the SOL *Plus Statements Supported and Not Supported in SOL Worksheet
topic in the SQL Developer online Help.

Oracle Database 11g: Develop PL/SQL Program Units C -24

Debugging Procedures and Functions

« Use SQL Developer to debug
PL/SQL functions and
procedures.

« Use the Compile for Debug
option to perform a PL/SQL

=] a myconnection

compilation so that the - fre
[F-1B8 Wiewes

procedure can be debugged. & e

. EIE§ Procedures

« Use Debug menu options to set -

breakpoints, and to perform step iﬁi%?:;;‘e‘?f L R
. i[5 Types ' Motepad
into, step over tasks. e e | @ s

[C

[E

[c

[+

£

[]----Eﬁ Materislized Views Logs @ Internet Explarer

-3 Synonyms '_‘ﬂ WinZip

I:I'"EB Public Synu.nyms Wierd

[]---@ Databage Links
[#-{38) Public Database Links | [Run

[]---@ Directories Compile Cirl+ Shit-Fo
[]----E WML Schemas
-1 Recycle Bin

Compile for Debug

Copyright © 2009, Oracle. All rights reserved.

Debugging Procedures and Functions

In SQL Developer, you can debug PL/SQL procedures and functions. Using the Debug menu
options, you can perform the following debugging tasks:

* Find Execution Point goes to the next execution point.

* Resume continues execution.

» Step Over bypasses the next method and goes to the next statement after the method.

» Step Into goes to the first statement in the next method.

* Step Out leaves the current method and goes to the next statement.

* Step to End of Method goes to the last statement of the current method.

* Pause halts execution but does not exit, thus allowing you to resume execution.

* Terminate halts and exits the execution. You cannot resume execution from this point;
instead, to start running or debugging from the beginning of the function or procedure,
click the Run or Debug icon in the Source tab toolbar.

* Garbage Collection removes invalid objects from the cache in favor of more frequently
accessed and more valid objects.

These options are also available as icons in the debugging toolbar.

Oracle Database 11g: Develop PL/SQL Program Units C -25

Database Reporting

SQL Developer provides a number of predefined reports about
the database and its objects.

%_(_Zonnecﬁons Reports I = Search Source Code _
Al Reports & > g Refresh:|—'| myconnection
= ﬁ_?_j,taﬁzf :,aorjrie;::;e |8 owner |8 PsoL oviectiame B Type B Line B Text
-3 Al Objects | |Hr ADD_JOB_HISTORY ~ PROCEDURE 1 PROCEDURE add_jok_histary
-3 Application Express | |HR ADD_JOE_HISTORY PROCEDURE 2 p_emp_id job_hiztory empl
&3 Charts IHr ADD_JOB_HISTORY PROCEDURE 3, p_start_date job_history starl
e-0 Database Administration HR ADD_JOB_HISTORY PROCEDURE 4 p_end_date job_history.end
Eg 5)::; Dictionary HR: ADD_JOB HIETORY — PROCEDURE s pobid job_history job_id
e | IHR ADD_JOB_HISTORY ~ PROCEDURE 6 ,p_department_id job_history o
Program Unit Argumerts | [HR ADD_JOB_HISTORY ~ PROCEDURE 7
Elsearch source Cade ||Hr ADD_JOB_HISTORY PROCEDURE 8IS
Unit Line Cournts | ADD_JOB_HISTORY PROCEDURE 9 BEGIN
B3 Security IR ADD_JOB_HISTORY PROCEDURE 10 INSERT INTC job_history (smplove
B-C3 Streams o
63 Tk s ADD_JOB_HISTORY PROCEDURE 11 joh_itl, cepartment
BB L ||Hr ADD_JOB_HISTORY — PROCEDURE 12 WALUES(n_emp_id, p_start_date)
----- (& User Defined Reports | IR ADD_JOB_HISTORY PROCEDURE 13 END addl_job_histary;

Copyright © 2009, Oracle. All rights reserved.

Database Reporting

SQL Developer provides many reports about the database and its objects. These reports can be
grouped into the following categories:

* About Your Database reports

* Database Administration reports

* Table reports

* PL/SQL reports

* Security reports

* XML reports

* Jobs reports

* Streams reports

* All Objects reports

* Data Dictionary reports

* User-Defined reports
To display reports, click the Reports tab at the left side of the window. Individual reports are
displayed in tabbed panes at the right side of the window; and for each report, you can select
(using a drop-down list) the database connection for which to display the report. For reports
about objects, the objects shown are only those visible to the database user associated with the
selected database connection, and the rows are usually ordered by Owner. You can also create
your own user-defined reports.

Oracle Database 11g: Develop PL/SQL Program Units C - 26

Creating a User-Defined Report

Create and save user-defined reports for repeated use.

E_JnConnecﬁonS Reports‘ ¥ Create Report Dialog

Al Reports
| B~ Data Dictionary Reports Master |
i[5 User Defined Report
Copy Mame |emp_sa| | Style |Tab|e
ﬁ Paste De=scription |empl0yees wiith salary ==10000
1 &dd Folder Tootip |Rep0r1 on Employees with Salary ==10000

B Add Report AL

SELECT employee_id, last name,
gt FROM eunployees
WHERE salary »>=10000;

Export

(]

addchid || Test | | Losd |
o e e ey |

EJﬂCDI‘II‘IECtiDI‘IS Repurts
&)l Reports

ﬁ Data Dictionary Reports |
Bl User Defined Reparts Help oy []
EHB' B reports
emp_sal

#-03 sdesrepots —T—>Qrganize reports in folders.

Copyright © 2009, Oracle. All rights reserved.

Creating a User-Defined Report

User-defined reports are reports created by SQL Developer users. To create a user-defined
report, perform the following steps:
1. Right-click the User Defined Reports node under Reports, and select Add Report.
2. In the Create Report Dialog box, specify the report name and the SQL query to retrieve
information for the report. Then, click Apply.

In the example in the slide, the report name is specified as emp sal. An optional description is
provided indicating that the report contains details of employees with salary >= 10000.
The complete SQL statement for retrieving the information to be displayed in the user-defined
report is specified in the SQL box. You can also include an optional tool tip to be displayed
when the cursor stays briefly over the report name in the Reports navigator display.

You can organize user-defined reports in folders, and you can create a hierarchy of folders and
subfolders. To create a folder for user-defined reports, right-click the User Defined Reports node
or any folder name under that node and select Add Folder. Information about user-defined
reports, including any folders for these reports, is stored in a file named UserReports.xml
under the directory for user-specific information.

Oracle Database 11g: Develop PL/SQL Program Units C -27

Search Engines and External Tools

3 4 9 € @ & W 2 Shortcuts to
~| frequently used tools
8 o -
=] metaink
E Docs
[=) 102 docs
E 92 docs
E zearch.oracle.com izl Tazks
&% Dreamweaver
& wozila Firefox
Links to popular D e el
search engines and e
discussion forums
[fnatoos || mwew. || Est. || peste |

Copyright © 2009, Oracle. All rights reserved.

Search Engines and External Tools

To enhance productivity of the SQL developers, SQL Developer has added quick links to
popular search engines and discussion forums such as AskTom, Google, and so on. Also, you
have shortcut icons to some of the frequently used tools such as Notepad, Microsoft Word, and
Dreamweaver, available to you.

You can add external tools to the existing list or even delete shortcuts to tools that you do not
use frequently. To do so, perform the following:
1. From the Tools menu, select External Tools.
2. In the External Tools dialog box, select New to add new tools. Select Delete to remove any
tool from the list.

Oracle Database 11g: Develop PL/SQL Program Units C -28

Setting Preferences

« Customize the SQL Developer interface and environment.
* In the Tools menu, select Preferences.

¥ Preferences ﬁ|
388 Environment Environment
-~ Boocelerators
v
[Code Editar Showe Splash Screen. at Startup -
[Database I:‘ Save AllYWhen Deactivating or Exiting
[Debugger Sutomatically Reload Externally Modified Files
- Documentation Silerthy Reload When File Iz Unmodified
- Extensions
~File Types Unclo Level:
- PLISGL Compiler Options Newigation Level:
PL/SGL Debugger e
e SEL*PIuE Look and Feel: Oracle B | (Reguires restart)
- SGL Formatter Theme: Default - | (ReoLires restart)

= Weh Browser and Proxy
Line Tetminstor: |Platfnrm Detaut = | [Applies to nesw files anly)

Encading: | Cp1252 Bl

Reszet Skipped Messages |

‘ Help | | oK J | Cancel ‘

Copyright © 2009, Oracle. All rights reserved.

Setting Preferences

You can customize many aspects of the SQL Developer interface and environment by modifying
SQL Developer preferences according to your preferences and needs. To modify SQL Developer
preferences, select Tools, then Preferences.

Following are some of the categories that the preferences are grouped into:
* Environment
» Accelerators (Keyboard shortcuts)
* Code Editors
* Database
* Debugger
* Documentation
* Extensions
» File Types
* Migration
* PL/SQL Compilers
* PL/SQL Debugger

Oracle Database 11g: Develop PL/SQL Program Units C -29

Specifications of SQL Developer 1.5.3

« SQL Developer 1.5.3 is the first translation release, and is
a patch to Oracle SQL Developer 1.5.

« New feature list is available at:

— http://www.oracle.com/technology/products/database/sql_de
veloper/files/newFeatures v15.html

* Supports Windows, Linux, and Mac OS X platforms

- Toinstall, unzip the downloaded SQL Developer kit, which
includes the required minimum JDK (JDK1.5.0 _06).

* To start, double-click sgldeveloper.exe
 Connects to Oracle Database version 9.2.0.1 and later

* Freely downloadable from the following link:

— http://www.oracle.com/technology/products/database/sql_de
veloper/index.html

Copyright © 2009, Oracle. All rights reserved.

Specifications of SQL Developer 1.5.3

SQL Developer 1.5.3 is also available, as it is the latest version of the product that was available
at the time of the release of this of course

Like version 1.2, SQL Developer 1.5.3 is developed in Java leveraging the Oracle JDeveloper
integrated development environment (IDE). Therefore, it is a cross-platform tool. The tool runs
on Windows, Linux, and Mac operating system (OS) X platforms. You can install SQL
Developer on the Database Server and connect remotely from your desktop, thus avoiding
client/server network traffic.

Default connectivity to the database is through the Java Database Connectivity (JDBC) Thin
driver, and therefore, no Oracle Home is required. The JDBC drivers that are shipped with
version 1.5.3 support 11g R1. Therefore, users will no longer be able to connect to an Oracle
8.1.7 database.

SQL Developer does not require an installer and you need to simply unzip the downloaded file.
With SQL Developer, users can connect to Oracle Databases 9.2.0.1 and later, and all Oracle
database editions including Express Edition.

Oracle Database 11g: Develop PL/SQL Program Units C - 30

Installing SQL Developer 1.5.3

Download the Oracle SQL Developer kit and unzip into any
directory on your machine.

% sqldeveloper

BEE

e T i a File Edit \iew Favorites Tools Help ,"
=] G Back ~ ' ?) Search [Falders '
> I i

fddress ||j! OnYlabs! Softwaretsgldeveloper w | G0
Estracting rt.jar Folders 28 By sqlcli 4
= (53 Saftware ~] File
— — 1 KB
1 BC42 sefel
I vt M35-D0S Batch File
) ide 1EB
I j2ee
> = jdbe sqldeveloper
53 idew
I jdk
I fiib sgldeveloper,sh
) =H File
= lib L KE J
133 rdbms v w
4 > £ | 3

Copyright © 2009, Oracle. All rights reserved.

Installing SQL Developer 1.5.3

Oracle SQL Developer does not require an installer. To install SQL Developer, you need an
unzip tool.

To install SQL Developer, perform the following steps:
1. Create a folder. For example: <local drives>:\software
2. Download the SQL Developer kit from
http://www.oracle.com/technology/products/database/sql developer/index.html.
3. Unzip the downloaded SQL Developer kit into the folder created in step 1.

Starting SQL Developer
To start SQL Developer, go to <local drives:\software\sgldeveloper, and
double-click sgldeveloper.exe.

Notes:
* The SQL Developer 1.5.3 kit, named sqldeveloper-5783.zip, is located in is
d:\labs\software on your classroom machine.
* When you open SQL Developer 1.5.3 for the first time, select No when prompted to
migrate settings from a previous release.

Oracle Database 11g: Develop PL/SQL Program Units C - 31

SQL Developer 1.5.3 Interface

¥ Oracle SOL Developer,

File Edit W¥iew Havigate Bun Source WVersioning Migration Tools Help

Goag 90 X ERB OO = - |.1,
aCDnnectiuns " ||@ =] [
; Connections %"
4
You must define a &
connection to start &
using SQL Developer &

for running SQL queries
on a database schema.

(5 Sl History

Copyright © 2009, Oracle. All rights reserved.

SQL Developer 1.5.3 Interface
The SQL Developer 1.5.3 interface contains all of the features found in version 1.2, and also
some additional features.
Version 1.5.3 contains three main navigation tabs, from left to right:
* Connections tab: By using this tab, you can browse database objects and users to which

you have access.
» Files tab: Identified by the Files folder icon, this tab enables you to access files from your

local machine without having to use the File > Open menu.
* Reports tab: Identified by the Reports icon, this tab enables you to run predefined reports
or create and add your own reports.
General Navigation and Use
SQL Developer uses the left side for navigation to find and select objects, and the right side to
display information about selected objects. You can customize many aspects of the appearance
and behavior of SQL Developer by setting preferences.
The features and functions that have been covered previously in this lesson for version 1.2, such
as Creating a Connection, Browsing Database Objects, Creating Schema Objects, Using the SQL
Worksheet, Using Snippets, Creating Reports, and Setting Preferences, are equivalent in the
1.5.3 interface.
Note: As with version 1.2, you need to define at least one connection to be able to connect to a
database schema and issue SQL queries or run procedures/functions.

Oracle Database 11g: Develop PL/SQL Program Units C - 32

SQL Developer 1.5.3 Interface (Continued)
Menus

The following menus contain standard entries, plus entries for features specific to SQL
Developer:

View: Contains options that affect what is displayed in the SQL Developer interface
Navigate: Contains options for navigating to panes and in the execution of subprograms
Run: Contains the Run File and Execution Profile options that are relevant when a
function or procedure is selected, and also debugging options.

Source: Contains options for use when you edit functions and procedures

Versioning: Provides integrated support for the following versioning and source control
systems: CVS (Concurrent Versions System) and Subversion.

Migration: Contains options related to migrating third-party databases to Oracle

Tools: Invokes SQL Developer tools such as SQL*Plus, Preferences, and SQL
Worksheet

Note: The Run menu also contains options that are relevant when a function or procedure is
selected for debugging. These are the same options that are found in the Debug menu in
version 1.2.

Oracle Database 11g: Develop PL/SQL Program Units C - 33

Summary

In this appendix, you should have learned how to use SQL
Developer to do the following:

* Browse, create, and edit database objects
« Execute SQL statements and scripts in SQL Worksheet
« Create and save custom reports

Copyright © 2009, Oracle. All rights reserved.

Summary

SQL Developer is a free graphical tool to simplify database development tasks. Using SQL
Developer, you can browse, create, and edit database objects. You can use SQL Worksheet to
run SQL statements and scripts. SQL Developer enables you to create and save your own special
set of reports for repeated use.

Version 1.2 is the default version set up for this class. Version 1.5.3 is also available on the
classroom machine for use with all code examples, demos, and practices.

Oracle Database 11g: Develop PL/SQL Program Units C - 34

Review of PL/SQL

Copyright © 2009, Oracle. All rights reserved.

Block Structure for Anonymous
PL/SQL Blocks

* DECLARE (optional)

— Declare PL/SQL objects to be used within this block.
* BEGIN (mandatory)

— Define the executable statements.
* EXCEPTION (optional)

— Define the actions that take place if an error or exception
arises.

* END; (mandatory)

Copyright © 2009, Oracle. All rights reserved.

Anonymous Blocks

Anonymous blocks do not have names. You declare them at the point in an application where
they are to be run, and they are passed to the PL/SQL engine for execution at run time.

* The section between the keywords DECLARE and BEGIN is referred to as the declaration
section. In the declaration section, you define the PL/SQL objects such as variables,
constants, cursors, and user-defined exceptions that you want to reference within the block.
The DECLARE keyword is optional if you do not declare any PL/SQL objects.

* The BEGIN and END keywords are mandatory and enclose the body of actions to be

performed. This section is referred to as the executable section of the block.
* The section between EXCEPTION and END is referred to as the exception section. The

exception section traps error conditions. In it, you define actions to take if a specified
condition arises. The exception section is optional.

The keywords DECLARE, BEGIN, and EXCEPTION are not followed by semicolons, but END
and all other PL/SQL statements do require semicolons.

Oracle Database 11g: Develop PL/SQL Program Units D -2

Declaring PL/SQL Variables

* Syntax:

identifier [CONSTANT] datatype [NOT NULL]
[:= | DEFAULT expr];

« Examples:

Declare
v_hiredate DATE;
v_deptno NUMBER (2) NOT NULL := 10;
v_location VARCHAR2 (13) := 'Atlanta';
C_ comm CONSTANT NUMBER := 1400;
v_count BINARY INTEGER := 0;
v _valid BOOLEAN NOT NULL := TRUE;

Copyright © 2009, Oracle. All rights reserved.

Declaring PL/SQL Variables

You need to declare all PL/SQL identifiers within the declaration section before referencing
them within the PL/SQL block. You have the option to assign an initial value. You do not need
to assign a value to a variable in order to declare it. If you refer to other variables in a
declaration, you must be sure to declare them separately in a previous statement.

In the syntax:
Identifier isthe name of the variable
CONSTANT constrains the variable so that its value cannot change; constants must be
initialized.
Datatype is a scalar, composite, reference, or LOB data type (This course covers only
scalar and composite data types.)

NOT NULL constrains the variable so that it must contain a value; NOT NULL variables
must be initialized.

expr 1s any PL/SQL expression that can be a literal, another variable, or an
expression involving operators and functions

Oracle Database 11g: Develop PL/SQL Program Units D -3

Declaring Variables with the
%$TYPE Attribute: Examples

e o o

V_ename employees.last name%TYPE;
v_balance NUMBER (7, 2) ;
v_min balance v_balance%TYPE := 10;

Copyright © 2009, Oracle. All rights reserved.

Declaring Variables with the $TYPE Attribute

Declare variables to store the name of an employee.

V_ename employees.last name3TYPE;

Declare variables to store the balance of a bank account, as well as the minimum balance, which
starts out as 10.

v_balance NUMBER (7, 2) ;
v_min_balance v_balance%TYPE := 10;

A NOT NULL column constraint does not apply to variables declared using $TYPE. Therefore, if
you declare a variable using the $TYPE attribute and a database column defined as NOT NULL,
then you can assign the NULL value to the variable.

Oracle Database 11g: Develop PL/SQL Program Units D -4

Creating a PL/SQL Record

« Declare variables to store the name, job, and salary of a
new employee.

TYPE emp record type IS RECORD

(ename VARCHAR2 (25) ,
job VARCHAR2 (10),
sal NUMBER (8, 2)) ;
emp record emp record type;

Copyright © 2009, Oracle. All rights reserved.

Creating a PL/SQL Record

Field declarations are like variable declarations. Each field has a unique name and a specific
data type. There are no predefined data types for PL/SQL records, as there are for scalar
variables. Therefore, you must create the data type first and then declare an identifier using that
data type.

The following example shows that you can use the $TYPE attribute to specify a field data type:
DECLARE
TYPE emp record type IS RECORD
(empid NUMBER(6) NOT NULL := 100,
ename employees.last name3TYPE,
job employees.job id%TYPE) ;
emp record emp record type;

Note: You can add the NOT NULL constraint to any field declaration to prevent the assigning of
nulls to that field. Remember that fields declared as NOT NULL must be initialized.

Oracle Database 11g: Develop PL/SQL Program Units D -5

%$ROWTYPE Attribute: Examples

 Declare a variable to store the same information about a
department as is stored in the DEPARTMENTS table.

dept record departments%ROWTYPE;

 Declare a variable to store the same information about an
employee as is stored in the EMPLOYEES table.

emp record employees%SROWTYPE;

Copyright © 2009, Oracle. All rights reserved.

Examples

The first declaration in the slide creates a record with the same field names and field data types
as a row in the DEPARTMENTS table. The fields are DEPARTMENT ID, DEPARTMENT NAME,
MANAGER_ID,mﬂiLOCATION_ID.

The second declaration in the slide creates a record with the same field names and field data
types as a row in the EMPLOYEES table. The fields are EMPLOYEE ID, FIRST NAME,
LAST NAME, EMAIL, PHONE NUMBER, HIRE DATE, JOB ID, SALARY,
COMMISSION_PCT,MANAGER_ID,mﬂlDEPARTMENT_ID.

In the following example, you select column values into a record named job record.
DECLARE
job_record jobs%ROWTYPE;

BEGIN
SELECT * INTO job_ record
FROM jobs
WHERE

Oracle Database 11g: Develop PL/SQL Program Units D -6

Creating a PL/SQL Table

DECLARE
TYPE ename table type IS TABLE OF
employees.last name%TYPE
INDEX BY BINARY INTEGER;
TYPE hiredate table type IS TABLE OF DATE
INDEX BY BINARY INTEGER;

ename table ename table type;
hiredate table hiredate table type;
BEGIN

ename table(l) := 'CAMERON';
hiredate table(8) := SYSDATE + 7;
IF ename table.EXISTS(1l) THEN
INSERT INTO

END;

Copyright © 2009, Oracle. All rights reserved.

Creating a PL/SQL Table

There are no predefined data types for PL/SQL tables, as there are for scalar variables.
Therefore, you must create the data type first and then declare an identifier using that data type.

Referencing a PL/SQL Table
Syntax

pl/sgl table name (primary key value)
In this syntax, primary key value belongs tothe BINARY INTEGER type.
Reference the third row in a PL/SQL table ENAME TABLE.

ename_table(3)

The magnitude range of a BINARY INTEGER is—2,147,483,647 through 2,147,483,647. The
primary key value can therefore be negative. Indexing need not start with 1.

Note: The table.EXISTS (1) statement returns TRUE if at least one row with index i is
returned. Use the EXISTS statement to prevent an error that is raised in reference to a
nonexistent table element.

Oracle Database 11g: Develop PL/SQL Program Units D -7

SELECT Statements in PL/SQL: Example

The INTO clause is mandatory.

DECLARE
v_deptid NUMBER (4);
v_loc NUMBER(4);

BEGIN
SELECT department id, location id
INTO v_deptid, v_loc
FROM departments
WHERE department name = 'Sales';
END;

Copyright © 2009, Oracle. All rights reserved.

INTO Clause
The INTO clause is mandatory and occurs between the SELECT and FROM clauses. It is used to
specify the names of variables to hold the values that SQL returns from the SELECT clause. You
must give one variable for each item selected, and the order of variables must correspond to the
items selected.

You use the INTO clause to populate either PL/SQL variables or host variables.

Queries Must Return One and Only One Row

SELECT statements within a PL/SQL block fall into the ANSI classification of Embedded SQL,
for which the following rule applies:

Queries must return one and only one row. More than one row or no row generates an error.

PL/SQL deals with these errors by raising standard exceptions, which you can trap in the
exception section of the block with the NO DATA FOUND and TOO MANY ROWS exceptions.
You should code SELECT statements to return a single row.

