
Oracle Database 12c: SQL

Workshop I

Student Guide - Volume I

D80190GC10

Edition 1.0

August 2013

D83122

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 E

ga
bi

 S
ol

ut
io

ns
 u

se
 o

nl
y

TH
ES

E
eK

IT
 M

AT
ER

IA
LS

 A
R

E
FO

R
 Y

O
U

R
 U

SE
 IN

 T
H

IS
 C

LA
SS

R
O

O
M

 O
N

LY
.

C
O

PY
IN

G
 e

KI
T

M
AT

ER
IA

LS
 F

R
O

M
 T

H
IS

 C
O

M
PU

TE
R

 IS
 S

TR
IC

TL
Y

PR
O

H
IB

IT
ED

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

Disclaimer

This document contains proprietary information and is protected by copyright and
other intellectual property laws. You may copy and print this document solely for your
own use in an Oracle training course. The document may not be modified or altered
in any way. Except where your use constitutes "fair use" under copyright law, you
may not use, share, download, upload, copy, print, display, perform, reproduce,
publish, license, post, transmit, or distribute this document in whole or in part without
the express authorization of Oracle.

The information contained in this document is subject to change without notice. If you
find any problems in the document, please report them in writing to: Oracle University,
500 Oracle Parkway, Redwood Shores, California 94065 USA. This document is not
warranted to be error-free.

Restricted Rights Notice

If this documentation is delivered to the United States Government or anyone using
the documentation on behalf of the United States Government, the following notice is
applicable:

U.S. GOVERNMENT RIGHTS
The U.S. Government’s rights to use, modify, reproduce, release, perform, display, or
disclose these training materials are restricted by the terms of the applicable Oracle
license agreement and/or the applicable U.S. Government contract.

Trademark Notice

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names
may be trademarks of their respective owners.

Author

Dimpi Rani Sarmah

Technical Contr ibutors
and Reviewers

Nancy Greenberg

Swarnapriya Shridhar

Bryan Roberts

Laszlo Czinkoczki

KimSeong Loh

Brent Dayley

Jim Spiller

Christopher Wensley

Anjulaponni Azhagulekshmi
 Subbiahpillai

Manish Pawar

Clair Bennett

Yanti Chang

Joel Goodman

Gerlinde Frenzen

Diganta Choudhury

Editors

Vijayalakshmi Narasimhan

Raj Kumar

Graphic Designer

Seema Bopaiah

Publisher

Jobi Varghese O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 E

ga
bi

 S
ol

ut
io

ns
 u

se
 o

nl
y

TH
ES

E
eK

IT
 M

AT
ER

IA
LS

 A
R

E
FO

R
 Y

O
U

R
 U

SE
 IN

 T
H

IS
 C

LA
SS

R
O

O
M

 O
N

LY
.

C
O

PY
IN

G
 e

KI
T

M
AT

ER
IA

LS
 F

R
O

M
 T

H
IS

 C
O

M
PU

TE
R

 IS
 S

TR
IC

TL
Y

PR
O

H
IB

IT
ED

 iii

Contents

1 Introduction

Lesson Objectives 1-2

Lesson Agenda 1-3

Course Objectives 1-4

Course Agenda 1-5

Appendices and Practices Used in the Course 1-7

Lesson Agenda 1-8

Oracle Database 12c: Focus Areas 1-9

Oracle Database 12c 1-10

Oracle Fusion Middleware 1-12

Oracle Enterprise Manager Cloud Control 1-13

Oracle Cloud 1-14

Oracle Cloud Services 1-15

Cloud Deployment Models 1-16

Lesson Agenda 1-17

Relational and Object Relational Database Management Systems 1-18

Data Storage on Different Media 1-19

Relational Database Concept 1-20

Definition of a Relational Database 1-21

Data Models 1-22

Entity Relationship Model 1-23

Entity Relationship Modeling Conventions 1-25

Relating Multiple Tables 1-27

Relational Database Terminology 1-29

Lesson Agenda 1-31

Using SQL to Query Your Database 1-32

SQL Statements Used in the Course 1-33

Development Environments for SQL 1-34

Lesson Agenda 1-35

Human Resources (HR) Schema 1-36

Tables Used in the Course 1-37

Lesson Agenda 1-38

Oracle Database Documentation 1-39

Additional Resources 1-40

Summary 1-41

Practice 1: Overview 1-42

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 E

ga
bi

 S
ol

ut
io

ns
 u

se
 o

nl
y

TH
ES

E
eK

IT
 M

AT
ER

IA
LS

 A
R

E
FO

R
 Y

O
U

R
 U

SE
 IN

 T
H

IS
 C

LA
SS

R
O

O
M

 O
N

LY
.

C
O

PY
IN

G
 e

KI
T

M
AT

ER
IA

LS
 F

R
O

M
 T

H
IS

 C
O

M
PU

TE
R

 IS
 S

TR
IC

TL
Y

PR
O

H
IB

IT
ED

 iv

2 Retrieving Data Using the SQL SELECT Statement

Objectives 2-2

Lesson Agenda 2-3

Capabilities of SQL SELECT Statements 2-4

Basic SELECT Statement 2-5

Selecting All Columns 2-6

Selecting Specific Columns 2-7

Writing SQL Statements 2-8

Column Heading Defaults 2-9

Lesson Agenda 2-10

Arithmetic Expressions 2-11

Using Arithmetic Operators 2-12

Operator Precedence 2-13

Defining a Null Value 2-14

Null Values in Arithmetic Expressions 2-15

Lesson Agenda 2-16

Defining a Column Alias 2-17

Using Column Aliases 2-18

Lesson Agenda 2-19

Concatenation Operator 2-20

Literal Character Strings 2-21

Using Literal Character Strings 2-22

Alternative Quote (q) Operator 2-23

Duplicate Rows 2-24

Lesson Agenda 2-25

Displaying the Table Structure 2-26

Using the DESCRIBE Command 2-27

Quiz 2-28

Summary 2-29

Practice 2: Overview 2-30

3 Restricting and Sorting Data

Objectives 3-2

Lesson Agenda 3-3

Limiting Rows Using a Selection 3-4

Limiting the Rows That Are Selected 3-5

Using the WHERE Clause 3-6

Character Strings and Dates 3-7

Comparison Operators 3-8

Using Comparison Operators 3-9

Range Conditions Using the BETWEEN Operator 3-10

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 E

ga
bi

 S
ol

ut
io

ns
 u

se
 o

nl
y

TH
ES

E
eK

IT
 M

AT
ER

IA
LS

 A
R

E
FO

R
 Y

O
U

R
 U

SE
 IN

 T
H

IS
 C

LA
SS

R
O

O
M

 O
N

LY
.

