
Oracle Database 11g: Develop
PL/SQL Program Units

Volume II • Student Guide

D49986GC12

Edition 1.2

April 2009

D59430

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 O

R
AC

LE
 C

O
R

PO
R

AT
IO

N
 u

se
 o

nl
y

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Copyright © 2009, Oracle. All rights reserved.

Disclaimer

This document contains proprietary information and is protected by copyright and
other intellectual property laws. You may copy and print this document solely for your
own use in an Oracle training course. The document may not be modified or altered in
any way. Except where your use constitutes "fair use" under copyright law, you may
not use, share, download, upload, copy, print, display, perform, reproduce, publish,
license, post, transmit, or distribute this document in whole or in part without the
express authorization of Oracle.

The information contained in this document is subject to change without notice. If you
find any problems in the document, please report them in writing to: Oracle University,
500 Oracle Parkway, Redwood Shores, California 94065 USA. This document is not
warranted to be error-free.

Restricted Rights Notice

If this documentation is delivered to the United States Government or anyone using
the documentation on behalf of the United States Government, the following notice is
applicable:

U.S. GOVERNMENT RIGHTS
The U.S. Government’s rights to use, modify, reproduce, release, perform, display, or
disclose these training materials are restricted by the terms of the applicable Oracle
license agreement and/or the applicable U.S. Government contract.

Trademark Notice

Oracle is a registered trademark of Oracle Corporation and/or its affiliates. Other
names may be trademarks of their respective owners.

Author
Lauran K. Serhal

Technical Contributors
and Reviewers

Don Bates
Claire Bennett
Zarko Cesljas
Purjanti Chang
Ashita Dhir
Peter Driver
Gerlinde Frenzen
Steve Friedberg
Nancy Greenberg
Thomas Hoogerwerf
Akira Kinutani
Chaitanya Koratamaddi
Timothy Leblanc
Bryn Llewellyn
Lakshmi Narapareddi
Essi Parast
Alan Paulson
Manish Pawar
Srinivas Putrevu
Bryan Roberts
Grant Spencer
Tulika Srivastava
Glenn Stokol
Jenny Tsai-Smith
Lex Van Der Werff
Ted Witiuk

Graphic Designer

Asha Thampy

Editors
Nita Pavitran
Aju Kumar

Publisher
Sheryl Domingue
Syed Ali

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 O

R
AC

LE
 C

O
R

PO
R

AT
IO

N
 u

se
 o

nl
y

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

 iii

Contents

Preface

1 Introduction

Lesson Objectives 1-2

Lesson Agenda 1-3

Course Objectives 1-4

Course Agenda 1-5

The Human Resources (HR) Schema That Is Used in This Course 1-7

Class Account Information 1-8

Appendixes Used in This Course 1-9

PL/SQL Development Environments 1-10

What Is Oracle SQL Developer? 1-11

Coding PL/SQL in SQL*Plus 1-12

Coding PL/SQL in Oracle JDeveloper 1-13

Lesson Agenda 1-14

Starting SQL Developer and Creating a Database Connection 1-15

Creating Schema Objects 1-16

Using the SQL Worksheet 1-17

Executing SQL Statements 1-19

Saving SQL Scripts 1-20

Executing Saved Script Files: Method 1 1-21

Executing Saved SQL Scripts: Method 2 1-22

Creating an Anonymous Block 1-23

Editing the PL/SQL Code 1-24

Lesson Agenda 1-25

Oracle 11g SQL and PL/SQL Documentation 1-26

Additional Resources 1-27

Summary 1-28

Practice 1 Overview: Getting Started 1-29

2 Creating Procedures

Objectives 2-2

Lesson Agenda 2-3

Creating a Modularized Subprogram Design 2-4

Creating a Layered Subprogram Design 2-5

Modularizing Development with PL/SQL Blocks 2-6

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 O

R
AC

LE
 C

O
R

PO
R

AT
IO

N
 u

se
 o

nl
y

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

 iv

Anonymous Blocks: Overview 2-7

PL/SQL Execution Environment 2-8

What Are PL/SQL Subprograms? 2-9

The Benefits of Using PL/SQL Subprograms 2-10

Differences Between Anonymous Blocks and Subprograms 2-11

Lesson Agenda 2-12

What Are Procedures? 2-13

Creating Procedures: Overview 2-14

Creating Procedures with the SQL CREATE OR REPLACE Statement 2-15

Creating Procedures Using SQL Developer 2-16

Compiling Procedures and Displaying Compilation Errors in SQL Developer 2-17

Correcting Compilation Errors in SQL Developer 2-18

Naming Conventions of PL/SQL Structures Used in This Course 2-19

What Are Parameters and Parameter Modes? 2-20

Formal and Actual Parameters 2-21

Procedural Parameter Modes 2-22

Comparing the Parameter Modes 2-23

Using the IN Parameter Mode: Example 2-24

Using the OUT Parameter Mode: Example 2-25

Using the IN OUT Parameter Mode: Example 2-26

Viewing the OUT Parameters: Using the DBMS_OUTPUT.PUT_LINE

 Subroutine 2-27

Viewing OUT Parameters: Using SQL*Plus Host Variables 2-28

Available Notations for Passing Actual Parameters 2-29

Passing Actual Parameters: Creating the add_dept Procedure 2-30

Passing Actual Parameters: Examples 2-31

Using the DEFAULT Option for the Parameters 2-32

Calling Procedures 2-34

Calling Procedures Using SQL Developer 2-35

Lesson Agenda 2-36

Handled Exceptions 2-37

Handled Exceptions: Example 2-38

Exceptions Not Handled 2-39

Exceptions Not Handled: Example 2-40

Removing Procedures: Using the DROP SQL Statement or SQL Developer 2-41

Viewing Procedure Information Using the Data Dictionary Views 2-42

Viewing Procedure Information Using SQL Developer 2-43

Quiz 2-44

Summary 2-45

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 O

R
AC

LE
 C

O
R

PO
R

AT
IO

N
 u

se
 o

nl
y

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

 v

Practice 2 Overview: Creating,

Compiling, and Calling Procedures 2-46

3 Creating Functions

Objectives 3-2

Overview of Stored Functions 3-3

Creating Functions 3-4

The Difference Between Procedures and Functions 3-5

Creating and Running Functions: Overview 3-6

Creating and Invoking a Stored Function Using the CREATE FUNCTION Statement:

 Example 3-7

Using Different Methods for Executing Functions 3-8

Creating and Compiling Functions Using SQL Developer 3-10

Executing Functions Using SQL Developer 3-11

Advantages of User-Defined Functions in SQL Statements 3-12

Using a Function in a SQL Expression: Example 3-13

Calling User-Defined Functions in SQL Statements 3-14

Restrictions When Calling Functions from SQL Expressions 3-15

Controlling Side Effects When Calling Functions from SQL Expressions 3-16

Restrictions on Calling Functions from SQL: Example 3-17

Named and Mixed Notation from SQL 3-18

Named and Mixed Notation from SQL: Example 3-19

Removing Functions: Using the DROP SQL Statement or SQL Developer 3-20

Viewing Functions Using Data Dictionary Views 3-21

Quiz 3-22

Summary 3-23

Practice 3: Overview 3-24

4 Creating Packages

Objectives 4-2

Lesson Agenda 4-3

What Are PL/SQL Packages? 4-4

Advantages of Using Packages 4-5

Components of a PL/SQL Package 4-7

The Visibility of a Package’s Components 4-8

Developing PL/SQL Packages: Overview 4-9

Lesson Agenda 4-10

Creating the Package Specification: Using the CREATE PACKAGE Statement 4-11

Creating the Package Specification: Using SQL Developer 4-12

Creating the Package Body: Using SQL Developer 4-13

Example of a Package Specification: comm_pkg 4-14

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 O

R
AC

LE
 C

O
R

PO
R

AT
IO

N
 u

se
 o

nl
y

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

 vi

Creating the Package Body 4-15

Example of a Package Body: comm_pkg 4-16

Invoking the Package Subprograms: Examples 4-17

Invoking the Package Subprograms: Using SQL Developer 4-18

Creating and Using Bodiless Packages 4-19

Removing Packages: Using SQL Developer or the SQL DROP Statement 4-20

Viewing Packages Using the Data Dictionary 4-21

Guidelines for Writing Packages 4-22

Quiz 4-23

Summary 4-24

Practice 4 Overview: Creating and Using Packages 4-25

5 Working with Packages

Objectives 5-2

Lesson Agenda 5-3

Overloading Subprograms in PL/SQL 5-4

Overloading Procedures Example: Creating the Package Specification 5-6

Overloading Procedures Example: Creating the Package Body 5-7

Overloading and the STANDARD Package 5-8

Illegal Procedure Reference 5-9

Using Forward Declarations to Solve Illegal Procedure Reference 5-10

Initializing Packages 5-11

Using Package Functions in SQL 5-12

Controlling Side Effects of PL/SQL Subprograms 5-13

Package Function in SQL: Example 5-14

Lesson Agenda 5-15

Persistent State of Packages 5-16

Persistent State of Package Variables: Example 5-18

Persistent State of a Package Cursor: Example 5-19

Executing the CURS_PKG Package 5-21

Using PL/SQL Tables of Records in Packages 5-22

Quiz 5-23

Summary 5-24

Practice 5: Overview 5-25

6 Using Oracle-Supplied Packages in Application Development

Objectives 6-2

Lesson Agenda 6-3

Using Oracle-Supplied Packages 6-4

Examples of Some Oracle-Supplied Packages 6-5

Lesson Agenda 6-6

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 O

R
AC

LE
 C

O
R

PO
R

AT
IO

N
 u

se
 o

nl
y

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

 vii

How the DBMS_OUTPUT Package Works 6-7

Using the UTL_FILE Package to Interact with Operating System Files 6-8

File Processing Using the UTL_FILE Package: Overview 6-9

Using the Available Declared Exceptions in the UTL_FILE Package 6-10

FOPEN and IS_OPEN Functions: Example 6-11

Using UTL_FILE: Example 6-13

What Is the UTL_MAIL Package? 6-15

Setting Up and Using the UTL_MAIL: Overview 6-16

Summary of UTL_MAIL Subprograms 6-17

Installing and Using UTL_MAIL 6-18

The SEND Procedure Syntax 6-19

The SEND_ATTACH_RAW Procedure 6-20

Sending Email with a Binary Attachment: Example 6-21

The SEND_ATTACH_VARCHAR2 Procedure 6-23

Sending Email with a Text Attachment: Example 6-24

Quiz 6-26

Summary 6-27

Practice 6: Overview 6-28

7 Using Dynamic SQL

Objectives 7-2

Lesson Agenda 7-3

Execution Flow of SQL 7-4

Working With Dynamic SQL 7-5

Using Dynamic SQL 7-6

Native Dynamic SQL (NDS) 7-7

Using the EXECUTE IMMEDIATE Statement 7-8

Available Methods for Using NDS 7-9

Dynamic SQL with a DDL Statement: Examples 7-11

Dynamic SQL with DML Statements 7-12

Dynamic SQL with a Single-Row Query: Example 7-13

Dynamic SQL with a Multirow Query: Example 7-14

Declaring Cursor Variables 7-15

Executing a PL/SQL Anonymous Block Dynamically 7-16

Using Native Dynamic SQL to Compile PL/SQL Code 7-17

Lesson Agenda 7-18

Using the DBMS_SQL Package 7-19

Using the DBMS_SQL Package Subprograms 7-20

Using DBMS_SQL with a DML Statement: Deleting Rows 7-22

Using DBMS_SQL with a Parameterized DML Statement 7-23

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 O

R
AC

LE
 C

O
R

PO
R

AT
IO

N
 u

se
 o

nl
y

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

 viii

Dynamic SQL Functional Completeness 7-24

Quiz 7-25

Summary 7-26

Practice 7 Overview: Using Native Dynamic SQL 7-27

8 Design Considerations for PL/SQL Code

Objectives 8-2

Lesson Agenda 8-3

Standardizing Constants and Exceptions 8-4

Standardizing Exceptions 8-5

Standardizing Exception Handling 8-6

Standardizing Constants 8-7

Local Subprograms 8-8

Definer’s Rights Versus Invoker’s Rights 8-9

Specifying Invoker’s Rights: Setting AUTHID to CURRENT_USER 8-10

Autonomous Transactions 8-11

Features of Autonomous Transactions 8-12

Using Autonomous Transactions: Example 8-13

Lesson Agenda 8-15

Using the NOCOPY Hint 8-16

Effects of the NOCOPY Hint 8-17

When Does the PL/SQL Compiler Ignore the NOCOPY Hint? 8-18

Using the PARALLEL_ENABLE Hint 8-19

Using the Cross-Session PL/SQL Function Result Cache 8-20

Enabling Result-Caching for a Function 8-21

Declaring and Defining a Result-Cached Function: Example 8-22

Using the DETERMINISTIC Clause with Functions 8-24

Lesson Agenda 8-25

Bulk Binding 8-26

Using Bulk Binding: Syntax and Keywords 8-27

Bulk Binding FORALL: Example 8-29

Using BULK COLLECT INTO with Queries 8-31

Using BULK COLLECT INTO with Cursors 8-32

Using BULK COLLECT INTO with a RETURNING Clause 8-33

FORALL Support for Sparse Collections 8-34

Using Bulk Binds in Sparse Collections 8-35

Using Bulk Bind with Index Array 8-36

Using the RETURNING Clause 8-37

Quiz 8-38

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 O

R
AC

LE
 C

O
R

PO
R

AT
IO

N
 u

se
 o

nl
y

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

 ix

Summary 8-39

Practice 8: Overview 8-40

9 Creating Triggers

Objectives 9-2

What Are Triggers? 9-3

Defining Triggers 9-4

Trigger Event Types 9-5

Application and Database Triggers 9-6

Business Application Scenarios for Implementing Triggers 9-7

Available Trigger Types 9-8

Trigger Event Types and Body 9-9

Creating DML Triggers Using the CREATE TRIGGER Statement 9-10

Specifying the Trigger Firing (Timing) 9-11

Statement-Level Triggers Versus Row-Level Triggers 9-12

Creating DML Triggers Using SQL Developer 9-13

Trigger-Firing Sequence: Single-Row Manipulation 9-14

Trigger-Firing Sequence: Multirow Manipulation 9-15

Creating a DML Statement Trigger Example: SECURE_EMP 9-16

Testing Trigger SECURE_EMP 9-17

Using Conditional Predicates 9-18

Creating a DML Row Trigger 9-19

Using OLD and NEW Qualifiers 9-20

Using OLD and NEW Qualifiers: Example 9-21

Using OLD and NEW Qualifiers: Example Using AUDIT_EMP 9-22

Using the WHEN Clause to Fire a Row Trigger Based on a Condition 9-23

Summary of the Trigger Execution Model 9-24

Implementing an Integrity Constraint with an After Trigger 9-25

INSTEAD OF Triggers 9-26

Creating an INSTEAD OF Trigger: Example 9-27

Creating an INSTEAD OF Trigger to Perform DML on Complex Views 9-28

The Status of a Trigger 9-30

Creating a Disabled Trigger 9-31

Managing Triggers Using the ALTER and DROP SQL Statements 9-32

Managing Triggers Using SQL Developer 9-33

Testing Triggers 9-34

Viewing Trigger Information 9-35

Using USER_TRIGGERS 9-36

Quiz 9-37

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 O

R
AC

LE
 C

O
R

PO
R

AT
IO

N
 u

se
 o

nl
y

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

 x

Summary 9-38

Practice 9 Overview: Creating Statement and Row Triggers 9-39

10 Creating Compound, DDL, and Event Database Triggers

Objectives 10-2

What Is a Compound Trigger? 10-3

Working with Compound Triggers 10-4

The Benefits of Using a Compound Trigger 10-5

Timing-Point Sections of a Table Compound Trigger 10-6

Compound Trigger Structure for Tables 10-7

Compound Trigger Structure for Views 10-8

Compound Trigger Restrictions 10-9

Trigger Restrictions on Mutating Tables 10-10

Mutating Table: Example 10-11

Using a Compound Trigger to Resolve the Mutating Table Error 10-13

Using a Compound Trigger to Resolve the Mutating Table Error 10-14

Comparing Database Triggers to Stored Procedures 10-15

Comparing Database Triggers to Oracle Forms Triggers 10-16

Creating Triggers on DDL Statements 10-17

Creating Database-Event Triggers 10-18

Creating Triggers on System Events 10-19

LOGON and LOGOFF Triggers: Example 10-20

CALL Statements in Triggers 10-21

Benefits of Database-Event Triggers 10-22

System Privileges Required to Manage Triggers 10-23

Guidelines for Designing Triggers 10-24

Quiz 10-25

Summary 10-26

Practice 10: Overview 10-27

11 Using the PL/SQL Compiler

Objectives 11-2

Lesson Agenda 11-3

Using the PL/SQL Compiler 11-4

Changes in the PL/SQL Compiler 11-5

Lesson Agenda 11-6

Initialization Parameters for PL/SQL Compilation 11-7

Using the Initialization Parameters for PL/SQL Compilation 11-8

The New Compiler Settings Since Oracle 10g 11-11

Displaying the PL/SQL Initialization Parameters 11-12

Displaying and Setting the PL/SQL Initialization Parameters 11-13

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 O

R
AC

LE
 C

O
R

PO
R

AT
IO

N
 u

se
 o

nl
y

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

 xi

Changing PL/SQL Initialization Parameters: Example 11-14

Lesson Agenda 11-15

Overview of PL/SQL Compile-Time Warnings for Subprograms 11-16

Benefits of Compiler Warnings 11-18

Categories of PL/SQL Compile-Time Warning Messages 11-19

Setting the Warning Messages Levels 11-20

Setting Compiler Warning Levels: Using PLSQL_WARNINGS 11-21

Setting Compiler Warning Levels: Using PLSQL_WARNINGS, Examples 11-22

Setting Compiler Warning Levels: Using PLSQL_WARNINGS in SQL

 Developer 11-23

Viewing the Current Setting of PLSQL_WARNINGS 11-24

Viewing the Compiler Warnings: Using SQL Developer, SQL*Plus, or Data Dictionary

 Views 11-25

SQL*Plus Warning Messages: Example 11-26

Guidelines for Using PLSQL_WARNINGS 11-27

Lesson Agenda 11-28

Setting Compiler Warning Levels: Using the DBMS_WARNING Package 11-29

Using the DBMS_WARNING Package Subprograms 11-31

The DBMS_WARNING Procedures: Syntax, Parameters, and Allowed

 Values 11-32

The DBMS_WARNING Procedures: Example 11-33

The DBMS_WARNING Functions: Syntax, Parameters, and Allowed Values 11-34

The DBMS_WARNING Functions: Example 11-35

Using DBMS_WARNING: Example 11-36

Using the New PLW 06009 Warning Message 11-38

The New PLW 06009 Warning: Example 11-39

Quiz 11-40

Summary 11-41

Practice 11: Overview 11-42

12 Managing PL/SQL Code

Objectives 12-2

Lesson Agenda 12-3

What Is Conditional Compilation? 12-4

How Does Conditional Compilation Work? 12-5

Using Selection Directives 12-6

Using Predefined and User-Defined Inquiry Directives 12-7

The PLSQL_CCFLAGS Parameter and the Inquiry Directive 12-8

Displaying the PLSQL_CCFLAGS Initialization Parameter Setting 12-9

The PLSQL_CCFLAGS Parameter and the Inquiry Directive: Example 12-10

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 O

R
AC

LE
 C

O
R

PO
R

AT
IO

N
 u

se
 o

nl
y

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

 xii

Using Conditional Compilation Error Directives to Raise User-Defined Errors 12-11

Using Static Expressions with Conditional Compilation 12-12

The DBMS_DB_VERSION Package: Boolean Constants 12-13

The DBMS_DB_VERSION Package Constants 12-14

Using Conditional Compilation with Database Versions: Example 12-15

Using DBMS_PREPROCESSOR Procedures to Print or Retrieve Source Text 12-17

Lesson Agenda 12-18

What Is Obfuscation? 12-19

Benefits of Obfuscating 12-20

What’s New in Dynamic Obfuscating Since Oracle 10g? 12-21

Nonobfuscated PL/SQL Code: Example 12-22

Obfuscated PL/SQL Code: Example 12-23

Dynamic Obfuscation: Example 12-24

The PL/SQL Wrapper Utility 12-25

Running the Wrapper Utility 12-26

Results of Wrapping 12-27

Guidelines for Wrapping 12-28

DBMS_DDL Package Versus the Wrap Utility 12-29

Quiz 12-30

Summary 12-31

Practice 12: Overview 12-32

13 Managing Dependencies

Objectives 13-2

Overview of Schema Object Dependencies 13-3

Dependencies 13-4

Direct Local Dependencies 13-5

Querying Direct Object Dependencies: Using the USER_DEPENDENCIES

 View 13-6

Querying an Object’s Status 13-7

Invalidation of Dependent Objects 13-8

Schema Object Change That Invalidates Some Dependents: Example 13-9

Schema Object Change That Invalidates Some Dependents: Example 13-10

Displaying Direct and Indirect Dependencies 13-11

Displaying Dependencies Using the DEPTREE View 13-12

More Precise Dependency Metadata in Oracle Database 11g 13-13

Fine-Grained Dependency Management 13-14

Fine-Grained Dependency Management: Example 1 13-15

Fine-Grained Dependency Management: Example 2 13-17

Impact of Redefining Synonyms Before Oracle Database 10g 13-18

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 O

R
AC

LE
 C

O
R

PO
R

AT
IO

N
 u

se
 o

nl
y

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

 xiii

Changes to Synonym Dependencies Starting with Oracle Database 10g 13-19

Maintaining Valid PL/SQL Program Units and Views 13-20

Another Scenario of Local Dependencies 13-21

Guidelines for Reducing Invalidation 13-22

Object Revalidation 13-23

Remote Dependencies 13-24

Concepts of Remote Dependencies 13-25

Setting the REMOTE_DEPENDENCIES_MODE Parameter 13-26

Remote Procedure B Compiles at 8:00 AM 13-27

Local Procedure A Compiles at 9:00 AM 13-28

Execute Procedure A 13-29

Remote Procedure B Recompiled at 11:00 AM 13-30

Execute Procedure A 13-31

Signature Mode 13-32

Recompiling a PL/SQL Program Unit 13-33

Unsuccessful Recompilation 13-34

Successful Recompilation 13-35

Recompiling Procedures 13-36

Packages and Dependencies: Subprogram References the Package 13-37

Packages and Dependencies: Package Subprogram References Procedure 13-38

Quiz 13-39

Summary 13-40

Practice 13 Overview: Managing Dependencies in Your Schema 13-41

Appendix A: Practice Solutions

Appendix B: Table Descriptions

Appendix C: Using SQL Developer

Objectives C-2

What Is Oracle SQL Developer? C-3

Specifications of SQL Developer C-4

Installing SQL Developer C-5

SQL Developer 1.2 Interface C-6

Creating a Database Connection C-7

Browsing Database Objects C-10

Creating a Schema Object C-11

Creating a New Table: Example C-12

Using the SQL Worksheet C-13

Executing SQL Statements C-16

Saving SQL Scripts C-17

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 O

R
AC

LE
 C

O
R

PO
R

AT
IO

N
 u

se
 o

nl
y

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

 xiv

Executing Saved Script Files: Method 1 C-18

Executing Saved Script Files: Method 2 C-19

Executing SQL Statements C-20

Formatting the SQL Code C-21

Using Snippets C-22

Using Snippets: Example C-23

Using SQL*Plus C-24

Debugging Procedures and Functions C-25

Database Reporting C-26

Creating a User-Defined Report C-27

Search Engines and External Tools C-28

Setting Preferences C-29

Specifications of SQL Developer 1.5.3 C-30

Installing SQL Developer 1.5.3 C-31

SQL Developer 1.5.3 Interface C-32

Summary C-34

Appendix D: Review of PL/SQL

Block Structure for AnonymousPL/SQL Blocks D-2

Declaring PL/SQL Variables D-3

Declaring Variables with the %TYPE Attribute: Examples D-4

Creating a PL/SQL Record D-5

%ROWTYPE Attribute: Examples D-6

Creating a PL/SQL Table D-7

SELECT Statements in PL/SQL: Example D-8

Inserting Data: Example D-9

Updating Data: Example D-10

Deleting Data: Example D-11

COMMIT and ROLLBACK Statements D-12

SQL Cursor Attributes D-13

IF, THEN, and ELSIF Statements: Example D-14

Basic Loop: Example D-15

FOR Loop: Example D-16

WHILE Loop: Example D-17

Controlling Explicit Cursors D-18

Declaring the Cursor: Example D-19

Opening the Cursor D-20

Fetching Data from the Cursor: Examples D-21

Closing the Cursor D-22

Explicit Cursor Attributes D-23

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 O

R
AC

LE
 C

O
R

PO
R

AT
IO

N
 u

se
 o

nl
y

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

 xv

Cursor FOR Loops: Example D-24

FOR UPDATE Clause: Example D-25

WHERE CURRENT OF Clause: Example D-26

Trapping Predefined Oracle Server Errors D-27

Trapping Predefined Oracle Server Errors: Example D-28

Non-Predefined Error D-29

User-Defined Exceptions: Example D-30

RAISE_APPLICATION_ERROR Procedure D-31

Appendix E: Using SQL*Plus

Objectives E-2

SQL and SQL*Plus Interaction E-3

SQL Statements Versus SQL*Plus Commands E-4

Overview of SQL*Plus E-5

Logging In to SQL*Plus: Available Methods E-6

Customizing the SQL*Plus Environment E-7

Displaying Table Structure E-8

SQL*Plus Editing Commands E-10

Using LIST, n, and APPEND E-12

Using the CHANGE Command E-13

SQL*Plus File Commands E-14

Using the SAVE, START, and EDIT Commands E-15

SQL*Plus Enhancements Since Oracle Database 10g E-17

Changes to the SERVEROUTPUT Command E-18

White Space Support in File and Path Names in Windows E-19

Predefined SQL*Plus Variables E-20

Using the New Predefined SQL*Plus Variables: Examples E-21

The SHOW Command and the New RECYCLEBIN Clause E-22

The SHOW Command and the RECYCLEBIN Clause: Example E-23

Using the SQL*Plus SPOOL Command E-24

Using the SQL*Plus SPOOL Command: Examples E-25

The COPY Command: New Error Messages E-26

Change in the DESCRIBE Command Behavior E-29

The SET PAGES[IZE] Command E-30

The SQLPLUS Program and the Compatibility Option E-31

Using the AUTOTRACE Command E-32

Displaying a Plan Table Using the DBMS_XPLAN.DISPLAY Package

 Function E-33

Summary E-34

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 O

R
AC

LE
 C

O
R

PO
R

AT
IO

N
 u

se
 o

nl
y

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

 xvi

Appendix F: Studies for Implementing Triggers

Objectives F-2

Controlling Security Within the Server F-3

Controlling Security with a Database Trigger F-4

Enforcing Data Integrity Within the Server F-5

Protecting Data Integrity with a Trigger F-6

Enforcing Referential Integrity Within the Server F-7

Protecting Referential Integrity with a Trigger F-8

Replicating a Table Within the Server F-9

Replicating a Table with a Trigger F-10

Computing Derived Data Within the Server F-11

Computing Derived Values with a Trigger F-12

Logging Events with a Trigger F-13

Summary F-15

Appendix G: Using the DBMS_SCHEDULER and HTP Packages

Objectives G-2

Generating Web Pages with the HTP Package G-3

Using the HTP Package Procedures G-4

Creating an HTML File with SQL*Plus G-5

The DBMS_SCHEDULER Package G-6

Creating a Job G-8

Creating a Job with Inline Parameters G-9

Creating a Job Using a Program G-10

Creating a Job for a Program with Arguments G-11

Creating a Job Using a Schedule G-12

Setting the Repeat Interval for a Job G-13

Creating a Job Using a Named Program and Schedule G-14

Managing Jobs G-15

Data Dictionary Views G-16

Summary G-17

Appendix H: Review of JDeveloper

JDeveloper H-2

Connection Navigator H-3

Application Navigator H-4

Structure Window H-5

Editor Window H-6

Deploying Java Stored Procedures H-7

Publishing Java to PL/SQL H-8

Creating Program Units H-9

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 O

R
AC

LE
 C

O
R

PO
R

AT
IO

N
 u

se
 o

nl
y

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

 xvii

Compiling H-10

Running a Program Unit H-11

Dropping a Program Unit H-12

Debugging PL/SQL Programs H-13

Setting Breakpoints H-16

Stepping Through Code H-17

Examining and Modifying Variables H-18

Index

Additional Practices

Additional Practice: Solutions

Additional Practices: Table Descriptions and Data

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 O

R
AC

LE
 C

O
R

PO
R

AT
IO

N
 u

se
 o

nl
y

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

 xviii

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 O

R
AC

LE
 C

O
R

PO
R

AT
IO

N
 u

se
 o

nl
y

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Appendix A
Practices and Solutions

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 O

R
AC

LE
 C

O
R

PO
R

AT
IO

N
 u

se
 o

nl
y

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Oracle Database 11g: Develop PL/SQL Program Units A - 2

Table of Contents

Practices for Lesson 1 ... 3

Practice 1: Getting Started .. 3
Practices for Lesson 2 ... 20

Practice 2: Creating, Compiling, and Calling Procedures .. 20
Practices for Lesson 3 ... 31

Practice 3: Creating Functions .. 31
Practices for Lesson 4 ... 36

Practice 4: Creating and Using Packages.. 36
Practices for Lesson 5 ... 43

Practice 5: Working with Packages .. 43
Practices for Lesson 6 ... 73

Practice 6: Using the UTL_FILE Package.. 73
Practices for Lesson 7 ... 78

Practice 7: Using Native Dynamic SQL ... 78
Practices for Lesson 8 ... 89

Practice 8: Using Bulk Binding and Autonomous Transactions 89
Practices for Lesson 9 ... 111

Practice 9: Creating Statement and Row Triggers.. 111
Practices for Lesson 10 ... 120

Practice 10: Managing Data Integrity Rules and Mutating Table Exceptions............ 120
Practices for Lesson 11 ... 134

Practice 11: Using the PL/SQL Compiler Parameters and Warnings......................... 134
Practices for Lesson 12 ... 143

Practice 12: Using Conditional Compilation .. 143
Practices for Lesson 13 ... 149

Practice 13: Managing Dependencies in Your Schema.. 149

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 O

R
AC

LE
 C

O
R

PO
R

AT
IO

N
 u

se
 o

nl
y

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Oracle Database 11g: Develop PL/SQL Program Units A - 3

Practices for Lesson 1

Practice 1: Getting Started
In this practice, you review the available SQL Developer resources. You also learn about
your user account that you will use in this course. You then start SQL Developer, create a
new database connection, and browse your HR tables. You also set some SQL Developer
preferences, execute SQL statements, and execute an anonymous PL/SQL block using
SQL Worksheet. Finally, you access and bookmark the Oracle Database 11g
documentation and other useful Web sites that you can use in this course.

Identifying the Available SQL Developer Resources

1) Familiarize yourself with Oracle SQL Developer as needed using Appendix C: Using
SQL Developer.

2) Access the online SQL Developer Home Page available online at:
http://www.oracle.com/technology/products/database/sql_developer/index.html

The SQL Developer Home page is displayed as follows:

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 O

R
AC

LE
 C

O
R

PO
R

AT
IO

N
 u

se
 o

nl
y

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Practice 1: Getting Started (continued)

Oracle Database 11g: Develop PL/SQL Program Units A - 4

3) Bookmark the page for easier future access.

From the Windows Internet Explorer Address toolbar, click and drag the
Explorer icon onto the Links toolbar. The link is added to your Links toolbar as
follows:

4) Access the SQL Developer tutorial available online at:
http://st-curriculum.oracle.com/tutorial/SQLDeveloper/index.htm

Access the SQL Developer tutorial using the preceding URL. The following page
is displayed:

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 O

R
AC

LE
 C

O
R

PO
R

AT
IO

N
 u

se
 o

nl
y

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Practice 1: Getting Started (continued)

Oracle Database 11g: Develop PL/SQL Program Units A - 5

5) Preview and experiment with the available links and demos in the tutorial as needed,
especially the “Creating a Database Connection” and “Accessing Data” links.

To review the section on creating a database connection, click the plus “+” sign
next to the “What to Do First” link to display the “Creating a Database
Connection” link. To review the Creating a Database Connection topic, click the
topic’s link. To review the section on accessing data, click the plus “+” sign next
to the “Accessing Data” link to display the list of available topics. To review any
of the topics, click the topic’s link.

Identifying the Available SQL Developer Resources

1) Start up SQL Developer using the user ID and password that are provided to you by
the instructor such as oraxx where xx is the number assigned to your PC.

Click the SQL Developer icon on your desktop.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 O

R
AC

LE
 C

O
R

PO
R

AT
IO

N
 u

se
 o

nl
y

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Practice 1: Getting Started (continued)

Oracle Database 11g: Develop PL/SQL Program Units A - 6

2) Create a database connection using the following information:

a) Connection Name: MyDBConnection

b) Username: oraxx where xx is the number assigned to your PC by the instructor

c) Password: oraxx where xx is the number assigned to your PC by the instructor

d) Hostname: Enter the host name for your PC

e) Port: 1521

f) SID: ORCL

Right-click the Connections icon on the Connections tabbed page, and then
select the New Database Connection option from the shortcut menu. The
New/Select Database Connection window is displayed. Use the preceding
information provided to create the new database connection.
Note: To display the properties of the newly created connection, right-click the
connection name, and then select Properties from the shortcut menu. Substitute
the username, password, host name, and service name with the appropriate
information as provided by your instructor. The following is a sample of the
newly created database connection for student ora61:

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 O

R
AC

LE
 C

O
R

PO
R

AT
IO

N
 u

se
 o

nl
y

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Practice 1: Getting Started (continued)

Oracle Database 11g: Develop PL/SQL Program Units A - 7

3) Test the new connection. If the Status is Success, connect to the database using this
new connection:

a) Double-click the MyDBConnection icon on the Connections tabbed page.

b) Click the Test button in the New/Select Database Connection window. If the
status is Success, click the Connect button.

Browsing Your HR Schema Tables

1) Browse the structure of the EMPLOYEES table and display its data.

a) Expand the MyDBConnection connection by clicking the plus sign next to it.

b) Expand the Tables icon by clicking the plus sign next to it.

c) Display the structure of the EMPLOYEES table.

Double-click the EMPLOYEES table. The Columns tab displays the columns in
the EMPLOYEES table as follows:

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 O

R
AC

LE
 C

O
R

PO
R

AT
IO

N
 u

se
 o

nl
y

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Practice 1: Getting Started (continued)

Oracle Database 11g: Develop PL/SQL Program Units A - 8

2) Browse the EMPLOYEES table and display its data.

To display the employees’ data, click the Data tab. The EMPLOYEES table data is
displayed as follows:

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 O

R
AC

LE
 C

O
R

PO
R

AT
IO

N
 u

se
 o

nl
y

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Practice 1: Getting Started (continued)

Oracle Database 11g: Develop PL/SQL Program Units A - 9

3) Use the SQL Worksheet to select the last names and salaries of all employees whose
annual salary is greater than $10,000. Use both the Execute Statement (F9) and the
Run Script icon (F5) icons to execute the SELECT statement. Review the results of
both methods of executing the SELECT statements in the appropriate tabs.

Note: Take a few minutes to familiarize yourself with the data, or consult Appendix
B, which provides the description and data for all the tables in the HR schema that you
will use in this course.

Display the SQL Worksheet using any of the following two methods:

1. Select Tools > SQL Worksheet or click the Open SQL Worksheet icon.
The Select Connection window is displayed.

2. Select the new MyDBConnection from the Connection drop-down list (if
not already selected), and then click OK.

Open the sol_01_03.sql file from the D:\labs\PLPU folder as follows:
Right-click the SQL Worksheet area, and then select Open File. Navigate to
the solns folder, select the sol_01_03.sql file, and then click Open.
Click the Execute Statement (F9) icon (while making sure the cursor is on
any of the SELECT statement lines) on the SQL Worksheet toolbar to execute
the statement. The code and the result are displayed as follows:

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 O

R
AC

LE
 C

O
R

PO
R

AT
IO

N
 u

se
 o

nl
y

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Practice 1: Getting Started (continued)

Oracle Database 11g: Develop PL/SQL Program Units A - 10

SELECT LAST_NAME, SALARY
FROM EMPLOYEES
WHERE SALARY > 10000;

4) Create and execute a simple anonymous block that outputs “Hello World.”

a) Enable SET SERVEROUTPUT ON to display the output of the DBMS_OUTPUT
package statements.

Click the DBMS_OUTPUT tab, and then click the Enable DBMS Output icon as
follows:

b) Use the SQL Worksheet area to enter the code for your anonymous block.

Enter the following code in the SQL Worksheet area as shown below.
Alternatively, open the sol_01_04.sql file from the D:\labs\PLPU
folder as follows: Right-click the SQL Worksheet area, and then select Open

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 O

R
AC

LE
 C

O
R

PO
R

AT
IO

N
 u

se
 o

nl
y

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Practice 1: Getting Started (continued)

Oracle Database 11g: Develop PL/SQL Program Units A - 11

File. Navigate to the solns folder, select the sol_01_04.sql file, and then
click Open. The code is displayed as follows:

c) Click the Run Script (F5) icon to run the anonymous block.

The Script Output tab displays the output of the anonymous block as follows:

Setting Some SQL Developer Preferences

1) In the SQL Developer menu, navigate to Tools > Preferences. The Preferences
window is displayed.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 O

R
AC

LE
 C

O
R

PO
R

AT
IO

N
 u

se
 o

nl
y

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Practice 1: Getting Started (continued)

Oracle Database 11g: Develop PL/SQL Program Units A - 12

2) Expand the Code Editor option, and then click the Display option to display the
“Code Editor: Display” section. The “Code Editor: Display” section contains general
options for the appearance and behavior of the code editor.

a) Enter 100 in the Right Margin Column text box in the Show Visible Right
Margin section. This renders a right margin that you can set to control the length
of lines of code.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 O

R
AC

LE
 C

O
R

PO
R

AT
IO

N
 u

se
 o

nl
y

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Practice 1: Getting Started (continued)

Oracle Database 11g: Develop PL/SQL Program Units A - 13

b) Click the Line Gutter option. The Line Gutter option specifies options for the line
gutter (left margin of the code editor). Select the Show Line Numbers check box
to display the code line numbers.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 O

R
AC

LE
 C

O
R

PO
R

AT
IO

N
 u

se
 o

nl
y

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Practice 1: Getting Started (continued)

Oracle Database 11g: Develop PL/SQL Program Units A - 14

3) Click the Worksheet Parameters option under the Database option. In the “Select
default path to look for scripts” text box, specify the D:\labs\PLPU folder. This
folder contains the solutions scripts, code examples scripts, and any labs or demos
used in this course.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 O

R
AC

LE
 C

O
R

PO
R

AT
IO

N
 u

se
 o

nl
y

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Practice 1: Getting Started (continued)

Oracle Database 11g: Develop PL/SQL Program Units A - 15

4) Configure SQL Developer so that you can access SQL*Plus from within SQL
Developer.

a) In the Preferences window, click the SQL*Plus option.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 O

R
AC

LE
 C

O
R

PO
R

AT
IO

N
 u

se
 o

nl
y

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Practice 1: Getting Started (continued)

Oracle Database 11g: Develop PL/SQL Program Units A - 16

b) In the SQL*Plus Executable text box, enter the path for the SQL*Plus executable.
Note: To find the path for SQL*Plus: Right-click the SQL*Plus icon on your
desktop, select Properties from the shortcut menu, and then copy the SQL*Plus
path from the Target text box but do not include the /nolog at the end of the
Target path.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 O

R
AC

LE
 C

O
R

PO
R

AT
IO

N
 u

se
 o

nl
y

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Practice 1: Getting Started (continued)

Oracle Database 11g: Develop PL/SQL Program Units A - 17

c) Paste the SQL*Plus path in the SQL*Plus Executable text box.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 O

R
AC

LE
 C

O
R

PO
R

AT
IO

N
 u

se
 o

nl
y

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Practice 1: Getting Started (continued)

Oracle Database 11g: Develop PL/SQL Program Units A - 18

d) Click OK to accept your changes and to exit the Preferences window.

5) Test accessing SQL*Plus from within SQL Developer, and change the default
background and text colors.

a) Click your Database Connection name in the Connections tab.

b) Select SQL*Plus from the Tools menu. The SQL*Plus command window is
displayed.

c) Enter your password.

d) Change the default screen background and text colors. Click the C:\ icon on the
SQL*Plus command window title bar, and then select Properties from the pop-up
menu.

e) In the Colors tab, select the Screen Background option, and then click the white
color sample from the available color palettes.

f) Select the Screen Text option, and then click the black color sample from the
available color palettes.

g) Click OK. The Apply Properties window is displayed. Select the “Save properties
for future windows with same title” option, and then click OK.

h) Issue the following simple SQL command to test SQL*Plus:

SELECT *
FROM employees;

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 O

R
AC

LE
 C

O
R

PO
R

AT
IO

N
 u

se
 o

nl
y

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Practice 1: Getting Started (continued)

Oracle Database 11g: Develop PL/SQL Program Units A - 19

6) Familiarize yourself with the labs folder on the D:\ drive:

a) Right-click the SQL Worksheet area, and then select Open File from the shortcut
menu. The Open window is displayed.

b) Ensure that the path that you set in a previous step is the default path that is
displayed in the Open window.

c) How many subfolders do you see in the labs folder?

d) Navigate through the folders, and open a script file without executing the code.

e) Clear the displayed code in the SQL Worksheet area.

Accessing the Oracle Database 11g Release 1 Online Documentation Library

1) Access the Oracle Database 11g Release 1 documentation Web page at:
http://www.oracle.com/pls/db111/homepage

2) Bookmark the page for easier future access.

3) Display the complete list of books available for Oracle Database 11g Release 1.

4) Make a note of the following documentation references that you will use in this
course as needed:

a) Advanced Application Developer’s Guide
b) New Features Guide
c) PL/SQL Language Reference
d) Oracle Database Reference
e) Oracle Database Concepts
f) SQL Developer User’s Guide
g) SQL Language Reference Guide
h) SQL*Plus User’s Guide and Reference

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 O

R
AC

LE
 C

O
R

PO
R

AT
IO

N
 u

se
 o

nl
y

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Oracle Database 11g: Develop PL/SQL Program Units A - 20

Practices for Lesson 2

Practice 2: Creating, Compiling, and Calling Procedures
In this practice, you create, compile, and invoke procedures that issue DML and query
commands. You also learn how to handle exceptions in procedures.

1) Create, compile, and invoke the ADD_JOB procedure and review the results.

a) Create a procedure called ADD_JOB to insert a new job into the JOBS table.
Provide the ID and job title using two parameters.
Note: You can create the procedure (and other objects) by entering the code in the
SQL Worksheet area, and then click the Run Script (F5) icon. This creates and
compiles the procedure. To find out whether or not the procedure has any errors,
click the procedure name in the procedure node, and then select Compile from the
pop-up menu.

Open the sol_02_01_a.sql file from the D:\labs\PLPU folder as
follows: Right-click the SQL Worksheet area, and then select Open File.
Navigate to the solns folder, select the sol_02_01_a.sql file, and then
click Open. Click the Run Script (F5) icon on the SQL Worksheet toolbar to
create the procedure. The code and the result are displayed as follows:

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 O

R
AC

LE
 C

O
R

PO
R

AT
IO

N
 u

se
 o

nl
y

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Practice 2: Creating, Compiling, and Calling Procedures
(continued)

Oracle Database 11g: Develop PL/SQL Program Units A - 21

To view the newly created procedure, click the Procedures node in the
Object Navigator, right-click, and then select Refresh from the shortcut
menu. The new procedure is displayed as follows:

b) Compile the code, and then invoke the procedure with IT_DBA as the job ID and
Database Administrator as the job title. Query the JOBS table and view
the results.

Right-click the Procedures node in the Object Navigator, and then select
Refresh from the shortcut menu. Right-click the procedure’s name in the
Object Navigator, and then select Compile from the shortcut menu. The
procedure is compiled.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 O

R
AC

LE
 C

O
R

PO
R

AT
IO

N
 u

se
 o

nl
y

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Practice 2: Creating, Compiling, and Calling Procedures
(continued)

Oracle Database 11g: Develop PL/SQL Program Units A - 22

To invoke the procedure and then query the JOBS table, load the
sol_02_01_b.sql file from the D:\labs\PLPU\solns folder. The code
is displayed in the SQL Worksheet as follows:

To invoke the procedure, click the Run Script (F5) icon on the SQL
Worksheet toolbar. The results are displayed as follows:

c) Invoke your procedure again, passing a job ID of ST_MAN and a job title of
Stock Manager. What happens and why?

An exception occurs because there is a Unique key integrity constraint on the
JOB_ID column.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 O

R
AC

LE
 C

O
R

PO
R

AT
IO

N
 u

se
 o

nl
y

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Practice 2: Creating, Compiling, and Calling Procedures
(continued)

Oracle Database 11g: Develop PL/SQL Program Units A - 23

2) Create a procedure called UPD_JOB to modify a job in the JOBS table.

a) Create a procedure called UPD_JOB to update the job title. Provide the job ID and
a new title using two parameters. Include the necessary exception handling if no
update occurs.

Open the sol_02_02_a.sql file from the D:\labs\PLPU\solns folder
as follows: Right-click the SQL Worksheet area, and then select Open File.
Navigate to the solns folder, select the sol_02_02_a.sql file, and then
click Open. Click the Run Script (F5) icon on the SQL Worksheet toolbar to
create the procedure. The code is displayed in the SQL Worksheet area as
follows:

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 O

R
AC

LE
 C

O
R

PO
R

AT
IO

N
 u

se
 o

nl
y

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Practice 2: Creating, Compiling, and Calling Procedures
(continued)

Oracle Database 11g: Develop PL/SQL Program Units A - 24

b) Compile the procedure. Invoke the procedure to change the job title of the job ID
IT_DBA to Data Administrator. Query the JOBS table and view the
results.

Right-click the Procedures node in the Object Navigator, and then select
Refresh from the shortcut menu. Right-click the procedure’s name in the
Object Navigator, and then select Compile from the shortcut menu. The
procedure is compiled.

To invoke the procedure and then query the JOBS table, load the
sol_02_02_b.sql file from the D:\labs\PLPU\solns folder. The code
is displayed in the SQL Worksheet. Click the Run Script (F5) icon on the
SQL Worksheet toolbar to invoke the procedure. The code and the result are
displayed as follows:

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 O

R
AC

LE
 C

O
R

PO
R

AT
IO

N
 u

se
 o

nl
y

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Practice 2: Creating, Compiling, and Calling Procedures
(continued)

Oracle Database 11g: Develop PL/SQL Program Units A - 25

c) Test the exception-handling section of the procedure by trying to update a job that
does not exist. You can use the job ID IT_WEB and the job title Web Master.

3) Create a procedure called DEL_JOB to delete a job from the JOBS table.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 O

R
AC

LE
 C

O
R

PO
R

AT
IO

N
 u

se
 o

nl
y

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Practice 2: Creating, Compiling, and Calling Procedures
(continued)

Oracle Database 11g: Develop PL/SQL Program Units A - 26

a) Create a procedure called DEL_JOB to delete a job. Include the necessary
exception-handling code if no job is deleted.

Open the sol_02_03_a.sql file from the D:\labs\PLPU folder as
follows: Right-click the SQL Worksheet area, and then select Open File.
Navigate to the solns folder, select the sol_02_03_a.sql file, and then
click OK. Click the Run Script (F5) icon on the SQL Worksheet toolbar to
create the procedure. The code and the result are displayed as follows:

b) Compile the code; invoke the procedure using the job ID IT_DBA. Query the
JOBS table and view the results.

If the newly created procedure is not displayed in the Object Navigator,
right-click the Procedures node in the Object Navigator, and then select
Refresh from the shortcut menu. Right-click the procedure’s name in the
Object Navigator, and then select Compile from the shortcut menu. The
procedure is compiled.

To invoke the procedure and then query the JOBS table, load the
sol_02_03_b.sql file from the D:\labs\PLPU\solns folder. Click the
Run Script (F5) icon on the SQL Worksheet toolbar to invoke the procedure.
The code and the result are displayed as follows:

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 O

R
AC

LE
 C

O
R

PO
R

AT
IO

N
 u

se
 o

nl
y

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Practice 2: Creating, Compiling, and Calling Procedures
(continued)

Oracle Database 11g: Develop PL/SQL Program Units A - 27

c) Test the exception-handling section of the procedure by trying to delete a job that
does not exist. Use IT_WEB as the job ID. You should get the message that you
included in the exception-handling section of the procedure as the output.

To invoke the procedure and then query the JOBS table, load the
sol_02_03_c.sql file from the D:\labs\PLPU\solns folder. Click the
Run Script (F5) icon on the SQL Worksheet toolbar to invoke the procedure.
The code and the result are displayed as follows:

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 O

R
AC

LE
 C

O
R

PO
R

AT
IO

N
 u

se
 o

nl
y

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Practice 2: Creating, Compiling, and Calling Procedures
(continued)

Oracle Database 11g: Develop PL/SQL Program Units A - 28

4) Create a procedure called GET_EMPLOYEE to query the EMPLOYEES table,
retrieving the salary and job ID for an employee when provided with the employee
ID.

a) Create a procedure that returns a value from the SALARY and JOB_ID columns
for a specified employee ID. Compile the code and remove syntax errors, if any.

Open the sol_02_04_a.sql file from the D:\labs\PLPU\solns folder
as follows: Right-click the SQL Worksheet area, and then select Open File.
Navigate to the solns folder, select the sol_02_04_a.sql file, and then
click OK. Click the Run Script (F5) icon on the SQL Worksheet toolbar to
create the procedure. The code and the result are displayed as follows:

If the newly created procedure is not displayed in the Object Navigator,
right-click the Procedures node in the Object Navigator, and then select
Refresh from the shortcut menu. Right-click the procedure’s name in the
Object Navigator, and then select Compile from the shortcut menu. The
procedure is compiled.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 O

R
AC

LE
 C

O
R

PO
R

AT
IO

N
 u

se
 o

nl
y

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Practice 2: Creating, Compiling, and Calling Procedures
(continued)

Oracle Database 11g: Develop PL/SQL Program Units A - 29

b) Execute the procedure using host variables for the two OUT parameters—one for
the salary and the other for the job ID. Display the salary and job ID for employee
ID 120.

Open the sol_02_04_b.sql file from the D:\labs\PLPU\solns folder
as follows: Right-click the SQL Worksheet area, and then select Open File.
Navigate to the solns folder, select the sol_02_04_b.sql file, and then
click OK. Click the Run Script (F5) icon on the SQL Worksheet toolbar to
invoke the procedure. The code and the result are displayed as follows:

c) Invoke the procedure again, passing an EMPLOYEE_ID of 300. What happens
and why?

There is no employee in the EMPLOYEES table with an EMPLOYEE_ID of
300. The SELECT statement retrieved no data from the database, resulting in
a fatal PL/SQL error: NO_DATA_FOUND as follows:

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 O

R
AC

LE
 C

O
R

PO
R

AT
IO

N
 u

se
 o

nl
y

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Practice 2: Creating, Compiling, and Calling Procedures
(continued)

Oracle Database 11g: Develop PL/SQL Program Units A - 30

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 O

R
AC

LE
 C

O
R

PO
R

AT
IO

N
 u

se
 o

nl
y

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Oracle Database 11g: Develop PL/SQL Program Units A - 31

Practices for Lesson 3

Practice 3: Creating Functions
In this practice/task, you create and invoke stored functions.

1) Create and invoke the GET_JOB function to return a job title.

a) Create and compile a function called GET_JOB to return a job title.

Open the sol_03_1_a.sql file from the D:\labs\PLPU\solns folder.
Click the Run Script (F5) icon on the SQL Worksheet toolbar to create the
function. The code and the result are displayed as follows:

CREATE OR REPLACE FUNCTION get_job (p_jobid IN
jobs.job_id%type)
 RETURN jobs.job_title%type IS
 v_title jobs.job_title%type;
BEGIN
 SELECT job_title
 INTO v_title
 FROM jobs
 WHERE job_id = p_jobid;
 RETURN v_title;
END get_job;
/

If the newly created function is not displayed in the Object Navigator, right-
click the Functions node in the Object Navigator, and then select Refresh
from the shortcut menu. Right-click the function’s name in the Object
Navigator, and then select Compile from the shortcut menu. The function is
compiled.

b) Create a VARCHAR2 host variable called b_title, allowing a length of 35
characters. Invoke the function with job ID SA_REP to return the value in the
host variable, and then print the host variable to view the result.

Open the sol_03_01_b.sql file from the D:\labs\PLPU\solns folder.
Click the Run Script (F5) icon on the SQL Worksheet toolbar to create the
function. The code and the result are displayed as follows:

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 O

R
AC

LE
 C

O
R

PO
R

AT
IO

N
 u

se
 o

nl
y

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Practice 3: Creating Functions (continued)

Oracle Database 11g: Develop PL/SQL Program Units A - 32

VARIABLE b_title VARCHAR2(35)
EXECUTE :b_title := get_job ('SA_REP');
PRINT b_title

2) Create a function called GET_ANNUAL_COMP to return the annual salary computed
from an employee’s monthly salary and commission passed as parameters.

a) Create the GET_ANNUAL_COMP function, which accepts parameter values for the
monthly salary and commission. Either or both values passed can be NULL, but
the function should still return a non-NULL annual salary. Use the following basic
formula to calculate the annual salary:
 (salary*12) + (commission_pct*salary*12)

Open the sol_03_02_a.sql file from the D:\labs\PLPU\solns folder.
Click the Run Script (F5) icon on the SQL Worksheet toolbar to create the
function. The code and the result are displayed as follows:

CREATE OR REPLACE FUNCTION get_annual_comp(
 p_sal IN employees.salary%TYPE,
 p_comm IN employees.commission_pct%TYPE)
 RETURN NUMBER IS
BEGIN
 RETURN (NVL(p_sal,0) * 12 + (NVL(p_comm,0) * nvl(p_sal,0)
* 12));
END get_annual_comp;
/

If the newly created function is not displayed in the Object Navigator, right-
click the Functions node in the Object Navigator, and then select Refresh
from the shortcut menu. To compile the function, right-click the function’s
name, and then select Compile from the shortcut menu.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 O

R
AC

LE
 C

O
R

PO
R

AT
IO

N
 u

se
 o

nl
y

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Practice 3: Creating Functions (continued)

Oracle Database 11g: Develop PL/SQL Program Units A - 33

b) Use the function in a SELECT statement against the EMPLOYEES table for
employees in department 30.

Open the sol_03_02_b.sql file from the D:\labs\PLPU\solns folder.
Click the Run Script (F5) icon on the SQL Worksheet toolbar to create the
function. The code and the result are displayed as follows:

SELECT employee_id, last_name,
 get_annual_comp(salary,commission_pct) "Annual
Compensation"
FROM employees
WHERE department_id=30
/

3) Create a procedure, ADD_EMPLOYEE, to insert a new employee into the
EMPLOYEES table. The procedure should call a VALID_DEPTID function to check
whether the department ID specified for the new employee exists in the
DEPARTMENTS table.

a) Create a function called VALID_DEPTID to validate a specified department ID
and return a BOOLEAN value of TRUE if the department exists.

Open the sol_03_03_a.sql file from the D:\labs\PLPU\solns folder.
Click the Run Script (F5) icon on the SQL Worksheet toolbar to create the
function. The code and the result are displayed as follows:

CREATE OR REPLACE FUNCTION valid_deptid(
 p_deptid IN departments.department_id%TYPE)
 RETURN BOOLEAN IS
 v_dummy PLS_INTEGER;

BEGIN
 SELECT 1

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 O

R
AC

LE
 C

O
R

PO
R

AT
IO

N
 u

se
 o

nl
y

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Practice 3: Creating Functions (continued)

Oracle Database 11g: Develop PL/SQL Program Units A - 34

 INTO v_dummy
 FROM departments
 WHERE department_id = p_deptid;
 RETURN TRUE;
EXCEPTION
 WHEN NO_DATA_FOUND THEN
 RETURN FALSE;
END valid_deptid;
/

If the newly created function is not displayed in the Object Navigator, right-click
the Functions node in the Object Navigator, and then select Refresh from the
shortcut menu. To compile the function, right-click the function’s name, and
then select Compile from the shortcut menu.

b) Create the ADD_EMPLOYEE procedure to add an employee to the EMPLOYEES
table. The row should be added to the EMPLOYEES table if the VALID_DEPTID
function returns TRUE; otherwise, alert the user with an appropriate message.
Provide the following parameters:

- first_name

- last_name

- email

- job: Use 'SA_REP' as the default.

- mgr: Use 145 as the default.

- sal: Use 1000 as the default.

- comm: Use 0 as the default.

- deptid: Use 30 as the default.

- Use the EMPLOYEES_SEQ sequence to set the employee_id column.

- Set the hire_date column to TRUNC(SYSDATE).