Oracle Database 11g: Develop PL/SQL Program Units D -8

Inserting Data: Example

Add new employee information to the EMPLOYEES table.

DECLARE

v_empid employees.employee id%TYPE;
BEGIN

SELECT employees seq.NEXTVAL

INTO V_empno

FROM dual;

INSERT INTO employees(employee id, last name,
job id, department id)
VALUES (v_empid, 'HARDING', 'PU CLERK', 30);
END;

Copyright © 2009, Oracle. All rights reserved.

Inserting Data
* Use SQL functions, such as USER and SYSDATE.
* Generate primary key values by using database sequences.
* Derive values in the PL/SQL block.
* Add column default values.
Note: There is no possibility for ambiguity with identifiers and column names in the INSERT
statement. Any identifier in the INSERT clause must be a database column name.

Oracle Database 11g: Develop PL/SQL Program Units D -9

Updating Data: Example

Increase the salary of all employees in the EMPLOYEES table
who are purchasing clerks.

DECLARE

v_sal increase employees.salary%TYPE := 2000;
BEGIN

UPDATE employees

SET salary = salary + v_sal increase

WHERE job id = 'PU CLERK';
END;

Copyright © 2009, Oracle. All rights reserved.

Updating Data
There may be ambiguity in the SET clause of the UPDATE statement because, although the

identifier on the left of the assignment operator is always a database column, the identifier on the
right can be either a database column or a PL/SQL variable.

Remember that the WHERE clause is used to determine which rows are affected. If no rows are
modified, no error occurs (unlike the SELECT statement in PL/SQL).

Note: PL/SQL variable assignments always use : = and SQL column assignments always
use = .. Remember that if column names and identifier names are identical in the WHERE clause,

the Oracle server looks to the database first for the name.

Oracle Database 11g: Develop PL/SQL Program Units D -10

Deleting Data: Example

Delete rows that belong to department 190 from the
EMPLOYEES table.

DECLARE

v_deptid employees.department id%TYPE := 190;
BEGIN

DELETE FROM employees

WHERE department id = v _deptid;
END;

Copyright © 2009, Oracle. All rights reserved.

Deleting Data

Delete a specific job:

DECLARE
v_jobid jobs.job id$TYPE := ‘PR _REP’;
BEGIN

DELETE FROM jObS
WHERE job id = v_jobid;
END;

Oracle Database 11g: Develop PL/SQL Program Units D - 11

COMMIT and ROLLBACK Statements

* |nitiate a transaction with the first DML command to follow
a COMMIT or ROLLBACK statement.

e Use COMMIT and ROLLBACK SQL statements to terminate
a transaction explicitly.

Copyright © 2009, Oracle. All rights reserved.

Controlling Transactions

You control the logic of transactions with COMMIT and ROLLBACK SQL statements, rendering
some groups of database changes permanent while discarding others. As with the Oracle server,
data manipulation language (DML) transactions start at the first command to follow a COMMIT
or ROLLBACK and end on the next successful COMMIT or ROLLBACK. These actions may occur
within a PL/SQL block or as a result of events in the host environment. A COMMIT ends the
current transaction by making all pending changes to the database permanent.

Syntax
COMMIT [WORK] ;
ROLLBACK [WORK] ;

In this syntax, WORK is for compliance with ANSI standards.

Note: The transaction control commands are all valid within PL/SQL, although the host
environment may place some restriction on their use.

You can also include explicit locking commands (such as LOCK TABLE and SELECT
FOR UPDATE) in a block. They stay in effect until the end of the transaction. Also, one
PL/SQL block does not necessarily imply one transaction.

Oracle Database 11g: Develop PL/SQL Program Units D -12

SQL Cursor Attributes

You can use SQL cursor attributes to test the outcome of your
SQL statements.

SQL Cursor Attributes | Description

SQL%ROWCOUNT Number of rows affected by the most recent SQL
statement (an integer value)

SQL%FOUND Boolean attribute that evaluates to TRUE if the most
recent SQL statement affects one or more rows

SQL$NOTFOUND Boolean attribute that evaluates to TRUE if the most
recent SQL statement does not affect any rows

SQL%$ISOPEN Boolean attribute that always evaluates to FALSE
because PL/SQL closes implicit cursors immediately
after they are executed

Copyright © 2009, Oracle. All rights reserved.

SQL Cursor Attributes

SQL cursor attributes enable you to evaluate what happened when the implicit cursor was last
used. You use these attributes in PL/SQL statements such as functions. You cannot use them in
SQL statements.

You can use the SQL$ROWCOUNT, SQL%$FOUND, SQL$NOTFOUND, and SQL$ISOPEN
attributes in the exception section of a block to gather information about the execution of a DML

statement. In PL/SQL, a DML statement that does not change any rows is not seen as an error
condition, whereas the SELECT statement will return an exception if it cannot locate any rows.

Oracle Database 11g: Develop PL/SQL Program Units D -13

IF, THEN, and ELSIF Statements: Example

For a given value entered, return a calculated value.

IF v_start > 100 THEN
v_start := 2 * v start;
ELSIF v _start >= 50 THEN

v_start := 0.5 * v _start;
ELSE

v_start := 0.1 * v _start;
END IF;

Copyright © 2009, Oracle. All rights reserved.

IF, THEN, and ELSIF Statements

When possible, use the ELSIF clause instead of nesting IF statements. The code is easier to
read and understand, and the logic is clearly identified. If the action in the ELSE clause consists
purely of another IF statement, it is more convenient to use the ELSTF clause. This makes the
code clearer by removing the need for nested END IFs at the end of each further set of
conditions and actions.
Example
IF conditionl THEN
statementl;
ELSIF condition2 THEN
statement?2;
ELSIF condition3 THEN
statement3;
END IF;

The statement in the slide is further defined as follows:

For a given value entered, return a calculated value. If the entered value is over 100, then the
calculated value is two times the entered value. If the entered value 1s between 50 and 100, then
the calculated value is 50% of the starting value. If the entered value is less than 50, then the
calculated value is 10% of the starting value.

Note: Any arithmetic expression containing null values eyaluates to null.

Oracle Database 11g: Develop PL/SQL Program Units D - 14

Basic Loop: Example

DECLARE
v_ordid order items.order id%TYPE := 101;
v_counter NUMBER (2) := 1;

BEGIN
LOOP

INSERT INTO order items(order id,line item id)
VALUES (v_ordid, v counter);
v_counter := v_counter + 1;
EXIT WHEN v counter > 10;
END LOOP;
END;

Copyright © 2009, Oracle. All rights reserved.

Basic Loop
The basic loop example shown in the slide is defined as follows:

Insert the first 10 new line items for order number 101.

Note: A basic loop enables execution of its statements at least once, even if the condition has
been met upon entering the loop.

Oracle Database 11g: Develop PL/SQL Program Units D -15

FOR Loop: Example

Insert the first 10 new line items for order number 101.

DECLARE
v_ordid order items.order id%TYPE := 101;
BEGIN
FOR i IN 1..10 LOOP
INSERT INTO order items(order id,line item id)
VALUES (v_ordid, 1i);
END LOOP;
END;

Copyright © 2009, Oracle. All rights reserved.

FOR Loop

The slide shows a FOR loop that inserts 10 rows into the order items table.

Oracle Database 11g: Develop PL/SQL Program Units D -16

WHILE Loop: Example

ACCEPT p price PROMPT 'Enter the price of the item: '
ACCEPT p itemtot -

PROMPT 'Enter the maximum total for purchase of item: '
DECLARE

v_gty NUMBER (8) := 1;

v_running total NUMBER(7,2) := 0;

BEGIN
WHILE v _running total < &p itemtot LOOP
v gty := v gty + 1;
v_running total := v gty * &p price;
END LOOP;

Copyright © 2009, Oracle. All rights reserved.

WHILE Loop

In the example in the slide, the quantity increases with each iteration of the loop until the
quantity is no longer less than the maximum price allowed for spending on the item.

Oracle Database 11g: Develop PL/SQL Program Units D -17

Controlling Explicit Cursors

No
DECLARE|—»| OPEN |—| FETCH Yes,! crosk
Create a Identify the Load the Test for Release the
named SQL - - .
area active set current row existing rows active set

into variables
Return to FETCH

if rows are found

Copyright © 2009, Oracle. All rights reserved.

Explicit Cursors

Controlling Explicit Cursors Using Four Commands

L.

2.

Declare the cursor by naming it and defining the structure of the query to be performed
within it.

Open the cursor. The OPEN statement executes the query and binds any variables that are
referenced. Rows identified by the query are called the active set and are now available for
fetching.

Fetch data from the cursor. The FETCH statement loads the current row from the cursor
into variables. Each fetch causes the cursor to move its pointer to the next row in the active
set. Therefore, each fetch accesses a different row returned by the query. In the flow
diagram in the slide, each fetch tests the cursor for any existing rows. If rows are found, it
loads the current row into variables; otherwise, it closes the cursor.

Close the cursor. The CLOSE statement releases the active set of rows. It is now possible to
reopen the cursor to establish a fresh active set.

Oracle Database 11g: Develop PL/SQL Program Units D -18

Declaring the Cursor: Example

DECLARE
CURSOR cl IS
SELECT employee id, last name
FROM employees;

CURSOR c2 IS
SELECT *
FROM departments
WHERE department id = 10;
BEGIN

Copyright © 2009, Oracle. All rights reserved.

Explicit Cursor Declaration

Retrieve the employees one by one.
DECLARE
v_empid employees.employee id%TYPE;
v_ename employees.last name%TYPE;
CURSOR c1 IS
SELECT employee id, last name
FROM employees;
BEGIN

Note: You can reference variables in the query, but you must declare them before the CURSOR
statement.

Oracle Database 11g: Develop PL/SQL Program Units D -19

Opening the Cursor

OPEN cursor name;

« Open the cursor to execute the query and identify the
active set.

« If the query returns no rows, no exception is raised.
e Use cursor attributes to test the outcome after a fetch.

Copyright © 2009, Oracle. All rights reserved.

OPEN Statement

Open the cursor to execute the query and identify the result set, which consists of all rows that
meet the query search criteria. The cursor now points to the first row in the result set.

In the syntax, cursor name is the name of the previously declared cursor.

OPEN is an executable statement that performs the following operations:
1. Dynamically allocates memory for a context area that eventually contains crucial

processing information
2. Parses the SELECT statement

3. Binds the input variables—that is, sets the value for the input variables by obtaining their
memory addresses
4. Identifies the result set—that is, the set of rows that satisfy the search criteria. Rows in the
result set are not retrieved into variables when the OPEN statement is executed. Rather, the
FETCH statement retrieves the rows.
5. Positions the pointer just before the first row in the active set
Note: If the query returns no rows when the cursor is opened, then PL/SQL does not raise an
exception. However, you can test the cursor’s status after a fetch.
For cursors declared by using the FOR UPDATE clause, the OPEN statement also locks those
TOWS.

Oracle Database 11g: Develop PL/SQL Program Units D -20

Fetching Data from the Cursor: Examples

FETCH cl INTO v _empid, v_ename;

OPEN defined cursor;

LOOP
FETCH defined cursor INTO defined variables
EXIT WHEN ...;

-- Process the retrieved data

END ;

Copyright © 2009, Oracle. All rights reserved.

FETCH Statement

You use the FETCH statement to retrieve the current row values into output variables. After the

fetch, you can manipulate the variables by further statements. For each column value returned by
the query associated with the cursor, there must be a corresponding variable in the INTO list.
Also, their data types must be compatible. Retrieve the first 10 employees one by one:
DECLARE
v_empid employees.employee id%TYPE;
v_ename employees.last name%TYPE;
i NUMBER := 1;
CURSOR c1 IS
SELECT employee id, last name
FROM employees;
BEGIN
OPEN c1;
FOR 1 IN 1..10 LOOP
FETCH cl INTO v_empid, v_ename;

END LOOP;
END;

Oracle Database 11g: Develop PL/SQL Program Units D - 21

Closing the Cursor

CLOSE cursor name;

« Close the cursor after completing the processing of the
rows.

* Reopen the cursor, if required.

« Do not attempt to fetch data from a cursor after it has been
closed.

Copyright © 2009, Oracle. All rights reserved.

CLOSE Statement
The CLOSE statement disables the cursor, and the result set becomes undefined. Close the cursor
after completing the processing of the SELECT statement. This step allows the cursor to be
reopened, if required. Therefore, you can establish an active set several times.
In the syntax, cursor name is the name of the previously declared cursor.
Do not attempt to fetch data from a cursor after it has been closed, or the INVALID CURSOR
exception will be raised.
Note: The CLOSE statement releases the context area. Although it is possible to terminate the
PL/SQL block without closing cursors, you should always close any cursor that you declare
explicitly in order to free up resources. There is a maximum limit to the number of open cursors
per user, which is determined by the OPEN CURSORS parameter in the database parameter
field. By default, the maximum number of OPEN_CURSORS is 50.

FOR i IN 1..10 LOOP
FETCH cl INTO v_empid, v_ename;
END LOOP;
CLOSE c1;
END;

Oracle Database 11g: Develop PL/SQL Program Units D -22

Explicit Cursor Attributes

Obtain status information about a cursor.

Attribute Type Description
ISOPEN BOOLEAN Evaluates to TRUE if the cursor is open
$NOTFOUND BOOLEAN Evaluates to TRUE if the most recent fetch does

not return a row

$FOUND BOOLEAN Evaluates to TRUE if the most recent fetch returns
a row; complement of $NOTFOUND

$ROWCOUNT NUMBER Evaluates to the total number of rows returned so
far

Copyright © 2009, Oracle. All rights reserved.

Explicit Cursor Attributes

As with implicit cursors, there are four attributes for obtaining status information about a cursor.
When appended to the cursor or cursor variable, these attributes return useful information about
the execution of a DML statement.

Note: Do not reference cursor attributes directly in a SQL statement.

Oracle Database 11g: Develop PL/SQL Program Units D -23

Cursor FOR Loops: Example

Retrieve employees one by one until there are no more left.

DECLARE
CURSOR cl IS
SELECT employee id, last name
FROM employees;
BEGIN
FOR emp record IN cl LOOP
-- implicit open and implicit fetch occur
IF emp record.employee id = 134 THEN
END LOOP; -- implicit close occurs
END;

Copyright © 2009, Oracle. All rights reserved.

Cursor FOR Loops

A cursor FOR loop processes rows in an explicit cursor. The cursor is opened, rows are fetched
once for each iteration in the loop, and the cursor is closed automatically when all rows have
been processed. The loop itself is terminated automatically at the end of the iteration where the
last row was fetched. In the slide example, emp record in the cursor for loop 1s an implicitly
declared record that is used in the FOR LOOP construct.

Oracle Database 11g: Develop PL/SQL Program Units D -24

FOR UPDATE Clause: Example

Retrieve the orders for amounts over $1,000 that were
processed today.

DECLARE
CURSOR cl IS

SELECT customer id, order id

FROM orders

WHERE order date = SYSDATE
AND order total > 1000.00

ORDER BY customer id

FOR UPDATE NOWAIT;

Copyright © 2009, Oracle. All rights reserved.

FOR UPDATE Clause

If the database server cannot acquire the locks on the rows it needs in a SELECT FOR UPDATE,
then it waits indefinitely. You can use the NOWAIT clause in the SELECT FOR UPDATE
statement and test for the error code that returns due to failure to acquire the locks in a loop.
Therefore, you can retry opening the cursor # times before terminating the PL/SQL block.

If you intend to update or delete rows by using the WHERE CURRENT OF clause, you must
specify a column name in the FOR UPDATE OF clause.

If you have a large table, you can achieve better performance by using the LOCK TABLE
statement to lock all rows in the table. However, when using LOCK TABLE, you cannot use the
WHERE CURRENT OF clause and must use the notation WHERE column = identifier.

Oracle Database 11g: Develop PL/SQL Program Units D -25

WHERE CURRENT OF Clause: Example

DECLARE
CURSOR cl IS
SELECT salary FROM employees
FOR UPDATE OF salary NOWAIT;
BEGIN
FOR emp record IN cl LOOP
UPDATE ...
WHERE CURRENT OF cl;
END LOOP;
COMMIT;
END;

Copyright © 2009, Oracle. All rights reserved.

WHERE CURRENT OF Clause

You can update rows based on criteria from a cursor.

Additionally, you can write your DELETE or UPDATE statement to contain the WHERE
CURRENT OF cursor name clause to refer to the latest row processed by the FETCH

statement. When you use this clause, the cursor you reference must exist and must contain the
FOR UPDATE clause in the cursor query; otherwise, you get an error. This clause enables you to

apply updates and deletes to the currently addressed row without the need to explicitly reference
the ROWID pseudocolumn.

Oracle Database 11g: Develop PL/SQL Program Units D - 26

Trapping Predefined Oracle Server Errors

* Reference the standard name in the exception-handling
routine.
- Sample predefined exceptions:
— NO_DATA_ FOUND
— TOO_MANY ROWS
— INVALID CURSOR
— ZERO DIVIDE
— DUP_VAL ON_ INDEX

Copyright © 2009, Oracle. All rights reserved.

Trapping Predefined Oracle Server Errors
Trap a predefined Oracle server error by referencing its standard name within the corresponding
exception-handling routine.
Note: PL/SQL declares predefined exceptions in the STANDARD package.
It is a good 1dea to always consider the NO DATA FOUND and TOO MANY ROWS exceptions,
which are the most common.

Oracle Database 11g: Develop PL/SQL Program Units D -27

Trapping Predefined
Oracle Server Errors: Example

BEGIN SELECT ... COMMIT;
EXCEPTION

WHEN| NO DATA FOUND THEN
statementl;
statement2;

WHEN| TOO MANY ROWS THEN
statementl;

WHEN OTHERS THEN
statementl;
statement2;
statement3;

END;

Copyright © 2009, Oracle. All rights reserved.

Trapping Predefined Oracle Server Exceptions: Example

In the example in the slide, a message is printed out to the user for each exception. Only one
exception is raised and handled at any time.

Oracle Database 11g: Develop PL/SQL Program Units D -28

Non-Predefined Error

Trap for Oracle server error number —2292, which is an integrity
constraint violation.

VP
DECLARE 1
e products invalid EXCEPTIONj}
PRAGMA EXCEPTION INIT (

e products invalid, -2292); |@
v_message VARCHAR2 (50) ;
BEGIN

EXCEPTION @

WHEN E_products_invalid THEN
:g message := 'Product ID
specified is not wvalid.';

END;

Copyright © 2009, Oracle. All rights reserved.

Trapping a Non-Predefined Oracle Server Exception

1. Declare the name for the exception within the declarative section.
Syntax

exception EXCEPTION;
In this syntax, exception is the name of the exception.

2. Associate the declared exception with the standard Oracle server error number, using the
PRAGMA EXCEPTION INIT statement.

Syntax
PRAGMA EXCEPTION INIT (exception, error number);

In this syntax:

exception Is the previously declared exception
error_number Is a standard Oracle server error number
3. Reference the declared exception within the corresponding exception-handling routine.
In the slide example: If there is product in stock, halt processing and print a message to the
user.

Oracle Database 11g: Develop PL/SQL Program Units D -29

User-Defined Exceptions: Example

[DECLARE]
e amount remaining EXCEPTION; @

BEGIN (:)

RAISE e amount remaining;

EXCEPTION @

WHEN| e _amount remaining| THEN
:g message := 'There is still an amount
in stock.';

END ;

Copyright © 2009, Oracle. All rights reserved.

Trapping User-Defined Exceptions

You trap a user-defined exception by declaring it and raising it explicitly.
1. Declare the name for the user-defined exception within the declarative section.

Syntax: exception EXCEPTION;
where: exception Is the name of the exception
2. Use the RAISE statement to raise the exception explicitly within the executable section.
Syntax: RAISE exception;
where: exception Is the previously declared exception

3. Reference the declared exception within the corresponding exception-handling routine.
In the slide example: This customer has a business rule that states that a product cannot be

removed from its database if there is any inventory left in stock for this product. Because there

are no constraints in place to enforce this rule, the developer handles it explicitly in the

application. Before performing a DELETE on the PRODUCT INFORMATION table, the block
queries the INVENTORIES table to see whether there is any stock for the product in question. If

there is stock, raise an exception.

Note: Use the RATISE statement by itself within an exception handler to raise the same
exception back to the calling environment.

Oracle Database 11g: Develop PL/SQL Program Units D - 30

RAISE APPLICATION ERROR Procedure

raise application error (error number,
messagel, {TRUE | FALSE}]);

« Enables you to issue user-defined error messages from
stored subprograms

* Is called from an executing stored subprogram only

Copyright © 2009, Oracle. All rights reserved.

RAISE APPLICATION ERROR Procedure

Use the RAISE APPLICATION ERROR procedure to communicate a predefined exception

interactively by returning a nonstandard error code and error message. With
RAISE APPLICATION ERROR, you can report errors to your application and avoid returning

unhandled exceptions.

In the syntax, error number is a user-specified number for the exception between
—20,000 and —20,999. The message is the user-specified message for the exception. Itis a
character string that is up to 2,048 bytes long.

TRUE | FALSE is an optional Boolean parameter. If TRUE, the error is placed on the stack of
previous errors. If FALSE (the default), the error replaces all previous errors.

Example:
EXCEPTION
WHEN NO_DATA FOUND THEN
RAISE APPLICATION ERROR (-20201,

'Manager is not a valid employee.');
END;

Oracle Database 11g: Develop PL/SQL Program Units D - 31

RAISE APPLICATION ERROR Procedure

» Is used in two different places:
— Executable section
— Exception section

 Returns error conditions to the user in a manner consistent
with other Oracle server errors

Copyright © 2009, Oracle. All rights reserved.

RAISE APPLICATION ERROR Procedure: Example

DELETE FROM employees
WHERE manager id = v_mgr;
IF SQL%NOTFOUND THEN
RAISE APPLICATION ERROR(-20202,
'"This is not a valid manager') ;
END IF;

Oracle Database 11g: Develop PL/SQL Program Units D - 32

Using SQL*Plus

Copyright © 2009, Oracle. All rights reserved.

Objectives

After completing this appendix, you should be able to do the
following:

« Log in to SQL*Plus

- Edit SQL commands

* Format output using SQL*Plus commands
* Interact with script files

Copyright © 2009, Oracle. All rights reserved.

Objectives

You might want to create SELECT statements that can be used again and again. This appendix
also covers the use of SQL*Plus commands to execute SQL statements. You learn how to format
output using SQL*Plus commands, edit SQL commands, and save scripts in SQL*Plus.

Oracle Database 11g: Develop PL/SQL Program Units E -2

SQL and SQL*Plus Interaction

SQL statements 1
Server
SQL*Plus 1]
L IC 1]
Query results |

l—' Buffer <—|

/
/
|| =
iz
x saL W g/nn%
scripts %

Copyright © 2009, Oracle. All rights reserved.

SQL and SQL*Plus

SQL is a command language for communication with the Oracle Server from any tool or
application. Oracle SQL contains many extensions. When you enter a SQL statement, it is stored
in a part of memory called the SOL buffer and remains there until you enter a new SQL
statement. SQL*Plus is an Oracle tool that recognizes and submits SQL statements to the Oracle
Server for execution. It contains its own command language.