C
O

PY
IN

G
 e

KI
T

M
AT

ER
IA

LS
 F

R
O

M
 T

H
IS

 C
O

M
PU

TE
R

 IS
 S

TR
IC

TL
Y

PR
O

H
IB

IT
ED

 v

Membership Condition Using the IN Operator 3-11

Pattern Matching Using the LIKE Operator 3-12

Combining Wildcard Characters 3-13

Using the NULL Conditions 3-14

Defining Conditions Using the Logical Operators 3-15

Using the AND Operator 3-16

Using the OR Operator 3-17

Using the NOT Operator 3-18

Lesson Agenda 3-19

Rules of Precedence 3-20

Lesson Agenda 3-22

Using the ORDER BY Clause 3-23

Sorting 3-24

Lesson Agenda 3-26

SQL Row Limiting Clause 3-27

Using SQL Row Limiting Clause in a Query 3-28

SQL Row Limiting Clause Example 3-29

Lesson Agenda 3-30

Substitution Variables 3-31

Using the Single-Ampersand Substitution Variable 3-33

Character and Date Values with Substitution Variables 3-35

Specifying Column Names, Expressions, and Text 3-36

Using the Double-Ampersand Substitution Variable 3-37

Lesson Agenda 3-38

Using the DEFINE Command 3-39

Using the VERIFY Command 3-40

Quiz 3-41

Summary 3-42

Practice 3: Overview 3-43

4 Using Single-Row Functions to Customize Output

Objectives 4-2

Lesson Agenda 4-3

SQL Functions 4-4

Two Types of SQL Functions 4-5

Single-Row Functions 4-6

Lesson Agenda 4-8

Character Functions 4-9

Case-Conversion Functions 4-11

Using Case-Conversion Functions 4-12

Character-Manipulation Functions 4-13

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 E

ga
bi

 S
ol

ut
io

ns
 u

se
 o

nl
y

TH
ES

E
eK

IT
 M

AT
ER

IA
LS

 A
R

E
FO

R
 Y

O
U

R
 U

SE
 IN

 T
H

IS
 C

LA
SS

R
O

O
M

 O
N

LY
.

C
O

PY
IN

G
 e

KI
T

M
AT

ER
IA

LS
 F

R
O

M
 T

H
IS

 C
O

M
PU

TE
R

 IS
 S

TR
IC

TL
Y

PR
O

H
IB

IT
ED

 vi

Using the Character-Manipulation Functions 4-14

Lesson Agenda 4-15

Nesting Functions 4-16

Nesting Functions: Example 4-17

Lesson Agenda 4-18

Numeric Functions 4-19

Using the ROUND Function 4-20

Using the TRUNC Function 4-21

Using the MOD Function 4-22

Lesson Agenda 4-23

Working with Dates 4-24

RR Date Format 4-25

Using the SYSDATE Function 4-27

Arithmetic with Dates 4-28

Using Arithmetic Operators with Dates 4-29

Lesson Agenda 4-30

Date-Manipulation Functions 4-31

Using Date Functions 4-32

Using ROUND and TRUNC Functions with Dates 4-33

Quiz 4-34

Summary 4-35

Practice 4: Overview 4-36

5 Using Conversion Functions and Conditional Expressions

Objectives 5-2

Lesson Agenda 5-3

Conversion Functions 5-4

Implicit Data Type Conversion 5-5

Explicit Data Type Conversion 5-7

Lesson Agenda 5-9

Using the TO_CHAR Function with Dates 5-10

Elements of the Date Format Model 5-11

Using the TO_CHAR Function with Dates 5-14

Using the TO_CHAR Function with Numbers 5-15

Using the TO_NUMBER and TO_DATE Functions 5-18

Using TO_CHAR and TO_DATE Functions with the RR Date Format 5-20

Lesson Agenda 5-21

General Functions 5-22

NVL Function 5-23

Using the NVL Function 5-24

Using the NVL2 Function 5-25

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 E

ga
bi

 S
ol

ut
io

ns
 u

se
 o

nl
y

TH
ES

E
eK

IT
 M

AT
ER

IA
LS

 A
R

E
FO

R
 Y

O
U

R
 U

SE
 IN

 T
H

IS
 C

LA
SS

R
O

O
M

 O
N

LY
.

C
O

PY
IN

G
 e

KI
T

M
AT

ER
IA

LS
 F

R
O

M
 T

H
IS

 C
O

M
PU

TE
R

 IS
 S

TR
IC

TL
Y

PR
O

H
IB

IT
ED

 vii

Using the NULLIF Function 5-26

Using the COALESCE Function 5-27

Lesson Agenda 5-30

Conditional Expressions 5-31

CASE Expression 5-32

Using the CASE Expression 5-33

DECODE Function 5-34

Using the DECODE Function 5-35

Quiz 5-37

Summary 5-38

Practice 5: Overview 5-39

6 Reporting Aggregated Data Using the Group Functions

Objectives 6-2

Lesson Agenda 6-3

What Are Group Functions? 6-4

Types of Group Functions 6-5

Group Functions: Syntax 6-6

Using the AVG and SUM Functions 6-7

Using the MIN and MAX Functions 6-8

Using the COUNT Function 6-9

Using the DISTINCT Keyword 6-10

Group Functions and Null Values 6-11

Lesson Agenda 6-12

Creating Groups of Data 6-13

Creating Groups of Data: GROUP BY Clause Syntax 6-14

Using the GROUP BY Clause 6-15

Grouping by More Than One Column 6-17

Using the GROUP BY Clause on Multiple Columns 6-18

Illegal Queries Using Group Functions 6-19

Restricting Group Results 6-21

Restricting Group Results with the HAVING Clause 6-22

Using the HAVING Clause 6-23

Lesson Agenda 6-25

Nesting Group Functions 6-26

Quiz 6-27

Summary 6-28

Practice 6: Overview 6-29

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 E

ga
bi

 S
ol

ut
io

ns
 u

se
 o

nl
y

TH
ES

E
eK

IT
 M

AT
ER

IA
LS

 A
R

E
FO

R
 Y

O
U

R
 U

SE
 IN

 T
H

IS
 C

LA
SS

R
O

O
M

 O
N

LY
.

C
O

PY
IN

G
 e

KI
T

M
AT

ER
IA

LS
 F

R
O

M
 T

H
IS

 C
O

M
PU

TE
R

 IS
 S

TR
IC

TL
Y

PR
O

H
IB

IT
ED

 viii

7 Displaying Data from Multiple Tables Using Joins

Objectives 7-2

Lesson Agenda 7-3

Obtaining Data from Multiple Tables 7-4

Types of Joins 7-5

Joining Tables Using SQL:1999 Syntax 7-6

Qualifying Ambiguous Column Names 7-7

Lesson Agenda 7-8

Creating Natural Joins 7-9

Retrieving Records with Natural Joins 7-10

Creating Joins with the USING Clause 7-11

Joining Column Names 7-12

Retrieving Records with the USING Clause 7-13

Using Table Aliases with the USING Clause 7-14

Creating Joins with the ON Clause 7-15

Retrieving Records with the ON Clause 7-16

Creating Three-Way Joins with the ON Clause 7-17

Applying Additional Conditions to a Join 7-18

Lesson Agenda 7-19

Joining a Table to Itself 7-20

Self-Joins Using the ON Clause 7-21

Lesson Agenda 7-22

Nonequijoins 7-23

Retrieving Records with Nonequijoins 7-24

Lesson Agenda 7-25

Returning Records with No Direct Match Using OUTER Joins 7-26

INNER Versus OUTER Joins 7-27

LEFT OUTER JOIN 7-28

RIGHT OUTER JOIN 7-29

FULL OUTER JOIN 7-30

Lesson Agenda 7-31

Cartesian Products 7-32

Generating a Cartesian Product 7-33

Creating Cross Joins 7-34

Quiz 7-35

Summary 7-36

Practice 7: Overview 7-37

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 E

ga
bi

 S
ol

ut
io

ns
 u

se
 o

nl
y

TH
ES

E
eK

IT
 M

AT
ER

IA
LS

 A
R

E
FO

R
 Y

O
U

R
 U

SE
 IN

 T
H

IS
 C

LA
SS

R
O

O
M

 O
N

LY
.