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 O

R
AC

LE
 C

O
R

PO
R

AT
IO

N
 u

se
 o

nl
y

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Practice 3: Creating Functions (continued)

Oracle Database 11g: Develop PL/SQL Program Units A - 35

Open the sol_03_03_b.sql file from the D:\labs\PLPU\solns folder.
Click the Run Script (F5) icon on the SQL Worksheet toolbar to create the
procedure. The code and the result are displayed as follows:

CREATE OR REPLACE PROCEDURE add_employee(
 p_first_name employees.first_name%TYPE,
 p_last_name employees.last_name%TYPE,
 p_email employees.email%TYPE,
 p_job employees.job_id%TYPE DEFAULT 'SA_REP',
 p_mgr employees.manager_id%TYPE DEFAULT 145,
 p_sal employees.salary%TYPE DEFAULT 1000,
 p_comm employees.commission_pct%TYPE DEFAULT 0,
 p_deptid employees.department_id%TYPE DEFAULT 30) IS
BEGIN
 IF valid_deptid(p_deptid) THEN
 INSERT INTO employees(employee_id, first_name, last_name,
email,
 job_id, manager_id, hire_date, salary, commission_pct,
department_id)
 VALUES (employees_seq.NEXTVAL, p_first_name, p_last_name,
p_email,
 p_job, p_mgr, TRUNC(SYSDATE), p_sal, p_comm, p_deptid);
 ELSE
 RAISE_APPLICATION_ERROR (-20204, 'Invalid department ID.
Try again.');
 END IF;
END add_employee;
/

If the newly created procedure is not displayed in the Object Navigator, right-
click the Procedures node in the Object Navigator, and then select Refresh from
the shortcut menu. To compile the procedure, right-click the procedure’s name,
and then select Compile from the shortcut menu.

c) Call ADD_EMPLOYEE for the name 'Jane Harris' in department 15,
leaving other parameters with their default values. What is the result?

Open the sol_03_03_c.sql file from the D:\labs\PLPU\solns folder,
or enter the following code in the SQL Worksheet area. Click the Run Script

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 O

R
AC

LE
 C

O
R

PO
R

AT
IO

N
 u

se
 o

nl
y

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Practice 3: Creating Functions (continued)

Oracle Database 11g: Develop PL/SQL Program Units A - 36

(F5) icon on the SQL Worksheet toolbar to invoke the procedure. The code
and the result are displayed as follows:

EXECUTE add_employee('Jane', 'Harris', 'JAHARRIS',
p_deptid=> 15)

d) Add another employee named Joe Harris in department 80, leaving the remaining
parameters with their default values. What is the result?

Open the sol_03_03_d.sql file from the D:\labs\PLPU\solns folder,
or enter the following code in the SQL Worksheet area, and then click the
Run Script (F5) icon on the SQL Worksheet toolbar to invoke the procedure.
The code and the result are displayed as follows:

EXECUTE add_employee('Joe', 'Harris', 'JAHARRIS',
p_deptid=> 80)

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 O

R
AC

LE
 C

O
R

PO
R

AT
IO

N
 u

se
 o

nl
y

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Oracle Database 11g: Develop PL/SQL Program Units A - 37

Practices for Lesson 4

Practice 4: Creating and Using Packages
In this practice, you create package specifications and package bodies. You then invoke
the constructs in the packages by using sample data.

1) Create a package specification and body called JOB_PKG, containing a copy of your
ADD_JOB, UPD_JOB, and DEL_JOB procedures as well as your GET_JOB function.

Note: Use the code from your previously saved procedures and functions when
creating the package. You can copy the code in a procedure or function, and then
paste the code into the appropriate section of the package.

a) Create the package specification including the procedures and function headings
as public constructs.

Open the sol_04_01_a.sql file in the D:\labs\PLPU\solns folder, or
copy and paste the following code in the SQL Worksheet area. Click the Run
Script (F5) icon on the SQL Worksheet toolbar to create the package
specification. The code and the result are displayed as follows:

CREATE OR REPLACE PACKAGE job_pkg IS
 PROCEDURE add_job (p_jobid jobs.job_id%TYPE, p_jobtitle
jobs.job_title%TYPE);
 PROCEDURE del_job (p_jobid jobs.job_id%TYPE);
 FUNCTION get_job (p_jobid IN jobs.job_id%type) RETURN
jobs.job_title%type;
 PROCEDURE upd_job(p_jobid IN jobs.job_id%TYPE, p_jobtitle
IN jobs.job_title%TYPE);
END job_pkg;
/
SHOW ERRORS

To compile the new package body, right-click the package’s body name in
the Object Navigation tree, and then select Compile from the shortcut menu.
The package body is compiled as shown below:

b) Create the package body with the implementations for each of the subprograms.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 O

R
AC

LE
 C

O
R

PO
R

AT
IO

N
 u

se
 o

nl
y

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Practice 4: Creating and Using Packages (continued)

Oracle Database 11g: Develop PL/SQL Program Units A - 38

Open the sol_04_01_b.sql file in the D:\labs\PLPU\solns folder, or
copy and paste the following code in the SQL Worksheet area. Click the Run
Script (F5) icon on the SQL Worksheet toolbar to create the package body.
The code and the result are displayed as follows:

CREATE OR REPLACE PACKAGE BODY job_pkg IS
 PROCEDURE add_job (
 p_jobid jobs.job_id%TYPE,
 p_jobtitle jobs.job_title%TYPE) IS
 BEGIN
 INSERT INTO jobs (job_id, job_title)
 VALUES (p_jobid, p_jobtitle);
 COMMIT;
 END add_job;

 PROCEDURE del_job (p_jobid jobs.job_id%TYPE) IS
 BEGIN
 DELETE FROM jobs
 WHERE job_id = p_jobid;
 IF SQL%NOTFOUND THEN
 RAISE_APPLICATION_ERROR(-20203, 'No jobs
deleted.');
 END IF;
 END DEL_JOB;

 FUNCTION get_job (p_jobid IN jobs.job_id%type)
 RETURN jobs.job_title%type IS
 v_title jobs.job_title%type;
 BEGIN
 SELECT job_title
 INTO v_title
 FROM jobs
 WHERE job_id = p_jobid;
 RETURN v_title;
 END get_job;

 PROCEDURE upd_job(
 p_jobid IN jobs.job_id%TYPE,
 p_jobtitle IN jobs.job_title%TYPE) IS
 BEGIN
 UPDATE jobs
 SET job_title = p_jobtitle
 WHERE job_id = p_jobid;
 IF SQL%NOTFOUND THEN
 RAISE_APPLICATION_ERROR(-20202, 'No job updated.');
 END IF;
 END upd_job;

END job_pkg;

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 O

R
AC

LE
 C

O
R

PO
R

AT
IO

N
 u

se
 o

nl
y

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Practice 4: Creating and Using Packages (continued)

Oracle Database 11g: Develop PL/SQL Program Units A - 39

/

SHOW ERRORS

c) Delete the following stand-alone procedures and function you just packaged using
the Procedures and Functions nodes in the Object Navigation tree:

i) The ADD_JOB, UPD_JOB, and DEL_JOB procedures

ii) The GET_JOB function

To delete a procedure or a function, right-click the procedure’s name or
function’s name in the Object Navigation tree, and then select Drop from the
pop-up menu. The Drop window is displayed. Click Apply to drop the
procedure or function. A confirmation window is displayed.

d) Invoke your ADD_JOB package procedure by passing the values IT_SYSAN and
SYSTEMS ANALYST as parameters.
Open the sol_04_01_d.sql file in the D:\labs\PLPU\solns folder, or
copy and paste the following code in the SQL Worksheet area. Click the Run
Script (F5) icon on the SQL Worksheet toolbar to invoke the package’s
procedure. The code and the result are displayed as follows:

EXECUTE job_pkg.add_job('IT_SYSAN', 'Systems Analyst')

e) Query the JOBS table to see the result.

Open the sol_04_01_e.sql file in the D:\labs\PLPU\solns folder, or
copy and paste the following code in the SQL Worksheet area. Click the Run
Script (F5) icon or the Execute Statement (F9) on the SQL Worksheet
toolbar to query the JOBS table. The code and the result (using the Run
Script icon) are displayed as follows:

SELECT *
FROM jobs
WHERE job_id = 'IT_SYSAN';

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 O

R
AC

LE
 C

O
R

PO
R

AT
IO

N
 u

se
 o

nl
y

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Practice 4: Creating and Using Packages (continued)

Oracle Database 11g: Develop PL/SQL Program Units A - 40

2) Create and invoke a package that contains private and public constructs.

a) Create a package specification and a package body called EMP_PKG that contains
the following procedures and function that you created earlier:

i) ADD_EMPLOYEE procedure as a public construct

ii) GET_EMPLOYEE procedure as a public construct

iii) VALID_DEPTID function as a private construct

Open the sol_04_02_a.sql file in the D:\labs\PLPU\solns
folder, or copy and paste the following code in the SQL Worksheet area.
Click the Run Script (F5) icon on the SQL Worksheet toolbar to invoke
the package’s procedure. The code and the result are displayed as
follows:

CREATE OR REPLACE PACKAGE emp_pkg IS
 PROCEDURE add_employee(
 p_first_name employees.first_name%TYPE,
 p_last_name employees.last_name%TYPE,
 p_email employees.email%TYPE,
 p_job employees.job_id%TYPE DEFAULT 'SA_REP',
 p_mgr employees.manager_id%TYPE DEFAULT 145,
 p_sal employees.salary%TYPE DEFAULT 1000,
 p_comm employees.commission_pct%TYPE DEFAULT 0,
 p_deptid employees.department_id%TYPE DEFAULT 30);
PROCEDURE get_employee(
 p_empid IN employees.employee_id%TYPE,
 p_sal OUT employees.salary%TYPE,
 p_job OUT employees.job_id%TYPE);
END emp_pkg;
/
SHOW ERRORS

CREATE OR REPLACE PACKAGE BODY emp_pkg IS
 FUNCTION valid_deptid(p_deptid IN
departments.department_id%TYPE) RETURN BOOLEAN IS
 v_dummy PLS_INTEGER;
 BEGIN
 SELECT 1
 INTO v_dummy
 FROM departments

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 O

R
AC

LE
 C

O
R

PO
R

AT
IO

N
 u

se
 o

nl
y

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Practice 4: Creating and Using Packages (continued)

Oracle Database 11g: Develop PL/SQL Program Units A - 41

 WHERE department_id = p_deptid;
 RETURN TRUE;
 EXCEPTION
 WHEN NO_DATA_FOUND THEN
 RETURN FALSE;

END valid_deptid;

 PROCEDURE add_employee(
 p_first_name employees.first_name%TYPE,
 p_last_name employees.last_name%TYPE,
 p_email employees.email%TYPE,
 p_job employees.job_id%TYPE DEFAULT 'SA_REP',
 p_mgr employees.manager_id%TYPE DEFAULT 145,
 p_sal employees.salary%TYPE DEFAULT 1000,
 p_comm employees.commission_pct%TYPE DEFAULT 0,
 p_deptid employees.department_id%TYPE DEFAULT 30) IS
 BEGIN
 IF valid_deptid(p_deptid) THEN
 INSERT INTO employees(employee_id, first_name,
last_name, email,
 job_id, manager_id, hire_date, salary,
commission_pct, department_id)
 VALUES (employees_seq.NEXTVAL, p_first_name,
p_last_name, p_email,
 p_job, p_mgr, TRUNC(SYSDATE), p_sal, p_comm,
p_deptid);
 ELSE
 RAISE_APPLICATION_ERROR (-20204, 'Invalid
department ID. Try again.');
 END IF;
 END add_employee;

 PROCEDURE get_employee(
 p_empid IN employees.employee_id%TYPE,
 p_sal OUT employees.salary%TYPE,
 p_job OUT employees.job_id%TYPE) IS
 BEGIN
 SELECT salary, job_id
 INTO p_sal, p_job
 FROM employees
 WHERE employee_id = p_empid;
 END get_employee;
END emp_pkg;
/
SHOW ERRORS

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 O

R
AC

LE
 C

O
R

PO
R

AT
IO

N
 u

se
 o

nl
y

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Practice 4: Creating and Using Packages (continued)

Oracle Database 11g: Develop PL/SQL Program Units A - 42

b) Invoke the EMP_PKG.ADD_EMPLOYEE procedure, using department ID 15 for
employee Jane Harris with the email ID JAHARRIS. Because department ID 15
does not exist, you should get an error message as specified in the exception
handler of your procedure.

Open the sol_04_02_b.sql file in the D:\labs\PLPU\solns folder, or
copy and paste the following code in the SQL Worksheet area. Click the Run
Script (F5) icon on the SQL Worksheet toolbar to invoke the package’s
procedure. The code and the result are displayed as follows:

EXECUTE emp_pkg.add_employee('Jane', 'Harris','JAHARRIS',
p_deptid => 15)

c) Invoke the ADD_EMPLOYEE package procedure by using department ID 80 for
employee David Smith with the email ID DASMITH.

Open the sol_04_02_c.sql file in the D:\labs\PLPU\solns folder, or
copy and paste the following code in the SQL Worksheet area. Click the Run
Script (F5) icon on the SQL Worksheet toolbar to invoke the package’s
procedure. The code and the result are displayed as follows:

EXECUTE emp_pkg.add_employee('David', 'Smith','DASMITH',
p_deptid => 80)

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 O

R
AC

LE
 C

O
R

PO
R

AT
IO

N
 u

se
 o

nl
y

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Practice 4: Creating and Using Packages (continued)

Oracle Database 11g: Develop PL/SQL Program Units A - 43

d) Query the EMPLOYEES table to verify that the new employee was added.

Open the sol_04_02_d.sql file in the D:\labs\PLPU\solns folder, or
copy and paste the following code in the SQL Worksheet area. Click the Run
Script (F5) icon or the Execute Statement (F9) on the SQL Worksheet
toolbar to query the EMPLOYEES table. The code and the result (Execute
Statement icon) are displayed as follows:

SELECT *
FROM employees
WHERE last_name = 'Smith';

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 O

R
AC

LE
 C

O
R

PO
R

AT
IO

N
 u

se
 o

nl
y

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Oracle Database 11g: Develop PL/SQL Program Units A - 44

Practices for Lesson 5

Practice 5: Working with Packages
In this practice, you modify an existing package to contain overloaded subprograms and
you use forward declarations. You also create a package initialization block within a
package body to populate a PL/SQL table.

1) Modify the code for the EMP_PKG package that you created in Practice 4 step 2, and
overload the ADD_EMPLOYEE procedure.

a) In the package specification, add a new procedure called ADD_EMPLOYEE that
accepts the following three parameters:

i) First name

ii) Last name

iii) Department ID

Open the sol_05_01_a.sql file in the D:\labs\PLPU\solns folder, or
copy and paste the highlighted part (code in bold-face letters) in the following
code in the SQL Worksheet area. Click the Run Script (F5) icon on the SQL
Worksheet toolbar to invoke the package’s procedure. The code and the
result are displayed as follows:

CREATE OR REPLACE PACKAGE emp_pkg IS
 PROCEDURE add_employee(
 p_first_name employees.first_name%TYPE,
 p_last_name employees.last_name%TYPE,
 p_email employees.email%TYPE,
 p_job employees.job_id%TYPE DEFAULT 'SA_REP',
 p_mgr employees.manager_id%TYPE DEFAULT 145,
 p_sal employees.salary%TYPE DEFAULT 1000,
 p_comm employees.commission_pct%TYPE DEFAULT 0,
 p_deptid employees.department_id%TYPE DEFAULT 30);

/* New overloaded add_employee */

 PROCEDURE add_employee(
 p_first_name employees.first_name%TYPE,
 p_last_name employees.last_name%TYPE,
 p_deptid employees.department_id%TYPE);

 PROCEDURE get_employee(
 p_empid IN employees.employee_id%TYPE,
 p_sal OUT employees.salary%TYPE,
 p_job OUT employees.job_id%TYPE);
END emp_pkg;
/
SHOW ERRORS

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 O

R
AC

LE
 C

O
R

PO
R

AT
IO

N
 u

se
 o

nl
y

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Practice 5: Working with Packages (continued)

Oracle Database 11g: Develop PL/SQL Program Units A - 45

b) Click Run Script to create the package. Compile the package.

To compile the package, right-click the package’s name in the Object
Navigator tree, and then select Compile from the shortcut menu. The
package is compiled as shown below:

c) Implement the new ADD_EMPLOYEE procedure in the package body as follows:

i) Format the email address in uppercase characters, using the first letter of the
first name concatenated with the first seven letters of the last name.

ii) The procedure should call the existing ADD_EMPLOYEE procedure to perform
the actual INSERT operation using its parameters and formatted email to
supply the values.

iii) Click Run Script to create the package. Compile the package.

Open the sol_05_01_c.sql file in the D:\labs\PLPU\solns folder, or
copy and paste the newly added and highlighted part (code in bold-face
letters) in the following code box in the SQL Worksheet area. Click the Run
Script (F5) icon on the SQL Worksheet toolbar to invoke the package’s
procedure. The code and the result are displayed as follows:

CREATE OR REPLACE PACKAGE BODY emp_pkg IS
 FUNCTION valid_deptid(p_deptid IN
departments.department_id%TYPE) RETURN BOOLEAN IS
 v_dummy PLS_INTEGER;
 BEGIN
 SELECT 1
 INTO v_dummy
 FROM departments
 WHERE department_id = p_deptid;
 RETURN TRUE;
 EXCEPTION
 WHEN NO_DATA_FOUND THEN
 RETURN FALSE;
END valid_deptid;

 PROCEDURE add_employee(
 p_first_name employees.first_name%TYPE,

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 O

R
AC

LE
 C

O
R

PO
R

AT
IO

N
 u

se
 o

nl
y

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Practice 5: Working with Packages (continued)

Oracle Database 11g: Develop PL/SQL Program Units A - 46

 p_last_name employees.last_name%TYPE,
 p_email employees.email%TYPE,
 p_job employees.job_id%TYPE DEFAULT 'SA_REP',
 p_mgr employees.manager_id%TYPE DEFAULT 145,
 p_sal employees.salary%TYPE DEFAULT 1000,
 p_comm employees.commission_pct%TYPE DEFAULT 0,
 p_deptid employees.department_id%TYPE DEFAULT 30) IS

BEGIN
 IF valid_deptid(p_deptid) THEN
 INSERT INTO employees(employee_id, first_name, last_name,
 email, job_id, manager_id, hire_date, salary,
 commission_pct, department_id)
 VALUES (employees_seq.NEXTVAL, p_first_name, p_last_name,
 p_email, p_job, p_mgr, TRUNC(SYSDATE), p_sal, p_comm,
 p_deptid);
 ELSE
 RAISE_APPLICATION_ERROR (-20204, 'Invalid department ID. Try
 again.');
 END IF;
 END add_employee;

/* New overloaded add_employee procedure */

 PROCEDURE add_employee(
 p_first_name employees.first_name%TYPE,
 p_last_name employees.last_name%TYPE,
 p_deptid employees.department_id%TYPE) IS
 p_email employees.email%type;
 BEGIN
 p_email := UPPER(SUBSTR(p_first_name, 1,
 1)||SUBSTR(p_last_name, 1, 7));
 add_employee(p_first_name, p_last_name, p_email, p_deptid =>
 p_deptid);
 END;

/* End declaration of the overloaded add_employee procedure */

 PROCEDURE get_employee(
 p_empid IN employees.employee_id%TYPE,
 p_sal OUT employees.salary%TYPE,
 p_job OUT employees.job_id%TYPE) IS
 BEGIN
 SELECT salary, job_id
 INTO p_sal, p_job
 FROM employees
 WHERE employee_id = p_empid;
 END get_employee;
END emp_pkg;
/

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 O

R
AC

LE
 C

O
R

PO
R

AT
IO

N
 u

se
 o

nl
y

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Practice 5: Working with Packages (continued)

Oracle Database 11g: Develop PL/SQL Program Units A - 47

SHOW ERRORS

To compile the package, right-click the package’s body (or the entire package) name
in the Object Navigator tree, and then select Compile from the shortcut menu. The
package body is compiled as shown below:

d) Invoke the new ADD_EMPLOYEE procedure using the name Samuel Joplin
to be added to department 30.

Open the sol_05_01_d.sql file in the D:\labs\PLPU\solns folder, or
copy and paste the following code in the SQL Worksheet area. Click the Run
Script (F5) icon on the SQL Worksheet toolbar to invoke the package’s
procedure. The code and the result are displayed as follows:

EXECUTE emp_pkg.add_employee('Samuel', 'Joplin', 30)

e) Confirm that the new employee was added to the EMPLOYEES table.

Open the sol_05_01_e.sql file in the D:\labs\PLPU\solns folder, or
copy and paste the following code in the SQL Worksheet area. Click the
Execute Statement (F9) icon on the SQL Worksheet toolbar to execute the
query. The code and the result are displayed as follows:

SELECT *
FROM employees
WHERE last_name = 'Joplin';

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 O

R
AC

LE
 C

O
R

PO
R

AT
IO

N
 u

se
 o

nl
y

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Practice 5: Working with Packages (continued)

Oracle Database 11g: Develop PL/SQL Program Units A - 48

2) In the EMP_PKG package, create two overloaded functions called GET_EMPLOYEE:

a) In the package specification, add the following functions:

i) The GET_EMPLOYEE function that accepts the parameter called p_emp_id
based on the employees.employee_id%TYPE type. This function
should return EMPLOYEES%ROWTYPE.

ii) The GET_EMPLOYEE function that accepts the parameter called
p_family_name of type employees.last_name%TYPE. This function
should return EMPLOYEES%ROWTYPE.

Open the sol_05_02_a.sql file in the D:\labs\PLPU\solns folder, or
copy and paste the newly added and highlighted code (code in bold-face
letters) in the following code box in the SQL Worksheet area.

CREATE OR REPLACE PACKAGE emp_pkg IS
 PROCEDURE add_employee(
 p_first_name employees.first_name%TYPE,
 p_last_name employees.last_name%TYPE,
 p_email employees.email%TYPE,
 p_job employees.job_id%TYPE DEFAULT 'SA_REP',
 p_mgr employees.manager_id%TYPE DEFAULT 145,
 p_sal employees.salary%TYPE DEFAULT 1000,
 p_comm employees.commission_pct%TYPE DEFAULT 0,
 p_deptid employees.department_id%TYPE DEFAULT 30);

 PROCEDURE add_employee(
 p_first_name employees.first_name%TYPE,
 p_last_name employees.last_name%TYPE,
 p_deptid employees.department_id%TYPE);

 PROCEDURE get_employee(
 p_empid IN employees.employee_id%TYPE,
 p_sal OUT employees.salary%TYPE,
 p_job OUT employees.job_id%TYPE);

/* New overloaded get_employees functions specs starts here: */

 FUNCTION get_employee(p_emp_id employees.employee_id%type)
 return employees%rowtype;

 FUNCTION get_employee(p_family_name employees.last_name%type)
 return employees%rowtype;

/* New overloaded get_employees functions specs ends here. */

END emp_pkg;
/
SHOW ERRORS

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 O

R
AC

LE
 C

O
R

PO
R

AT
IO

N
 u

se
 o

nl
y

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Practice 5: Working with Packages (continued)

Oracle Database 11g: Develop PL/SQL Program Units A - 49

b) Click Run Script to re-create and compile the package.

Click the Run Script (F5) icon on the SQL Worksheet toolbar to re-create
the package’s specification. The result is shown below:

To compile the package specification, right-click the package’s specification
(or the entire package) name in the Object Navigator tree, and then select
Compile from the shortcut menu. The warning is expected and is for
informational purposes only.

c) In the package body:

i) Implement the first GET_EMPLOYEE function to query an employee using the
employee’s ID.

ii) Implement the second GET_EMPLOYEE function to use the equality operator
on the value supplied in the p_family_name parameter.

Open the sol_05_02_c.sql file in the D:\labs\PLPU\solns folder, or
copy and paste the following code in the SQL Worksheet area. The newly
added functions are highlighted in the following code box.

CREATE OR REPLACE PACKAGE emp_pkg IS
 PROCEDURE add_employee(
 p_first_name employees.first_name%TYPE,
 p_last_name employees.last_name%TYPE,
 p_email employees.email%TYPE,
 p_job employees.job_id%TYPE DEFAULT 'SA_REP',
 p_mgr employees.manager_id%TYPE DEFAULT 145,
 p_sal employees.salary%TYPE DEFAULT 1000,
 p_comm employees.commission_pct%TYPE DEFAULT 0,
 p_deptid employees.department_id%TYPE DEFAULT 30);

 PROCEDURE add_employee(
 p_first_name employees.first_name%TYPE,
 p_last_name employees.last_name%TYPE,
 p_deptid employees.department_id%TYPE);

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 O

R
AC

LE
 C

O
R

PO
R

AT
IO

N
 u

se
 o

nl
y

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Practice 5: Working with Packages (continued)

Oracle Database 11g: Develop PL/SQL Program Units A - 50

PROCEDURE get_employee(

 p_empid IN employees.employee_id%TYPE,
 p_sal OUT employees.salary%TYPE,
 p_job OUT employees.job_id%TYPE);

/* New overloaded get_employees functions specs starts here: */

 FUNCTION get_employee(p_emp_id employees.employee_id%type)
 return employees%rowtype;

 FUNCTION get_employee(p_family_name employees.last_name%type)
 return employees%rowtype;

/* New overloaded get_employees functions specs ends here. */

END emp_pkg;
/
SHOW ERRORS

CREATE OR REPLACE PACKAGE BODY emp_pkg IS
 FUNCTION valid_deptid(p_deptid IN
departments.department_id%TYPE) RETURN BOOLEAN IS
 v_dummy PLS_INTEGER;
 BEGIN
 SELECT 1
 INTO v_dummy
 FROM departments
 WHERE department_id = p_deptid;
 RETURN TRUE;
 EXCEPTION
 WHEN NO_DATA_FOUND THEN
 RETURN FALSE;
END valid_deptid;

 PROCEDURE add_employee(
 p_first_name employees.first_name%TYPE,
 p_last_name employees.last_name%TYPE,
 p_email employees.email%TYPE,
 p_job employees.job_id%TYPE DEFAULT 'SA_REP',
 p_mgr employees.manager_id%TYPE DEFAULT 145,
 p_sal employees.salary%TYPE DEFAULT 1000,
 p_comm employees.commission_pct%TYPE DEFAULT 0,
 p_deptid employees.department_id%TYPE DEFAULT 30) IS
 BEGIN
 IF valid_deptid(p_deptid) THEN
 INSERT INTO employees(employee_id, first_name, last_name,

 email, job_id, manager_id, hire_date, salary,
 commission_pct, department_id)

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 O

R
AC

LE
 C

O
R

PO
R

AT
IO

N
 u

se
 o

nl
y

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Practice 5: Working with Packages (continued)

Oracle Database 11g: Develop PL/SQL Program Units A - 51

 VALUES (employees_seq.NEXTVAL, p_first_name, p_last_name,
 p_email, p_job, p_mgr, TRUNC(SYSDATE), p_sal, p_comm,
 p_deptid);
 ELSE
 RAISE_APPLICATION_ERROR (-20204, 'Invalid department ID.
 Try again.');
 END IF;
 END add_employee;

 PROCEDURE add_employee(
 p_first_name employees.first_name%TYPE,
 p_last_name employees.last_name%TYPE,
 p_deptid employees.department_id%TYPE) IS
 p_email employees.email%type;
 BEGIN
 p_email := UPPER(SUBSTR(p_first_name, 1,
1)||SUBSTR(p_last_name, 1, 7));
 add_employee(p_first_name, p_last_name, p_email, p_deptid =>
p_deptid);
 END;

 PROCEDURE get_employee(
 p_empid IN employees.employee_id%TYPE,
 p_sal OUT employees.salary%TYPE,
 p_job OUT employees.job_id%TYPE) IS
 BEGIN
 SELECT salary, job_id
 INTO p_sal, p_job
 FROM employees
 WHERE employee_id = p_empid;
 END get_employee;

/* New get_employee function declaration starts here */

FUNCTION get_employee(p_emp_id employees.employee_id%type)
 return employees%rowtype IS
 rec_emp employees%rowtype;
 BEGIN
 SELECT * INTO rec_emp
 FROM employees
 WHERE employee_id = p_emp_id;
 RETURN rec_emp;
 END;

 FUNCTION get_employee(p_family_name employees.last_name%type)
 return employees%rowtype IS
 rec_emp employees%rowtype;
 BEGIN
 SELECT * INTO rec_emp
 FROM employees
 WHERE last_name = p_family_name;
 RETURN rec_emp;

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 O

R
AC

LE
 C

O
R

PO
R

AT
IO

N
 u

se
 o

nl
y

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Practice 5: Working with Packages (continued)

Oracle Database 11g: Develop PL/SQL Program Units A - 52

 END;

/* New overloaded get_employee function declaration ends here */

END emp_pkg;
/
SHOW ERRORS

d) Click Run Script to re-create the package. Compile the package.

Click the Run Script (F5) icon on the SQL Worksheet toolbar to re-create
the package. The result is shown below:

To compile the package, right-click the package’s name in the Object
Navigator tree, and then select Compile from the shortcut menu. If you get a
warning message, that is all right and is meant for informational purposes
only.

e) Add a utility procedure PRINT_EMPLOYEE to the EMP_PKG package as
follows:

i) The procedure accepts an EMPLOYEES%ROWTYPE as a parameter.

ii) The procedure displays the following for an employee on one line, using the
DBMS_OUTPUT package:

- department_id

- employee_id
- first_name

- last_name

- job_id

- salary

Open the sol_05_02_e.sql file in the D:\labs\PLPU\solns folder, or
copy and paste the following code in the SQL Worksheet area. The newly
added code is highlighted in the following code box.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 O

R
AC

LE
 C

O
R

PO
R

AT
IO

N
 u

se
 o

nl
y

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Practice 5: Working with Packages (continued)

Oracle Database 11g: Develop PL/SQL Program Units A - 53

-- Package SPECIFICATION

CREATE OR REPLACE PACKAGE emp_pkg IS
 PROCEDURE add_employee(
 p_first_name employees.first_name%TYPE,
 p_last_name employees.last_name%TYPE,
 p_email employees.email%TYPE,
 p_job employees.job_id%TYPE DEFAULT 'SA_REP',
 p_mgr employees.manager_id%TYPE DEFAULT 145,
 p_sal employees.salary%TYPE DEFAULT 1000,
 p_comm employees.commission_pct%TYPE DEFAULT 0,
 p_deptid employees.department_id%TYPE DEFAULT 30);

 PROCEDURE add_employee(
 p_first_name employees.first_name%TYPE,
 p_last_name employees.last_name%TYPE,
 p_deptid employees.department_id%TYPE);

PROCEDURE get_employee(
 p_empid IN employees.employee_id%TYPE,
 p_sal OUT employees.salary%TYPE,
 p_job OUT employees.job_id%TYPE);

 FUNCTION get_employee(p_emp_id employees.employee_id%type)
 return employees%rowtype;

 FUNCTION get_employee(p_family_name
employees.last_name%type)
 return employees%rowtype;

/* New print_employee print_employee procedure spec */

PROCEDURE print_employee(p_rec_emp employees%rowtype);

END emp_pkg;
/
SHOW ERRORS

-- Package BODY

CREATE OR REPLACE PACKAGE BODY emp_pkg IS
 FUNCTION valid_deptid(p_deptid IN
departments.department_id%TYPE) RETURN BOOLEAN IS
 v_dummy PLS_INTEGER;
 BEGIN
 SELECT 1
 INTO v_dummy
 FROM departments
 WHERE department_id = p_deptid;
 RETURN TRUE;
 EXCEPTION

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 O

R
AC

LE
 C

O
R

PO
R

AT
IO

N
 u

se
 o

nl
y

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Practice 5: Working with Packages (continued)

Oracle Database 11g: Develop PL/SQL Program Units A - 54

 WHEN NO_DATA_FOUND THEN
 RETURN FALSE;
END valid_deptid;

 PROCEDURE add_employee(
 p_first_name employees.first_name%TYPE,
 p_last_name employees.last_name%TYPE,
 p_email employees.email%TYPE,
 p_job employees.job_id%TYPE DEFAULT 'SA_REP',
 p_mgr employees.manager_id%TYPE DEFAULT 145,
 p_sal employees.salary%TYPE DEFAULT 1000,
 p_comm employees.commission_pct%TYPE DEFAULT 0,
 p_deptid employees.department_id%TYPE DEFAULT 30) IS
 BEGIN
 IF valid_deptid(p_deptid) THEN
 INSERT INTO employees(employee_id, first_name,
last_name, email,
 job_id, manager_id, hire_date, salary, commission_pct,
department_id)
 VALUES (employees_seq.NEXTVAL, p_first_name,
p_last_name, p_email,
 p_job, p_mgr, TRUNC(SYSDATE), p_sal, p_comm,
p_deptid);
 ELSE
 RAISE_APPLICATION_ERROR (-20204, 'Invalid department ID.
Try again.');
 END IF;
 END add_employee;

 PROCEDURE add_employee(
 p_first_name employees.first_name%TYPE,
 p_last_name employees.last_name%TYPE,
 p_deptid employees.department_id%TYPE) IS
 p_email employees.email%type;
 BEGIN
 p_email := UPPER(SUBSTR(p_first_name, 1,
1)||SUBSTR(p_last_name, 1, 7));
 add_employee(p_first_name, p_last_name, p_email, p_deptid
=> p_deptid);
 END;

 PROCEDURE get_employee(
 p_empid IN employees.employee_id%TYPE,
 p_sal OUT employees.salary%TYPE,
 p_job OUT employees.job_id%TYPE) IS
 BEGIN
 SELECT salary, job_id
 INTO p_sal, p_job
 FROM employees
 WHERE employee_id = p_empid;
 END get_employee;

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 O

R
AC

LE
 C

O
R

PO
R

AT
IO

N
 u

se
 o

nl
y

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Practice 5: Working with Packages (continued)

Oracle Database 11g: Develop PL/SQL Program Units A - 55

FUNCTION get_employee(p_emp_id employees.employee_id%type)
 return employees%rowtype IS
 rec_emp employees%rowtype;
 BEGIN
 SELECT * INTO rec_emp
 FROM employees
 WHERE employee_id = p_emp_id;
 RETURN rec_emp;
 END;

 FUNCTION get_employee(p_family_name
employees.last_name%type)
 return employees%rowtype IS
 rec_emp employees%rowtype;
 BEGIN
 SELECT * INTO rec_emp
 FROM employees
 WHERE last_name = p_family_name;
 RETURN rec_emp;
 END;

/* New print_employees procedure declaration. */

PROCEDURE print_employee(p_rec_emp employees%rowtype) IS
 BEGIN
 DBMS_OUTPUT.PUT_LINE(p_rec_emp.department_id ||' '||
 p_rec_emp.employee_id||' '||
 p_rec_emp.first_name||' '||
 p_rec_emp.last_name||' '||
 p_rec_emp.job_id||' '||
 p_rec_emp.salary);
 END;

END emp_pkg;
/
SHOW ERRORS

f) Click Run Script (F5) to create the package. Compile the package.

Click the Run Script (F5) icon on the SQL Worksheet toolbar to re-create
the package.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 O

R
AC

LE
 C

O
R

PO
R

AT
IO

N
 u

se
 o

nl
y

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Practice 5: Working with Packages (continued)

Oracle Database 11g: Develop PL/SQL Program Units A - 56

To compile the package, right-click the package’s name in the Object
Navigator tree, and then select Compile from the shortcut menu.

g) Use an anonymous block to invoke the EMP_PKG.GET_EMPLOYEE function
with an employee ID of 100 and family name of 'Joplin'. Use the
PRINT_EMPLOYEE procedure to display the results for each row returned.

Open the sol_05_02_g.sql file in the D:\labs\PLPU\solns folder, or
copy and paste the following code in the SQL Worksheet area. Make sure
that SET SERVEROUTPUT ON is enabled by using the DBMS Output tab.

BEGIN
 emp_pkg.print_employee(emp_pkg.get_employee(100));
 emp_pkg.print_employee(emp_pkg.get_employee('Joplin'));
END;
/

3) Because the company does not frequently change its departmental data, you can
improve performance of your EMP_PKG by adding a public procedure,
INIT_DEPARTMENTS, to populate a private PL/SQL table of valid department IDs.
Modify the VALID_DEPTID function to use the private PL/SQL table contents to
validate department ID values.

Note: The sol_05_03.sql solution file script contains the code for steps a, b,
and c.

a) In the package specification, create a procedure called INIT_DEPARTMENTS
with no parameters by adding the following to the package specification section
before the PRINT_EMPLOYEES specification:

PROCEDURE init_departments;

b) In the package body, implement the INIT_DEPARTMENTS procedure to store all
department IDs in a private PL/SQL index-by table named
valid_departments containing BOOLEAN values.

i) Declare the valid_departments variable and its type definition
boolean_tab_type before all procedures in the body. Enter the following
at the beginning of the package body:

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 O

R
AC

LE
 C

O
R

PO
R

AT
IO

N
 u

se
 o

nl
y

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Practice 5: Working with Packages (continued)

Oracle Database 11g: Develop PL/SQL Program Units A - 57

 TYPE boolean_tab_type IS TABLE OF BOOLEAN
 INDEX BY BINARY_INTEGER;
 valid_departments boolean_tab_type;

ii) Use the department_id column value as the index to create the entry in
the index-by table to indicate its presence, and assign the entry a value of
TRUE. Enter the INIT_DEPARTMENTS procedure declaration at the end of
the package body (right after the print_employees procedure) as follows:

PROCEDURE init_departments IS
BEGIN
 FOR rec IN (SELECT department_id FROM departments)
 LOOP
 valid_departments(rec.department_id) := TRUE;
 END LOOP;
END;

c) In the body, create an initialization block that calls the INIT_DEPARTMENTS
procedure to initialize the table as follows:

BEGIN
 init_departments;
END;

Open the sol_05_03.sql file in the D:\labs\PLPU\solns folder, or
copy and paste the following code in the SQL Worksheet area. The newly
added code is highlighted in the following code box.

-- Package SPECIFICATION

CREATE OR REPLACE PACKAGE emp_pkg IS
 PROCEDURE add_employee(
 p_first_name employees.first_name%TYPE,
 p_last_name employees.last_name%TYPE,
 p_email employees.email%TYPE,
 p_job employees.job_id%TYPE DEFAULT 'SA_REP',
 p_mgr employees.manager_id%TYPE DEFAULT 145,
 p_sal employees.salary%TYPE DEFAULT 1000,
 p_comm employees.commission_pct%TYPE DEFAULT 0,
 p_deptid employees.department_id%TYPE DEFAULT 30);

 PROCEDURE add_employee(
 p_first_name employees.first_name%TYPE,
 p_last_name employees.last_name%TYPE,
 p_deptid employees.department_id%TYPE);

PROCEDURE get_employee(
 p_empid IN employees.employee_id%TYPE,
 p_sal OUT employees.salary%TYPE,
 p_job OUT employees.job_id%TYPE);

 FUNCTION get_employee(p_emp_id employees.employee_id%type)

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 O

R
AC

LE
 C

O
R

PO
R

AT
IO

N
 u

se
 o

nl
y

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Practice 5: Working with Packages (continued)

Oracle Database 11g: Develop PL/SQL Program Units A - 58

 return employees%rowtype;

 FUNCTION get_employee(p_family_name
employees.last_name%type)
 return employees%rowtype;

/* New procedure init_departments spec */

PROCEDURE init_departments;

PROCEDURE print_employee(p_rec_emp employees%rowtype);

END emp_pkg;
/
SHOW ERRORS

-- Package BODY

CREATE OR REPLACE PACKAGE BODY emp_pkg IS

/* New type */

TYPE boolean_tab_type IS TABLE OF BOOLEAN
 INDEX BY BINARY_INTEGER;
 valid_departments boolean_tab_type;

FUNCTION valid_deptid(p_deptid IN
departments.department_id%TYPE) RETURN BOOLEAN IS
 v_dummy PLS_INTEGER;
 BEGIN
 SELECT 1
 INTO v_dummy
 FROM departments
 WHERE department_id = p_deptid;
 RETURN TRUE;
 EXCEPTION
 WHEN NO_DATA_FOUND THEN
 RETURN FALSE;
END valid_deptid;

 PROCEDURE add_employee(
 p_first_name employees.first_name%TYPE,
 p_last_name employees.last_name%TYPE,
 p_email employees.email%TYPE,
 p_job employees.job_id%TYPE DEFAULT 'SA_REP',
 p_mgr employees.manager_id%TYPE DEFAULT 145,
 p_sal employees.salary%TYPE DEFAULT 1000,
 p_comm employees.commission_pct%TYPE DEFAULT 0,
 p_deptid employees.department_id%TYPE DEFAULT 30) IS
 BEGIN

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 O

R
AC

LE
 C

O
R

PO
R

AT
IO

N
 u

se
 o

nl
y

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Practice 5: Working with Packages (continued)

Oracle Database 11g: Develop PL/SQL Program Units A - 59

 IF valid_deptid(p_deptid) THEN

INSERT INTO employees(employee_id, first_name, last_name,
 email, job_id, manager_id, hire_date, salary,
 commission_pct, department_id)

 VALUES (employees_seq.NEXTVAL, p_first_name, p_last_name,
 p_email, p_job, p_mgr, TRUNC(SYSDATE), p_sal, p_comm,
 p_deptid);
 ELSE
 RAISE_APPLICATION_ERROR (-20204, 'Invalid department ID.
 Try again.');
 END IF;
 END add_employee;

 PROCEDURE add_employee(
 p_first_name employees.first_name%TYPE,
 p_last_name employees.last_name%TYPE,
 p_deptid employees.department_id%TYPE) IS
 p_email employees.email%type;
 BEGIN
 p_email := UPPER(SUBSTR(p_first_name, 1,
1)||SUBSTR(p_last_name, 1, 7));
 add_employee(p_first_name, p_last_name, p_email, p_deptid
=> p_deptid);
 END;

 PROCEDURE get_employee(
 p_empid IN employees.employee_id%TYPE,
 p_sal OUT employees.salary%TYPE,
 p_job OUT employees.job_id%TYPE) IS
 BEGIN
 SELECT salary, job_id
 INTO p_sal, p_job
 FROM employees
 WHERE employee_id = p_empid;
 END get_employee;

FUNCTION get_employee(p_emp_id employees.employee_id%type)
 return employees%rowtype IS
 rec_emp employees%rowtype;
 BEGIN
 SELECT * INTO rec_emp
 FROM employees
 WHERE employee_id = p_emp_id;
 RETURN rec_emp;
 END;

 FUNCTION get_employee(p_family_name
employees.last_name%type)
 return employees%rowtype IS
 rec_emp employees%rowtype;
 BEGIN

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 O

R
AC

LE
 C

O
R

PO
R

AT
IO

N
 u

se
 o

nl
y

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Practice 5: Working with Packages (continued)

Oracle Database 11g: Develop PL/SQL Program Units A - 60

 SELECT * INTO rec_emp
 FROM employees
 WHERE last_name = p_family_name;
 RETURN rec_emp;
 END;

PROCEDURE print_employee(p_rec_emp employees%rowtype) IS
 BEGIN
 DBMS_OUTPUT.PUT_LINE(p_rec_emp.department_id ||' '||
 P_rec_emp.employee_id||' '||
 P_rec_emp.first_name||' '||
 P_rec_emp.last_name||' '||
 P_rec_emp.job_id||' '||
 P_rec_emp.salary);
 END;

/* New init_departments procedure declaration. */

PROCEDURE init_departments IS
 BEGIN
 FOR rec IN (SELECT department_id FROM departments)
 LOOP
 valid_departments(rec.department_id) := TRUE;
 END LOOP;
 END;

/* call the new init_departments procedure. */

BEGIN
 init_departments;
END emp_pkg;

/
SHOW ERRORS

d) Click Run Script (F5) to create the package. Compile the package.

Click the Run Script (F5) icon on the SQL Worksheet toolbar to re-create
the package.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 O

R
AC

LE
 C

O
R

PO
R

AT
IO

N
 u

se
 o

nl
y

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Practice 5: Working with Packages (continued)

Oracle Database 11g: Develop PL/SQL Program Units A - 61

To compile the package, right-click the package’s name in the Object
Navigation tree, and then select Compile from the shortcut menu.

4) Change the VALID_DEPTID validation processing function to use the private
PL/SQL table of department IDs.

a) Modify the VALID_DEPTID function to perform its validation by using the
PL/SQL table of department ID values. Click Run Script (F5) to create the
package. Compile the package.

Open the sol_05_04_a.sql file in the D:\labs\PLPU\solns folder, or
copy and paste the following code in the SQL Worksheet area. The newly
added code is highlighted in the following code box.

-- Package SPECIFICATION

CREATE OR REPLACE PACKAGE emp_pkg IS
 PROCEDURE add_employee(
 p_first_name employees.first_name%TYPE,
 p_last_name employees.last_name%TYPE,
 p_email employees.email%TYPE,
 p_job employees.job_id%TYPE DEFAULT 'SA_REP',
 p_mgr employees.manager_id%TYPE DEFAULT 145,
 p_sal employees.salary%TYPE DEFAULT 1000,
 p_comm employees.commission_pct%TYPE DEFAULT 0,
 p_deptid employees.department_id%TYPE DEFAULT 30);

 PROCEDURE add_employee(
 p_first_name employees.first_name%TYPE,
 p_last_name employees.last_name%TYPE,
 p_deptid employees.department_id%TYPE);

 PROCEDURE get_employee(
 p_empid IN employees.employee_id%TYPE,
 p_sal OUT employees.salary%TYPE,
 p_job OUT employees.job_id%TYPE);

 FUNCTION get_employee(p_emp_id employees.employee_id%type)
 return employees%rowtype;

 FUNCTION get_employee(p_family_name
 employees.last_name%type)
 return employees%rowtype;

/* New procedure init_departments spec */

PROCEDURE init_departments;

PROCEDURE print_employee(p_rec_emp employees%rowtype);

END emp_pkg;

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 O

R
AC

LE
 C

O
R

PO
R

AT
IO

N
 u

se
 o

nl
y

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Practice 5: Working with Packages (continued)

Oracle Database 11g: Develop PL/SQL Program Units A - 62

/
SHOW ERRORS

-- Package BODY

CREATE OR REPLACE PACKAGE BODY emp_pkg IS

TYPE boolean_tab_type IS TABLE OF BOOLEAN
 INDEX BY BINARY_INTEGER;
valid_departments boolean_tab_type;

 FUNCTION valid_deptid(p_deptid IN
departments.department_id%TYPE) RETURN BOOLEAN IS
 v_dummy PLS_INTEGER;
 BEGIN
 RETURN valid_departments.exists(p_deptid);
 EXCEPTION
 WHEN NO_DATA_FOUND THEN
 RETURN FALSE;
END valid_deptid;

 PROCEDURE add_employee(
 p_first_name employees.first_name%TYPE,
 p_last_name employees.last_name%TYPE,
 p_email employees.email%TYPE,
 p_job employees.job_id%TYPE DEFAULT 'SA_REP',
 p_mgr employees.manager_id%TYPE DEFAULT 145,
 p_sal employees.salary%TYPE DEFAULT 1000,
 p_comm employees.commission_pct%TYPE DEFAULT 0,
 p_deptid employees.department_id%TYPE DEFAULT 30) IS
 BEGIN
 IF valid_deptid(p_deptid) THEN
 INSERT INTO employees(employee_id, first_name,
 last_name, email, job_id, manager_id, hire_date,
 salary, commission_pct, department_id)
 VALUES (employees_seq.NEXTVAL, p_first_name,
 p_last_name, p_email,
 p_job, p_mgr, TRUNC(SYSDATE), p_sal, p_comm,p_deptid);
 ELSE
 RAISE_APPLICATION_ERROR (-20204, 'Invalid department ID.
 Try again.');
 END IF;
 END add_employee;

 PROCEDURE add_employee(
 p_first_name employees.first_name%TYPE,
 p_last_name employees.last_name%TYPE,
 p_deptid employees.department_id%TYPE) IS
 p_email employees.email%type;
 BEGIN

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 O

R
AC

LE
 C

O
R

PO
R

AT
IO

N
 u

se
 o

nl
y

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Practice 5: Working with Packages (continued)

Oracle Database 11g: Develop PL/SQL Program Units A - 63

 p_email := UPPER(SUBSTR(p_first_name, 1,
1)||SUBSTR(p_last_name, 1, 7));
 add_employee(p_first_name, p_last_name, p_email, p_deptid
=> p_deptid);
 END;

 PROCEDURE get_employee(
 p_empid IN employees.employee_id%TYPE,
 p_sal OUT employees.salary%TYPE,
 p_job OUT employees.job_id%TYPE) IS
 BEGIN
 SELECT salary, job_id
 INTO p_sal, p_job
 FROM employees
 WHERE employee_id = p_empid;
 END get_employee;

FUNCTION get_employee(p_emp_id employees.employee_id%type)
 return employees%rowtype IS
 rec_emp employees%rowtype;
 BEGIN
 SELECT * INTO rec_emp
 FROM employees
 WHERE employee_id = p_emp_id;
 RETURN rec_emp;
 END;

 FUNCTION get_employee(p_family_name
employees.last_name%type)
 return employees%rowtype IS
 rec_emp employees%rowtype;
 BEGIN
 SELECT * INTO rec_emp
 FROM employees
 WHERE last_name = p_family_name;
 RETURN rec_emp;
 END;

PROCEDURE print_employee(p_rec_emp employees%rowtype) IS
 BEGIN
 DBMS_OUTPUT.PUT_LINE(p_rec_emp.department_id ||' '||
 p_rec_emp.employee_id||' '||
 p_rec_emp.first_name||' '||
 p_rec_emp.last_name||' '||
 p_rec_emp.job_id||' '||
 p_rec_emp.salary);
 END;

/* New init_departments procedure declaration. */

PROCEDURE init_departments IS
 BEGIN

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 O

R
AC

LE
 C

O
R

PO
R

AT
IO

N
 u

se
 o

nl
y

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Practice 5: Working with Packages (continued)

Oracle Database 11g: Develop PL/SQL Program Units A - 64

 FOR rec IN (SELECT department_id FROM departments)
 LOOP
 valid_departments(rec.department_id) := TRUE;
 END LOOP;
 END;

/* call the new init_departments procedure. */

BEGIN
 init_departments;
END emp_pkg;

/
SHOW ERRORS

b) Test your code by calling ADD_EMPLOYEE using the name James Bond in
department 15. What happens?

Open the sol_05_04_b.sql file in the D:\labs\PLPU\solns folder, or
copy and paste the following code in the SQL Worksheet area.

EXECUTE emp_pkg.add_employee('James', 'Bond', 15)

Click the Run Script (F5) icon on the SQL Worksheet toolbar to re-create
the package. The insert operation to add the employee fails with an exception
because department 15 does not exist.

c) Insert a new department. Specify 15 for the department ID and 'Security' for
the department name. Commit and verify the changes.

Open the sol_05_04_c.sql file in the D:\labs\PLPU\solns folder, or
copy and paste the following code in the SQL Worksheet area. The result is
shown below:

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 O

R
AC

LE
 C

O
R

PO
R

AT
IO

N
 u

se
 o

nl
y

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Practice 5: Working with Packages (continued)

Oracle Database 11g: Develop PL/SQL Program Units A - 65

INSERT INTO departments (department_id, department_name)
VALUES (15, 'Security');
COMMIT;

d) Test your code again, by calling ADD_EMPLOYEE using the name James Bond
in department 15. What happens?

Open the sol_05_04_d.sql file in the D:\labs\PLPU\solns folder, or
copy and paste the following code in the SQL Worksheet area. The result is
shown below:

EXECUTE emp_pkg.add_employee('James', 'Bond', 15)

The insert operation to add the employee fails with an exception. Department
15 does not exist as an entry in the PL/SQL index-by-table package state
variable.

e) Execute the EMP_PKG.INIT_DEPARTMENTS procedure to update the internal
PL/SQL table with the latest departmental data.

Open the sol_05_04_e.sql file in the D:\labs\PLPU\solns folder, or
copy and paste the following code in the SQL Worksheet area. The result is
shown below:

EXECUTE EMP_PKG.INIT_DEPARTMENTS

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 O

R
AC

LE
 C

O
R

PO
R

AT
IO

N
 u

se
 o

nl
y

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Practice 5: Working with Packages (continued)

Oracle Database 11g: Develop PL/SQL Program Units A - 66

f) Test your code by calling ADD_EMPLOYEE using the employee name James
Bond, who works in department 15. What happens?

Open the sol_05_04_f.sql file in the D:\labs\PLPU\solns folder, or
copy and paste the following code in the SQL Worksheet area. The result is
shown below.

EXECUTE emp_pkg.add_employee('James', 'Bond', 15)

The row is finally inserted because the department 15 record exists in the
database and the package’s PL/SQL index-by table, due to invoking
EMP_PKG.INIT_DEPARTMENTS, which refreshes the package state data.

g) Delete employee James Bond and department 15 from their respective tables,
commit the changes, and refresh the department data by invoking the
EMP_PKG.INIT_DEPARTMENTS procedure.

Open the sol_05_04_g.sql file in the D:\labs\PLPU\solns folder, or
copy and paste the following code in the SQL Worksheet area. The result is
shown below.

DELETE FROM employees
WHERE first_name = 'James' AND last_name = 'Bond';
DELETE FROM departments WHERE department_id = 15;
COMMIT;
EXECUTE EMP_PKG.INIT_DEPARTMENTS

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 O

R
AC

LE
 C

O
R

PO
R

AT
IO

N
 u

se
 o

nl
y

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Practice 5: Working with Packages (continued)

Oracle Database 11g: Develop PL/SQL Program Units A - 67

5) Reorganize the subprograms in the package specification and the body so that they
are in alphabetical sequence.

a) Edit the package specification and reorganize subprograms alphabetically. Click
Run Script to re-create the package specification. Compile the package
specification. What happens?

Open the sol_05_05_a.sql file in the D:\labs\PLPU\solns folder, or
copy and paste the following code in the SQL Worksheet area. Click the Run
Script (F5) icon on the SQL Worksheet toolbar to re-create the package. The
result is shown below. The package’s specification subprograms are already
in an alphabetical order. To compile the package, right-click the package’s
name in the Object Navigation tree, and then select Compile.

CREATE OR REPLACE PACKAGE emp_pkg IS

/* the package spec is already in an alphabetical order. */

 PROCEDURE add_employee(
 p_first_name employees.first_name%TYPE,
 p_last_name employees.last_name%TYPE,
 p_email employees.email%TYPE,
 p_job employees.job_id%TYPE DEFAULT 'SA_REP',
 p_mgr employees.manager_id%TYPE DEFAULT 145,
 p_sal employees.salary%TYPE DEFAULT 1000,
 p_comm employees.commission_pct%TYPE DEFAULT 0,
 p_deptid employees.department_id%TYPE DEFAULT 30);

 PROCEDURE add_employee(
 p_first_name employees.first_name%TYPE,
 p_last_name employees.last_name%TYPE,
 p_deptid employees.department_id%TYPE);

 PROCEDURE get_employee(
 p_empid IN employees.employee_id%TYPE,
 p_sal OUT employees.salary%TYPE,
 p_job OUT employees.job_id%TYPE);

 FUNCTION get_employee(p_emp_id
employees.employee_id%type)
 return employees%rowtype;

 FUNCTION get_employee(p_family_name
employees.last_name%type)
 return employees%rowtype;

PROCEDURE init_departments;

PROCEDURE print_employee(p_rec_emp employees%rowtype);

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 O

R
AC

LE
 C

O
R

PO
R

AT
IO

N
 u

se
 o

nl
y

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Practice 5: Working with Packages (continued)

Oracle Database 11g: Develop PL/SQL Program Units A - 68

END emp_pkg;
/
SHOW ERRORS

b) Edit the package body and reorganize all subprograms alphabetically. Click Run
Script to re-create the package specification. Re-compile the package
specification. What happens?

Open the sol_05_05_b.sql file in the D:\labs\PLPU\solns folder, or
copy and paste the following code in the SQL Worksheet area. Click the Run
Script (F5) icon on the SQL Worksheet toolbar to re-create the package. The
result is shown below. To compile the package, right-click the package’s
name in the Object Navigation tree, and then select Compile.

-- Package BODY
CREATE OR REPLACE PACKAGE BODY emp_pkg IS
 TYPE boolean_tab_type IS TABLE OF BOOLEAN
 INDEX BY BINARY_INTEGER;
 valid_departments boolean_tab_type;

 PROCEDURE add_employee(
 p_first_name employees.first_name%TYPE,
 p_last_name employees.last_name%TYPE,
 p_email employees.email%TYPE,
 p_job employees.job_id%TYPE DEFAULT 'SA_REP',
 p_mgr employees.manager_id%TYPE DEFAULT 145,
 p_sal employees.salary%TYPE DEFAULT 1000,
 p_comm employees.commission_pct%TYPE DEFAULT 0,
 p_deptid employees.department_id%TYPE DEFAULT 30) IS
 BEGIN
 IF valid_deptid(p_deptid) THEN
 INSERT INTO employees(employee_id, first_name,
last_name, email,
 job_id, manager_id, hire_date, salary,
commission_pct, department_id)
 VALUES (employees_seq.NEXTVAL, p_first_name,
p_last_name, p_email,

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 O

R
AC

LE
 C

O
R

PO
R

AT
IO

N
 u

se
 o

nl
y

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Practice 5: Working with Packages (continued)

Oracle Database 11g: Develop PL/SQL Program Units A - 69

 p_job, p_mgr, TRUNC(SYSDATE), p_sal, p_comm,
p_deptid);
 ELSE
 RAISE_APPLICATION_ERROR (-20204, 'Invalid department
ID. Try again.');
 END IF;
 END add_employee;

PROCEDURE add_employee(
 p_first_name employees.first_name%TYPE,
 p_last_name employees.last_name%TYPE,
 p_deptid employees.department_id%TYPE) IS
 p_email employees.email%type;
 BEGIN
 p_email := UPPER(SUBSTR(p_first_name, 1,
1)||SUBSTR(p_last_name, 1, 7));
 add_employee(p_first_name, p_last_name, p_email,
p_deptid => p_deptid);
 END;

 PROCEDURE get_employee(
 p_empid IN employees.employee_id%TYPE,
 p_sal OUT employees.salary%TYPE,
 p_job OUT employees.job_id%TYPE) IS
 BEGIN
 SELECT salary, job_id
 INTO p_sal, p_job
 FROM employees
 WHERE employee_id = p_empid;
 END get_employee;

 FUNCTION get_employee(p_emp_id
employees.employee_id%type)
 return employees%rowtype IS
 rec_emp employees%rowtype;
 BEGIN
 SELECT * INTO rec_emp
 FROM employees
 WHERE employee_id = p_emp_id;
 RETURN rec_emp;
 END;

 FUNCTION get_employee(p_family_name
employees.last_name%type)
 return employees%rowtype IS
 rec_emp employees%rowtype;
 BEGIN
 SELECT * INTO rec_emp
 FROM employees
 WHERE last_name = p_family_name;
 RETURN rec_emp;
 END;

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 O

R
AC

LE
 C

O
R

PO
R

AT
IO

N
 u

se
 o

nl
y

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Practice 5: Working with Packages (continued)

Oracle Database 11g: Develop PL/SQL Program Units A - 70

 PROCEDURE init_departments IS
 BEGIN
 FOR rec IN (SELECT department_id FROM departments)
 LOOP
 valid_departments(rec.department_id) := TRUE;
 END LOOP;
 END;

 PROCEDURE print_employee(p_rec_emp employees%rowtype) IS
 BEGIN
 DBMS_OUTPUT.PUT_LINE(p_rec_emp.department_id ||' '||
 p_rec_emp.employee_id||' '||
 p_rec_emp.first_name||' '||
 p_rec_emp.last_name||' '||
 p_rec_emp.job_id||' '||
 p_rec_emp.salary);
 END;

 FUNCTION valid_deptid(p_deptid IN
departments.department_id%TYPE) RETURN BOOLEAN IS
 v_dummy PLS_INTEGER;
 BEGIN
 RETURN valid_departments.exists(p_deptid);
 EXCEPTION
 WHEN NO_DATA_FOUND THEN
 RETURN FALSE;
END valid_deptid;

BEGIN
 init_departments;
END emp_pkg;

/
SHOW ERRORS

The package does not compile successfully because the VALID_DEPTID
function is referenced before it is declared.

c) Correct the compilation error using a forward declaration in the body for the
appropriate subprogram reference. Click Run Script to re-create the package, and
then recompile the package. What happens?