Features of SQL
* Can be used by a range of users, including those with little or no programming
experience

* Is anonprocedural language
* Reduces the amount of time required for creating and maintaining systems
* Is an English-like language

Features of SQL*Plus
* Accepts ad hoc entry of statements
* Accepts SQL input from files
* Provides a line editor for modifying SQL statements
* Controls environmental settings
* Formats query results into basic reports
* Accesses local and remote databases

Oracle Database 11g: Develop PL/SQL Program Units E -3

SQL Statements Versus
SQL*Plus Commands
SQL SQL*Plus
* A language * An environment
* ANSI-standard Oracle-proprietary
» Keywords cannot be « Keywords can be
abbreviated abbreviated
» Statements manipulate « Commands do not allow
data and table manipulation of values in
definitions in the the database
database
saL | saL | SQL*Plus | sQL*Plus |
statements | buffer J commands 1 buffer,

Copyright © 2009, Oracle. All rights reserved.

SQL and SQL*Plus (continued)
The following table compares SQL and SQL*Plus:

SQL SQL*Plus

Is a language for communicating with the Recognizes SQL statements and sends them

Oracle server to access data to the server

Is based on American National Standards Is the Oracle-proprietary interface for

Institute (ANSI)—standard SQL executing SQL statements

Manipulates data and table definitions in the | Does not allow manipulation of values in the

database database

Is entered into the SQL buffer on one or Is entered one line at a time, not stored in the

more lines SQL buffer

Does not have a continuation character Uses a dash (—) as a continuation character if
the command is longer than one line

Cannot be abbreviated Can be abbreviated

Uses a termination character to execute Does not require termination characters;

commands immediately executes commands immediately

Uses functions to perform some formatting | Uses commands to format data

Oracle Database 11g: Develop PL/SQL Program Units E -4

Overview of SQL*Plus

* Login to SQL*Plus.

« Describe the table structure.
- Edit your SQL statement.

* Execute SQL from SQL*Plus.

« Save SQL statements to files and append SQL statements
to files.

 Execute saved files.
« Load commands from file to buffer to edit.

Copyright © 2009, Oracle. All rights reserved.

SQL*Plus

SQL*Plus is an environment in which you can do the following:
* Execute SQL statements to retrieve, modify, add, and remove data from the database
* Format, perform calculations on, store, and print query results in the form of reports
* Create script files to store SQL statements for repeated use in the future

SQL*Plus commands can be divided into the following main categories:

Category Purpose

Environment Affect the general behavior of SQL statements for the session

Format Format query results

File manipulation Save, load, and run script files

Execution Send SQL statements from the SQL buffer to the Oracle server

Edit Modify SQL statements in the buffer

Interaction Create and pass variables to SQL statements, print variable values, and
print messages to the screen

Miscellaneous Connect to the database, manipulate the SQL*Plus environment, and

display column definitions

Oracle Database 11g: Develop PL/SQL Program Units E -5

Logging In to SQL*Plus: Available Methods

c+|sqlplus

5QL*Plus: Release 11.1.8.5.8 - Beta on Fri Jun 29 87:83:28 2887
Copyright <c> 1982, 2887, Oracle. All rights reserved.

2QL> connect orab2sorabZforcl
Connected.
SaQL>

¢ |Command Prompt - sqlplus orab2/orab2@orcl

icrosoft Windows XP [Version 5.1.26881 -
(C> Copyright 1985-2801 Microsoft Corp.

D:sWINNT“system32>cd “appradninistratorsproductsil.l.Bsclient _1hin

D:vappsAdministratorsproductsi1l.1.85client_1kBIN>sglplus orab2 /orabZBorcl
BQL*Plus: Release 11.1.68.5.8 — Beta on Fri Jun HAH rd

Copyright <{c> 1982, 2887, Oracle. All rights reserved.

Connected to:

racle Database 11g Enterprise Edition Release 11.1.8.5.8 — Beta
ith the Partitioning,. OLAP and Data Mining options

SQL>

=l
Copyright © 2009, Oracle. All rights reserved.

Logging In to SQL*Plus

How you invoke SQL*Plus depends on which type of operating system or Windows
environment you are running.
To log in from a Windows environment:
1. Select Start > Programs > Oracle > Application Development > SQL*Plus.
2. Enter the username, password, and database name.
To log in from a command-line environment:
1. Log on to your machine.
2. Enter the sglplus command shown in the slide.

In the syntax:
username Your database username

password Your database password (Your password is visible if you enter it here.)
@database The database connect string

Note: To ensure the integrity of your password, do not enter it at the operating system prompt.
Instead, enter only your username. Enter your password at the password prompt.

Oracle Database 11g: Develop PL/SQL Program Units E -6

Customizing the SQL*Plus Environment

e | “S0L Plus” Properties

e ["S0OL Plus”™ Properties

Dptions] Font] Layout | Colars l Dptions I Font] Lapout Colars]
(" Secreen Text Selected Color Yalues I 0 Seem Tt I Selected Color Values
I ¢ Screen Background I et 255 = ™ Sereen Background Red: 0 3
" Popup Test Giresr 255 = " Popup Text Green: o =
" Popup Background Blue: ,E " Popup Background Blue: H
ANEEEEE EEETae 0 I] [
Selected Screen Colors Selected Screen Colors
C:\WINDOWS> dir
SYSTEM <DIR> 18-01-99 5:8l
SYSTEM32 <DIR> 18-81-99 5:8i
DCATIMLD T T QL 4 RAAad oo C =l
Selected Popup Colors Selected Popup Colors
C: \WINDOWS> dir C:WINDOWS> dir
SYSTEM <DIR> 18-81-99 5:81 SYSTEM <DIR> 108-81-99 5:81
SYSTEM32 {DIR> 18-81-99 5:81 SYSTEM32 <DIR> 10-81-99 5:8I
DEATIMT TVT DEGNEC AR_R4 00 C =i DCATMD T™T QLA L 4 R4 a0 C -
] 4 | Cancel | ok | Cancel |

Copyright © 2009, Oracle. All rights reserved.

Changing Settings of the SQL*Plus Environment

You can optionally change the look of the SQL*Plus environment by using the SQL*Plus
Properties dialog box.

In the SQL*Plus window, right-click the title bar and in the shortcut menu that appears, select
Properties. You can then use the colors tab of the SQL*Plus Properties dialog box to set Screen
Background and Screen Text.

Oracle Database 11g: Develop PL/SQL Program Units E -7

Displaying Table Structure

Use the SQL*Plus DESCRIBE command to display the structure
of a table:

DESC[RIBE] tablename

Copyright © 2009, Oracle. All rights reserved.

Displaying Table Structure

In SQL*Plus, you can display the structure of a table using the DESCRIBE command. The result
of the command is a display of column names and data types as well as an indication of whether
a column must contain data.

In the syntax:

tablename Isthe name of any existing table, view, or synonym that is accessible to
the user

To describe the JOB_GRADES table, use this command:
SQL> DESCRIBE job grades

Name Null? Type
GRADE LEVEL VARCHAR2 (3)
LOWEST SAL NUMBER
HIGHEST SAL NUMBER

Oracle Database 11g: Develop PL/SQL Program Units E -8

Displaying Table Structure

DESCRIBE departments

Name Null? Type
DEPARTMENT ID NOT NULL NUMBER (4)
DEPARTMENT NAME NOT NULL VARCHAR2 (30)
MANAGER ID NUMBER (6)

LOCATION ID NUMBER (4)

Copyright © 2009, Oracle. All rights reserved.

Displaying Table Structure (continued)

The example in the slide displays the information about the structure of the DEPARTMENTS
table. In the result:
Null?: Specifies whether a column must contain data (NOT NULL indicates that a column
must contain data.)
Type : Displays the data type for a column

The following table describes the data types:

Data Type Description

NUMBER (p, s) Number value that has a maximum number of digits p,
which is the number of digits to the right of the decimal point
s

VARCHAR?2 () Variable-length character value of maximum size s
Date and time value between January 1, 4712 B.C., and A.D.

DATE December 31,9999

CHAR () Fixed-length character value of size s

Oracle Database 11g: Develop PL/SQL Program Units E -9

SQL*Plus Editing Commands

* A[PPEND] text

* C[HANGE] / old / new
e C[HANGE] / text /

° CL [EAR] BUFF [ER]

* DEL

° DEL n

° DEL mn

Copyright © 2009, Oracle. All rights reserved.

SQL*Plus Editing Commands

SQL*Plus commands are entered one line at a time and are not stored in the SQL buffer.

Command Description
A[PPEND] text Adds text to the end of the current line
C[HANGE] / old / new Changes o1d text to new in the current line
C[HANGE] / text / Deletes text from the current line
CL[EAR] BUFF [ER] Deletes all lines from the SQL buffer
DEL Deletes current line
DEL n Deletes line n
DEL m n Deletes lines mto n
Guidelines
* Ifyou press [Enter] before completing a command, SQL*Plus prompts you with a line
number.

* You terminate the SQL buffer by either entering one of the terminator characters
(semicolon or slash) or pressing [Enter] twice. The SQL prompt then appears.

Oracle Database 11g: Develop PL/SQL Program Units E -10

SQL*Plus Editing Commands

° I [NPUT]
° I [NPUT] text
e L[IST]
* LI[IST] n
e L[IST] mn
* RJ[UN]
n

Copyright © 2009, Oracle. All rights reserved.

SQL*Plus Editing Commands (continued)

Command Description

I [NPUT] Inserts an indefinite number of lines

I [NPUT] text Inserts a line consisting of text

L[IST] Lists all lines in the SQL buffer

L[IST] n Lists one line (specified by n)

L[IST] m n Lists a range of lines (mto n)

R [UN] Displays and runs the current SQL statement in the buffer
n Specifies the line to make the current line

n text Replaces line n with text

0 text Inserts a line before line 1

Note: You can enter only one SQL*Plus command for each SQL prompt. SQL*Plus commands
are not stored in the buffer. To continue a SQL*Plus command on the next line, end the first line
with a hyphen (-).

Oracle Database 11g: Develop PL/SQL Program Units E - 11

Using LIST, n, and APPEND

LIST
1l SELECT last name
2* FROM employees

1* SELECT last name

A , job id
1* SELECT last name, job id

LIST
1 SELECT last name, job id
2* FROM employees

Copyright © 2009, Oracle. All rights reserved.

Using LIST, n, and APPEND

* Usethe L[IST] command to display the contents of the SQL buffer. The asterisk (*)
beside line 2 in the buffer indicates that line 2 is the current line. Any edits that you made

apply to the current line.
* Change the number of the current line by entering the number (22) of the line that you want

to edit. The new current line is displayed.
* Use the A [PPEND] command to add text to the current line. The newly edited line is
displayed. Verify the new contents of the buffer by using the LIST command.

Note: Many SQL*Plus commands, including LIST and APPEND, can be abbreviated to just
their first letters. LIST can be abbreviated to L; APPEND can be abbreviated to A.

Oracle Database 11g: Develop PL/SQL Program Units E -12

Using the CHANGE Command

LIST
1* SELECT * from employees

c/employees/departments
1* SELECT * from departments

LIST
1* SELECT * from departments

Copyright © 2009, Oracle. All rights reserved.

Using the CHANGE Command

 Use L[IST] to display the contents of the buffer.

* Use the C [HANGE] command to alter the contents of the current line in the SQL buffer. In
this case, replace the EMPLOYEES table with the DEPARTMENTS table. The new current
line is displayed.

* Usethe L[IST] command to verify the new contents of the buffer.

Oracle Database 11g: Develop PL/SQL Program Units E -13

SQL*Plus File Commands

* SAVE filename
* GET filename

* START filename
* @ filename

* EDIT filename
* SPOOL filename
e EXIT

Copyright © 2009, Oracle. All rights reserved.

SQL*Plus File Commands

SQL statements communicate with the Oracle server. SQL*Plus commands control the
environment, format query results, and manage files. You can use the commands described in
the following table:

Command Description

SAV[E] filename [.ext] Saves current contents of SQL buffer to a file. Use APPEND

[REP [LACE] APP [END]] to add to an existing file; use REPLACE to overwrite an
existing file. The default extension is . sql.

GET filename [.ext] Writes the contents of a previously saved file to the SQL
buffer. The default extension for the file name is .sqgl.

STA[RT] filename [.ext] | Runs a previously saved command file

@ filename Runs a previously saved command file (same as START)

ED[IT] Invokes the editor and saves the buffer contents to a file

named afiedt .buf

ED[IT] [filename[.ext]] | Invokes the editor to edit the contents of a saved file
SPO[OL] [filename[.ext] | | Stores query results in a file. OFF closes the spool file. OUT
OFF | OUT] closes the spool file and sends the file results to the printer.
EXIT Quits SQL*Plus

Oracle Database 11g: Develop PL/SQL Program Units E - 14

Using the SAVE, START, and EDIT Commands

LIST
1 SELECT last name, manager id, department id
2* FROM employees

SAVE my query
Created file my query

START my query

LAST NAME MANAGER ID DEPARTMENT ID
King 90
Kochhar 100 90

107 rows selected.

Copyright © 2009, Oracle. All rights reserved.

Using the SAVE, START, and EDIT Commands

SAVE

Use the SAVE command to store the current contents of the buffer in a file. In this way, you can
store frequently used scripts for use in the future.

START
Use the START command to run a script in SQL*Plus.

Oracle Database 11g: Develop PL/SQL Program Units E -15

Using the SAVE, START, and EDIT Commands

EDIT my query

v

a#J my_query.sql - Notepad =]
File Edit Format Help
SELECT Tlast_name, manager_id, department_id ;l
FRoM employees
/

-
Kl H 4

Copyright © 2009, Oracle. All rights reserved.

Using the SAVE, START, and EDIT Commands (continued)
EDIT

Use the EDIT command to edit an existing script. This opens an editor with the script file in it.
When you have made the changes, quit the editor to return to the SQL*Plus command line.

Oracle Database 11g: Develop PL/SQL Program Units E - 16

SQL*Plus Enhancements Since
Oracle Database 10g

« Changes to the SET SERVEROUT [PUT] command
» White space support in file and path names in Windows

« Three new predefined SQL*Plus variables
 The new RECYCLEBIN clause of the SHOW command

« The new APPEND, CREATE, and REPLACE extensions to
the sSPOOL command

* New error messages for the COpPY command

« Change in the DESCRIBE command behavior

* New PAGESIZE default

* New SQLPLUS program compatibility option

« Execution statistics information in the AUTOTRACE
command report

Copyright © 2009, Oracle. All rights reserved.

Oracle Database 11g: Develop PL/SQL Program Units E -17

Changes to the SERVEROUTPUT Command

e Usethe SET SERVEROUT [PUT] command to control whether to

display the output of stored procedures or PL/SQL blocks in
SQL*Plus.

« The DBMS_OUTPUT line length limit is increased from 255 bytes
to 32,767 bytes.

« The default size is now unlimited.
* Resources are not preallocated when SERVEROUTPUT is set.

« Because there is no performance penalty, use UNLIMITED
unless you want to conserve physical memory.

SET SERVEROUT [PUT] {ON | OFF} [SIZE {n | UNL[IMITED] }]
[FOR[MAT] {WRA[PPED] | WOR[D WRAPPED] | TRU[NCATED] }]

Copyright © 2009, Oracle. All rights reserved.

New SQL*Plus Enhancements Since Oracle Database 10g

Most PL/SQL input and output is through SQL statements, to store data in database tables or
query those tables. All other PL/SQL I/O is done through APIs that interact with other programs.
For example, the DBMS OUTPUT package has procedures such as PUT LINE. To see the result

outside of PL/SQL requires another program, such as SQL*Plus, to read and display the data
passed to DBMS OUTPUT.

SQL*Plus does not display DBMS OUTPUT data unless you first issue the SQL*Plus command
SET SERVEROUTPUT ON as follows:
SET SERVEROUTPUT ON

Note
* SIZE sets the number of bytes of the output that can be buffered within the Oracle
Database server. The default is UNLIMITED. n cannot be less than 2,000 or greater than
1,000,000.
* For additional information about SERVEROUTPUT, see the Oracle Database PL/SQL
User's Guide and Reference 11g Release 1 (11.1)

Oracle Database 11g: Develop PL/SQL Program Units E -18

White Space Support in File
and Path Names in Windows

* In Windows, white space can be included in file names and
paths.

« Examples of where white space can be used:
— START, @, @@, RUN, SPOOL, SAVE, and EDIT commands

« To reference files or paths containing spaces, enclose the
name or path in double quotation marks.

Examples

SAVE "Monthly Report.sql"
START "Monthly Report.sqgl"

Copyright © 2009, Oracle. All rights reserved.

Oracle Database 11g: Develop PL/SQL Program Units E -19

Predefined SQL*Plus Variables

Variable Name Contains

_CONNECT IDENTIFIER | Connection identifier used to make connection,
where available

_DATE Current date, or a user-defined fixed string

_EDITOR Specifies the editor used by the EDIT command

O VERSION Current version of the installed Oracle Database

O RELEASE Full release number of the installed Oracle Database

_PRIVILEGE Privilege level of the current connection

_SQLPLUS RELEASE Full release number of installed SQL*Plus
component

_USER Username used to make connection

Copyright © 2009, Oracle. All rights reserved.

Predefined Variables

There are eight variables defined during SQL*Plus installation. These variables differ from user-
defined variables by having only predefined values.

You can view the value of each of these variables with the DEFINE command. These variables
can be accessed and redefined like any other substitution variable. They can be used in TTITLE,
in ' &' substitution variables, or in your SQL*Plus command-line prompt.

You can use the DEFINE command to view the definitions of these eight predefined variables in
the same way as you view other DEFINE definitions. You can also use the DEFINE command
to redefine their values, or you can use the UNDEFINE command to remove their definitions and
make them unavailable.

Note: For additional information about the SQL*Plus predefined variables, see the SOL *Plus
User's Guide and Reference Release 11.1.

Oracle Database 11g: Develop PL/SQL Program Units E - 20

Using the New Predefined
SQL*Plus Variables: Examples

-- Change the SQL*Plus prompt to display the connection
-- identifier

SQL> SET SQLPROMPT '_CONNECT_IDENTIFIER > !
orcl >

-- view the predefined value of the SQLPLUS RELEASE
-- substitution variable

orcl > DEFINE SQLPLUS RELEASE
DEFINE SQLPLUS RELEASE = "1002000100" (CHAR)

-- View the user name connected to the current
-- connection.

orcl > DEFINE USER
DEFINE _USER = "HR" (CHAR)

Copyright © 2009, Oracle. All rights reserved.

Using the Predefined SQL*Plus Variables: Examples

To view all predefined and user-defined variable definitions, enter DEFINE. All predefined and

all user-defined variable definitions are displayed as shown below:
orcl > DEFINE

DEFINE DATE = "06-JUL-06" (CHAR)

DEFINE CONNECT IDENTIFIER = "orcl" (CHAR)

DEFINE USER = "HR" (CHAR)

DEFINE PRIVILEGE = "" (CHAR)

DEFINE SQLPLUS RELEASE = "1002000100" (CHAR)

DEFINE EDITOR = "Notepad" (CHAR)

DEFINE O VERSION = "Oracle Database 10g Enterprise

Edition Release 10.2.0.1.0 - Production
With the Partitioning, OLAP and Data Mining options" (CHAR)
DEFINE O RELEASE = "1002000100" (CHAR)

You can use UNDEFINE to remove a substitution variable definition and make it unavailable.

Oracle Database 11g: Develop PL/SQL Program Units E - 21

The sHOwW Command and the New
RECYCLEBIN Clause

SHOW RECYC[LEBIN] [original name]
SELECT * FROM USER RECYCLEBIN
desc user recyclebin;
Name Null? Type
OBJECT NAME NOT NULL VARCHAR2 (30)
ORIGINAL NAME VARCHAR2 (32)
OPERATION VARCHAR?2 (9)
TYPE VARCHAR?2 (25)
TS NAME VARCHAR2 (30)
CREATETIME VARCHAR2 (19)
DROPTIME VARCHAR2 (19)
DROPSCN NUMBER
PARTITION NAME VARCHAR2 (32)
CAN UNDROP VARCHAR?2 (3)
CAN PURGE VARCHAR?2 (3)
RELATED NOT NULL NUMBER
BASE OBJECT NOT NULL NUMBER
PURGE_OBJECT NOT NULL NUMBER
SPACE NUMBER

Copyright © 2009, Oracle. All rights reserved.

The sHOW Command and the RECYCLEBIN Clause

Using the SHOW command, you can show objects in the recycle bin that can be reverted with the
FLASHBACK BEFORE DROP command. You do not need to remember column names, or
interpret the less readable output from the query. The following query returns three columns that

are displayed in the slide:
SELECT * FROM USER RECYCLEBIN

Oracle Database 11g: Develop PL/SQL Program Units E - 22

The sHow Command and the
RECYCLEBIN Clause: Example

DROP TABLE test;
Table dropped.

SHOW recyclebin

A 4

ORIGINAL NAME RECYCLEBIN NAME OBJECT TYPE DROP TIME
TEST BIN$SefY+qPKSYEmuU8eDT1r+A==$0 TABLE 2006-07-06:11:12:00
saL>

Copyright © 2009, Oracle. All rights reserved.

Oracle Database 11g: Develop PL/SQL Program Units E - 23

Using the SQL*Plus spoo. Command

SPO[OL] [file name[.ext] [CRE[ATE] | REP[LACE] |
APP[END]] | OFF | OUT]

Option Description

file name[.ext] Spools output to the specified file name

CRE [ATE] Creates a new file with the name specified

REP [LACE] Replaces the contents of an existing file. If the file
does not exist, REPLACE creates the file.

APP [END] Adds the contents of the buffer to the end of the file
you specify

OFF Stops spooling

ouT Stops spooling and sends the file to your computer's

standard (default) printer

Copyright © 2009, Oracle. All rights reserved.

Using the SQL*Plus spooL. Command

The SPOOL command stores query results in a file, or optionally sends the file to a printer. The
SPOOL command has been enhanced. You can now append to, or replace an existing file, where
previously you could use SPOOL to only create (and replace) a file. REPLACE is the default.

To spool output generated by commands in a script without displaying the output on the screen,
use SET TERMOUT OFF.SET TERMOUT OFF does not affect output from commands that

run interactively.

You must use quotation marks around file names containing white spaces. To create a valid
HTML file using SPOOL APPEND commands, you must use PROMPT or a similar command to
create the HTML page header and footer. The SPOOL APPEND command does not parse
HTML tags. Set SQLPLUSCOMPAT [IBILITY] to 9.2 or earlier to disable the CREATE,
APPEND, and SAVE parameters.

Oracle Database 11g: Develop PL/SQL Program Units E - 24

Using the SQL*Plus spooL. Command: Examples

-- Record the output in the new file DIARY using the
-- default file extension.

SPOOL DIARY CREATE
-- Append the output to the existing file DIARY.
SPOOL DIARY APPEND

-- Record the output to the file DIARY, overwriting the
-- existing content

SPOOL DIARY REPLACE
-- Stop spooling and print the file on your default printer.

SPOOL OUT

Copyright © 2009, Oracle. All rights reserved.

Oracle Database 11g: Develop PL/SQL Program Units E - 25

The copry Command: New Error Messages

CPY-0002 Illegal or missing APPEND, CREATE, INSERT, or
REPLACE option

CPY-0003 Internal Error: logical host number out of
Range

CPY-0004 Source and destination table and column names
don't match

CPY-0005 Source and destination column attributes don't
Match

CPY-0006 Select list has more columns than destination
Table

CPY-0007 Select list has fewer columns than destination
table

Copyright © 2009, Oracle. All rights reserved.