C
O

PY
IN

G
 e

KI
T

M
AT

ER
IA

LS
 F

R
O

M
 T

H
IS

 C
O

M
PU

TE
R

 IS
 S

TR
IC

TL
Y

PR
O

H
IB

IT
ED

 ix

8 Using Subqueries to Solve Queries

Objectives 8-2

Lesson Agenda 8-3

Using a Subquery to Solve a Problem 8-4

Subquery Syntax 8-5

Using a Subquery 8-6

Rules for Using Subqueries 8-7

Types of Subqueries 8-8

Lesson Agenda 8-9

Single-Row Subqueries 8-10

Executing Single-Row Subqueries 8-11

Using Group Functions in a Subquery 8-12

HAVING Clause with Subqueries 8-13

What Is Wrong with This Statement? 8-14

No Rows Returned by the Inner Query 8-15

Lesson Agenda 8-16

Multiple-Row Subqueries 8-17

Using the ANY Operator in Multiple-Row Subqueries 8-18

Using the ALL Operator in Multiple-Row Subqueries 8-19

Using the EXISTS Operator 8-20

Lesson Agenda 8-21

Null Values in a Subquery 8-22

Quiz 8-24

Summary 8-25

Practice 8: Overview 8-26

9 Using the Set Operators

Objectives 9-2

Lesson Agenda 9-3

Set Operators 9-4

Set Operator Rules 9-5

Oracle Server and Set Operators 9-6

Lesson Agenda 9-7

Tables Used in This Lesson 9-8

Lesson Agenda 9-12

UNION Operator 9-13

Using the UNION Operator 9-14

UNION ALL Operator 9-16

Using the UNION ALL Operator 9-17

Lesson Agenda 9-18

INTERSECT Operator 9-19

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 E

ga
bi

 S
ol

ut
io

ns
 u

se
 o

nl
y

TH
ES

E
eK

IT
 M

AT
ER

IA
LS

 A
R

E
FO

R
 Y

O
U

R
 U

SE
 IN

 T
H

IS
 C

LA
SS

R
O

O
M

 O
N

LY
.

C
O

PY
IN

G
 e

KI
T

M
AT

ER
IA

LS
 F

R
O

M
 T

H
IS

 C
O

M
PU

TE
R

 IS
 S

TR
IC

TL
Y

PR
O

H
IB

IT
ED

 x

Using the INTERSECT Operator 9-20

Lesson Agenda 9-21

MINUS Operator 9-22

Using the MINUS Operator 9-23

Lesson Agenda 9-24

Matching the SELECT Statements 9-25

Matching the SELECT Statement: Example 9-26

Lesson Agenda 9-27

Using the ORDER BY Clause in Set Operations 9-28

Quiz 9-29

Summary 9-30

Practice 9: Overview 9-31

10 Managing Tables Using DML Statements

Objectives 10-2

Lesson Agenda 10-3

Data Manipulation Language 10-4

Adding a New Row to a Table 10-5

INSERT Statement Syntax 10-6

Inserting New Rows 10-7

Inserting Rows with Null Values 10-8

Inserting Special Values 10-9

Inserting Specific Date and Time Values 10-10

Creating a Script 10-11

Copying Rows from Another Table 10-12

Lesson Agenda 10-13

Changing Data in a Table 10-14

UPDATE Statement Syntax 10-15

Updating Rows in a Table 10-16

Updating Two Columns with a Subquery 10-17

Updating Rows Based on Another Table 10-18

Lesson Agenda 10-19

Removing a Row from a Table 10-20

DELETE Statement 10-21

Deleting Rows from a Table 10-22

Deleting Rows Based on Another Table 10-23

TRUNCATE Statement 10-24

Lesson Agenda 10-25

Database Transactions 10-26

Database Transactions: Start and End 10-27

Advantages of COMMIT and ROLLBACK Statements 10-28

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 E

ga
bi

 S
ol

ut
io

ns
 u

se
 o

nl
y

TH
ES

E
eK

IT
 M

AT
ER

IA
LS

 A
R

E
FO

R
 Y

O
U

R
 U

SE
 IN

 T
H

IS
 C

LA
SS

R
O

O
M

 O
N

LY
.

C
O

PY
IN

G
 e

KI
T

M
AT

ER
IA

LS
 F

R
O

M
 T

H
IS

 C
O

M
PU

TE
R

 IS
 S

TR
IC

TL
Y

PR
O

H
IB

IT
ED

 xi

Explicit Transaction Control Statements 10-29

Rolling Back Changes to a Marker 10-30

Implicit Transaction Processing 10-31

State of the Data Before COMMIT or ROLLBACK 10-33

State of the Data After COMMIT 10-34

Committing Data 10-35

State of the Data After ROLLBACK 10-36

State of the Data After ROLLBACK: Example 10-37

Statement-Level Rollback 10-38

Lesson Agenda 10-39

Read Consistency 10-40

Implementing Read Consistency 10-41

Lesson Agenda 10-42

FOR UPDATE Clause in a SELECT Statement 10-43

FOR UPDATE Clause: Examples 10-44

Quiz 10-46

Summary 10-47

Practice 10: Overview 10-48

11 Introduction to Data Definition Language

Objectives 11-2

Lesson Agenda 11-3

Database Objects 11-4

Naming Rules 11-5

Lesson Agenda 11-6

Data Types 11-7

Datetime Data Types 11-9

DEFAULT Option 11-10

Lesson Agenda 11-11

CREATE TABLE Statement 11-12

Creating Tables 11-13

Lesson Agenda 11-14

Including Constraints 11-15

Constraint Guidelines 11-16

Defining Constraints 11-17

NOT NULL Constraint 11-19

UNIQUE Constraint 11-20

PRIMARY KEY Constraint 11-22

FOREIGN KEY Constraint 11-23

FOREIGN KEY Constraint: Keywords 11-25

CHECK Constraint 11-26

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 E

ga
bi

 S
ol

ut
io

ns
 u

se
 o

nl
y

TH
ES

E
eK

IT
 M

AT
ER

IA
LS

 A
R

E
FO

R
 Y

O
U

R
 U

SE
 IN

 T
H

IS
 C

LA
SS

R
O

O
M

 O
N

LY
.