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 O

R
AC

LE
 C

O
R

PO
R

AT
IO

N
 u

se
 o

nl
y

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Practice 5: Working with Packages (continued)

Oracle Database 11g: Develop PL/SQL Program Units A - 71

Open the sol_05_05_c.sql file in the D:\labs\PLPU\solns folder, or
copy and paste the following code in the SQL Worksheet area. The function’s
forward declaration is highlighted in the code box below. Click the Run
Script (F5) icon on the SQL Worksheet toolbar to re-create the package. The
result is shown below. To compile the package, right-click the package’s
name in the Object Navigation tree, and then select Compile.

-- Package BODY

CREATE OR REPLACE PACKAGE BODY emp_pkg IS
 TYPE boolean_tab_type IS TABLE OF BOOLEAN
 INDEX BY BINARY_INTEGER;
 valid_departments boolean_tab_type;

/* forward declaration of valid_deptid */

 FUNCTION valid_deptid(p_deptid IN
 departments.department_id%TYPE)
 RETURN BOOLEAN;

 PROCEDURE add_employee(
 p_first_name employees.first_name%TYPE,
 p_last_name employees.last_name%TYPE,
 p_email employees.email%TYPE,
 p_job employees.job_id%TYPE DEFAULT 'SA_REP',
 p_mgr employees.manager_id%TYPE DEFAULT 145,
 p_sal employees.salary%TYPE DEFAULT 1000,
 p_comm employees.commission_pct%TYPE DEFAULT 0,
 p_deptid employees.department_id%TYPE DEFAULT 30) IS
 BEGIN
 IF valid_deptid(p_deptid) THEN /* valid_deptid function
referneced */
 INSERT INTO employees(employee_id, first_name,
last_name, email,
 job_id, manager_id, hire_date, salary, commission_pct,
department_id)
 VALUES (employees_seq.NEXTVAL, p_first_name,
p_last_name, p_email,
 p_job, p_mgr, TRUNC(SYSDATE), p_sal, p_comm,
p_deptid);
 ELSE
 RAISE_APPLICATION_ERROR (-20204, 'Invalid department ID.
Try again.');
 END IF;
 END add_employee;

 PROCEDURE add_employee(
 p_first_name employees.first_name%TYPE,
 p_last_name employees.last_name%TYPE,
 p_deptid employees.department_id%TYPE) IS
 p_email employees.email%type;

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 O

R
AC

LE
 C

O
R

PO
R

AT
IO

N
 u

se
 o

nl
y

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Practice 5: Working with Packages (continued)

Oracle Database 11g: Develop PL/SQL Program Units A - 72

 BEGIN
 p_email := UPPER(SUBSTR(p_first_name, 1,
1)||SUBSTR(p_last_name, 1, 7));
 add_employee(p_first_name, p_last_name, p_email, p_deptid
=> p_deptid);
 END;

 PROCEDURE get_employee(
 p_empid IN employees.employee_id%TYPE,
 p_sal OUT employees.salary%TYPE,
 p_job OUT employees.job_id%TYPE) IS
 BEGIN
 SELECT salary, job_id
 INTO p_sal, p_job
 FROM employees
 WHERE employee_id = p_empid;
 END get_employee;

FUNCTION get_employee(p_emp_id employees.employee_id%type)
 return employees%rowtype IS
 rec_emp employees%rowtype;
 BEGIN
 SELECT * INTO rec_emp
 FROM employees
 WHERE employee_id = p_emp_id;
 RETURN rec_emp;
 END;

 FUNCTION get_employee(p_family_name
employees.last_name%type)
 return employees%rowtype IS
 rec_emp employees%rowtype;
 BEGIN
 SELECT * INTO rec_emp
 FROM employees
 WHERE last_name = p_family_name;
 RETURN rec_emp;
 END;

/* New alphabetical location of function init_departments. */

PROCEDURE init_departments IS
 BEGIN
 FOR rec IN (SELECT department_id FROM departments)
 LOOP
 valid_departments(rec.department_id) := TRUE;
 END LOOP;
 END;

PROCEDURE print_employee(p_rec_emp employees%rowtype) IS
 BEGIN
 DBMS_OUTPUT.PUT_LINE(p_rec_emp.department_id ||' '||

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 O

R
AC

LE
 C

O
R

PO
R

AT
IO

N
 u

se
 o

nl
y

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Practice 5: Working with Packages (continued)

Oracle Database 11g: Develop PL/SQL Program Units A - 73

 p_rec_emp.employee_id||' '||
 p_rec_emp.first_name||' '||
 p_rec_emp.last_name||' '||
 p_rec_emp.job_id||' '||
 p_rec_emp.salary);
 END;

/* New alphabetical location of function valid_deptid. */

FUNCTION valid_deptid(p_deptid IN
departments.department_id%TYPE) RETURN BOOLEAN IS
 v_dummy PLS_INTEGER;
 BEGIN
 RETURN valid_departments.exists(p_deptid);
 EXCEPTION
 WHEN NO_DATA_FOUND THEN
 RETURN FALSE;
END valid_deptid;

BEGIN
 init_departments;
END emp_pkg;

/
SHOW ERRORS

A forward declaration for the VALID_DEPTID function enables the package
body to compile successfully as shown below:

To compile the package, click the package’s name in the Object Navigation tree,
and then select Compile from the pop-up menu.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 O

R
AC

LE
 C

O
R

PO
R

AT
IO

N
 u

se
 o

nl
y

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Oracle Database 11g: Develop PL/SQL Program Units A - 74

Practices for Lesson 6

Practice 6: Using the UTL_FILE Package
In this practice, you use the UTL_FILE package to generate a text file report of
employees in each department.

1) Create a procedure called EMPLOYEE_REPORT that generates an employee report in
a file in the operating system, using the UTL_FILE package. The report should
generate a list of employees who have exceeded the average salary of their
departments.

a) Your program should accept two parameters. The first parameter is the output
directory. The second parameter is the name of the text file that is written.

Note: Use the directory location value UTL_FILE. Add an exception-handling
section to handle errors that may be encountered when using the UTL_FILE
package.

Open the sol_06_01_a.sql file in the D:\labs\PLPU\solns folder, or
copy and paste the following code in the SQL Worksheet area. Click the Run
Script (F5) icon on the SQL Worksheet toolbar to re-create the procedure.
The result is shown below. To compile the procedure, right-click the
procedure’s name in the Object Navigation tree, and then select Compile.

-- Verify with your instructor that the database initSID.ora
-- file has the directory path you are going to use with this
-- procedure.
-- For example, there should be an entry such as:
-- UTL_FILE_DIR = /home1/teachX/UTL_FILE in your initSID.ora
-- (or the SPFILE)
-- HOWEVER: The course has a directory alias provided called
-- "UTL_FILE" that is associated with an appropriate
-- directory. Use the directory alias name in quotes for the
-- first parameter to create a file in the appropriate
-- directory.

CREATE OR REPLACE PROCEDURE employee_report(
 p_dir IN VARCHAR2, p_filename IN VARCHAR2) IS
 f UTL_FILE.FILE_TYPE;
 CURSOR cur_avg IS
 SELECT last_name, department_id, salary
 FROM employees outer
 WHERE salary > (SELECT AVG(salary)
 FROM employees inner
 GROUP BY outer.department_id)
 ORDER BY department_id;
BEGIN
 f := UTL_FILE.FOPEN(p_dir, p_filename,'W');

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 O

R
AC

LE
 C

O
R

PO
R

AT
IO

N
 u

se
 o

nl
y

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Practice 6: Using the UTL_FILE Package (continued)

Oracle Database 11g: Develop PL/SQL Program Units A - 75

 UTL_FILE.PUT_LINE(f, 'Employees who earn more than average
 salary: ');
 UTL_FILE.PUT_LINE(f, 'REPORT GENERATED ON ' ||SYSDATE);
 UTL_FILE.NEW_LINE(f);
 FOR emp IN cur_avg
 LOOP

 UTL_FILE.PUT_LINE(f,
 RPAD(emp.last_name, 30) || ' ' ||
 LPAD(NVL(TO_CHAR(emp.department_id,'9999'),'-'), 5) || ' '
||
 LPAD(TO_CHAR(emp.salary, '$99,999.00'), 12));
 END LOOP;
 UTL_FILE.NEW_LINE(f);
 UTL_FILE.PUT_LINE(f, '*** END OF REPORT ***');
 UTL_FILE.FCLOSE(f);
END employee_report;
/

b) Click Run Script (F5) to create the procedure. Compile the procedure.

Click the Run Script (F5) icon on the SQL Worksheet toolbar to create the
procedure.

To compile the procedure, right-click the procedure’s name in the Object
Navigator tree, and then select Compile from the shortcut menu.

2) Invoke the program, using the second parameter with a name such as
sal_rptxx.txt, where xx represents your user number (for example, 61, 62, …,
80, and so on).

Open the sol_06_02.sql file in the D:\labs\PLPU\solns folder, or copy
and paste the following code in the SQL Worksheet area. Click the Run Script
(F5) icon on the SQL Worksheet toolbar to execute the procedure. The result is
shown below. To compile the procedure, right-click the package’s name in the
Object Navigation tree, and then select Compile from the shortcut menu.

-- For example, if you are student ora61, use 61 as a prefix

EXECUTE employee_report('UTL_FILE','sal_rpt61.txt')

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 O

R
AC

LE
 C

O
R

PO
R

AT
IO

N
 u

se
 o

nl
y

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Practice 6: Using the UTL_FILE Package (continued)

Oracle Database 11g: Develop PL/SQL Program Units A - 76

3) Transfer the generated output text file from the host to your desktop client as follows:

a) Double-click the Putty-SFTP icon on your desktop. The Putty SFTP command
window is displayed.

b) At the psftp> prompt, enter the following command substituting the host_name
with the host name provided to you by your instructor:

open host_name

For example, if you are connecting to a host named vx0114.us.oracle.com,
enter the following at the prompt:

open vx0114.us.oracle.com

c) Enter oracle as both your username and password.

Note: After you enter the username, if you get a message about the host key
not being cached in as shown in the following screen capture, enter y at the
following prompt: “Store key in cache? <y/n>_”

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 O

R
AC

LE
 C

O
R

PO
R

AT
IO

N
 u

se
 o

nl
y

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Practice 6: Using the UTL_FILE Package (continued)

Oracle Database 11g: Develop PL/SQL Program Units A - 77

d) To display the list of folders and files in the current directory, issue the ls
command.

e) Change your directory to UTL_FILE using the cd UTL_FILE command as
follows: O

ra
cl

e
U

ni
ve

rs
ity

 a
nd

 O
R

AC
LE

 C
O

R
PO

R
AT

IO
N

 u
se

 o
nl

y

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Practice 6: Using the UTL_FILE Package (continued)

Oracle Database 11g: Develop PL/SQL Program Units A - 78

f) List the contents of the current directory using the ls command as follows:

Note the generated output file, sal_rpt61.txt (your file will have a
different prefixed number that corresponds to your db account #).

g) Transfer the output file from the host to your client machine by issuing the
following command:

get sal_rpt61.txt

h) Exit Putty-SFTP by entering bye at the command line or by clicking the close
control on title bar.

i) Open the transferred file, such as sal_rpt61.txt, which you can find in the
D:\Other\putty folder using WordPad. The report is displayed as follows:

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 O

R
AC

LE
 C

O
R

PO
R

AT
IO

N
 u

se
 o

nl
y

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Practice 6: Using the UTL_FILE Package (continued)

Oracle Database 11g: Develop PL/SQL Program Units A - 79

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 O

R
AC

LE
 C

O
R

PO
R

AT
IO

N
 u

se
 o

nl
y

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Oracle Database 11g: Develop PL/SQL Program Units A - 80

Practices for Lesson 7

Practice 7: Using Native Dynamic SQL
In this practice, you create a package that uses Native Dynamic SQL to create or drop a
table, and to populate, modify, and delete rows from the table. In addition, you create a
package that compiles the PL/SQL code in your schema, either all the PL/SQL code or
only code that has an INVALID status in the USER_OBJECTS table....

1) Create a package called TABLE_PKG that uses Native Dynamic SQL to create or
drop a table, and to populate, modify, and delete rows from the table. The
subprograms should manage optional default parameters with NULL values.

a) Create a package specification with the following procedures:

PROCEDURE make(p_table_name VARCHAR2, p_col_specs VARCHAR2)
PROCEDURE add_row(p_table_name VARCHAR2, p_col_values
 VARCHAR2, p_cols VARCHAR2 := NULL)
PROCEDURE upd_row(p_table_name VARCHAR2, p_set_values
 VARCHAR2, p_conditions VARCHAR2 := NULL)
PROCEDURE del_row(p_table_name VARCHAR2,
 p_conditions VARCHAR2 := NULL);
PROCEDURE remove(p_table_name VARCHAR2)

Open the sol_07_01_a.sql file in the D:\labs\PLPU\solns folder, or
copy and paste the following code in the SQL Worksheet area. Click the Run
Script (F5) icon on the SQL Worksheet toolbar to create the package
specification. The result is shown below. To compile the package’s
specification, right-click the package’s name in the Object Navigation tree,
and then select Compile.

CREATE OR REPLACE PACKAGE table_pkg IS
 PROCEDURE make(p_table_name VARCHAR2, p_col_specs
 VARCHAR2);
 PROCEDURE add_row(p_table_name VARCHAR2, p_col_values
 VARCHAR2, p_cols VARCHAR2 := NULL);
 PROCEDURE upd_row(p_table_name VARCHAR2, p_set_values
 VARCHAR2, p_conditions VARCHAR2 := NULL);
 PROCEDURE del_row(p_table_name VARCHAR2, p_conditions
 VARCHAR2 := NULL);
 PROCEDURE remove(p_table_name VARCHAR2);
END table_pkg;
/
SHOW ERRORS

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 O

R
AC

LE
 C

O
R

PO
R

AT
IO

N
 u

se
 o

nl
y

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Practice 7: Using Native Dynamic SQL (continued)

Oracle Database 11g: Develop PL/SQL Program Units A - 81

b) Create the package body that accepts the parameters and dynamically constructs
the appropriate SQL statements that are executed using Native Dynamic SQL,
except for the remove procedure. This procedure should be written using the
DBMS_SQL package.

Open the sol_07_01_b.sql file in the D:\labs\PLPU\solns folder, or
copy and paste the following code in the SQL Worksheet area. Click the Run
Script (F5) icon on the SQL Worksheet toolbar to create the package
specification. The result is shown below. To compile the package’s
specification, right-click the package’s name in the Object Navigation tree,
and then select Compile.

CREATE OR REPLACE PACKAGE BODY table_pkg IS
 PROCEDURE execute(p_stmt VARCHAR2) IS
 BEGIN
 DBMS_OUTPUT.PUT_LINE(p_stmt);
 EXECUTE IMMEDIATE p_stmt;
 END;

 PROCEDURE make(p_table_name VARCHAR2, p_col_specs VARCHAR2)
 IS
 v_stmt VARCHAR2(200) := 'CREATE TABLE '|| p_table_name ||
 ' (' || p_col_specs || ')';
 BEGIN
 execute(v_stmt);
 END;

 PROCEDURE add_row(p_table_name VARCHAR2, p_col_values
 VARCHAR2, p_cols VARCHAR2 := NULL) IS
 v_stmt VARCHAR2(200) := 'INSERT INTO '|| p_table_name;
 BEGIN
 IF p_cols IS NOT NULL THEN
 v_stmt := v_stmt || ' (' || p_cols || ')';
 END IF;
 v_stmt := v_stmt || ' VALUES (' || p_col_values || ')';
 execute(v_stmt);
 END;

 PROCEDURE upd_row(p_table_name VARCHAR2, p_set_values
 VARCHAR2, p_conditions VARCHAR2 := NULL) IS

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 O

R
AC

LE
 C

O
R

PO
R

AT
IO

N
 u

se
 o

nl
y

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Practice 7: Using Native Dynamic SQL (continued)

Oracle Database 11g: Develop PL/SQL Program Units A - 82

 v_stmt VARCHAR2(200) := 'UPDATE '|| p_table_name || ' SET '
|| p_set_values;
 BEGIN
 IF p_conditions IS NOT NULL THEN
 v_stmt := v_stmt || ' WHERE ' || p_conditions;
 END IF;
 execute(v_stmt);
 END;

 PROCEDURE del_row(p_table_name VARCHAR2, p_conditions
 VARCHAR2 := NULL) IS
 v_stmt VARCHAR2(200) := 'DELETE FROM '|| p_table_name;
 BEGIN
 IF p_conditions IS NOT NULL THEN
 v_stmt := v_stmt || ' WHERE ' || p_conditions;
 END IF;
 execute(v_stmt);
 END;

 PROCEDURE remove(p_table_name VARCHAR2) IS
 cur_id INTEGER;
 v_stmt VARCHAR2(100) := 'DROP TABLE '||p_table_name;
 BEGIN
 cur_id := DBMS_SQL.OPEN_CURSOR;
 DBMS_OUTPUT.PUT_LINE(v_stmt);
 DBMS_SQL.PARSE(cur_id, v_stmt, DBMS_SQL.NATIVE);
 -- Parse executes DDL statements,no EXECUTE is required.
 DBMS_SQL.CLOSE_CURSOR(cur_id);
 END;

END table_pkg;
/
SHOW ERRORS

c) Execute the MAKE package procedure to create a table as follows:

make('my_contacts', 'id number(4), name
varchar2(40)');

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 O

R
AC

LE
 C

O
R

PO
R

AT
IO

N
 u

se
 o

nl
y

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Practice 7: Using Native Dynamic SQL (continued)

Oracle Database 11g: Develop PL/SQL Program Units A - 83

Open the sol_07_01_c.sql file in the D:\labs\PLPU\solns folder, or
copy and paste the following code in the SQL Worksheet area. Click the Run
Script (F5) icon on the SQL Worksheet toolbar to create the package
specification. The code and the results are shown below. To compile the
package’s specification, right-click the package’s name in the Object
Navigation tree, and then select Compile.

EXECUTE table_pkg.make('my_contacts', 'id number(4), name
varchar2(40)')

d) Describe the MY_CONTACTS table structure.

The code and the results are shown below.

e) Execute the ADD_ROW package procedure to add the following rows:

add_row('my_contacts','1,''Lauran Serhal''','id, name');
add_row('my_contacts','2,''Nancy''','id, name');
add_row('my_contacts','3,''Sunitha Patel''','id,name');
add_row('my_contacts','4,''Valli Pataballa''','id,name');

Open the sol_07_01_e.sql file in the D:\labs\PLPU\solns folder, or
copy and paste the following code in the SQL Worksheet area. Click the Run
Script (F5) icon on the SQL Worksheet toolbar to execute the script. The
result is shown below. To compile the package’s specification, right-click the
package’s name in the Object Navigation tree, and then select Compile.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 O

R
AC

LE
 C

O
R

PO
R

AT
IO

N
 u

se
 o

nl
y

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Practice 7: Using Native Dynamic SQL (continued)

Oracle Database 11g: Develop PL/SQL Program Units A - 84

f) Query the MY_CONTACTS table contents to verify the additions.

The code and result are shown below.

g) Execute the DEL_ROW package procedure to delete a contact with ID value 3.

The code and result are shown below.
O

ra
cl

e
U

ni
ve

rs
ity

 a
nd

 O
R

AC
LE

 C
O

R
PO

R
AT

IO
N

 u
se

 o
nl

y

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Practice 7: Using Native Dynamic SQL (continued)

Oracle Database 11g: Develop PL/SQL Program Units A - 85

h) Execute the UPD_ROW procedure with the following row data:

upd_row('my_contacts','name=''Nancy Greenberg''','id=2');

The code and result are shown below.

i) Query the MY_CONTACTS table contents to verify the changes.

The code and result are shown below.
O

ra
cl

e
U

ni
ve

rs
ity

 a
nd

 O
R

AC
LE

 C
O

R
PO

R
AT

IO
N

 u
se

 o
nl

y

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Practice 7: Using Native Dynamic SQL (continued)

Oracle Database 11g: Develop PL/SQL Program Units A - 86

j) Drop the table by using the remove procedure and describe the MY_CONTACTS
table.

The code and result are shown below.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 O

R
AC

LE
 C

O
R

PO
R

AT
IO

N
 u

se
 o

nl
y

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Practice 7: Using Native Dynamic SQL (continued)

Oracle Database 11g: Develop PL/SQL Program Units A - 87

2) Create a COMPILE_PKG package that compiles the PL/SQL code in your schema.

a) In the specification, create a package procedure called MAKE that accepts the
name of a PL/SQL program unit to be compiled.

Open the sol_07_02_a.sql file in the D:\labs\PLPU\solns folder, or
copy and paste the following code in the SQL Worksheet area. Click the Run
Script (F5) icon on the SQL Worksheet toolbar to create the package
specification. The code and the results are shown below. To compile the
package’s specification, right-click the package’s name in the Object
Navigation tree, and then select Compile.

CREATE OR REPLACE PACKAGE compile_pkg IS
 PROCEDURE make(p_name VARCHAR2);
END compile_pkg;
/
SHOW ERRORS

b) In the package body, include the following:

i) The EXECUTE procedure used in the TABLE_PKG procedure in step 1 of this
practice.

ii) A private function named GET_TYPE to determine the PL/SQL object type
from the data dictionary.

- The function returns the type name (use PACKAGE for a package with a
body) if the object exists; otherwise, it should return a NULL.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 O

R
AC

LE
 C

O
R

PO
R

AT
IO

N
 u

se
 o

nl
y

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Practice 7: Using Native Dynamic SQL (continued)

Oracle Database 11g: Develop PL/SQL Program Units A - 88

- In the WHERE clause condition, add the following to the condition to
ensure that only one row is returned if the name represents a PACKAGE,
which may also have a PACKAGE BODY. In this case, you can only
compile the complete package, but not the specification or body as
separate components:
 rownum = 1

iii) Create the MAKE procedure by using the following information:

- The MAKE procedure accepts one argument, name, which represents the
object name.

- The MAKE procedure should call the GET_TYPE function. If the object
exists, MAKE dynamically compiles it with the ALTER statement.

Open the sol_07_02_b.sql file in the D:\labs\PLPU\solns folder, or
copy and paste the following code in the SQL Worksheet area. Click the Run
Script (F5) icon on the SQL Worksheet toolbar to create the package body.
The code and the results are shown below. To compile the package’s body,
right-click the package’s name or body in the Object Navigation tree, and
then select Compile.

CREATE OR REPLACE PACKAGE BODY compile_pkg IS

 PROCEDURE execute(p_stmt VARCHAR2) IS
 BEGIN
 DBMS_OUTPUT.PUT_LINE(p_stmt);
 EXECUTE IMMEDIATE p_stmt;
 END;

 FUNCTION get_type(p_name VARCHAR2) RETURN VARCHAR2 IS
 v_proc_type VARCHAR2(30) := NULL;
 BEGIN
 /*
 * The ROWNUM = 1 is added to the condition
 * to ensure only one row is returned if the
 * name represents a PACKAGE, which may also
 * have a PACKAGE BODY. In this case, we can
 * only compile the complete package, but not
 * the specification or body as separate
 * components.
 */
 SELECT object_type INTO v_proc_type
 FROM user_objects
 WHERE object_name = UPPER(p_name)
 AND ROWNUM = 1;
 RETURN v_proc_type;
 EXCEPTION
 WHEN NO_DATA_FOUND THEN
 RETURN NULL;
 END;

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 O

R
AC

LE
 C

O
R

PO
R

AT
IO

N
 u

se
 o

nl
y

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Practice 7: Using Native Dynamic SQL (continued)

Oracle Database 11g: Develop PL/SQL Program Units A - 89

 PROCEDURE make(p_name VARCHAR2) IS
 v_stmt VARCHAR2(100);
 v_proc_type VARCHAR2(30) := get_type(p_name);
 BEGIN
 IF v_proc_type IS NOT NULL THEN
 v_stmt := 'ALTER '|| v_proc_type ||' '|| p_name ||'
COMPILE';
 execute(v_stmt);
 ELSE
 RAISE_APPLICATION_ERROR(-20001,
 'Subprogram '''|| p_name ||''' does not exist');
 END IF;
 END make;
END compile_pkg;
/
SHOW ERRORS

c) Use the COMPILE_PKG.MAKE procedure to compile the following:

i) The EMPLOYEE_REPORT procedure

ii) The EMP_PKG package

iii) A nonexistent object called EMP_DATA

Open the sol_07_02_c.sql file in the D:\labs\PLPU\solns folder, or
copy and paste the following code in the SQL Worksheet area. Click the Run
Script (F5) icon on the SQL Worksheet toolbar to execute the package’s
procedure. The code and the results are shown below.

EXECUTE compile_pkg.make('employee_report')
EXECUTE compile_pkg.make('emp_pkg')
EXECUTE compile_pkg.make('emp_data')

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 O

R
AC

LE
 C

O
R

PO
R

AT
IO

N
 u

se
 o

nl
y

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Practice 7: Using Native Dynamic SQL (continued)

Oracle Database 11g: Develop PL/SQL Program Units A - 90

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 O

R
AC

LE
 C

O
R

PO
R

AT
IO

N
 u

se
 o

nl
y

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Oracle Database 11g: Develop PL/SQL Program Units A - 91

Practices for Lesson 8

Practice 8: Using Bulk Binding and Autonomous Transactions
In this practice, you create a package that performs a bulk fetch of employees in a
specified department. The data is stored in a PL/SQL table in the package. You also
provide a procedure to display the contents of the table. In addition, you create the
add_employee procedure that inserts new employees. The procedure uses a local
autonomous subprogram to write a log record each time the add_employee procedure
is called, whether it successfully adds a record or not.

1) Update the EMP_PKG package with a new procedure to query employees in a
specified department.

a) In the package specification:

i) Declare a get_employees procedure with a parameter called dept_id,
which is based on the employees.department_id column type

ii) Define an index-by PL/SQL type as a TABLE OF EMPLOYEES%ROWTYPE

Open the sol_08_01_a.sql file in the D:\labs\PLPU\solns folder, or
copy and paste the following code in the SQL Worksheet area. Click the Run
Script (F5) icon on the SQL Worksheet toolbar to create the package
specification. The code and the results are shown below. The newly added code is
highlighted in bold letters in the code box below. To compile the package’s
specification, right-click the package’s name in the Object Navigation tree, and
then select Compile.

CREATE OR REPLACE PACKAGE emp_pkg IS

 TYPE emp_tab_type IS TABLE OF employees%ROWTYPE;

 PROCEDURE add_employee(
 p_first_name employees.first_name%TYPE,
 p_last_name employees.last_name%TYPE,
 p_email employees.email%TYPE,
 p_job employees.job_id%TYPE DEFAULT 'SA_REP',
 p_mgr employees.manager_id%TYPE DEFAULT 145,
 p_sal employees.salary%TYPE DEFAULT 1000,
 p_comm employees.commission_pct%TYPE DEFAULT 0,
 p_deptid employees.department_id%TYPE DEFAULT 30);

 PROCEDURE add_employee(
 p_first_name employees.first_name%TYPE,
 p_last_name employees.last_name%TYPE,
 p_deptid employees.department_id%TYPE);

 PROCEDURE get_employee(
 p_empid IN employees.employee_id%TYPE,
 p_sal OUT employees.salary%TYPE,
 p_job OUT employees.job_id%TYPE);

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 O

R
AC

LE
 C

O
R

PO
R

AT
IO

N
 u

se
 o

nl
y

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Practice 8: Using Bulk Binding and Autonomous Transactions
(continued)

Oracle Database 11g: Develop PL/SQL Program Units A - 92

 FUNCTION get_employee(p_emp_id employees.employee_id%type)
 return employees%rowtype;

 FUNCTION get_employee(p_family_name
employees.last_name%type)
 return employees%rowtype;

 PROCEDURE get_employees(p_dept_id
employees.department_id%type);

 PROCEDURE init_departments;

 PROCEDURE print_employee(p_rec_emp employees%rowtype);

END emp_pkg;
/
SHOW ERRORS

b) In the package body:

i) Define a private variable called emp_table based on the type defined in the
specification to hold employee records

ii) Implement the get_employees procedure to bulk fetch the data into the
table.

Open the sol_08_01_b.sql file in the D:\labs\PLPU\solns folder, or
copy and paste the following code in the SQL Worksheet area. Click the Run
Script (F5) icon on the SQL Worksheet toolbar to create the package body. The
code and the results are shown below. The newly added code is highlighted in
bold letters in the code box below. To compile the package’s body, right-click the
package’s (or body) name in the Object Navigation tree, and then select
Compile.

CREATE OR REPLACE PACKAGE BODY emp_pkg IS
 TYPE boolean_tab_type IS TABLE OF BOOLEAN

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 O

R
AC

LE
 C

O
R

PO
R

AT
IO

N
 u

se
 o

nl
y

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Practice 8: Using Bulk Binding and Autonomous Transactions
(continued)

Oracle Database 11g: Develop PL/SQL Program Units A - 93

 INDEX BY BINARY_INTEGER;
 valid_departments boolean_tab_type;
 emp_table emp_tab_type;

 PROCEDURE add_employee(
 p_first_name employees.first_name%TYPE,
 p_last_name employees.last_name%TYPE,
 p_email employees.email%TYPE,
 p_job employees.job_id%TYPE DEFAULT 'SA_REP',
 p_mgr employees.manager_id%TYPE DEFAULT 145,
 p_sal employees.salary%TYPE DEFAULT 1000,
 p_comm employees.commission_pct%TYPE DEFAULT 0,
 p_deptid employees.department_id%TYPE DEFAULT 30) IS
 BEGIN
 IF valid_deptid(p_deptid) THEN

 INSERT INTO employees(employee_id, first_name,
last_name, email,
 job_id, manager_id, hire_date, salary, commission_pct,
department_id)
 VALUES (employees_seq.NEXTVAL, p_first_name,
p_last_name, p_email,
 p_job, p_mgr, TRUNC(SYSDATE), p_sal, p_comm,
p_deptid);
 ELSE
 RAISE_APPLICATION_ERROR (-20204, 'Invalid department ID.
Try again.');
 END IF;
 END add_employee;

 PROCEDURE add_employee(
 p_first_name employees.first_name%TYPE,
 p_last_name employees.last_name%TYPE,
 p_deptid employees.department_id%TYPE) IS
 p_email employees.email%type;
 BEGIN
 p_email := UPPER(SUBSTR(p_first_name, 1,
1)||SUBSTR(p_last_name, 1, 7));
 add_employee(p_first_name, p_last_name, p_email, p_deptid
=> p_deptid);
 END;

 PROCEDURE get_employee(
 p_empid IN employees.employee_id%TYPE,
 p_sal OUT employees.salary%TYPE,
 p_job OUT employees.job_id%TYPE) IS
 BEGIN
 SELECT salary, job_id
 INTO p_sal, p_job
 FROM employees
 WHERE employee_id = p_empid;

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 O

R
AC

LE
 C

O
R

PO
R

AT
IO

N
 u

se
 o

nl
y

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Practice 8: Using Bulk Binding and Autonomous Transactions
(continued)

Oracle Database 11g: Develop PL/SQL Program Units A - 94

 END get_employee;

FUNCTION get_employee(p_emp_id employees.employee_id%type)
 return employees%rowtype IS
 rec_emp employees%rowtype;
 BEGIN
 SELECT * INTO rec_emp
 FROM employees
 WHERE employee_id = p_emp_id;
 RETURN rec_emp;
 END;

 FUNCTION get_employee(p_family_name
employees.last_name%type)
 return employees%rowtype IS

rec_emp employees%rowtype;
 BEGIN
 SELECT * INTO rec_emp
 FROM employees
 WHERE last_name = p_family_name;
 RETURN rec_emp;
END;

/* New get_employees procedure. */

PROCEDURE get_employees(p_dept_id
employees.department_id%type) IS
 BEGIN
 SELECT * BULK COLLECT INTO emp_table
 FROM EMPLOYEES
 WHERE department_id = p_dept_id;
 END;

PROCEDURE init_departments IS
 BEGIN
 FOR rec IN (SELECT department_id FROM departments)
 LOOP
 valid_departments(rec.department_id) := TRUE;
 END LOOP;
 END;

PROCEDURE print_employee(p_rec_emp employees%rowtype) IS
 BEGIN
 DBMS_OUTPUT.PUT_LINE(p_rec_emp.department_id ||' '||
 p_rec_emp.employee_id||' '||
 p_rec_emp.first_name||' '||
 p_rec_emp.last_name||' '||
 p_rec_emp.job_id||' '||
 p_rec_emp.salary);
 END;

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 O

R
AC

LE
 C

O
R

PO
R

AT
IO

N
 u

se
 o

nl
y

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Practice 8: Using Bulk Binding and Autonomous Transactions
(continued)

Oracle Database 11g: Develop PL/SQL Program Units A - 95

FUNCTION valid_deptid(p_deptid IN
departments.department_id%TYPE) RETURN BOOLEAN IS
 v_dummy PLS_INTEGER;
 BEGIN
 RETURN valid_departments.exists(p_deptid);
 EXCEPTION
 WHEN NO_DATA_FOUND THEN
 RETURN FALSE;
END valid_deptid;

BEGIN
 init_departments;

END emp_pkg;

/
SHOW ERRORS

c) Create a new procedure in the specification and body, called
show_employees, that does not take arguments. The procedure displays the
contents of the private PL/SQL table variable (if any data exists). Use the
print_employee procedure that you created in an earlier practice. To view the
results, click the Enable DBMS Output icon in the DBMS Output tab in SQL
Developer, if you have not already done so.

Open the sol_08_01_c.sql file in the D:\labs\PLPU\solns folder, or
copy and paste the following code in the SQL Worksheet area. Click the Run
Script (F5) icon on the SQL Worksheet toolbar to re-create the package with
the new procedure. The code and the results are shown below. To compile
the package, right-click the package’s name in the Object Navigation tree,
and then select Compile.

-- Package SPECIFICATION

CREATE OR REPLACE PACKAGE emp_pkg IS
 TYPE emp_tab_type IS TABLE OF employees%ROWTYPE;

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 O

R
AC

LE
 C

O
R

PO
R

AT
IO

N
 u

se
 o

nl
y

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Practice 8: Using Bulk Binding and Autonomous Transactions
(continued)

Oracle Database 11g: Develop PL/SQL Program Units A - 96

 PROCEDURE add_employee(
 p_first_name employees.first_name%TYPE,
 p_last_name employees.last_name%TYPE,
 p_email employees.email%TYPE,
 p_job employees.job_id%TYPE DEFAULT 'SA_REP',
 p_mgr employees.manager_id%TYPE DEFAULT 145,
 p_sal employees.salary%TYPE DEFAULT 1000,
 p_comm employees.commission_pct%TYPE DEFAULT 0,
 p_deptid employees.department_id%TYPE DEFAULT 30);

 PROCEDURE add_employee(
 p_first_name employees.first_name%TYPE,
 p_last_name employees.last_name%TYPE,
 p_deptid employees.department_id%TYPE);

 PROCEDURE get_employee(
 p_empid IN employees.employee_id%TYPE,
 p_sal OUT employees.salary%TYPE,
 p_job OUT employees.job_id%TYPE);

 FUNCTION get_employee(p_emp_id employees.employee_id%type)
 return employees%rowtype;

 FUNCTION get_employee(p_family_name
employees.last_name%type)
 return employees%rowtype;

 PROCEDURE get_employees(p_dept_id
employees.department_id%type);

 PROCEDURE init_departments;

 PROCEDURE print_employee(p_rec_emp employees%rowtype);

 PROCEDURE show_employees;

END emp_pkg;
/
SHOW ERRORS

-- Package BODY

CREATE OR REPLACE PACKAGE BODY emp_pkg IS
 TYPE boolean_tab_type IS TABLE OF BOOLEAN
 INDEX BY BINARY_INTEGER;

 valid_departments boolean_tab_type;
 emp_table emp_tab_type;
 FUNCTION valid_deptid(p_deptid IN
 departments.department_id%TYPE)

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 O

R
AC

LE
 C

O
R

PO
R

AT
IO

N
 u

se
 o

nl
y

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Practice 8: Using Bulk Binding and Autonomous Transactions
(continued)

Oracle Database 11g: Develop PL/SQL Program Units A - 97

 RETURN BOOLEAN;

 PROCEDURE add_employee(
 p_first_name employees.first_name%TYPE,
 p_last_name employees.last_name%TYPE,
 p_email employees.email%TYPE,
 p_job employees.job_id%TYPE DEFAULT 'SA_REP',
 p_mgr employees.manager_id%TYPE DEFAULT 145,
 p_sal employees.salary%TYPE DEFAULT 1000,
 p_comm employees.commission_pct%TYPE DEFAULT 0,
 p_deptid employees.department_id%TYPE DEFAULT 30) IS
 BEGIN
 IF valid_deptid(p_deptid) THEN
 INSERT INTO employees(employee_id, first_name,
last_name, email,
 job_id, manager_id, hire_date, salary, commission_pct,
department_id)
 VALUES (employees_seq.NEXTVAL, p_first_name,
p_last_name, p_email,
 p_job, p_mgr, TRUNC(SYSDATE), p_sal, p_comm,
p_deptid);
 ELSE
 RAISE_APPLICATION_ERROR (-20204, 'Invalid department ID.
Try again.');
 END IF;
 END add_employee;

 PROCEDURE add_employee(
 p_first_name employees.first_name%TYPE,
 p_last_name employees.last_name%TYPE,
 p_deptid employees.department_id%TYPE) IS
 p_email employees.email%type;
 BEGIN
 p_email := UPPER(SUBSTR(p_first_name, 1,
1)||SUBSTR(p_last_name, 1, 7));
 add_employee(p_first_name, p_last_name, p_email, p_deptid
=> p_deptid);
 END;

 PROCEDURE get_employee(
 p_empid IN employees.employee_id%TYPE,
 p_sal OUT employees.salary%TYPE,
 p_job OUT employees.job_id%TYPE) IS
 BEGIN
 SELECT salary, job_id
 INTO p_sal, p_job
 FROM employees
 WHERE employee_id = p_empid;
 END get_employee;

 FUNCTION get_employee(p_emp_id employees.employee_id%type)

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 O

R
AC

LE
 C

O
R

PO
R

AT
IO

N
 u

se
 o

nl
y

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Practice 8: Using Bulk Binding and Autonomous Transactions
(continued)

Oracle Database 11g: Develop PL/SQL Program Units A - 98

 return employees%rowtype IS
 rec_emp employees%rowtype;
 BEGIN
 SELECT * INTO rec_emp
 FROM employees
 WHERE employee_id = p_emp_id;
 RETURN rec_emp;
 END;

 FUNCTION get_employee(p_family_name
employees.last_name%type)
 return employees%rowtype IS
 rec_emp employees%rowtype;
 BEGIN
 SELECT * INTO rec_emp
 FROM employees
 WHERE last_name = p_family_name;
 RETURN rec_emp;
 END;

 PROCEDURE get_employees(p_dept_id
employees.department_id%type) IS
 BEGIN
 SELECT * BULK COLLECT INTO emp_table
 FROM EMPLOYEES
 WHERE department_id = p_dept_id;
 END;

 PROCEDURE init_departments IS
 BEGIN
 FOR rec IN (SELECT department_id FROM departments)
 LOOP
 valid_departments(rec.department_id) := TRUE;
 END LOOP;
 END;

 PROCEDURE print_employee(p_rec_emp employees%rowtype) IS
 BEGIN
 DBMS_OUTPUT.PUT_LINE(p_rec_emp.department_id ||' '||
 p_rec_emp.employee_id||' '||
 p_rec_emp.first_name||' '||
 p_rec_emp.last_name||' '||
 p_rec_emp.job_id||' '||
 p_rec_emp.salary);
 END;

 PROCEDURE show_employees IS
 BEGIN
 IF emp_table IS NOT NULL THEN

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 O

R
AC

LE
 C

O
R

PO
R

AT
IO

N
 u

se
 o

nl
y

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Practice 8: Using Bulk Binding and Autonomous Transactions
(continued)

Oracle Database 11g: Develop PL/SQL Program Units A - 99

 DBMS_OUTPUT.PUT_LINE('Employees in Package table');
 FOR i IN 1 .. emp_table.COUNT
 LOOP
 print_employee(emp_table(i));
 END LOOP;
 END IF;
 END show_employees;

 FUNCTION valid_deptid(p_deptid IN
departments.department_id%TYPE)
 RETURN BOOLEAN IS
 v_dummy PLS_INTEGER;
 BEGIN
 RETURN valid_departments.exists(p_deptid);
 EXCEPTION
 WHEN NO_DATA_FOUND THEN
 RETURN FALSE;
END valid_deptid;

BEGIN
 init_departments;
END emp_pkg;

/
SHOW ERRORS

d) Invoke the emp_pkg.get_employees procedure for department 30, and then
invoke emp_pkg.show_employees. Repeat this for department 60.

Open the sol_08_01_d.sql file in the D:\labs\PLPU\solns folder, or
copy and paste the following code in the SQL Worksheet area. Click the Run
Script (F5) icon on the SQL Worksheet toolbar to invoke the package’s
procedures. The code and the results are shown below:

EXECUTE emp_pkg.get_employees(30)
EXECUTE emp_pkg.show_employees

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 O

R
AC

LE
 C

O
R

PO
R

AT
IO

N
 u

se
 o

nl
y

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Practice 8: Using Bulk Binding and Autonomous Transactions
(continued)

Oracle Database 11g: Develop PL/SQL Program Units A - 100

EXECUTE emp_pkg.get_employees(60)
EXECUTE emp_pkg.show_employees

2) Your manager wants to keep a log whenever the add_employee procedure in the
package is invoked to insert a new employee into the EMPLOYEES table.

a) First, load and execute the D:\labs\PLPU\solns\sol_08_02_a.sql
script to create a log table called LOG_NEWEMP, and a sequence called
log_newemp_seq.

Open the sol_08_02_a.sql file in the D:\labs\PLPU\solns folder, or
copy and paste the following code in the SQL Worksheet area. Click the Run
Script (F5) icon on the SQL Worksheet toolbar to run the script. The code
and the results are shown below.

CREATE TABLE log_newemp (
 entry_id NUMBER(6) CONSTRAINT log_newemp_pk PRIMARY KEY,
 user_id VARCHAR2(30),
 log_time DATE,
 name VARCHAR2(60)
);

CREATE SEQUENCE log_newemp_seq;

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 O

R
AC

LE
 C

O
R

PO
R

AT
IO

N
 u

se
 o

nl
y

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Practice 8: Using Bulk Binding and Autonomous Transactions
(continued)

Oracle Database 11g: Develop PL/SQL Program Units A - 101

b) In the EMP_PKG package body, modify the add_employee procedure, which
performs the actual INSERT operation. Add a local procedure called
audit_newemp as follows:

i) The audit_newemp procedure must use an autonomous transaction to
insert a log record into the LOG_NEWEMP table.

ii) Store the USER, the current time, and the new employee name in the log table
row.

iii) Use log_newemp_seq to set the entry_id column.

Note: Remember to perform a COMMIT operation in a procedure with an
autonomous transaction.

Open the sol_08_02_b.sql file in the D:\labs\PLPU\solns folder, or
copy and paste the following code in the SQL Worksheet area. The newly
added code is highlighted in bold letters in the following code box. Click the
Run Script (F5) icon on the SQL Worksheet toolbar to run the script. The
code and the results are shown below. To compile the package, right-click the
package’s name in the Object Navigation tree, and then select Compile.

-- Package SPECIFICATION

CREATE OR REPLACE PACKAGE emp_pkg IS

 TYPE emp_tab_type IS TABLE OF employees%ROWTYPE;

 PROCEDURE add_employee(
 p_first_name employees.first_name%TYPE,
 p_last_name employees.last_name%TYPE,
 p_email employees.email%TYPE,
 p_job employees.job_id%TYPE DEFAULT 'SA_REP',
 p_mgr employees.manager_id%TYPE DEFAULT 145,
 p_sal employees.salary%TYPE DEFAULT 1000,
 p_comm employees.commission_pct%TYPE DEFAULT 0,
 p_deptid employees.department_id%TYPE DEFAULT 30);

 PROCEDURE add_employee(
 p_first_name employees.first_name%TYPE,
 p_last_name employees.last_name%TYPE,

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 O

R
AC

LE
 C

O
R

PO
R

AT
IO

N
 u

se
 o

nl
y

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Practice 8: Using Bulk Binding and Autonomous Transactions
(continued)

Oracle Database 11g: Develop PL/SQL Program Units A - 102

 p_deptid employees.department_id%TYPE);

 PROCEDURE get_employee(
 p_empid IN employees.employee_id%TYPE,
 p_sal OUT employees.salary%TYPE,
 p_job OUT employees.job_id%TYPE);

 FUNCTION get_employee(p_emp_id employees.employee_id%type)
 return employees%rowtype;

 FUNCTION get_employee(p_family_name
employees.last_name%type)
 return employees%rowtype;

 PROCEDURE get_employees(p_dept_id
employees.department_id%type);

 PROCEDURE init_departments;

 PROCEDURE print_employee(p_rec_emp employees%rowtype);

 PROCEDURE show_employees;

END emp_pkg;
/
SHOW ERRORS

-- Package BODY

CREATE OR REPLACE PACKAGE BODY emp_pkg IS
 TYPE boolean_tab_type IS TABLE OF BOOLEAN
 INDEX BY BINARY_INTEGER;

 valid_departments boolean_tab_type;
 emp_table emp_tab_type;

 FUNCTION valid_deptid(p_deptid IN
departments.department_id%TYPE)
 RETURN BOOLEAN;

 PROCEDURE add_employee(
 p_first_name employees.first_name%TYPE,
 p_last_name employees.last_name%TYPE,
 p_email employees.email%TYPE,
 p_job employees.job_id%TYPE DEFAULT 'SA_REP',
 p_mgr employees.manager_id%TYPE DEFAULT 145,
 p_sal employees.salary%TYPE DEFAULT 1000,
 p_comm employees.commission_pct%TYPE DEFAULT 0,
 p_deptid employees.department_id%TYPE DEFAULT 30) IS

-- New local procedure

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 O

R
AC

LE
 C

O
R

PO
R

AT
IO

N
 u

se
 o

nl
y

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Practice 8: Using Bulk Binding and Autonomous Transactions
(continued)

Oracle Database 11g: Develop PL/SQL Program Units A - 103

 PROCEDURE audit_newemp IS
 PRAGMA AUTONOMOUS_TRANSACTION;
 user_id VARCHAR2(30) := USER;
 BEGIN
 INSERT INTO log_newemp (entry_id, user_id, log_time,
 name)
 VALUES (log_newemp_seq.NEXTVAL, user_id,
 sysdate,p_first_name||' '||p_last_name);
 COMMIT;
 END audit_newemp;

 BEGIN -- add_employee
 IF valid_deptid(p_deptid) THEN
 INSERT INTO employees(employee_id, first_name,
last_name, email,
 job_id, manager_id, hire_date, salary, commission_pct,
department_id)
 VALUES (employees_seq.NEXTVAL, p_first_name,
p_last_name, p_email,
 p_job, p_mgr, TRUNC(SYSDATE), p_sal, p_comm,
p_deptid);
 ELSE
 RAISE_APPLICATION_ERROR (-20204, 'Invalid department ID.
Try again.');
 END IF;
 END add_employee;

 PROCEDURE add_employee(
 p_first_name employees.first_name%TYPE,
 p_last_name employees.last_name%TYPE,
 p_deptid employees.department_id%TYPE) IS
 p_email employees.email%type;
 BEGIN
 p_email := UPPER(SUBSTR(p_first_name, 1,
1)||SUBSTR(p_last_name, 1, 7));
 add_employee(p_first_name, p_last_name, p_email, p_deptid
=> p_deptid);
 END;

 PROCEDURE get_employee(
 p_empid IN employees.employee_id%TYPE,
 p_sal OUT employees.salary%TYPE,
 p_job OUT employees.job_id%TYPE) IS
 BEGIN
 SELECT salary, job_id
 INTO p_sal, p_job
 FROM employees
 WHERE employee_id = p_empid;
 END get_employee;

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 O

R
AC

LE
 C

O
R

PO
R

AT
IO

N
 u

se
 o

nl
y

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Practice 8: Using Bulk Binding and Autonomous Transactions
(continued)

Oracle Database 11g: Develop PL/SQL Program Units A - 104

 FUNCTION get_employee(p_emp_id employees.employee_id%type)
 return employees%rowtype IS
 rec_emp employees%rowtype;
 BEGIN
 SELECT * INTO rec_emp
 FROM employees
 WHERE employee_id = p_emp_id;
 RETURN rec_emp;
 END;

 FUNCTION get_employee(p_family_name
employees.last_name%type)
 return employees%rowtype IS
 rec_emp employees%rowtype;
 BEGIN
 SELECT * INTO rec_emp
 FROM employees
 WHERE last_name = p_family_name;
 RETURN rec_emp;
 END;

/* New get_employees procedure. */

 PROCEDURE get_employees(p_dept_id
employees.department_id%type) IS
 BEGIN
 SELECT * BULK COLLECT INTO emp_table
 FROM EMPLOYEES
 WHERE department_id = p_dept_id;
 END;

 PROCEDURE init_departments IS
 BEGIN
 FOR rec IN (SELECT department_id FROM departments)
 LOOP
 valid_departments(rec.department_id) := TRUE;
 END LOOP;
 END;

 PROCEDURE print_employee(p_rec_emp employees%rowtype) IS
 BEGIN
 DBMS_OUTPUT.PUT_LINE(p_rec_emp.department_id ||' '||
 p_rec_emp.employee_id||' '||
 p_rec_emp.first_name||' '||
 p_rec_emp.last_name||' '||
 p_rec_emp.job_id||' '||
 p_rec_emp.salary);
 END;

 PROCEDURE show_employees IS
 BEGIN

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 O

R
AC

LE
 C

O
R

PO
R

AT
IO

N
 u

se
 o

nl
y

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Practice 8: Using Bulk Binding and Autonomous Transactions
(continued)

Oracle Database 11g: Develop PL/SQL Program Units A - 105

 IF emp_table IS NOT NULL THEN
 DBMS_OUTPUT.PUT_LINE('Employees in Package table');
 FOR i IN 1 .. emp_table.COUNT
 LOOP
 print_employee(emp_table(i));
 END LOOP;
 END IF;
 END show_employees;

 FUNCTION valid_deptid(p_deptid IN
departments.department_id%TYPE)
 RETURN BOOLEAN IS
 v_dummy PLS_INTEGER;
 BEGIN
 RETURN valid_departments.exists(p_deptid);
 EXCEPTION
 WHEN NO_DATA_FOUND THEN
 RETURN FALSE;
END valid_deptid;

BEGIN
 init_departments;
END emp_pkg;
/
SHOW ERRORS

c) Modify the add_employee procedure to invoke audit_emp before it
performs the insert operation.

Open the sol_08_02_c.sql file in the D:\labs\PLPU\solns folder, or
copy and paste the following code in the SQL Worksheet area. The newly
added code is highlighted in bold letters in the following code box. Click the
Run Script (F5) icon on the SQL Worksheet toolbar to run the script. The

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 O

R
AC

LE
 C

O
R

PO
R

AT
IO

N
 u

se
 o

nl
y

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Practice 8: Using Bulk Binding and Autonomous Transactions
(continued)

Oracle Database 11g: Develop PL/SQL Program Units A - 106

code and the results are shown below. To compile the package, right-click the
package’s name in the Object Navigation tree, and then select Compile.

-- Package SPECIFICATION

CREATE OR REPLACE PACKAGE emp_pkg IS

 TYPE emp_tab_type IS TABLE OF employees%ROWTYPE;

 PROCEDURE add_employee(
 p_first_name employees.first_name%TYPE,
 p_last_name employees.last_name%TYPE,
 p_email employees.email%TYPE,
 p_job employees.job_id%TYPE DEFAULT 'SA_REP',
 p_mgr employees.manager_id%TYPE DEFAULT 145,
 p_sal employees.salary%TYPE DEFAULT 1000,
 p_comm employees.commission_pct%TYPE DEFAULT 0,
 p_deptid employees.department_id%TYPE DEFAULT 30);

 PROCEDURE add_employee(
 p_first_name employees.first_name%TYPE,
 p_last_name employees.last_name%TYPE,
 p_deptid employees.department_id%TYPE);

 PROCEDURE get_employee(
 p_empid IN employees.employee_id%TYPE,
 p_sal OUT employees.salary%TYPE,
 p_job OUT employees.job_id%TYPE);

 FUNCTION get_employee(p_emp_id employees.employee_id%type)
 return employees%rowtype;

 FUNCTION get_employee(p_family_name
employees.last_name%type)
 return employees%rowtype;

 PROCEDURE get_employees(p_dept_id
employees.department_id%type);

 PROCEDURE init_departments;

 PROCEDURE print_employee(p_rec_emp employees%rowtype);

 PROCEDURE show_employees;

END emp_pkg;
/
SHOW ERRORS

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 O

R
AC

LE
 C

O
R

PO
R

AT
IO

N
 u

se
 o

nl
y

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Practice 8: Using Bulk Binding and Autonomous Transactions
(continued)

Oracle Database 11g: Develop PL/SQL Program Units A - 107

-- Package BODY

CREATE OR REPLACE PACKAGE BODY emp_pkg IS
 TYPE boolean_tab_type IS TABLE OF BOOLEAN
 INDEX BY BINARY_INTEGER;

 valid_departments boolean_tab_type;
 emp_table emp_tab_type;

 FUNCTION valid_deptid(p_deptid IN
departments.department_id%TYPE)
 RETURN BOOLEAN;

 PROCEDURE add_employee(
 p_first_name employees.first_name%TYPE,
 p_last_name employees.last_name%TYPE,
 p_email employees.email%TYPE,
 p_job employees.job_id%TYPE DEFAULT 'SA_REP',
 p_mgr employees.manager_id%TYPE DEFAULT 145,
 p_sal employees.salary%TYPE DEFAULT 1000,
 p_comm employees.commission_pct%TYPE DEFAULT 0,
 p_deptid employees.department_id%TYPE DEFAULT 30) IS

 PROCEDURE audit_newemp IS
 PRAGMA AUTONOMOUS_TRANSACTION;
 user_id VARCHAR2(30) := USER;
 BEGIN
 INSERT INTO log_newemp (entry_id, user_id, log_time,
name)
 VALUES (log_newemp_seq.NEXTVAL, user_id,
sysdate,p_first_name||' '||p_last_name);
 COMMIT;
 END audit_newemp;

 BEGIN -- add_employee
 IF valid_deptid(p_deptid) THEN
 audit_newemp;
 INSERT INTO employees(employee_id, first_name,
last_name, email,
 job_id, manager_id, hire_date, salary, commission_pct,
department_id)
 VALUES (employees_seq.NEXTVAL, p_first_name,
p_last_name, p_email,
 p_job, p_mgr, TRUNC(SYSDATE), p_sal, p_comm,
p_deptid);
 ELSE
 RAISE_APPLICATION_ERROR (-20204, 'Invalid department ID.
Try again.');
 END IF;
 END add_employee;

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 O

R
AC

LE
 C

O
R

PO
R

AT
IO

N
 u

se
 o

nl
y

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Practice 8: Using Bulk Binding and Autonomous Transactions
(continued)

Oracle Database 11g: Develop PL/SQL Program Units A - 108

 PROCEDURE add_employee(
 p_first_name employees.first_name%TYPE,
 p_last_name employees.last_name%TYPE,
 p_deptid employees.department_id%TYPE) IS
 p_email employees.email%type;
 BEGIN
 p_email := UPPER(SUBSTR(p_first_name, 1,
1)||SUBSTR(p_last_name, 1, 7));
 add_employee(p_first_name, p_last_name, p_email, p_deptid
=> p_deptid);
 END;

 PROCEDURE get_employee(
 p_empid IN employees.employee_id%TYPE,
 p_sal OUT employees.salary%TYPE,
 p_job OUT employees.job_id%TYPE) IS
 BEGIN
 SELECT salary, job_id
 INTO p_sal, p_job
 FROM employees
 WHERE employee_id = p_empid;
 END get_employee;

 FUNCTION get_employee(p_emp_id employees.employee_id%type)
 return employees%rowtype IS
 rec_emp employees%rowtype;
 BEGIN
 SELECT * INTO rec_emp
 FROM employees
 WHERE employee_id = p_emp_id;
 RETURN rec_emp;
 END;

 FUNCTION get_employee(p_family_name
employees.last_name%type)
 return employees%rowtype IS
 rec_emp employees%rowtype;
 BEGIN
 SELECT * INTO rec_emp
 FROM employees
 WHERE last_name = p_family_name;
 RETURN rec_emp;

END;

 PROCEDURE get_employees(p_dept_id
employees.department_id%type) IS
 BEGIN
 SELECT * BULK COLLECT INTO emp_table
 FROM EMPLOYEES
 WHERE department_id = p_dept_id;

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 O

R
AC

LE
 C

O
R

PO
R

AT
IO

N
 u

se
 o

nl
y

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Practice 8: Using Bulk Binding and Autonomous Transactions
(continued)

Oracle Database 11g: Develop PL/SQL Program Units A - 109

 END;

 PROCEDURE init_departments IS
 BEGIN
 FOR rec IN (SELECT department_id FROM departments)
 LOOP
 valid_departments(rec.department_id) := TRUE;
 END LOOP;
 END;

 PROCEDURE print_employee(p_rec_emp employees%rowtype) IS
 BEGIN
 DBMS_OUTPUT.PUT_LINE(p_rec_emp.department_id ||' '||
 p_rec_emp.employee_id||' '||
 p_rec_emp.first_name||' '||
 p_rec_emp.last_name||' '||
 p_rec_emp.job_id||' '||
 p_rec_emp.salary);
 END;

 PROCEDURE show_employees IS
 BEGIN
 IF emp_table IS NOT NULL THEN
 DBMS_OUTPUT.PUT_LINE('Employees in Package table');
 FOR i IN 1 .. emp_table.COUNT
 LOOP
 print_employee(emp_table(i));
 END LOOP;
 END IF;
 END show_employees;

 FUNCTION valid_deptid(p_deptid IN
departments.department_id%TYPE)
 RETURN BOOLEAN IS
 v_dummy PLS_INTEGER;
 BEGIN
 RETURN valid_departments.exists(p_deptid);
 EXCEPTION
 WHEN NO_DATA_FOUND THEN

 RETURN FALSE;
END valid_deptid;
BEGIN
 init_departments;
END emp_pkg;
/
SHOW ERRORS

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 O

R
AC

LE
 C

O
R

PO
R

AT
IO

N
 u

se
 o

nl
y

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Practice 8: Using Bulk Binding and Autonomous Transactions
(continued)

Oracle Database 11g: Develop PL/SQL Program Units A - 110

d) Invoke the add_employee procedure for these new employees: Max Smart
in department 20 and Clark Kent in department 10. What happens?