The copry Command: New Error Messages

* CPY-0002 Illegal or missing APPEND, CREATE, INSERT, or REPLACE option: An
internal COPY function has invoked COPY with a create option (flag) value that is out of
range.

* CPY-0003 Internal Error: Logical host number out of range: An internal COPY
function has been invoked with a logical host number value that is out of range.

*+ CPY-0004 Source and destination table and column names don't match: On an
APPEND operation or an INSERT (when the table exists), at least one column name in the
destination table does not match the corresponding column name in the optional column
name list or in the SELECT command. To correct this, respecify the COPY command,
making sure that the column names and their respective order in the destination table
match the column names and column order in the optional column list or in the SELECT
command.

* CPY-0005 Source and destination column attributes don't match: On an APPEND
operation or an INSERT (when the table exists), at least one column in the destination
table does not have the same data type as the corresponding column in the SELECT
command. To correct this, respecify the COPY command, making sure that the data types
for items being selected agree with the destination. Use TO_DATE, TO CHAR, and
TO NUMBER to make conversions.

Oracle Database 11g: Develop PL/SQL Program Units E - 26

The copry Command: New Error Messages (continued)

CPY-0006 Select list has more columns than destination table: On an APPEND operation or
an INSERT (when the table exists), the number of columns in the SELECT command is greater
than the number of columns in the destination table. To correct this, re-specify the COPY
command, making sure that the number of columns being selected agrees with the number in the
destination table.

CPY-0007 Select list has fewer columns than destination table: On an APPEND operation or
INSERT (when the table exists), the number of columns in the SELECT command is less than
the number of columns in the destination table. To correct this, re-specify the COPY command,
making sure that the number of columns being selected agrees with the number in the
destination table.

Oracle Database 11g: Develop PL/SQL Program Units E - 27

The copry Command: New Error Messages

CPY-0008 More column list names than columns in the
destination table

CPY-0009 Fewer column list names than columns in the
destination table

CPY-0012 Datatype cannot be copied

Copyright © 2009, Oracle. All rights reserved.

The copry Command: New Error Messages

* CPY-0008 More column list names than columns in the destination table: On an
APPEND operation or an INSERT (when the table exists), the number of columns in the
column name list is greater than the number of columns in the destination table. To correct
this, re-specify the COPY command, making sure that the number of columns in the
column list agrees with the number in the destination table.

*« CPY-0009 Fewer column list names than columns in the destination table: On an
APPEND operation or an INSERT (when the table exists), the number of columns in the
column name list is less than the number of columns in the destination table. To correct
this, re-specify the COPY command, making sure that the number of columns in the
column list agrees with the number in the destination table.

* CPY-0012 Datatype cannot be copied: An attempt was made to copy a data type that is
not supported in the COPY command. Data types supported by the COPY command are
CHAR, DATE, LONG, NUMBER, and VARCHAR?2. To correct this, re-specify the COPY
command, making sure that the unsupported data type column is removed.

Oracle Database 11g: Develop PL/SQL Program Units E - 28

Change in the DESCRIBE Command Behavior

* Prior to Oracle Database 10g, using DESCRIBE Onh an

invalidated object failed with the error:
— ORA-24372: invalid object for describe

« The DESCRIBE command continued to fail even if the
object had since been validated.

- Starting with Oracle Database 10g, the DESCRIBE
command now automatically validates the object and
continues if the validation is successful.

Copyright © 2009, Oracle. All rights reserved.

Oracle Database 11g: Develop PL/SQL Program Units E - 29

The SET PAGES[IZE] Command

* It sets the number of rows on each page of the output in
SQL*Plus.

* The default PAGESIZE has changed from 24 to 14.

* You can set PAGESIZE to zero to suppress all headings,

page breaks, titles, the initial blank line, and other
formatting information.

SET PAGES[IZE] {14 | n}

Copyright © 2009, Oracle. All rights reserved.

The SET PAGES[IZE] Command

The SET PAGES [IZE] command sets the number of rows displayed on each page. Error and
informational messages are not counted in the page size, so pages may not always be exactly the
same length. The default page size for SQL*Plus has changed from 24 to 14.

Oracle Database 11g: Develop PL/SQL Program Units E - 30

The sQLPLUS Program and
the Compatibility Option

Sets the value of the SQLLPLLUSCOMPATIBILITY system
variable to the SQL*Plus release specified by x.y [. z]

SQLPLUS -C[OMPATIBILITY] {x.y[.zl}

-- x is the version number
-- y is the release number
-- z is the update number

SQLPLUS -C 10.2.0

Copyright © 2009, Oracle. All rights reserved.

The sQLPLUS Program and the Compatibility Option

The SQL*Plus Compatibility Matrix tabulates behavior affected by each SQL*Plus
compatibility setting. SQL*Plus compatibility modes can be set in three ways:

* Youcaninclude a SET SQLPLUSCOMPATIBILITY command in your site or user
profile. On installation, there is no SET SQLPLUSCOMPATIBILITY setting in
glogin.sqgl. Therefore, the default compatibility is 10.2.

* You can use the SQLPLUS -C[OMPATIBILITY] {x.y[.z]} command argument at
startup to set the compatibility mode of that session.

* You can use the SET SQLPLUSCOMPATIBILITY {x.y[.z]} command duringa
session to set the SQL*Plus behavior you want for that session.

Note: For a list showing the release of SQL*Plus that introduced the behavior change, see
the “SQL*Plus Compatibility Matrix” topic in SOQL*Plus User's Guide and Reference
Release 11.1.

Oracle Database 11g: Develop PL/SQL Program Units E - 31

Using the AUTOTRACE Command

« It displays a report after the successful execution of SQL
DML statements such as SELECT, INSERT, UPDATE or
DELETE.

* The report can now include execution statistics and the
query execution path.

SET AUTOT [RACE] {ON | OFF | TRACE[ONLY]} [EXP[LAIN]]
[STAT[ISTICS]]

SET AUTOTRACE ON

-- The AUTOTRACE report includes both the optimizer
-- execution path and the SQL statement execution
-- statistics.

Copyright © 2009, Oracle. All rights reserved.

Using the AUTOTRACE Command

EXPLAIN shows the query execution path by performing an EXPLAIN PLAN. STATISTICS
displays SQL statement statistics. The formatting of your AUTOTRACE report may vary
depending on the version of the server to which you are connected and the configuration of the
server. The additional information and tabular output of AUTOTRACE PLAN is supported when
connecting to Oracle Database 10g (Release 10.1) or later. When you connect to an earlier
database, the older form of AUTOTRACE reporting is used.

The DBMS XPLAN package provides an easy way to display the output of the EXPLAIN PLAN
command in several, predefined formats.
Note

* For additional information about the package and subprograms, see the Oracle Database

PL/SQL Packages and Types Reference 10g Release 2 (10.2) guide.
* For additional information about the EXPLAIN PLAN, see Oracle Database SQL

Reference 10g Release 2 (10.2).
* For additional information about Execution Plans and the statistics, see Oracle Database
Performance Tuning Guide 10g Release 2 (10.2).

Oracle Database 11g: Develop PL/SQL Program Units E - 32

Displaying a Plan Table Using the
DBMS XPLAN.DISPLAY Package Function

-- Execute an explain plan command on a SELECT
-- statement

EXPLAIN PLAN FOR

SELECT * FROM emp e, dept d
WHERE e.deptno = d.deptno
AND e.ename='benoit';

-- Display the plan using the DBMS XPLAN.DISPLAY table
-- function

SET LINESIZE 130

SET PAGESIZE 0
SELECT * FROM table|(DBMS XPLAN.DISPLAY)

Copyright © 2009, Oracle. All rights reserved.

Displaying a Plan Table Using the DBMS XPLAN.DISPLAY Package Function

~e

The query in the slide page produces the following output:

Plan hash value: 3693697075

Id	Operation	Name	Rows	Bytes	Cost (%CPU)	Time
0	SELECT STATEMENT		1	57	6 (34)] 00:00:01	
* 1	HASH JOIN		1	57	6 (34)] 00:00:01	
[* 2	TABLE ACCESS FULL	EMP	1	37	3 (34)] 00:00:01	
3	TABLE ACCESS FULL	DEPT	4	80	3 (34)	00:00:01

Predicate Information (identified by operation id) :

1 - access("E"."DEPTNO"="D"."DEPTNO")
2 - filter ("E"."ENAME"='benoit')

15 rows selected.

Oracle Database 11g: Develop PL/SQL Program Units E - 33

Summary

In this appendix, you should have learned how to use SQL*Plus
as an environment to do the following:

- Execute SQL statements
- Edit SQL statements

* Format output

* Interact with script files

Copyright © 2009, Oracle. All rights reserved.

Summary

SQL*Plus is an execution environment that you can use to send SQL commands to the database
server and to edit and save SQL commands. You can execute commands from the SQL prompt
or from a script file.

Oracle Database 11g: Develop PL/SQL Program Units E - 34

Studies for Implementing Triggers

Copyright © 2009, Oracle. All rights reserved.

Objectives

After completing this lesson, you should be able to do the
following:

« Enhance database security with triggers

* Enforce data integrity with DML triggers

« Maintain referential integrity using triggers

« Use triggers to replicate data between tables

« Use triggers to automate computation of derived data
* Provide event-logging capabilities using triggers

Copyright © 2009, Oracle. All rights reserved.

Lesson Aim

In this lesson, you learn to develop database triggers in order to enhance features that cannot
otherwise be implemented by the Oracle server. In some cases, it may be sufficient to refrain
from using triggers and accept the functionality provided by the Oracle server.

This lesson covers the following business application scenarios:
* Security
* Auditing
* Data integrity
* Referential integrity
» Table replication
* Computing derived data automatically
* Event logging

Oracle Database 11g: Develop PL/SQL Program Units F -2

Controlling Security Within the Server

Using database security with the GRANT statement.

GRANT SELECT, INSERT, UPDATE, DELETE

ON employees

TO clerk; -- database role
GRANT clerk TO scott;

Copyright © 2009, Oracle. All rights reserved.

Controlling Security Within the Server

Develop schemas and roles within the Oracle server to control the security of data operations on
tables according to the identity of the user.

» Base privileges upon the username supplied when the user connects to the database.

* Determine access to tables, views, synonyms, and sequences.

* Determine query, data-manipulation, and data-definition privileges.

Oracle Database 11g: Develop PL/SQL Program Units F -3

Controlling Security
with a Database Trigger

CREATE OR REPLACE TRIGGER secure_ emp
BEFORE INSERT OR UPDATE OR DELETE ON employees
DECLARE
dummy PLS INTEGER;
BEGIN
IF (TO _CHAR (SYSDATE, 'DY') IN ('SAT',6 'SUN')) THEN
RAISE APPLICATION ERROR(-20506, 'You may only
change data during normal business hours.');
END IF;
SELECT COUNT (*) INTO dummy FROM holiday
WHERE holiday date = TRUNC (SYSDATE) ;
IF dummy > 0 THEN
RAISE APPLICATION ERROR(-20507,
'You may not change data on a holiday.');
END IF;
END;
/

Copyright © 2009, Oracle. All rights reserved.

Controlling Security with a Database Trigger

Develop triggers to handle more complex security requirements.
* Base privileges on any database values, such as the time of day, the day of the week, and
SO on.
* Determine access to tables only.
* Determine data-manipulation privileges only.

Oracle Database 11g: Develop PL/SQL Program Units F -4

Enforcing Data Integrity Within the Server

ALTER TABLE employees ADD
CONSTRAINT ck salary CHECK (salary >= 500);

Table altered.

Copyright © 2009, Oracle. All rights reserved.

Enforcing Data Integrity Within the Server

You can enforce data integrity within the Oracle server and develop triggers to handle more
complex data integrity rules.

The standard data integrity rules are not null, unique, primary key, and foreign key.

Use these rules to:
* Provide constant default values
* Enforce static constraints
* Enable and disable dynamically

Example
The code sample in the slide ensures that the salary is at least $500.

Oracle Database 11g: Develop PL/SQL Program Units F -5

Protecting Data Integrity with a Trigger

CREATE OR REPLACE TRIGGER check salary
BEFORE UPDATE OF salary ON employees
FOR EACH ROW
WHEN (NEW.salary < OLD.salary)

BEGIN
RAISE APPLICATION ERROR (-20508,

'Do not decrease salary.');

END ;

/

Copyright © 2009, Oracle. All rights reserved.

Protecting Data Integrity with a Trigger

Protect data integrity with a trigger and enforce nonstandard data integrity checks.
* Provide variable default values.
* Enforce dynamic constraints.
* Enable and disable dynamically.
* Incorporate declarative constraints within the definition of a table to protect data integrity.

Example

The code sample in the slide ensures that the salary is never decreased.

Oracle Database 11g: Develop PL/SQL Program Units F -6

Enforcing Referential Integrity
Within the Server

ALTER TABLE employees
ADD CONSTRAINT emp deptno fk
FOREIGN KEY (department id)
REFERENCES departments (department id)
ON DELETE CASCADE;

Copyright © 2009, Oracle. All rights reserved.

Enforcing Referential Integrity Within the Server

Incorporate referential integrity constraints within the definition of a table to prevent data
inconsistency and enforce referential integrity within the server.

* Restrict updates and deletes.

» Cascade deletes.

* Enable and disable dynamically.

Example

When a department is removed from the DEPARTMENTS parent table, cascade the deletion to
the corresponding rows in the EMPLOYEES child table.

Oracle Database 11g: Develop PL/SQL Program Units F -7

Protecting Referential Integrity
with a Trigger

CREATE OR REPLACE TRIGGER cascade updates
AFTER UPDATE OF department id ON departments
FOR EACH ROW
BEGIN
UPDATE employees
SET employees.department id=:NEW.department id
WHERE employees.department id=:0LD.department id;
UPDATE job history
SET department id=:NEW.department id
WHERE department id=:0LD.department id;
END ;
/

Copyright © 2009, Oracle. All rights reserved.

Protecting Referential Integrity with a Trigger

The following referential integrity rules are not supported by declarative constraints:
* Cascade updates.
» Set to NULL for updates and deletions.
* Set to a default value on updates and deletions.
* Enforce referential integrity in a distributed system.
* Enable and disable dynamically.

You can develop triggers to implement these integrity rules.
Example

Enforce referential integrity with a trigger. When the value of DEPARTMENT ID changes in the
DEPARTMENTS parent table, cascade the update to the corresponding rows in the EMPLOYEES
child table.

For a complete referential integrity solution using triggers, a single trigger is not enough.

Oracle Database 11g: Develop PL/SQL Program Units F -8

Replicating a Table Within the Server

CREATE MATERIALIZED VIEW emp copy
NEXT sysdate + 7
AS SELECT * FROM employees@ny;

Copyright © 2009, Oracle. All rights reserved.

Creating a Materialized View

Materialized views enable you to maintain copies of remote data on your local node for
replication purposes. You can select data from a materialized view as you would from a normal
database table or view. A materialized view is a database object that contains the results of a
query, or a copy of some database on a query. The FROM clause of the query of a materialized
view can name tables, views, and other materialized views.

When a materialized view is used, replication is performed implicitly by the Oracle server. This
performs better than using user-defined PL/SQL triggers for replication. Materialized views:

» Copy data from local and remote tables asynchronously, at user-defined intervals

* Can be based on multiple master tables

* Are read-only by default, unless using the Oracle Advanced Replication feature

* Improve the performance of data manipulation on the master table

Alternatively, you can replicate tables using triggers.

The example in the slide creates a copy of the remote EMPLOYEES table from New York. The
NEXT clause specifies a date-time expression for the interval between automatic refreshes.

Oracle Database 11g: Develop PL/SQL Program Units F -9

Replicating a Table with a Trigger

CREATE OR REPLACE TRIGGER emp replica
BEFORE INSERT OR UPDATE ON employees FOR EACH ROW
BEGIN /* Proceed if user initiates data operation,
NOT through the cascading trigger.*/
IF INSERTING THEN
IF :NEW.flag IS NULL THEN
INSERT INTO employees@sf
VALUES (:new.employee id,...,'B');
:NEW.flag := 'A';
END IF;
ELSE /* Updating. */
IF :NEW.flag = :0LD.flag THEN
UPDATE employees@sf
SET ename=:NEW.last name, ..., flag=:NEW.flag
WHERE employee id = :NEW.employee id;

END IF;
IF :0LD.flag = 'A' THEN :NEW.flag := 'B';
ELSE :NEW.flag := 'A';
END IF;
END IF;
END;

Copyright © 2009, Oracle. All rights reserved.

Replicating a Table with a Trigger

You can replicate a table with a trigger. By replicating a table, you can:
» Copy tables synchronously, in real time
* Base replicas on a single master table
* Read from replicas as well as write to them
Note: Excessive use of triggers can impair the performance of data manipulation on the master

table, particularly if the network fails.

Example
In New York, replicate the local EMPLOYEES table to San Francisco.

Oracle Database 11g: Develop PL/SQL Program Units F -10

Computing Derived Data Within the Server

UPDATE departments
SET total sal=(SELECT SUM(salary)
FROM employees
WHERE employees.department id =
departments.department id) ;

Copyright © 2009, Oracle. All rights reserved.

Computing Derived Data Within the Server
By using the server, you can schedule batch jobs or use the database Scheduler for the following
scenarios:
* Compute derived column values asynchronously, at user-defined intervals.
» Store derived values only within database tables.
* Modify data in one pass to the database and calculate derived data in a second pass.
Alternatively, you can use triggers to keep running computations of derived data.
Example

Keep the salary total for each department within a special TOTAL SALARY column of the
DEPARTMENTS table.

Oracle Database 11g: Develop PL/SQL Program Units F - 11

Computing Derived Values with a Trigger

CREATE PROCEDURE increment salary
(id NUMBER, new sal NUMBER) IS

BEGIN
UPDATE departments
SET total sal = NVL (total sal, 0)+ new sal

WHERE department id = id;
END increment salary;

CREATE OR REPLACE TRIGGER compute salary
AFTER INSERT OR UPDATE OF salary OR DELETE
ON employees FOR EACH ROW
BEGIN
IF DELETING THEN increment salary(
:OLD.department id, (-1*:0LD.salary));
ELSIF UPDATING THEN increment salary(
:NEW.department id, (:NEW.salary-:0OLD.salary));
ELSE increment salary(
:NEW.department id, :NEW.salary); --INSERT
END IF;
END;

Copyright © 2009, Oracle. All rights reserved.

Computing Derived Data Values with a Trigger

By using a trigger, you can perform the following tasks:
* Compute derived columns synchronously, in real time.
» Store derived values within database tables or within package global variables.
* Modify data and calculate derived data in a single pass to the database.
Example

Keep a running total of the salary for each department in the special TOTAL SALARY column
of the DEPARTMENTS table.

Oracle Database 11g: Develop PL/SQL Program Units F -12

Logging Events with a Trigger

CREATE OR REPLACE TRIGGER notify reorder rep
BEFORE UPDATE OF quantity on hand, reorder point
ON inventories FOR EACH ROW
DECLARE

dsc product descriptions.product description%TYPE;
msg text VARCHAR2 (2000) ;
BEGIN

IF :NEW.quantity on hand <=

:NEW.reorder point THEN
SELECT product description INTO dsc
FROM product descriptions
WHERE product id = :NEW.product id;
msg text := 'ALERT: INVENTORY LOW ORDER:' | |

"Yours,' ||CHR(10) ||user || '.'|| CHR(10);
ELSIF :0LD.quantity on hand >=
:NEW.quantity on hand THEN
msg text := 'Product #'||... CHR(10);
END IF;
UTL MAIL.SEND('inv@oracle.com', 'ord@oracle.com',
message=>msg text, subject=>'Inventory Notice');

END;

Copyright © 2009, Oracle. All rights reserved.

Logging Events with a Trigger

In the server, you can log events by querying data and performing operations manually. This
sends an email message when the inventory for a particular product has fallen below the
acceptable limit. This trigger uses the Oracle-supplied package UTL MAIL to send the email

message.

Logging Events Within the Server
1. Query data explicitly to determine whether an operation is necessary.
2. Perform the operation, such as sending a message.

Using Triggers to Log Events
1. Perform operations implicitly, such as firing off an automatic electronic memo.
2. Modify data and perform its dependent operation in a single step.
3. Log events automatically as data is changing.

Oracle Database 11g: Develop PL/SQL Program Units F -13

Logging Events with a Trigger (continued)
Logging Events Transparently

In the trigger code:
- CHR(10) is a carriage return
- Reorder point isnot NULL
* Another transaction can receive and read the message in the pipe

Example
CREATE OR REPLACE TRIGGER notify reorder rep
BEFORE UPDATE OF amount in stock, reorder point
ON inventory FOR EACH ROW
DECLARE
dsc product.descrip%TYPE;
msg text VARCHAR2 (2000) ;
BEGIN
IF :NEW.amount in stock <= :NEW.reorder point THEN
SELECT descrip INTO dsc

FROM PRODUCT WHERE prodid = :NEW.product id;
msg_text := 'ALERT: INVENTORY LOW ORDER:'||CHR(10) ||
'It has come to my personal attention that, due to recent'
| |CHR (10) | | 'transactions, our inventory for product # '||
TO_CHAR (:NEW.product_id)||'-- '|| dsc ||
' -- has fallen below acceptable levels.' || CHR(10) ||
'Yours,' ||CHR(10) ||user || '.'|| CHR(10) || CHR(10);
ELSIF :0LD.amount in stock >= :NEW.amount in stock THEN
msg_text := 'Product #'|| TO_CHAR (:NEW.product id)
||' ordered. '|| CHR(10)|| CHR(10);
END IF;
UTL MAIL.SEND('inv@oracle.com', 'ordeoracle.com',

message => msg text, subject => 'Inventory Notice');
END;

Oracle Database 11g: Develop PL/SQL Program Units F -14

Summary

In this lesson, you should have learned how to:

« Enhance database security with triggers

« Enforce data integrity with DML triggers

« Maintain referential integrity using triggers

« Use triggers to replicate data between tables

« Use triggers to automate computation of derived data
* Provide event-logging capabilities using triggers

Copyright © 2009, Oracle. All rights reserved.

Summary

This lesson provides some detailed comparison of using the Oracle database server functionality
to implement security, auditing, data integrity, replication, and logging. The lesson also covers
how database triggers can be used to implement the same features but go further to enhance the
features that the database server provides. In some cases, you must use a trigger to perform some
activities (such as computation of derived data) because the Oracle server cannot know how to
implement this kind of business rule without some programming effort.

Oracle Database 11g: Develop PL/SQL Program Units F -15

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Oracle University and ORACLE CORPORATION use only

Using the DBMS SCHEDULER
and HTP Packages

Copyright © 2009, Oracle. All rights reserved.

Objectives

After completing this lesson, you should be able to do the
following:

 Use the HTP package to generate a simple Web page

« Call the DBMS SCHEDULER package to schedule PL/SQL
code for execution

Copyright © 2009, Oracle. All rights reserved.

Lesson Aim

In this lesson, you learn how to use some of the Oracle-supplied packages and their capabilities.
This lesson focuses on the packages that generate Web-based output and the provided
scheduling capabilities.