C
O

PY
IN

G
 e

KI
T

M
AT

ER
IA

LS
 F

R
O

M
 T

H
IS

 C
O

M
PU

TE
R

 IS
 S

TR
IC

TL
Y

PR
O

H
IB

IT
ED

 xii

CREATE TABLE: Example 11-27

Violating Constraints 11-28

Lesson Agenda 11-30

Creating a Table Using a Subquery 11-31

Lesson Agenda 11-33

ALTER TABLE Statement 11-34

Adding a Column 11-36

Modifying a Column 11-37

Dropping a Column 11-38

SET UNUSED Option 11-39

Read-Only Tables 11-41

Lesson Agenda 11-42

Dropping a Table 11-43

Quiz 11-44

Summary 11-45

Practice 11: Overview 11-46

A Table Descriptions

B Using SQL Developer

Objectives B-2

What Is Oracle SQL Developer? B-3

Specifications of SQL Developer B-4

SQL Developer 3.2 Interface B-5

Creating a Database Connection B-7

Browsing Database Objects B-10

Displaying the Table Structure B-11

Browsing Files B-12

Creating a Schema Object B-13

Creating a New Table: Example B-14

Using the SQL Worksheet B-15

Executing SQL Statements B-19

Saving SQL Scripts B-20

Executing Saved Script Files: Method 1 B-21

Executing Saved Script Files: Method 2 B-22

Formatting the SQL Code B-23

Using Snippets B-24

Using Snippets: Example B-25

Using Recycle Bin B-26

Debugging Procedures and Functions B-27

Database Reporting B-28

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 E

ga
bi

 S
ol

ut
io

ns
 u

se
 o

nl
y

TH
ES

E
eK

IT
 M

AT
ER

IA
LS

 A
R

E
FO

R
 Y

O
U

R
 U

SE
 IN

 T
H

IS
 C

LA
SS

R
O

O
M

 O
N

LY
.

C
O

PY
IN

G
 e

KI
T

M
AT

ER
IA

LS
 F

R
O

M
 T

H
IS

 C
O

M
PU

TE
R

 IS
 S

TR
IC

TL
Y

PR
O

H
IB

IT
ED

 xiii

Creating a User-Defined Report B-29

Search Engines and External Tools B-30

Setting Preferences B-31

Resetting the SQL Developer Layout B-33

Data Modeler in SQL Developer B-34

Summary B-35

C Using SQL*Plus

Objectives C-2

SQL and SQL*Plus Interaction C-3

SQL Statements Versus SQL*Plus Commands C-4

Overview of SQL*Plus C-5

Logging In to SQL*Plus C-6

Displaying the Table Structure C-7

SQL*Plus Editing Commands C-9

Using LIST, n, and APPEND C-11

Using the CHANGE Command C-12

SQL*Plus File Commands C-13

Using the SAVE, START Commands C-14

SERVEROUTPUT Command C-15

Using the SQL*Plus SPOOL Command C-16

Using the AUTOTRACE Command C-17

Summary C-18

D Commonly Used SQL Commands

Objectives D-2

Basic SELECT Statement D-3

SELECT Statement D-4

WHERE Clause D-5

ORDER BY Clause D-6

GROUP BY Clause D-7

Data Definition Language D-8

CREATE TABLE Statement D-9

ALTER TABLE Statement D-10

DROP TABLE Statement D-11

GRANT Statement D-12

Privilege Types D-13

REVOKE Statement D-14

TRUNCATE TABLE Statement D-15

Data Manipulation Language D-16

INSERT Statement D-17

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 E

ga
bi

 S
ol

ut
io

ns
 u

se
 o

nl
y

TH
ES

E
eK

IT
 M

AT
ER

IA
LS

 A
R

E
FO

R
 Y

O
U

R
 U

SE
 IN

 T
H

IS
 C

LA
SS

R
O

O
M

 O
N

LY
.

C
O

PY
IN

G
 e

KI
T

M
AT

ER
IA

LS
 F

R
O

M
 T

H
IS

 C
O

M
PU

TE
R

 IS
 S

TR
IC

TL
Y

PR
O

H
IB

IT
ED

 xiv

UPDATE Statement Syntax D-18

DELETE Statement D-19

Transaction Control Statements D-20

COMMIT Statement D-21

ROLLBACK Statement D-22

SAVEPOINT Statement D-23

Joins D-24

Types of Joins D-25

Qualifying Ambiguous Column Names D-26

Natural Join D-27

Equijoins D-28

Retrieving Records with Equijoins D-29

Additional Search Conditions Using the AND and WHERE Operators D-30

Retrieving Records with Nonequijoins D-31

Retrieving Records by Using the USING Clause D-32

Retrieving Records by Using the ON Clause D-33

Left Outer Join D-34

Right Outer Join D-35

Full Outer Join D-36

Self-Join: Example D-37

Cross Join D-38

Summary D-39

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 E

ga
bi

 S
ol

ut
io

ns
 u

se
 o

nl
y

TH
ES

E
eK

IT
 M

AT
ER

IA
LS

 A
R

E
FO

R
 Y

O
U

R
 U

SE
 IN

 T
H

IS
 C

LA
SS

R
O

O
M

 O
N

LY
.

C
O

PY
IN

G
 e

KI
T

M
AT

ER
IA

LS
 F

R
O

M
 T

H
IS

 C
O

M
PU

TE
R

 IS
 S

TR
IC

TL
Y

PR
O

H
IB

IT
ED

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

Introduction

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 E

ga
bi

 S
ol

ut
io

ns
 u

se
 o

nl
y

TH
ES

E
eK

IT
 M

AT
ER

IA
LS

 A
R

E
FO

R
 Y

O
U

R
 U

SE
 IN

 T
H

IS
 C

LA
SS

R
O

O
M

 O
N

LY
.

C
O

PY
IN

G
 e

KI
T

M
AT

ER
IA

LS
 F

R
O

M
 T

H
IS

 C
O

M
PU

TE
R

 IS
 S

TR
IC

TL
Y

PR
O

H
IB

IT
ED

In this lesson, you gain an understanding of the relational database management system
(RDBMS) and the object relational database management system (ORDBMS). You are also
introduced to Oracle SQL Developer and SQL*Plus as development environments used for
executing SQL statements, and for formatting and reporting purposes.

Oracle Database 12c: SQL Workshop I 1 - 2

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

Lesson Objectives

After completing this lesson, you should be able to do the
following:

• Define the goals of the course

• List the features of Oracle Database 12c
• Describe the salient features of Oracle Cloud

• Discuss the theoretical and physical aspects of a relational
database

• Describe Oracle server’s implementation of RDBMS and
object relational database management system
(ORDBMS)

• Identify the development environments that can be used
for this course

• Describe the database and schema used in this course

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 E

ga
bi

 S
ol

ut
io

ns
 u

se
 o

nl
y

TH
ES

E
eK

IT
 M

AT
ER

IA
LS

 A
R

E
FO

R
 Y

O
U

R
 U

SE
 IN

 T
H

IS
 C

LA
SS

R
O

O
M

 O
N

LY
.

C
O

PY
IN

G
 e

KI
T

M
AT

ER
IA

LS
 F

R
O

M
 T

H
IS

 C
O

M
PU

TE
R

 IS
 S

TR
IC

TL
Y

PR
O

H
IB

IT
ED

Oracle Database 12c: SQL Workshop I 1 - 3

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

Lesson Agenda

• Course objectives, agenda, and appendixes used in the
course

• Overview of Oracle Database 12c and related products

• Overview of relational database management concepts
and terminologies

• Introduction to SQL and its development environments

• The Human Resource(HR) Schema and the tables used in
the Course

• Oracle database 12c SQL Documentation and Additional
Resources

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 E

ga
bi

 S
ol

ut
io

ns
 u

se
 o

nl
y

TH
ES

E
eK

IT
 M

AT
ER

IA
LS

 A
R

E
FO

R
 Y

O
U

R
 U

SE
 IN

 T
H

IS
 C

LA
SS

R
O

O
M

 O
N

LY
.