Open the sol_08_02_d.sql file in the D:\labs\PLPU\solns folder, or
copy and paste the following code in the SQL Worksheet area. Click the Run
Script (F5) icon on the SQL Worksheet toolbar to run the script. The code
and the results are shown below.

EXECUTE emp_pkg.add_employee('Max', 'Smart', 20)
EXECUTE emp_pkg.add_employee('Clark', 'Kent', 10)

Both insert statements complete successfully. The log table has two log
records as shown in the next step.

e) Query the two EMPLOYEES records added, and the records in the LOG_NEWEMP
table. How many log records are present?

Open the sol_08_02_e.sql file in the D:\labs\PLPU\solns folder, or
copy and paste the following code in the SQL Worksheet area. Click the Run
Script (F5) icon on the SQL Worksheet toolbar to run the script. The code
and the results are shown below.

select department_id, employee_id, last_name, first_name
from employees
where last_name in ('Kent', 'Smart');

select * from log_newemp;

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 O

R
AC

LE
 C

O
R

PO
R

AT
IO

N
 u

se
 o

nl
y

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Practice 8: Using Bulk Binding and Autonomous Transactions
(continued)

Oracle Database 11g: Develop PL/SQL Program Units A - 111

There are two log records, one for Smart and another for Kent.

f) Execute a ROLLBACK statement to undo the insert operations that have not been
committed. Use the same queries from step 2 e. as follows:

i) Use the first query to check whether the employee rows for Smart and Kent
have been removed.

ii) Use the second query to check the log records in the LOG_NEWEMP table.
How many log records are present? Why?

ROLLBACK;

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 O

R
AC

LE
 C

O
R

PO
R

AT
IO

N
 u

se
 o

nl
y

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Practice 8: Using Bulk Binding and Autonomous Transactions
(continued)

Oracle Database 11g: Develop PL/SQL Program Units A - 112

The two employee records are removed (rolled back). The two log records
remain in the log table because they were inserted using an autonomous
transaction, which is unaffected by the rollback performed in the main
transaction.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 O

R
AC

LE
 C

O
R

PO
R

AT
IO

N
 u

se
 o

nl
y

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Oracle Database 11g: Develop PL/SQL Program Units A - 113

Practices for Lesson 9

Practice 9: Creating Statement and Row Triggers
In this practice, you create statement and row triggers. You also create procedures that
are invoked from within the triggers.

1) The rows in the JOBS table store a minimum and maximum salary allowed for
different JOB_ID values. You are asked to write code to ensure that employees’
salaries fall in the range allowed for their job type, for insert and update operations.

a) Create a procedure called CHECK_SALARY as follows:

i) The procedure accepts two parameters, one for an employee’s job ID string
and the other for the salary.

ii) The procedure uses the job ID to determine the minimum and maximum
salary for the specified job.

iii) If the salary parameter does not fall within the salary range of the job,
inclusive of the minimum and maximum, then it should raise an application
exception, with the message “Invalid salary <sal>. Salaries
for job <jobid> must be between <min> and <max>”.
Replace the various items in the message with values supplied by parameters
and variables populated by queries. Save the file.

Open the sol_09_01_a.sql file in the D:\labs\PLPU\solns folder, or
copy and paste the following code in the SQL Worksheet area. Click the Run
Script (F5) icon on the SQL Worksheet toolbar to run the script. The code and
the results are shown below. To compile the procedure, right-click the
procedure’s name in the Object Navigation tree, and then select Compile.

CREATE OR REPLACE PROCEDURE check_salary (p_the_job VARCHAR2,
p_the_salary NUMBER) IS
 v_minsal jobs.min_salary%type;
 v_maxsal jobs.max_salary%type;
BEGIN
 SELECT min_salary, max_salary INTO v_minsal, v_maxsal
 FROM jobs
 WHERE job_id = UPPER(p_the_job);
 IF p_the_salary NOT BETWEEN v_minsal AND v_maxsal THEN
 RAISE_APPLICATION_ERROR(-20100,
 'Invalid salary $' ||p_the_salary ||'. '||
 'Salaries for job '|| p_the_job ||
 ' must be between $'|| v_minsal ||' and $' || v_maxsal);
 END IF;
END;
/
SHOW ERRORS

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 O

R
AC

LE
 C

O
R

PO
R

AT
IO

N
 u

se
 o

nl
y

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Practice 9: Creating Statement and Row Triggers (continued)

Oracle Database 11g: Develop PL/SQL Program Units A - 114

b) Create a trigger called CHECK_SALARY_TRG on the EMPLOYEES table that
fires before an INSERT or UPDATE operation on each row:

i) The trigger must call the CHECK_SALARY procedure to carry out the business
logic.

ii) The trigger should pass the new job ID and salary to the procedure
parameters.

Open the sol_09_01_b.sql file in the D:\labs\PLPU\solns folder, or
copy and paste the following code in the SQL Worksheet area. Click the Run
Script (F5) icon on the SQL Worksheet toolbar to run the script. The code
and the results are shown below. To compile the trigger, right-click the
trigger’s name in the Object Navigation tree, and then select Compile.

CREATE OR REPLACE TRIGGER check_salary_trg
BEFORE INSERT OR UPDATE OF job_id, salary
ON employees
FOR EACH ROW
BEGIN
 check_salary(:new.job_id, :new.salary);
END;
/
SHOW ERRORS

2) Test the CHECK_SAL_TRG trigger using the following cases:

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 O

R
AC

LE
 C

O
R

PO
R

AT
IO

N
 u

se
 o

nl
y

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Practice 9: Creating Statement and Row Triggers (continued)

Oracle Database 11g: Develop PL/SQL Program Units A - 115

a) Using your EMP_PKG.ADD_EMPLOYEE procedure, add employee Eleanor
Beh to department 30. What happens and why?

Open the sol_09_02_a.sql file in the D:\labs\PLPU\solns folder, or
copy and paste the following code in the SQL Worksheet area. Click the Run
Script (F5) icon on the SQL Worksheet toolbar to run the script. The code
and the results are shown below.

EXECUTE emp_pkg.add_employee('Eleanor', 'Beh', 30)

The trigger raises an exception because the EMP_PKG.ADD_EMPLOYEE
procedure invokes an overloaded version of itself that uses the default salary of
$1,000 and a default job ID of SA_REP. However, the JOBS table stores a
minimum salary of $ 6,000 for the SA_REP type.

b) Update the salary of employee 115 to $2,000. In a separate update operation,
change the employee job ID to HR_REP. What happens in each case?

Open the sol_09_02_b.sql file in the D:\labs\PLPU\solns folder, or
copy and paste the following code in the SQL Worksheet area. Click the Run
Script (F5) icon on the SQL Worksheet toolbar to run the script. The code
and the results are shown below. To compile the package, right-click the
package’s name in the Object Navigation tree, and then select Compile.

UPDATE employees
 SET salary = 2000
WHERE employee_id = 115;

UPDATE employees
 SET job_id = 'HR_REP'
WHERE employee_id = 115;

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 O

R
AC

LE
 C

O
R

PO
R

AT
IO

N
 u

se
 o

nl
y

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Practice 9: Creating Statement and Row Triggers (continued)

Oracle Database 11g: Develop PL/SQL Program Units A - 116

The first update statement fails to set the salary to $2,000. The check salary
trigger rule fails the update operation because the new salary for employee 115
is less than the minimum allowed for the PU_CLERK job ID.

The second update fails to change the employee’s job because the current
employee’s salary of $3,100 is less than the minimum for the new HR_REP job
ID.

c) Update the salary of employee 115 to $2,800. What happens?

Open the sol_09_02_c.sql file in the D:\labs\PLPU\solns folder, or
copy and paste the following code in the SQL Worksheet area. Click the Run
Script (F5) icon on the SQL Worksheet toolbar to run the script. The code
and the results are shown below.

UPDATE employees
 SET salary = 2800
WHERE employee_id = 115;

The update operation is successful because the new salary falls within the
acceptable range for the current job ID.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 O

R
AC

LE
 C

O
R

PO
R

AT
IO

N
 u

se
 o

nl
y

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Practice 9: Creating Statement and Row Triggers (continued)

Oracle Database 11g: Develop PL/SQL Program Units A - 117

3) Update the CHECK_SALARY_TRG trigger to fire only when the job ID or salary
values have actually changed.

a) Implement the business rule using a WHEN clause to check whether the JOB_ID
or SALARY values have changed.

Note: Make sure that the condition handles the NULL in the
OLD.column_name values if an INSERT operation is performed; otherwise, an
insert operation will fail.

Open the sol_09_03_a.sql file in the D:\labs\PLPU\solns folder, or
copy and paste the following code in the SQL Worksheet area. Click the Run
Script (F5) icon on the SQL Worksheet toolbar to run the script. The code
and the results are shown below. To compile the trigger, right-click the
trigger’s name in the Object Navigation tree, and then click Compile.

CREATE OR REPLACE TRIGGER check_salary_trg
BEFORE INSERT OR UPDATE OF job_id, salary
ON employees FOR EACH ROW
WHEN (new.job_id <> NVL(old.job_id,'?') OR
 new.salary <> NVL(old.salary,0))
BEGIN
 check_salary(:new.job_id, :new.salary);
END;
/
SHOW ERRORS

b) Test the trigger by executing the EMP_PKG.ADD_EMPLOYEE procedure with the
following parameter values:

- p_first_name: 'Eleanor'

- p_last name: 'Beh'

- p_Email: 'EBEH'

- p_Job: 'IT_PROG'

- p_Sal: 5000

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 O

R
AC

LE
 C

O
R

PO
R

AT
IO

N
 u

se
 o

nl
y

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Practice 9: Creating Statement and Row Triggers (continued)

Oracle Database 11g: Develop PL/SQL Program Units A - 118

Open the sol_09_03_b.sql file in the D:\labs\PLPU\solns folder, or
copy and paste the following code in the SQL Worksheet area. Click the Run
Script (F5) icon on the SQL Worksheet toolbar to run the script. The code
and the results are shown below.

BEGIN
 emp_pkg.add_employee('Eleanor', 'Beh', 'EBEH',
 job => 'IT_PROG', sal => 5000);
END;
/

c) Update employees with the IT_PROG job by incrementing their salary by $2,000.
What happens?

Open the sol_09_03_c.sql file in the D:\labs\PLPU\solns folder, or
copy and paste the following code in the SQL Worksheet area. Click the Run
Script (F5) icon on the SQL Worksheet toolbar to run the script. The code
and the results are shown below.

UPDATE employees
 SET salary = salary + 2000
WHERE job_id = 'IT_PROG';

An employee’s salary in the specified job type exceeds the maximum salary for
that job type. No employee salaries in the IT_PROG job type are updated.

d) Update the salary to $9,000 for Eleanor Beh.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 O

R
AC

LE
 C

O
R

PO
R

AT
IO

N
 u

se
 o

nl
y

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Practice 9: Creating Statement and Row Triggers (continued)

Oracle Database 11g: Develop PL/SQL Program Units A - 119

Open the sol_09_03_d.sql file in the D:\labs\PLPU\solns folder, or
copy and paste the following code in the SQL Worksheet area. Click the Run
Script (F5) icon on the SQL Worksheet toolbar to run the script. The code
and the results are shown below.

UPDATE employees
 SET salary = 9000
WHERE employee_id = (SELECT employee_id
 FROM employees
 WHERE last_name = 'Beh');

Hint: Use an UPDATE statement with a subquery in the WHERE clause. What
happens?

e) Change the job of Eleanor Beh to ST_MAN using another UPDATE statement
with a subquery. What happens?

Open the sol_09_03_e.sql file in the D:\labs\PLPU\solns folder, or
copy and paste the following code in the SQL Worksheet area. Click the Run
Script (F5) icon on the SQL Worksheet toolbar to run the script. The code
and the results are shown below.

UPDATE employees
 set job_id = 'ST_MAN'
WHERE employee_id = (SELECT employee_id
 FROM employees
 WHERE last_name = 'Beh');

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 O

R
AC

LE
 C

O
R

PO
R

AT
IO

N
 u

se
 o

nl
y

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Practice 9: Creating Statement and Row Triggers (continued)

Oracle Database 11g: Develop PL/SQL Program Units A - 120

The maximum salary of the new job type is less than the employee’s current salary;
therefore, the update operation fails.

4) You are asked to prevent employees from being deleted during business hours.

a) Write a statement trigger called DELETE_EMP_TRG on the EMPLOYEES table to
prevent rows from being deleted during weekday business hours, which are from
9:00 AM to 6:00 PM.

Open the sol_09_04_a.sql file in the D:\labs\PLPU\solns folder, or
copy and paste the following code in the SQL Worksheet area. Click the Run
Script (F5) icon on the SQL Worksheet toolbar to run the script. The code
and the results are shown below. To compile the trigger, right-click the
trigger’s name in the Object Navigation tree, and then click Compile.

CREATE OR REPLACE TRIGGER delete_emp_trg
BEFORE DELETE ON employees
DECLARE
 the_day VARCHAR2(3) := TO_CHAR(SYSDATE, 'DY');
 the_hour PLS_INTEGER := TO_NUMBER(TO_CHAR(SYSDATE, 'HH24'));
BEGIN
 IF (the_hour BETWEEN 9 AND 18) AND (the_day NOT IN
('SAT','SUN')) THEN
 RAISE_APPLICATION_ERROR(-20150,
 'Employee records cannot be deleted during the business
 hours of 9AM and 6PM');
 END IF;
END;
/
SHOW ERRORS

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 O

R
AC

LE
 C

O
R

PO
R

AT
IO

N
 u

se
 o

nl
y

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Practice 9: Creating Statement and Row Triggers (continued)

Oracle Database 11g: Develop PL/SQL Program Units A - 121

b) Attempt to delete employees with JOB_ID of SA_REP who are not assigned to a
department.

Hint: This is employee Grant with ID 178.

Open the sol_09_04_b.sql file in the D:\labs\PLPU\solns folder, or
copy and paste the following code in the SQL Worksheet area. Click the Run
Script (F5) icon on the SQL Worksheet toolbar to run the script. The code
and the results are shown below. To compile the trigger, right-click the
trigger’s name in the Object Navigation tree, and then click Compile.

DELETE FROM employees
WHERE job_id = 'SA_REP'
 AND department_id IS NULL;

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 O

R
AC

LE
 C

O
R

PO
R

AT
IO

N
 u

se
 o

nl
y

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Oracle Database 11g: Develop PL/SQL Program Units A - 122

Practices for Lesson 10

Practice 10: Managing Data Integrity Rules and Mutating Table
Exceptions
In this practice, you implement a simple business rule for ensuring data integrity of
employees’ salaries with respect to the valid salary range for their jobs. You create a
trigger for this rule. During this process, your new triggers cause a cascading effect with
triggers created in the practice section of the previous lesson. The cascading effect results
in a mutating table exception on the JOBS table. You then create a PL/SQL package and
additional triggers to solve the mutating table issue.

1) Employees receive an automatic increase in salary if the minimum salary for a job is
increased to a value larger than their current salaries. Implement this requirement
through a package procedure called by a trigger on the JOBS table. When you
attempt to update the minimum salary in the JOBS table and try to update the
employees’ salaries, the CHECK_SALARY trigger attempts to read the JOBS table,
which is subject to change, and you get a mutating table exception that is resolved by
creating a new package and additional triggers.

a. Update your EMP_PKG package (that you last updated in Practice 8) as
follows:

i. Add a procedure called SET_SALARY that updates the employees’
salaries.

ii. The SET_SALARY procedure accepts the following two parameters:
The job ID for those salaries that may have to be updated, and the new
minimum salary for the job ID

Open the sol_10_01_a.sql file in the D:\labs\PLPU\solns folder, or
copy and paste the following code in the SQL Worksheet area. Click the Run
Script (F5) icon on the SQL Worksheet toolbar to run the script. The code and
the results are shown as follows. To compile the trigger, right-click the package’s
name in the Object Navigation tree, and then click Compile. The newly added
code is highlighted in bold letters in the following code box.

-- Package SPECIFICATION

CREATE OR REPLACE PACKAGE emp_pkg IS

 TYPE emp_tab_type IS TABLE OF employees%ROWTYPE;

 PROCEDURE add_employee(
 p_first_name employees.first_name%TYPE,
 p_last_name employees.last_name%TYPE,
 p_email employees.email%TYPE,
 p_job employees.job_id%TYPE DEFAULT 'SA_REP',
 p_mgr employees.manager_id%TYPE DEFAULT 145,

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 O

R
AC

LE
 C

O
R

PO
R

AT
IO

N
 u

se
 o

nl
y

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Practice 10: Managing Data Integrity Rules and Mutating Table
Exceptions (continued)

Oracle Database 11g: Develop PL/SQL Program Units A - 123

 p_sal employees.salary%TYPE DEFAULT 1000,
 p_comm employees.commission_pct%TYPE DEFAULT 0,
 p_deptid employees.department_id%TYPE DEFAULT 30);

 PROCEDURE add_employee(
 p_first_name employees.first_name%TYPE,
 p_last_name employees.last_name%TYPE,
 p_deptid employees.department_id%TYPE);

 PROCEDURE get_employee(
 p_empid IN employees.employee_id%TYPE,
 p_sal OUT employees.salary%TYPE,
 p_job OUT employees.job_id%TYPE);

 FUNCTION get_employee(p_emp_id employees.employee_id%type)
 return employees%rowtype;

 FUNCTION get_employee(p_family_name
employees.last_name%type)
 return employees%rowtype;

 PROCEDURE get_employees(p_dept_id
employees.department_id%type);

 PROCEDURE init_departments;

 PROCEDURE print_employee(p_rec_emp employees%rowtype);

 PROCEDURE show_employees;

 /* New set_salary procedure */

 PROCEDURE set_salary(p_jobid VARCHAR2, p_min_salary NUMBER);

END emp_pkg;
/
SHOW ERRORS

-- Package BODY

CREATE OR REPLACE PACKAGE BODY emp_pkg IS
 TYPE boolean_tab_type IS TABLE OF BOOLEAN
 INDEX BY BINARY_INTEGER;

 valid_departments boolean_tab_type;
 emp_table emp_tab_type;

 FUNCTION valid_deptid(p_deptid IN
departments.department_id%TYPE)
 RETURN BOOLEAN;

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 O

R
AC

LE
 C

O
R

PO
R

AT
IO

N
 u

se
 o

nl
y

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Practice 10: Managing Data Integrity Rules and Mutating Table
Exceptions (continued)

Oracle Database 11g: Develop PL/SQL Program Units A - 124

 PROCEDURE add_employee(
 p_first_name employees.first_name%TYPE,
 p_last_name employees.last_name%TYPE,
 p_email employees.email%TYPE,
 p_job employees.job_id%TYPE DEFAULT 'SA_REP',
 p_mgr employees.manager_id%TYPE DEFAULT 145,
 p_sal employees.salary%TYPE DEFAULT 1000,
 p_comm employees.commission_pct%TYPE DEFAULT 0,
 p_deptid employees.department_id%TYPE DEFAULT 30) IS

 PROCEDURE audit_newemp IS
 PRAGMA AUTONOMOUS_TRANSACTION;
 user_id VARCHAR2(30) := USER;
 BEGIN
 INSERT INTO log_newemp (entry_id, user_id, log_time,
name)
 VALUES (log_newemp_seq.NEXTVAL, user_id,
sysdate,p_first_name||' '||p_last_name);
 COMMIT;
 END audit_newemp;

 BEGIN -- add_employee
 IF valid_deptid(p_deptid) THEN
 audit_newemp;
 INSERT INTO employees(employee_id, first_name,
last_name, email,
 job_id, manager_id, hire_date, salary, commission_pct,
department_id)
 VALUES (employees_seq.NEXTVAL, p_first_name,
p_last_name, p_email,
 p_job, p_mgr, TRUNC(SYSDATE), p_sal, p_comm,
p_deptid);
 ELSE
 RAISE_APPLICATION_ERROR (-20204, 'Invalid department ID.
Try again.');
 END IF;
 END add_employee;

 PROCEDURE add_employee(
 p_first_name employees.first_name%TYPE,
 p_last_name employees.last_name%TYPE,
 p_deptid employees.department_id%TYPE) IS
 p_email employees.email%type;
 BEGIN
 p_email := UPPER(SUBSTR(p_first_name, 1,
1)||SUBSTR(p_last_name, 1, 7));
 add_employee(p_first_name, p_last_name, p_email, p_deptid
=> p_deptid);
 END;

 PROCEDURE get_employee(

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 O

R
AC

LE
 C

O
R

PO
R

AT
IO

N
 u

se
 o

nl
y

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Practice 10: Managing Data Integrity Rules and Mutating Table
Exceptions (continued)

Oracle Database 11g: Develop PL/SQL Program Units A - 125

 p_empid IN employees.employee_id%TYPE,
 p_sal OUT employees.salary%TYPE,
 p_job OUT employees.job_id%TYPE) IS
 BEGIN
 SELECT salary, job_id
 INTO p_sal, p_job
 FROM employees
 WHERE employee_id = p_empid;
 END get_employee;

 FUNCTION get_employee(p_emp_id employees.employee_id%type)
 return employees%rowtype IS
 rec_emp employees%rowtype;
 BEGIN
 SELECT * INTO rec_emp
 FROM employees
 WHERE employee_id = p_emp_id;
 RETURN rec_emp;
 END;

 FUNCTION get_employee(p_family_name
employees.last_name%type)
 return employees%rowtype IS
 rec_emp employees%rowtype;
 BEGIN
 SELECT * INTO rec_emp
 FROM employees
 WHERE last_name = p_family_name;
 RETURN rec_emp;
 END;

 PROCEDURE get_employees(p_dept_id
employees.department_id%type) IS
 BEGIN
 SELECT * BULK COLLECT INTO emp_table
 FROM EMPLOYEES
 WHERE department_id = p_dept_id;
 END;

 PROCEDURE init_departments IS
 BEGIN
 FOR rec IN (SELECT department_id FROM departments)
 LOOP
 valid_departments(rec.department_id) := TRUE;
 END LOOP;
 END;

 PROCEDURE print_employee(p_rec_emp employees%rowtype) IS
 BEGIN
 DBMS_OUTPUT.PUT_LINE(p_rec_emp.department_id ||' '||
 p_rec_emp.employee_id||' '||

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 O

R
AC

LE
 C

O
R

PO
R

AT
IO

N
 u

se
 o

nl
y

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Practice 10: Managing Data Integrity Rules and Mutating Table
Exceptions (continued)

Oracle Database 11g: Develop PL/SQL Program Units A - 126

 p_rec_emp.first_name||' '||
 p_rec_emp.last_name||' '||
 p_rec_emp.job_id||' '||
 p_rec_emp.salary);
 END;

 PROCEDURE show_employees IS
 BEGIN
 IF emp_table IS NOT NULL THEN
 DBMS_OUTPUT.PUT_LINE('Employees in Package table');
 FOR i IN 1 .. emp_table.COUNT
 LOOP
 print_employee(emp_table(i));
 END LOOP;
 END IF;
 END show_employees;

 FUNCTION valid_deptid(p_deptid IN
departments.department_id%TYPE)
 RETURN BOOLEAN IS
 v_dummy PLS_INTEGER;
 BEGIN
 RETURN valid_departments.exists(p_deptid);
 EXCEPTION
 WHEN NO_DATA_FOUND THEN
 RETURN FALSE;
END valid_deptid;

/* New set_salary procedure */

PROCEDURE set_salary(p_jobid VARCHAR2, p_min_salary NUMBER) IS
 CURSOR cur_emp IS
 SELECT employee_id
 FROM employees
 WHERE job_id = p_jobid AND salary < p_min_salary;
 BEGIN
 FOR rec_emp IN cur_emp
 LOOP
 UPDATE employees
 SET salary = p_min_salary
 WHERE employee_id = rec_emp.employee_id;
 END LOOP;
 END set_salary;

BEGIN
 init_departments;
END emp_pkg;

/
SHOW ERRORS

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 O

R
AC

LE
 C

O
R

PO
R

AT
IO

N
 u

se
 o

nl
y

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Practice 10: Managing Data Integrity Rules and Mutating Table
Exceptions (continued)

Oracle Database 11g: Develop PL/SQL Program Units A - 127

b. Create a row trigger named UPD_MINSALARY_TRG on the JOBS table that
invokes the EMP_PKG.SET_SALARY procedure, when the minimum salary
in the JOBS table is updated for a specified job ID.

Open the sol_10_01_b.sql file in the D:\labs\PLPU\solns
folder, or copy and paste the following code in the SQL Worksheet area.
Click the Run Script (F5) icon on the SQL Worksheet toolbar to run the
script. The code and the results are shown below. To compile the trigger,
right-click the trigger’s name in the Object Navigation tree, and then
click Compile. The code and the results are shown below.

CREATE OR REPLACE TRIGGER upd_minsalary_trg
AFTER UPDATE OF min_salary ON JOBS
FOR EACH ROW
BEGIN
 emp_pkg.set_salary(:new.job_id, :new.min_salary);
END;
/
SHOW ERRORS

c. Write a query to display the employee ID, last name, job ID, current salary,
and minimum salary for employees who are programmers—that is, their
JOB_ID is 'IT_PROG'. Then, update the minimum salary in the JOBS table
to increase it by $1,000. What happens?

Open the sol_10_01_c.sql file in the D:\labs\PLPU\solns folder, or
copy and paste the following code in the SQL Worksheet area. Click the Run
Script (F5) icon on the SQL Worksheet toolbar to run the script. The code
and the results are shown below.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 O

R
AC

LE
 C

O
R

PO
R

AT
IO

N
 u

se
 o

nl
y

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Practice 10: Managing Data Integrity Rules and Mutating Table
Exceptions (continued)

Oracle Database 11g: Develop PL/SQL Program Units A - 128

SELECT employee_id, last_name, salary
FROM employees
WHERE job_id = 'IT_PROG';

UPDATE jobs
 SET min_salary = min_salary + 1000
WHERE job_id = 'IT_PROG';

The update of the min_salary column for job 'IT_PROG' fails because the
UPD_MINSALARY_TRG trigger on the JOBS table attempts to update the
employees’ salaries by calling the EMP_PKG.SET_SALARY procedure. The
SET_SALARY procedure causes the CHECK_SALARY_TRG trigger to fire (a
cascading effect). The CHECK_SALARY_TRG calls the CHECK_SALARY
procedure, which attempts to read the JOBS table data, this encountering the
mutating table exception on the JOBS table, which is the table that is subject to
the original update operation.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 O

R
AC

LE
 C

O
R

PO
R

AT
IO

N
 u

se
 o

nl
y

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Practice 10: Managing Data Integrity Rules and Mutating Table
Exceptions (continued)

Oracle Database 11g: Develop PL/SQL Program Units A - 129

2) To resolve the mutating table issue, create a JOBS_PKG package to maintain in
memory a copy of the rows in the JOBS table. Next, modify the CHECK_SALARY
procedure to use the package data rather than issue a query on a table that is mutating
to avoid the exception. However, you must create a BEFORE INSERT OR
UPDATE statement trigger on the EMPLOYEES table to initialize the JOBS_PKG
package state before the CHECK_SALARY row trigger is fired.

a. Create a new package called JOBS_PKG with the following specification:

 PROCEDURE initialize;
 FUNCTION get_minsalary(jobid VARCHAR2) RETURN NUMBER;
 FUNCTION get_maxsalary(jobid VARCHAR2) RETURN NUMBER;

PROCEDURE set_minsalary(jobid VARCHAR2,min_salary
 NUMBER);

 PROCEDURE set_maxsalary(jobid VARCHAR2,max_salary
 NUMBER);

Open the sol_10_02_a.sql file in the D:\labs\PLPU\solns
folder, or copy and paste the following code in the SQL Worksheet area.
Click the Run Script (F5) icon on the SQL Worksheet toolbar to run the
script. The code and the results are shown below. To compile the
package’s specification, right-click the package’s name or body in the
Object Navigator tree, and then Select Compile.

CREATE OR REPLACE PACKAGE jobs_pkg IS
 PROCEDURE initialize;
 FUNCTION get_minsalary(p_jobid VARCHAR2) RETURN NUMBER;
 FUNCTION get_maxsalary(p_jobid VARCHAR2) RETURN NUMBER;
 PROCEDURE set_minsalary(p_jobid VARCHAR2, p_min_salary
NUMBER);
 PROCEDURE set_maxsalary(p_jobid VARCHAR2, p_max_salary
NUMBER);
END jobs_pkg;
/
SHOW ERRORS

b. Implement the body of JOBS_PKG as follows:

i. Declare a private PL/SQL index-by table called jobs_tab_type
that is indexed by a string type based on the JOBS.JOB_ID%TYPE.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 O

R
AC

LE
 C

O
R

PO
R

AT
IO

N
 u

se
 o

nl
y

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Practice 10: Managing Data Integrity Rules and Mutating Table
Exceptions (continued)

Oracle Database 11g: Develop PL/SQL Program Units A - 130

ii. Declare a private variable called jobstab based on the
jobs_tab_type.

iii. The INITIALIZE procedure reads the rows in the JOBS table by
using a cursor loop, and uses the JOB_ID value for the jobstab
index that is assigned its corresponding row.

iv. The GET_MINSALARY function uses a p_jobid parameter as an
index to the jobstab and returns the min_salary for that element.

v. The GET_MAXSALARY function uses a p_jobid parameter as an
index to the jobstab and returns the max_salary for that element.

vi. The SET_MINSALARY procedure uses its p_jobid as an index to
the jobstab to set the min_salary field of its element to the value
in the min_salary parameter.

vii. The SET_MAXSALARY procedure uses its p_jobid as an index to
the jobstab to set the max_salary field of its element to the value
in the max_salary parameter.

Open the sol_10_02_b.sql file in the D:\labs\PLPU\solns
folder, or copy and paste the following code in the SQL Worksheet area.
Click the Run Script (F5) icon on the SQL Worksheet toolbar to run the
script. The code and the results are shown below. To compile the
package’s body, right-click the package’s name or body in the Object
Navigator tree, and then Select Compile.

CREATE OR REPLACE PACKAGE BODY jobs_pkg IS
 TYPE jobs_tab_type IS TABLE OF jobs%rowtype
 INDEX BY jobs.job_id%type;
 jobstab jobs_tab_type;

 PROCEDURE initialize IS
 BEGIN
 FOR rec_job IN (SELECT * FROM jobs)
 LOOP
 jobstab(rec_job.job_id) := rec_job;
 END LOOP;
 END initialize;

 FUNCTION get_minsalary(p_jobid VARCHAR2) RETURN NUMBER IS
 BEGIN
 RETURN jobstab(p_jobid).min_salary;
 END get_minsalary;

 FUNCTION get_maxsalary(p_jobid VARCHAR2) RETURN NUMBER IS
 BEGIN
 RETURN jobstab(p_jobid).max_salary;
 END get_maxsalary;

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 O

R
AC

LE
 C

O
R

PO
R

AT
IO

N
 u

se
 o

nl
y

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Practice 10: Managing Data Integrity Rules and Mutating Table
Exceptions (continued)

Oracle Database 11g: Develop PL/SQL Program Units A - 131

 PROCEDURE set_minsalary(p_jobid VARCHAR2, p_min_salary
NUMBER) IS
 BEGIN
 jobstab(p_jobid).max_salary := p_min_salary;
 END set_minsalary;

 PROCEDURE set_maxsalary(p_jobid VARCHAR2, p_max_salary
NUMBER) IS
 BEGIN
 jobstab(p_jobid).max_salary := p_max_salary;
 END set_maxsalary;

END jobs_pkg;
/
SHOW ERRORS

c. Copy the CHECK_SALARY procedure from Practice 10, Exercise 1a, and
modify the code by replacing the query on the JOBS table with statements to
set the local minsal and maxsal variables with values from the
JOBS_PKG data by calling the appropriate GET_*SALARY functions. This
step should eliminate the mutating trigger exception.

Open the sol_10_02_c.sql file in the D:\labs\PLPU\solns
folder, or copy and paste the following code in the SQL Worksheet area.
Click the Run Script (F5) icon on the SQL Worksheet toolbar to run the
script. The code and the results are shown below. To compile the
procedure, right-click the procedure’s name in the Object Navigator, and
then select Compile.

CREATE OR REPLACE PROCEDURE check_salary (p_the_job VARCHAR2,
p_the_salary NUMBER) IS
 v_minsal jobs.min_salary%type;
 v_maxsal jobs.max_salary%type;
BEGIN
 /*

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 O

R
AC

LE
 C

O
R

PO
R

AT
IO

N
 u

se
 o

nl
y

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Practice 10: Managing Data Integrity Rules and Mutating Table
Exceptions (continued)

Oracle Database 11g: Develop PL/SQL Program Units A - 132

 ** Commented out to avoid mutating trigger exception on the
JOBS table
 SELECT min_salary, max_salary INTO v_minsal, v_maxsal
 FROM jobs
 WHERE job_id = UPPER(p_the_job);
 */
 v_minsal := jobs_pkg.get_minsalary(UPPER(p_the_job));
 v_maxsal := jobs_pkg.get_maxsalary(UPPER(p_the_job));
 IF p_the_salary NOT BETWEEN v_minsal AND v_maxsal THEN
 RAISE_APPLICATION_ERROR(-20100,
 'Invalid salary $'||p_the_salary||'. '||
 'Salaries for job '|| p_the_job ||
 ' must be between $'|| v_minsal ||' and $' || v_maxsal);
 END IF;
END;
/
SHOW ERRORS

d. Implement a BEFORE INSERT OR UPDATE statement trigger called
INIT_JOBPKG_TRG that uses the CALL syntax to invoke the
JOBS_PKG.INITIALIZE procedure to ensure that the package state is
current before the DML operations are performed.

Open the sol_10_02_d.sql file in the D:\labs\PLPU\solns
folder, or copy and paste the following code in the SQL Worksheet area.
Click the Run Script (F5) icon on the SQL Worksheet toolbar to run the
script. The code and the results are shown below. To compile the trigger,
right-click the trigger’s name in the Object Navigator, and then select
Compile.

CREATE OR REPLACE TRIGGER init_jobpkg_trg
BEFORE INSERT OR UPDATE ON jobs
CALL jobs_pkg.initialize
/
SHOW ERRORS

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 O

R
AC

LE
 C

O
R

PO
R

AT
IO

N
 u

se
 o

nl
y

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Practice 10: Managing Data Integrity Rules and Mutating Table
Exceptions (continued)

Oracle Database 11g: Develop PL/SQL Program Units A - 133

e. Test the code changes by executing the query to display the employees who
are programmers, and then issue an update statement to increase the minimum
salary of the IT_PROG job type by 1,000 in the JOBS table. Follow this up
with a query on the employees with the IT_PROG job type to check the
resulting changes. Which employees’ salaries have been set to the minimum
for their jobs?

Open the sol_10_02_e.sql file in the D:\labs\PLPU\solns
folder, or copy and paste the following code in the SQL Worksheet area.
Click the Run Script (F5) icon on the SQL Worksheet toolbar to run the
script. The code and the results are shown below.

SELECT employee_id, last_name, salary
FROM employees
WHERE job_id = 'IT_PROG';

UPDATE jobs
 SET min_salary = min_salary + 1000
WHERE job_id = 'IT_PROG';

SELECT employee_id, last_name, salary
FROM employees
WHERE job_id = 'IT_PROG';

 O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 O

R
AC

LE
 C

O
R

PO
R

AT
IO

N
 u

se
 o

nl
y

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Practice 10: Managing Data Integrity Rules and Mutating Table
Exceptions (continued)

Oracle Database 11g: Develop PL/SQL Program Units A - 134

The employees with last names Austin, Pataballa, and Lorentz have all
had their salaries updated. No exception occurred during this process, and you
implemented a solution for the mutating table trigger exception.

3) Because the CHECK_SALARY procedure is fired by CHECK_SALARY_TRG before
inserting or updating an employee, you must check whether this still works as
expected.

a. Test this by adding a new employee using EMP_PKG.ADD_EMPLOYEE with
the following parameters: (‘Steve’, ‘Morse’, ‘SMORSE’, and
sal => 6500). What happens?

Open the sol_10_03_a.sql file in the D:\labs\PLPU\solns folder, or
copy and paste the following code in the SQL Worksheet area. Click the Run
Script (F5) icon on the SQL Worksheet toolbar to run the script. The code
and the results are shown below.

EXECUTE emp_pkg.add_employee('Steve', 'Morse', 'SMORSE', p_sal
=> 6500)

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 O

R
AC

LE
 C

O
R

PO
R

AT
IO

N
 u

se
 o

nl
y

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Practice 10: Managing Data Integrity Rules and Mutating Table
Exceptions (continued)

Oracle Database 11g: Develop PL/SQL Program Units A - 135

b. To correct the problem encountered when adding or updating an employee:

i. Create a BEFORE INSERT OR UPDATE statement trigger called
EMPLOYEE_INITJOBS_TRG on the EMPLOYEES table that calls the
JOBS_PKG.INITIALIZE procedure.

ii. Use the CALL syntax in the trigger body.

c. Test the trigger by adding employee Steve Morse again. Confirm the inserted
record in the EMPLOYEES table by displaying the employee ID, first and last
names, salary, job ID, and department ID.

Open the sol_10_03_c.sql file in the D:\labs\PLPU\solns folder, or
copy and paste the following code in the SQL Worksheet area. Click the Run
Script (F5) icon on the SQL Worksheet toolbar to run the script. The code
and the results are shown below.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 O

R
AC

LE
 C

O
R

PO
R

AT
IO

N
 u

se
 o

nl
y

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Oracle Database 11g: Develop PL/SQL Program Units A - 136

Practices for Lesson 11

Practice 11: Using the PL/SQL Compiler Parameters and
Warnings
In this practice, you display the compiler initialization parameters. You then enable
native compilation for your session and compile a procedure. You then suppress all
compiler-warning categories and then restore the original session-warning settings.
Finally, you identify the categories for some compiler-warning message numbers.

1) Create and run a lab_11_01 script to display the following information about
compiler-initialization parameters by using the
USER_PLSQL_OBJECT_SETTINGS data dictionary view. Note the settings for the
ADD_JOB_HISTORY object.
Note: Use the Execute Statement (F9) icon to display the results in the Results tab.

a) Object name

b) Object type

c) The object’s compilation mode

d) The compilation optimization level

Open the sol_11_01.sql file in the D:\labs\PLPU\solns folder, or copy
and paste the following code in the SQL Worksheet area. Click the Execute
Statement (F9) icon on the SQL Worksheet toolbar to run the query. The code
and a sample of the result are shown below.

SELECT name, type,plsql_code_type as code_type,
plsql_optimize_level as opt_lvl
FROM user_plsql_object_settings;

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 O

R
AC

LE
 C

O
R

PO
R

AT
IO

N
 u

se
 o

nl
y

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Practice 11: Using the PL/SQL Compiler Parameters and
Warnings (continued)

Oracle Database 11g: Develop PL/SQL Program Units A - 137

. . .

2) Alter the PLSQL_CODE_TYPE parameter to enable native compilation for your
session, and compile ADD_JOB_HISTORY.

a) Execute the ALTER SESSION command to enable native compilation for the
session.

Open the sol_11_02_a.sql file in the D:\labs\PLPU\solns folder, or
copy and paste the following code in the SQL Worksheet area. Click the Run
Script (F5) icon on the SQL Worksheet toolbar to run the query. The code
and the results are shown below.

ALTER SESSION SET PLSQL_CODE_TYPE = 'NATIVE';

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 O

R
AC

LE
 C

O
R

PO
R

AT
IO

N
 u

se
 o

nl
y

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Practice 11: Using the PL/SQL Compiler Parameters and
Warnings (continued)

Oracle Database 11g: Develop PL/SQL Program Units A - 138

b) Compile the ADD_JOB_HISTORY procedure.

Open the sol_11_02_b.sql file in the D:\labs\PLPU\solns folder, or
copy and paste the following code in the SQL Worksheet area. Click the Run
Script (F5) icon on the SQL Worksheet toolbar to run the query. The code
and the results are shown below.

ALTER PROCEDURE add_job_history COMPILE;

c) Rerun the sol_11_01 script. Note the PLSQL_CODE_TYPE parameter.

SELECT name, type, plsql_code_type as code_type,
plsql_optimize_level as opt_lvl
FROM user_plsql_object_settings;

d) Switch compilation to use interpreted compilation mode as follows:

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 O

R
AC

LE
 C

O
R

PO
R

AT
IO

N
 u

se
 o

nl
y

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Practice 11: Using the PL/SQL Compiler Parameters and
Warnings (continued)

Oracle Database 11g: Develop PL/SQL Program Units A - 139

ALTER SESSION SET PLSQL_CODE_TYPE = 'INTERPRETED';

3) Use the Tools > Preferences > PL/SQL Compiler Options region to disable all
compiler warnings categories.

Select DISABLE for all four PL/SQL compiler warnings categories, and then
click OK.

4) Edit, examine, and execute the lab_11_04.sql script to create the
UNREACHABLE_CODE procedure. Click the Run Script icon (F5) to create the
procedure. Use the procedure name in the Navigation tree to compile the procedure.

Open the sol_11_04.sql file in the D:\labs\PLPU\solns folder, or copy
and paste the following code in the SQL Worksheet area. Click the Run Script
(F5) icon on the SQL Worksheet toolbar to run the query. The code and the
results are shown below.

CREATE OR REPLACE PROCEDURE unreachable_code AS
 c_x CONSTANT BOOLEAN := TRUE;
BEGIN
 IF c_x THEN
 DBMS_OUTPUT.PUT_LINE('TRUE');
 ELSE

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 O

R
AC

LE
 C

O
R

PO
R

AT
IO

N
 u

se
 o

nl
y

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Practice 11: Using the PL/SQL Compiler Parameters and
Warnings (continued)

Oracle Database 11g: Develop PL/SQL Program Units A - 140

 DBMS_OUTPUT.PUT_LINE('FALSE');
 END IF;
END unreachable_code;
/

5) What are the compiler warnings that are displayed in the Compiler – Log tab, if any?

None, because you disabled the compiler warnings in step 3.

6) Enable all compiler-warning messages for this session using the Preferences window.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 O

R
AC

LE
 C

O
R

PO
R

AT
IO

N
 u

se
 o

nl
y

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Practice 11: Using the PL/SQL Compiler Parameters and
Warnings (continued)

Oracle Database 11g: Develop PL/SQL Program Units A - 141

Select ENABLE for all four PL/SQL compiler warnings, and then click OK.

7) Recompile the UNREACHABLE_CODE procedure using the Object Navigation tree.
What compiler warnings are displayed, if any?

Right-click the procedure’s name in the Object Navigation tree, and then select
Compile. Note the messages displayed in the Messages and Compiler subtabs in
the Compiler – Log tab.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 O

R
AC

LE
 C

O
R

PO
R

AT
IO

N
 u

se
 o

nl
y

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Practice 11: Using the PL/SQL Compiler Parameters and
Warnings (continued)

Oracle Database 11g: Develop PL/SQL Program Units A - 142

8) Use the USER_ERRORS data dictionary view to display the compiler-warning
messages details as follows.

DESCRIBE user_errors

SELECT *
FROM user_errors;

9) Create a script named warning_msgs that uses the EXECUTE DBMS_OUTPUT
and the DBMS_WARNING packages to identify the categories for the following
compiler-warning message numbers: 5050, 6075, and 7100.

Open the sol_11_09.sql file in the D:\labs\PLPU\solns folder, or copy
and paste the following code in the SQL Worksheet area. Click the Run Script
(F5) icon on the SQL Worksheet toolbar to run the query. The code and the
results are shown below.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 O

R
AC

LE
 C

O
R

PO
R

AT
IO

N
 u

se
 o

nl
y

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Practice 11: Using the PL/SQL Compiler Parameters and
Warnings (continued)

Oracle Database 11g: Develop PL/SQL Program Units A - 143

EXECUTE
DBMS_OUTPUT.PUT_LINE(DBMS_WARNING.GET_CATEGORY(&message));

EXECUTE
DBMS_OUTPUT.PUT_LINE(DBMS_WARNING.GET_CATEGORY(&message));

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 O

R
AC

LE
 C

O
R

PO
R

AT
IO

N
 u

se
 o

nl
y

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Practice 11: Using the PL/SQL Compiler Parameters and
Warnings (continued)

Oracle Database 11g: Develop PL/SQL Program Units A - 144

EXECUTE
DBMS_OUTPUT.PUT_LINE(DBMS_WARNING.GET_CATEGORY(&message));

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 O

R
AC

LE
 C

O
R

PO
R

AT
IO

N
 u

se
 o

nl
y

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Oracle Database 11g: Develop PL/SQL Program Units A - 145

Practices for Lesson 12

Practice 12: Using Conditional Compilation
In this practice, you create a package and a procedure that use conditional compilation. In
addition, you use the appropriate package to retrieve the postprocessed source text of the
PL/SQL unit. You also obfuscate some PL/SQL code.

1) Examine and then execute the lab_12_01.sql script. This script sets flags for
displaying debugging code and tracing information. The script also creates the
my_pkg package and the circle_area procedure.

Open the sol_12_01.sql file in the D:\labs\PLPU\solns folder, or copy
and paste the following code in the SQL Worksheet area. Click the Run Script
(F5) icon on the SQL Worksheet toolbar to run the script. The code and the
results are shown below. To compile the package, right-click the package’s name
in the Object Navigator tree, and then select Compile. To compile the procedure,
right-click the procedure’s name in the Object Navigator tree, and then select
Compile.

ALTER SESSION SET PLSQL_CCFLAGS = 'my_debug:FALSE,
my_tracing:FALSE';

CREATE OR REPLACE PACKAGE my_pkg AS
 SUBTYPE my_real IS
 $IF DBMS_DB_VERSION.VERSION < 10 $THEN NUMBER; -- check
database version
 $ELSE BINARY_DOUBLE;
 $END
 my_pi my_real; my_e my_real;
END my_pkg;
/
CREATE OR REPLACE PACKAGE BODY my_pkg AS
BEGIN
 $IF DBMS_DB_VERSION.VERSION < 10 $THEN
 my_pi := 3.14016408289008292431940027343666863227;
 my_e := 2.71828182845904523536028747135266249775;
 $ELSE
 my_pi := 3.14016408289008292431940027343666863227d;
 my_e := 2.71828182845904523536028747135266249775d;
 $END
END my_pkg;
/

CREATE OR REPLACE PROCEDURE circle_area(radius my_pkg.my_real)
IS
 my_area my_pkg.my_real;
 my_datatype VARCHAR2(30);
BEGIN
 my_area := my_pkg.my_pi * radius;
 DBMS_OUTPUT.PUT_LINE('Radius: ' || TO_CHAR(radius)

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 O

R
AC

LE
 C

O
R

PO
R

AT
IO

N
 u

se
 o

nl
y

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Practice 12: Using Conditional Compilation (continued)

Oracle Database 11g: Develop PL/SQL Program Units A - 146

 || ' Area: ' || TO_CHAR(my_area));
 $IF $$my_debug $THEN
-- if my_debug is TRUE, run some debugging code

SELECT DATA_TYPE INTO my_datatype FROM USER_ARGUMENTS
 WHERE OBJECT_NAME = 'CIRCLE_AREA' AND ARGUMENT_NAME =
'RADIUS';
 DBMS_OUTPUT.PUT_LINE('Datatype of the RADIUS argument is:
' || my_datatype);
 $END
END;
/

2) Use the DBMS_PREPROCESSOR subprogram to retrieve the postprocessed source
text of the PL/SQL unit after processing the conditional compilation directives from
lab_12_01.

Open the sol_12_02.sql file in the D:\labs\PLPU\solns folder, or copy
and paste the following code in the SQL Worksheet area. Click the Run Script
(F5) icon on the SQL Worksheet toolbar to run the script. The code and the
results are shown below.

-- The code example assumes you are the student with the
-- account ora70. Substitute ora70 with your account
-- information.

CALL DBMS_PREPROCESSOR.PRINT_POST_PROCESSED_SOURCE('PACKAGE',
'ORA70', 'MY_PKG');

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 O

R
AC

LE
 C

O
R

PO
R

AT
IO

N
 u

se
 o

nl
y

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Practice 12: Using Conditional Compilation (continued)

Oracle Database 11g: Develop PL/SQL Program Units A - 147

3) Create a PL/SQL script that uses the DBMS_DB_VERSION constant with conditional
compilation. The code should test for the Oracle database version:

a) If the database version is less than or equal to 10.1, it should display the following
error message:
Unsupported database release.

b) If the database version is 11.1 or higher, it should display the following message:
Release 11.1 is supported.

Open the sol_12_03.sql file in the D:\labs\PLPU\solns folder, or
copy and paste the following code in the SQL Worksheet area. Click the Run
Script (F5) icon on the SQL Worksheet toolbar to run the script. The code
and the results are shown below.

BEGIN
$IF DBMS_DB_VERSION.VER_LE_10_1 $THEN
$ERROR 'unsupported database release.' $END

$ELSE
 DBMS_OUTPUT.PUT_LINE ('Release ' || DBMS_DB_VERSION.VERSION
|| '.' ||
 DBMS_DB_VERSION.RELEASE || ' is
supported.');
 -- Note that this COMMIT syntax is newly supported in 10.2
 COMMIT WRITE IMMEDIATE NOWAIT;
$END
END;
/

4) Consider the following code in the lab_12_04.sql script that uses
CREATE_WRAPPED to dynamically create and wrap a package specification and a
package body in a database. Edit the lab_12_04.sql script to add the needed
code to obfuscate the PL/SQL code. Save and then execute the script.

DECLARE
-- the package_text variable contains the text to create
-- the package spec and body
 package_text VARCHAR2(32767);
 FUNCTION generate_spec (pkgname VARCHAR2) RETURN VARCHAR2
AS
 BEGIN
 RETURN 'CREATE PACKAGE ' || pkgname || ' AS
 PROCEDURE raise_salary (emp_id NUMBER, amount NUMBER);

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 O

R
AC

LE
 C

O
R

PO
R

AT
IO

N
 u

se
 o

nl
y

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Practice 12: Using Conditional Compilation (continued)

Oracle Database 11g: Develop PL/SQL Program Units A - 148

 PROCEDURE fire_employee (emp_id NUMBER);
 END ' || pkgname || ';';
 END generate_spec;
 FUNCTION generate_body (pkgname VARCHAR2) RETURN VARCHAR2
 AS
 BEGIN
 RETURN 'CREATE PACKAGE BODY ' || pkgname || ' AS
 PROCEDURE raise_salary (emp_id NUMBER, amount
NUMBER) IS
 BEGIN
 UPDATE employees SET salary = salary + amount
WHERE employee_id = emp_id;
 END raise_salary;

PROCEDURE fire_employee (emp_id NUMBER) IS
 BEGIN
 DELETE FROM employees WHERE employee_id = emp_id;
 END fire_employee;
 END ' || pkgname || ';';
 END generate_body;

a) Generate the package specification while passing the emp_actions parameter.

b) Create and wrap the package specification.

c) Generate the package body.

d) Create and wrap the package body.

e) Call a procedure from the wrapped package as follows:

CALL emp_actions.raise_salary(120, 100);

f) Use the USER_SOURCE data dictionary view to verify that the code is hidden as
follows:

SELECT text FROM USER_SOURCE WHERE name = 'EMP_ACTIONS';

Open the soln_12_04.sql file in the D:\labs\PLPU\solns folder, or
copy and paste the following code in the SQL Worksheet area. Click the Run
Script (F5) icon on the SQL Worksheet toolbar to run the script. The code
and the results are shown below.

DECLARE
-- the package_text variable contains the text to create the
package spec and body
 package_text VARCHAR2(32767);
 FUNCTION generate_spec (pkgname VARCHAR2) RETURN VARCHAR2 AS
 BEGIN
 RETURN 'CREATE PACKAGE ' || pkgname || ' AS
 PROCEDURE raise_salary (emp_id NUMBER, amount NUMBER);
 PROCEDURE fire_employee (emp_id NUMBER);
 END ' || pkgname || ';';

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 O

R
AC

LE
 C

O
R

PO
R

AT
IO

N
 u

se
 o

nl
y

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Practice 12: Using Conditional Compilation (continued)

Oracle Database 11g: Develop PL/SQL Program Units A - 149

 END generate_spec;
 FUNCTION generate_body (pkgname VARCHAR2) RETURN VARCHAR2 AS
 BEGIN
 RETURN 'CREATE PACKAGE BODY ' || pkgname || ' AS
 PROCEDURE raise_salary (emp_id NUMBER, amount NUMBER)
IS
 BEGIN
UPDATE employees SET salary = salary + amount WHERE
employee_id = emp_id;
 END raise_salary;
 PROCEDURE fire_employee (emp_id NUMBER) IS
 BEGIN
 DELETE FROM employees WHERE employee_id = emp_id;
 END fire_employee;
 END ' || pkgname || ';';
 END generate_body;

BEGIN

-- generate package spec
 package_text := generate_spec('emp_actions');

-- create and wrap the package spec
 SYS.DBMS_DDL.CREATE_WRAPPED(package_text);

-- generate package body
 package_text := generate_body('emp_actions');

-- create and wrap the package body
 SYS.DBMS_DDL.CREATE_WRAPPED(package_text);
END;
/

-- call a procedure from the wrapped package

CALL emp_actions.raise_salary(120, 100);

-- Use the USER_SOURCE data dictionary view to verify that --
the code is hidden as follows:

SELECT text FROM USER_SOURCE WHERE name = 'EMP_ACTIONS';

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 O

R
AC

LE
 C

O
R

PO
R

AT
IO

N
 u

se
 o

nl
y

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Practice 12: Using Conditional Compilation (continued)

Oracle Database 11g: Develop PL/SQL Program Units A - 150

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 O

R
AC

LE
 C

O
R

PO
R

AT
IO

N
 u

se
 o

nl
y

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Oracle Database 11g: Develop PL/SQL Program Units A - 151

Practices for Lesson 13

Practice 13: Managing Dependencies in Your Schema
In this practice, you use the DEPTREE_FILL procedure and the IDEPTREE view to
investigate dependencies in your schema. In addition, you recompile invalid procedures,
functions, packages, and views.

1) Create a tree structure showing all dependencies involving your add_employee
procedure and your valid_deptid function.

Note: add_employee and valid_deptid were created in the lesson titled
“Creating Functions.” You can run the solution scripts for Practice 3 if you need to
create the procedure and function.

a) Load and execute the utldtree.sql script, which is located in the
D:\lab\labs folder.

Open the utldtree.sql file in the D:\labs\PLPU\solns folder, or
copy and paste the following code in the SQL Worksheet area. Click the Run
Script (F5) icon on the SQL Worksheet toolbar to run the script. The code
and the results are shown below.