Oracle Database 11g: Develop PL/SQL Program Units G -2

Generating Web Pages
with the HTP Package

 The HTP package procedures generate HTML tags.
 The HTP package is used to generate HTML documents
dynamically and can be invoked from:

— A browser using Oracle HTTP Server and PL/SQL Gateway
(mod plsql) services

— An SQL*Plus script to display HTML output

Oracle HTTP Oracle

L SQL script
-
' Z |ORACLE
— B —
L :SQL*Plus

Web client - '
L »Zj/;/(
Generated _E,E%

HTML

Copyright © 2009, Oracle. All rights reserved.

Generating Web Pages with the HTP Package

The HTP package contains procedures that are used to generate HTML tags. The HTML tags
that are generated typically enclose the data provided as parameters to the various procedures.
The slide illustrates two ways in which the HTP package can be used:

* Most likely your procedures are invoked by the PL/SQL Gateway services, via the
mod_plsgl component supplied with Oracle HTTP Server, which is part of the Oracle
Application Server product (represented by solid lines in the graphic).

* Alternatively (as represented by dotted lines in the graphic), your procedure can be called
from SQL*Plus that can display the generated HTML output, which can be copied and
pasted to a file. This technique is used in this course because Oracle Application Server
software 1s not installed as a part of the course environment.

Note: The HTP procedures output information to a session buffer held in the database server. In
the Oracle HTTP Server context, when the procedure completes, the mod _plsgl component
automatically receives the buffer contents, which are then returned to the browser as the HTTP
response. In SQL*Plus, you must manually execute:

* A SET SERVEROUTPUT ON command

* The procedure to generate the HTML into the buffer

* The OWA UTIL.SHOWPAGE procedure to display the buffer contents

Oracle Database 11g: Develop PL/SQL Program Units G -3

Using the HTP Package Procedures

* Generate one or more HTML tags. For example:

htp.bold('Hello') ; -- Hello
htp.print ('Hi World'); -- Hi World

* Are used to create a well-formed HTML document:

BEGIN -- Generates:
htp.htmlOpen; --------- >

htp.headOpen; --------- > | <HTML>
htp.title('Welcome'); -->| _ppaps

htp.headClose; --------- > | <TITLE>Welcome</TITLE>
htp.bodyOpen; --------- >| </HEAD>

htp.print ('My home page'); | _gopy>

htp.bodyClose; --------- > | My home page
htp.htmlClose; --------- > | </BODY>

END; </HTML>

Copyright © 2009, Oracle. All rights reserved.

Using the HTP Package Procedures

The HTP package is structured to provide a one-to-one mapping of a procedure to standard
HTML tags. For example, to display bold text on a Web page, the text must be enclosed in the
HTML tag pair and . The first code box in the slide shows how to generate the word
Hello in HTML bold text by using the equivalent HTP package procedure—that is,
HTP.BOLD. The HTP.BOLD procedure accepts a text parameter and ensures that it is enclosed
in the appropriate HTML tags in the HTML output that is generated.

The HTP . PRINT procedure copies its text parameter to the buffer. The example in the slide
shows how the parameter supplied to the HTP . PRINT procedure can contain HTML tags. This
technique is recommended only if you need to use HTML tags that cannot be generated by using
the set of procedures provided in the HTP package.

The second example in the slide provides a PL/SQL block that generates the basic form of an
HTML document. The example serves to illustrate how each of the procedures generates the
corresponding HTML line in the enclosed text box on the right.

The benefit of using the HTP package is that you create well-formed HTML documents,
eliminating the need to manually type the HTML tags around each piece of data.

Note: For information about all the HTP package procedures, refer to PL/SQL Packages and
Types Reference.

Oracle Database 11g: Develop PL/SQL Program Units G -4

Creating an HTML File with SQL*Plus

To create an HTML file with SQL*Plus, perform the following
steps:

1. Create a SQL script with the following commands:

SET SERVEROUTPUT ON

ACCEPT procname PROMPT "Procedure: "
EXECUTE &procname

EXECUTE owa util.showpage

UNDEFINE proc

2. Load and execute the script in SQL*Plus, supplying values
for substitution variables.

3. Select, copy, and paste the HTML text that is generated in
the browser to an HTML file.

4. Open the HTML file in a browser.

Copyright © 2009, Oracle. All rights reserved.

Creating an HTML File with SQL*Plus

The slide example shows the steps for generating HTML by using any procedure and saving the
output into an HTML file. You should perform the following steps:
1. Turn on server output with the SET SERVEROUTPUT ON command. Without this, you
receive exception messages when running procedures that have calls to the HTP package.
2. Execute the procedure that contains calls to the HTP package.
Note: This does not produce output, unless the procedure has calls to the DBMS OUTPUT

package.
3. Execute the OWA UTIL.SHOWPAGE procedure to display the text. This call actually

displays the HTML content that is generated from the buffer.
The ACCEPT command prompts for the name of the procedure to execute. The call to
OWA UTIL.SHOWPAGE displays the HTML tags in the browser window. You can then copy
and paste the generated HTML tags from the browser window into an HTML file, typically with
an .htmor . html extension.
Note: If you are using SQL*Plus, then you can use the SPOOL command to direct the HTML
output directly to an HTML file.

Oracle Database 11g: Develop PL/SQL Program Units G -5

The DBMS SCHEDULER Package

The database Scheduler comprises several components to
enable jobs to be run. Use the DBMS SCHEDULER package to

create each job with:
* A unique job name
* A program (“what” should be executed)
« A schedule (“when” it should run)

Program —[Schedule]
! i

< } e - -

rgument I :

Job class

Copyright © 2009, Oracle. All rights reserved.

DBMS SCHEDULER Package

Oracle Database provides a collection of subprograms in the DBMS SCHEDULER package to
simplify management and to provide a rich set of functionality for complex scheduling tasks.
Collectively, these subprograms are called the Scheduler and can be called from any PL/SQL
program. The Scheduler enables database administrators and application developers to control
when and where various tasks take place. By ensuring that many routine database tasks occur
without manual intervention, you can lower operating costs, implement more reliable routines,
and minimize human error.

The diagram shows the following architectural components of the Scheduler:

* A job is the combination of a program and a schedule. Arguments required by the program

can be provided with the program or the job. All job names have the format
[schema.]name. When you create a job, you specify the job name, a program, a
schedule, and (optionally) job characteristics that can be provided through a job class.

* A program determines what should be run. Every automated job involves a particular
executable, whether it is a PL/SQL block, a stored procedure, a native binary executable,
or a shell script. A program provides metadata about a particular executable and may
require a list of arguments.

* A schedule specifies when and how many times a job is executed.

Oracle Database 11g: Develop PL/SQL Program Units G -6

DBMS SCHEDULER Package (continued)

* A job class defines a category of jobs that share common resource usage requirements and
other characteristics. At any given time, each job can belong to only a single job class. A
job class has the following attributes:

- A database service name. The jobs in the job class will have an affinity to the
particular service specified—that is, the jobs will run on the instances that cater to the
specified service.

- A resource consumer group, which classifies a set of user sessions that have
common resource-processing requirements. At any given time, a user session or job
class can belong to a single resource consumer group. The resource consumer group
that the job class associates with determines the resources that are allocated to the job
class.

* A window is represented by an interval of time with a well-defined beginning and end, and
1s used to activate different resource plans at different times.

The slide focuses on the job component as the primary entity. However, a program, a schedule, a
window, and a job class are components that can be created as individual entities that can be
associated with a job to be executed by the Scheduler. When a job is created, it may contain all
the information needed inline—that is, in the call that creates the job. Alternatively, creating a
job may reference a program or schedule component that was previously defined. Examples of
this are discussed on the next few pages.

For more information about the Scheduler, see the Online Course titled Oracle Database 11g:
Configure and Manage Jobs with the Scheduler.

Oracle Database 11g: Develop PL/SQL Program Units G -7

Creating a Job

 Ajob can be created in several ways by using a
combination of inline parameters, named Programs, and
named Schedules.

* You can create a job with the CREATE JOB procedure by:

— Using inline information with the “what” and the schedule
specified as parameters

— Using a named (saved) program and specifying the schedule
inline

— Specifying what should be done inline and using a named
Schedule

— Using named Program and Schedule components

Copyright © 2009, Oracle. All rights reserved.

Creating a Job

The component that causes something to be executed at a specified time is called a job. Use the
DBMS_ SCHEDULER.CREATE_ JOB procedure of the DBMS SCHEDULER package to create a
job, which is in a disabled state by default. A job becomes active and scheduled when it is
explicitly enabled. To create a job, you:

* Provide a name in the format [schema.]name

* Need the CREATE JOB privilege
Note: A user with the CREATE ANY JOB privilege can create a job in any schema except the
SYS schema. Associating a job with a particular class requires the EXECUTE privilege for that
class.

In simple terms, a job can be created by specifying all the job details—the program to be
executed (what) and its schedule (when)—in the arguments of the CREATE_JOB procedure.
Alternatively, you can use predefined Program and Schedule components. If you have a named
Program and Schedule, then these can be specified or combined with inline arguments for
maximum flexibility in the way a job is created.

A simple logical check is performed on the schedule information (that is, checking the date

parameters when a job is created). The database checks whether the end date is after the start
date. If the start date refers to a time in the past, then the start date is changed to the current date.

Oracle Database 11g: Develop PL/SQL Program Units G -8

Creating a Job with Inline Parameters

Specify the type of code, code, start time, and frequency of the
job to be run in the arguments of the CREATE JOB procedure.

-- Schedule a PL/SQL block every hour:

BEGIN
DBMS SCHEDULER.CREATE JOB (
job name => 'JOB NAME',
job type => 'PLSQL BLOCK',
job action => 'BEGIN ...; END;',
start date => SYSTIMESTAMP,
repeat interval=>'FREQUENCY=HOURLY; INTERVAL=1"',
enabled => TRUE) ;
END;
/

Copyright © 2009, Oracle. All rights reserved.

Creating a Job with Inline Parameters

You can create a job to run a PL/SQL block, stored procedure, or external program by using the
DBMS_SCHEDULER.CREATE_ JOB procedure. The CREATE _JOB procedure can be used

directly without requiring you to create Program or Schedule components.

The example in the slide shows how you can specify all the job details inline. The parameters of
the CREATE JOB procedure define “what” 1s to be executed, the schedule, and other job

attributes. The following parameters define what is to be executed:
* The job type parameter can be one of the following three values:
- PLSQL BLOCK for any PL/SQL block or SQL statement. This type of job cannot
accept arguments.
- STORED_ PROCEDURE for any stored stand-alone or packaged procedure. The
procedures can accept arguments that are supplied with the job.
- EXECUTABLE for an executable command-line operating system application
* The schedule is specified by using the following parameters:
- The start date accepts a time stamp, and the repeat interval is string-
specified as a calendar or PL/SQL expression. An end_date can be specified.

Note: String expressions that are specified for repeat interval are discussed later. The
example specifies that the job should run every hour.

Oracle Database 11g: Develop PL/SQL Program Units G -9

Creating a Job Using a Program

 Use CREATE PROGRAM to create a program:

BEGIN
DBMS SCHEDULER.CREATE PROGRAM (
program name => 'PROG NAME',
program type => 'PLSQL BLOCK',
program action => 'BEGIN ...; END;');
END;

* Use overloaded CREATE JOB procedure with its
program_ name parameter:

BEGIN
DBMS SCHEDULER.CREATE JOB('JOB NAME',
program name => 'PROG NAME',
start date => SYSTIMESTAMP,
repeat interval => 'FREQ=DAILY',
enabled => TRUE) ;
END;

Copyright © 2009, Oracle. All rights reserved.

Creating a Job Using a Program

The DBMS SCHEDULER.CREATE PROGRAM procedure defines a program that must be
assigned a unique name. Creating the program separately for a job enables you to:

* Define the action once and then reuse this action within multiple jobs

* Change the schedule for a job without having to re-create the PL/SQL block

* Change the program executed without changing all the jobs

The program action string specifies a procedure, executable name, or PL/SQL block depending
on the value of the program_type parameter, which can be:

« PLSQL BLOCK to execute an anonymous block or SQL statement

« STORED PROCEDURE to execute a stored procedure, such as PL/SQL, Java, or C

+ EXECUTABLE to execute operating system command-line programs

The example shown in the slide demonstrates calling an anonymous PL/SQL block. You can
also call an external procedure within a program, as in the following example:
DBMS SCHEDULER.CREATE PROGRAM (program name => 'GET DATE',
program action => '/usr/local/bin/date'’,
program type => 'EXECUTABLE') ;
To create a job with a program, specify the program name in the program name argument in
the call to the DBMS SCHEDULER.CREATE_ JOB procedure, as shown in the slide.

Oracle Database 11g: Develop PL/SQL Program Units G -10

Creating a Job for a Program with Arguments

« Create a program:

DBMS SCHEDULER.CREATE PROGRAM (
program name => 'PROG NAME',
program type => 'STORED PROCEDURE',
program action => 'EMP REPORT') ;

« Define an argument:

DBMS SCHEDULER.DEFINE PROGRAM ARGUMENT (
program name => 'PROG NAME',
argument name => 'DEPT ID',
argument position=> 1, argument type=> 'NUMBER',
default value => '50');

« Create a job specifying the number of arguments:

DBMS SCHEDULER.CREATE JOB('JOB NAME', program name
=> 'PROG NAME', start date => SYSTIMESTAMP,
repeat interval => 'FREQ=DAILY',
number of arguments => 1, enabled => TRUE);

Copyright © 2009, Oracle. All rights reserved.

Creating a Job for a Program with Arguments

Programs, such as PL/SQL or external procedures, may require input arguments. Using the
DBMS_ SCHEDULER.DEFINE PROGRAM ARGUMENT procedure, you can define an argument
for an existing program. The DEFINE PROGRAM ARGUMENT procedure parameters include
the following:
« program name specifies an existing program that is to be altered.
« argument name specifies a unique argument name for the program.
« argument position specifies the position in which the argument is passed when the
program is called.
« argument type specifies the data type of the argument value that is passed to the
called program.
« default value specifies a default value that is supplied to the program if the job that
schedules the program does not provide a value.

The slide shows how to create a job executing a program with one argument. The program

argument default value is 50. To change the program argument value for a job, use:
DBMS SCHEDULER.SET JOB ARGUMENT VALUE (
job_name => 'JOB NAME',
argument name => 'DEPT ID', argument value => '80');

Oracle Database 11g: Develop PL/SQL Program Units G - 11

Creating a Job Using a Schedule

 Use CREATE SCHEDULE to create a schedule:

BEGIN
DBMS SCHEDULER.CREATE SCHEDULE ('SCHED NAME',
start date => SYSTIMESTAMP,
repeat interval => 'FREQ=DAILY',
end date => SYSTIMESTAMP +15);
END;

* Use CREATE JOB by referencing the schedule in the
schedule name parameter:

BEGIN
DBMS_SCHEDULER.CREATE_JOB('JOB_NAME',
schedule name => 'SCHED NAME',
job type => 'PLSQL BLOCK',
job action => 'BEGIN ...; END;',
enabled => TRUE) ;
END;

Copyright © 2009, Oracle. All rights reserved.

Creating a Job Using a Schedule

You can create a common schedule that can be applied to different jobs without having to
specify the schedule details each time. The following are the benefits of creating a schedule:

» Itisreusable and can be assigned to different jobs.

» Changing the schedule affects all jobs using the schedule. The job schedules are changed

once, not multiple times.

A schedule is precise to only the nearest second. Although the TIMESTAMP data type is more
accurate, the Scheduler rounds off anything with a higher precision to the nearest second.
The start and end times for a schedule are specified by using the TIMESTAMP data type. The
end_date for a saved schedule is the date after which the schedule is no longer valid. The
schedule in the example is valid for 15 days after using it with a specified job.
The repeat interval for a saved schedule must be created by using a calendaring
expression. A NULL value for repeat interval specifies that the job runs only once.

Note: You cannot use PL/SQL expressions to express the repeat interval for a saved schedule.

Oracle Database 11g: Develop PL/SQL Program Units G -12

Setting the Repeat Interval for a Job

« Using a calendaring expression:

repeat interval=> 'FREQ=HOURLY; INTERVAL=4'

repeat interval=> 'FREQ=DAILY'

repeat interval=> 'FREQ=MINUTELY; INTERVAL=15"

repeat interval=> 'FREQ=YEARLY;
BYMONTH=MAR, JUN, SEP, DEC;
BYMONTHDAY=15"

« Using a PL/SQL expression:

repeat interval=> 'SYSDATE + 36/24'
repeat interval=> 'SYSDATE + 1'
repeat interval=> 'SYSDATE + 15/(24*60)'

Copyright © 2009, Oracle. All rights reserved.

Setting the Repeat Interval for a Job

When scheduling repeat intervals for a job, you can specify either a PL/SQL expression (if it is
within a job argument) or a calendaring expression.

The examples in the slide include the following:
« FREQ=HOURLY; INTERVAL=4 indicates a repeat interval of every four hours.

« FREQ=DAILY indicates a repeat interval of every day, at the same time as the start date of

the schedule.
« FREQ=MINUTELY; INTERVAL=15 indicates a repeat interval of every 15 minutes.

« FREQ=YEARLY; BYMONTH=MAR, JUN, SEP, DEC; BYMONTHDAY=15 indicates a
repeat interval of every year on March 15, June 15, September 15, and December 15.

With a calendaring expression, the next start time for a job is calculated using the repeat interval
and the start date of the job.

Note: If no repeat interval is specified (that is, if a NULL value is provided in the argument), the
job runs only once on the specified start date.

Oracle Database 11g: Develop PL/SQL Program Units G -13

Creating a Job Using a Named
Program and Schedule

« Create a named program called PROG NAME by using the
CREATE PROGRAM procedure.

« Create a named schedule called SCHED NAME by using
the CREATE SCHEDULE procedure.

« Create a job referencing the named program and
schedule:

BEGIN
DBMS SCHEDULER.CREATE JOB('JOB NAME',
program name => 'PROG NAME',
schedule name => 'SCHED NAME',
enabled => TRUE) ;
END;
/

Copyright © 2009, Oracle. All rights reserved.

Creating a Job Using a Named Program and Schedule

The example in the slide shows the final form for using the

DBMS SCHEDULER.CREATE JOB procedure. In this example, the named program

(PROG NAME) and schedule (SCHED NAME) are specified in their respective parameters in the
call to the DBMS SCHEDULER.CREATE_JOB procedure.

With this example, you can see how easy it is to create jobs by using a predefined program and
schedule.

Some jobs and schedules can be too complex to cover in this course. For example, you can
create windows for recurring time plans and associate a resource plan with a window. A
resource plan defines attributes about the resources required during the period defined by
execution window.

For more information, refer to the online course titled Oracle Database 11g: Configure and
Manage Jobs with the Scheduler.

Oracle Database 11g: Develop PL/SQL Program Units G - 14

Managing Jobs

* Run ajob:

DBMS SCHEDULER.RUN JOB ('SCHEMA.JOB NAME') ;
- Stop ajob:

DBMS SCHEDULER.STOP JOB ('SCHEMA.JOB NAME') ;
« Drop ajob even ifitis currently running:

DBMS SCHEDULER.DROP JOB ('JOB NAME', TRUE) ;

Copyright © 2009, Oracle. All rights reserved.

Managing Jobs

After a job has been created, you can:
* Run the job by calling the RUN JOB procedure specifying the name of the job. The job is
immediately executed in your current session.
* Stop the job by using the STOP_JOB procedure. If the job is running currently, it is
stopped immediately. The STOP_JOB procedure has two arguments:
- job name: Is the name of the job to be stopped
- force: Attempts to gracefully terminate a job. If this fails and force is set to
TRUE, then the job slave is terminated. (Default value is FALSE.) To use force,
you must have the MANAGE SCHEDULER system privilege.
* Drop the job with the DROP_JOB procedure. This procedure has two arguments:
- job_name: Is the name of the job to be dropped
- force: Indicates whether the job should be stopped and dropped if it is currently
running (Default value is FALSE.)
If the DROP_JOB procedure is called and the job specified is currently running, then the
command fails unless the force option is set to TRUE. If the force option is set to
TRUE, then any instance of the job that is running is stopped and the job is dropped.

Note: To run, stop, or drop a job that belongs to another user, you need ALTER privileges on
that job or the CREATE ANY JOB system privilege.

Oracle Database 11g: Develop PL/SQL Program Units G -15

Data Dictionary Views

- [DBA | ALL | USER] SCHEDULER_JOBS
- [DBA | ALL | USER] SCHEDULER RUNNING JOBS
- [DBA | ALL] SCHEDULER JOB CLASSES

ALL | USER] SCHEDULER JOB RUN DETAILS

|
|
|
DBA | ALL | USER] SCHEDULER JOB_LOG
|
| ALL | USER] SCHEDULER PROGRAMS

Copyright © 2009, Oracle. All rights reserved.

Data Dictionary Views
The DBA SCHEDULER JOB_LOG view shows all completed job instances, both successful and
failed.
To view the state of your jobs, use the following query:

SELECT job name, program name, job type, state
FROM USER_SCHEDULER JOBS;

To determine which instance a job is running on, use the following query:
SELECT owner, job name, running instance,
resource_consumer group
FROM DBA SCHEDULER RUNNING JOBS;

To determine information about how a job ran, use the following query:
SELECT job name, instance id, reqg start date,
actual start date, status
FROM ALL SCHEDULER JOB RUN DETAILS;

To determine the status of your jobs, use the following query:
SELECT job name, status, error#, run duration, cpu used
FROM USER SCHEDULER JOB RUN DETAILS;

Oracle Database 11g: Develop PL/SQL Program Units G - 16

Summary

In this lesson, you should have learned how to:
« Use the HTP package to generate a simple Web page
« Call the DBMS SCHEDULER package to schedule PL/SQL
code for execution

Copyright © 2009, Oracle. All rights reserved.

Summary
This lesson covers a small subset of packages provided with the Oracle database. You have
extensively used DBMS OUTPUT for debugging purposes and displaying procedurally generated
information on the screen in SQL*Plus.
In this lesson, you should have learned how to schedule PL/SQL and external code for execution
with the DBMS SCHEDULER package.
Note: For more information about all PL/SQL packages and types, refer to PL/SQOL
Packages and Types Reference.

Oracle Database 11g: Develop PL/SQL Program Units G - 17

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Oracle University and ORACLE CORPORATION use only

Review of JDeveloper

Copyright © 2009, Oracle. All rights reserved.

JDeveloper

File Edit ¥iew Search Mavigate Run Debug Versioning Tools Window Help

=B AN XBR Da @ 0 e @EHEEDEG

I.'ﬁ, Applications - Mawigator 1 x||(3)Developer Welcnme] ¥
il D% €9

Applications

Welcome to Oracle |Developer 10g

Oracle Developer 10g is an Integrated Development Enviranment {IDE) for
huilding applications and Weh services using the latest industry standards for
Jawa, XML, and SQL.

Oracle JDeveloper supports the complete dewvelopment life cycle with
integrated features for madeling, coding, debugging, testing, profiling, tuning,
and deployving applications.

Acvisual and declarative approach and the innowative Oracle Application
Development Framewark, {Oracle ADF) work together to simplify application
deweloprment and reduce rmundane coding tasks, offering dewvelopers
unparalleled productivity and their choice of technaology stacks.