C
O

PY
IN

G
 e

KI
T

M
AT

ER
IA

LS
 F

R
O

M
 T

H
IS

 C
O

M
PU

TE
R

 IS
 S

TR
IC

TL
Y

PR
O

H
IB

IT
ED

This course offers you an introduction to the Oracle Database technology. In this class, you
learn the basic concepts of relational databases and the powerful SQL programming
language. This course provides the essential SQL skills that enable you to write queries
against single and multiple tables, manipulate data in tables, create database objects, and
query metadata.

Oracle Database 12c: SQL Workshop I 1 - 4

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

Course Objectives

After completing this course, you should be able to:

• Identify the major components of Oracle Database
• Retrieve row and column data from tables with the SELECT

statement

• Create reports of sorted and restricted data

• Employ SQL functions to generate and retrieve customized
data

• Run complex queries to retrieve data from multiple tables

• Run data manipulation language (DML) statements to
update data in Oracle Database

• Run data definition language (DDL) statements to create
and manage schema objects

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 E

ga
bi

 S
ol

ut
io

ns
 u

se
 o

nl
y

TH
ES

E
eK

IT
 M

AT
ER

IA
LS

 A
R

E
FO

R
 Y

O
U

R
 U

SE
 IN

 T
H

IS
 C

LA
SS

R
O

O
M

 O
N

LY
.

C
O

PY
IN

G
 e

KI
T

M
AT

ER
IA

LS
 F

R
O

M
 T

H
IS

 C
O

M
PU

TE
R

 IS
 S

TR
IC

TL
Y

PR
O

H
IB

IT
ED

Oracle Database 12c: SQL Workshop I 1 - 5

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

Course Agenda

• Day 1:
– Introduction
– Retrieving Data Using the SQL SELECT Statement

– Restricting and Sorting Data

– Using Single-Row Functions to Customize Output

• Day 2:
– Using Conversion Functions and Conditional Expressions

– Reporting Aggregated Data Using the Group Functions

– Displaying Data from Multiple Tables Using Joins

– Using Subqueries to Solve Queries

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 E

ga
bi

 S
ol

ut
io

ns
 u

se
 o

nl
y

TH
ES

E
eK

IT
 M

AT
ER

IA
LS

 A
R

E
FO

R
 Y

O
U

R
 U

SE
 IN

 T
H

IS
 C

LA
SS

R
O

O
M

 O
N

LY
.

C
O

PY
IN

G
 e

KI
T

M
AT

ER
IA

LS
 F

R
O

M
 T

H
IS

 C
O

M
PU

TE
R

 IS
 S

TR
IC

TL
Y

PR
O

H
IB

IT
ED

Oracle Database 12c: SQL Workshop I 1 - 6

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

Course Agenda

• Day 3:
– Using the Set Operators

– Managing Tables Using DML Statements

– Introduction to Data Definition Language

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 E

ga
bi

 S
ol

ut
io

ns
 u

se
 o

nl
y

TH
ES

E
eK

IT
 M

AT
ER

IA
LS

 A
R

E
FO

R
 Y

O
U

R
 U

SE
 IN

 T
H

IS
 C

LA
SS

R
O

O
M

 O
N

LY
.

C
O

PY
IN

G
 e

KI
T

M
AT

ER
IA

LS
 F

R
O

M
 T

H
IS

 C
O

M
PU

TE
R

 IS
 S

TR
IC

TL
Y

PR
O

H
IB

IT
ED

Oracle Database 12c: SQL Workshop I 1 - 7

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

Appendices and Practices Used in the Course

• Appendix A: Table Descriptions

• Appendix B: Using SQL Developer

• Appendix C: Using SQL*Plus

• Appendix D: Commonly Used SQL Commands

• Activity Guide
– Practices and Solutions

– Additional Practices and Solutions

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 E

ga
bi

 S
ol

ut
io

ns
 u

se
 o

nl
y

TH
ES

E
eK

IT
 M

AT
ER

IA
LS

 A
R

E
FO

R
 Y

O
U

R
 U

SE
 IN

 T
H

IS
 C

LA
SS

R
O

O
M

 O
N

LY
.

C
O

PY
IN

G
 e

KI
T

M
AT

ER
IA

LS
 F

R
O

M
 T

H
IS

 C
O

M
PU

TE
R

 IS
 S

TR
IC

TL
Y

PR
O

H
IB

IT
ED

Oracle Database 12c: SQL Workshop I 1 - 8

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

Lesson Agenda

• Course objectives, agenda, and appendixes used in the
course

• Overview of Oracle Database 12c and related products

• Overview of relational database management concepts
and terminologies

• Introduction to SQL and its development environments

• The Human Resource(HR) Schema and the tables used in
this course

• Oracle database 12c SQL Documentation and Additional
Resources

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 E

ga
bi

 S
ol

ut
io

ns
 u

se
 o

nl
y

TH
ES

E
eK

IT
 M

AT
ER

IA
LS

 A
R

E
FO

R
 Y

O
U

R
 U

SE
 IN

 T
H

IS
 C

LA
SS

R
O

O
M

 O
N

LY
.

C
O

PY
IN

G
 e

KI
T

M
AT

ER
IA

LS
 F

R
O

M
 T

H
IS

 C
O

M
PU

TE
R

 IS
 S

TR
IC

TL
Y

PR
O

H
IB

IT
ED

Oracle Database 12c offers extensive features across the following focus areas:

• Infrastructure Grids: The Infrastructure Grid technology of Oracle enables pooling of
low-cost servers and storage to form systems that deliver the highest quality of service
in terms of manageability, high availability, and performance. Oracle Database 12c
consolidates and extends the benefits of grid computing. Apart from taking full
advantage of grid computing, Oracle Database 11g has unique change assurance
features to manage changes in a controlled and cost effective manner.

• Information Management: Oracle Database 12c extends the existing information
management capabilities in content management, information integration, and
information life-cycle management areas. Oracle provides content management of
advanced data types such as Extensible Markup Language (XML), text, spatial,
multimedia, medical imaging, and semantic technologies.

• Application Development: Oracle Database 12c has capabilities to use and manage
all the major application development environments such as PL/SQL, Java/JDBC, .NET
and Windows, PHP, SQL Developer, and Application Express.

• Oracle Cloud: The Oracle Cloud is an enterprise cloud for business. It provides an
integrated collection of application and platform cloud services that are based upon best
in class products and open Java and SQL standards.

Oracle Database 12c: SQL Workshop I 1 - 9

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

Oracle Database 12c: Focus Areas

Infrastructure
Grids

Information
Management

Application
Development

Oracle Cloud

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 E

ga
bi

 S
ol

ut
io

ns
 u

se
 o

nl
y

TH
ES

E
eK

IT
 M

AT
ER

IA
LS

 A
R

E
FO

R
 Y

O
U

R
 U

SE
 IN

 T
H

IS
 C

LA
SS

R
O

O
M

 O
N

LY
.