Rem
Rem $Header: utldtree.sql,v 1.2 1992/10/26 16:24:44 RKOOI Stab
$
Rem
Rem Copyright (c) 1991 by Oracle Corporation
Rem NAME
Rem deptree.sql - Show objects recursively dependent on
Rem given object
Rem DESCRIPTION
Rem This procedure, view and temp table will allow you to
see Rem all objects that are (recursively) dependent on the
given Rem object.
Rem Note: you will only see objects for which you have
Rem permission.
Rem Examples:
Rem execute deptree_fill('procedure', 'scott', 'billing');
Rem select * from deptree order by seq#;
Rem
Rem execute deptree_fill('table', 'scott', 'emp');
Rem select * from deptree order by seq#;
Rem

Rem execute deptree_fill('package body', 'scott',
Rem 'accts_payable');
Rem select * from deptree order by seq#;
Rem

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 O

R
AC

LE
 C

O
R

PO
R

AT
IO

N
 u

se
 o

nl
y

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Practice 13: Managing Dependencies in Your Schema
(continued)

Oracle Database 11g: Develop PL/SQL Program Units A - 152

Rem A prettier way to display this information than
Rem select * from deptree order by seq#;
Rem is
Rem select * from ideptree;
Rem This shows the dependency relationship via indenting.
Rem Notice that no order by clause is needed with ideptree.
Rem RETURNS
Rem
Rem NOTES
Rem Run this script once for each schema that needs this
Rem utility.
Rem MODIFIED (MM/DD/YY)
Rem rkooi 10/26/92 - owner -> schema for SQL2
Rem glumpkin 10/20/92 - Renamed from DEPTREE.SQL
Rem rkooi 09/02/92 - change ORU errors
Rem rkooi 06/10/92 - add rae errors
Rem rkooi 01/13/92 - update for sys vs. regular user
Rem rkooi 01/10/92 - fix ideptree
Rem rkooi 01/10/92 - Better formatting, add ideptree
view
Rem rkooi 12/02/91 - deal with cursors
Rem rkooi 10/19/91 - Creation

DROP SEQUENCE deptree_seq
/
CREATE SEQUENCE deptree_seq cache 200
/* cache 200 to make sequence faster */

/
DROP TABLE deptree_temptab
/
CREATE TABLE deptree_temptab
(
 object_id number,
 referenced_object_id number,
 nest_level number,
 seq# number
)
/
CREATE OR REPLACE PROCEDURE deptree_fill (type char, schema
char, name char) IS
 obj_id number;
BEGIN
 DELETE FROM deptree_temptab;
 COMMITT;
 SELECT object_id INTO obj_id FROM all_objects
 WHERE owner = upper(deptree_fill.schema)

AND object_name = upper(deptree_fill.name)
 AND object_type = upper(deptree_fill.type);
 INSERT INTO deptree_temptab

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 O

R
AC

LE
 C

O
R

PO
R

AT
IO

N
 u

se
 o

nl
y

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Practice 13: Managing Dependencies in Your Schema
(continued)

Oracle Database 11g: Develop PL/SQL Program Units A - 153

 VALUES(obj_id, 0, 0, 0);
 INSERT INTO deptree_temptab
 SELECT object_id, referenced_object_id,
 level, deptree_seq.nextval
 FROM public_dependency
 CONNECT BY PRIOR object_id = referenced_object_id
 START WITH referenced_object_id = deptree_fill.obj_id;
EXCEPTION
 WHEN no_data_found then
 raise_application_error(-20000, 'ORU-10013: ' ||
 type || ' ' || schema || '.' || name || ' was not
found.');
END;
/

DROP VIEW deptree
/

SET ECHO ON

REM This view will succeed if current user is sys. This view
REM shows which shared cursors depend on the given object. If
REM the current user is not sys, then this view get an error
REM either about lack of privileges or about the non-existence
of REM table x$kglxs.

SET ECHO OFF
CREATE VIEW sys.deptree
 (nested_level, type, schema, name, seq#)
AS
 SELECT d.nest_level, o.object_type, o.owner, o.object_name,
d.seq#
 FROM deptree_temptab d, dba_objects o
 WHERE d.object_id = o.object_id (+)
UNION ALL
 SELECT d.nest_level+1, 'CURSOR', '<shared>',
'"'||c.kglnaobj||'"', d.seq#+.5
 FROM deptree_temptab d, x$kgldp k, x$kglob g, obj$ o, user$
u, x$kglob c,
 x$kglxs a
 WHERE d.object_id = o.obj#
 AND o.name = g.kglnaobj
 AND o.owner# = u.user#
 AND u.name = g.kglnaown
 AND g.kglhdadr = k.kglrfhdl
 AND k.kglhdadr = a.kglhdadr /* make sure it is not a
transitive */
 AND k.kgldepno = a.kglxsdep /* reference, but a direct
one */
 AND k.kglhdadr = c.kglhdadr
 AND c.kglhdnsp = 0 /* a cursor */

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 O

R
AC

LE
 C

O
R

PO
R

AT
IO

N
 u

se
 o

nl
y

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Practice 13: Managing Dependencies in Your Schema
(continued)

Oracle Database 11g: Develop PL/SQL Program Units A - 154

/

SET ECHO ON

REM This view will succeed if current user is not sys. This
view
REM does *not* show which shared cursors depend on the given
REM object.
REM If the current user is sys then this view will get an
error
REM indicating that the view already exists (since prior view
REM create will have succeeded).

SET ECHO OFF
CREATE VIEW deptree
 (nested_level, type, schema, name, seq#)
AS
 select d.nest_level, o.object_type, o.owner, o.object_name,
d.seq#
 FROM deptree_temptab d, all_objects o
 WHERE d.object_id = o.object_id (+)
/
DROP VIEW ideptree
/
CREATE VIEW ideptree (dependencies)
AS
 SELECT lpad(' ',3*(max(nested_level))) || max(nvl(type, '<no
permission>')
 || ' ' || schema || decode(type, NULL, '', '.') || name)
 FROM deptree
 GROUP BY seq# /* So user can omit sort-by when selecting
from ideptree */
/

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 O

R
AC

LE
 C

O
R

PO
R

AT
IO

N
 u

se
 o

nl
y

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Practice 13: Managing Dependencies in Your Schema
(continued)

Oracle Database 11g: Develop PL/SQL Program Units A - 155

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 O

R
AC

LE
 C

O
R

PO
R

AT
IO

N
 u

se
 o

nl
y

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Practice 13: Managing Dependencies in Your Schema
(continued)

Oracle Database 11g: Develop PL/SQL Program Units A - 156

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 O

R
AC

LE
 C

O
R

PO
R

AT
IO

N
 u

se
 o

nl
y

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Practice 13: Managing Dependencies in Your Schema
(continued)

Oracle Database 11g: Develop PL/SQL Program Units A - 157

b) Execute the deptree_fill procedure for the add_employee procedure.

Open the sol_13_01_b.sql file in the D:\labs\PLPU\solns folder, or
copy and paste the following code in the SQL Worksheet area. Click the Run
Script (F5) icon on the SQL Worksheet toolbar to run the script. The code
and the results are shown below.

EXECUTE deptree_fill('PROCEDURE', USER, 'add_employee')

c) Query the IDEPTREE view to see your results.

Open the sol_13_01_c.sql file in the D:\labs\PLPU\solns folder, or
copy and paste the following code in the SQL Worksheet area. Click the Run
Script (F5) icon on the SQL Worksheet toolbar to run the script. The code
and the results are shown below.

SELECT * FROM IDEPTREE;

d) Execute the deptree_fill procedure for the valid_deptid function.

Open the sol_13_01_d.sql file in the D:\labs\PLPU\solns folder, or
copy and paste the following code in the SQL Worksheet area. Click the Run
Script (F5) icon on the SQL Worksheet toolbar to run the script. The code
and the results are shown below.

EXECUTE deptree_fill('FUNCTION', USER, 'valid_deptid')

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 O

R
AC

LE
 C

O
R

PO
R

AT
IO

N
 u

se
 o

nl
y

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Practice 13: Managing Dependencies in Your Schema
(continued)

Oracle Database 11g: Develop PL/SQL Program Units A - 158

e) Query the IDEPTREE view to see your results.

Open the sol_13_01_e.sql file in the D:\labs\PLPU\solns folder, or
copy and paste the following code in the SQL Worksheet area. Click the
Execute Statement (F9) icon on the SQL Worksheet toolbar to run the script.
The code and the results are shown below.

SELECT * FROM IDEPTREE;

If you have time, complete the following exercise:

2) Dynamically validate invalid objects.

a) Make a copy of your EMPLOYEES table, called EMPS.

Open the sol_13_02_a.sql file in the D:\labs\PLPU\solns folder, or
copy and paste the following code in the SQL Worksheet area. Click the Run
Script (F5) icon on the SQL Worksheet toolbar to run the script. The code
and the results are shown below.

CREATE TABLE emps AS
 SELECT * FROM employees;

b) Alter your EMPLOYEES table and add the column TOTSAL with data type
NUMBER(9,2).

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 O

R
AC

LE
 C

O
R

PO
R

AT
IO

N
 u

se
 o

nl
y

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Practice 13: Managing Dependencies in Your Schema
(continued)

Oracle Database 11g: Develop PL/SQL Program Units A - 159

Open the sol_13_02_b.sql file in the D:\labs\PLPU\solns folder, or
copy and paste the following code in the SQL Worksheet area. Click the Run
Script (F5) icon on the SQL Worksheet toolbar to run the script. The code
and the results are shown below.

ALTER TABLE employees
 ADD (totsal NUMBER(9,2));

c) Create and save a query to display the name, type, and status of all invalid objects.

Open the sol_13_02_c.sql file in the D:\labs\PLPU\solns folder, or
copy and paste the following code in the SQL Worksheet area. Click the
Execute Statement (F9) icon on the SQL Worksheet toolbar to run the script.
The code and the results are shown below.

SELECT object_name, object_type, status
FROM USER_OBJECTS
WHERE status = 'INVALID';

 . . .

d) In the compile_pkg (created in Practice 7 in the lesson titled “Using Dynamic
SQL”), add a procedure called recompile that recompiles all invalid
procedures, functions, and packages in your schema. Use Native Dynamic SQL to
alter the invalid object type and compile it.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 O

R
AC

LE
 C

O
R

PO
R

AT
IO

N
 u

se
 o

nl
y

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Practice 13: Managing Dependencies in Your Schema
(continued)

Oracle Database 11g: Develop PL/SQL Program Units A - 160

Open the sol_13_02_d.sql file in the D:\labs\PLPU\solns folder, or
copy and paste the following code in the SQL Worksheet area. Click the Run
Script (F5) icon on the SQL Worksheet toolbar to run the script. The code
and the results are shown below. The newly added code is highlighted in bold
letters in the following code box.

CREATE OR REPLACE PACKAGE compile_pkg IS
 PROCEDURE make(name VARCHAR2);
 PROCEDURE recompile;
END compile_pkg;
/
SHOW ERRORS

CREATE OR REPLACE PACKAGE BODY compile_pkg IS

 PROCEDURE execute(stmt VARCHAR2) IS
 BEGIN
 DBMS_OUTPUT.PUT_LINE(stmt);
 EXECUTE IMMEDIATE stmt;
 END;

 FUNCTION get_type(name VARCHAR2) RETURN VARCHAR2 IS
 proc_type VARCHAR2(30) := NULL;
 BEGIN
 /*
 * The ROWNUM = 1 is added to the condition
 * to ensure only one row is returned if the
 * name represents a PACKAGE, which may also
 * have a PACKAGE BODY. In this case, we can
 * only compile the complete package, but not
 * the specification or body as separate
 * components.
 */
 SELECT object_type INTO proc_type
 FROM user_objects
 WHERE object_name = UPPER(name)
 AND ROWNUM = 1;
 RETURN proc_type;
 EXCEPTION
 WHEN NO_DATA_FOUND THEN
 RETURN NULL;
 END;

 PROCEDURE make(name VARCHAR2) IS
 stmt VARCHAR2(100);
 proc_type VARCHAR2(30) := get_type(name);
 BEGIN
 IF proc_type IS NOT NULL THEN
 stmt := 'ALTER '|| proc_type ||' '|| name ||' COMPILE';

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 O

R
AC

LE
 C

O
R

PO
R

AT
IO

N
 u

se
 o

nl
y

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Practice 13: Managing Dependencies in Your Schema
(continued)

Oracle Database 11g: Develop PL/SQL Program Units A - 161

 execute(stmt);
 ELSE
 RAISE_APPLICATION_ERROR(-20001,
 'Subprogram '''|| name ||''' does not exist');
 END IF;
 END make;

 PROCEDURE recompile IS
 stmt VARCHAR2(200);
 obj_name user_objects.object_name%type;
 obj_type user_objects.object_type%type;
 BEGIN
 FOR objrec IN (SELECT object_name, object_type
 FROM user_objects
 WHERE status = 'INVALID'
 AND object_type <> 'PACKAGE BODY')
 LOOP
 stmt := 'ALTER '|| objrec.object_type ||' '||
 objrec.object_name ||' COMPILE';
 execute(stmt);
 END LOOP;
 END recompile;

END compile_pkg;
/
SHOW ERRORS

e) Execute the compile_pkg.recompile procedure.

Open the sol_13_02_e.sql file in the D:\labs\PLPU\solns folder, or
copy and paste the following code in the SQL Worksheet area. Click the Run
Script (F5) icon on the SQL Worksheet toolbar to run the script. The code
and the results are shown below.

EXECUTE compile_pkg.recompile

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 O

R
AC

LE
 C

O
R

PO
R

AT
IO

N
 u

se
 o

nl
y

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Practice 13: Managing Dependencies in Your Schema
(continued)

Oracle Database 11g: Develop PL/SQL Program Units A - 162

f) Run the script file that you created in step 3 c. to check the status column value.
Do you still have objects with an INVALID status?

Open the sol_13_02_f.sql file in the D:\labs\PLPU\solns folder, or
copy and paste the following code in the SQL Worksheet area. Click the Run
Script (F5) icon on the SQL Worksheet toolbar to run the script. The code
and the results are shown below.

SELECT object_name, object_type, status
FROM USER_OBJECTS
WHERE status = 'INVALID';

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 O

R
AC

LE
 C

O
R

PO
R

AT
IO

N
 u

se
 o

nl
y

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Copyright © 2009, Oracle. All rights reserved.

Table Descriptions

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 O

R
AC

LE
 C

O
R

PO
R

AT
IO

N
 u

se
 o

nl
y

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Oracle Database 11g: Develop PL/SQL Program Units B - 2

Schema Description

Overall Description

The Oracle database sample schemas portray a sample company that operates worldwide to fill
orders for several different products. The company has three divisions:

• Human Resources: Tracks information about the employees and facilities
• Order Entry: Tracks product inventories and sales through various channels
• Sales History: Tracks business statistics to facilitate business decisions

Each of these divisions is represented by a schema. In this course, you have access to the objects
in all the schemas. However, the emphasis of the examples, demonstrations, and practices is on
the Human Resources (HR) schema.

All scripts necessary to create the sample schemas reside in the
$ORACLE_HOME/demo/schema/ folder.

Human Resources (HR)

This is the schema that is used in this course. In the Human Resource (HR) records, each
employee has an identification number, email address, job identification code, salary, and
manager. Some employees earn commissions in addition to their salary.

The company also tracks information about jobs within the organization. Each job has an
identification code, job title, and a minimum and maximum salary range for the job. Some
employees have been with the company for a long time and have held different positions within
the company. When an employee resigns, the duration the employee was working, the job
identification number, and the department are recorded.

The sample company is regionally diverse, so it tracks the locations of its warehouses and
departments. Each employee is assigned to a department, and each department is identified
either by a unique department number or a short name. Each department is associated with one
location, and each location has a full address that includes the street name, postal code, city,
state or province, and the country code.

In places where the departments and warehouses are located, the company records details such
as the country name, currency symbol, currency name, and the region where the country is
located geographically.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 O

R
AC

LE
 C

O
R

PO
R

AT
IO

N
 u

se
 o

nl
y

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Oracle Database 11g: Develop PL/SQL Program Units B - 3

The HR Entity Relationship Diagram

HR DEPARTMENTS
department_id

department_name
manager_id
location_id

LOCATIONS
location_id

street_address
postal_code

city
state_province

country_id

COUNTRIES
country_id

country_name
region_id

REGIONS
region_id

region_name

EMPLOYEES
employee_id

first_name
last_name

email
phone_number

hire_date
job_id
salary

commission_pct
manager_id

department_id

JOBS
job_id

job_title
min_salary
max_salary

JOB_HISTORY
employee_id
start_date
end_date

job_id
department_id

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 O

R
AC

LE
 C

O
R

PO
R

AT
IO

N
 u

se
 o

nl
y

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Oracle Database 11g: Develop PL/SQL Program Units B - 4

The Human Resources (HR) Table Descriptions

DESCRIBE countries

SELECT * FROM countries

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 O

R
AC

LE
 C

O
R

PO
R

AT
IO

N
 u

se
 o

nl
y

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Oracle Database 11g: Develop PL/SQL Program Units B - 5

The Human Resources (HR) Table Descriptions (continued)

DESCRIBE departments

SELECT * FROM departments

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 O

R
AC

LE
 C

O
R

PO
R

AT
IO

N
 u

se
 o

nl
y

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Oracle Database 11g: Develop PL/SQL Program Units B - 6

The Human Resources (HR) Table Descriptions (continued)
DESCRIBE employees

SELECT * FROM employees

. . .

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 O

R
AC

LE
 C

O
R

PO
R

AT
IO

N
 u

se
 o

nl
y

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Oracle Database 11g: Develop PL/SQL Program Units B - 7

The Human Resources (HR) Table Descriptions (continued)

Employees (continued)

. . .

. . .

. . .

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 O

R
AC

LE
 C

O
R

PO
R

AT
IO

N
 u

se
 o

nl
y

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Oracle Database 11g: Develop PL/SQL Program Units B - 8

The Human Resources (HR) Table Descriptions (continued)

Employees (continued

. . .

. . .

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 O

R
AC

LE
 C

O
R

PO
R

AT
IO

N
 u

se
 o

nl
y

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Oracle Database 11g: Develop PL/SQL Program Units B - 9

The Human Resources (HR) Table Descriptions (continued)

DESCRIBE job_history

SELECT * FROM job_history

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 O

R
AC

LE
 C

O
R

PO
R

AT
IO

N
 u

se
 o

nl
y

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Oracle Database 11g: Develop PL/SQL Program Units B - 10

The Human Resources (HR) Table Descriptions (continued)

DESCRIBE jobs

SELECT * FROM jobs

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 O

R
AC

LE
 C

O
R

PO
R

AT
IO

N
 u

se
 o

nl
y

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Oracle Database 11g: Develop PL/SQL Program Units B - 11

The Human Resources (HR) Table Descriptions (continued)

DESCRIBE locations

SELECT * FROM locations

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 O

R
AC

LE
 C

O
R

PO
R

AT
IO

N
 u

se
 o

nl
y

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Oracle Database 11g: Develop PL/SQL Program Units B - 12

The Human Resources (HR) Table Descriptions (continued)

DESCRIBE regions

SELECT * FROM locations

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 O

R
AC

LE
 C

O
R

PO
R

AT
IO

N
 u

se
 o

nl
y

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Copyright © 2009, Oracle. All rights reserved.

Using SQL Developer

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 O

R
AC

LE
 C

O
R

PO
R

AT
IO

N
 u

se
 o

nl
y

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Oracle Database 11g: Develop PL/SQL Program Units C - 2

Copyright © 2009, Oracle. All rights reserved.

Objectives

After completing this appendix, you should be able to do the
following:

• List the key features of Oracle SQL Developer

• Install Oracle SQL Developer 1.2.1

• Identify menu items of Oracle SQL Developer

• Create a database connection

• Manage database objects

• Use SQL Worksheet

• Save and Run SQL scripts

• Create and save reports

• Install and use Oracle SQL Developer 1.5.3

Objectives

In this appendix, you are introduced to the graphical tool called SQL Developer. You learn how
to use SQL Developer for your database development tasks. You learn how to use SQL
Worksheet to execute SQL statements and SQL scripts.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 O

R
AC

LE
 C

O
R

PO
R

AT
IO

N
 u

se
 o

nl
y

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Oracle Database 11g: Develop PL/SQL Program Units C - 3

Copyright © 2009, Oracle. All rights reserved.

What Is Oracle SQL Developer?

• Oracle SQL Developer is a graphical tool that enhances
productivity and simplifies database development tasks.

• You can connect to any target Oracle database schema by
using standard Oracle database authentication.

SQL Developer

What Is Oracle SQL Developer?

Oracle SQL Developer is a free graphical tool designed to improve your productivity and
simplify the development of everyday database tasks. With just a few clicks, you can easily
create and debug stored procedures, test SQL statements, and view optimizer plans.

SQL Developer, the visual tool for database development, simplifies the following tasks:
• Browsing and managing database objects
• Executing SQL statements and scripts
• Editing and debugging PL/SQL statements
• Creating reports

You can connect to any target Oracle database schema by using standard Oracle database
authentication. When connected, you can perform operations on objects in the database.

Note: The SQL Developer 1.2 release is called the Migration release because it tightly
integrates with Developer Migration Workbench that provides users with a single point to
browse database objects and data in third-party databases, and to migrate from these databases to
Oracle. You can also connect to schemas for selected third-party (non-Oracle) databases such as
MySQL, Microsoft SQL Server, and Microsoft Access, and you can view metadata and data in
these databases.

Additionally, SQL Developer includes support for Oracle Application Express 3.0.1 (Oracle
APEX).

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 O

R
AC

LE
 C

O
R

PO
R

AT
IO

N
 u

se
 o

nl
y

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Oracle Database 11g: Develop PL/SQL Program Units C - 4

Copyright © 2009, Oracle. All rights reserved.

Specifications of SQL Developer

• Developed in Java

• Supports Windows, Linux, and Mac OS X platforms

• Default connectivity by using the JDBC Thin driver

• Does not require an installer
– Unzip the downloaded SQL Developer kit and double-click

sqldeveloper.exe to start SQL Developer.

• Connects to Oracle Database version 9.2.0.1 and later

• Freely downloadable from the following link:
– http://www.oracle.com/technology/products/database/sql_de

veloper/index.html

• Needs JDK 1.5 installed on your system that can be
downloaded from the following link:
– http://java.sun.com/javase/downloads/index_jdk5.jsp

Specifications of SQL Developer

Oracle SQL Developer is developed in Java leveraging the Oracle JDeveloper integrated
development environment (IDE). Therefore, it is a cross-platform tool. The tool runs on
Windows, Linux, and Mac operating system (OS) X platforms. You can install SQL Developer
on the Database Server and connect remotely from your desktop, thus avoiding client/server
network traffic.

Default connectivity to the database is through the Java Database Connectivity (JDBC) Thin
driver, and therefore, no Oracle Home is required. SQL Developer does not require an installer
and you need to simply unzip the downloaded file. With SQL Developer, users can connect to
Oracle Databases 9.2.0.1 and later, and all Oracle database editions including Express Edition.

SQL Developer can be downloaded with the following packaging options:
• Oracle SQL Developer for Windows (option to download with or without JDK 1.5)
• Oracle SQL Developer for Multiple Platforms (you should have JDK 1.5 already installed)
• Oracle SQL Developer for Mac OS X platforms (you should have JDK 1.5 already

installed)
• Oracle SQL Developer RPM for Linux (you should have JDK 1.5 already installed)

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 O

R
AC

LE
 C

O
R

PO
R

AT
IO

N
 u

se
 o

nl
y

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Oracle Database 11g: Develop PL/SQL Program Units C - 5

Copyright © 2009, Oracle. All rights reserved.

Installing SQL Developer

Download the Oracle SQL Developer kit and unzip into any
directory on your machine.

Installing SQL Developer

Oracle SQL Developer does not require an installer. To install SQL Developer, you need an
unzip tool.

To install SQL Developer, perform the following steps:
1. Create a folder as <local drive>:\SQL Developer.
2. Download the SQL Developer kit from

http://www.oracle.com/technology/products/database/sql_developer/index.html.
3. Unzip the downloaded SQL Developer kit into the folder created in step 1.

To start SQL Developer, go to <local drive>:\SQL Developer, and double-click
sqldeveloper.exe.

Notes: SQL Developer 1.2 is already installed on the classroom machine. The installation kit for
SQL Developer 1.5.3 is also on the classroom machine. You may use either version of SQL
Developer in this course. Instructions for installing SQL Developer version 1.5.3 are available at
the end of this appendix.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 O

R
AC

LE
 C

O
R

PO
R

AT
IO

N
 u

se
 o

nl
y

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Oracle Database 11g: Develop PL/SQL Program Units C - 6

Copyright © 2009, Oracle. All rights reserved.

SQL Developer 1.2 Interface

You must define a
connection to start

using SQL Developer
for running SQL queries
on a database schema.

SQL Developer 1.2 Interface
SQL Developer has two main navigation tabs:

• Connections Navigator: By using this, you can browse database objects and users to
which you have access.

• Reports tab: By using this tab, you can run predefined reports or create and add your own
reports.

SQL Developer uses the left side for navigation to find and select objects, and the right side to
display information about selected objects. You can customize many aspects of the appearance
and behavior of SQL Developer by setting preferences. The following menus contain standard
entries, plus entries for features specific to SQL Developer:

• View: Contains options that affect what is displayed in the SQL Developer interface
• Navigate: Contains options for navigating to panes and in the execution of subprograms
• Run: Contains the Run File and Execution Profile options that are relevant when a

function or procedure is selected
• Debug: Contains options that are relevant when a function or procedure is selected for

debugging
• Source: Contains options for use when you edit functions and procedures
• Migration: Contains options related to migrating third-party databases to Oracle
• Tools: Invokes SQL Developer tools such as SQL*Plus, Preferences, and SQL Worksheet

Note: You need to define at least one connection to be able to connect to a database schema and
issue SQL queries or run procedures/functions.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 O

R
AC

LE
 C

O
R

PO
R

AT
IO

N
 u

se
 o

nl
y

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Oracle Database 11g: Develop PL/SQL Program Units C - 7

Copyright © 2009, Oracle. All rights reserved.

Creating a Database Connection

• You must have at least one database connection to use
SQL Developer.

• You can create and test connections for:
– Multiple databases

– Multiple schemas

• SQL Developer automatically imports any connections
defined in the tnsnames.ora file on your system.

• You can export connections to an Extensible Markup
Language (XML) file.

• Each additional database connection created is listed in
the Connections Navigator hierarchy.

Creating a Database Connection

A connection is a SQL Developer object that specifies the necessary information for connecting
to a specific database as a specific user of that database. To use SQL Developer, you must have
at least one database connection, which may be existing, created, or imported.

You can create and test connections for multiple databases and for multiple schemas.

By default, the tnsnames.ora file is located in the $ORACLE_HOME/network/admin
directory, but it can also be in the directory specified by the TNS_ADMIN environment variable
or registry value. When you start SQL Developer and display the Database Connections dialog
box, SQL Developer automatically imports any connections defined in the tnsnames.ora file
on your system.

Note: On Windows, if the tnsnames.ora file exists but its connections are not being used by
SQL Developer, define TNS_ADMIN as a system environment variable.

You can export connections to an XML file so that you can reuse it later.

You can create additional connections as different users to the same database or to connect to the
different databases.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 O

R
AC

LE
 C

O
R

PO
R

AT
IO

N
 u

se
 o

nl
y

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Oracle Database 11g: Develop PL/SQL Program Units C - 8

Copyright © 2009, Oracle. All rights reserved.

Creating a Database Connection

1

2

3

Creating a Database Connection (continued)

To create a database connection, perform the following steps:
1. On the Connections tabbed page, right-click Connections and select New Connection.
2. In the New/Select Database Connection window, enter the connection name. Enter the

username and password of the schema that you want to connect to.
1. From the Role drop-down box, you can select either default or SYSDBA (you choose

SYSDBA for the sys user or any user with database administrator privileges).
2. You can select the connection type as:

- Basic: In this type, enter hostname and SID for the database you want to
connect to. Port is already set to 1521. Or you can also choose to enter the Service
name directly if you use a remote database connection.
- TNS: You can select any one of the database aliases imported from the
tnsnames.ora file.
- Advanced: You can define a custom Java Database Connectivity (JDBC)
URL to connect to the database.

3. Click Test to ensure that the connection has been set correctly.
4. Click Connect.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 O

R
AC

LE
 C

O
R

PO
R

AT
IO

N
 u

se
 o

nl
y

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Oracle Database 11g: Develop PL/SQL Program Units C - 9

Creating a Database Connection (continued)

If you select the Save Password check box, the password is saved to an XML file. So,
after you close the SQL Developer connection and open it again, you are not prompted
for the password.

3. The connection gets added in the Connections Navigator. You can expand the
connection to view the database objects and view object definitions, for example,
dependencies, details, statistics, and so on.

Note: From the same New/Select Database Connection window, you can define connections
to non-Oracle data sources using the Access, MySQL, and SQL Server tabs. However, these
connections are read-only connections that enable you to browse objects and data in that data
source.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 O

R
AC

LE
 C

O
R

PO
R

AT
IO

N
 u

se
 o

nl
y

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Oracle Database 11g: Develop PL/SQL Program Units C - 10

Copyright © 2009, Oracle. All rights reserved.

Browsing Database Objects

Use the Connections Navigator to:

• Browse through many objects in a database schema

• Review the definitions of objects at a glance

Browsing Database Objects

After you create a database connection, you can use the Connections Navigator to browse
through many objects in a database schema including Tables, Views, Indexes, Packages,
Procedures, Triggers, and Types.

SQL Developer uses the left side for navigation to find and select objects, and the right side to
display information about the selected objects. You can customize many aspects of the
appearance of SQL Developer by setting preferences.

You can see the definition of the objects broken into tabs of information that is pulled out of the
data dictionary. For example, if you select a table in the Navigator, the details about columns,
constraints, grants, statistics, triggers, and so on are displayed on an easy-to-read tabbed page.

If you want to see the definition of the EMPLOYEES table as shown in the slide, perform the
following steps:

1. Expand the Connections node in the Connections Navigator.
2. Expand Tables.
3. Click EMPLOYEES. By default, the Columns tab is selected. It shows the column

description of the table. Using the Data tab, you can view the table data and also enter new
rows, update data, and commit these changes to the database.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 O

R
AC

LE
 C

O
R

PO
R

AT
IO

N
 u

se
 o

nl
y

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Oracle Database 11g: Develop PL/SQL Program Units C - 11

Copyright © 2009, Oracle. All rights reserved.

Creating a Schema Object

• SQL Developer supports the creation of any schema
object by:
– Executing a SQL statement in SQL Worksheet

– Using the context menu

• Edit the objects by using an edit dialog or one of the many
context-sensitive menus.

• View the data definition language (DDL) for adjustments
such as creating a new object or editing an existing
schema object.

Creating a Schema Object

SQL Developer supports the creation of any schema object by executing a SQL statement in
SQL Worksheet. Alternatively, you can create objects using the context menus. When created,
you can edit the objects using an edit dialog or one of the many context-sensitive menus.

As new objects are created or existing objects are edited, the DDL for those adjustments is
available for review. An Export DDL option is available if you want to create the full DDL for
one or more objects in the schema.

The slide shows how to create a table using the context menu. To open a dialog box for creating
a new table, right-click Tables and select New Table. The dialog boxes to create and edit
database objects have multiple tabs, each reflecting a logical grouping of properties for that type
of object.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 O

R
AC

LE
 C

O
R

PO
R

AT
IO

N
 u

se
 o

nl
y

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Oracle Database 11g: Develop PL/SQL Program Units C - 12

Copyright © 2009, Oracle. All rights reserved.

Creating a New Table: Example

Creating a New Table: Example

In the Create Table dialog box, if you do not select the Advanced check box, you can create a
table quickly by specifying columns and some frequently used features.

If you select the Advanced check box, the Create Table dialog box changes to one with multiple
options, in which you can specify an extended set of features while you create the table.

The example in the slide shows how to create the DEPENDENTS table by selecting the
Advanced check box.

To create a new table, perform the following steps:
1. In the Connections Navigator, right-click Tables.
2. Select Create TABLE.
3. In the Create Table dialog box, select Advanced.
4. Specify column information.
5. Click OK.

Although it is not required, you should also specify a primary key by using the Primary Key tab
in the dialog box. Sometimes, you may want to edit the table that you have created; to do so,
right-click the table in the Connections Navigator and select Edit.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 O

R
AC

LE
 C

O
R

PO
R

AT
IO

N
 u

se
 o

nl
y

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Oracle Database 11g: Develop PL/SQL Program Units C - 13

Copyright © 2009, Oracle. All rights reserved.

Using the SQL Worksheet

• Use the SQL Worksheet to enter and execute SQL,
PL/SQL, and SQL *Plus statements.

• Specify any actions that can be processed by the database
connection associated with the worksheet.

Click the Open SQL
Worksheet icon.

Select SQL
Worksheet from the
Tools menu, or

Using the SQL Worksheet

When you connect to a database, a SQL Worksheet window for that connection automatically
opens. You can use the SQL Worksheet to enter and execute SQL, PL/SQL, and SQL*Plus
statements. The SQL Worksheet supports SQL*Plus statements to a certain extent. SQL*Plus
statements that are not supported by the SQL Worksheet are ignored and not passed to the
database.

You can specify actions that can be processed by the database connection associated with the
worksheet, such as:

• Creating a table
• Inserting data
• Creating and editing a trigger
• Selecting data from a table
• Saving the selected data to a file

You can display a SQL Worksheet by using one of the following:
• Select Tools > SQL Worksheet.
• Click the Open SQL Worksheet icon.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 O

R
AC

LE
 C

O
R

PO
R

AT
IO

N
 u

se
 o

nl
y

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Oracle Database 11g: Develop PL/SQL Program Units C - 14

Copyright © 2009, Oracle. All rights reserved.

Using the SQL Worksheet

1

2

3

4

5

6

7

8

9

Using the SQL Worksheet (continued)

You may want to use the shortcut keys or icons to perform certain tasks such as executing a SQL
statement, running a script, and viewing the history of SQL statements that you have executed.
You can use the SQL Worksheet toolbar that contains icons to perform the following tasks:

1. Execute Statement: Executes the statement where the cursor is located in the Enter SQL
Statement box. You can use bind variables in the SQL statements, but not substitution
variables.

2. Run Script: Executes all statements in the Enter SQL Statement box by using the Script
Runner. You can use substitution variables in the SQL statements, but not bind variables.

3. Commit: Writes any changes to the database and ends the transaction
4. Rollback: Discards any changes to the database, without writing them to the database, and

ends the transaction
5. Cancel: Stops the execution of any statements currently being executed
6. SQL History: Displays a dialog box with information about SQL statements that you have

executed
7. Execute Explain Plan: Generates the execution plan, which you can see by clicking the

Explain tab
8. Autotrace: Generates trace information for the statement
9. Clear: Erases the statement or statements in the Enter SQL Statement box

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 O

R
AC

LE
 C

O
R

PO
R

AT
IO

N
 u

se
 o

nl
y

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Oracle Database 11g: Develop PL/SQL Program Units C - 15

Copyright © 2009, Oracle. All rights reserved.

Using the SQL Worksheet

• Use the SQL Worksheet to enter and execute SQL,
PL/SQL, and SQL*Plus statements.

• Specify any actions that can be processed by the database
connection associated with the worksheet.

Enter SQL
statements.

Results are
shown here.

Using the SQL Worksheet (continued)

When you connect to a database, a SQL Worksheet window for that connection automatically
opens. You can use the SQL Worksheet to enter and execute SQL, PL/SQL, and SQL*Plus
statements. All SQL and PL/SQL commands are supported as they are passed directly from the
SQL Worksheet to the Oracle database. SQL*Plus commands used in the SQL Developer have
to be interpreted by the SQL Worksheet before being passed to the database.

The SQL Worksheet currently supports a number of SQL*Plus commands. Commands not
supported by the SQL Worksheet are ignored and are not sent to the Oracle database. Through
the SQL Worksheet, you can execute SQL statements and some of the SQL*Plus commands.

You can display a SQL Worksheet by using any of the following two options:
• Select Tools > SQL Worksheet.
• Click the Open SQL Worksheet icon.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 O

R
AC

LE
 C

O
R

PO
R

AT
IO

N
 u

se
 o

nl
y

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Oracle Database 11g: Develop PL/SQL Program Units C - 16

Copyright © 2009, Oracle. All rights reserved.

Executing SQL Statements

Use the Enter SQL Statement box to enter single or multiple
SQL statements.

Use the Enter SQL
Statement box to
enter single or
multiple SQL
statements.

View the results on
the Script Output
tabbed page.

Executing SQL Statements

In the SQL Worksheet, you can use the Enter SQL Statement box to enter single or multiple
SQL statements. For a single statement, the semicolon at the end is optional.

When you enter the statement, the SQL keywords are automatically highlighted. To execute a
SQL statement, ensure that your cursor is within the statement and click the Execute Statement
icon. Alternatively, you can press the F9 key.

To execute multiple SQL statements and see the results, click the Run Script icon. Alternatively,
you can press the F5 key.

In the example in the slide, because there are multiple SQL statements, the first statement is
terminated with a semicolon. The cursor is in the first statement, and therefore, when the
statement is executed, results corresponding to the first statement are displayed in the Results
box.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 O

R
AC

LE
 C

O
R

PO
R

AT
IO

N
 u

se
 o

nl
y

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Oracle Database 11g: Develop PL/SQL Program Units C - 17

Copyright © 2009, Oracle. All rights reserved.

Saving SQL Scripts

Click the Save icon to
save your SQL
statement to a file.

The contents of the
saved file are visible
and editable in your
SQL Worksheet
window.

Enter a file name and
identify a location to
save the file, and
click Save.

Saving SQL Scripts

You can save your SQL statements from the SQL Worksheet into a text file. To save the
contents of the Enter SQL Statement box, follow these steps:

1. Click the Save icon or use the File > Save menu item.
2. In the Windows Save dialog box, enter a file name and the location where you want the

file saved.
3. Click Save.

After you save the contents to a file, the Enter SQL Statement window displays a tabbed page of
your file contents. You can have multiple files open at the same time. Each file displays as a
tabbed page.

Script Pathing

You can select a default path to look for scripts and to save scripts. Under Tools > Preferences >
Database > Worksheet Parameters, enter a value in the “Select default path to look for scripts”
field.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 O

R
AC

LE
 C

O
R

PO
R

AT
IO

N
 u

se
 o

nl
y

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Oracle Database 11g: Develop PL/SQL Program Units C - 18

Copyright © 2009, Oracle. All rights reserved.

Executing Saved Script Files: Method 1

Right-click in the SQL
Worksheet area, and select
Open File from the shortcut
menu.

Select (or navigate
to) the script file that
you want to open.

Click Open.

To run the code, click
the Run Script (F5) icon.

Executing Saved Script Files: Method 1

To open a script file and display the code in the SQL Worksheet area, perform the following:
1. Right-click in the SQL Worksheet area, and select Open File from the menu. The Open

dialog box is displayed.
2. In the Open dialog box, select (or navigate to) the script file that you want to open.
3. Click Open. The code of the script file is displayed in the SQL Worksheet area.
4. To run the code, click the Run Script (F5) icon on the SQL Worksheet toolbar. O

ra
cl

e
U

ni
ve

rs
ity

 a
nd

 O
R

AC
LE

 C
O

R
PO

R
AT

IO
N

 u
se

 o
nl

y

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Oracle Database 11g: Develop PL/SQL Program Units C - 19

Copyright © 2009, Oracle. All rights reserved.

Executing Saved Script Files: Method 2

Use the @ command
followed by the location and
name of the file you want to
execute, and click the Run
Script icon.

The output from the
script is displayed on
the Script Output
tabbed page.

Executing Saved Script Files: Method 2

To run a saved SQL script, perform the following:
1. Use the @ command, followed by the location, and name of the file you want to run, in the

Enter SQL Statement window.
2. Click the Run Script icon.

The results from running the file are displayed on the Script Output tabbed page. You can also
save the script output by clicking the Save icon on the Script Output tabbed page. The Windows
File Save dialog box appears and you can identify a name and location for your file.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 O

R
AC

LE
 C

O
R

PO
R

AT
IO

N
 u

se
 o

nl
y

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Oracle Database 11g: Develop PL/SQL Program Units C - 20

Copyright © 2009, Oracle. All rights reserved.

Executing SQL Statements

Use the Enter SQL Statement box to enter single or multiple
SQL statements.

F9 F5

F9

F5

Executing SQL Statements

The example in the slide shows the difference in output for the same query when the [F9] key or
Execute Statement is used versus the output when [F5] or Run Script is used.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 O

R
AC

LE
 C

O
R

PO
R

AT
IO

N
 u

se
 o

nl
y

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Oracle Database 11g: Develop PL/SQL Program Units C - 21

Copyright © 2009, Oracle. All rights reserved.

Formatting the SQL Code

Before
formatting

After
formatting

Formatting the SQL Code

You may want to beautify the indentation, spacing, capitalization, and line separation of the
SQL code. SQL Developer has a feature for formatting SQL code.

To format the SQL code, right-click in the statement area, and select Format SQL.

In the example in the slide, before formatting, the SQL code has the keywords not capitalized
and the statement not properly indented. After formatting, the SQL code is beautified with the
keywords capitalized and the statement properly indented.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 O

R
AC

LE
 C

O
R

PO
R

AT
IO

N
 u

se
 o

nl
y

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Oracle Database 11g: Develop PL/SQL Program Units C - 22

Copyright © 2009, Oracle. All rights reserved.

Using Snippets

Snippets are code fragments that may be just syntax or
examples.

When you place your cursor here,
it shows the Snippets window.

From the drop-down list, you can
select the functions category you

want.

Using Snippets

You may want to use certain code fragments when you use the SQL Worksheet or create or edit
a PL/SQL function or procedure. SQL Developer has the feature called Snippets. Snippets are
code fragments such as SQL functions, Optimizer hints, and miscellaneous PL/SQL
programming techniques. You can drag snippets into the Editor window.

To display Snippets, select View > Snippets.

The Snippets window is displayed at the right side. You can use the drop-down list to select a
group. A Snippets button is placed in the right window margin, so that you can display the
Snippets window if it becomes hidden.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 O

R
AC

LE
 C

O
R

PO
R

AT
IO

N
 u

se
 o

nl
y

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Oracle Database 11g: Develop PL/SQL Program Units C - 23

Copyright © 2009, Oracle. All rights reserved.

Using Snippets: Example

Inserting a
snippet

Editing the
snippet

Using Snippets: Example

To insert a Snippet into your code in a SQL Worksheet or in a PL/SQL function or procedure,
drag the snippet from the Snippets window into the desired place in your code. Then you can
edit the syntax so that the SQL function is valid in the current context. To see a brief description
of a SQL function in a tool tip, place the cursor over the function name.

The example in the slide shows that CONCAT(char1, char2)is dragged from the Character
Functions group in the Snippets window. Then the CONCAT function syntax is edited and the
rest of the statement is added as in the following:

SELECT CONCAT(first_name, last_name)
FROM employees;

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 O

R
AC

LE
 C

O
R

PO
R

AT
IO

N
 u

se
 o

nl
y

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Oracle Database 11g: Develop PL/SQL Program Units C - 24

Copyright © 2009, Oracle. All rights reserved.

Using SQL*Plus

• You can invoke the SQL*Plus command-line interface from
SQL Developer.

• Close all the SQL Worksheets to enable the SQL*Plus
menu option.

Provide the
location of the
sqlplus.exe
file only the

first time you
invoke

SQL*Plus.

Using SQL*Plus

The SQL Worksheet supports most of the SQL*Plus statements. SQL*Plus statements must be
interpreted by the SQL Worksheet before being passed to the database; any SQL*Plus
statements that are not supported by the SQL Worksheet are ignored and not passed to the
database. To display the SQL*Plus command window, from the Tools menu, select SQL*Plus.
To use this feature, the system on which you use SQL Developer must have an Oracle home
directory or folder, with a SQL*Plus executable under that location. If the location of the
SQL*Plus executable is not already stored in your SQL Developer preferences, you are asked to
specify its location.

For example, some of the SQL*Plus statements that are not supported by SQL Worksheet are:
• append
• archive
• attribute
• break

For the complete list of SQL*Plus statements that are either supported or not supported by SQL
Worksheet, refer to the SQL*Plus Statements Supported and Not Supported in SQL Worksheet
topic in the SQL Developer online Help.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 O

R
AC

LE
 C

O
R

PO
R

AT
IO

N
 u

se
 o

nl
y

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Oracle Database 11g: Develop PL/SQL Program Units C - 25

Copyright © 2009, Oracle. All rights reserved.

Debugging Procedures and Functions

• Use SQL Developer to debug
PL/SQL functions and
procedures.

• Use the Compile for Debug
option to perform a PL/SQL
compilation so that the
procedure can be debugged.

• Use Debug menu options to set
breakpoints, and to perform step
into, step over tasks.

Debugging Procedures and Functions

In SQL Developer, you can debug PL/SQL procedures and functions. Using the Debug menu
options, you can perform the following debugging tasks:

• Find Execution Point goes to the next execution point.
• Resume continues execution.
• Step Over bypasses the next method and goes to the next statement after the method.
• Step Into goes to the first statement in the next method.
• Step Out leaves the current method and goes to the next statement.
• Step to End of Method goes to the last statement of the current method.
• Pause halts execution but does not exit, thus allowing you to resume execution.
• Terminate halts and exits the execution. You cannot resume execution from this point;

instead, to start running or debugging from the beginning of the function or procedure,
click the Run or Debug icon in the Source tab toolbar.

• Garbage Collection removes invalid objects from the cache in favor of more frequently
accessed and more valid objects.

These options are also available as icons in the debugging toolbar.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 O

R
AC

LE
 C

O
R

PO
R

AT
IO

N
 u

se
 o

nl
y

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Oracle Database 11g: Develop PL/SQL Program Units C - 26

Copyright © 2009, Oracle. All rights reserved.

Database Reporting

SQL Developer provides a number of predefined reports about
the database and its objects.

Database Reporting

SQL Developer provides many reports about the database and its objects. These reports can be
grouped into the following categories:

• About Your Database reports
• Database Administration reports
• Table reports
• PL/SQL reports
• Security reports
• XML reports
• Jobs reports
• Streams reports
• All Objects reports
• Data Dictionary reports
• User-Defined reports

To display reports, click the Reports tab at the left side of the window. Individual reports are
displayed in tabbed panes at the right side of the window; and for each report, you can select
(using a drop-down list) the database connection for which to display the report. For reports
about objects, the objects shown are only those visible to the database user associated with the
selected database connection, and the rows are usually ordered by Owner. You can also create
your own user-defined reports.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 O

R
AC

LE
 C

O
R

PO
R

AT
IO

N
 u

se
 o

nl
y

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Oracle Database 11g: Develop PL/SQL Program Units C - 27

Copyright © 2009, Oracle. All rights reserved.

Creating a User-Defined Report

Create and save user-defined reports for repeated use.

Organize reports in folders.

Creating a User-Defined Report

User-defined reports are reports created by SQL Developer users. To create a user-defined
report, perform the following steps:

1. Right-click the User Defined Reports node under Reports, and select Add Report.
2. In the Create Report Dialog box, specify the report name and the SQL query to retrieve

information for the report. Then, click Apply.

In the example in the slide, the report name is specified as emp_sal. An optional description is
provided indicating that the report contains details of employees with salary >= 10000.
The complete SQL statement for retrieving the information to be displayed in the user-defined
report is specified in the SQL box. You can also include an optional tool tip to be displayed
when the cursor stays briefly over the report name in the Reports navigator display.

You can organize user-defined reports in folders, and you can create a hierarchy of folders and
subfolders. To create a folder for user-defined reports, right-click the User Defined Reports node
or any folder name under that node and select Add Folder. Information about user-defined
reports, including any folders for these reports, is stored in a file named UserReports.xml
under the directory for user-specific information.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 O

R
AC

LE
 C

O
R

PO
R

AT
IO

N
 u

se
 o

nl
y

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Oracle Database 11g: Develop PL/SQL Program Units C - 28

Copyright © 2009, Oracle. All rights reserved.

Search Engines and External Tools

Links to popular
search engines and
discussion forums

Shortcuts to
frequently used tools

1

2

Search Engines and External Tools

To enhance productivity of the SQL developers, SQL Developer has added quick links to
popular search engines and discussion forums such as AskTom, Google, and so on. Also, you
have shortcut icons to some of the frequently used tools such as Notepad, Microsoft Word, and
Dreamweaver, available to you.

You can add external tools to the existing list or even delete shortcuts to tools that you do not
use frequently. To do so, perform the following:

1. From the Tools menu, select External Tools.
2. In the External Tools dialog box, select New to add new tools. Select Delete to remove any

tool from the list.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 O

R
AC

LE
 C

O
R

PO
R

AT
IO

N
 u

se
 o

nl
y

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Oracle Database 11g: Develop PL/SQL Program Units C - 29

Copyright © 2009, Oracle. All rights reserved.

Setting Preferences

• Customize the SQL Developer interface and environment.

• In the Tools menu, select Preferences.

Setting Preferences

You can customize many aspects of the SQL Developer interface and environment by modifying
SQL Developer preferences according to your preferences and needs. To modify SQL Developer
preferences, select Tools, then Preferences.

Following are some of the categories that the preferences are grouped into:
• Environment
• Accelerators (Keyboard shortcuts)
• Code Editors
• Database
• Debugger
• Documentation
• Extensions
• File Types
• Migration
• PL/SQL Compilers
• PL/SQL Debugger

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 O

R
AC

LE
 C

O
R

PO
R

AT
IO

N
 u

se
 o

nl
y

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Oracle Database 11g: Develop PL/SQL Program Units C - 30

Copyright © 2009, Oracle. All rights reserved.

Specifications of SQL Developer 1.5.3

• SQL Developer 1.5.3 is the first translation release, and is
a patch to Oracle SQL Developer 1.5.

• New feature list is available at:
– http://www.oracle.com/technology/products/database/sql_de

veloper/files/newFeatures_v15.html

• Supports Windows, Linux, and Mac OS X platforms

• To install, unzip the downloaded SQL Developer kit, which
includes the required minimum JDK (JDK1.5.0_06).

• To start, double-click sqldeveloper.exe

• Connects to Oracle Database version 9.2.0.1 and later

• Freely downloadable from the following link:
– http://www.oracle.com/technology/products/database/sql_de

veloper/index.html

Specifications of SQL Developer 1.5.3

SQL Developer 1.5.3 is also available, as it is the latest version of the product that was available
at the time of the release of this of course

Like version 1.2, SQL Developer 1.5.3 is developed in Java leveraging the Oracle JDeveloper
integrated development environment (IDE). Therefore, it is a cross-platform tool. The tool runs
on Windows, Linux, and Mac operating system (OS) X platforms. You can install SQL
Developer on the Database Server and connect remotely from your desktop, thus avoiding
client/server network traffic.

Default connectivity to the database is through the Java Database Connectivity (JDBC) Thin
driver, and therefore, no Oracle Home is required. The JDBC drivers that are shipped with
version 1.5.3 support 11g R1. Therefore, users will no longer be able to connect to an Oracle
8.1.7 database.

SQL Developer does not require an installer and you need to simply unzip the downloaded file.
With SQL Developer, users can connect to Oracle Databases 9.2.0.1 and later, and all Oracle
database editions including Express Edition.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 O

R
AC

LE
 C

O
R

PO
R

AT
IO

N
 u

se
 o

nl
y

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Oracle Database 11g: Develop PL/SQL Program Units C - 31

Copyright © 2009, Oracle. All rights reserved.

Installing SQL Developer 1.5.3

Download the Oracle SQL Developer kit and unzip into any
directory on your machine.

Installing SQL Developer 1.5.3

Oracle SQL Developer does not require an installer. To install SQL Developer, you need an
unzip tool.

To install SQL Developer, perform the following steps:
1. Create a folder. For example: <local drive>:\software
2. Download the SQL Developer kit from

http://www.oracle.com/technology/products/database/sql_developer/index.html.
3. Unzip the downloaded SQL Developer kit into the folder created in step 1.

Starting SQL Developer

To start SQL Developer, go to <local drive>:\software\sqldeveloper, and
double-click sqldeveloper.exe.

Notes:
• The SQL Developer 1.5.3 kit, named sqldeveloper-5783.zip, is located in is

d:\labs\software on your classroom machine.
• When you open SQL Developer 1.5.3 for the first time, select No when prompted to

migrate settings from a previous release.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 O

R
AC

LE
 C

O
R

PO
R

AT
IO

N
 u

se
 o

nl
y

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Oracle Database 11g: Develop PL/SQL Program Units C - 32

Copyright © 2009, Oracle. All rights reserved.

SQL Developer 1.5.3 Interface

You must define a
connection to start

using SQL Developer
for running SQL queries
on a database schema.

SQL Developer 1.5.3 Interface
The SQL Developer 1.5.3 interface contains all of the features found in version 1.2, and also
some additional features.
Version 1.5.3 contains three main navigation tabs, from left to right:

• Connections tab: By using this tab, you can browse database objects and users to which
you have access.

• Files tab: Identified by the Files folder icon, this tab enables you to access files from your
local machine without having to use the File > Open menu.

• Reports tab: Identified by the Reports icon, this tab enables you to run predefined reports
or create and add your own reports.

General Navigation and Use
SQL Developer uses the left side for navigation to find and select objects, and the right side to
display information about selected objects. You can customize many aspects of the appearance
and behavior of SQL Developer by setting preferences.
The features and functions that have been covered previously in this lesson for version 1.2, such
as Creating a Connection, Browsing Database Objects, Creating Schema Objects, Using the SQL
Worksheet, Using Snippets, Creating Reports, and Setting Preferences, are equivalent in the
1.5.3 interface.
Note: As with version 1.2, you need to define at least one connection to be able to connect to a
database schema and issue SQL queries or run procedures/functions.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 O

R
AC

LE
 C

O
R

PO
R

AT
IO

N
 u

se
 o

nl
y

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Oracle Database 11g: Develop PL/SQL Program Units C - 33

SQL Developer 1.5.3 Interface (Continued)
Menus
The following menus contain standard entries, plus entries for features specific to SQL
Developer:

• View: Contains options that affect what is displayed in the SQL Developer interface
• Navigate: Contains options for navigating to panes and in the execution of subprograms
• Run: Contains the Run File and Execution Profile options that are relevant when a

function or procedure is selected, and also debugging options.
• Source: Contains options for use when you edit functions and procedures
• Versioning: Provides integrated support for the following versioning and source control

systems: CVS (Concurrent Versions System) and Subversion.
• Migration: Contains options related to migrating third-party databases to Oracle
• Tools: Invokes SQL Developer tools such as SQL*Plus, Preferences, and SQL

Worksheet

Note: The Run menu also contains options that are relevant when a function or procedure is
selected for debugging. These are the same options that are found in the Debug menu in
version 1.2.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 O

R
AC

LE
 C

O
R

PO
R

AT
IO

N
 u

se
 o

nl
y

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Oracle Database 11g: Develop PL/SQL Program Units C - 34

Copyright © 2009, Oracle. All rights reserved.

Summary

In this appendix, you should have learned how to use SQL
Developer to do the following:

• Browse, create, and edit database objects

• Execute SQL statements and scripts in SQL Worksheet

• Create and save custom reports

Summary

SQL Developer is a free graphical tool to simplify database development tasks. Using SQL
Developer, you can browse, create, and edit database objects. You can use SQL Worksheet to
run SQL statements and scripts. SQL Developer enables you to create and save your own special
set of reports for repeated use.

Version 1.2 is the default version set up for this class. Version 1.5.3 is also available on the
classroom machine for use with all code examples, demos, and practices.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 O

R
AC

LE
 C

O
R

PO
R

AT
IO

N
 u

se
 o

nl
y

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Copyright © 2009, Oracle. All rights reserved.

Review of PL/SQL

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 O

R
AC

LE
 C

O
R

PO
R

AT
IO

N
 u

se
 o

nl
y

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Oracle Database 11g: Develop PL/SQL Program Units D - 2

Copyright © 2009, Oracle. All rights reserved.

Block Structure for Anonymous
PL/SQL Blocks

• DECLARE (optional)

– Declare PL/SQL objects to be used within this block.

• BEGIN (mandatory)

– Define the executable statements.

• EXCEPTION (optional)

– Define the actions that take place if an error or exception
arises.

• END; (mandatory)

Anonymous Blocks

Anonymous blocks do not have names. You declare them at the point in an application where
they are to be run, and they are passed to the PL/SQL engine for execution at run time.

• The section between the keywords DECLARE and BEGIN is referred to as the declaration
section. In the declaration section, you define the PL/SQL objects such as variables,
constants, cursors, and user-defined exceptions that you want to reference within the block.
The DECLARE keyword is optional if you do not declare any PL/SQL objects.

• The BEGIN and END keywords are mandatory and enclose the body of actions to be
performed. This section is referred to as the executable section of the block.

• The section between EXCEPTION and END is referred to as the exception section. The
exception section traps error conditions. In it, you define actions to take if a specified
condition arises. The exception section is optional.

The keywords DECLARE, BEGIN, and EXCEPTION are not followed by semicolons, but END
and all other PL/SQL statements do require semicolons.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 O

R
AC

LE
 C

O
R

PO
R

AT
IO

N
 u

se
 o

nl
y

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Oracle Database 11g: Develop PL/SQL Program Units D - 3

Copyright © 2009, Oracle. All rights reserved.

Declaring PL/SQL Variables

• Syntax:

• Examples:

identifier [CONSTANT] datatype [NOT NULL]
[:= | DEFAULT expr];

Declare
v_hiredate DATE;
v_deptno NUMBER(2) NOT NULL := 10;
v_location VARCHAR2(13) := 'Atlanta';
c_ comm CONSTANT NUMBER := 1400;
v_count BINARY_INTEGER := 0;
v_valid BOOLEAN NOT NULL := TRUE;

Declaring PL/SQL Variables

You need to declare all PL/SQL identifiers within the declaration section before referencing
them within the PL/SQL block. You have the option to assign an initial value. You do not need
to assign a value to a variable in order to declare it. If you refer to other variables in a
declaration, you must be sure to declare them separately in a previous statement.