ApplicationsJ[EJS\.fstemHE?g Connections|

Oracle JDeveloper offers an Extension DK that lets you add functionality and
%] Structure n x| | customize your development environment.

Getting Started

Are you afirst tirme user of Oracle |Developer 10g7 Visit Getting Startad with
Oracle |Devaloper,

[«

HEIp-tunte_nt] 1| Ll
Applications Editing
Copyright © 2009, Oracle. All rights reserved.

JDeveloper

Oracle JDeveloper 11g is an integrated development environment (IDE) for developing and
deploying Java applications and Web services. It supports every stage of the software
development life cycle (SDLC) from modeling to deploying. It has the features to use the latest
industry standards for Java, Extensible Markup Language (XML), and SQL while developing an
application.

Oracle JDeveloper 11g initiates a new approach to J2EE development with the features that
enable visual and declarative development. This innovative approach makes J2EE development
simple and efficient.

Oracle Database 11g: Develop PL/SQL Program Units H -2

Connection Navigator

[Connections - Mavigator nx
X 97
[|Connections

@ = Application Server
& Eb Cys server

& [Database

& [1ig Designer Workarea
& ({3 S0AP Server

& (& UDDI Registry

& [wehDay Server

Applicatiuns”[ﬁjs\,-stemul—ﬁ%CDnnEEtiDnSl_

Copyright © 2009, Oracle. All rights reserved.

Connection Navigator

Using Oracle JDeveloper 11g, you can store the information necessary to connect to a database
in an object called “connection.” A connection is stored as part of the IDE settings, and can be
exported and imported for easy sharing among groups of users. A connection serves several

purposes from browsing the database and building applications, all the way through to
deployment.

Oracle Database 11g: Develop PL/SQL Program Units H -3

Application Navigator

KLY

=
E Jnsws
@ nsws
- lessonn4
@ lesson0s
@ lesson0a
@ lesson07
- lessonng
@ lessoni0
@ lessontl
@ lessonl4
B lessonts
@ lessoni75ession
@ lessonz0
@ lessonz1
I practice1 7ske
@ practicel 7soln s

-1 oracticez1 hd
npplications]l[ﬁijstem“E%Connections]@]

@

Copyright © 2009, Oracle. All rights reserved.

Application Navigator

The Application Navigator gives you a logical view of your application and the data it contains.
The Application Navigator provides an infrastructure that the different extensions can plug into
and use to organize their data and menus in a consistent, abstract manner. While the Application
Navigator can contain individual files (such as Java source files), it is designed to consolidate
complex data. Complex data types such as entity objects, UML (Unified Modeling Language)
diagrams, Enterprise JavaBeans (EJB), or Web services appear in this navigator as single nodes.
The raw files that make up these abstract nodes appear in the Structure window.

Oracle Database 11g: Develop PL/SQL Program Units H -4

Structure Window

B E@ R
|jfl mypackagel

l E_'almports

- E g MyIMIWehServiceStub

Q g My IM3WebServiceStub()

-] 7 getEndpoint() ¢ String

- [E] By main Stringl1) ¢ void

g receivel) | Yeckor

-] 7 sendf, Element } : woid

-[E=] g setEndpaint(String) ¢ vaid

-l @ endpoint ¢ String

& m_httpConnection : OraceSOAPHTTPConnection
& m_smr : S0APMappingReqgistry

Copyright © 2009, Oracle. All rights reserved.

Structure Window
The Structure window offers a structural view of the data in the document currently selected in
the active window of those windows that participate in providing structure: the navigators, the
editors and viewers, and the Property Inspector.

In the Structure window, you can view the document data in a variety of ways. The structures
available for display are based upon document type. For a Java file, you can view code structure,
user interface (UI) structure, or Ul model data. For an XML file, you can view XML structure,
design structure, or Ul model data.

The Structure window is dynamic, always tracking the current selection of the active window
(unless you freeze the window’s contents on a particular view), as is pertinent to the currently
active editor. When the current selection is a node in the navigator, the default editor is assumed.
To change the view on the structure for the current selection, select a different structure tab.

Oracle Database 11g: Develop PL/SQL Program Units H -5

Editor Window

£, SHOW_CUST_CALL

PROCEDLRE show_cust_call o
custid IN NUMEER default 101) AS
BEGIN NULL;

htp.prng'

B
htp.prng'
B
htp.prng'

<HTML=

<BODY=

<Tarm method="PO5T" action="show_cust">
<p=Enter the Customer ID:

<input Type="text" name="custid">
<input type="submit" wvalue="Submit"s
</ forme-

</BODY>

</ HTHL>

P
END;

Copyright © 2009, Oracle. All rights reserved.

Editor Window

You can view all your project files in one single editor window, you can open multiple views of
the same file, or you can open multiple views of different files.

The tabs at the top of the editor window are the document tabs. Selecting a document tab gives
that file focus, bringing it to the foreground of the window in the current editor.

The tabs at the bottom of the editor window for a given file are the editor tabs. Selecting an
editor tab opens the file in that editor.

Oracle Database 11g: Develop PL/SQL Program Units H -6

Deploying Java Stored Procedures

Before deploying Java stored procedures, perform the following

steps:
Create a database Create a deployment Deploy the objects.

connection. profile.

Copyright © 2009, Oracle. All rights reserved.

Deploying Java Stored Procedures

Create a deployment profile for Java stored procedures, then deploy the classes and, optionally,
any public static methods in JDeveloper using the settings in the profile.

Deploying to the database uses the information provided in the Deployment Profile Wizard and

two Oracle Database utilities:
loadjava loads the Java class containing the stored procedures to an Oracle database.

publish generates the PL/SQL call-specific wrappers for the loaded public static
methods. Publishing enables the Java methods to be called as PL/SQL functions or
procedures.

Oracle Database 11g: Develop PL/SQL Program Units H -7

Publishing Java to PL/SQL

E-FormatCreditCardNo.java |, CCFORMAT

public class FormatCreditCardio
{
public static final void formatCard(String cardnod
{
int count=0, spaces=0;
String oldcc=cardno[0];
A4 Svstemn out.printin{"Printing the card no initially "+oldcc);
Stringd newcc= {""3};
while {count<15)

nemcc [0]+= oldcc.chard&t{count};

Space+H;

if {space ==4)

{ newcc[0]+=" "; space=0; 1
COount++;

cardno[0]=newcc [0];
H
b

F@}FDrmatCreditCardNu.ja\.ra”iMCCFORMAT]

PROCEDURE ccformat (x IN OUT varchar?)
AS LANGUAGE JAVA
MWAME 'FormatCreditCardMo. formatCard(java.lang. Stringd3";

Copyright © 2009, Oracle. All rights reserved.

Publishing Java to PL/SQL
The slide shows the Java code and how to publish the Java code in a PL/SQL procedure.

Oracle Database 11g: Develop PL/SQL Program Units H -8

Creating Program Units

I TEST_JDEV]
FUNCTION "TEST_IDEY" RETURN VARCHARZ
as
BEGIN
RETURN(' 'J;
END;

Skeleton of the function

Copyright © 2009, Oracle. All rights reserved.

Creating Program Units

To create a PL/SQL program unit:

1. Select View > Connection Navigator.

2. Expand Database and select a database connection.

3. In the connection, expand a schema.

4. Right-click a folder corresponding to the object type (Procedures, Packages, and
Functions).

5. Choose New PL/SQL object_type. The Create PL/SQL dialog box appears for the
function, package, or procedure.

6. Enter a valid name for the function, package, or procedure, and click OK.

A skeleton definition will be created and opened in the Code Editor. You can then edit the
subprogram to suit your need.

Oracle Database 11g: Develop PL/SQL Program Units H -9

Compiling

Hx

Messages| Campiler|
3 Project; fhomeforacle/Workspace 1/Praject/Projectl.jpr
@ [PROCEDURE. OE.C_OUTPUT. pls

[x] Errardz, 10%: PL5-00103: Encounterad the symbol "INTECER" when expecting one aof the fallowing: c={; not aull

Compiler - Log

| v]

Compilation with errors

X |Messages|
Hlconpiting. ..
[5:16:13 PM] SuccessTul compilation: O errars, O warnings.

Messages - Log

Compilation without errors

Copyright © 2009, Oracle. All rights reserved.

Compiling
After editing the skeleton definition, you need to compile the program unit. Right-click the
PL/SQL object that you need to compile in the Connection Navigator and then select Compile.
Alternatively, you can also press [CTRL] + [SHIFT] + [F9] to compile.

Oracle Database 11g: Develop PL/SQL Program Units H -10

Running a Program Unit

I Run PL{SOL n
Target: [Parameters:
SWAP : Pararneter [DataTwpe [Mode |
s MNUMEBER 1M OUT
i NUMBER NS OUT

PL/SQL Block
DECLARE 1=
3 NUMBER ; B
Y NUMBER ;

BEGIN
¥ i= NULL;
Y 1= HULL;

OE. ShaP
W= A,
Yo=Y

13

DEMS_OUTPUT. PUT_LINE("X

DBMS_OUTPUT. PUT_LINE("Y
END;
E

Y
BRI

|1 | |:§:§:§:§:

s [»]

J

Reset

Help [ok || cancer |

Copyright © 2009, Oracle. All rights reserved.

Running a Program Unit

To execute the program unit, right-click the object and select Run. The Run PL/SQL dialog box
appears. You may need to change the NULL values with reasonable values that are passed into
the program unit. After you change the values, click OK. The output will be displayed in the
Message-Log window.

Oracle Database 11g: Develop PL/SQL Program Units H - 11

Dropping a Program Unit

N Drop Confirmation ... E

Are you sure you want to drop PROCEDURE
OETESTING?

s

Yes | | Mo |

Copyright © 2009, Oracle. All rights reserved.

Dropping a Program Unit

To drop a program unit, right-click the object and select Drop. The Drop Confirmation dialog
box appears; click Yes. The object will be dropped from the database.

Oracle Database 11g: Develop PL/SQL Program Units H -12

Debugging PL/SQL Programs

« JDeveloper support two types of debugging:
— Local
— Remote
* You need the following privileges to perform PL/SQL
debugging:
— DEBUG ANY PROCEDURE
— DEBUG CONNECT SESSION

Copyright © 2009, Oracle. All rights reserved.

Debugging PL/SQL Programs

JDeveloper offers both local and remote debugging. A local debugging session is started by
setting breakpoints in source files, and then starting the debugger. Remote debugging requires
two JDeveloper processes: a debugger and a debuggee, which may reside on a different
platform.

To debug a PL/SQL program, it must be compiled in INTERPRETED mode. You cannot debug

a PL/SQL program that is compiled in NATIVE mode. This mode is set in the database’s
init.ora file.

PL/SQL programs must be compiled with the DEBUG option enabled. This option can be
enabled using various ways. Using SQL*Plus, execute ALTER SESSION SET

PLSQL DEBUG = true to enable the DEBUG option. Then you can create or recompile the
PL/SQL program you want to debug. Another way of enabling the DEBUG option is by using the

following command in SQL*Plus:
ALTER <procedure, function, package> <name> COMPILE DEBUG;

Oracle Database 11g: Develop PL/SQL Program Units H -13

Debugging PL/SQL Programs

@ Emvironment
Arcelerators

O Aydit

® Business Components SQL"Plus Executable:

© Code Editor | | Erowse...
Compare =

@& S 0On Windows, enter the path to the SQL*Plus
Database Cannections executable. On UNIX, you also need to specify the
Data Control Paletta xterm command. For example: fustibin/xterm -e

@ Debugger joracle/bin/sqlplus
Deployment

@ Diagrams Registered JDEC Drivers:
Documentation a |

Extension Manager

File Types

Cenerators

Java Wisual Editor

JClient

ISP and HTML Visual Editar

Metrics

TCP Packet Manitor

UI¥ Wisual Editor

ek Browser and Proxy

WakDay

W5-1 Testing Toals

XML Schemas Library:

LIT [ok || cance |J

Copyright © 2009, Oracle. All rights reserved.

Debugging PL/SQL Programs (continued)

Before you start with debugging, make sure that the Generate PL/SQL Debug Information check
box is selected. You can access the dialog box by using Tools > Preferences > Database
Connections.

[v] Generate PL/SQL Debug Information

New

PP

1]

Driver Class:

Instead of manually testing PL/SQL functions and procedures as you may be accustomed to
doing from within SQL*Plus or by running a dummy procedure in the database, JDeveloper
enables you to test these objects in an automatic way. With this release of JDeveloper, you can
run and debug PL/SQL program units. For example, you can specify parameters being passed or
return values from a function giving you more control over what is run and providing you output
details about what was tested.

Note: The procedures or functions in the Oracle database can be either stand-alone or within a
package.

Oracle Database 11g: Develop PL/SQL Program Units H - 14

Debugging PL/SQL Programs (continued)

To run or debug functions, procedures, or packages, perform the following steps:

1.
2.

(98]

Create a database connection by using the Database Wizard.

In the Navigator, expand the Database node to display the specific database username and
schema name.

Expand the Schema node.

Expand the appropriate node depending on what you are debugging: Procedure, Function,
or Package body.

(Optional for debugging only) Select the function, procedure, or package that you want to
debug and double-click to open it in the Code Editor.

(Optional for debugging only) Set a breakpoint in your PL/SQL code by clicking to the left
of the margin.

Note: The breakpoint must be set on an executable line of code. If the debugger does not
stop, the breakpoint may have not been set on an executable line of code (ensure that the
breakpoint was verified). Also, verify that the debugging PL/SQL prerequisites were met.
In particular, make sure that the PL/SQL program is compiled in INTERPRETED mode.
Make sure that either the Code Editor or the procedure in the Navigator is currently
selected.

Click the Debug toolbar button; or, if you want to run without debugging, click the Run
toolbar button.

The Run PL/SQL dialog box is displayed.

- Select a target that is the name of the procedure or function that you want to debug.
Note that the content in the Parameters and PL/SQL Block boxes change dynamically
when the target changes.

Note: You will have a choice of target only if you choose to run or debug a package
that contains more than one program unit.

- The Parameters box lists the target’s arguments (if applicable).

- The PL/SQL Block box displays code that was custom-generated by JDeveloper for
the selected target. Depending on what the function or procedure does, you may need
to replace the NULL values with reasonable values so that these are passed into the
procedure, function, or package. In some cases, you may need to write additional
code to initialize values to be passed as arguments. In this case, you can edit the
PL/SQL block text as necessary.

10. Click OK to execute or debug the target.
11. Analyze the output information displayed in the Log window.

In the case of functions, the return value will be displayed. DBMS OUTPUT messages will also
be displayed.

Oracle Database 11g: Develop PL/SQL Program Units H -15

Setting Breakpoints

2, 5uap || (dHelp || §, TEST_DEBUG ||£ CCFORMAT

PROCEDURE "TEST_DEBUG" ({p_cust_id IN NUMBER}
AS
v_cust customersHXREOWNTYFE;
BEGIN
SELECT * into v_cust
FROM custoners
where customer_id = p_cust_id;

@ dbms_output.put_line('Customer ID is '|| w_cust.customer_id);
dhms_output.put_line('Custoner Mame is '|| w_cust.cust_Tirst_name);
END;
EjSource| 4 [

Copyright © 2009, Oracle. All rights reserved.

Setting Breakpoints

Breakpoints help you examine the values of the variables in your program. A breakpoint is a
trigger in a program that, when reached, pauses program execution allowing you to examine the
values of some or all of the program variables. By setting breakpoints in potential problem areas
of your source code, you can run your program until its execution reaches a location you want to
debug. When your program execution encounters a breakpoint, the program pauses, and the
debugger displays the line containing the breakpoint in the Code Editor. You can then use the
debugger to view the state of your program. Breakpoints are flexible in that they can be set
before you begin a program run or at any time while you are debugging.

To set a breakpoint in the Code Editor, click the left margin next to a line of executable code.
Breakpoints set on comment lines, blank lines, declaration, and any other nonexecutable lines of
code are not verified by the debugger and are treated as invalid.

Oracle Database 11g: Develop PL/SQL Program Units H - 16

Stepping Through Code

Debug Resume

DSEg oS XmE Bl o o ewpdHd)0Ho e

[38 Connections - Navigator R x| |2 <wap||([AQHelp| 2, TEST_DEBUG||E CCFORMAT
x 97 PROCEDURE "TEST_DEBUG" (p_cust_id IN NUMBER)
e Gyd MATEFIANZED YIEW LOGS [a5
& &d Materialized Yiews ™ ¥_CUST CustomerskRONTYPE;
&[5 object Types BEGIN
9 &) Packages SELECT * into v_cust
&= Ts?. CUST_DAT A FROM customers
- @ SHOW_DETAILS where customer_id = p_cust_id;
@ @Prucedures dbms_output. put_line('Customer ID is '|| v_cust.customer_id]);
g, C_OUTPUT dhms_output.put_Tine{'Customer Name is '|| wv_cust.cust_first_name);
£ CCFORMAT END;
£, HHTEST
E P_MYCARD
8 SHOW_CusT
8 SHOW_CUST _CALL
£ SHOW_CUSTOMERS
8, SHOW_CUSTOMERS_CA
2 SHOW_CUSTOMERS_H~|

1 I 1
l®Applications || nSystem | (& Connections| __-7'50."(&] BB

Copyright © 2009, Oracle. All rights reserved.

Stepping Through Code

After setting the breakpoint, start the debugger by clicking the Debug icon. The debugger will
pause the program execution at the point where the breakpoint is set. At this point, you can
check the values of the variables. You can continue with the program execution by clicking the
Resume icon. The debugger will then move on to the next breakpoint. After executing all the
breakpoints, the debugger will stop the execution of the program and display the results in the
Debugging — Log area.

Oracle Database 11g: Develop PL/SQL Program Units H -17

Examining and Modifying Variables

il Data & x
Marne [value [Tupe |
© =] P_CUST_ID 103 MM BER.

o = v_CusT Rowtype

Féemart Data| smDaral| %~ watches

Data window

Copyright © 2009, Oracle. All rights reserved.

Examining and Modifying Variables

When the debugger is ON, you can examine and modify the value of the variables using the
Data, Smart Data, and Watches windows. You can modify program data values during a
debugging session as a way to test hypothetical bug fixes during a program run. If you find that a
modification fixes a program error, you can exit the debugging session, fix your program code
accordingly, and recompile the program to make the fix permanent.

You use the Data window to display information about variables in your program. The Data
window displays the arguments, local variables, and static fields for the current context, which is
controlled by the selection in the Stack window. If you move to a new context, the Data window
is updated to show the data for the new context. If the current program was compiled without
debug information, you will not be able to see the local variables.

Oracle Database 11g: Develop PL/SQL Program Units H -18

Examining and Modifying Variables

P4 Smart Data nx
mame [alue [Type
& = v_cust

® = v_cust.customer_id

Rowtype

103 MUMBER(E, 0)

Bsmart Data|| mWData]| %Warches

Smart Data window

Copyright © 2009, Oracle. All rights reserved.

Examining and Modifying Variables (continued)

Unlike the Data window that displays all the variables in your program, the Smart Data window
displays only the data that is relevant to the source code that you are stepping through.

Oracle Database 11g: Develop PL/SQL Program Units H -19

Examining and Modifying Variables

i Matches ax
Mame [alue [Type
© =] w_cust.customer_ 1032 MUMBER(E, 0)

Bsman Datal| mWDatal| %-watches|

Watches window

Copyright © 2009, Oracle. All rights reserved.

Examining and Modifying Variables (continued)

A watch enables you to monitor the changing values of variables or expressions as your program
runs. After you enter a watch expression, the Watch window displays the current value of the
expression. As your program runs, the value of the watch changes as your program updates the
values of the variables in the watch expression.

Oracle Database 11g: Develop PL/SQL Program Units H -20

Examining and Modifying Variables

£ Stack ox
Class [Method

TEST _DEEUG TEST _DEEUG

(0] AMOMYMOUS BLOCK,

Stack window

Copyright © 2009, Oracle. All rights reserved.

Examining and Modifying Variables (continued)

You can activate the Stack window by using View > Debugger > Stack. It displays the call stack
for the current thread. When you select a line in the Stack window, the Data window, Watch
window, and all other windows are updated to show data for the selected class.

Oracle Database 11g: Develop PL/SQL Program Units H - 21

Examining and Modifying Variables

£ Classes nx
Marne
® 2 $0racle
& 0@ Block
@ 33 Builin
&= g package
o @3 PackageBody
% 03 Procedurs
¢ JoE
% @ TEST_DEBUG
@ 03 CUSTOMERS
E Rowtype
El TEST _DEBUG

& 0 java

Classes window

Copyright © 2009, Oracle. All rights reserved.

Examining and Modifying Variables (continued)

The Classes window displays all the classes that are currently being loaded to execute the
program. If used with Oracle Java Virtual Machine (OJVM), it also shows the number of
instances of a class and the memory used by those instances.