C
O

PY
IN

G
 e

KI
T

M
AT

ER
IA

LS
 F

R
O

M
 T

H
IS

 C
O

M
PU

TE
R

 IS
 S

TR
IC

TL
Y

PR
O

H
IB

IT
ED

Organizations need to support multiple terabytes of information for users who demand fast
and secure access to business applications round the clock. The database systems must be
reliable and must be able to recover quickly in the event of any kind of failure. Oracle
Database 12c is designed along the following feature areas to help organizations manage
infrastructure grids easily and deliver high-quality service:

• Manageability: By using some of the change assurance, management automation, and
fault diagnostics features, the database administrators (DBAs) can increase their
productivity, reduce costs, minimize errors, and maximize quality of service. Some of the
useful features that promote better management are Database Replay facility, the SQL
Performance Analyzer, and the Automatic SQL Tuning facility. Real-Time Database
Operations Monitoring.

• Enterprise Manager Database Express 12c is a web-based tool for managing Oracle
databases. Enterprise Manager Database Express greatly simplifies database
performance diagnostics by consolidating the relevant database performance screens
into a consolidated view called Database Performance Hub. DBAs get a single,
consolidated view of the current real-time and historical view of the database
performance across multiple dimensions such as database load, monitored SQL and
PL/SQL, and Active Session History (ASH) in a single page for the selected time period.

Oracle Database 12c: SQL Workshop I 1 - 10

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

Oracle Database 12c

Manageability

High availability

Performance

Security

Information integration

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 E

ga
bi

 S
ol

ut
io

ns
 u

se
 o

nl
y

TH
ES

E
eK

IT
 M

AT
ER

IA
LS

 A
R

E
FO

R
 Y

O
U

R
 U

SE
 IN

 T
H

IS
 C

LA
SS

R
O

O
M

 O
N

LY
.

C
O

PY
IN

G
 e

KI
T

M
AT

ER
IA

LS
 F

R
O

M
 T

H
IS

 C
O

M
PU

TE
R

 IS
 S

TR
IC

TL
Y

PR
O

H
IB

IT
ED

• High availability: By using the high availability features, you can reduce the risk of
down time and data loss. These features improve online operations and enable faster
database upgrades.

• Performance: By using capabilities such as SecureFiles, compression for online
transaction processing (OLTP), Real Application Clusters (RAC) optimizations, Result
Caches, and so on, you can greatly improve the performance of your database. Oracle
Database 12c enables organizations to manage large, scalable, transactional, and data
warehousing systems that deliver fast data access using low-cost modular storage.

• Security: Oracle Database 12c helps organizations protect their information with unique
secure configurations, data encryption and masking, and sophisticated auditing
capabilities. It delivers a secure and scalable platform for reliable and fast access to all
types of information by using the industry-standard interfaces.

• Information integration: Oracle Database 12c has many features to better integrate
data throughout the enterprise. It also supports advanced information life-cycle
management capabilities. This helps you manage the changing data in your database.

Oracle Database 12c: SQL Workshop I 1 - 11

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 E

ga
bi

 S
ol

ut
io

ns
 u

se
 o

nl
y

TH
ES

E
eK

IT
 M

AT
ER

IA
LS

 A
R

E
FO

R
 Y

O
U

R
 U

SE
 IN

 T
H

IS
 C

LA
SS

R
O

O
M

 O
N

LY
.

C
O

PY
IN

G
 e

KI
T

M
AT

ER
IA

LS
 F

R
O

M
 T

H
IS

 C
O

M
PU

TE
R

 IS
 S

TR
IC

TL
Y

PR
O

H
IB

IT
ED

Oracle Fusion Middleware is a comprehensive and well-integrated family of products that
offers complete support for development, deployment, and management of Service-Oriented
Architecture (SOA). SOA facilitates the development of modular business services that can be
easily integrated and reused, thereby reducing development and maintenance costs, and
providing higher quality of services. Oracle Fusion Middleware’s pluggable architecture
enables you to leverage your investments in any existing application, system, or technology.
Its unbreakable core technology minimizes the disruption caused by planned or unplanned
outages.
Some of the products from the Oracle Fusion Middleware family include:

• Application Server: Java EE, Web Services

• SOA and Process Management: BPEL Process Manager, SOA Governance

• Development Tools: Oracle Application Development Framework, JDeveloper, SOA
Suite

• Business Intelligence: Oracle Business Activity Monitoring, Oracle Data Integrator

• Enterprise Management: Enterprise Manager
• Identity Management: Oracle Identity Management
• Content Management: Oracle Content Database Suite
• User Interaction: Portal, Rich Internet Apps

Oracle Database 12c: SQL Workshop I 1 - 12

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

Oracle Fusion Middleware

Portfolio of leading, standards-based, and customer-proven software products
that spans a range of tools and services from Java EE and developer tools,
through integration services, business intelligence, collaboration, and content
management

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 E

ga
bi

 S
ol

ut
io

ns
 u

se
 o

nl
y

TH
ES

E
eK

IT
 M

AT
ER

IA
LS

 A
R

E
FO

R
 Y

O
U

R
 U

SE
 IN

 T
H

IS
 C

LA
SS

R
O

O
M

 O
N

LY
.

C
O

PY
IN

G
 e

KI
T

M
AT

ER
IA

LS
 F

R
O

M
 T

H
IS

 C
O

M
PU

TE
R

 IS
 S

TR
IC

TL
Y

PR
O

H
IB

IT
ED

Enterprise Manager Cloud Control is a management tool that provides monitoring and
management capabilities for Oracle and non-Oracle components. It is a complete, integrated,
and business-driven cloud management solution in a single product, which is referred to as
“Total Cloud Control.”

Using Enterprise Manager Cloud Control, you can:

• Create and manage a complete set of cloud services, including: Infrastructure-as-a-
service, Database-as-a-service, Platform-as-a-service, and others

• Manage all phases of cloud life cycle

• Manage the entire cloud stack: from application to disk, including engineered systems
(Exa series) and with integrated support capabilities

• Monitor the health of all components, the hosts that they run on, and the key business
processes that they support

• Identify, understand, and resolve business problems through the unified and correlated
management of User Experience, Business Transactions, and Business Services
across all your packaged and custom applications

Oracle Database 12c: SQL Workshop I 1 - 13

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

Self-Service IT I Simple and Automated I Business-Driven

Complete life cycle Complete stack Complete integration

Oracle Enterprise Manager Cloud Control

• Create and manage a complete set of cloud services.

• Manage all phases of cloud life cycle.

• Manage the entire cloud stack

• Monitor the health of all components

• Identify, understand, and resolve business problems

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 E

ga
bi

 S
ol

ut
io

ns
 u

se
 o

nl
y

TH
ES

E
eK

IT
 M

AT
ER

IA
LS

 A
R

E
FO

R
 Y

O
U

R
 U

SE
 IN

 T
H

IS
 C

LA
SS

R
O

O
M

 O
N

LY
.

C
O

PY
IN

G
 e

KI
T

M
AT

ER
IA

LS
 F

R
O

M
 T

H
IS

 C
O

M
PU

TE
R

 IS
 S

TR
IC

TL
Y

PR
O

H
IB

IT
ED

The Oracle Cloud is an enterprise cloud for business. It provides an integrated collection of
application and platform cloud services that are based upon best-in-class products and open
Java and SQL standards. The top two benefits of cloud computing are speed and cost.
As a result, the applications and databases deployed in the Oracle Cloud are portable and
you can be easily moved them to or from a private cloud or on-premise environment.