In the syntax:
Identifier is the name of the variable

CONSTANT constrains the variable so that its value cannot change; constants must be
initialized.

Datatype is a scalar, composite, reference, or LOB data type (This course covers only
scalar and composite data types.)

NOT NULL constrains the variable so that it must contain a value; NOT NULL variables
must be initialized.

expr is any PL/SQL expression that can be a literal, another variable, or an
expression involving operators and functions

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 O

R
AC

LE
 C

O
R

PO
R

AT
IO

N
 u

se
 o

nl
y

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Oracle Database 11g: Develop PL/SQL Program Units D - 4

Copyright © 2009, Oracle. All rights reserved.

Declaring Variables with the
%TYPE Attribute: Examples

...
v_ename employees.last_name%TYPE;
v_balance NUMBER(7,2);
v_min_balance v_balance%TYPE := 10;

...

Declaring Variables with the %TYPE Attribute

Declare variables to store the name of an employee.
...
v_ename employees.last_name%TYPE;
...

Declare variables to store the balance of a bank account, as well as the minimum balance, which
starts out as 10.
...
v_balance NUMBER(7,2);
v_min_balance v_balance%TYPE := 10;
...

A NOT NULL column constraint does not apply to variables declared using %TYPE. Therefore, if
you declare a variable using the %TYPE attribute and a database column defined as NOT NULL,
then you can assign the NULL value to the variable.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 O

R
AC

LE
 C

O
R

PO
R

AT
IO

N
 u

se
 o

nl
y

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Oracle Database 11g: Develop PL/SQL Program Units D - 5

Copyright © 2009, Oracle. All rights reserved.

Creating a PL/SQL Record

• Declare variables to store the name, job, and salary of a
new employee.

...
TYPE emp_record_type IS RECORD
(ename VARCHAR2(25),
job VARCHAR2(10),
sal NUMBER(8,2));

emp_record emp_record_type;
...

Creating a PL/SQL Record

Field declarations are like variable declarations. Each field has a unique name and a specific
data type. There are no predefined data types for PL/SQL records, as there are for scalar
variables. Therefore, you must create the data type first and then declare an identifier using that
data type.

The following example shows that you can use the %TYPE attribute to specify a field data type:
DECLARE

TYPE emp_record_type IS RECORD
(empid NUMBER(6) NOT NULL := 100,
ename employees.last_name%TYPE,
job employees.job_id%TYPE);

emp_record emp_record_type;
...

Note: You can add the NOT NULL constraint to any field declaration to prevent the assigning of
nulls to that field. Remember that fields declared as NOT NULL must be initialized.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 O

R
AC

LE
 C

O
R

PO
R

AT
IO

N
 u

se
 o

nl
y

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Oracle Database 11g: Develop PL/SQL Program Units D - 6

Copyright © 2009, Oracle. All rights reserved.

%ROWTYPE Attribute: Examples

• Declare a variable to store the same information about a
department as is stored in the DEPARTMENTS table.

• Declare a variable to store the same information about an
employee as is stored in the EMPLOYEES table.

dept_record departments%ROWTYPE;

emp_record employees%ROWTYPE;

Examples

The first declaration in the slide creates a record with the same field names and field data types
as a row in the DEPARTMENTS table. The fields are DEPARTMENT_ID, DEPARTMENT_NAME,
MANAGER_ID, and LOCATION_ID.

The second declaration in the slide creates a record with the same field names and field data
types as a row in the EMPLOYEES table. The fields are EMPLOYEE_ID, FIRST_NAME,
LAST_NAME, EMAIL, PHONE_NUMBER, HIRE_DATE, JOB_ID, SALARY,
COMMISSION_PCT, MANAGER_ID, and DEPARTMENT_ID.

In the following example, you select column values into a record named job_record.
DECLARE

job_record jobs%ROWTYPE;
...

BEGIN
SELECT * INTO job_record
FROM jobs
WHERE ...

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 O

R
AC

LE
 C

O
R

PO
R

AT
IO

N
 u

se
 o

nl
y

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Oracle Database 11g: Develop PL/SQL Program Units D - 7

Copyright © 2009, Oracle. All rights reserved.

Creating a PL/SQL Table

DECLARE
TYPE ename_table_type IS TABLE OF
employees.last_name%TYPE
INDEX BY BINARY_INTEGER;

TYPE hiredate_table_type IS TABLE OF DATE
INDEX BY BINARY_INTEGER;

ename_table ename_table_type;
hiredate_table hiredate_table_type;

BEGIN
ename_table(1) := 'CAMERON';
hiredate_table(8) := SYSDATE + 7;
IF ename_table.EXISTS(1) THEN
INSERT INTO ...

...

END;

Creating a PL/SQL Table

There are no predefined data types for PL/SQL tables, as there are for scalar variables.
Therefore, you must create the data type first and then declare an identifier using that data type.

Referencing a PL/SQL Table

Syntax

pl/sql_table_name(primary_key_value)

In this syntax, primary_key_value belongs to the BINARY_INTEGER type.

Reference the third row in a PL/SQL table ENAME_TABLE.

ename_table(3) ...

The magnitude range of a BINARY_INTEGER is –2,147,483,647 through 2,147,483,647. The
primary key value can therefore be negative. Indexing need not start with 1.

Note: The table.EXISTS(i) statement returns TRUE if at least one row with index i is
returned. Use the EXISTS statement to prevent an error that is raised in reference to a
nonexistent table element.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 O

R
AC

LE
 C

O
R

PO
R

AT
IO

N
 u

se
 o

nl
y

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Oracle Database 11g: Develop PL/SQL Program Units D - 8

Copyright © 2009, Oracle. All rights reserved.

SELECT Statements in PL/SQL: Example

The INTO clause is mandatory.

DECLARE
v_deptid NUMBER(4);
v_loc NUMBER(4);

BEGIN
SELECT department_id, location_id
INTO v_deptid, v_loc
FROM departments
WHERE department_name = 'Sales';
...

END;

INTO Clause

The INTO clause is mandatory and occurs between the SELECT and FROM clauses. It is used to
specify the names of variables to hold the values that SQL returns from the SELECT clause. You
must give one variable for each item selected, and the order of variables must correspond to the
items selected.

You use the INTO clause to populate either PL/SQL variables or host variables.

Queries Must Return One and Only One Row

SELECT statements within a PL/SQL block fall into the ANSI classification of Embedded SQL,
for which the following rule applies:

Queries must return one and only one row. More than one row or no row generates an error.

PL/SQL deals with these errors by raising standard exceptions, which you can trap in the
exception section of the block with the NO_DATA_FOUND and TOO_MANY_ROWS exceptions.
You should code SELECT statements to return a single row.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 O

R
AC

LE
 C

O
R

PO
R

AT
IO

N
 u

se
 o

nl
y

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Oracle Database 11g: Develop PL/SQL Program Units D - 9

Copyright © 2009, Oracle. All rights reserved.

Inserting Data: Example

Add new employee information to the EMPLOYEES table.

DECLARE
v_empid employees.employee_id%TYPE;

BEGIN
SELECT employees_seq.NEXTVAL
INTO v_empno
FROM dual;
INSERT INTO employees(employee_id, last_name,

job_id, department_id)
VALUES(v_empid, 'HARDING', 'PU_CLERK', 30);

END;

Inserting Data

• Use SQL functions, such as USER and SYSDATE.
• Generate primary key values by using database sequences.
• Derive values in the PL/SQL block.
• Add column default values.

Note: There is no possibility for ambiguity with identifiers and column names in the INSERT
statement. Any identifier in the INSERT clause must be a database column name.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 O

R
AC

LE
 C

O
R

PO
R

AT
IO

N
 u

se
 o

nl
y

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Oracle Database 11g: Develop PL/SQL Program Units D - 10

Copyright © 2009, Oracle. All rights reserved.

Updating Data: Example

Increase the salary of all employees in the EMPLOYEES table
who are purchasing clerks.

DECLARE
v_sal_increase employees.salary%TYPE := 2000;

BEGIN
UPDATE employees
SET salary = salary + v_sal_increase
WHERE job_id = 'PU_CLERK';

END;

Updating Data

There may be ambiguity in the SET clause of the UPDATE statement because, although the
identifier on the left of the assignment operator is always a database column, the identifier on the
right can be either a database column or a PL/SQL variable.

Remember that the WHERE clause is used to determine which rows are affected. If no rows are
modified, no error occurs (unlike the SELECT statement in PL/SQL).

Note: PL/SQL variable assignments always use := and SQL column assignments always
use =.. Remember that if column names and identifier names are identical in the WHERE clause,
the Oracle server looks to the database first for the name.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 O

R
AC

LE
 C

O
R

PO
R

AT
IO

N
 u

se
 o

nl
y

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Oracle Database 11g: Develop PL/SQL Program Units D - 11

Copyright © 2009, Oracle. All rights reserved.

Deleting Data: Example

Delete rows that belong to department 190 from the
EMPLOYEES table.

DECLARE
v_deptid employees.department_id%TYPE := 190;

BEGIN
DELETE FROM employees
WHERE department_id = v_deptid;

END;

Deleting Data

Delete a specific job:
DECLARE

v_jobid jobs.job_id%TYPE := ‘PR_REP’;
BEGIN

DELETE FROM jobs
WHERE job_id = v_jobid;

END;

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 O

R
AC

LE
 C

O
R

PO
R

AT
IO

N
 u

se
 o

nl
y

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Oracle Database 11g: Develop PL/SQL Program Units D - 12

Copyright © 2009, Oracle. All rights reserved.

COMMIT and ROLLBACK Statements

• Initiate a transaction with the first DML command to follow
a COMMIT or ROLLBACK statement.

• Use COMMIT and ROLLBACK SQL statements to terminate
a transaction explicitly.

Controlling Transactions

You control the logic of transactions with COMMIT and ROLLBACK SQL statements, rendering
some groups of database changes permanent while discarding others. As with the Oracle server,
data manipulation language (DML) transactions start at the first command to follow a COMMIT
or ROLLBACK and end on the next successful COMMIT or ROLLBACK. These actions may occur
within a PL/SQL block or as a result of events in the host environment. A COMMIT ends the
current transaction by making all pending changes to the database permanent.

Syntax
COMMIT [WORK];
ROLLBACK [WORK];

In this syntax, WORK is for compliance with ANSI standards.

Note: The transaction control commands are all valid within PL/SQL, although the host
environment may place some restriction on their use.

You can also include explicit locking commands (such as LOCK TABLE and SELECT ...
FOR UPDATE) in a block. They stay in effect until the end of the transaction. Also, one
PL/SQL block does not necessarily imply one transaction.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 O

R
AC

LE
 C

O
R

PO
R

AT
IO

N
 u

se
 o

nl
y

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Oracle Database 11g: Develop PL/SQL Program Units D - 13

Copyright © 2009, Oracle. All rights reserved.

SQL Cursor Attributes

You can use SQL cursor attributes to test the outcome of your
SQL statements.

Boolean attribute that always evaluates to FALSE
because PL/SQL closes implicit cursors immediately
after they are executed

SQL%ISOPEN

Boolean attribute that evaluates to TRUE if the most
recent SQL statement does not affect any rows

SQL%NOTFOUND

Number of rows affected by the most recent SQL
statement (an integer value)

SQL%ROWCOUNT

SQL%FOUND

SQL Cursor Attributes

Boolean attribute that evaluates to TRUE if the most
recent SQL statement affects one or more rows

Description

SQL Cursor Attributes

SQL cursor attributes enable you to evaluate what happened when the implicit cursor was last
used. You use these attributes in PL/SQL statements such as functions. You cannot use them in
SQL statements.

You can use the SQL%ROWCOUNT, SQL%FOUND, SQL%NOTFOUND, and SQL%ISOPEN
attributes in the exception section of a block to gather information about the execution of a DML
statement. In PL/SQL, a DML statement that does not change any rows is not seen as an error
condition, whereas the SELECT statement will return an exception if it cannot locate any rows.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 O

R
AC

LE
 C

O
R

PO
R

AT
IO

N
 u

se
 o

nl
y

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Oracle Database 11g: Develop PL/SQL Program Units D - 14

Copyright © 2009, Oracle. All rights reserved.

IF, THEN, and ELSIF Statements: Example

For a given value entered, return a calculated value.

. . .
IF v_start > 100 THEN
v_start := 2 * v_start;

ELSIF v_start >= 50 THEN
v_start := 0.5 * v_start;

ELSE
v_start := 0.1 * v_start;

END IF;
. . .

IF, THEN, and ELSIF Statements

When possible, use the ELSIF clause instead of nesting IF statements. The code is easier to
read and understand, and the logic is clearly identified. If the action in the ELSE clause consists
purely of another IF statement, it is more convenient to use the ELSIF clause. This makes the
code clearer by removing the need for nested END IFs at the end of each further set of
conditions and actions.

Example
IF condition1 THEN

statement1;
ELSIF condition2 THEN

statement2;
ELSIF condition3 THEN

statement3;
END IF;

The statement in the slide is further defined as follows:

For a given value entered, return a calculated value. If the entered value is over 100, then the
calculated value is two times the entered value. If the entered value is between 50 and 100, then
the calculated value is 50% of the starting value. If the entered value is less than 50, then the
calculated value is 10% of the starting value.

Note: Any arithmetic expression containing null values evaluates to null.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 O

R
AC

LE
 C

O
R

PO
R

AT
IO

N
 u

se
 o

nl
y

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Oracle Database 11g: Develop PL/SQL Program Units D - 15

Copyright © 2009, Oracle. All rights reserved.

Basic Loop: Example

DECLARE
v_ordid order_items.order_id%TYPE := 101;
v_counter NUMBER(2) := 1;

BEGIN
LOOP
INSERT INTO order_items(order_id,line_item_id)
VALUES(v_ordid, v_counter);
v_counter := v_counter + 1;
EXIT WHEN v_counter > 10;

END LOOP;
END;

Basic Loop

The basic loop example shown in the slide is defined as follows:

Insert the first 10 new line items for order number 101.

Note: A basic loop enables execution of its statements at least once, even if the condition has
been met upon entering the loop.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 O

R
AC

LE
 C

O
R

PO
R

AT
IO

N
 u

se
 o

nl
y

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Oracle Database 11g: Develop PL/SQL Program Units D - 16

Copyright © 2009, Oracle. All rights reserved.

FOR Loop: Example

Insert the first 10 new line items for order number 101.

DECLARE
v_ordid order_items.order_id%TYPE := 101;

BEGIN
FOR i IN 1..10 LOOP
INSERT INTO order_items(order_id,line_item_id)
VALUES(v_ordid, i);

END LOOP;
END;

FOR Loop

The slide shows a FOR loop that inserts 10 rows into the order_items table.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 O

R
AC

LE
 C

O
R

PO
R

AT
IO

N
 u

se
 o

nl
y

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Oracle Database 11g: Develop PL/SQL Program Units D - 17

Copyright © 2009, Oracle. All rights reserved.

WHILE Loop: Example

ACCEPT p_price PROMPT 'Enter the price of the item: '
ACCEPT p_itemtot -
PROMPT 'Enter the maximum total for purchase of item: '
DECLARE
...
v_qty NUMBER(8) := 1;
v_running_total NUMBER(7,2) := 0;

BEGIN
...
WHILE v_running_total < &p_itemtot LOOP
...

v_qty := v_qty + 1;
v_running_total := v_qty * &p_price;
END LOOP;

...

WHILE Loop

In the example in the slide, the quantity increases with each iteration of the loop until the
quantity is no longer less than the maximum price allowed for spending on the item.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 O

R
AC

LE
 C

O
R

PO
R

AT
IO

N
 u

se
 o

nl
y

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Oracle Database 11g: Develop PL/SQL Program Units D - 18

Copyright © 2009, Oracle. All rights reserved.

No

Controlling Explicit Cursors

DECLARE OPEN EMPTY? CLOSE
Yes

FETCH

Create a
named SQL

area

Identify the
active set

Load the
current row

into variables

Test for
existing rows

Return to FETCH
if rows are found

Release the
active set

Explicit Cursors

Controlling Explicit Cursors Using Four Commands
1. Declare the cursor by naming it and defining the structure of the query to be performed

within it.
2. Open the cursor. The OPEN statement executes the query and binds any variables that are

referenced. Rows identified by the query are called the active set and are now available for
fetching.

3. Fetch data from the cursor. The FETCH statement loads the current row from the cursor
into variables. Each fetch causes the cursor to move its pointer to the next row in the active
set. Therefore, each fetch accesses a different row returned by the query. In the flow
diagram in the slide, each fetch tests the cursor for any existing rows. If rows are found, it
loads the current row into variables; otherwise, it closes the cursor.

4. Close the cursor. The CLOSE statement releases the active set of rows. It is now possible to
reopen the cursor to establish a fresh active set.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 O

R
AC

LE
 C

O
R

PO
R

AT
IO

N
 u

se
 o

nl
y

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Oracle Database 11g: Develop PL/SQL Program Units D - 19

Copyright © 2009, Oracle. All rights reserved.

Declaring the Cursor: Example

DECLARE
CURSOR c1 IS

SELECT employee_id, last_name
FROM employees;

CURSOR c2 IS
SELECT *
FROM departments
WHERE department_id = 10;

BEGIN
...

Explicit Cursor Declaration

Retrieve the employees one by one.
DECLARE

v_empid employees.employee_id%TYPE;

v_ename employees.last_name%TYPE;

CURSOR c1 IS

SELECT employee_id, last_name

FROM employees;

BEGIN

...

Note: You can reference variables in the query, but you must declare them before the CURSOR
statement.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 O

R
AC

LE
 C

O
R

PO
R

AT
IO

N
 u

se
 o

nl
y

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Oracle Database 11g: Develop PL/SQL Program Units D - 20

Copyright © 2009, Oracle. All rights reserved.

Opening the Cursor

• Open the cursor to execute the query and identify the
active set.

• If the query returns no rows, no exception is raised.

• Use cursor attributes to test the outcome after a fetch.

OPEN cursor_name;

OPEN Statement

Open the cursor to execute the query and identify the result set, which consists of all rows that
meet the query search criteria. The cursor now points to the first row in the result set.

In the syntax, cursor_name is the name of the previously declared cursor.

OPEN is an executable statement that performs the following operations:
1. Dynamically allocates memory for a context area that eventually contains crucial

processing information
2. Parses the SELECT statement
3. Binds the input variables—that is, sets the value for the input variables by obtaining their

memory addresses
4. Identifies the result set—that is, the set of rows that satisfy the search criteria. Rows in the

result set are not retrieved into variables when the OPEN statement is executed. Rather, the
FETCH statement retrieves the rows.

5. Positions the pointer just before the first row in the active set

Note: If the query returns no rows when the cursor is opened, then PL/SQL does not raise an
exception. However, you can test the cursor’s status after a fetch.

For cursors declared by using the FOR UPDATE clause, the OPEN statement also locks those
rows.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 O

R
AC

LE
 C

O
R

PO
R

AT
IO

N
 u

se
 o

nl
y

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Oracle Database 11g: Develop PL/SQL Program Units D - 21

Copyright © 2009, Oracle. All rights reserved.

Fetching Data from the Cursor: Examples

FETCH c1 INTO v_empid, v_ename;

...
OPEN defined_cursor;
LOOP

FETCH defined_cursor INTO defined_variables
EXIT WHEN ...;
...

-- Process the retrieved data
...

END;

FETCH Statement

You use the FETCH statement to retrieve the current row values into output variables. After the
fetch, you can manipulate the variables by further statements. For each column value returned by
the query associated with the cursor, there must be a corresponding variable in the INTO list.
Also, their data types must be compatible. Retrieve the first 10 employees one by one:

DECLARE
v_empid employees.employee_id%TYPE;
v_ename employees.last_name%TYPE;
i NUMBER := 1;
CURSOR c1 IS

SELECT employee_id, last_name
FROM employees;

BEGIN
OPEN c1;
FOR i IN 1..10 LOOP

FETCH c1 INTO v_empid, v_ename;
...

END LOOP;
END;

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 O

R
AC

LE
 C

O
R

PO
R

AT
IO

N
 u

se
 o

nl
y

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Oracle Database 11g: Develop PL/SQL Program Units D - 22

Copyright © 2009, Oracle. All rights reserved.

Closing the Cursor

• Close the cursor after completing the processing of the
rows.

• Reopen the cursor, if required.

• Do not attempt to fetch data from a cursor after it has been
closed.

CLOSE cursor_name;

CLOSE Statement

The CLOSE statement disables the cursor, and the result set becomes undefined. Close the cursor
after completing the processing of the SELECT statement. This step allows the cursor to be
reopened, if required. Therefore, you can establish an active set several times.
In the syntax, cursor_name is the name of the previously declared cursor.
Do not attempt to fetch data from a cursor after it has been closed, or the INVALID_CURSOR
exception will be raised.

Note: The CLOSE statement releases the context area. Although it is possible to terminate the
PL/SQL block without closing cursors, you should always close any cursor that you declare
explicitly in order to free up resources. There is a maximum limit to the number of open cursors
per user, which is determined by the OPEN_CURSORS parameter in the database parameter
field. By default, the maximum number of OPEN_CURSORS is 50.

...
FOR i IN 1..10 LOOP

FETCH c1 INTO v_empid, v_ename; ...
END LOOP;
CLOSE c1;

END;

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 O

R
AC

LE
 C

O
R

PO
R

AT
IO

N
 u

se
 o

nl
y

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Oracle Database 11g: Develop PL/SQL Program Units D - 23

Copyright © 2009, Oracle. All rights reserved.

Explicit Cursor Attributes

Obtain status information about a cursor.

NUMBER

BOOLEAN

BOOLEAN

BOOLEAN

Type

Evaluates to the total number of rows returned so
far

%ROWCOUNT

Evaluates to TRUE if the most recent fetch returns
a row; complement of %NOTFOUND

%FOUND

Evaluates to TRUE if the cursor is openISOPEN

%NOTFOUND

Attribute

Evaluates to TRUE if the most recent fetch does
not return a row

Description

Explicit Cursor Attributes

As with implicit cursors, there are four attributes for obtaining status information about a cursor.
When appended to the cursor or cursor variable, these attributes return useful information about
the execution of a DML statement.

Note: Do not reference cursor attributes directly in a SQL statement.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 O

R
AC

LE
 C

O
R

PO
R

AT
IO

N
 u

se
 o

nl
y

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Oracle Database 11g: Develop PL/SQL Program Units D - 24

Copyright © 2009, Oracle. All rights reserved.

Cursor FOR Loops: Example

Retrieve employees one by one until there are no more left.

DECLARE
CURSOR c1 IS
SELECT employee_id, last_name
FROM employees;

BEGIN
FOR emp_record IN c1 LOOP

-- implicit open and implicit fetch occur
IF emp_record.employee_id = 134 THEN
...

END LOOP; -- implicit close occurs
END;

Cursor FOR Loops

A cursor FOR loop processes rows in an explicit cursor. The cursor is opened, rows are fetched
once for each iteration in the loop, and the cursor is closed automatically when all rows have
been processed. The loop itself is terminated automatically at the end of the iteration where the
last row was fetched. In the slide example, emp_record in the cursor for loop is an implicitly
declared record that is used in the FOR LOOP construct.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 O

R
AC

LE
 C

O
R

PO
R

AT
IO

N
 u

se
 o

nl
y

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Oracle Database 11g: Develop PL/SQL Program Units D - 25

Copyright © 2009, Oracle. All rights reserved.

FOR UPDATE Clause: Example

Retrieve the orders for amounts over $1,000 that were
processed today.

DECLARE
CURSOR c1 IS

SELECT customer_id, order_id
FROM orders
WHERE order_date = SYSDATE

AND order_total > 1000.00
ORDER BY customer_id
FOR UPDATE NOWAIT;

FOR UPDATE Clause

If the database server cannot acquire the locks on the rows it needs in a SELECT FOR UPDATE,
then it waits indefinitely. You can use the NOWAIT clause in the SELECT FOR UPDATE
statement and test for the error code that returns due to failure to acquire the locks in a loop.
Therefore, you can retry opening the cursor n times before terminating the PL/SQL block.

If you intend to update or delete rows by using the WHERE CURRENT OF clause, you must
specify a column name in the FOR UPDATE OF clause.

If you have a large table, you can achieve better performance by using the LOCK TABLE
statement to lock all rows in the table. However, when using LOCK TABLE, you cannot use the
WHERE CURRENT OF clause and must use the notation WHERE column = identifier.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 O

R
AC

LE
 C

O
R

PO
R

AT
IO

N
 u

se
 o

nl
y

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Oracle Database 11g: Develop PL/SQL Program Units D - 26

Copyright © 2009, Oracle. All rights reserved.

WHERE CURRENT OF Clause: Example

DECLARE
CURSOR c1 IS

SELECT salary FROM employees
FOR UPDATE OF salary NOWAIT;

BEGIN
...
FOR emp_record IN c1 LOOP

UPDATE ...
WHERE CURRENT OF c1;

...
END LOOP;
COMMIT;

END;

WHERE CURRENT OF Clause

You can update rows based on criteria from a cursor.

Additionally, you can write your DELETE or UPDATE statement to contain the WHERE
CURRENT OF cursor_name clause to refer to the latest row processed by the FETCH
statement. When you use this clause, the cursor you reference must exist and must contain the
FOR UPDATE clause in the cursor query; otherwise, you get an error. This clause enables you to
apply updates and deletes to the currently addressed row without the need to explicitly reference
the ROWID pseudocolumn.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 O

R
AC

LE
 C

O
R

PO
R

AT
IO

N
 u

se
 o

nl
y

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Oracle Database 11g: Develop PL/SQL Program Units D - 27

Copyright © 2009, Oracle. All rights reserved.

Trapping Predefined Oracle Server Errors

• Reference the standard name in the exception-handling
routine.

• Sample predefined exceptions:
– NO_DATA_FOUND

– TOO_MANY_ROWS

– INVALID_CURSOR

– ZERO_DIVIDE

– DUP_VAL_ON_INDEX

Trapping Predefined Oracle Server Errors

Trap a predefined Oracle server error by referencing its standard name within the corresponding
exception-handling routine.

Note: PL/SQL declares predefined exceptions in the STANDARD package.
It is a good idea to always consider the NO_DATA_FOUND and TOO_MANY_ROWS exceptions,
which are the most common. O

ra
cl

e
U

ni
ve

rs
ity

 a
nd

 O
R

AC
LE

 C
O

R
PO

R
AT

IO
N

 u
se

 o
nl

y

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Oracle Database 11g: Develop PL/SQL Program Units D - 28

Copyright © 2009, Oracle. All rights reserved.

BEGIN SELECT ... COMMIT;
EXCEPTION

WHEN NO_DATA_FOUND THEN
statement1;
statement2;

WHEN TOO_MANY_ROWS THEN
statement1;

WHEN OTHERS THEN
statement1;
statement2;
statement3;

END;

Trapping Predefined
Oracle Server Errors: Example

Trapping Predefined Oracle Server Exceptions: Example

In the example in the slide, a message is printed out to the user for each exception. Only one
exception is raised and handled at any time.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 O

R
AC

LE
 C

O
R

PO
R

AT
IO

N
 u

se
 o

nl
y

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Oracle Database 11g: Develop PL/SQL Program Units D - 29

Copyright © 2009, Oracle. All rights reserved.

Non-Predefined Error

Trap for Oracle server error number –2292, which is an integrity
constraint violation.

DECLARE
e_products_invalid EXCEPTION;
PRAGMA EXCEPTION_INIT (
e_products_invalid, -2292);

v_message VARCHAR2(50);
BEGIN
. . .
EXCEPTION
WHEN e_products_invalid THEN
:g_message := 'Product ID
specified is not valid.';

. . .
END;

1

2

3

Trapping a Non-Predefined Oracle Server Exception

1. Declare the name for the exception within the declarative section.
Syntax

exception EXCEPTION;
In this syntax, exception is the name of the exception.

2. Associate the declared exception with the standard Oracle server error number, using the
PRAGMA EXCEPTION_INIT statement.
Syntax

PRAGMA EXCEPTION_INIT(exception, error_number);

In this syntax:
exception Is the previously declared exception
error_number Is a standard Oracle server error number

3. Reference the declared exception within the corresponding exception-handling routine.
In the slide example: If there is product in stock, halt processing and print a message to the
user.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 O

R
AC

LE
 C

O
R

PO
R

AT
IO

N
 u

se
 o

nl
y

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Oracle Database 11g: Develop PL/SQL Program Units D - 30

Copyright © 2009, Oracle. All rights reserved.

User-Defined Exceptions: Example

[DECLARE]
e_amount_remaining EXCEPTION;

. . .
BEGIN
. . .

RAISE e_amount_remaining;
. . .

EXCEPTION
WHEN e_amount_remaining THEN

:g_message := 'There is still an amount
in stock.';

. . .
END;

1

2

3

Trapping User-Defined Exceptions

You trap a user-defined exception by declaring it and raising it explicitly.
1. Declare the name for the user-defined exception within the declarative section.

Syntax: exception EXCEPTION;
where: exception Is the name of the exception

2. Use the RAISE statement to raise the exception explicitly within the executable section.
Syntax: RAISE exception;
where: exception Is the previously declared exception

3. Reference the declared exception within the corresponding exception-handling routine.

In the slide example: This customer has a business rule that states that a product cannot be
removed from its database if there is any inventory left in stock for this product. Because there
are no constraints in place to enforce this rule, the developer handles it explicitly in the
application. Before performing a DELETE on the PRODUCT_INFORMATION table, the block
queries the INVENTORIES table to see whether there is any stock for the product in question. If
there is stock, raise an exception.

Note: Use the RAISE statement by itself within an exception handler to raise the same
exception back to the calling environment.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 O

R
AC

LE
 C

O
R

PO
R

AT
IO

N
 u

se
 o

nl
y

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Oracle Database 11g: Develop PL/SQL Program Units D - 31

Copyright © 2009, Oracle. All rights reserved.

RAISE_APPLICATION_ERROR Procedure

• Enables you to issue user-defined error messages from
stored subprograms

• Is called from an executing stored subprogram only

raise_application_error (error_number,
message[, {TRUE | FALSE}]);

RAISE_APPLICATION_ERROR Procedure

Use the RAISE_APPLICATION_ERROR procedure to communicate a predefined exception
interactively by returning a nonstandard error code and error message. With
RAISE_APPLICATION_ERROR, you can report errors to your application and avoid returning
unhandled exceptions.

In the syntax, error_number is a user-specified number for the exception between
–20,000 and –20,999. The message is the user-specified message for the exception. It is a
character string that is up to 2,048 bytes long.

TRUE | FALSE is an optional Boolean parameter. If TRUE, the error is placed on the stack of
previous errors. If FALSE (the default), the error replaces all previous errors.

Example:
...
EXCEPTION

WHEN NO_DATA_FOUND THEN
RAISE_APPLICATION_ERROR (-20201,
'Manager is not a valid employee.');

END;

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 O

R
AC

LE
 C

O
R

PO
R

AT
IO

N
 u

se
 o

nl
y

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Oracle Database 11g: Develop PL/SQL Program Units D - 32

Copyright © 2009, Oracle. All rights reserved.

RAISE_APPLICATION_ERROR Procedure

• Is used in two different places:
– Executable section

– Exception section

• Returns error conditions to the user in a manner consistent
with other Oracle server errors

RAISE_APPLICATION_ERROR Procedure: Example

...
DELETE FROM employees
WHERE manager_id = v_mgr;
IF SQL%NOTFOUND THEN

RAISE_APPLICATION_ERROR(-20202,
'This is not a valid manager');

END IF;
...

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 O

R
AC

LE
 C

O
R

PO
R

AT
IO

N
 u

se
 o

nl
y

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Copyright © 2009, Oracle. All rights reserved.

Using SQL*Plus

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 O

R
AC

LE
 C

O
R

PO
R

AT
IO

N
 u

se
 o

nl
y

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Oracle Database 11g: Develop PL/SQL Program Units E - 2

Copyright © 2009, Oracle. All rights reserved.

Objectives

After completing this appendix, you should be able to do the
following:

• Log in to SQL*Plus

• Edit SQL commands

• Format output using SQL*Plus commands

• Interact with script files

Objectives

You might want to create SELECT statements that can be used again and again. This appendix
also covers the use of SQL*Plus commands to execute SQL statements. You learn how to format
output using SQL*Plus commands, edit SQL commands, and save scripts in SQL*Plus.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 O

R
AC

LE
 C

O
R

PO
R

AT
IO

N
 u

se
 o

nl
y

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Oracle Database 11g: Develop PL/SQL Program Units E - 3

Copyright © 2009, Oracle. All rights reserved.

SQL and SQL*Plus Interaction

Buffer

Server

SQL statements

Query results

SQL
scripts

SQL*Plus

SQL and SQL*Plus

SQL is a command language for communication with the Oracle Server from any tool or
application. Oracle SQL contains many extensions. When you enter a SQL statement, it is stored
in a part of memory called the SQL buffer and remains there until you enter a new SQL
statement. SQL*Plus is an Oracle tool that recognizes and submits SQL statements to the Oracle
Server for execution. It contains its own command language.

Features of SQL
• Can be used by a range of users, including those with little or no programming

experience
• Is a nonprocedural language
• Reduces the amount of time required for creating and maintaining systems
• Is an English-like language

Features of SQL*Plus
• Accepts ad hoc entry of statements
• Accepts SQL input from files
• Provides a line editor for modifying SQL statements
• Controls environmental settings
• Formats query results into basic reports
• Accesses local and remote databases

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 O

R
AC

LE
 C

O
R

PO
R

AT
IO

N
 u

se
 o

nl
y

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Oracle Database 11g: Develop PL/SQL Program Units E - 4

Copyright © 2009, Oracle. All rights reserved.

SQL Statements Versus
SQL*Plus Commands

SQL
statements

SQL

• A language

• ANSI-standard

• Keywords cannot be
abbreviated

• Statements manipulate
data and table
definitions in the
database

SQL*Plus

• An environment

• Oracle-proprietary

• Keywords can be
abbreviated

• Commands do not allow
manipulation of values in
the database

SQL
buffer

SQL*Plus
commands

SQL*Plus
buffer

SQL and SQL*Plus (continued)

The following table compares SQL and SQL*Plus:

SQL SQL*Plus
Is a language for communicating with the
Oracle server to access data

Recognizes SQL statements and sends them
to the server

Is based on American National Standards
Institute (ANSI)–standard SQL

Is the Oracle-proprietary interface for
executing SQL statements

Manipulates data and table definitions in the
database

Does not allow manipulation of values in the
database

Is entered into the SQL buffer on one or
more lines

Is entered one line at a time, not stored in the
SQL buffer

Does not have a continuation character Uses a dash (–) as a continuation character if
the command is longer than one line

Cannot be abbreviated Can be abbreviated

Uses a termination character to execute
commands immediately

Does not require termination characters;
executes commands immediately

Uses functions to perform some formatting Uses commands to format data

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 O

R
AC

LE
 C

O
R

PO
R

AT
IO

N
 u

se
 o

nl
y

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Oracle Database 11g: Develop PL/SQL Program Units E - 5

Copyright © 2009, Oracle. All rights reserved.

Overview of SQL*Plus

• Log in to SQL*Plus.

• Describe the table structure.

• Edit your SQL statement.

• Execute SQL from SQL*Plus.

• Save SQL statements to files and append SQL statements
to files.

• Execute saved files.

• Load commands from file to buffer to edit.

SQL*Plus

SQL*Plus is an environment in which you can do the following:
• Execute SQL statements to retrieve, modify, add, and remove data from the database
• Format, perform calculations on, store, and print query results in the form of reports
• Create script files to store SQL statements for repeated use in the future

SQL*Plus commands can be divided into the following main categories:

Category Purpose

Environment Affect the general behavior of SQL statements for the session

Format Format query results

File manipulation Save, load, and run script files

Execution Send SQL statements from the SQL buffer to the Oracle server

Edit Modify SQL statements in the buffer

Interaction Create and pass variables to SQL statements, print variable values, and
print messages to the screen

Miscellaneous Connect to the database, manipulate the SQL*Plus environment, and
display column definitions

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 O

R
AC

LE
 C

O
R

PO
R

AT
IO

N
 u

se
 o

nl
y

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Oracle Database 11g: Develop PL/SQL Program Units E - 6

Copyright © 2009, Oracle. All rights reserved.

Logging In to SQL*Plus: Available Methods
1

2

Logging In to SQL*Plus

How you invoke SQL*Plus depends on which type of operating system or Windows
environment you are running.
To log in from a Windows environment:

1. Select Start > Programs > Oracle > Application Development > SQL*Plus.
2. Enter the username, password, and database name.

To log in from a command-line environment:
1. Log on to your machine.
2. Enter the sqlplus command shown in the slide.

In the syntax:
username Your database username
password Your database password (Your password is visible if you enter it here.)
@database The database connect string

Note: To ensure the integrity of your password, do not enter it at the operating system prompt.
Instead, enter only your username. Enter your password at the password prompt.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 O

R
AC

LE
 C

O
R

PO
R

AT
IO

N
 u

se
 o

nl
y

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Oracle Database 11g: Develop PL/SQL Program Units E - 7

Copyright © 2009, Oracle. All rights reserved.

Customizing the SQL*Plus Environment

Changing Settings of the SQL*Plus Environment

You can optionally change the look of the SQL*Plus environment by using the SQL*Plus
Properties dialog box.

In the SQL*Plus window, right-click the title bar and in the shortcut menu that appears, select
Properties. You can then use the colors tab of the SQL*Plus Properties dialog box to set Screen
Background and Screen Text. O

ra
cl

e
U

ni
ve

rs
ity

 a
nd

 O
R

AC
LE

 C
O

R
PO

R
AT

IO
N

 u
se

 o
nl

y

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Oracle Database 11g: Develop PL/SQL Program Units E - 8

Copyright © 2009, Oracle. All rights reserved.

Displaying Table Structure

Use the SQL*Plus DESCRIBE command to display the structure
of a table:

DESC[RIBE] tablename

Displaying Table Structure

In SQL*Plus, you can display the structure of a table using the DESCRIBE command. The result
of the command is a display of column names and data types as well as an indication of whether
a column must contain data.

In the syntax:

tablename Is the name of any existing table, view, or synonym that is accessible to
the user

To describe the JOB_GRADES table, use this command:
SQL> DESCRIBE job_grades
Name Null? Type
---------------------------------- -------- -----------
GRADE_LEVEL VARCHAR2(3)
LOWEST_SAL NUMBER
HIGHEST_SAL NUMBER

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 O

R
AC

LE
 C

O
R

PO
R

AT
IO

N
 u

se
 o

nl
y

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Oracle Database 11g: Develop PL/SQL Program Units E - 9

Copyright © 2009, Oracle. All rights reserved.

Displaying Table Structure

Name Null? Type
----------------------- -------- ------------
DEPARTMENT_ID NOT NULL NUMBER(4)
DEPARTMENT_NAME NOT NULL VARCHAR2(30)
MANAGER_ID NUMBER(6)
LOCATION_ID NUMBER(4)

DESCRIBE departments

Displaying Table Structure (continued)

The example in the slide displays the information about the structure of the DEPARTMENTS
table. In the result:
Null?: Specifies whether a column must contain data (NOT NULL indicates that a column

must contain data.)
Type: Displays the data type for a column

The following table describes the data types:

Data Type Description
NUMBER(p,s) Number value that has a maximum number of digits p,

which is the number of digits to the right of the decimal point
s

VARCHAR2(s) Variable-length character value of maximum size s

DATE

Date and time value between January 1, 4712 B.C., and A.D.
December 31, 9999

CHAR(s) Fixed-length character value of size s

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 O

R
AC

LE
 C

O
R

PO
R

AT
IO

N
 u

se
 o

nl
y

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Oracle Database 11g: Develop PL/SQL Program Units E - 10

Copyright © 2009, Oracle. All rights reserved.

SQL*Plus Editing Commands

• A[PPEND] text

• C[HANGE] / old / new

• C[HANGE] / text /

• CL[EAR] BUFF[ER]

• DEL

• DEL n

• DEL m n

SQL*Plus Editing Commands

SQL*Plus commands are entered one line at a time and are not stored in the SQL buffer.

Guidelines
• If you press [Enter] before completing a command, SQL*Plus prompts you with a line

number.
• You terminate the SQL buffer by either entering one of the terminator characters

(semicolon or slash) or pressing [Enter] twice. The SQL prompt then appears.

Command Description
A[PPEND] text Adds text to the end of the current line
C[HANGE] / old / new

Changes old text to new in the current line

C[HANGE] / text / Deletes text from the current line
CL[EAR] BUFF[ER] Deletes all lines from the SQL buffer
DEL Deletes current line
DEL n Deletes line n
DEL m n Deletes lines m to n

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 O

R
AC

LE
 C

O
R

PO
R

AT
IO

N
 u

se
 o

nl
y

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Oracle Database 11g: Develop PL/SQL Program Units E - 11

Copyright © 2009, Oracle. All rights reserved.

SQL*Plus Editing Commands

• I[NPUT]
• I[NPUT] text
• L[IST]
• L[IST] n
• L[IST] m n
• R[UN]
• n
• n text
• 0 text

SQL*Plus Editing Commands (continued)

Note: You can enter only one SQL*Plus command for each SQL prompt. SQL*Plus commands
are not stored in the buffer. To continue a SQL*Plus command on the next line, end the first line
with a hyphen (-).

Command Description
I[NPUT] Inserts an indefinite number of lines
I[NPUT] text Inserts a line consisting of text
L[IST] Lists all lines in the SQL buffer
L[IST] n Lists one line (specified by n)
L[IST] m n Lists a range of lines (m to n)
R[UN] Displays and runs the current SQL statement in the buffer
n Specifies the line to make the current line
n text Replaces line n with text
0 text Inserts a line before line 1

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 O

R
AC

LE
 C

O
R

PO
R

AT
IO

N
 u

se
 o

nl
y

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Oracle Database 11g: Develop PL/SQL Program Units E - 12

Copyright © 2009, Oracle. All rights reserved.

Using LIST, n, and APPEND

LIST
1 SELECT last_name
2* FROM employees

1
1* SELECT last_name

A , job_id
1* SELECT last_name, job_id

LIST
1 SELECT last_name, job_id
2* FROM employees

Using LIST, n, and APPEND

• Use the L[IST] command to display the contents of the SQL buffer. The asterisk (*)
beside line 2 in the buffer indicates that line 2 is the current line. Any edits that you made
apply to the current line.

• Change the number of the current line by entering the number (n) of the line that you want
to edit. The new current line is displayed.

• Use the A[PPEND] command to add text to the current line. The newly edited line is
displayed. Verify the new contents of the buffer by using the LIST command.

Note: Many SQL*Plus commands, including LIST and APPEND, can be abbreviated to just
their first letters. LIST can be abbreviated to L; APPEND can be abbreviated to A.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 O

R
AC

LE
 C

O
R

PO
R

AT
IO

N
 u

se
 o

nl
y

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Oracle Database 11g: Develop PL/SQL Program Units E - 13

Copyright © 2009, Oracle. All rights reserved.

Using the CHANGE Command

LIST
1* SELECT * from employees

c/employees/departments
1* SELECT * from departments

LIST

1* SELECT * from departments

Using the CHANGE Command

• Use L[IST] to display the contents of the buffer.
• Use the C[HANGE] command to alter the contents of the current line in the SQL buffer. In

this case, replace the EMPLOYEES table with the DEPARTMENTS table. The new current
line is displayed.

• Use the L[IST] command to verify the new contents of the buffer.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 O

R
AC

LE
 C

O
R

PO
R

AT
IO

N
 u

se
 o

nl
y

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Oracle Database 11g: Develop PL/SQL Program Units E - 14

Copyright © 2009, Oracle. All rights reserved.

SQL*Plus File Commands

• SAVE filename

• GET filename

• START filename

• @ filename

• EDIT filename

• SPOOL filename

• EXIT

SQL*Plus File Commands

SQL statements communicate with the Oracle server. SQL*Plus commands control the
environment, format query results, and manage files. You can use the commands described in
the following table:

Command Description

SAV[E] filename [.ext]
[REP[LACE]APP[END]]

Saves current contents of SQL buffer to a file. Use APPEND
to add to an existing file; use REPLACE to overwrite an
existing file. The default extension is .sql.

GET filename [.ext]

Writes the contents of a previously saved file to the SQL
buffer. The default extension for the file name is .sql.

STA[RT] filename [.ext] Runs a previously saved command file

@ filename Runs a previously saved command file (same as START)

ED[IT]

Invokes the editor and saves the buffer contents to a file
named afiedt.buf

ED[IT] [filename[.ext]] Invokes the editor to edit the contents of a saved file
SPO[OL] [filename[.ext]|
OFF|OUT]

Stores query results in a file. OFF closes the spool file. OUT
closes the spool file and sends the file results to the printer.

EXIT Quits SQL*Plus

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 O

R
AC

LE
 C

O
R

PO
R

AT
IO

N
 u

se
 o

nl
y

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Oracle Database 11g: Develop PL/SQL Program Units E - 15

Copyright © 2009, Oracle. All rights reserved.

Using the SAVE, START, and EDIT Commands

LIST
1 SELECT last_name, manager_id, department_id
2* FROM employees

SAVE my_query
Created file my_query

START my_query

LAST_NAME MANAGER_ID DEPARTMENT_ID
------------------------- ---------- -------------
King 90
Kochhar 100 90
...
107 rows selected.

Using the SAVE, START, and EDIT Commands

SAVE

Use the SAVE command to store the current contents of the buffer in a file. In this way, you can
store frequently used scripts for use in the future.

START

Use the START command to run a script in SQL*Plus. O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 O

R
AC

LE
 C

O
R

PO
R

AT
IO

N
 u

se
 o

nl
y

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Oracle Database 11g: Develop PL/SQL Program Units E - 16

Copyright © 2009, Oracle. All rights reserved.

Using the SAVE, START, and EDIT Commands

EDIT my_query

Using the SAVE, START, and EDIT Commands (continued)

EDIT

Use the EDIT command to edit an existing script. This opens an editor with the script file in it.
When you have made the changes, quit the editor to return to the SQL*Plus command line.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 O

R
AC

LE
 C

O
R

PO
R

AT
IO

N
 u

se
 o

nl
y

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Oracle Database 11g: Develop PL/SQL Program Units E - 17

Copyright © 2009, Oracle. All rights reserved.

SQL*Plus Enhancements Since
Oracle Database 10g

• Changes to the SET SERVEROUT[PUT] command

• White space support in file and path names in Windows

• Three new predefined SQL*Plus variables
• The new RECYCLEBIN clause of the SHOW command

• The new APPEND, CREATE, and REPLACE extensions to
the SPOOL command

• New error messages for the COPY command

• Change in the DESCRIBE command behavior

• New PAGESIZE default

• New SQLPLUS program compatibility option

• Execution statistics information in the AUTOTRACE
command report

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 O

R
AC

LE
 C

O
R

PO
R

AT
IO

N
 u

se
 o

nl
y

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Oracle Database 11g: Develop PL/SQL Program Units E - 18

Copyright © 2009, Oracle. All rights reserved.

Changes to the SERVEROUTPUT Command

• Use the SET SERVEROUT[PUT] command to control whether to
display the output of stored procedures or PL/SQL blocks in
SQL*Plus.

• The DBMS_OUTPUT line length limit is increased from 255 bytes
to 32,767 bytes.

• The default size is now unlimited.
• Resources are not preallocated when SERVEROUTPUT is set.

• Because there is no performance penalty, use UNLIMITED
unless you want to conserve physical memory.

SET SERVEROUT[PUT] {ON | OFF} [SIZE {n | UNL[IMITED]}]
[FOR[MAT] {WRA[PPED] | WOR[D_WRAPPED] | TRU[NCATED]}]

New SQL*Plus Enhancements Since Oracle Database 10g
Most PL/SQL input and output is through SQL statements, to store data in database tables or
query those tables. All other PL/SQL I/O is done through APIs that interact with other programs.
For example, the DBMS_OUTPUT package has procedures such as PUT_LINE. To see the result
outside of PL/SQL requires another program, such as SQL*Plus, to read and display the data
passed to DBMS_OUTPUT.

SQL*Plus does not display DBMS_OUTPUT data unless you first issue the SQL*Plus command
SET SERVEROUTPUT ON as follows:

SET SERVEROUTPUT ON

Note
• SIZE sets the number of bytes of the output that can be buffered within the Oracle

Database server. The default is UNLIMITED. n cannot be less than 2,000 or greater than
1,000,000.

• For additional information about SERVEROUTPUT, see the Oracle Database PL/SQL
User's Guide and Reference 11g Release 1 (11.1)

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 O

R
AC

LE
 C

O
R

PO
R

AT
IO

N
 u

se
 o

nl
y

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Oracle Database 11g: Develop PL/SQL Program Units E - 19

Copyright © 2009, Oracle. All rights reserved.

White Space Support in File
and Path Names in Windows

• In Windows, white space can be included in file names and
paths.

• Examples of where white space can be used:
– START, @, @@, RUN, SPOOL, SAVE, and EDIT commands

• To reference files or paths containing spaces, enclose the
name or path in double quotation marks.

SAVE "Monthly Report.sql"
START "Monthly Report.sql"

Examples

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 O

R
AC

LE
 C

O
R

PO
R

AT
IO

N
 u

se
 o

nl
y

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Oracle Database 11g: Develop PL/SQL Program Units E - 20

Copyright © 2009, Oracle. All rights reserved.

Predefined SQL*Plus Variables

Username used to make connection_USER

Full release number of installed SQL*Plus
component

_SQLPLUS_RELEASE

Privilege level of the current connection_PRIVILEGE

Full release number of the installed Oracle DatabaseO_RELEASE

Connection identifier used to make connection,
where available

_CONNECT_IDENTIFIER

_O_VERSION

_EDITOR

_DATE

Variable Name

Current date, or a user-defined fixed string

Current version of the installed Oracle Database

Specifies the editor used by the EDIT command

Contains

Predefined Variables

There are eight variables defined during SQL*Plus installation. These variables differ from user-
defined variables by having only predefined values.

You can view the value of each of these variables with the DEFINE command. These variables
can be accessed and redefined like any other substitution variable. They can be used in TTITLE,
in '&' substitution variables, or in your SQL*Plus command-line prompt.

You can use the DEFINE command to view the definitions of these eight predefined variables in
the same way as you view other DEFINE definitions. You can also use the DEFINE command
to redefine their values, or you can use the UNDEFINE command to remove their definitions and
make them unavailable.

Note: For additional information about the SQL*Plus predefined variables, see the SQL*Plus
User's Guide and Reference Release 11.1.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 O

R
AC

LE
 C

O
R

PO
R

AT
IO

N
 u

se
 o

nl
y

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Oracle Database 11g: Develop PL/SQL Program Units E - 21

Copyright © 2009, Oracle. All rights reserved.

Using the New Predefined
SQL*Plus Variables: Examples

-- Change the SQL*Plus prompt to display the connection
-- identifier

SQL> SET SQLPROMPT '_CONNECT_IDENTIFIER > '
orcl >

-- view the predefined value of the _SQLPLUS_RELEASE
-- substitution variable

orcl > DEFINE _SQLPLUS_RELEASE
DEFINE _SQLPLUS_RELEASE = "1002000100" (CHAR)

-- View the user name connected to the current
-- connection.

orcl > DEFINE _USER
DEFINE _USER = "HR" (CHAR)

Using the Predefined SQL*Plus Variables: Examples

To view all predefined and user-defined variable definitions, enter DEFINE. All predefined and
all user-defined variable definitions are displayed as shown below:

orcl > DEFINE
DEFINE _DATE = "06-JUL-06" (CHAR)
DEFINE _CONNECT_IDENTIFIER = "orcl" (CHAR)
DEFINE _USER = "HR" (CHAR)
DEFINE _PRIVILEGE = "" (CHAR)
DEFINE _SQLPLUS_RELEASE = "1002000100" (CHAR)
DEFINE _EDITOR = "Notepad" (CHAR)
DEFINE _O_VERSION = "Oracle Database 10g Enterprise
Edition Release 10.2.0.1.0 - Production
With the Partitioning, OLAP and Data Mining options" (CHAR)
DEFINE _O_RELEASE = "1002000100" (CHAR)

You can use UNDEFINE to remove a substitution variable definition and make it unavailable.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 O

R
AC

LE
 C

O
R

PO
R

AT
IO

N
 u

se
 o

nl
y

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Oracle Database 11g: Develop PL/SQL Program Units E - 22

Copyright © 2009, Oracle. All rights reserved.

The SHOW Command and the New
RECYCLEBIN Clause

SHOW RECYC[LEBIN] [original_name]
SELECT * FROM USER_RECYCLEBIN
desc user_recyclebin;
Name Null? Type
--------------- -------- ------------
OBJECT_NAME NOT NULL VARCHAR2(30)
ORIGINAL_NAME VARCHAR2(32)
OPERATION VARCHAR2(9)
TYPE VARCHAR2(25)
TS_NAME VARCHAR2(30)
CREATETIME VARCHAR2(19)
DROPTIME VARCHAR2(19)
DROPSCN NUMBER
PARTITION_NAME VARCHAR2(32)
CAN_UNDROP VARCHAR2(3)
CAN_PURGE VARCHAR2(3)
RELATED NOT NULL NUMBER
BASE_OBJECT NOT NULL NUMBER
PURGE_OBJECT NOT NULL NUMBER
SPACE NUMBER

The SHOW Command and the RECYCLEBIN Clause

Using the SHOW command, you can show objects in the recycle bin that can be reverted with the
FLASHBACK BEFORE DROP command. You do not need to remember column names, or
interpret the less readable output from the query. The following query returns three columns that
are displayed in the slide:

SELECT * FROM USER_RECYCLEBIN

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 O

R
AC

LE
 C

O
R

PO
R

AT
IO

N
 u

se
 o

nl
y

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Oracle Database 11g: Develop PL/SQL Program Units E - 23

Copyright © 2009, Oracle. All rights reserved.

The SHOW Command and the
RECYCLEBIN Clause: Example

DROP TABLE test;
Table dropped.

SHOW recyclebin

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 O

R
AC

LE
 C

O
R

PO
R

AT
IO

N
 u

se
 o

nl
y

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Oracle Database 11g: Develop PL/SQL Program Units E - 24

Copyright © 2009, Oracle. All rights reserved.

Using the SQL*Plus SPOOL Command

SPO[OL] [file_name[.ext] [CRE[ATE] | REP[LACE] |
APP[END]] | OFF | OUT]

Stops spooling and sends the file to your computer's
standard (default) printer

OUT

Stops spoolingOFF

Spools output to the specified file namefile_name[.ext]

APP[END]

REP[LACE]

CRE[ATE]

Option

Creates a new file with the name specified

Adds the contents of the buffer to the end of the file
you specify

Replaces the contents of an existing file. If the file
does not exist, REPLACE creates the file.

Description

Using the SQL*Plus SPOOL Command

The SPOOL command stores query results in a file, or optionally sends the file to a printer. The
SPOOL command has been enhanced. You can now append to, or replace an existing file, where
previously you could use SPOOL to only create (and replace) a file. REPLACE is the default.

To spool output generated by commands in a script without displaying the output on the screen,
use SET TERMOUT OFF. SET TERMOUT OFF does not affect output from commands that
run interactively.

You must use quotation marks around file names containing white spaces. To create a valid
HTML file using SPOOL APPEND commands, you must use PROMPT or a similar command to
create the HTML page header and footer. The SPOOL APPEND command does not parse
HTML tags. Set SQLPLUSCOMPAT[IBILITY] to 9.2 or earlier to disable the CREATE,
APPEND, and SAVE parameters.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 O

R
AC

LE
 C

O
R

PO
R

AT
IO

N
 u

se
 o

nl
y

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Oracle Database 11g: Develop PL/SQL Program Units E - 25

Copyright © 2009, Oracle. All rights reserved.

Using the SQL*Plus SPOOL Command: Examples

-- Record the output in the new file DIARY using the
-- default file extension.

SPOOL DIARY CREATE

-- Append the output to the existing file DIARY.

SPOOL DIARY APPEND

-- Record the output to the file DIARY, overwriting the
-- existing content

SPOOL DIARY REPLACE

-- Stop spooling and print the file on your default printer.

SPOOL OUT

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 O

R
AC

LE
 C

O
R

PO
R

AT
IO

N
 u

se
 o

nl
y

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Oracle Database 11g: Develop PL/SQL Program Units E - 26

Copyright © 2009, Oracle. All rights reserved.

The COPY Command: New Error Messages

CPY-0002 Illegal or missing APPEND, CREATE, INSERT, or
REPLACE option

CPY-0003 Internal Error: logical host number out of
Range

CPY-0004 Source and destination table and column names
don't match

CPY-0005 Source and destination column attributes don't
Match

CPY-0006 Select list has more columns than destination
Table

CPY-0007 Select list has fewer columns than destination
table

The COPY Command: New Error Messages

• CPY-0002 Illegal or missing APPEND, CREATE, INSERT, or REPLACE option: An
internal COPY function has invoked COPY with a create option (flag) value that is out of
range.

• CPY-0003 Internal Error: Logical host number out of range: An internal COPY
function has been invoked with a logical host number value that is out of range.

• CPY-0004 Source and destination table and column names don't match: On an
APPEND operation or an INSERT (when the table exists), at least one column name in the
destination table does not match the corresponding column name in the optional column
name list or in the SELECT command. To correct this, respecify the COPY command,
making sure that the column names and their respective order in the destination table
match the column names and column order in the optional column list or in the SELECT
command.