Oracle Database 11g: Develop PL/SQL Program Units H - 22

A
Active set D-18, D-20, D-22
Anonymous 1-2, 1-12, 1-23, 1-28, 1-29, 1-31, 2-6, 2-7, 2-11,
2-27, 2-34, 3-8, 5-21, 5-22, 5-27, 7-8, 7-13, 7-16, 7-19, 8-8,
8-12, 8-13, 9-3, 9-10, 11-8, 11-18, 12-29, D-2, G-10
Autonomous transactions 8-2, 8-3, 8-11, 8-12, 8-13, 8-14, 8-15,
8-25, 8-39
Available Methods for Using NDS 7-9, 7-10
B
BEGIN 2-7, 2-15, 2-21, 2-24, 2-25, 2-26, 2-27, 2-30, 2-32, 2-34,
2-37, 2-38, 2-39, 2-40, 3-4, 3-7, 3-8, 3-13, 3-17, 3-19, 4-7,
4-8, 4-15, 4-16, 4-17, 4-19, 5-7, 5-9, 5-10, 5-11, 5-14, 5-19,
5-20, 5-22, 5-27, 5-28, 6-12, 6-13, 6-18, 6-21, 6-22, 6-24, 6-25,
7-11,7-12, 7-13, 7-14, 7-15, 7-16, 7-17, 7-22, 7-23, 8-5, 8-7,
8-8, 8-10, 8-11, 8-13, 8-16, 8-19, 8-22, 8-23, 8-29, 8-30, 8-31,
8-32, 8-33, 8-36, 8-37, 9-10, 9-16, 9-18, 9-19, 9-21, 9-23, 9-25,
9-29, 9-31, 10-11, 10-14, 10-20, 10-21, 11-14, 11-24, 11-26, 11-36, 11-39,
12-6, 12-10, 12-11, 12-12, 12-15, 12-16, 12-22, 12-23, 12-24, 12-28, 12-33,
12-34, 13-17, C-25, D-2, D-6, D-7, D-8, D-9, D-10, D-11, D-15,
D-16, D-17, D-19, D-21, D-24, D-26, D-28, D-29, D-30, F-4, F-6,
F-8, F-10, F-12, F-13, F-14, G-4, G-7, G-9, G-10, G-12, G-14,
H-16
Bind variables 1-18, 2-28, 3-4, 7-4, 7-5, 7-7, 7-12, 7-16,
7-19, 7-20, 7-23, C-14
Boolean 3-15, 3-25, 4-16, 5-19, 5-20, 5-21, 5-27, 6-9, 6-11,
6-20, 6-21, 6-23, 6-24, 7-8, 9-23, 12-6, 12-8, 12-12, 12-13, 12-14,
D-3, D-31
Bulk binding 8-2, 8-3, 8-15, 8-25, 8-26, 8-27, 8-28, 8-29, 8-30,
8-39
C
Calling procedures 2-3, 2-12, 2-34, 2-35, 2-36, 2-46, 9-39

Oracle Database'11g: DevelopPL/SQLProgram Units Index-2

C

CASE 2-8, 2-16, 2-23, 2-32, 2-40, 2-42, 3-7, 4-19, 5-9, 5-16,
5-26, 6-8, 6-13, 6-18, 6-21, 6-24, 7-17, 7-19, 7-29, 8-18, 8-26,
9-5, 9-6, 9-11, 9-16, 9-24, 9-34, 9-37, 9-40, 10-12, 11-8, 11-30,
12-7, 12-8, 12-9, 12-26, 13-5, 13-18, 13-21, 13-24, E-13, F-2, F-15,
H-15

CLOSE 1-15, 5-19, 5-20, 5-21, 6-9, 6-12, 6-14, 6-22, 6-25, 6-29,
7-7,7-8,7-10, 7-14, 7-15, 7-20, 7-22, 7-23, 8-32, C-9, C-24,
D-2, D-18, D-22, D-24, E-19, G-3, G4

Collections 7-24, 8-16, 8-26, 8-27, 8-33, 8-34, 8-35, 8-36, 8-38,
10-13

Compiling procedures 2-17, 13-36, 13-41

Composite data type D-3

Compound triggers 9-8, 10-2, 10-4, 10-5, 10-7, 10-9, 10-26

Conditional compilation 11-12, 12-2, 12-3, 12-4, 12-5, 12-7, 12-8,
12-9, 12-11, 12-12, 12-13, 12-15, 12-16, 12-17, 12-18, 12-30, 12-31, 12-32,
12-33

CONSTANT 2-7, 2-20, 4-2, 4-4, 4-7, 4-11, 4-15, 4-16, 4-19,
4-23, 4-24, 5-2, 8-2, 8-3, 8-4, 8-7, 8-15, 8-25, 8-39, 12-5,
12-6, 12-12, 12-13, 12-14, 12-24, 12-33, D-2, D-3, F-5

Creating a Database Connection 1-15, 1-30, C-7, C-8, C-9

Creating triggers on system events 10-19

Cursor 1-18, 1-19, 2-34, 4-2, 4-4, 4-6, 4-7, 4-11, 4-15, 4-19,
4-23, 4-24, 5-2, 5-19, 5-20, 5-21, 5-24, 6-13, 7-7, 7-10, 7-12,
7-14, 7-15, 7-20, 7-22, 7-23, 7-24, 8-18, 8-27, 8-28, 8-30, 8-31,
8-32, 8-37, 9-9, 10-29, 11-5, 12-6, C-14, C-16, C-22, C-23, C-27,
D-2, D-13, D-18, D-19, D-20, D-21, D-22, D-23, D-24, D-25, D-26,
D-27

Cursor attributes 7-15, D-13, D-20, D-23

Cursor FOR loop 8-18, 8-27, D-24

D
Database-event triggers 10-18, 10-22
DBMS_DB_VERSION 12-5, 12-12, 12-13, 12-14, 12-15, 12-33

Oracle Database'11g: DevelopPL/SQLProgram Units Index-3

D
DBMS_OUTPUT 1-12, 1-23, 1-24, 1-31, 2-25, 2-27, 2-38, 2-40, 3-7,
3-8, 3-9, 4-19, 5-20, 5-22, 5-27, 6-2, 6-3, 6-4, 6-5, 6-6,
6-7, 6-12, 6-13, 6-27, 7-12, 7-13, 7-14, 7-16, 7-22, 7-23, 8-8,
8-30, 8-31, 8-32, 9-34, 10-21, 11-24, 11-35, 11-36, 11-43, 12-10, 12-16,
12-22, 12-23, 12-24, E-18, G-5, G-17, H-15
DBMS_SAQL package 7-2, 7-3, 7-5, 7-10, 7-18, 7-19, 7-20, 7-21,
7-26, 7-28, 8-10
DBMS_WARNING 11-3, 11-6, 11-15, 11-20, 11-24, 11-28, 11-29, 11-30, 11-31,
11-32, 11-33, 11-34, 11-35, 11-36, 11-37, 11-43
DDL 1-6, 1-16, 1-28, 2-16, 2-41, 3-16, 7-5, 7-9, 7-11, 7-17,
7-19, 7-20, 7-22, 9-5, 9-6, 9-8, 10-1, 10-2, 10-12, 10-17, 10-18,
10-24, 10-26, 12-19, 12-21, 12-23, 12-24, 12-29, C-11
Debugging PL/SQL 1-2, 1-11, C-3, H-13, H-14, H-15
DECLARE 2-7, 2-9, 2-20, 2-21, 2-22, 2-25, 2-27, 2-29, 2-30,
2-31, 2-32, 2-44, 3-4, 3-8, 4-4, 4-7, 4-8, 4-11, 4-14, 4-15,
4-16, 4-19, 4-22, 4-23, 5-8, 5-9, 5-11, 5-12, 5-17, 5-22, 5-27,
6-10, 6-13, 7-10, 7-13, 7-14, 7-15, 7-16, 8-4, 8-5, 8-8, 8-16,
8-18, 8-30, 8-41, 9-10, 9-20, 10-7, 10-11, 10-13, 10-29, 11-5, 11-24,
12-6, 12-16, 12-24, 12-33, 13-17, D-2, D-3, D-4, D-5, D-6, D-7,
D-8, D-9, D-10, D-11, D-15, D-16, D-17, D-18, D-19, D-20, D-21,
D-22, D-24, D-25, D-26, D-27, D-29, D-30, F-4, F-13, F-14
DEFAULT 1-20, 1-24, 1-31, 1-32, 2-10, 2-15, 2-16, 2-20, 2-22,
2-23, 2-31, 2-32, 2-33, 3-15, 3-18, 3-19, 3-24, 3-26, 4-11, 5-11,
5-16, 5-17, 6-7, 6-8, 6-15, 6-18, 6-19, 6-20, 6-21, 6-23, 6-24,
7-8, 7-28, 8-10, 8-16, 8-17, 8-22, 8-38, 9-10, 9-30, 9-32, 9-38,
11-4, 11-7, 11-8, 11-9, 11-23, 12-8, 12-26, C-4, C-7, C-8, C-10,
C-17, C-30, C-34, D-3, D-9, D-22, D-31, E-17, E-18, E-24, E-25,
E-30, E-31, F-5, F-6, F-8, F-9, G-8, G-11, G-15, H-5
Definer’s rights 8-9, 8-10
DETERMINISTIC clause 8-2, 8-3, 8-15, 8-24, 8-25, 8-39

Oracle Database'11g: DevelopPL/SQLOProgram Units Index-4

D
DML 2-37, 2-39, 2-46, 3-16, 3-17, 5-12, 5-13, 7-4, 7-12, 7-20,
7-22, 7-23, 8-2, 8-3, 8-10, 8-15, 8-19, 8-25, 8-27, 8-28, 8-30,
8-33, 8-34, 8-35, 8-36, 8-39, 9-5, 9-6, 9-8, 9-9, 9-10, 9-11,
9-12, 9-13, 9-14, 9-15, 9-16, 9-18, 9-19, 9-24, 9-26, 9-28, 9-31,
9-38, 10-7, 10-8, 10-9, 10-10, 10-12, 10-18, 10-23, 10-25, 10-29, D-12,
D-13, D-23, E-32, F-2, F-15
Dynamic SQL 1-5, 7-1,7-2,7-3, 7-4, 7-5, 7-6, 7-7, 7-8,
7-9,7-10, 7-11, 7-12, 7-13, 7-14, 7-17, 7-18, 7-19, 7-20, 7-22,
7-23, 7-24, 7-25, 7-26, 7-27, 7-28, 8-10, 11-36, 13-42
E
Editing the PL/SQL Code 1-24
ELSE 4-16, 4-17, 7-14, 9-18, 9-23, 12-6, 12-11, 12-15, D-14, F-10,
F-12
ELSIF 9-18, 9-23, 9-29, 12-6, 12-11, D-14, F-12, F-13, F-14

Oracle Database'11g: Develop PL/SQL Program Units Index-5

E

END 1-3, 1-5, 1-6, 1-9, 1-14, 1-18, 1-19, 1-24, 1-25, 1-29,
1-30, 1-31, 1-32, 2-3, 2-5, 2-6, 2-7, 2-12, 2-15, 2-20, 2-21,
2-24, 2-25, 2-26, 2-27, 2-30, 2-32, 2-34, 2-36, 2-37, 2-38, 2-39,
2-40, 2-41, 2-46, 3-3, 3-4, 3-7, 3-8, 3-12, 3-13, 3-16, 3-17,
3-19, 3-24, 4-3, 4-6, 4-7, 4-8, 4-10, 4-11, 4-14, 4-15, 4-16,
4-17, 4-19, 4-22, 5-3, 5-4, 5-6, 5-7, 5-9, 5-10, 5-11, 5-12,
5-14, 5-15, 5-17, 5-19, 5-20, 5-21, 5-22, 5-23, 5-28, 6-3, 6-4,
6-5, 6-6, 6-7, 6-8, 6-9, 6-10, 6-11, 6-12, 6-14, 6-15, 6-16,
6-18, 6-19, 6-20, 6-21, 6-22, 6-23, 6-24, 6-25, 6-27, 7-3, 7-7,
7-11,7-12, 7-13, 7-14, 7-15, 7-16, 7-17, 7-18, 7-22, 7-23, 7-26,
8-2, 8-3, 8-5, 8-7, 8-8, 8-10, 8-11, 8-12, 8-13, 8-15, 8-16,
8-18, 8-19, 8-20, 8-21, 8-22, 8-23, 8-24, 8-25, 8-27, 8-29, 8-30,
8-31, 8-32, 8-33, 8-34, 8-36, 8-37, 9-10, 9-11, 9-12, 9-16, 9-18,
9-19, 9-21, 9-23, 9-25, 9-29, 9-31, 9-32, 9-34, 10-7, 10-11, 10-12,
10-14, 10-15, 10-20, 10-21, 10-24, 11-3, 11-4, 11-5, 11-6, 11-14, 11-15,
11-16, 11-17, 11-24, 11-26, 11-28, 11-36, 11-39, 12-3, 12-4, 12-6, 12-8,
12-9, 12-10, 12-11, 12-12, 12-14, 12-15, 12-16, 12-18, 12-22, 12-23, 12-24,
12-25, 12-26, 12-27, 12-28, 12-29, 12-33, 12-34, 13-1, 13-2, 13-3, 13-4,
13-5, 13-6, 13-8, 13-9, 13-10, 13-11, 13-12, 13-13, 13-14, 13-15, 13-16,
13-17, 13-18, 13-19, 13-20, 13-21, 13-22, 13-24, 13-25, 13-26, 13-27, 13-28,
13-29, 13-31, 13-32, 13-33, 13-34, 13-35, 13-36, 13-37, 13-38, 13-39, 13-40,
13-41, 13-42, B-3, C-2, C-5, C-9, C-12, C-14, C-16, C-24, C-25,
C-34, D-2, D-7, D-8, D-9, D-10, D-11, D-12, D-14, D-15, D-16,
D-17, D-21, D-22, D-23, D-24, D-25, D-26, D-28, D-29, D-30, D-31,
D-32, E-2, E-5, E-6, E-10, E-11, E-12, E-17, E-24, E-25, E-26,
E-27, E-28, E-32, E-34, F-4, F-6, F-8, F-10, F-12, F-13, F-14,
G-4, G-7, G-8, G-9, G-10, G-12, G-13, G-14, H-15

Environment 1-2, 1-10, 1-13, 1-28, 1-29, 2-8, 2-20, 2-22, 2-23,
2-24, 2-25, 2-26, 3-3, 3-5, 3-7, 4-6, 4-7, 4-8, 4-9, 4-17,
5-8, 8-4, 11-29, 11-30, 11-36, 12-4, 12-5, 12-30, 13-13, C-4, C-7,
C-29, C-30, D-12, D-30, E-3, E-4, E-5, E-6, E-7, E-14, E-34,
G-3, H-2

Exception handler 2-7, 2-37, 2-39, 3-7, 4-26, 8-4, 9-25, 11-38,
D-30

Oracle Database'11g: DevelopPL/SQLProgram Units Index-6

EXECUTE IMMEDIATE 7-5, 7-7, 7-8, 7-9, 7-11, 7-12, 7-13, 7-16,
7-17, 11-36, 12-22

Execution Plan 1-18, C-14, E-32

EXIT 1-32, 5-18, 5-20, 5-21, 6-13, 6-29, 7-14, 8-16, 8-17, 8-38,
10-13, 11-5, 11-38, C-25, D-15, D-21, E-14, H-18

Explicit cursor 7-15, D-18, D-19, D-23, D-24

F

FETCH 5-20, 7-4, 7-7, 7-8, 7-10, 7-14, 7-15, 7-20, 7-23, 8-26,
8-27, 8-32, 8-40, 8-41, D-18, D-20, D-21, D-22, D-24, D-26

Fine-grained dependency management 13-14, 13-15, 13-16, 13-17

Oracle Database'11g: Develop PL/SQL Program Units Index-7

F

FOR 1-2, 1-4, 1-5, 1-7, 1-8, 1-9, 1-10, 1-11, 1-12, 1-13,
1-15, 1-16, 1-17, 1-18, 1-19, 1-20, 1-22, 1-23, 1-24, 1-27, 1-28,
1-30, 1-31, 1-32, 1-33, 2-2, 2-3, 2-4, 2-5, 2-6, 2-7, 2-8,
2-9, 2-10, 2-11, 2-12, 2-13, 2-14, 2-15, 2-16, 2-19, 2-20, 2-21,
2-22, 2-23, 2-24, 2-25, 2-26, 2-28, 2-29, 2-30, 2-31, 2-32, 2-33,
2-34, 2-35, 2-36, 2-37, 2-38, 2-39, 2-41, 2-42, 2-43, 2-44, 2-45,
2-46, 2-48, 3-3, 34, 3-5, 3-7, 3-8, 3-9, 3-10, 3-11, 3-12,
3-13, 3-15, 3-18, 3-19, 3-21, 3-23, 3-24, 3-25, 3-26, 4-3, 4-4,
4-5, 4-6, 4-7, 4-8, 4-10, 4-11, 4-12, 4-13, 4-14, 4-15, 4-16,
4-17, 4-18, 4-19, 4-20, 4-21, 4-22, 4-23, 4-24, 4-26, 5-2, 5-3,
5-4, 5-5, 5-6, 5-8, 5-9, 5-10, 5-11, 5-12, 5-13, 5-15, 5-16,
5-17, 5-18, 5-19, 5-20, 5-21, 5-22, 5-23, 5-24, 5-25, 5-26, 5-27,
5-28, 5-29, 6-4, 6-5, 6-7, 6-8, 6-9, 6-10, 6-11, 6-13, 6-14,
6-15, 6-16, 6-18, 6-19, 6-20, 6-21, 6-22, 6-23, 6-24, 6-25, 6-27,
6-29,7-4,7-5,7-6, 7-7, 7-8, 7-9, 7-10, 7-11, 7-12, 7-13,
7-14, 7-15, 7-16, 7-17, 7-19, 7-20, 7-21, 7-22, 7-23, 7-24, 7-25,
7-26, 7-27, 7-28, 7-29, 8-1, 8-2, 8-3, 8-6, 8-7, 8-8, 8-9,
8-10, 8-11, 8-13, 8-15, 8-16, 8-17, 8-18, 8-19, 8-20, 8-21, 8-22,
8-23, 8-24, 8-25, 8-26, 8-27, 8-28, 8-29, 8-30, 8-31, 8-32, 8-33,
8-34, 8-35, 8-36, 8-37, 8-38, 8-39, 8-40, 8-41, 8-42, 9-2, 9-3,
9-6, 9-7, 9-8, 9-9, 9-10, 9-11, 9-12, 9-14, 9-15, 9-16, 9-18,
9-19, 9-20, 9-21, 9-22, 9-23, 9-24, 9-25, 9-26, 9-27, 9-28, 9-29,
9-31, 9-32, 9-33, 9-34, 9-35, 9-36, 9-38, 9-40, 9-41, 10-2, 10-3,
10-4, 10-5, 10-7, 10-8, 10-9, 10-10, 10-11, 10-12, 10-13, 10-14, 10-16,
10-17, 10-18, 10-19, 10-20, 10-21, 10-22, 10-23, 10-24, 10-26, 10-27, 10-28,
10-29, 10-30, 11-4, 11-5, 11-7, 11-8, 11-9, 11-10, 11-11, 11-12, 11-13,
11-14, 11-16, 11-17, 11-18, 11-19, 11-20, 11-21, 11-22, 11-23, 11-24, 11-25,
11-26, 11-27, 11-30, 11-31, 11-32, 11-33, 11-34, 11-35, 11-36, 11-37, 11-38,
11-40, 11-42, 11-43, 12-4, 12-5, 12-6, 12-7, 12-8, 12-9, 12-11, 12-12,
12-13, 12-14, 12-15, 12-16, 12-17, 12-19, 12-21, 12-24, 12-25, 12-26, 12-27,
12-28, 12-29, 12-33, 13-3, 13-5, 13-11, 13-12, 13-13, 13-15, 13-17, 13-18,
13-19, 13-20, 13-21, 13-22, 13-23, 13-24, 13-25, 13-29, 13-31, 13-32, 13-33,
13-34, 13-38, 13-39, 13-42, B-2, C-2, C-3, C-4, C-5, C-6, C-7,
C-8, C-9, C-10, C-11, C-12, C-13, C-14, C-15, C-16, C-17, C-18,

Oracle Database'11g: DevelopPL/SQLProgram Units Index-8

F

FOR C-19, C-20, C-21, C-24, C-25, C-26, C-27, C-28, C-30, C-31, C-32,
C-33, C-34, D-2, D-3, D4, D-5, D-6, D-7, D-8, D-9, D-10,
D-12, D-13, D-14, D-15, D-16, D-17, D-18, D-19, D-20, D-21, D-22,
D-23, D-24, D-25, D-26, D-28, D-29, D-30, D-31, E-2, E-3, E-5,
E-9, E-10, E-11, E-14, E-15, E-17, E-18, E-20, E-22, E-26, E-29,
E-30, E-31, E-32, E-33, E-34, F-1, F-2, F-4, F-5, F-6, F-7,
F-8, F-9, F-10, F-11, F-12, F-13, F-14, F-15, G-2, G-3, G-4,
G-5, G-6, G-7, G-8, G-9, G-10, G-11, G-12, G-13, G-14, G-15,
G-16, G-17, H-2, H-3, H-5, H-6, H-7, H-9, H-13, H-14, H-15,
H-16, H-18, H-21 FOR UPDATE D-12, D-20, D-25, D-26, F-8

Functions 1-2, 1-4, 1-5, 1-13, 1-24, 1-28, 2-6, 2-7, 2-9,
2-10, 2-11, 2-46, 3-1, 3-2, 3-3, 3-4, 3-5, 3-6, 3-8, 3-9,
3-10, 3-11, 3-12, 3-14, 3-15, 3-16, 3-17, 3-20, 3-21, 3-23, 3-24,
4-2, 4-4, 4-5, 4-6, 4-15, 4-24, 4-26, 5-2, 5-5, 5-8, 5-11,
5-12, 5-20, 5-22, 5-26, 6-9, 6-11, 7-20, 8-2, 8-10, 8-13, 8-19,
8-20, 8-24, 8-39, 9-26, 10-12, 10-23, 10-29, 11-34, 11-35, 12-12, 13-2,
13-4, 13-24, 13-34, 13-35, 13-40, 13-41, 13-42, C-6, C-22, C-23, C-25,
C-32, C-33, D-3, D-9, D-13, H-7, H-9, H-14, H-15

G
Grid 13-13

H
HR schema 1-7, 1-29, 1-31, 13-9

|dentifiers 2-21, 4-15, 5-9, 8-4, 8-5, D-3, D-9

Oracle Database'11g: DevelopPL/SQLProgram Units Index-9

IF1-2,1-7,1-11,1-12, 1-13, 1-15, 1-17, 1-20, 1-22, 1-24,
1-28, 1-30, 1-31, 2-2, 2-3, 2-4, 2-6, 2-7, 2-9, 2-10, 2-11,
2-12, 2-13, 2-14, 2-15, 2-16, 2-18, 2-20, 2-21, 2-22, 2-23, 2-29,
2-31, 2-32, 2-33, 2-35, 2-36, 2-37, 2-39, 2-44, 2-45, 2-46, 2-47,
2-48, 3-2, 3-3, 3-4, 3-5, 3-6, 3-7, 3-8, 3-9, 3-15, 3-16,
3-17, 3-18, 3-23, 3-24, 3-25, 3-26, 4-3, 4-4, 4-5, 4-6, 4-7,
4-8, 4-9, 4-10, 4-11, 4-12, 4-14, 4-15, 4-16, 4-17, 4-18, 4-19,
4-20, 4-21, 4-22, 4-23, 4-24, 4-25, 4-26, 5-2, 5-3, 5-4, 5-5,
5-6, 5-7, 5-8, 5-9, 5-10, 5-11, 5-12, 5-13, 5-14, 5-15, 5-16,
5-17, 5-18, 5-19, 5-20, 5-21, 5-23, 5-24, 5-25, 5-26, 5-27, 5-28,
5-29, 6-3, 6-4, 6-5, 6-6, 6-8, 6-9, 6-10, 6-11, 6-12, 6-13,
6-14, 6-15, 6-18, 6-20, 6-21, 6-23, 6-24, 6-26, 6-29, 7-2, 7-4,
7-5,76,7-7,7-8,7-9,7-10, 7-11, 7-12, 7-13, 7-14, 7-15,
7-17,7-20, 7-21, 7-22, 7-23, 7-26, 7-27, 7-28, 7-29, 8-2, 8-4,
8-5, 8-6, 8-7, 8-8, 8-9, 8-10, 8-11, 8-12, 8-13, 8-16, 8-17,
8-18, 8-19, 8-20, 8-21, 8-22, 8-24, 8-27, 8-29, 8-30, 8-31, 8-32,
8-33, 8-34, 8-36, 8-38, 8-39, 8-40, 8-41, 8-42, 9-2, 9-3, 9-5,
9-6, 9-9, 9-10, 9-11, 9-12, 9-14, 9-16, 9-17, 9-18, 9-19, 9-20,
9-21, 9-22, 9-23, 9-24, 9-25, 9-26, 9-28, 9-29, 9-30, 9-31, 9-32,
9-34, 9-36, 9-37, 9-38, 9-40, 10-3, 10-6, 10-7, 10-10, 10-11, 10-12,
10-13, 10-14, 10-15, 10-17, 10-18, 10-20, 10-22, 10-23, 10-24, 10-28, 10-29,
11-5, 11-8, 11-9, 11-10, 11-12, 11-18, 11-20, 11-21, 11-22, 11-23, 11-25,
11-26, 11-27, 11-29, 11-30, 11-31, 11-32, 11-33, 11-34, 11-35, 11-36, 11-37,
11-38, 11-42, 11-43, 12-4, 12-5, 12-6, 12-7, 12-8, 12-9, 12-10, 12-11,
12-12, 12-13, 12-14, 12-15, 12-16, 12-21, 12-24, 12-26, 12-28, 12-29, 12-33,
12-34, 13-3, 13-5, 13-8, 13-10, 13-13, 13-14, 13-15, 13-16, 13-17, 13-18,
13-21, 13-22, 13-23, 13-24, 13-25, 13-26, 13-27, 13-29, 13-31, 13-32, 13-33,
13-34, 13-35, 13-37, 13-38, 13-42, B-2, C-2, C-3, C-4, C-6, C-7,
C-8, C-9, C-10, C-11, C-12, C-13, C-15, C-17, C-19, C-20, C-21,
C-22, C-24, C-27, C-29, C-30, C-32, C-33, C-34, D-2, D-3, D-4,
D-5, D-7, D-8, D-9, D-10, D-11, D-13, D-14, D-15, D-18, D-20,
D-22, D-24, D-25, D-29, D-30, D-31, D-32, E-3, E-5, E-6, E-9,
E-10, E-12, E-13, E-20, E-21, E-26, E-27, E-28, E-29, E-31, E-33,
F-4, F-9, F-10, F-11, F-12, F-13, F-14, G-4, G-5, G-6, G-7,
G-8, G-9, G-10, G-11, G-12, G-13, G-14, G-15, H-2, H-4, H-5,