• All Cloud Services can be provisioned through a self-service interface. Users can get
their Cloud Services delivered on an integrated development and deployment platform
with tools to rapidly extend and create new services.

• Oracle Cloud services are built on Oracle Exalogic Elastic Cloud and Oracle Exadata
Database Machine, together offering a platform that delivers extreme performance,
redundancy, and scalability.

Here are five essential characteristics of Oracle Cloud services:
• On-demand self-service: Provisioning, monitoring, and management control
• Resource pooling: Implies sharing and a level of abstraction between consumers and

services

• Rapid elasticity: Ability to quickly scale up or down as needed

• Measured service: Metering utilization for either internal chargeback (private cloud) or
external billing (public cloud)

• Broad network access: Access through a browser on any networked device

Oracle Database 12c: SQL Workshop I 1 - 14

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

Oracle Cloud

The Oracle Cloud is an enterprise cloud for business. It
consists of many different services which share some common
characteristics:

• On-demand self-service

• Resource pooling

• Rapid elasticity

• Measured service

• Broad network access

www.cloud.oracle.com

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 E

ga
bi

 S
ol

ut
io

ns
 u

se
 o

nl
y

TH
ES

E
eK

IT
 M

AT
ER

IA
LS

 A
R

E
FO

R
 Y

O
U

R
 U

SE
 IN

 T
H

IS
 C

LA
SS

R
O

O
M

 O
N

LY
.

C
O

PY
IN

G
 e

KI
T

M
AT

ER
IA

LS
 F

R
O

M
 T

H
IS

 C
O

M
PU

TE
R

 IS
 S

TR
IC

TL
Y

PR
O

H
IB

IT
ED

(SaaS) generally refers to applications that are delivered to end users over the Internet.
Oracle CRM On Demand is an example of a SaaS offering that provides both multitenant as
well as single-tenant options, depending on the customer’s preferences.

(PaaS) generally refers to an application development and deployment platform delivered as
a service to developers, enabling them to quickly build and deploy a SaaS application to end
users. The platform typically includes databases, middleware, and development tools, all
delivered as a service via the Internet

(IaaS) refers to computing hardware (servers, storage, and network) delivered as a service.
This service typically includes the associated software as well as operating systems,
virtualization, clustering, and so on. Examples of IaaS in the public cloud include Amazon’s
Elastic Compute Cloud (EC2) and Simple Storage Service (S3).

The database cloud is built within an enterprise’s private cloud environment, as a PaaS
model. The database cloud provides on-demand access to database services in a self-
service, elastically scalable, and metered manner. The database cloud offers compelling
advantages in cost, quality of service, and agility. You can deploy a database within a virtual
machine in a laaS platform.

You can rapidly deploy Database clouds on Oracle Exadata which is a preintegrated and
optimized hardware platform that supports both OLTP and DW workloads.

Oracle Database 12c: SQL Workshop I 1 - 15

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

Oracle Cloud Services

Oracle Cloud provides three types of services:

• Software as a Service (SaaS)

• Platform as a Service (PaaS)

• Infrastructure as a Service (IaaS)

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 E

ga
bi

 S
ol

ut
io

ns
 u

se
 o

nl
y

TH
ES

E
eK

IT
 M

AT
ER

IA
LS

 A
R

E
FO

R
 Y

O
U

R
 U

SE
 IN

 T
H

IS
 C

LA
SS

R
O

O
M

 O
N

LY
.

C
O

PY
IN

G
 e

KI
T

M
AT

ER
IA

LS
 F

R
O

M
 T

H
IS

 C
O

M
PU

TE
R

 IS
 S

TR
IC

TL
Y

PR
O

H
IB

IT
ED

• Private cloud: A single organization uses a private cloud, which it typically controls,
manages, and hosts in private data centers. However, the organization can also
outsource hosting and operation to a third-party service provider. Amazon’s Virtual
Private Cloud is an example of a private cloud in an external provider setting

• Public cloud: Multiple organizations(tenants) uses private cloud on a shared basis;
hosted and managed by a third-party service provider. Example: Amazon Elastic
Compute Cloud (EC2), IBM's Blue Cloud, Sun Cloud, Google AppEngine, etc.

• Community cloud: A group of related organizations, who want to make use of a
common cloud computing environment uses the community cloud. It is managed by the
participating organizations or by a third-party managed service provider. It is hosted
internally or externally. Example: A community might consist of the different branches of
the military, all the universities in a given region, or all the suppliers to a large
manufacturer.

• Hybrid cloud: A single organization that wants to adopt both private and public clouds
for a single application uses the hybrid cloud. A third model, the hybrid cloud, is
maintained by both internal and external providers For example, an organization might
use a public cloud service, such as Amazon Simple Storage Service (Amazon S3) for
archived data but continue to maintain in-house(private cloud) storage for operational
customer data.

Oracle Database 12c: SQL Workshop I 1 - 16

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

Cloud Deployment Models

Cloud
Deployment
Models

Hybrid
cloud

Community
cloud

Private
cloud

Public
cloud

Private
cloud

Hybrid
cloud

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 E

ga
bi

 S
ol

ut
io

ns
 u

se
 o

nl
y

TH
ES

E
eK

IT
 M

AT
ER

IA
LS

 A
R

E
FO

R
 Y

O
U

R
 U

SE
 IN

 T
H

IS
 C

LA
SS

R
O

O
M

 O
N

LY
.

C
O

PY
IN

G
 e

KI
T

M
AT

ER
IA

LS
 F

R
O

M
 T

H
IS

 C
O

M
PU

TE
R

 IS
 S

TR
IC

TL
Y

PR
O

H
IB

IT
ED

Oracle Database 12c: SQL Workshop I 1 - 17

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

Lesson Agenda

• Course objectives, agenda, and appendixes used in the
course

• Overview of Oracle Database 12c and related products

• Overview of relational database management concepts
and terminologies

• Introduction to SQL and its development environments

• The Human Resource(HR) Schema and the tables used in
this course

• Oracle database 12c SQL Documentation and Additional
Resources

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 E

ga
bi

 S
ol

ut
io

ns
 u

se
 o

nl
y

TH
ES

E
eK

IT
 M

AT
ER

IA
LS

 A
R

E
FO

R
 Y

O
U

R
 U

SE
 IN

 T
H

IS
 C

LA
SS

R
O

O
M

 O
N

LY
.

C
O

PY
IN

G
 e

KI
T

M
AT

ER
IA

LS
 F

R
O

M
 T

H
IS

 C
O

M
PU

TE
R

 IS
 S

TR
IC

TL
Y

PR
O

H
IB

IT
ED

The Oracle server supports both the relational and the object relational database models.

The Oracle server extends the data-modeling capabilities to support an object relational
database model that provides object-oriented programming, complex data types, complex
business objects, and full compatibility with the relational world.

It includes several features for improved performance and functionality of the OLTP
applications, such as better sharing of run-time data structures, larger buffer caches, and
deferrable constraints. Data warehouse applications benefit from enhancements such as
parallel execution of insert, update, and delete operations; partitioning; and parallel-aware
query optimization. The Oracle model supports client/server and Web-based applications that
are distributed and multitiered.