• CPY-0005 Source and destination column attributes don't match: On an APPEND
operation or an INSERT (when the table exists), at least one column in the destination
table does not have the same data type as the corresponding column in the SELECT
command. To correct this, respecify the COPY command, making sure that the data types
for items being selected agree with the destination. Use TO_DATE, TO_CHAR, and
TO_NUMBER to make conversions.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 O

R
AC

LE
 C

O
R

PO
R

AT
IO

N
 u

se
 o

nl
y

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Oracle Database 11g: Develop PL/SQL Program Units E - 27

The COPY Command: New Error Messages (continued)

CPY-0006 Select list has more columns than destination table: On an APPEND operation or
an INSERT (when the table exists), the number of columns in the SELECT command is greater
than the number of columns in the destination table. To correct this, re-specify the COPY
command, making sure that the number of columns being selected agrees with the number in the
destination table.
CPY-0007 Select list has fewer columns than destination table: On an APPEND operation or
INSERT (when the table exists), the number of columns in the SELECT command is less than
the number of columns in the destination table. To correct this, re-specify the COPY command,
making sure that the number of columns being selected agrees with the number in the
destination table.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 O

R
AC

LE
 C

O
R

PO
R

AT
IO

N
 u

se
 o

nl
y

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Oracle Database 11g: Develop PL/SQL Program Units E - 28

Copyright © 2009, Oracle. All rights reserved.

The COPY Command: New Error Messages

CPY-0008 More column list names than columns in the
destination table

CPY-0009 Fewer column list names than columns in the
destination table

CPY-0012 Datatype cannot be copied

The COPY Command: New Error Messages

• CPY-0008 More column list names than columns in the destination table: On an
APPEND operation or an INSERT (when the table exists), the number of columns in the
column name list is greater than the number of columns in the destination table. To correct
this, re-specify the COPY command, making sure that the number of columns in the
column list agrees with the number in the destination table.

• CPY-0009 Fewer column list names than columns in the destination table: On an
APPEND operation or an INSERT (when the table exists), the number of columns in the
column name list is less than the number of columns in the destination table. To correct
this, re-specify the COPY command, making sure that the number of columns in the
column list agrees with the number in the destination table.

• CPY-0012 Datatype cannot be copied: An attempt was made to copy a data type that is
not supported in the COPY command. Data types supported by the COPY command are
CHAR, DATE, LONG, NUMBER, and VARCHAR2. To correct this, re-specify the COPY
command, making sure that the unsupported data type column is removed.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 O

R
AC

LE
 C

O
R

PO
R

AT
IO

N
 u

se
 o

nl
y

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Oracle Database 11g: Develop PL/SQL Program Units E - 29

Copyright © 2009, Oracle. All rights reserved.

Change in the DESCRIBE Command Behavior

• Prior to Oracle Database 10g, using DESCRIBE on an
invalidated object failed with the error:

— ORA-24372: invalid object for describe

• The DESCRIBE command continued to fail even if the
object had since been validated.

• Starting with Oracle Database 10g, the DESCRIBE
command now automatically validates the object and
continues if the validation is successful.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 O

R
AC

LE
 C

O
R

PO
R

AT
IO

N
 u

se
 o

nl
y

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Oracle Database 11g: Develop PL/SQL Program Units E - 30

Copyright © 2009, Oracle. All rights reserved.

The SET PAGES[IZE] Command

• It sets the number of rows on each page of the output in
SQL*Plus.

• The default PAGESIZE has changed from 24 to 14.

• You can set PAGESIZE to zero to suppress all headings,
page breaks, titles, the initial blank line, and other
formatting information.

SET PAGES[IZE] {14 | n}

The SET PAGES[IZE] Command

The SET PAGES[IZE]command sets the number of rows displayed on each page. Error and
informational messages are not counted in the page size, so pages may not always be exactly the
same length. The default page size for SQL*Plus has changed from 24 to 14.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 O

R
AC

LE
 C

O
R

PO
R

AT
IO

N
 u

se
 o

nl
y

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Oracle Database 11g: Develop PL/SQL Program Units E - 31

Copyright © 2009, Oracle. All rights reserved.

The SQLPLUS Program and
the Compatibility Option

Sets the value of the SQLPLUSCOMPATIBILITY system
variable to the SQL*Plus release specified by x.y[.z]

SQLPLUS -C[OMPATIBILITY] {x.y[.z]}

-- x is the version number
-- y is the release number
-- z is the update number

SQLPLUS -C 10.2.0

The SQLPLUS Program and the Compatibility Option

The SQL*Plus Compatibility Matrix tabulates behavior affected by each SQL*Plus
compatibility setting. SQL*Plus compatibility modes can be set in three ways:

• You can include a SET SQLPLUSCOMPATIBILITY command in your site or user
profile. On installation, there is no SET SQLPLUSCOMPATIBILITY setting in
glogin.sql. Therefore, the default compatibility is 10.2.

• You can use the SQLPLUS -C[OMPATIBILITY] {x.y[.z]} command argument at
startup to set the compatibility mode of that session.

• You can use the SET SQLPLUSCOMPATIBILITY {x.y[.z]} command during a
session to set the SQL*Plus behavior you want for that session.

Note: For a list showing the release of SQL*Plus that introduced the behavior change, see
the “SQL*Plus Compatibility Matrix” topic in SQL*Plus User's Guide and Reference
Release 11.1.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 O

R
AC

LE
 C

O
R

PO
R

AT
IO

N
 u

se
 o

nl
y

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Oracle Database 11g: Develop PL/SQL Program Units E - 32

Copyright © 2009, Oracle. All rights reserved.

Using the AUTOTRACE Command

• It displays a report after the successful execution of SQL
DML statements such as SELECT, INSERT, UPDATE or
DELETE.

• The report can now include execution statistics and the
query execution path.

SET AUTOT[RACE] {ON | OFF | TRACE[ONLY]} [EXP[LAIN]]
[STAT[ISTICS]]

SET AUTOTRACE ON
-- The AUTOTRACE report includes both the optimizer
-- execution path and the SQL statement execution
-- statistics.

Using the AUTOTRACE Command

EXPLAIN shows the query execution path by performing an EXPLAIN PLAN. STATISTICS
displays SQL statement statistics. The formatting of your AUTOTRACE report may vary
depending on the version of the server to which you are connected and the configuration of the
server. The additional information and tabular output of AUTOTRACE PLAN is supported when
connecting to Oracle Database 10g (Release 10.1) or later. When you connect to an earlier
database, the older form of AUTOTRACE reporting is used.

The DBMS_XPLAN package provides an easy way to display the output of the EXPLAIN PLAN
command in several, predefined formats.

Note
• For additional information about the package and subprograms, see the Oracle Database

PL/SQL Packages and Types Reference 10g Release 2 (10.2) guide.
• For additional information about the EXPLAIN PLAN, see Oracle Database SQL

Reference 10g Release 2 (10.2).
• For additional information about Execution Plans and the statistics, see Oracle Database

Performance Tuning Guide 10g Release 2 (10.2).

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 O

R
AC

LE
 C

O
R

PO
R

AT
IO

N
 u

se
 o

nl
y

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Oracle Database 11g: Develop PL/SQL Program Units E - 33

Copyright © 2009, Oracle. All rights reserved.

Displaying a Plan Table Using the
DBMS_XPLAN.DISPLAY Package Function

-- Execute an explain plan command on a SELECT
-- statement

EXPLAIN PLAN FOR
SELECT * FROM emp e, dept d

WHERE e.deptno = d.deptno
AND e.ename='benoit';

-- Display the plan using the DBMS_XPLAN.DISPLAY table
-- function

SET LINESIZE 130
SET PAGESIZE 0
SELECT * FROM table(DBMS_XPLAN.DISPLAY);

Displaying a Plan Table Using the DBMS_XPLAN.DISPLAY Package Function

The query in the slide page produces the following output:

Plan hash value: 3693697075

| Id | Operation | Name | Rows | Bytes | Cost (%CPU)| Time |

0	SELECT STATEMENT		1	57	6 (34)	00:00:01
* 1	HASH JOIN		1	57	6 (34)	00:00:01
* 2	TABLE ACCESS FULL	EMP	1	37	3 (34)	00:00:01
3	TABLE ACCESS FULL	DEPT	4	80	3 (34)	00:00:01

Predicate Information (identified by operation id):

1 - access("E"."DEPTNO"="D"."DEPTNO")
2 - filter("E"."ENAME"='benoit')

15 rows selected.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 O

R
AC

LE
 C

O
R

PO
R

AT
IO

N
 u

se
 o

nl
y

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Oracle Database 11g: Develop PL/SQL Program Units E - 34

Copyright © 2009, Oracle. All rights reserved.

Summary

In this appendix, you should have learned how to use SQL*Plus
as an environment to do the following:

• Execute SQL statements

• Edit SQL statements

• Format output

• Interact with script files

Summary

SQL*Plus is an execution environment that you can use to send SQL commands to the database
server and to edit and save SQL commands. You can execute commands from the SQL prompt
or from a script file.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 O

R
AC

LE
 C

O
R

PO
R

AT
IO

N
 u

se
 o

nl
y

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Copyright © 2009, Oracle. All rights reserved.

Studies for Implementing Triggers

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 O

R
AC

LE
 C

O
R

PO
R

AT
IO

N
 u

se
 o

nl
y

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Oracle Database 11g: Develop PL/SQL Program Units F - 2

Copyright © 2009, Oracle. All rights reserved.

Objectives

After completing this lesson, you should be able to do the
following:

• Enhance database security with triggers

• Enforce data integrity with DML triggers

• Maintain referential integrity using triggers

• Use triggers to replicate data between tables

• Use triggers to automate computation of derived data

• Provide event-logging capabilities using triggers

Lesson Aim

In this lesson, you learn to develop database triggers in order to enhance features that cannot
otherwise be implemented by the Oracle server. In some cases, it may be sufficient to refrain
from using triggers and accept the functionality provided by the Oracle server.

This lesson covers the following business application scenarios:
• Security
• Auditing
• Data integrity
• Referential integrity
• Table replication
• Computing derived data automatically
• Event logging

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 O

R
AC

LE
 C

O
R

PO
R

AT
IO

N
 u

se
 o

nl
y

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Oracle Database 11g: Develop PL/SQL Program Units F - 3

Copyright © 2009, Oracle. All rights reserved.

Controlling Security Within the Server

Using database security with the GRANT statement.

GRANT SELECT, INSERT, UPDATE, DELETE
ON employees
TO clerk; -- database role
GRANT clerk TO scott;

Controlling Security Within the Server

Develop schemas and roles within the Oracle server to control the security of data operations on
tables according to the identity of the user.

• Base privileges upon the username supplied when the user connects to the database.
• Determine access to tables, views, synonyms, and sequences.
• Determine query, data-manipulation, and data-definition privileges.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 O

R
AC

LE
 C

O
R

PO
R

AT
IO

N
 u

se
 o

nl
y

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Oracle Database 11g: Develop PL/SQL Program Units F - 4

Copyright © 2009, Oracle. All rights reserved.

CREATE OR REPLACE TRIGGER secure_emp
BEFORE INSERT OR UPDATE OR DELETE ON employees

DECLARE
dummy PLS_INTEGER;
BEGIN
IF (TO_CHAR (SYSDATE, 'DY') IN ('SAT','SUN')) THEN
RAISE_APPLICATION_ERROR(-20506,'You may only
change data during normal business hours.');

END IF;
SELECT COUNT(*) INTO dummy FROM holiday
WHERE holiday_date = TRUNC (SYSDATE);
IF dummy > 0 THEN
RAISE_APPLICATION_ERROR(-20507,
'You may not change data on a holiday.');

END IF;
END;
/

Controlling Security
with a Database Trigger

Controlling Security with a Database Trigger

Develop triggers to handle more complex security requirements.
• Base privileges on any database values, such as the time of day, the day of the week, and

so on.
• Determine access to tables only.
• Determine data-manipulation privileges only.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 O

R
AC

LE
 C

O
R

PO
R

AT
IO

N
 u

se
 o

nl
y

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Oracle Database 11g: Develop PL/SQL Program Units F - 5

Copyright © 2009, Oracle. All rights reserved.

ALTER TABLE employees ADD
CONSTRAINT ck_salary CHECK (salary >= 500);

Enforcing Data Integrity Within the Server

Table altered.

Enforcing Data Integrity Within the Server

You can enforce data integrity within the Oracle server and develop triggers to handle more
complex data integrity rules.

The standard data integrity rules are not null, unique, primary key, and foreign key.

Use these rules to:
• Provide constant default values
• Enforce static constraints
• Enable and disable dynamically

Example

The code sample in the slide ensures that the salary is at least $500.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 O

R
AC

LE
 C

O
R

PO
R

AT
IO

N
 u

se
 o

nl
y

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Oracle Database 11g: Develop PL/SQL Program Units F - 6

Copyright © 2009, Oracle. All rights reserved.

CREATE OR REPLACE TRIGGER check_salary
BEFORE UPDATE OF salary ON employees
FOR EACH ROW
WHEN (NEW.salary < OLD.salary)

BEGIN
RAISE_APPLICATION_ERROR (-20508,

'Do not decrease salary.');
END;
/

Protecting Data Integrity with a Trigger

Protecting Data Integrity with a Trigger

Protect data integrity with a trigger and enforce nonstandard data integrity checks.
• Provide variable default values.
• Enforce dynamic constraints.
• Enable and disable dynamically.
• Incorporate declarative constraints within the definition of a table to protect data integrity.

Example

The code sample in the slide ensures that the salary is never decreased.
O

ra
cl

e
U

ni
ve

rs
ity

 a
nd

 O
R

AC
LE

 C
O

R
PO

R
AT

IO
N

 u
se

 o
nl

y

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Oracle Database 11g: Develop PL/SQL Program Units F - 7

Copyright © 2009, Oracle. All rights reserved.

ALTER TABLE employees
ADD CONSTRAINT emp_deptno_fk
FOREIGN KEY (department_id)

REFERENCES departments(department_id)
ON DELETE CASCADE;

Enforcing Referential Integrity
Within the Server

Enforcing Referential Integrity Within the Server

Incorporate referential integrity constraints within the definition of a table to prevent data
inconsistency and enforce referential integrity within the server.

• Restrict updates and deletes.
• Cascade deletes.
• Enable and disable dynamically.

Example

When a department is removed from the DEPARTMENTS parent table, cascade the deletion to
the corresponding rows in the EMPLOYEES child table.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 O

R
AC

LE
 C

O
R

PO
R

AT
IO

N
 u

se
 o

nl
y

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Oracle Database 11g: Develop PL/SQL Program Units F - 8

Copyright © 2009, Oracle. All rights reserved.

CREATE OR REPLACE TRIGGER cascade_updates

AFTER UPDATE OF department_id ON departments

FOR EACH ROW

BEGIN

UPDATE employees

SET employees.department_id=:NEW.department_id

WHERE employees.department_id=:OLD.department_id;

UPDATE job_history

SET department_id=:NEW.department_id

WHERE department_id=:OLD.department_id;

END;

/

Protecting Referential Integrity
with a Trigger

Protecting Referential Integrity with a Trigger

The following referential integrity rules are not supported by declarative constraints:
• Cascade updates.
• Set to NULL for updates and deletions.
• Set to a default value on updates and deletions.
• Enforce referential integrity in a distributed system.
• Enable and disable dynamically.

You can develop triggers to implement these integrity rules.

Example

Enforce referential integrity with a trigger. When the value of DEPARTMENT_ID changes in the
DEPARTMENTS parent table, cascade the update to the corresponding rows in the EMPLOYEES
child table.

For a complete referential integrity solution using triggers, a single trigger is not enough.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 O

R
AC

LE
 C

O
R

PO
R

AT
IO

N
 u

se
 o

nl
y

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Oracle Database 11g: Develop PL/SQL Program Units F - 9

Copyright © 2009, Oracle. All rights reserved.

CREATE MATERIALIZED VIEW emp_copy
NEXT sysdate + 7
AS SELECT * FROM employees@ny;

Replicating a Table Within the Server

Creating a Materialized View

Materialized views enable you to maintain copies of remote data on your local node for
replication purposes. You can select data from a materialized view as you would from a normal
database table or view. A materialized view is a database object that contains the results of a
query, or a copy of some database on a query. The FROM clause of the query of a materialized
view can name tables, views, and other materialized views.

When a materialized view is used, replication is performed implicitly by the Oracle server. This
performs better than using user-defined PL/SQL triggers for replication. Materialized views:

• Copy data from local and remote tables asynchronously, at user-defined intervals
• Can be based on multiple master tables
• Are read-only by default, unless using the Oracle Advanced Replication feature
• Improve the performance of data manipulation on the master table

Alternatively, you can replicate tables using triggers.

The example in the slide creates a copy of the remote EMPLOYEES table from New York. The
NEXT clause specifies a date-time expression for the interval between automatic refreshes.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 O

R
AC

LE
 C

O
R

PO
R

AT
IO

N
 u

se
 o

nl
y

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Oracle Database 11g: Develop PL/SQL Program Units F - 10

Copyright © 2009, Oracle. All rights reserved.

CREATE OR REPLACE TRIGGER emp_replica
BEFORE INSERT OR UPDATE ON employees FOR EACH ROW
BEGIN /* Proceed if user initiates data operation,

NOT through the cascading trigger.*/
IF INSERTING THEN
IF :NEW.flag IS NULL THEN
INSERT INTO employees@sf
VALUES(:new.employee_id,...,'B');
:NEW.flag := 'A';

END IF;
ELSE /* Updating. */
IF :NEW.flag = :OLD.flag THEN
UPDATE employees@sf
SET ename=:NEW.last_name,...,flag=:NEW.flag
WHERE employee_id = :NEW.employee_id;

END IF;
IF :OLD.flag = 'A' THEN :NEW.flag := 'B';

ELSE :NEW.flag := 'A';
END IF;
END IF;

END;

Replicating a Table with a Trigger

Replicating a Table with a Trigger

You can replicate a table with a trigger. By replicating a table, you can:
• Copy tables synchronously, in real time
• Base replicas on a single master table
• Read from replicas as well as write to them

Note: Excessive use of triggers can impair the performance of data manipulation on the master
table, particularly if the network fails.

Example

In New York, replicate the local EMPLOYEES table to San Francisco.
O

ra
cl

e
U

ni
ve

rs
ity

 a
nd

 O
R

AC
LE

 C
O

R
PO

R
AT

IO
N

 u
se

 o
nl

y

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Oracle Database 11g: Develop PL/SQL Program Units F - 11

Copyright © 2009, Oracle. All rights reserved.

Computing Derived Data Within the Server

UPDATE departments
SET total_sal=(SELECT SUM(salary)

FROM employees
WHERE employees.department_id =

departments.department_id);

Computing Derived Data Within the Server

By using the server, you can schedule batch jobs or use the database Scheduler for the following
scenarios:

• Compute derived column values asynchronously, at user-defined intervals.
• Store derived values only within database tables.
• Modify data in one pass to the database and calculate derived data in a second pass.

Alternatively, you can use triggers to keep running computations of derived data.

Example

Keep the salary total for each department within a special TOTAL_SALARY column of the
DEPARTMENTS table.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 O

R
AC

LE
 C

O
R

PO
R

AT
IO

N
 u

se
 o

nl
y

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Oracle Database 11g: Develop PL/SQL Program Units F - 12

Copyright © 2009, Oracle. All rights reserved.

CREATE PROCEDURE increment_salary
(id NUMBER, new_sal NUMBER) IS

BEGIN
UPDATE departments
SET total_sal = NVL (total_sal, 0)+ new_sal
WHERE department_id = id;

END increment_salary;

CREATE OR REPLACE TRIGGER compute_salary
AFTER INSERT OR UPDATE OF salary OR DELETE
ON employees FOR EACH ROW
BEGIN
IF DELETING THEN increment_salary(

:OLD.department_id,(-1*:OLD.salary));
ELSIF UPDATING THEN increment_salary(

:NEW.department_id,(:NEW.salary-:OLD.salary));
ELSE increment_salary(

:NEW.department_id,:NEW.salary); --INSERT
END IF;
END;

Computing Derived Values with a Trigger

Computing Derived Data Values with a Trigger

By using a trigger, you can perform the following tasks:
• Compute derived columns synchronously, in real time.
• Store derived values within database tables or within package global variables.
• Modify data and calculate derived data in a single pass to the database.

Example

Keep a running total of the salary for each department in the special TOTAL_SALARY column
of the DEPARTMENTS table.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 O

R
AC

LE
 C

O
R

PO
R

AT
IO

N
 u

se
 o

nl
y

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Oracle Database 11g: Develop PL/SQL Program Units F - 13

Copyright © 2009, Oracle. All rights reserved.

CREATE OR REPLACE TRIGGER notify_reorder_rep
BEFORE UPDATE OF quantity_on_hand, reorder_point
ON inventories FOR EACH ROW
DECLARE
dsc product_descriptions.product_description%TYPE;
msg_text VARCHAR2(2000);
BEGIN
IF :NEW.quantity_on_hand <=

:NEW.reorder_point THEN
SELECT product_description INTO dsc
FROM product_descriptions
WHERE product_id = :NEW.product_id;

_ msg_text := 'ALERT: INVENTORY LOW ORDER:'||
'Yours,' ||CHR(10) ||user || '.'|| CHR(10);

ELSIF :OLD.quantity_on_hand >=
:NEW.quantity_on_hand THEN

msg_text := 'Product #'||... CHR(10);
END IF;
UTL_MAIL.SEND('inv@oracle.com','ord@oracle.com',
message=>msg_text, subject=>'Inventory Notice');

END;

Logging Events with a Trigger

Logging Events with a Trigger

In the server, you can log events by querying data and performing operations manually. This
sends an email message when the inventory for a particular product has fallen below the
acceptable limit. This trigger uses the Oracle-supplied package UTL_MAIL to send the email
message.

Logging Events Within the Server
1. Query data explicitly to determine whether an operation is necessary.
2. Perform the operation, such as sending a message.

Using Triggers to Log Events
1. Perform operations implicitly, such as firing off an automatic electronic memo.
2. Modify data and perform its dependent operation in a single step.
3. Log events automatically as data is changing.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 O

R
AC

LE
 C

O
R

PO
R

AT
IO

N
 u

se
 o

nl
y

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Oracle Database 11g: Develop PL/SQL Program Units F - 14

Logging Events with a Trigger (continued)

Logging Events Transparently

In the trigger code:
• CHR(10) is a carriage return
• Reorder_point is not NULL
• Another transaction can receive and read the message in the pipe

Example
CREATE OR REPLACE TRIGGER notify_reorder_rep

BEFORE UPDATE OF amount_in_stock, reorder_point

ON inventory FOR EACH ROW

DECLARE

dsc product.descrip%TYPE;

msg_text VARCHAR2(2000);

BEGIN

IF :NEW.amount_in_stock <= :NEW.reorder_point THEN

SELECT descrip INTO dsc

FROM PRODUCT WHERE prodid = :NEW.product_id;

msg_text := 'ALERT: INVENTORY LOW ORDER:'||CHR(10)||

'It has come to my personal attention that, due to recent'

||CHR(10)||'transactions, our inventory for product # '||

TO_CHAR(:NEW.product_id)||'-- '|| dsc ||

' -- has fallen below acceptable levels.' || CHR(10) ||

'Yours,' ||CHR(10) ||user || '.'|| CHR(10)|| CHR(10);

ELSIF :OLD.amount_in_stock >= :NEW.amount_in_stock THEN

msg_text := 'Product #'|| TO_CHAR(:NEW.product_id)

||' ordered. '|| CHR(10)|| CHR(10);

END IF;

UTL_MAIL.SEND('inv@oracle.com', 'ord@oracle.com',

message => msg_text, subject => 'Inventory Notice');

END;

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 O

R
AC

LE
 C

O
R

PO
R

AT
IO

N
 u

se
 o

nl
y

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Oracle Database 11g: Develop PL/SQL Program Units F - 15

Copyright © 2009, Oracle. All rights reserved.

Summary

In this lesson, you should have learned how to:

• Enhance database security with triggers

• Enforce data integrity with DML triggers

• Maintain referential integrity using triggers

• Use triggers to replicate data between tables

• Use triggers to automate computation of derived data

• Provide event-logging capabilities using triggers

Summary

This lesson provides some detailed comparison of using the Oracle database server functionality
to implement security, auditing, data integrity, replication, and logging. The lesson also covers
how database triggers can be used to implement the same features but go further to enhance the
features that the database server provides. In some cases, you must use a trigger to perform some
activities (such as computation of derived data) because the Oracle server cannot know how to
implement this kind of business rule without some programming effort. O

ra
cl

e
U

ni
ve

rs
ity

 a
nd

 O
R

AC
LE

 C
O

R
PO

R
AT

IO
N

 u
se

 o
nl

y

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 O

R
AC

LE
 C

O
R

PO
R

AT
IO

N
 u

se
 o

nl
y

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Copyright © 2009, Oracle. All rights reserved.

Using the DBMS_SCHEDULER
and HTP Packages

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 O

R
AC

LE
 C

O
R

PO
R

AT
IO

N
 u

se
 o

nl
y

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Oracle Database 11g: Develop PL/SQL Program Units G - 2

Copyright © 2009, Oracle. All rights reserved.

Objectives

After completing this lesson, you should be able to do the
following:
• Use the HTP package to generate a simple Web page

• Call the DBMS_SCHEDULER package to schedule PL/SQL
code for execution

Lesson Aim

In this lesson, you learn how to use some of the Oracle-supplied packages and their capabilities.
This lesson focuses on the packages that generate Web-based output and the provided
scheduling capabilities.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 O

R
AC

LE
 C

O
R

PO
R

AT
IO

N
 u

se
 o

nl
y

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Oracle Database 11g: Develop PL/SQL Program Units G - 3

Copyright © 2009, Oracle. All rights reserved.

Generating Web Pages
with the HTP Package

• The HTP package procedures generate HTML tags.

• The HTP package is used to generate HTML documents
dynamically and can be invoked from:
– A browser using Oracle HTTP Server and PL/SQL Gateway

(mod_plsql) services

– An SQL*Plus script to display HTML output

Web client

Oracle HTTP
Server

Buffer

SQL script

Generated
HTML

mod_plsql

Oracle
database

BufferHTP

Generating Web Pages with the HTP Package

The HTP package contains procedures that are used to generate HTML tags. The HTML tags
that are generated typically enclose the data provided as parameters to the various procedures.
The slide illustrates two ways in which the HTP package can be used:

• Most likely your procedures are invoked by the PL/SQL Gateway services, via the
mod_plsql component supplied with Oracle HTTP Server, which is part of the Oracle
Application Server product (represented by solid lines in the graphic).

• Alternatively (as represented by dotted lines in the graphic), your procedure can be called
from SQL*Plus that can display the generated HTML output, which can be copied and
pasted to a file. This technique is used in this course because Oracle Application Server
software is not installed as a part of the course environment.

Note: The HTP procedures output information to a session buffer held in the database server. In
the Oracle HTTP Server context, when the procedure completes, the mod_plsql component
automatically receives the buffer contents, which are then returned to the browser as the HTTP
response. In SQL*Plus, you must manually execute:

• A SET SERVEROUTPUT ON command
• The procedure to generate the HTML into the buffer
• The OWA_UTIL.SHOWPAGE procedure to display the buffer contents

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 O

R
AC

LE
 C

O
R

PO
R

AT
IO

N
 u

se
 o

nl
y

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Oracle Database 11g: Develop PL/SQL Program Units G - 4

Copyright © 2009, Oracle. All rights reserved.

Using the HTP Package Procedures

• Generate one or more HTML tags. For example:

• Are used to create a well-formed HTML document:

htp.bold('Hello'); -- Hello
htp.print('Hi World'); -- Hi World

BEGIN -- Generates:
htp.htmlOpen; --------->
htp.headOpen; --------->
htp.title('Welcome'); -->
htp.headClose; --------->
htp.bodyOpen; --------->
htp.print('My home page');
htp.bodyClose; --------->
htp.htmlClose; --------->
END;

<HTML>
<HEAD>
<TITLE>Welcome</TITLE>
</HEAD>
<BODY>
My home page
</BODY>
</HTML>

Using the HTP Package Procedures

The HTP package is structured to provide a one-to-one mapping of a procedure to standard
HTML tags. For example, to display bold text on a Web page, the text must be enclosed in the
HTML tag pair and . The first code box in the slide shows how to generate the word
Hello in HTML bold text by using the equivalent HTP package procedure—that is,
HTP.BOLD. The HTP.BOLD procedure accepts a text parameter and ensures that it is enclosed
in the appropriate HTML tags in the HTML output that is generated.
The HTP.PRINT procedure copies its text parameter to the buffer. The example in the slide
shows how the parameter supplied to the HTP.PRINT procedure can contain HTML tags. This
technique is recommended only if you need to use HTML tags that cannot be generated by using
the set of procedures provided in the HTP package.

The second example in the slide provides a PL/SQL block that generates the basic form of an
HTML document. The example serves to illustrate how each of the procedures generates the
corresponding HTML line in the enclosed text box on the right.
The benefit of using the HTP package is that you create well-formed HTML documents,
eliminating the need to manually type the HTML tags around each piece of data.
Note: For information about all the HTP package procedures, refer to PL/SQL Packages and
Types Reference.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 O

R
AC

LE
 C

O
R

PO
R

AT
IO

N
 u

se
 o

nl
y

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Oracle Database 11g: Develop PL/SQL Program Units G - 5

Copyright © 2009, Oracle. All rights reserved.

Creating an HTML File with SQL*Plus

To create an HTML file with SQL*Plus, perform the following
steps:

1. Create a SQL script with the following commands:

2. Load and execute the script in SQL*Plus, supplying values
for substitution variables.

3. Select, copy, and paste the HTML text that is generated in
the browser to an HTML file.

4. Open the HTML file in a browser.

SET SERVEROUTPUT ON
ACCEPT procname PROMPT "Procedure: "
EXECUTE &procname
EXECUTE owa_util.showpage
UNDEFINE proc

Creating an HTML File with SQL*Plus

The slide example shows the steps for generating HTML by using any procedure and saving the
output into an HTML file. You should perform the following steps:

1. Turn on server output with the SET SERVEROUTPUT ON command. Without this, you
receive exception messages when running procedures that have calls to the HTP package.

2. Execute the procedure that contains calls to the HTP package.
Note: This does not produce output, unless the procedure has calls to the DBMS_OUTPUT
package.

3. Execute the OWA_UTIL.SHOWPAGE procedure to display the text. This call actually
displays the HTML content that is generated from the buffer.

The ACCEPT command prompts for the name of the procedure to execute. The call to
OWA_UTIL.SHOWPAGE displays the HTML tags in the browser window. You can then copy
and paste the generated HTML tags from the browser window into an HTML file, typically with
an .htm or .html extension.

Note: If you are using SQL*Plus, then you can use the SPOOL command to direct the HTML
output directly to an HTML file.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 O

R
AC

LE
 C

O
R

PO
R

AT
IO

N
 u

se
 o

nl
y

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Oracle Database 11g: Develop PL/SQL Program Units G - 6

Copyright © 2009, Oracle. All rights reserved.

The DBMS_SCHEDULER Package

The database Scheduler comprises several components to
enable jobs to be run. Use the DBMS_SCHEDULER package to
create each job with:

• A unique job name

• A program (“what” should be executed)

• A schedule (“when” it should run)

Program

Window

Arguments Arguments

Job class

ScheduleJob

DBMS_SCHEDULER Package

Oracle Database provides a collection of subprograms in the DBMS_SCHEDULER package to
simplify management and to provide a rich set of functionality for complex scheduling tasks.
Collectively, these subprograms are called the Scheduler and can be called from any PL/SQL
program. The Scheduler enables database administrators and application developers to control
when and where various tasks take place. By ensuring that many routine database tasks occur
without manual intervention, you can lower operating costs, implement more reliable routines,
and minimize human error.

The diagram shows the following architectural components of the Scheduler:
• A job is the combination of a program and a schedule. Arguments required by the program

can be provided with the program or the job. All job names have the format
[schema.]name. When you create a job, you specify the job name, a program, a
schedule, and (optionally) job characteristics that can be provided through a job class.

• A program determines what should be run. Every automated job involves a particular
executable, whether it is a PL/SQL block, a stored procedure, a native binary executable,
or a shell script. A program provides metadata about a particular executable and may
require a list of arguments.

• A schedule specifies when and how many times a job is executed.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 O

R
AC

LE
 C

O
R

PO
R

AT
IO

N
 u

se
 o

nl
y

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Oracle Database 11g: Develop PL/SQL Program Units G - 7

DBMS_SCHEDULER Package (continued)

• A job class defines a category of jobs that share common resource usage requirements and
other characteristics. At any given time, each job can belong to only a single job class. A
job class has the following attributes:

- A database service name. The jobs in the job class will have an affinity to the
particular service specified—that is, the jobs will run on the instances that cater to the
specified service.

- A resource consumer group, which classifies a set of user sessions that have
common resource-processing requirements. At any given time, a user session or job
class can belong to a single resource consumer group. The resource consumer group
that the job class associates with determines the resources that are allocated to the job
class.

• A window is represented by an interval of time with a well-defined beginning and end, and
is used to activate different resource plans at different times.

The slide focuses on the job component as the primary entity. However, a program, a schedule, a
window, and a job class are components that can be created as individual entities that can be
associated with a job to be executed by the Scheduler. When a job is created, it may contain all
the information needed inline—that is, in the call that creates the job. Alternatively, creating a
job may reference a program or schedule component that was previously defined. Examples of
this are discussed on the next few pages.

For more information about the Scheduler, see the Online Course titled Oracle Database 11g:
Configure and Manage Jobs with the Scheduler.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 O

R
AC

LE
 C

O
R

PO
R

AT
IO

N
 u

se
 o

nl
y

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Oracle Database 11g: Develop PL/SQL Program Units G - 8

Copyright © 2009, Oracle. All rights reserved.

Creating a Job

• A job can be created in several ways by using a
combination of inline parameters, named Programs, and
named Schedules.

• You can create a job with the CREATE_JOB procedure by:

– Using inline information with the “what” and the schedule
specified as parameters

– Using a named (saved) program and specifying the schedule
inline

– Specifying what should be done inline and using a named
Schedule

– Using named Program and Schedule components

Creating a Job

The component that causes something to be executed at a specified time is called a job. Use the
DBMS_SCHEDULER.CREATE_JOB procedure of the DBMS_SCHEDULER package to create a
job, which is in a disabled state by default. A job becomes active and scheduled when it is
explicitly enabled. To create a job, you:

• Provide a name in the format [schema.]name
• Need the CREATE JOB privilege

Note: A user with the CREATE ANY JOB privilege can create a job in any schema except the
SYS schema. Associating a job with a particular class requires the EXECUTE privilege for that
class.

In simple terms, a job can be created by specifying all the job details—the program to be
executed (what) and its schedule (when)—in the arguments of the CREATE_JOB procedure.
Alternatively, you can use predefined Program and Schedule components. If you have a named
Program and Schedule, then these can be specified or combined with inline arguments for
maximum flexibility in the way a job is created.

A simple logical check is performed on the schedule information (that is, checking the date
parameters when a job is created). The database checks whether the end date is after the start
date. If the start date refers to a time in the past, then the start date is changed to the current date.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 O

R
AC

LE
 C

O
R

PO
R

AT
IO

N
 u

se
 o

nl
y

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Oracle Database 11g: Develop PL/SQL Program Units G - 9

Copyright © 2009, Oracle. All rights reserved.

Creating a Job with Inline Parameters

Specify the type of code, code, start time, and frequency of the
job to be run in the arguments of the CREATE_JOB procedure.

-- Schedule a PL/SQL block every hour:

BEGIN
DBMS_SCHEDULER.CREATE_JOB(
job_name => 'JOB_NAME',
job_type => 'PLSQL_BLOCK',
job_action => 'BEGIN ...; END;',
start_date => SYSTIMESTAMP,
repeat_interval=>'FREQUENCY=HOURLY;INTERVAL=1',
enabled => TRUE);

END;
/

Creating a Job with Inline Parameters

You can create a job to run a PL/SQL block, stored procedure, or external program by using the
DBMS_SCHEDULER.CREATE_JOB procedure. The CREATE_JOB procedure can be used
directly without requiring you to create Program or Schedule components.

The example in the slide shows how you can specify all the job details inline. The parameters of
the CREATE_JOB procedure define “what” is to be executed, the schedule, and other job
attributes. The following parameters define what is to be executed:

• The job_type parameter can be one of the following three values:
- PLSQL_BLOCK for any PL/SQL block or SQL statement. This type of job cannot

accept arguments.
- STORED_PROCEDURE for any stored stand-alone or packaged procedure. The

procedures can accept arguments that are supplied with the job.
- EXECUTABLE for an executable command-line operating system application

• The schedule is specified by using the following parameters:
- The start_date accepts a time stamp, and the repeat_interval is string-

specified as a calendar or PL/SQL expression. An end_date can be specified.

Note: String expressions that are specified for repeat_interval are discussed later. The
example specifies that the job should run every hour.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 O

R
AC

LE
 C

O
R

PO
R

AT
IO

N
 u

se
 o

nl
y

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Oracle Database 11g: Develop PL/SQL Program Units G - 10

Copyright © 2009, Oracle. All rights reserved.

Creating a Job Using a Program

• Use CREATE_PROGRAM to create a program:

• Use overloaded CREATE_JOB procedure with its
program_name parameter:

BEGIN
DBMS_SCHEDULER.CREATE_JOB('JOB_NAME',
program_name => 'PROG_NAME',
start_date => SYSTIMESTAMP,
repeat_interval => 'FREQ=DAILY',
enabled => TRUE);

END;

BEGIN
DBMS_SCHEDULER.CREATE_PROGRAM(
program_name => 'PROG_NAME',
program_type => 'PLSQL_BLOCK',
program_action => 'BEGIN ...; END;');

END;

Creating a Job Using a Program
The DBMS_SCHEDULER.CREATE_PROGRAM procedure defines a program that must be
assigned a unique name. Creating the program separately for a job enables you to:

• Define the action once and then reuse this action within multiple jobs
• Change the schedule for a job without having to re-create the PL/SQL block
• Change the program executed without changing all the jobs

The program action string specifies a procedure, executable name, or PL/SQL block depending
on the value of the program_type parameter, which can be:
• PLSQL_BLOCK to execute an anonymous block or SQL statement
• STORED_PROCEDURE to execute a stored procedure, such as PL/SQL, Java, or C
• EXECUTABLE to execute operating system command-line programs

The example shown in the slide demonstrates calling an anonymous PL/SQL block. You can
also call an external procedure within a program, as in the following example:

DBMS_SCHEDULER.CREATE_PROGRAM(program_name => 'GET_DATE',
program_action => '/usr/local/bin/date',
program_type => 'EXECUTABLE');

To create a job with a program, specify the program name in the program_name argument in
the call to the DBMS_SCHEDULER.CREATE_JOB procedure, as shown in the slide.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 O

R
AC

LE
 C

O
R

PO
R

AT
IO

N
 u

se
 o

nl
y

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Oracle Database 11g: Develop PL/SQL Program Units G - 11

Copyright © 2009, Oracle. All rights reserved.

Creating a Job for a Program with Arguments

• Create a program:

• Define an argument:

• Create a job specifying the number of arguments:

DBMS_SCHEDULER.DEFINE_PROGRAM_ARGUMENT(
program_name => 'PROG_NAME',
argument_name => 'DEPT_ID',
argument_position=> 1, argument_type=> 'NUMBER',
default_value => '50');

DBMS_SCHEDULER.CREATE_PROGRAM(
program_name => 'PROG_NAME',
program_type => 'STORED_PROCEDURE',
program_action => 'EMP_REPORT');

DBMS_SCHEDULER.CREATE_JOB('JOB_NAME', program_name
=> 'PROG_NAME', start_date => SYSTIMESTAMP,
repeat_interval => 'FREQ=DAILY',
number_of_arguments => 1, enabled => TRUE);

Creating a Job for a Program with Arguments

Programs, such as PL/SQL or external procedures, may require input arguments. Using the
DBMS_SCHEDULER.DEFINE_PROGRAM_ARGUMENT procedure, you can define an argument
for an existing program. The DEFINE_PROGRAM_ARGUMENT procedure parameters include
the following:
• program_name specifies an existing program that is to be altered.
• argument_name specifies a unique argument name for the program.
• argument_position specifies the position in which the argument is passed when the

program is called.
• argument_type specifies the data type of the argument value that is passed to the

called program.
• default_value specifies a default value that is supplied to the program if the job that

schedules the program does not provide a value.

The slide shows how to create a job executing a program with one argument. The program
argument default value is 50. To change the program argument value for a job, use:

DBMS_SCHEDULER.SET_JOB_ARGUMENT_VALUE(
job_name => 'JOB_NAME',
argument_name => 'DEPT_ID', argument_value => '80');

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 O

R
AC

LE
 C

O
R

PO
R

AT
IO

N
 u

se
 o

nl
y

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Oracle Database 11g: Develop PL/SQL Program Units G - 12

Copyright © 2009, Oracle. All rights reserved.

Creating a Job Using a Schedule

• Use CREATE_SCHEDULE to create a schedule:

• Use CREATE_JOB by referencing the schedule in the
schedule_name parameter:
BEGIN
DBMS_SCHEDULER.CREATE_JOB('JOB_NAME',
schedule_name => 'SCHED_NAME',
job_type => 'PLSQL_BLOCK',
job_action => 'BEGIN ...; END;',
enabled => TRUE);

END;

BEGIN
DBMS_SCHEDULER.CREATE_SCHEDULE('SCHED_NAME',
start_date => SYSTIMESTAMP,
repeat_interval => 'FREQ=DAILY',
end_date => SYSTIMESTAMP +15);

END;

Creating a Job Using a Schedule

You can create a common schedule that can be applied to different jobs without having to
specify the schedule details each time. The following are the benefits of creating a schedule:

• It is reusable and can be assigned to different jobs.
• Changing the schedule affects all jobs using the schedule. The job schedules are changed

once, not multiple times.

A schedule is precise to only the nearest second. Although the TIMESTAMP data type is more
accurate, the Scheduler rounds off anything with a higher precision to the nearest second.

The start and end times for a schedule are specified by using the TIMESTAMP data type. The
end_date for a saved schedule is the date after which the schedule is no longer valid. The
schedule in the example is valid for 15 days after using it with a specified job.

The repeat_interval for a saved schedule must be created by using a calendaring
expression. A NULL value for repeat_interval specifies that the job runs only once.

Note: You cannot use PL/SQL expressions to express the repeat interval for a saved schedule.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 O

R
AC

LE
 C

O
R

PO
R

AT
IO

N
 u

se
 o

nl
y

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Oracle Database 11g: Develop PL/SQL Program Units G - 13

Copyright © 2009, Oracle. All rights reserved.

Setting the Repeat Interval for a Job

• Using a calendaring expression:

• Using a PL/SQL expression:

repeat_interval=> 'FREQ=HOURLY; INTERVAL=4'
repeat_interval=> 'FREQ=DAILY'
repeat_interval=> 'FREQ=MINUTELY;INTERVAL=15'
repeat_interval=> 'FREQ=YEARLY;

BYMONTH=MAR,JUN,SEP,DEC;
BYMONTHDAY=15'

repeat_interval=> 'SYSDATE + 36/24'
repeat_interval=> 'SYSDATE + 1'
repeat_interval=> 'SYSDATE + 15/(24*60)'

Setting the Repeat Interval for a Job

When scheduling repeat intervals for a job, you can specify either a PL/SQL expression (if it is
within a job argument) or a calendaring expression.

The examples in the slide include the following:
• FREQ=HOURLY;INTERVAL=4 indicates a repeat interval of every four hours.
• FREQ=DAILY indicates a repeat interval of every day, at the same time as the start date of

the schedule.
• FREQ=MINUTELY;INTERVAL=15 indicates a repeat interval of every 15 minutes.
• FREQ=YEARLY;BYMONTH=MAR,JUN,SEP,DEC;BYMONTHDAY=15 indicates a

repeat interval of every year on March 15, June 15, September 15, and December 15.

With a calendaring expression, the next start time for a job is calculated using the repeat interval
and the start date of the job.

Note: If no repeat interval is specified (that is, if a NULL value is provided in the argument), the
job runs only once on the specified start date.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 O

R
AC

LE
 C

O
R

PO
R

AT
IO

N
 u

se
 o

nl
y

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Oracle Database 11g: Develop PL/SQL Program Units G - 14

Copyright © 2009, Oracle. All rights reserved.

Creating a Job Using a Named
Program and Schedule

• Create a named program called PROG_NAME by using the
CREATE_PROGRAM procedure.

• Create a named schedule called SCHED_NAME by using
the CREATE_SCHEDULE procedure.

• Create a job referencing the named program and
schedule:

BEGIN
DBMS_SCHEDULER.CREATE_JOB('JOB_NAME',
program_name => 'PROG_NAME',
schedule_name => 'SCHED_NAME',
enabled => TRUE);

END;
/

Creating a Job Using a Named Program and Schedule

The example in the slide shows the final form for using the
DBMS_SCHEDULER.CREATE_JOB procedure. In this example, the named program
(PROG_NAME) and schedule (SCHED_NAME) are specified in their respective parameters in the
call to the DBMS_SCHEDULER.CREATE_JOB procedure.

With this example, you can see how easy it is to create jobs by using a predefined program and
schedule.

Some jobs and schedules can be too complex to cover in this course. For example, you can
create windows for recurring time plans and associate a resource plan with a window. A
resource plan defines attributes about the resources required during the period defined by
execution window.

For more information, refer to the online course titled Oracle Database 11g: Configure and
Manage Jobs with the Scheduler.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 O

R
AC

LE
 C

O
R

PO
R

AT
IO

N
 u

se
 o

nl
y

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Oracle Database 11g: Develop PL/SQL Program Units G - 15

Copyright © 2009, Oracle. All rights reserved.

Managing Jobs

• Run a job:

• Stop a job:

• Drop a job even if it is currently running:

DBMS_SCHEDULER.RUN_JOB('SCHEMA.JOB_NAME');

DBMS_SCHEDULER.STOP_JOB('SCHEMA.JOB_NAME');

DBMS_SCHEDULER.DROP_JOB('JOB_NAME', TRUE);

Managing Jobs

After a job has been created, you can:
• Run the job by calling the RUN_JOB procedure specifying the name of the job. The job is

immediately executed in your current session.
• Stop the job by using the STOP_JOB procedure. If the job is running currently, it is

stopped immediately. The STOP_JOB procedure has two arguments:
- job_name: Is the name of the job to be stopped
- force: Attempts to gracefully terminate a job. If this fails and force is set to

TRUE, then the job slave is terminated. (Default value is FALSE.) To use force,
you must have the MANAGE SCHEDULER system privilege.

• Drop the job with the DROP_JOB procedure. This procedure has two arguments:
- job_name: Is the name of the job to be dropped
- force: Indicates whether the job should be stopped and dropped if it is currently

running (Default value is FALSE.)
If the DROP_JOB procedure is called and the job specified is currently running, then the
command fails unless the force option is set to TRUE. If the force option is set to
TRUE, then any instance of the job that is running is stopped and the job is dropped.

Note: To run, stop, or drop a job that belongs to another user, you need ALTER privileges on
that job or the CREATE ANY JOB system privilege.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 O

R
AC

LE
 C

O
R

PO
R

AT
IO

N
 u

se
 o

nl
y

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Oracle Database 11g: Develop PL/SQL Program Units G - 16

Copyright © 2009, Oracle. All rights reserved.

Data Dictionary Views

• [DBA | ALL | USER]_SCHEDULER_JOBS

• [DBA | ALL | USER]_SCHEDULER_RUNNING_JOBS

• [DBA | ALL]_SCHEDULER_JOB_CLASSES

• [DBA | ALL | USER]_SCHEDULER_JOB_LOG

• [DBA | ALL | USER]_SCHEDULER_JOB_RUN_DETAILS

• [DBA | ALL | USER]_SCHEDULER_PROGRAMS

Data Dictionary Views

The DBA_SCHEDULER_JOB_LOG view shows all completed job instances, both successful and
failed.

To view the state of your jobs, use the following query:
SELECT job_name, program_name, job_type, state
FROM USER_SCHEDULER_JOBS;

To determine which instance a job is running on, use the following query:
SELECT owner, job_name, running_instance,
resource_consumer_group
FROM DBA_SCHEDULER_RUNNING_JOBS;

To determine information about how a job ran, use the following query:
SELECT job_name, instance_id, req_start_date,
actual_start_date, status
FROM ALL_SCHEDULER_JOB_RUN_DETAILS;

To determine the status of your jobs, use the following query:
SELECT job_name, status, error#, run_duration, cpu_used
FROM USER_SCHEDULER_JOB_RUN_DETAILS;

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 O

R
AC

LE
 C

O
R

PO
R

AT
IO

N
 u

se
 o

nl
y

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Oracle Database 11g: Develop PL/SQL Program Units G - 17

Copyright © 2009, Oracle. All rights reserved.

Summary

In this lesson, you should have learned how to:
• Use the HTP package to generate a simple Web page

• Call the DBMS_SCHEDULER package to schedule PL/SQL
code for execution

Summary

This lesson covers a small subset of packages provided with the Oracle database. You have
extensively used DBMS_OUTPUT for debugging purposes and displaying procedurally generated
information on the screen in SQL*Plus.

In this lesson, you should have learned how to schedule PL/SQL and external code for execution
with the DBMS_SCHEDULER package.

Note: For more information about all PL/SQL packages and types, refer to PL/SQL
Packages and Types Reference.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 O

R
AC

LE
 C

O
R

PO
R

AT
IO

N
 u

se
 o

nl
y

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 O

R
AC

LE
 C

O
R

PO
R

AT
IO

N
 u

se
 o

nl
y

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Copyright © 2009, Oracle. All rights reserved.

Review of JDeveloper

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 O

R
AC

LE
 C

O
R

PO
R

AT
IO

N
 u

se
 o

nl
y

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Oracle Database 11g: Develop PL/SQL Program Units H - 2

Copyright © 2009, Oracle. All rights reserved.

JDeveloper

JDeveloper

Oracle JDeveloper 11g is an integrated development environment (IDE) for developing and
deploying Java applications and Web services. It supports every stage of the software
development life cycle (SDLC) from modeling to deploying. It has the features to use the latest
industry standards for Java, Extensible Markup Language (XML), and SQL while developing an
application.

Oracle JDeveloper 11g initiates a new approach to J2EE development with the features that
enable visual and declarative development. This innovative approach makes J2EE development
simple and efficient.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 O

R
AC

LE
 C

O
R

PO
R

AT
IO

N
 u

se
 o

nl
y

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Oracle Database 11g: Develop PL/SQL Program Units H - 3

Copyright © 2009, Oracle. All rights reserved.

Connection Navigator

Connection Navigator

Using Oracle JDeveloper 11g, you can store the information necessary to connect to a database
in an object called “connection.” A connection is stored as part of the IDE settings, and can be
exported and imported for easy sharing among groups of users. A connection serves several
purposes from browsing the database and building applications, all the way through to
deployment.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 O

R
AC

LE
 C

O
R

PO
R

AT
IO

N
 u

se
 o

nl
y

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Oracle Database 11g: Develop PL/SQL Program Units H - 4

Copyright © 2009, Oracle. All rights reserved.

Application Navigator

Application Navigator

The Application Navigator gives you a logical view of your application and the data it contains.
The Application Navigator provides an infrastructure that the different extensions can plug into
and use to organize their data and menus in a consistent, abstract manner. While the Application
Navigator can contain individual files (such as Java source files), it is designed to consolidate
complex data. Complex data types such as entity objects, UML (Unified Modeling Language)
diagrams, Enterprise JavaBeans (EJB), or Web services appear in this navigator as single nodes.
The raw files that make up these abstract nodes appear in the Structure window.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 O

R
AC

LE
 C

O
R

PO
R

AT
IO

N
 u

se
 o

nl
y

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Oracle Database 11g: Develop PL/SQL Program Units H - 5

Copyright © 2009, Oracle. All rights reserved.

Structure Window

Structure Window

The Structure window offers a structural view of the data in the document currently selected in
the active window of those windows that participate in providing structure: the navigators, the
editors and viewers, and the Property Inspector.

In the Structure window, you can view the document data in a variety of ways. The structures
available for display are based upon document type. For a Java file, you can view code structure,
user interface (UI) structure, or UI model data. For an XML file, you can view XML structure,
design structure, or UI model data.

The Structure window is dynamic, always tracking the current selection of the active window
(unless you freeze the window’s contents on a particular view), as is pertinent to the currently
active editor. When the current selection is a node in the navigator, the default editor is assumed.
To change the view on the structure for the current selection, select a different structure tab.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 O

R
AC

LE
 C

O
R

PO
R

AT
IO

N
 u

se
 o

nl
y

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Oracle Database 11g: Develop PL/SQL Program Units H - 6

Copyright © 2009, Oracle. All rights reserved.

Editor Window

Editor Window

You can view all your project files in one single editor window, you can open multiple views of
the same file, or you can open multiple views of different files.

The tabs at the top of the editor window are the document tabs. Selecting a document tab gives
that file focus, bringing it to the foreground of the window in the current editor.

The tabs at the bottom of the editor window for a given file are the editor tabs. Selecting an
editor tab opens the file in that editor.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 O

R
AC

LE
 C

O
R

PO
R

AT
IO

N
 u

se
 o

nl
y

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Oracle Database 11g: Develop PL/SQL Program Units H - 7

Copyright © 2009, Oracle. All rights reserved.

Deploying Java Stored Procedures

Before deploying Java stored procedures, perform the following
steps:

Create a database
connection.

Create a deployment
profile.

Deploy the objects.

Deploying Java Stored Procedures

Create a deployment profile for Java stored procedures, then deploy the classes and, optionally,
any public static methods in JDeveloper using the settings in the profile.

Deploying to the database uses the information provided in the Deployment Profile Wizard and
two Oracle Database utilities:

• loadjava loads the Java class containing the stored procedures to an Oracle database.
• publish generates the PL/SQL call–specific wrappers for the loaded public static

methods. Publishing enables the Java methods to be called as PL/SQL functions or
procedures.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 O

R
AC

LE
 C

O
R

PO
R

AT
IO

N
 u

se
 o

nl
y

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Oracle Database 11g: Develop PL/SQL Program Units H - 8

Copyright © 2009, Oracle. All rights reserved.

Publishing Java to PL/SQL

Publishing Java to PL/SQL

The slide shows the Java code and how to publish the Java code in a PL/SQL procedure.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 O

R
AC

LE
 C

O
R

PO
R

AT
IO

N
 u

se
 o

nl
y

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Oracle Database 11g: Develop PL/SQL Program Units H - 9

Copyright © 2009, Oracle. All rights reserved.

Creating Program Units

Skeleton of the function

Creating Program Units

To create a PL/SQL program unit:
1. Select View > Connection Navigator.
2. Expand Database and select a database connection.
3. In the connection, expand a schema.
4. Right-click a folder corresponding to the object type (Procedures, Packages, and

Functions).
5. Choose New PL/SQL object_type. The Create PL/SQL dialog box appears for the

function, package, or procedure.
6. Enter a valid name for the function, package, or procedure, and click OK.

A skeleton definition will be created and opened in the Code Editor. You can then edit the
subprogram to suit your need.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 O

R
AC

LE
 C

O
R

PO
R

AT
IO

N
 u

se
 o

nl
y

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Oracle Database 11g: Develop PL/SQL Program Units H - 10

Copyright © 2009, Oracle. All rights reserved.

Compiling

Compilation with errors

Compilation without errors

Compiling

After editing the skeleton definition, you need to compile the program unit. Right-click the
PL/SQL object that you need to compile in the Connection Navigator and then select Compile.
Alternatively, you can also press [CTRL] + [SHIFT] + [F9] to compile.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 O

R
AC

LE
 C

O
R

PO
R

AT
IO

N
 u

se
 o

nl
y

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Oracle Database 11g: Develop PL/SQL Program Units H - 11

Copyright © 2009, Oracle. All rights reserved.

Running a Program Unit

Running a Program Unit

To execute the program unit, right-click the object and select Run. The Run PL/SQL dialog box
appears. You may need to change the NULL values with reasonable values that are passed into
the program unit. After you change the values, click OK. The output will be displayed in the
Message-Log window.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 O

R
AC

LE
 C

O
R

PO
R

AT
IO

N
 u

se
 o

nl
y

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Oracle Database 11g: Develop PL/SQL Program Units H - 12

Copyright © 2009, Oracle. All rights reserved.

Dropping a Program Unit

Dropping a Program Unit

To drop a program unit, right-click the object and select Drop. The Drop Confirmation dialog
box appears; click Yes. The object will be dropped from the database.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 O

R
AC

LE
 C

O
R

PO
R

AT
IO

N
 u

se
 o

nl
y

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Oracle Database 11g: Develop PL/SQL Program Units H - 13

Copyright © 2009, Oracle. All rights reserved.

Debugging PL/SQL Programs

• JDeveloper support two types of debugging:
– Local

– Remote

• You need the following privileges to perform PL/SQL
debugging:
– DEBUG ANY PROCEDURE

– DEBUG CONNECT SESSION

Debugging PL/SQL Programs

JDeveloper offers both local and remote debugging. A local debugging session is started by
setting breakpoints in source files, and then starting the debugger. Remote debugging requires
two JDeveloper processes: a debugger and a debuggee, which may reside on a different
platform.

To debug a PL/SQL program, it must be compiled in INTERPRETED mode. You cannot debug
a PL/SQL program that is compiled in NATIVE mode. This mode is set in the database’s
init.ora file.

PL/SQL programs must be compiled with the DEBUG option enabled. This option can be
enabled using various ways. Using SQL*Plus, execute ALTER SESSION SET
PLSQL_DEBUG = true to enable the DEBUG option. Then you can create or recompile the
PL/SQL program you want to debug. Another way of enabling the DEBUG option is by using the
following command in SQL*Plus:

ALTER <procedure, function, package> <name> COMPILE DEBUG;

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 O

R
AC

LE
 C

O
R

PO
R

AT
IO

N
 u

se
 o

nl
y

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Oracle Database 11g: Develop PL/SQL Program Units H - 14

Copyright © 2009, Oracle. All rights reserved.