Oracle Database 11g:"'Develop PL/SQLEProgram Units Index-10

IF H-6, H-7, H-10, H-13, H-14, H-15, H-16, H-18, H-19, H-20, H-21, H-22
Implicit cursor D-13, D-23
Initialization parameters for PL/SQL compilation 11-7, 11-8
Inquiry directives 12-5, 12-7, 12-8, 12-12
Instead of triggers 9-8, 9-11, 9-26, 9-28, 10-10, 10-24
INTO 1-7, 1-20, 2-2, 2-4, 2-5, 2-6, 2-20, 2-24, 2-25, 2-26,
2-30, 2-32, 2-38, 2-40, 2-42, 2-46, 2-47, 3-7, 3-12, 3-17, 3-24,
3-25, 4-4, 4-6, 4-16, 4-24, 4-26, 5-6, 5-7, 5-11, 5-16, 5-18,
5-20, 6-5, 6-7, 6-9, 6-19, 6-25, 7-7, 7-8, 7-10, 7-12, 7-13,
7-14,7-22, 7-23, 8-8, 8-10, 8-13, 8-16, 8-22, 8-23, 8-27, 8-30,
8-31, 8-32, 8-33, 8-34, 8-35, 8-36, 8-37, 8-38, 8-39, 8-41, 9-7,
9-14, 9-16, 9-17, 9-18, 9-21, 9-22, 9-25, 9-26, 9-27, 9-28, 9-29,
10-11, 10-13, 10-14, 10-20, 10-24, 11-14, 11-19, 11-39, 11-40, 12-16, 12-25,
13-38, C-5, C-10, C-17, C-22, C-23, C-25, C-26, C-29, C-31, D-6,
D-7, D-8, D-9, D-15, D-16, D-18, D-20, D-21, D-22, E-3, E-5,
F-4, F-10, F-13, F-14, G-3, G-5, H-4, H-11, H-15
Invalidation of dependent objects 13-8, 13-13, 13-22
Invoker’s rights 6-16, 8-9, 8-10, 8-39
Invoking the package subprograms 4-3, 4-10, 4-17, 4-18
L
Local dependencies 13-5, 13-21
Local subprograms 5-4, 8-2, 8-3, 8-8, 8-15, 8-25, 8-39
Loop 2-34, 5-20, 5-22, 5-28, 6-12, 6-13, 6-14, 7-14, 7-20, 8-18,
8-26, 8-27, 8-29, 8-30, 8-31, 8-32, 8-33, 9-24, 10-14, 10-29, 11-5,
D-15, D-16, D-17, D-21, D-22, D-24, D-25, D-26
M
Managing triggers 9-32, 9-33
Mutating tables 10-2, 10-10, 10-26
N
Native Dynamic SQL (NDS) 7-2, 7-3, 7-7, 7-18, 7-26
NOCOPY hint 8-2, 8-16, 8-17, 8-18, 8-38, 8-39, 11-17, 11-30
o
Obfuscation 4-21, 12-2, 12-19, 12-24, 12-31
OLD and NEW qualifiers 9-20, 9-21, 9-22

Oracle Database 11g:"'Develop PL/SQLEProgram Units Index-11

(0]

OPEN 1-15, 1-17, 1-20, 1-21, 1-32, 2-18, 5-19, 5-20, 5-21, 6-9,
6-11, 6-12, 6-13, 6-22, 6-25, 6-29, 7-7, 7-8, 7-10, 7-14, 7-15,
7-20, 7-22, 7-23, 8-32, 12-6, C-9, C-11, C-13, C-15, C-17, C-18,
C-31, C-32, D-13, D-18, D-20, D-21, D-22, D-24, D-25, E-16, G-4,
G-5, H-6, H-9, H-15

Oracle-supplied packages 1-4, 1-5, 6-1, 6-2, 6-3, 6-4, 6-5,
6-6, G-2

OTHERS 2-38, 8-5, 11-38, 11-39, 12-20, 12-23, 13-9, D-12, D-28

Output 1-4, 1-10, 1-12, 1-13, 1-19, 1-22, 1-23, 1-24, 1-31, 2-20,
2-22, 2-25, 2-27, 2-38, 2-40, 2-48, 3-5, 3-7, 3-8, 3-9, 3-13,
4-4, 4-19, 4-21, 5-20, 5-22, 5-27, 6-2, 6-3, 6-4, 6-5, 6-6,
6-7, 6-9, 6-11, 6-12, 6-13, 6-14, 6-27, 6-29, 7-12, 7-13, 7-14,
7-16, 7-19, 7-22, 7-23, 8-8, 8-14, 8-27, 8-30, 8-31, 8-32, 8-41,
9-34, 10-21, 11-24, 11-35, 11-36, 11-43, 12-10, 12-16, 12-17, 12-22, 12-23,
12-24, 12-26, 12-27, 12-28, C-16, C-19, C-20, D-21, E-2, E-18, E-22,
E-24, E-25, E-30, E-32, E-33, E-34, G-2, G-3, G4, G-5, G-17,
H-11, H-14, H-15

Overloading procedures 5-6, 5-7

P

Package body 4-5, 4-7, 4-8, 4-9, 4-11, 4-13, 4-14, 4-15, 4-16,
4-17, 4-19, 4-20, 4-21, 4-22, 4-24, 4-26, 5-2, 5-3, 5-7, 5-9,
5-10, 5-11, 5-14, 5-15, 5-19, 5-22, 5-25, 5-26, 5-27, 5-28, 5-29,
7-17,7-28, 7-29, 8-41, 11-12, 12-15, 12-21, 12-27, 12-28, 12-33, 12-34,
13-6, 13-14, 13-33, 13-37, 13-38, H-15

Package specification 4-3, 4-5, 4-7, 4-8, 4-9, 4-10, 4-11,
4-12, 4-14, 4-15, 4-16, 4-19, 4-20, 4-21, 4-22, 4-23, 4-24, 4-25,
4-26, 5-6, 5-9, 5-10, 5-12, 5-14, 5-16, 5-19, 5-26, 5-27, 5-29,
7-17, 7-28, 8-2, 8-4, 8-7, 8-39, 8-41, 12-21, 12-28, 12-29, 12-33,
12-34, 13-14, 13-33, 13-37, 13-38

Oracle Database 11g:"Develop PL/SQLEProgram Units Index-12

P
Packages 1-4, 1-5, 1-9, 1-13, 1-26, 2-6, 2-34, 2-42, 4-1,
4-2,4-3,4-4, 4-5, 4-6, 4-9, 4-10, 4-11, 4-12, 4-13, 4-17,
4-19, 4-20, 4-21, 4-22, 4-24, 4-25, 5-1, 5-2, 5-3, 5-10, 5-11,
5-15, 5-16, 5-17, 5-18, 5-22, 6-1, 6-2, 6-3, 6-4, 6-5, 6-6,
6-10, 6-11, 6-18, 6-19, 6-27, 7-21, 8-10, 10-23, 11-31, 11-43, 12-12,
12-17, 13-24, 13-33, 13-37, 13-38, 13-41, 13-42, C-10, E-32, G-1, G-2,
G-4, G-17, H-9, H-15
PARALLEL ENABLE hint 8-19, 8-39
Parameters 1-4, 1-20, 1-31, 2-2, 2-3, 2-4, 2-9, 2-11, 2-12,
2-13, 2-15, 2-16, 2-20, 2-21, 2-22, 2-23, 2-24, 2-25, 2-26, 2-27,
2-28, 2-29, 2-30, 2-31, 2-32, 2-33, 2-35, 2-36, 2-38, 2-44, 2-45,
2-47, 2-48, 3-3, 3-4, 3-5, 3-10, 3-15, 3-18, 3-19, 3-25, 3-26,
4-6, 4-18, 4-26, 5-4, 5-5, 5-6, 5-8, 5-10, 5-23, 5-24, 5-26,
5-27, 6-11, 6-12, 6-13, 6-18, 6-19, 6-20, 6-21, 6-23, 6-24, 6-29,
7-7,7-11,7-21, 7-28, 8-2, 8-6, 8-16, 8-17, 8-18, 8-20, 8-38,
8-39, 940, 10-21, 10-28, 10-30, 11-2, 11-3, 11-6, 11-7, 11-8, 11-9,
11-10, 11-12, 11-13, 11-14, 11-15, 11-17, 11-19, 11-28, 11-30, 11-32, 11-34,
11-40, 11-41, 11-42, 11-43, 12-5, 12-9, 13-11, 13-19, 13-21, 13-25, 13-32,
C-17, E-24, G-3, G-8, G-9, G-11, G-14, H-14, H-15
Passing parameter 2-2, 2-29, 2-30, 2-31, 2-45, 3-19, 8-16, 8-38,
11-17
Persistent state of a package 5-19, 5-20
PL/SQL compile-time warnings for subprograms 11-16, 11-17, 11-30
PL/SQL Compiler 1-6, 8-13, 8-16, 8-18, 8-38, 11-1, 11-2, 11-3,
11-4, 11-5, 11-6, 11-7, 11-9, 11-10, 11-15, 11-16, 11-17, 11-20, 11-23,
11-25, 11-28, 11-41, 11-43, 12-5, 12-9, 12-28, 13-23, 13-33, C-29
PLSQL_CCFLAGS parameter 12-8, 12-9, 12-10, 12-15
PLSQL_WARNINGS parameter 11-20, 11-24, 11-27, 11-30
PRAGMA 4-7, 4-23, 5-13, 5-16, 5-17, 8-5, 8-11, 8-12, 8-13, 8-19,
D-29
Predefined Oracle server error D-27
PRINT 1-12, 2-26, 2-27, 2-28, 3-25, 5-27, 5-28, 8-41, 11-36, 12-16,
12-17, D-28, D-29, E-5, E-24, E-25, G-4

Oracle Database 11g:"'Develop PL/SQLEProgram Units Index-13

P
Procedures 1-2, 1-4, 1-5, 1-11, 1-12, 1-13, 1-28, 2-1, 2-2,
2-3, 2-6, 2-7, 2-9, 2-10, 2-11, 2-12, 2-13, 2-14, 2-15, 2-16,
2-17, 2-29, 2-34, 2-35, 2-36, 2-37, 2-38, 2-41, 2-42, 2-43, 2-45,
2-46, 2-47, 3-3, 3-5, 3-11, 3-15, 4-2, 4-4, 4-5, 4-6, 4-8,
4-15, 4-24, 4-26, 5-2, 5-6, 5-7, 5-9, 5-11, 5-22, 5-27, 6-4,
6-5, 6-7, 6-9, 6-10, 6-15, 7-19, 7-20, 7-28, 8-10, 8-13, 9-3,
9-39, 10-15, 10-23, 10-24, 11-32, 11-33, 12-4, 12-17, 13-2, 13-4, 13-24,
13-27, 13-28, 13-30, 13-32, 13-33, 13-34, 13-35, 13-36, 13-40, 13-41, 13-42,
C-3, C-6, C-10, C-25, C-32, C-33, E-18, G-3, G4, G-5, G-9,
G-11, H-7, H-9, H-14, H-15
PROMPT 1-15, 6-29, 12-26, C-9, C-31, D-17, E-6, E-10, E-11, E-20,
E-21, E-24, E-34, G-5

R
RAISE_APPLICATION_ERROR 4-16, 6-14, 8-6, 9-16, 9-18, 9-19, 10-11,
10-14, 11-38, D-31, D-32, F-4, F-6
Result-caching for a function 8-21
RETURNING clause 8-2, 8-3, 8-15, 8-25, 8-33, 8-37, 8-39

S

Schema object dependencies 13-3

Selection directives 12-5, 12-6

Snippets C-22, C-23, C-32

SQL Developer 1-3, 1-9, 1-10, 1-11, 1-14, 1-15, 1-16, 1-24,
1-25, 1-26, 1-29, 1-30, 1-31, 1-32, 1-33, 2-14, 2-16, 2-17, 2-18,
2-24,2-27, 2-34, 2-35, 2-41, 2-43, 2-46, 3-6, 3-10, 3-11, 3-13,
3-20, 3-24, 4-9, 4-12, 4-13, 4-18, 4-20, 4-21, 4-25, 5-22, 6-7,
6-18, 6-22, 8-41, 9-13, 9-32, 9-33, 9-36, 11-23, 11-24, 11-25, 11-26,
11-43, C-1, C-2, C-3, C-4, C-5, C-6, C-7, C-9, C-10, C-11,
C-15, C-21, C-22, C-24, C-25, C-26, C-27, C-28, C-29, C-30, C-31,
C-32, C-33, C-34

SQL Developer Debugger 1-24

SQL Worksheet 1-16, 1-17, 1-18, 1-19, 1-20, 1-21, 1-29, 1-31,
1-32, 2-14, 2-24, 2-46, 2-47, 3-6, 3-10, 3-13, 4-9, 4-21, 9-36,
C-2, C-6, C-11, C-13, C-14, C-15, C-16, C-17, C-18, C-22, C-23,
C-24, C-32, C-33, C-34

Oracle Database 11g:'Develop PL/SQLProgram Units Index-14

SQL%FOUND D-13

SQL%NOTFOUND D-13, D-32

SQL%ROWCOUNT 7-12, D-13

SQLCODE 8-6

SQLERRM 8-6

Subprogram 1-2, 1-4, 1-12, 1-13, 1-28, 2-2, 2-3, 2-4, 2-5,
2-6, 2-8, 2-9, 2-10, 2-11, 2-12, 2-13, 2-16, 2-20, 2-21, 2-29,
2-32, 2-33, 2-34, 2-36, 2-40, 2-42, 2-44, 2-45, 3-9, 3-10, 3-16,
3-21, 4-3, 4-4, 4-5, 4-6, 4-7, 4-8, 4-9, 4-10, 4-11, 4-15,
4-16, 4-17, 4-18, 4-19, 4-21, 4-22, 4-23, 4-26, 5-3, 5-4, 5-5,
5-8, 5-9, 5-10, 5-13, 5-15, 5-16, 5-17, 5-23, 5-24, 5-25, 5-29,
6-7, 6-9, 6-10, 6-11, 6-16, 6-17, 7-20, 7-21, 7-28, 8-2, 8-3,
8-4, 8-6, 8-8, 8-9, 8-10, 8-12, 8-15, 8-16, 8-17, 8-18, 8-25,
8-26, 8-38, 8-39, 8-40, 9-35, 10-7, 10-13, 11-9, 11-16, 11-17, 11-18,
11-20, 11-23, 11-27, 11-29, 11-30, 11-31, 12-5, 12-17, 12-19, 12-27, 12-33,
13-3, 13-14, 13-32, 13-33, 13-37, 13-38, C-6, C-33, D-31, E-32, G-6,
H-9

Substitution variables 1-18, C-14, E-20, G-5

T

Testing triggers 9-34, 9-38

The %ROWTYPE attribute 13-36

The %TYPE attribute 5-6, 13-36, D-4, D-5

Trigger body 9-9, 9-10, 9-11, 9-18, 9-23, 9-26, 10-4, 10-9, 10-15,
10-17, 10-18, 10-23, 10-24, 10-30

Trigger event types 9-5, 9-9

Trigger firing 9-11

Triggers 1-4, 1-5, 1-6, 1-9, 1-28, 2-6, 5-17, 6-7, 8-13,
9-1, 9-2, 9-3, 94, 9-5, 9-6, 9-7, 9-8, 9-10, 9-11, 9-12,
9-13, 9-14, 9-20, 9-24, 9-26, 9-28, 9-31, 9-32, 9-33, 9-34, 9-35,
9-36, 9-38, 9-39, 10-1, 10-2, 10-3, 10-4, 10-5, 10-7, 10-9, 10-10,
10-12, 10-15, 10-16, 10-17, 10-18, 10-19, 10-20, 10-21, 10-22, 10-23, 10-24,
10-25, 10-26, 10-27, 10-28, 12-29, 13-24, 13-33, C-10, F-1, F-2, F-4,
F-5, F-8, F-9, F-10, F-11, F-13, F-15

Oracle Database 11g:"Develop PL/SQLProgram Units Index-15

U
UTL_FILE package 6-8, 6-9, 6-10, 6-13, 6-25, 6-26, 6-29
UTL_MAIL package 6-15, 6-16, 6-18, 6-27
\'}
Variable declaration 2-7, 4-11, 4-15, D-5
Visibility 4-8
W
WHERE CURRENT D-25, D-26
WHILE 8-11, 9-35, 12-4, 12-30, 12-34, C-12, D-12, D-17, H-2, H-4,
H-16
Wrapper Utility 12-25, 12-26

Oracle Database 11g:'Develop PL/SQLProgram Units Index-16

	Oracle Database 11g: DevelopPL/SQL Program Units
	Table Of Contents
	Appendix A: Practices and Solutions
	Table of Contents
	Practices for Lesson 1
	Practices for Lesson 2
	Practices for Lesson 3
	Practices for Lesson 4
	Practices for Lesson 5
	Practices for Lesson 6
	Practices for Lesson 7
	Practices for Lesson 8
	Practices for Lesson 9
	Practices for Lesson 10
	Practices for Lesson 11
	Practices for Lesson 12
	Practices for Lesson 13

	Appendix B: Table Descriptions
	Schema Description
	The HR Entity Relationship Diagram
	The Human Resources (HR) Table Descriptions

	Appendix C: Using SQL Developer
	Objectives
	What Is Oracle SQL Developer?
	Specifications of SQL Developer
	Installing SQL Developer
	SQL Developer 1.2 Interface
	Creating a Database Connection
	Browsing Database Objects
	Creating a Schema Object
	Creating a New Table: Example
	Using the SQL Worksheet
	Executing SQL Statements
	Saving SQL Scripts
	Executing Saved Script Files: Method 1
	Executing Saved Script Files: Method 2
	Executing SQL Statements
	Formatting the SQL Code
	Using Snippets
	Using Snippets: Example
	Using SQL*Plus
	Debugging Procedures and Functions
	Database Reporting
	Creating a User-Defined Report
	Search Engines and External Tools
	Setting Preferences
	Specifications of SQL Developer 1.5.3
	Installing SQL Developer 1.5.3
	SQL Developer 1.5.3 Interface
	Summary

	Appendix D: Review of PL/SQL
	Block Structure for Anonymous PL/SQL Blocks
	Declaring PL/SQL Variables
	Declaring Variables with the %TYPE Attribute: Examples
	Creating a PL/SQL Record
	%ROWTYPE Attribute: Examples
	Creating a PL/SQL Table
	SELECT Statements in PL/SQL: Example
	Inserting Data: Example
	Updating Data: Example
	Deleting Data: Example
	COMMIT and ROLLBACK Statements
	SQL Cursor Attributes
	IF, THEN, and ELSIF Statements: Example
	Basic Loop: Example
	FOR Loop: Example
	WHILE Loop: Example
	Controlling Explicit Cursors
	Declaring the Cursor: Example
	Opening the Cursor
	Fetching Data from the Cursor: Examples
	Closing the Cursor
	Explicit Cursor Attributes
	Cursor FOR Loops: Example
	FOR UPDATE Clause: Example
	WHERE CURRENT OF Clause: Example
	Trapping Predefined Oracle Server Errors
	Trapping Predefined Oracle Server Errors: Example
	Non-Predefined Error
	User-Defined Exceptions: Example
	RAISE_APPLICATION_ERROR Procedure

	Appendix E: Using SQL*Plus
	Objectives
	SQL and SQL*Plus Interaction
	SQL Statements Versus SQL*Plus Commands
	Overview of SQL*Plus
	Logging In to SQL*Plus: Available Methods
	Customizing the SQL*Plus Environment
	Displaying Table Structure
	SQL*Plus Editing Commands
	Using LIST, n, and APPEND
	Using the CHANGE Command
	SQL*Plus File Commands
	Using the SAVE, START, and EDIT Commands
	SQL*Plus Enhancements Since Oracle Database 10g
	Changes to the SERVEROUTPUT Command
	White Space Support in File and Path Names in Windows
	Predefined SQL*Plus Variables
	Using the New Predefined SQL*Plus Variables: Examples
	The SHOW Command and the New RECYCLEBIN Clause
	The SHOW Command and the RECYCLEBIN Clause: Example
	Using the SQL*Plus SPOOL Command
	Using the SQL*Plus SPOOL Command: Examples
	The COPY Command: New Error Messages
	Change in the DESCRIBE Command Behavior
	The SET PAGES[IZE] Command
	The SQLPLUS Program and the Compatibility Option
	Using the AUTOTRACE Command
	Displaying a Plan Table Using the DBMS_XPLAN.DISPLAY Package Function
	Summary

	Appendix F: Studies for Implementing Triggers
	Objectives
	Controlling Security Within the Server
	Controlling Security with a Database Trigger
	Enforcing Data Integrity Within the Server
	Protecting Data Integrity with a Trigger
	Enforcing Referential Integrity Within the Server
	Protecting Referential Integrity with a Trigger
	Replicating a Table Within the Server
	Replicating a Table with a Trigger
	Computing Derived Data Within the Server
	Computing Derived Values with a Trigger
	Logging Events with a Trigger
	Summary

	Appendix G: Using the DBMS_SCHEDULER and HTP Packages
	Objectives
	Generating Web Pages with the HTP Package
	Using the HTP Package Procedures
	Creating an HTML File with SQL*Plus
	The DBMS_SCHEDULER Package
	Creating a Job
	Creating a Job with Inline Parameters
	Creating a Job Using a Program
	Creating a Job for a Program with Arguments
	Creating a Job Using a Schedule
	Setting the Repeat Interval for a Job
	Creating a Job Using a Named Program and Schedule
	Managing Jobs
	Data Dictionary Views
	Summary

	Appendix H: Review of JDeveloper
	JDeveloper
	Connection Navigator
	Application Navigator
	Structure Window
	Editor Window
	Deploying Java Stored Procedures
	Publishing Java to PL/SQL
	Creating Program Units
	Compiling
	Running a Program Unit
	Dropping a Program Unit
	Debugging PL/SQL Programs
	Setting Breakpoints
	Stepping Through Code
	Examining and Modifying Variables

	Index