Debugging PL/SQL Programs

Debugging PL/SQL Programs (continued)

Before you start with debugging, make sure that the Generate PL/SQL Debug Information check
box is selected. You can access the dialog box by using Tools > Preferences > Database
Connections.

Instead of manually testing PL/SQL functions and procedures as you may be accustomed to
doing from within SQL*Plus or by running a dummy procedure in the database, JDeveloper
enables you to test these objects in an automatic way. With this release of JDeveloper, you can
run and debug PL/SQL program units. For example, you can specify parameters being passed or
return values from a function giving you more control over what is run and providing you output
details about what was tested.

Note: The procedures or functions in the Oracle database can be either stand-alone or within a
package.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 O

R
AC

LE
 C

O
R

PO
R

AT
IO

N
 u

se
 o

nl
y

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Oracle Database 11g: Develop PL/SQL Program Units H - 15

Debugging PL/SQL Programs (continued)

To run or debug functions, procedures, or packages, perform the following steps:
1. Create a database connection by using the Database Wizard.
2. In the Navigator, expand the Database node to display the specific database username and

schema name.
3. Expand the Schema node.
4. Expand the appropriate node depending on what you are debugging: Procedure, Function,

or Package body.
5. (Optional for debugging only) Select the function, procedure, or package that you want to

debug and double-click to open it in the Code Editor.
6. (Optional for debugging only) Set a breakpoint in your PL/SQL code by clicking to the left

of the margin.
Note: The breakpoint must be set on an executable line of code. If the debugger does not
stop, the breakpoint may have not been set on an executable line of code (ensure that the
breakpoint was verified). Also, verify that the debugging PL/SQL prerequisites were met.
In particular, make sure that the PL/SQL program is compiled in INTERPRETED mode.

7. Make sure that either the Code Editor or the procedure in the Navigator is currently
selected.

8. Click the Debug toolbar button; or, if you want to run without debugging, click the Run
toolbar button.

9. The Run PL/SQL dialog box is displayed.
- Select a target that is the name of the procedure or function that you want to debug.

Note that the content in the Parameters and PL/SQL Block boxes change dynamically
when the target changes.
Note: You will have a choice of target only if you choose to run or debug a package
that contains more than one program unit.

- The Parameters box lists the target’s arguments (if applicable).
- The PL/SQL Block box displays code that was custom-generated by JDeveloper for

the selected target. Depending on what the function or procedure does, you may need
to replace the NULL values with reasonable values so that these are passed into the
procedure, function, or package. In some cases, you may need to write additional
code to initialize values to be passed as arguments. In this case, you can edit the
PL/SQL block text as necessary.

10. Click OK to execute or debug the target.
11. Analyze the output information displayed in the Log window.

In the case of functions, the return value will be displayed. DBMS_OUTPUT messages will also
be displayed.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 O

R
AC

LE
 C

O
R

PO
R

AT
IO

N
 u

se
 o

nl
y

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Oracle Database 11g: Develop PL/SQL Program Units H - 16

Copyright © 2009, Oracle. All rights reserved.

Setting Breakpoints

Setting Breakpoints

Breakpoints help you examine the values of the variables in your program. A breakpoint is a
trigger in a program that, when reached, pauses program execution allowing you to examine the
values of some or all of the program variables. By setting breakpoints in potential problem areas
of your source code, you can run your program until its execution reaches a location you want to
debug. When your program execution encounters a breakpoint, the program pauses, and the
debugger displays the line containing the breakpoint in the Code Editor. You can then use the
debugger to view the state of your program. Breakpoints are flexible in that they can be set
before you begin a program run or at any time while you are debugging.

To set a breakpoint in the Code Editor, click the left margin next to a line of executable code.
Breakpoints set on comment lines, blank lines, declaration, and any other nonexecutable lines of
code are not verified by the debugger and are treated as invalid.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 O

R
AC

LE
 C

O
R

PO
R

AT
IO

N
 u

se
 o

nl
y

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Oracle Database 11g: Develop PL/SQL Program Units H - 17

Copyright © 2009, Oracle. All rights reserved.

Stepping Through Code

Debug Resume

Stepping Through Code

After setting the breakpoint, start the debugger by clicking the Debug icon. The debugger will
pause the program execution at the point where the breakpoint is set. At this point, you can
check the values of the variables. You can continue with the program execution by clicking the
Resume icon. The debugger will then move on to the next breakpoint. After executing all the
breakpoints, the debugger will stop the execution of the program and display the results in the
Debugging – Log area. O

ra
cl

e
U

ni
ve

rs
ity

 a
nd

 O
R

AC
LE

 C
O

R
PO

R
AT

IO
N

 u
se

 o
nl

y

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Oracle Database 11g: Develop PL/SQL Program Units H - 18

Copyright © 2009, Oracle. All rights reserved.

Examining and Modifying Variables

Data window

Examining and Modifying Variables

When the debugger is ON, you can examine and modify the value of the variables using the
Data, Smart Data, and Watches windows. You can modify program data values during a
debugging session as a way to test hypothetical bug fixes during a program run. If you find that a
modification fixes a program error, you can exit the debugging session, fix your program code
accordingly, and recompile the program to make the fix permanent.

You use the Data window to display information about variables in your program. The Data
window displays the arguments, local variables, and static fields for the current context, which is
controlled by the selection in the Stack window. If you move to a new context, the Data window
is updated to show the data for the new context. If the current program was compiled without
debug information, you will not be able to see the local variables.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 O

R
AC

LE
 C

O
R

PO
R

AT
IO

N
 u

se
 o

nl
y

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Oracle Database 11g: Develop PL/SQL Program Units H - 19

Copyright © 2009, Oracle. All rights reserved.

Examining and Modifying Variables

Smart Data window

Examining and Modifying Variables (continued)

Unlike the Data window that displays all the variables in your program, the Smart Data window
displays only the data that is relevant to the source code that you are stepping through.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 O

R
AC

LE
 C

O
R

PO
R

AT
IO

N
 u

se
 o

nl
y

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Oracle Database 11g: Develop PL/SQL Program Units H - 20

Copyright © 2009, Oracle. All rights reserved.

Examining and Modifying Variables

Watches window

Examining and Modifying Variables (continued)

A watch enables you to monitor the changing values of variables or expressions as your program
runs. After you enter a watch expression, the Watch window displays the current value of the
expression. As your program runs, the value of the watch changes as your program updates the
values of the variables in the watch expression.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 O

R
AC

LE
 C

O
R

PO
R

AT
IO

N
 u

se
 o

nl
y

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Oracle Database 11g: Develop PL/SQL Program Units H - 21

Copyright © 2009, Oracle. All rights reserved.

Examining and Modifying Variables

Stack window

Examining and Modifying Variables (continued)

You can activate the Stack window by using View > Debugger > Stack. It displays the call stack
for the current thread. When you select a line in the Stack window, the Data window, Watch
window, and all other windows are updated to show data for the selected class.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 O

R
AC

LE
 C

O
R

PO
R

AT
IO

N
 u

se
 o

nl
y

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Oracle Database 11g: Develop PL/SQL Program Units H - 22

Copyright © 2009, Oracle. All rights reserved.

Examining and Modifying Variables

Classes window

Examining and Modifying Variables (continued)

The Classes window displays all the classes that are currently being loaded to execute the
program. If used with Oracle Java Virtual Machine (OJVM), it also shows the number of
instances of a class and the memory used by those instances.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 O

R
AC

LE
 C

O
R

PO
R

AT
IO

N
 u

se
 o

nl
y

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Index

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 O

R
AC

LE
 C

O
R

PO
R

AT
IO

N
 u

se
 o

nl
y

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Oracle Database 11g: Develop PL/SQL Program Units Index-2

A

Active set D-18, D-20, D-22

Anonymous 1-2, 1-12, 1-23, 1-28, 1-29, 1-31, 2-6, 2-7, 2-11,

2-27, 2-34, 3-8, 5-21, 5-22, 5-27, 7-8, 7-13, 7-16, 7-19, 8-8,

8-12, 8-13, 9-3, 9-10, 11-8, 11-18, 12-29, D-2, G-10

Autonomous transactions 8-2, 8-3, 8-11, 8-12, 8-13, 8-14, 8-15,

8-25, 8-39

Available Methods for Using NDS 7-9, 7-10

B

BEGIN 2-7, 2-15, 2-21, 2-24, 2-25, 2-26, 2-27, 2-30, 2-32, 2-34,

2-37, 2-38, 2-39, 2-40, 3-4, 3-7, 3-8, 3-13, 3-17, 3-19, 4-7,

4-8, 4-15, 4-16, 4-17, 4-19, 5-7, 5-9, 5-10, 5-11, 5-14, 5-19,

5-20, 5-22, 5-27, 5-28, 6-12, 6-13, 6-18, 6-21, 6-22, 6-24, 6-25,

7-11, 7-12, 7-13, 7-14, 7-15, 7-16, 7-17, 7-22, 7-23, 8-5, 8-7,

8-8, 8-10, 8-11, 8-13, 8-16, 8-19, 8-22, 8-23, 8-29, 8-30, 8-31,

8-32, 8-33, 8-36, 8-37, 9-10, 9-16, 9-18, 9-19, 9-21, 9-23, 9-25,

9-29, 9-31, 10-11, 10-14, 10-20, 10-21, 11-14, 11-24, 11-26, 11-36, 11-39,

12-6, 12-10, 12-11, 12-12, 12-15, 12-16, 12-22, 12-23, 12-24, 12-28, 12-33,

12-34, 13-17, C-25, D-2, D-6, D-7, D-8, D-9, D-10, D-11, D-15,

D-16, D-17, D-19, D-21, D-24, D-26, D-28, D-29, D-30, F-4, F-6,

F-8, F-10, F-12, F-13, F-14, G-4, G-7, G-9, G-10, G-12, G-14,

H-16

Bind variables 1-18, 2-28, 3-4, 7-4, 7-5, 7-7, 7-12, 7-16,

7-19, 7-20, 7-23, C-14

Boolean 3-15, 3-25, 4-16, 5-19, 5-20, 5-21, 5-27, 6-9, 6-11,

6-20, 6-21, 6-23, 6-24, 7-8, 9-23, 12-6, 12-8, 12-12, 12-13, 12-14,

D-3, D-31

Bulk binding 8-2, 8-3, 8-15, 8-25, 8-26, 8-27, 8-28, 8-29, 8-30,

8-39

C

Calling procedures 2-3, 2-12, 2-34, 2-35, 2-36, 2-46, 9-39

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 O

R
AC

LE
 C

O
R

PO
R

AT
IO

N
 u

se
 o

nl
y

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Oracle Database 11g: Develop PL/SQL Program Units Index-3

C

CASE 2-8, 2-16, 2-23, 2-32, 2-40, 2-42, 3-7, 4-19, 5-9, 5-16,

5-26, 6-8, 6-13, 6-18, 6-21, 6-24, 7-17, 7-19, 7-29, 8-18, 8-26,

9-5, 9-6, 9-11, 9-16, 9-24, 9-34, 9-37, 9-40, 10-12, 11-8, 11-30,

12-7, 12-8, 12-9, 12-26, 13-5, 13-18, 13-21, 13-24, E-13, F-2, F-15,

H-15

CLOSE 1-15, 5-19, 5-20, 5-21, 6-9, 6-12, 6-14, 6-22, 6-25, 6-29,

7-7, 7-8, 7-10, 7-14, 7-15, 7-20, 7-22, 7-23, 8-32, C-9, C-24,

D-2, D-18, D-22, D-24, E-19, G-3, G-4

Collections 7-24, 8-16, 8-26, 8-27, 8-33, 8-34, 8-35, 8-36, 8-38,

10-13

Compiling procedures 2-17, 13-36, 13-41

Composite data type D-3

Compound triggers 9-8, 10-2, 10-4, 10-5, 10-7, 10-9, 10-26

Conditional compilation 11-12, 12-2, 12-3, 12-4, 12-5, 12-7, 12-8,

12-9, 12-11, 12-12, 12-13, 12-15, 12-16, 12-17, 12-18, 12-30, 12-31, 12-32,

12-33

CONSTANT 2-7, 2-20, 4-2, 4-4, 4-7, 4-11, 4-15, 4-16, 4-19,

4-23, 4-24, 5-2, 8-2, 8-3, 8-4, 8-7, 8-15, 8-25, 8-39, 12-5,

12-6, 12-12, 12-13, 12-14, 12-24, 12-33, D-2, D-3, F-5

Creating a Database Connection 1-15, 1-30, C-7, C-8, C-9

Creating triggers on system events 10-19

Cursor 1-18, 1-19, 2-34, 4-2, 4-4, 4-6, 4-7, 4-11, 4-15, 4-19,

4-23, 4-24, 5-2, 5-19, 5-20, 5-21, 5-24, 6-13, 7-7, 7-10, 7-12,

7-14, 7-15, 7-20, 7-22, 7-23, 7-24, 8-18, 8-27, 8-28, 8-30, 8-31,

8-32, 8-37, 9-9, 10-29, 11-5, 12-6, C-14, C-16, C-22, C-23, C-27,

D-2, D-13, D-18, D-19, D-20, D-21, D-22, D-23, D-24, D-25, D-26,

D-27

Cursor attributes 7-15, D-13, D-20, D-23

Cursor FOR loop 8-18, 8-27, D-24

D

Database-event triggers 10-18, 10-22

DBMS_DB_VERSION 12-5, 12-12, 12-13, 12-14, 12-15, 12-33

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 O

R
AC

LE
 C

O
R

PO
R

AT
IO

N
 u

se
 o

nl
y

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Oracle Database 11g: Develop PL/SQL Program Units Index-4

D

DBMS_OUTPUT 1-12, 1-23, 1-24, 1-31, 2-25, 2-27, 2-38, 2-40, 3-7,

3-8, 3-9, 4-19, 5-20, 5-22, 5-27, 6-2, 6-3, 6-4, 6-5, 6-6,

6-7, 6-12, 6-13, 6-27, 7-12, 7-13, 7-14, 7-16, 7-22, 7-23, 8-8,

8-30, 8-31, 8-32, 9-34, 10-21, 11-24, 11-35, 11-36, 11-43, 12-10, 12-16,

12-22, 12-23, 12-24, E-18, G-5, G-17, H-15

DBMS_SQL package 7-2, 7-3, 7-5, 7-10, 7-18, 7-19, 7-20, 7-21,

7-26, 7-28, 8-10

DBMS_WARNING 11-3, 11-6, 11-15, 11-20, 11-24, 11-28, 11-29, 11-30, 11-31,

11-32, 11-33, 11-34, 11-35, 11-36, 11-37, 11-43

DDL 1-6, 1-16, 1-28, 2-16, 2-41, 3-16, 7-5, 7-9, 7-11, 7-17,

7-19, 7-20, 7-22, 9-5, 9-6, 9-8, 10-1, 10-2, 10-12, 10-17, 10-18,

10-24, 10-26, 12-19, 12-21, 12-23, 12-24, 12-29, C-11

Debugging PL/SQL 1-2, 1-11, C-3, H-13, H-14, H-15

DECLARE 2-7, 2-9, 2-20, 2-21, 2-22, 2-25, 2-27, 2-29, 2-30,

2-31, 2-32, 2-44, 3-4, 3-8, 4-4, 4-7, 4-8, 4-11, 4-14, 4-15,

4-16, 4-19, 4-22, 4-23, 5-8, 5-9, 5-11, 5-12, 5-17, 5-22, 5-27,

6-10, 6-13, 7-10, 7-13, 7-14, 7-15, 7-16, 8-4, 8-5, 8-8, 8-16,

8-18, 8-30, 8-41, 9-10, 9-20, 10-7, 10-11, 10-13, 10-29, 11-5, 11-24,

12-6, 12-16, 12-24, 12-33, 13-17, D-2, D-3, D-4, D-5, D-6, D-7,

D-8, D-9, D-10, D-11, D-15, D-16, D-17, D-18, D-19, D-20, D-21,

D-22, D-24, D-25, D-26, D-27, D-29, D-30, F-4, F-13, F-14

DEFAULT 1-20, 1-24, 1-31, 1-32, 2-10, 2-15, 2-16, 2-20, 2-22,

2-23, 2-31, 2-32, 2-33, 3-15, 3-18, 3-19, 3-24, 3-26, 4-11, 5-11,

5-16, 5-17, 6-7, 6-8, 6-15, 6-18, 6-19, 6-20, 6-21, 6-23, 6-24,

7-8, 7-28, 8-10, 8-16, 8-17, 8-22, 8-38, 9-10, 9-30, 9-32, 9-38,

11-4, 11-7, 11-8, 11-9, 11-23, 12-8, 12-26, C-4, C-7, C-8, C-10,

C-17, C-30, C-34, D-3, D-9, D-22, D-31, E-17, E-18, E-24, E-25,

E-30, E-31, F-5, F-6, F-8, F-9, G-8, G-11, G-15, H-5

Definer’s rights 8-9, 8-10

DETERMINISTIC clause 8-2, 8-3, 8-15, 8-24, 8-25, 8-39

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 O

R
AC

LE
 C

O
R

PO
R

AT
IO

N
 u

se
 o

nl
y

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Oracle Database 11g: Develop PL/SQL Program Units Index-5

D

DML 2-37, 2-39, 2-46, 3-16, 3-17, 5-12, 5-13, 7-4, 7-12, 7-20,

7-22, 7-23, 8-2, 8-3, 8-10, 8-15, 8-19, 8-25, 8-27, 8-28, 8-30,

8-33, 8-34, 8-35, 8-36, 8-39, 9-5, 9-6, 9-8, 9-9, 9-10, 9-11,

9-12, 9-13, 9-14, 9-15, 9-16, 9-18, 9-19, 9-24, 9-26, 9-28, 9-31,

9-38, 10-7, 10-8, 10-9, 10-10, 10-12, 10-18, 10-23, 10-25, 10-29, D-12,

D-13, D-23, E-32, F-2, F-15

Dynamic SQL 1-5, 7-1, 7-2, 7-3, 7-4, 7-5, 7-6, 7-7, 7-8,

7-9, 7-10, 7-11, 7-12, 7-13, 7-14, 7-17, 7-18, 7-19, 7-20, 7-22,

7-23, 7-24, 7-25, 7-26, 7-27, 7-28, 8-10, 11-36, 13-42

E

Editing the PL/SQL Code 1-24

ELSE 4-16, 4-17, 7-14, 9-18, 9-23, 12-6, 12-11, 12-15, D-14, F-10,

F-12

ELSIF 9-18, 9-23, 9-29, 12-6, 12-11, D-14, F-12, F-13, F-14

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 O

R
AC

LE
 C

O
R

PO
R

AT
IO

N
 u

se
 o

nl
y

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Oracle Database 11g: Develop PL/SQL Program Units Index-6

E

END 1-3, 1-5, 1-6, 1-9, 1-14, 1-18, 1-19, 1-24, 1-25, 1-29,

1-30, 1-31, 1-32, 2-3, 2-5, 2-6, 2-7, 2-12, 2-15, 2-20, 2-21,

2-24, 2-25, 2-26, 2-27, 2-30, 2-32, 2-34, 2-36, 2-37, 2-38, 2-39,

2-40, 2-41, 2-46, 3-3, 3-4, 3-7, 3-8, 3-12, 3-13, 3-16, 3-17,

3-19, 3-24, 4-3, 4-6, 4-7, 4-8, 4-10, 4-11, 4-14, 4-15, 4-16,

4-17, 4-19, 4-22, 5-3, 5-4, 5-6, 5-7, 5-9, 5-10, 5-11, 5-12,

5-14, 5-15, 5-17, 5-19, 5-20, 5-21, 5-22, 5-23, 5-28, 6-3, 6-4,

6-5, 6-6, 6-7, 6-8, 6-9, 6-10, 6-11, 6-12, 6-14, 6-15, 6-16,

6-18, 6-19, 6-20, 6-21, 6-22, 6-23, 6-24, 6-25, 6-27, 7-3, 7-7,

7-11, 7-12, 7-13, 7-14, 7-15, 7-16, 7-17, 7-18, 7-22, 7-23, 7-26,

8-2, 8-3, 8-5, 8-7, 8-8, 8-10, 8-11, 8-12, 8-13, 8-15, 8-16,

8-18, 8-19, 8-20, 8-21, 8-22, 8-23, 8-24, 8-25, 8-27, 8-29, 8-30,

8-31, 8-32, 8-33, 8-34, 8-36, 8-37, 9-10, 9-11, 9-12, 9-16, 9-18,

9-19, 9-21, 9-23, 9-25, 9-29, 9-31, 9-32, 9-34, 10-7, 10-11, 10-12,

10-14, 10-15, 10-20, 10-21, 10-24, 11-3, 11-4, 11-5, 11-6, 11-14, 11-15,

11-16, 11-17, 11-24, 11-26, 11-28, 11-36, 11-39, 12-3, 12-4, 12-6, 12-8,

12-9, 12-10, 12-11, 12-12, 12-14, 12-15, 12-16, 12-18, 12-22, 12-23, 12-24,

12-25, 12-26, 12-27, 12-28, 12-29, 12-33, 12-34, 13-1, 13-2, 13-3, 13-4,

13-5, 13-6, 13-8, 13-9, 13-10, 13-11, 13-12, 13-13, 13-14, 13-15, 13-16,

13-17, 13-18, 13-19, 13-20, 13-21, 13-22, 13-24, 13-25, 13-26, 13-27, 13-28,

13-29, 13-31, 13-32, 13-33, 13-34, 13-35, 13-36, 13-37, 13-38, 13-39, 13-40,

13-41, 13-42, B-3, C-2, C-5, C-9, C-12, C-14, C-16, C-24, C-25,

C-34, D-2, D-7, D-8, D-9, D-10, D-11, D-12, D-14, D-15, D-16,

D-17, D-21, D-22, D-23, D-24, D-25, D-26, D-28, D-29, D-30, D-31,

D-32, E-2, E-5, E-6, E-10, E-11, E-12, E-17, E-24, E-25, E-26,

E-27, E-28, E-32, E-34, F-4, F-6, F-8, F-10, F-12, F-13, F-14,

G-4, G-7, G-8, G-9, G-10, G-12, G-13, G-14, H-15

Environment 1-2, 1-10, 1-13, 1-28, 1-29, 2-8, 2-20, 2-22, 2-23,

2-24, 2-25, 2-26, 3-3, 3-5, 3-7, 4-6, 4-7, 4-8, 4-9, 4-17,

5-8, 8-4, 11-29, 11-30, 11-36, 12-4, 12-5, 12-30, 13-13, C-4, C-7,

C-29, C-30, D-12, D-30, E-3, E-4, E-5, E-6, E-7, E-14, E-34,

G-3, H-2

Exception handler 2-7, 2-37, 2-39, 3-7, 4-26, 8-4, 9-25, 11-38,

D-30

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 O

R
AC

LE
 C

O
R

PO
R

AT
IO

N
 u

se
 o

nl
y

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Oracle Database 11g: Develop PL/SQL Program Units Index-7

E

EXECUTE IMMEDIATE 7-5, 7-7, 7-8, 7-9, 7-11, 7-12, 7-13, 7-16,

7-17, 11-36, 12-22

Execution Plan 1-18, C-14, E-32

EXIT 1-32, 5-18, 5-20, 5-21, 6-13, 6-29, 7-14, 8-16, 8-17, 8-38,

10-13, 11-5, 11-38, C-25, D-15, D-21, E-14, H-18

Explicit cursor 7-15, D-18, D-19, D-23, D-24

F

FETCH 5-20, 7-4, 7-7, 7-8, 7-10, 7-14, 7-15, 7-20, 7-23, 8-26,

8-27, 8-32, 8-40, 8-41, D-18, D-20, D-21, D-22, D-24, D-26

Fine-grained dependency management 13-14, 13-15, 13-16, 13-17

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 O

R
AC

LE
 C

O
R

PO
R

AT
IO

N
 u

se
 o

nl
y

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Oracle Database 11g: Develop PL/SQL Program Units Index-8

F

FOR 1-2, 1-4, 1-5, 1-7, 1-8, 1-9, 1-10, 1-11, 1-12, 1-13,

1-15, 1-16, 1-17, 1-18, 1-19, 1-20, 1-22, 1-23, 1-24, 1-27, 1-28,

1-30, 1-31, 1-32, 1-33, 2-2, 2-3, 2-4, 2-5, 2-6, 2-7, 2-8,

2-9, 2-10, 2-11, 2-12, 2-13, 2-14, 2-15, 2-16, 2-19, 2-20, 2-21,

2-22, 2-23, 2-24, 2-25, 2-26, 2-28, 2-29, 2-30, 2-31, 2-32, 2-33,

2-34, 2-35, 2-36, 2-37, 2-38, 2-39, 2-41, 2-42, 2-43, 2-44, 2-45,

2-46, 2-48, 3-3, 3-4, 3-5, 3-7, 3-8, 3-9, 3-10, 3-11, 3-12,

3-13, 3-15, 3-18, 3-19, 3-21, 3-23, 3-24, 3-25, 3-26, 4-3, 4-4,

4-5, 4-6, 4-7, 4-8, 4-10, 4-11, 4-12, 4-13, 4-14, 4-15, 4-16,

4-17, 4-18, 4-19, 4-20, 4-21, 4-22, 4-23, 4-24, 4-26, 5-2, 5-3,

5-4, 5-5, 5-6, 5-8, 5-9, 5-10, 5-11, 5-12, 5-13, 5-15, 5-16,

5-17, 5-18, 5-19, 5-20, 5-21, 5-22, 5-23, 5-24, 5-25, 5-26, 5-27,

5-28, 5-29, 6-4, 6-5, 6-7, 6-8, 6-9, 6-10, 6-11, 6-13, 6-14,

6-15, 6-16, 6-18, 6-19, 6-20, 6-21, 6-22, 6-23, 6-24, 6-25, 6-27,

6-29, 7-4, 7-5, 7-6, 7-7, 7-8, 7-9, 7-10, 7-11, 7-12, 7-13,

7-14, 7-15, 7-16, 7-17, 7-19, 7-20, 7-21, 7-22, 7-23, 7-24, 7-25,

7-26, 7-27, 7-28, 7-29, 8-1, 8-2, 8-3, 8-6, 8-7, 8-8, 8-9,

8-10, 8-11, 8-13, 8-15, 8-16, 8-17, 8-18, 8-19, 8-20, 8-21, 8-22,

8-23, 8-24, 8-25, 8-26, 8-27, 8-28, 8-29, 8-30, 8-31, 8-32, 8-33,

8-34, 8-35, 8-36, 8-37, 8-38, 8-39, 8-40, 8-41, 8-42, 9-2, 9-3,

9-6, 9-7, 9-8, 9-9, 9-10, 9-11, 9-12, 9-14, 9-15, 9-16, 9-18,

9-19, 9-20, 9-21, 9-22, 9-23, 9-24, 9-25, 9-26, 9-27, 9-28, 9-29,

9-31, 9-32, 9-33, 9-34, 9-35, 9-36, 9-38, 9-40, 9-41, 10-2, 10-3,

10-4, 10-5, 10-7, 10-8, 10-9, 10-10, 10-11, 10-12, 10-13, 10-14, 10-16,

10-17, 10-18, 10-19, 10-20, 10-21, 10-22, 10-23, 10-24, 10-26, 10-27, 10-28,

10-29, 10-30, 11-4, 11-5, 11-7, 11-8, 11-9, 11-10, 11-11, 11-12, 11-13,

11-14, 11-16, 11-17, 11-18, 11-19, 11-20, 11-21, 11-22, 11-23, 11-24, 11-25,

11-26, 11-27, 11-30, 11-31, 11-32, 11-33, 11-34, 11-35, 11-36, 11-37, 11-38,

11-40, 11-42, 11-43, 12-4, 12-5, 12-6, 12-7, 12-8, 12-9, 12-11, 12-12,

12-13, 12-14, 12-15, 12-16, 12-17, 12-19, 12-21, 12-24, 12-25, 12-26, 12-27,

12-28, 12-29, 12-33, 13-3, 13-5, 13-11, 13-12, 13-13, 13-15, 13-17, 13-18,

13-19, 13-20, 13-21, 13-22, 13-23, 13-24, 13-25, 13-29, 13-31, 13-32, 13-33,

13-34, 13-38, 13-39, 13-42, B-2, C-2, C-3, C-4, C-5, C-6, C-7,

C-8, C-9, C-10, C-11, C-12, C-13, C-14, C-15, C-16, C-17, C-18,

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 O

R
AC

LE
 C

O
R

PO
R

AT
IO

N
 u

se
 o

nl
y

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Oracle Database 11g: Develop PL/SQL Program Units Index-9

F

FOR C-19, C-20, C-21, C-24, C-25, C-26, C-27, C-28, C-30, C-31, C-32,

C-33, C-34, D-2, D-3, D-4, D-5, D-6, D-7, D-8, D-9, D-10,

D-12, D-13, D-14, D-15, D-16, D-17, D-18, D-19, D-20, D-21, D-22,

D-23, D-24, D-25, D-26, D-28, D-29, D-30, D-31, E-2, E-3, E-5,

E-9, E-10, E-11, E-14, E-15, E-17, E-18, E-20, E-22, E-26, E-29,

E-30, E-31, E-32, E-33, E-34, F-1, F-2, F-4, F-5, F-6, F-7,

F-8, F-9, F-10, F-11, F-12, F-13, F-14, F-15, G-2, G-3, G-4,

G-5, G-6, G-7, G-8, G-9, G-10, G-11, G-12, G-13, G-14, G-15,

G-16, G-17, H-2, H-3, H-5, H-6, H-7, H-9, H-13, H-14, H-15,

H-16, H-18, H-21 FOR UPDATE D-12, D-20, D-25, D-26, F-8

Functions 1-2, 1-4, 1-5, 1-13, 1-24, 1-28, 2-6, 2-7, 2-9,

2-10, 2-11, 2-46, 3-1, 3-2, 3-3, 3-4, 3-5, 3-6, 3-8, 3-9,

3-10, 3-11, 3-12, 3-14, 3-15, 3-16, 3-17, 3-20, 3-21, 3-23, 3-24,

4-2, 4-4, 4-5, 4-6, 4-15, 4-24, 4-26, 5-2, 5-5, 5-8, 5-11,

5-12, 5-20, 5-22, 5-26, 6-9, 6-11, 7-20, 8-2, 8-10, 8-13, 8-19,

8-20, 8-24, 8-39, 9-26, 10-12, 10-23, 10-29, 11-34, 11-35, 12-12, 13-2,

13-4, 13-24, 13-34, 13-35, 13-40, 13-41, 13-42, C-6, C-22, C-23, C-25,

C-32, C-33, D-3, D-9, D-13, H-7, H-9, H-14, H-15

G

Grid 13-13

H

HR schema 1-7, 1-29, 1-31, 13-9

I

Identifiers 2-21, 4-15, 5-9, 8-4, 8-5, D-3, D-9

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 O

R
AC

LE
 C

O
R

PO
R

AT
IO

N
 u

se
 o

nl
y

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Oracle Database 11g: Develop PL/SQL Program Units Index-10

I

IF 1-2, 1-7, 1-11, 1-12, 1-13, 1-15, 1-17, 1-20, 1-22, 1-24,

1-28, 1-30, 1-31, 2-2, 2-3, 2-4, 2-6, 2-7, 2-9, 2-10, 2-11,

2-12, 2-13, 2-14, 2-15, 2-16, 2-18, 2-20, 2-21, 2-22, 2-23, 2-29,

2-31, 2-32, 2-33, 2-35, 2-36, 2-37, 2-39, 2-44, 2-45, 2-46, 2-47,

2-48, 3-2, 3-3, 3-4, 3-5, 3-6, 3-7, 3-8, 3-9, 3-15, 3-16,

3-17, 3-18, 3-23, 3-24, 3-25, 3-26, 4-3, 4-4, 4-5, 4-6, 4-7,

4-8, 4-9, 4-10, 4-11, 4-12, 4-14, 4-15, 4-16, 4-17, 4-18, 4-19,

4-20, 4-21, 4-22, 4-23, 4-24, 4-25, 4-26, 5-2, 5-3, 5-4, 5-5,

5-6, 5-7, 5-8, 5-9, 5-10, 5-11, 5-12, 5-13, 5-14, 5-15, 5-16,

5-17, 5-18, 5-19, 5-20, 5-21, 5-23, 5-24, 5-25, 5-26, 5-27, 5-28,

5-29, 6-3, 6-4, 6-5, 6-6, 6-8, 6-9, 6-10, 6-11, 6-12, 6-13,

6-14, 6-15, 6-18, 6-20, 6-21, 6-23, 6-24, 6-26, 6-29, 7-2, 7-4,

7-5, 7-6, 7-7, 7-8, 7-9, 7-10, 7-11, 7-12, 7-13, 7-14, 7-15,

7-17, 7-20, 7-21, 7-22, 7-23, 7-26, 7-27, 7-28, 7-29, 8-2, 8-4,

8-5, 8-6, 8-7, 8-8, 8-9, 8-10, 8-11, 8-12, 8-13, 8-16, 8-17,

8-18, 8-19, 8-20, 8-21, 8-22, 8-24, 8-27, 8-29, 8-30, 8-31, 8-32,

8-33, 8-34, 8-36, 8-38, 8-39, 8-40, 8-41, 8-42, 9-2, 9-3, 9-5,

9-6, 9-9, 9-10, 9-11, 9-12, 9-14, 9-16, 9-17, 9-18, 9-19, 9-20,

9-21, 9-22, 9-23, 9-24, 9-25, 9-26, 9-28, 9-29, 9-30, 9-31, 9-32,

9-34, 9-36, 9-37, 9-38, 9-40, 10-3, 10-6, 10-7, 10-10, 10-11, 10-12,

10-13, 10-14, 10-15, 10-17, 10-18, 10-20, 10-22, 10-23, 10-24, 10-28, 10-29,

11-5, 11-8, 11-9, 11-10, 11-12, 11-18, 11-20, 11-21, 11-22, 11-23, 11-25,

11-26, 11-27, 11-29, 11-30, 11-31, 11-32, 11-33, 11-34, 11-35, 11-36, 11-37,

11-38, 11-42, 11-43, 12-4, 12-5, 12-6, 12-7, 12-8, 12-9, 12-10, 12-11,

12-12, 12-13, 12-14, 12-15, 12-16, 12-21, 12-24, 12-26, 12-28, 12-29, 12-33,

12-34, 13-3, 13-5, 13-8, 13-10, 13-13, 13-14, 13-15, 13-16, 13-17, 13-18,

13-21, 13-22, 13-23, 13-24, 13-25, 13-26, 13-27, 13-29, 13-31, 13-32, 13-33,

13-34, 13-35, 13-37, 13-38, 13-42, B-2, C-2, C-3, C-4, C-6, C-7,

C-8, C-9, C-10, C-11, C-12, C-13, C-15, C-17, C-19, C-20, C-21,

C-22, C-24, C-27, C-29, C-30, C-32, C-33, C-34, D-2, D-3, D-4,

D-5, D-7, D-8, D-9, D-10, D-11, D-13, D-14, D-15, D-18, D-20,

D-22, D-24, D-25, D-29, D-30, D-31, D-32, E-3, E-5, E-6, E-9,

E-10, E-12, E-13, E-20, E-21, E-26, E-27, E-28, E-29, E-31, E-33,

F-4, F-9, F-10, F-11, F-12, F-13, F-14, G-4, G-5, G-6, G-7,

G-8, G-9, G-10, G-11, G-12, G-13, G-14, G-15, H-2, H-4, H-5,

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 O

R
AC

LE
 C

O
R

PO
R

AT
IO

N
 u

se
 o

nl
y

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Oracle Database 11g: Develop PL/SQL Program Units Index-11

I

IF H-6, H-7, H-10, H-13, H-14, H-15, H-16, H-18, H-19, H-20, H-21, H-22

Implicit cursor D-13, D-23

Initialization parameters for PL/SQL compilation 11-7, 11-8

Inquiry directives 12-5, 12-7, 12-8, 12-12

Instead of triggers 9-8, 9-11, 9-26, 9-28, 10-10, 10-24

INTO 1-7, 1-20, 2-2, 2-4, 2-5, 2-6, 2-20, 2-24, 2-25, 2-26,

2-30, 2-32, 2-38, 2-40, 2-42, 2-46, 2-47, 3-7, 3-12, 3-17, 3-24,

3-25, 4-4, 4-6, 4-16, 4-24, 4-26, 5-6, 5-7, 5-11, 5-16, 5-18,

5-20, 6-5, 6-7, 6-9, 6-19, 6-25, 7-7, 7-8, 7-10, 7-12, 7-13,

7-14, 7-22, 7-23, 8-8, 8-10, 8-13, 8-16, 8-22, 8-23, 8-27, 8-30,

8-31, 8-32, 8-33, 8-34, 8-35, 8-36, 8-37, 8-38, 8-39, 8-41, 9-7,

9-14, 9-16, 9-17, 9-18, 9-21, 9-22, 9-25, 9-26, 9-27, 9-28, 9-29,

10-11, 10-13, 10-14, 10-20, 10-24, 11-14, 11-19, 11-39, 11-40, 12-16, 12-25,

13-38, C-5, C-10, C-17, C-22, C-23, C-25, C-26, C-29, C-31, D-6,

D-7, D-8, D-9, D-15, D-16, D-18, D-20, D-21, D-22, E-3, E-5,

F-4, F-10, F-13, F-14, G-3, G-5, H-4, H-11, H-15

Invalidation of dependent objects 13-8, 13-13, 13-22

Invoker’s rights 6-16, 8-9, 8-10, 8-39

Invoking the package subprograms 4-3, 4-10, 4-17, 4-18

L

Local dependencies 13-5, 13-21

Local subprograms 5-4, 8-2, 8-3, 8-8, 8-15, 8-25, 8-39

Loop 2-34, 5-20, 5-22, 5-28, 6-12, 6-13, 6-14, 7-14, 7-20, 8-18,

8-26, 8-27, 8-29, 8-30, 8-31, 8-32, 8-33, 9-24, 10-14, 10-29, 11-5,

D-15, D-16, D-17, D-21, D-22, D-24, D-25, D-26

M

Managing triggers 9-32, 9-33

Mutating tables 10-2, 10-10, 10-26

N

Native Dynamic SQL (NDS) 7-2, 7-3, 7-7, 7-18, 7-26

NOCOPY hint 8-2, 8-16, 8-17, 8-18, 8-38, 8-39, 11-17, 11-30

O

Obfuscation 4-21, 12-2, 12-19, 12-24, 12-31

OLD and NEW qualifiers 9-20, 9-21, 9-22

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 O

R
AC

LE
 C

O
R

PO
R

AT
IO

N
 u

se
 o

nl
y

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Oracle Database 11g: Develop PL/SQL Program Units Index-12

O

OPEN 1-15, 1-17, 1-20, 1-21, 1-32, 2-18, 5-19, 5-20, 5-21, 6-9,

6-11, 6-12, 6-13, 6-22, 6-25, 6-29, 7-7, 7-8, 7-10, 7-14, 7-15,

7-20, 7-22, 7-23, 8-32, 12-6, C-9, C-11, C-13, C-15, C-17, C-18,

C-31, C-32, D-13, D-18, D-20, D-21, D-22, D-24, D-25, E-16, G-4,

G-5, H-6, H-9, H-15

Oracle-supplied packages 1-4, 1-5, 6-1, 6-2, 6-3, 6-4, 6-5,

6-6, G-2

OTHERS 2-38, 8-5, 11-38, 11-39, 12-20, 12-23, 13-9, D-12, D-28

Output 1-4, 1-10, 1-12, 1-13, 1-19, 1-22, 1-23, 1-24, 1-31, 2-20,

2-22, 2-25, 2-27, 2-38, 2-40, 2-48, 3-5, 3-7, 3-8, 3-9, 3-13,

4-4, 4-19, 4-21, 5-20, 5-22, 5-27, 6-2, 6-3, 6-4, 6-5, 6-6,

6-7, 6-9, 6-11, 6-12, 6-13, 6-14, 6-27, 6-29, 7-12, 7-13, 7-14,

7-16, 7-19, 7-22, 7-23, 8-8, 8-14, 8-27, 8-30, 8-31, 8-32, 8-41,

9-34, 10-21, 11-24, 11-35, 11-36, 11-43, 12-10, 12-16, 12-17, 12-22, 12-23,

12-24, 12-26, 12-27, 12-28, C-16, C-19, C-20, D-21, E-2, E-18, E-22,

E-24, E-25, E-30, E-32, E-33, E-34, G-2, G-3, G-4, G-5, G-17,

H-11, H-14, H-15

Overloading procedures 5-6, 5-7

P

Package body 4-5, 4-7, 4-8, 4-9, 4-11, 4-13, 4-14, 4-15, 4-16,

4-17, 4-19, 4-20, 4-21, 4-22, 4-24, 4-26, 5-2, 5-3, 5-7, 5-9,

5-10, 5-11, 5-14, 5-15, 5-19, 5-22, 5-25, 5-26, 5-27, 5-28, 5-29,

7-17, 7-28, 7-29, 8-41, 11-12, 12-15, 12-21, 12-27, 12-28, 12-33, 12-34,

13-6, 13-14, 13-33, 13-37, 13-38, H-15

Package specification 4-3, 4-5, 4-7, 4-8, 4-9, 4-10, 4-11,

4-12, 4-14, 4-15, 4-16, 4-19, 4-20, 4-21, 4-22, 4-23, 4-24, 4-25,

4-26, 5-6, 5-9, 5-10, 5-12, 5-14, 5-16, 5-19, 5-26, 5-27, 5-29,

7-17, 7-28, 8-2, 8-4, 8-7, 8-39, 8-41, 12-21, 12-28, 12-29, 12-33,

12-34, 13-14, 13-33, 13-37, 13-38

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 O

R
AC

LE
 C

O
R

PO
R

AT
IO

N
 u

se
 o

nl
y

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Oracle Database 11g: Develop PL/SQL Program Units Index-13

P

Packages 1-4, 1-5, 1-9, 1-13, 1-26, 2-6, 2-34, 2-42, 4-1,

4-2, 4-3, 4-4, 4-5, 4-6, 4-9, 4-10, 4-11, 4-12, 4-13, 4-17,

4-19, 4-20, 4-21, 4-22, 4-24, 4-25, 5-1, 5-2, 5-3, 5-10, 5-11,

5-15, 5-16, 5-17, 5-18, 5-22, 6-1, 6-2, 6-3, 6-4, 6-5, 6-6,

6-10, 6-11, 6-18, 6-19, 6-27, 7-21, 8-10, 10-23, 11-31, 11-43, 12-12,

12-17, 13-24, 13-33, 13-37, 13-38, 13-41, 13-42, C-10, E-32, G-1, G-2,

G-4, G-17, H-9, H-15

PARALLEL_ENABLE hint 8-19, 8-39

Parameters 1-4, 1-20, 1-31, 2-2, 2-3, 2-4, 2-9, 2-11, 2-12,

2-13, 2-15, 2-16, 2-20, 2-21, 2-22, 2-23, 2-24, 2-25, 2-26, 2-27,

2-28, 2-29, 2-30, 2-31, 2-32, 2-33, 2-35, 2-36, 2-38, 2-44, 2-45,

2-47, 2-48, 3-3, 3-4, 3-5, 3-10, 3-15, 3-18, 3-19, 3-25, 3-26,

4-6, 4-18, 4-26, 5-4, 5-5, 5-6, 5-8, 5-10, 5-23, 5-24, 5-26,

5-27, 6-11, 6-12, 6-13, 6-18, 6-19, 6-20, 6-21, 6-23, 6-24, 6-29,

7-7, 7-11, 7-21, 7-28, 8-2, 8-6, 8-16, 8-17, 8-18, 8-20, 8-38,

8-39, 9-40, 10-21, 10-28, 10-30, 11-2, 11-3, 11-6, 11-7, 11-8, 11-9,

11-10, 11-12, 11-13, 11-14, 11-15, 11-17, 11-19, 11-28, 11-30, 11-32, 11-34,

11-40, 11-41, 11-42, 11-43, 12-5, 12-9, 13-11, 13-19, 13-21, 13-25, 13-32,

C-17, E-24, G-3, G-8, G-9, G-11, G-14, H-14, H-15

Passing parameter 2-2, 2-29, 2-30, 2-31, 2-45, 3-19, 8-16, 8-38,

11-17

Persistent state of a package 5-19, 5-20

PL/SQL compile-time warnings for subprograms 11-16, 11-17, 11-30

PL/SQL Compiler 1-6, 8-13, 8-16, 8-18, 8-38, 11-1, 11-2, 11-3,

11-4, 11-5, 11-6, 11-7, 11-9, 11-10, 11-15, 11-16, 11-17, 11-20, 11-23,

11-25, 11-28, 11-41, 11-43, 12-5, 12-9, 12-28, 13-23, 13-33, C-29

PLSQL_CCFLAGS parameter 12-8, 12-9, 12-10, 12-15

PLSQL_WARNINGS parameter 11-20, 11-24, 11-27, 11-30

PRAGMA 4-7, 4-23, 5-13, 5-16, 5-17, 8-5, 8-11, 8-12, 8-13, 8-19,

D-29

Predefined Oracle server error D-27

PRINT 1-12, 2-26, 2-27, 2-28, 3-25, 5-27, 5-28, 8-41, 11-36, 12-16,

12-17, D-28, D-29, E-5, E-24, E-25, G-4

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 O

R
AC

LE
 C

O
R

PO
R

AT
IO

N
 u

se
 o

nl
y

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Oracle Database 11g: Develop PL/SQL Program Units Index-14

P

Procedures 1-2, 1-4, 1-5, 1-11, 1-12, 1-13, 1-28, 2-1, 2-2,

2-3, 2-6, 2-7, 2-9, 2-10, 2-11, 2-12, 2-13, 2-14, 2-15, 2-16,

2-17, 2-29, 2-34, 2-35, 2-36, 2-37, 2-38, 2-41, 2-42, 2-43, 2-45,

2-46, 2-47, 3-3, 3-5, 3-11, 3-15, 4-2, 4-4, 4-5, 4-6, 4-8,

4-15, 4-24, 4-26, 5-2, 5-6, 5-7, 5-9, 5-11, 5-22, 5-27, 6-4,

6-5, 6-7, 6-9, 6-10, 6-15, 7-19, 7-20, 7-28, 8-10, 8-13, 9-3,

9-39, 10-15, 10-23, 10-24, 11-32, 11-33, 12-4, 12-17, 13-2, 13-4, 13-24,

13-27, 13-28, 13-30, 13-32, 13-33, 13-34, 13-35, 13-36, 13-40, 13-41, 13-42,

C-3, C-6, C-10, C-25, C-32, C-33, E-18, G-3, G-4, G-5, G-9,

G-11, H-7, H-9, H-14, H-15

PROMPT 1-15, 6-29, 12-26, C-9, C-31, D-17, E-6, E-10, E-11, E-20,

E-21, E-24, E-34, G-5

R

RAISE_APPLICATION_ERROR 4-16, 6-14, 8-6, 9-16, 9-18, 9-19, 10-11,

10-14, 11-38, D-31, D-32, F-4, F-6

Result-caching for a function 8-21

RETURNING clause 8-2, 8-3, 8-15, 8-25, 8-33, 8-37, 8-39

S

Schema object dependencies 13-3

Selection directives 12-5, 12-6

Snippets C-22, C-23, C-32

SQL Developer 1-3, 1-9, 1-10, 1-11, 1-14, 1-15, 1-16, 1-24,

1-25, 1-26, 1-29, 1-30, 1-31, 1-32, 1-33, 2-14, 2-16, 2-17, 2-18,

2-24, 2-27, 2-34, 2-35, 2-41, 2-43, 2-46, 3-6, 3-10, 3-11, 3-13,

3-20, 3-24, 4-9, 4-12, 4-13, 4-18, 4-20, 4-21, 4-25, 5-22, 6-7,

6-18, 6-22, 8-41, 9-13, 9-32, 9-33, 9-36, 11-23, 11-24, 11-25, 11-26,

11-43, C-1, C-2, C-3, C-4, C-5, C-6, C-7, C-9, C-10, C-11,

C-15, C-21, C-22, C-24, C-25, C-26, C-27, C-28, C-29, C-30, C-31,

C-32, C-33, C-34

SQL Developer Debugger 1-24

SQL Worksheet 1-16, 1-17, 1-18, 1-19, 1-20, 1-21, 1-29, 1-31,

1-32, 2-14, 2-24, 2-46, 2-47, 3-6, 3-10, 3-13, 4-9, 4-21, 9-36,

C-2, C-6, C-11, C-13, C-14, C-15, C-16, C-17, C-18, C-22, C-23,

C-24, C-32, C-33, C-34

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 O

R
AC

LE
 C

O
R

PO
R

AT
IO

N
 u

se
 o

nl
y

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Oracle Database 11g: Develop PL/SQL Program Units Index-15

S

SQL%FOUND D-13

SQL%NOTFOUND D-13, D-32

SQL%ROWCOUNT 7-12, D-13

SQLCODE 8-6

SQLERRM 8-6

Subprogram 1-2, 1-4, 1-12, 1-13, 1-28, 2-2, 2-3, 2-4, 2-5,

2-6, 2-8, 2-9, 2-10, 2-11, 2-12, 2-13, 2-16, 2-20, 2-21, 2-29,

2-32, 2-33, 2-34, 2-36, 2-40, 2-42, 2-44, 2-45, 3-9, 3-10, 3-16,

3-21, 4-3, 4-4, 4-5, 4-6, 4-7, 4-8, 4-9, 4-10, 4-11, 4-15,

4-16, 4-17, 4-18, 4-19, 4-21, 4-22, 4-23, 4-26, 5-3, 5-4, 5-5,

5-8, 5-9, 5-10, 5-13, 5-15, 5-16, 5-17, 5-23, 5-24, 5-25, 5-29,

6-7, 6-9, 6-10, 6-11, 6-16, 6-17, 7-20, 7-21, 7-28, 8-2, 8-3,

8-4, 8-6, 8-8, 8-9, 8-10, 8-12, 8-15, 8-16, 8-17, 8-18, 8-25,

8-26, 8-38, 8-39, 8-40, 9-35, 10-7, 10-13, 11-9, 11-16, 11-17, 11-18,

11-20, 11-23, 11-27, 11-29, 11-30, 11-31, 12-5, 12-17, 12-19, 12-27, 12-33,

13-3, 13-14, 13-32, 13-33, 13-37, 13-38, C-6, C-33, D-31, E-32, G-6,

H-9

Substitution variables 1-18, C-14, E-20, G-5

T

Testing triggers 9-34, 9-38

The %ROWTYPE attribute 13-36

The %TYPE attribute 5-6, 13-36, D-4, D-5

Trigger body 9-9, 9-10, 9-11, 9-18, 9-23, 9-26, 10-4, 10-9, 10-15,

10-17, 10-18, 10-23, 10-24, 10-30

Trigger event types 9-5, 9-9

Trigger firing 9-11

Triggers 1-4, 1-5, 1-6, 1-9, 1-28, 2-6, 5-17, 6-7, 8-13,

9-1, 9-2, 9-3, 9-4, 9-5, 9-6, 9-7, 9-8, 9-10, 9-11, 9-12,

9-13, 9-14, 9-20, 9-24, 9-26, 9-28, 9-31, 9-32, 9-33, 9-34, 9-35,

9-36, 9-38, 9-39, 10-1, 10-2, 10-3, 10-4, 10-5, 10-7, 10-9, 10-10,

10-12, 10-15, 10-16, 10-17, 10-18, 10-19, 10-20, 10-21, 10-22, 10-23, 10-24,

10-25, 10-26, 10-27, 10-28, 12-29, 13-24, 13-33, C-10, F-1, F-2, F-4,

F-5, F-8, F-9, F-10, F-11, F-13, F-15

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 O

R
AC

LE
 C

O
R

PO
R

AT
IO

N
 u

se
 o

nl
y

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

Oracle Database 11g: Develop PL/SQL Program Units Index-16

U

UTL_FILE package 6-8, 6-9, 6-10, 6-13, 6-25, 6-26, 6-29

UTL_MAIL package 6-15, 6-16, 6-18, 6-27

V

Variable declaration 2-7, 4-11, 4-15, D-5

Visibility 4-8

W

WHERE CURRENT D-25, D-26

WHILE 8-11, 9-35, 12-4, 12-30, 12-34, C-12, D-12, D-17, H-2, H-4,

H-16

Wrapper Utility 12-25, 12-26

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 O

R
AC

LE
 C

O
R

PO
R

AT
IO

N
 u

se
 o

nl
y

THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS
COMPUTER IS STRICTLY PROHIBITED

	Oracle Database 11g: DevelopPL/SQL Program Units
	Table Of Contents
	Appendix A: Practices and Solutions
	Table of Contents
	Practices for Lesson 1
	Practices for Lesson 2
	Practices for Lesson 3
	Practices for Lesson 4
	Practices for Lesson 5
	Practices for Lesson 6
	Practices for Lesson 7
	Practices for Lesson 8
	Practices for Lesson 9
	Practices for Lesson 10
	Practices for Lesson 11
	Practices for Lesson 12
	Practices for Lesson 13

	Appendix B: Table Descriptions
	Schema Description
	The HR Entity Relationship Diagram
	The Human Resources (HR) Table Descriptions

	Appendix C: Using SQL Developer
	Objectives
	What Is Oracle SQL Developer?
	Specifications of SQL Developer
	Installing SQL Developer
	SQL Developer 1.2 Interface
	Creating a Database Connection
	Browsing Database Objects
	Creating a Schema Object
	Creating a New Table: Example
	Using the SQL Worksheet
	Executing SQL Statements
	Saving SQL Scripts
	Executing Saved Script Files: Method 1
	Executing Saved Script Files: Method 2
	Executing SQL Statements
	Formatting the SQL Code
	Using Snippets
	Using Snippets: Example
	Using SQL*Plus
	Debugging Procedures and Functions
	Database Reporting
	Creating a User-Defined Report
	Search Engines and External Tools
	Setting Preferences
	Specifications of SQL Developer 1.5.3
	Installing SQL Developer 1.5.3
	SQL Developer 1.5.3 Interface
	Summary

	Appendix D: Review of PL/SQL
	Block Structure for Anonymous PL/SQL Blocks
	Declaring PL/SQL Variables
	Declaring Variables with the %TYPE Attribute: Examples
	Creating a PL/SQL Record
	%ROWTYPE Attribute: Examples
	Creating a PL/SQL Table
	SELECT Statements in PL/SQL: Example
	Inserting Data: Example
	Updating Data: Example
	Deleting Data: Example
	COMMIT and ROLLBACK Statements
	SQL Cursor Attributes
	IF, THEN, and ELSIF Statements: Example
	Basic Loop: Example
	FOR Loop: Example
	WHILE Loop: Example
	Controlling Explicit Cursors
	Declaring the Cursor: Example
	Opening the Cursor
	Fetching Data from the Cursor: Examples
	Closing the Cursor
	Explicit Cursor Attributes
	Cursor FOR Loops: Example
	FOR UPDATE Clause: Example
	WHERE CURRENT OF Clause: Example
	Trapping Predefined Oracle Server Errors
	Trapping Predefined Oracle Server Errors: Example
	Non-Predefined Error
	User-Defined Exceptions: Example
	RAISE_APPLICATION_ERROR Procedure

	Appendix E: Using SQL*Plus
	Objectives
	SQL and SQL*Plus Interaction
	SQL Statements Versus SQL*Plus Commands
	Overview of SQL*Plus
	Logging In to SQL*Plus: Available Methods
	Customizing the SQL*Plus Environment
	Displaying Table Structure
	SQL*Plus Editing Commands
	Using LIST, n, and APPEND
	Using the CHANGE Command
	SQL*Plus File Commands
	Using the SAVE, START, and EDIT Commands
	SQL*Plus Enhancements Since Oracle Database 10g
	Changes to the SERVEROUTPUT Command
	White Space Support in File and Path Names in Windows
	Predefined SQL*Plus Variables
	Using the New Predefined SQL*Plus Variables: Examples
	The SHOW Command and the New RECYCLEBIN Clause
	The SHOW Command and the RECYCLEBIN Clause: Example
	Using the SQL*Plus SPOOL Command
	Using the SQL*Plus SPOOL Command: Examples
	The COPY Command: New Error Messages
	Change in the DESCRIBE Command Behavior
	The SET PAGES[IZE] Command
	The SQLPLUS Program and the Compatibility Option
	Using the AUTOTRACE Command
	Displaying a Plan Table Using the DBMS_XPLAN.DISPLAY Package Function
	Summary

	Appendix F: Studies for Implementing Triggers
	Objectives
	Controlling Security Within the Server
	Controlling Security with a Database Trigger
	Enforcing Data Integrity Within the Server
	Protecting Data Integrity with a Trigger
	Enforcing Referential Integrity Within the Server
	Protecting Referential Integrity with a Trigger
	Replicating a Table Within the Server
	Replicating a Table with a Trigger
	Computing Derived Data Within the Server
	Computing Derived Values with a Trigger
	Logging Events with a Trigger
	Summary

	Appendix G: Using the DBMS_SCHEDULER and HTP Packages
	Objectives
	Generating Web Pages with the HTP Package
	Using the HTP Package Procedures
	Creating an HTML File with SQL*Plus
	The DBMS_SCHEDULER Package
	Creating a Job
	Creating a Job with Inline Parameters
	Creating a Job Using a Program
	Creating a Job for a Program with Arguments
	Creating a Job Using a Schedule
	Setting the Repeat Interval for a Job
	Creating a Job Using a Named Program and Schedule
	Managing Jobs
	Data Dictionary Views
	Summary

	Appendix H: Review of JDeveloper
	JDeveloper
	Connection Navigator
	Application Navigator
	Structure Window
	Editor Window
	Deploying Java Stored Procedures
	Publishing Java to PL/SQL
	Creating Program Units
	Compiling
	Running a Program Unit
	Dropping a Program Unit
	Debugging PL/SQL Programs
	Setting Breakpoints
	Stepping Through Code
	Examining and Modifying Variables

	Index