For more information about the relational and object relational model, refer to Oracle
Database Concepts for 10g or 11g database.

Oracle Database 12c: SQL Workshop I 1 - 18

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

Relational and Object Relational
Database Management Systems

• Relational model and object relational model

• User-defined data types and objects

• Fully compatible with relational database

• Supports multimedia and large objects

• High-quality database server features

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 E

ga
bi

 S
ol

ut
io

ns
 u

se
 o

nl
y

TH
ES

E
eK

IT
 M

AT
ER

IA
LS

 A
R

E
FO

R
 Y

O
U

R
 U

SE
 IN

 T
H

IS
 C

LA
SS

R
O

O
M

 O
N

LY
.

C
O

PY
IN

G
 e

KI
T

M
AT

ER
IA

LS
 F

R
O

M
 T

H
IS

 C
O

M
PU

TE
R

 IS
 S

TR
IC

TL
Y

PR
O

H
IB

IT
ED

Every organization has some information needs. A library keeps a list of members, books,
due dates, and fines. A company needs to save information about its employees,
departments, and salaries. These pieces of information are called data.

Organizations can store data in various media and in different formats, such as a hard copy
document in a filing cabinet, or data stored in electronic spreadsheets, or in databases.

A database is an organized collection of information.

To manage databases, you need a database management system (DBMS). A DBMS is a
program that stores, retrieves, and modifies data in databases on request. There are four
main types of databases: hierarchical, network, relational, and (most recently) object
relational.

Oracle Database 12c: SQL Workshop I 1 - 19

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

Data Storage on Different Media

Electronic
spreadsheet

Filing cabinet Database

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 E

ga
bi

 S
ol

ut
io

ns
 u

se
 o

nl
y

TH
ES

E
eK

IT
 M

AT
ER

IA
LS

 A
R

E
FO

R
 Y

O
U

R
 U

SE
 IN

 T
H

IS
 C

LA
SS

R
O

O
M

 O
N

LY
.

C
O

PY
IN

G
 e

KI
T

M
AT

ER
IA

LS
 F

R
O

M
 T

H
IS

 C
O

M
PU

TE
R

 IS
 S

TR
IC

TL
Y

PR
O

H
IB

IT
ED

The principles of the relational model were first outlined by Dr. E. F. Codd in a June 1970
paper titled A Relational Model of Data for Large Shared Data Banks. In this paper, Dr. Codd
proposed the relational model for database systems.

The common models used at that time were hierarchical and network, or even simple flat-file
data structures. Relational database management systems (RDBMS) soon became very
popular, especially for their ease of use and flexibility in structure. In addition, a number of
innovative vendors, such as Oracle, supplemented the RDBMS with a suite of powerful,
application development and user-interface products, thereby providing a total solution.

Components of the Relational Model

• Collections of objects or relations that store the data

• A set of operators that can act on the relations to produce other relations

• Data integrity for accuracy and consistency

For more information, refer to An Introduction to Database Systems, Eighth Edition (Addison-
Wesley: 2004), written by Chris Date.

Oracle Database 12c: SQL Workshop I 1 - 20

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

Relational Database Concept

• Dr. E. F. Codd proposed the relational model for database
systems in 1970.

• It is the basis for the relational database management
system (RDBMS).

• The relational model consists of the following:
– Collection of objects or relations

– Set of operators to act on the relations

– Data integrity for accuracy and consistency

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 E

ga
bi

 S
ol

ut
io

ns
 u

se
 o

nl
y

TH
ES

E
eK

IT
 M

AT
ER

IA
LS

 A
R

E
FO

R
 Y

O
U

R
 U

SE
 IN

 T
H

IS
 C

LA
SS

R
O

O
M

 O
N

LY
.

C
O

PY
IN

G
 e

KI
T

M
AT

ER
IA

LS
 F

R
O

M
 T

H
IS

 C
O

M
PU

TE
R

 IS
 S

TR
IC

TL
Y

PR
O

H
IB

IT
ED

A relational database uses relations or two-dimensional tables to store information.

For example, you might want to store information about all the employees in your company. In
a relational database, you create several tables to store different pieces of information about
your employees, such as an employee table, a department table, and a salary table.

Oracle Database 12c: SQL Workshop I 1 - 21

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

Definition of a Relational Database

A relational database is a collection of relations or
two-dimensional tables controlled by the Oracle server.

Oracle
server

Table name: EMPLOYEES Table name: DEPARTMENTS

… …

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 E

ga
bi

 S
ol

ut
io

ns
 u

se
 o

nl
y

TH
ES

E
eK

IT
 M

AT
ER

IA
LS

 A
R

E
FO

R
 Y

O
U

R
 U

SE
 IN

 T
H

IS
 C

LA
SS

R
O

O
M

 O
N

LY
.

C
O

PY
IN

G
 e

KI
T

M
AT

ER
IA

LS
 F

R
O

M
 T

H
IS

 C
O

M
PU

TE
R

 IS
 S

TR
IC

TL
Y

PR
O

H
IB

IT
ED

Models are the cornerstone of design. Engineers build a model of a car to work out any
details before putting it into production. In the same manner, system designers develop
models to explore ideas and improve the understanding of database design.

Purpose of Models

Models help to communicate the concepts that are in people’s minds. They can be used to do
the following:

• Communicate

• Categorize

• Describe

• Specify

• Investigate

• Evolve

• Analyze

• Imitate

The objective is to produce a model that fits a multitude of these uses, can be understood by
an end user, and contains sufficient detail for a developer to build a database system.

Oracle Database 12c: SQL Workshop I 1 - 22

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

Data Models

Model of
system

in client’s
mind

Entity model of
client’s model

Tables on disk

Oracle
server

Table model
of entity model

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 E

ga
bi

 S
ol

ut
io

ns
 u

se
 o

nl
y

TH
ES

E
eK

IT
 M

AT
ER

IA
LS

 A
R

E
FO

R
 Y

O
U

R
 U

SE
 IN

 T
H

IS
 C

LA
SS

R
O

O
M

 O
N

LY
.

C
O

PY
IN

G
 e

KI
T

M
AT

ER
IA

LS
 F

R
O

M
 T

H
IS

 C
O

M
PU

TE
R

 IS
 S

TR
IC

TL
Y

PR
O

H
IB

IT
ED

In an effective system, data is divided into discrete categories or entities. An entity
relationship (ER) model is an illustration of the various entities in a business and the
relationships among them. An ER model is derived from business specifications or narratives
and built during the analysis phase of the system development life cycle. ER models separate
the information required by a business from the activities performed within the business.
Although businesses can change their activities, the type of information tends to remain
constant. Therefore, the data structures also tend to be constant.

Oracle Database 12c: SQL Workshop I 1 - 23

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

Entity Relationship Model

• Create an entity relationship diagram from business
specifications or narratives:

• Scenario:
– “. . . Assign one or more employees to a

department . . .”

– “. . . Some departments do not yet have assigned employees
. . .”

EMPLOYEE
#* number
* name
o job title

DEPARTMENT
#* number
* name
o location

assigned to

composed of

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 E

ga
bi

 S
ol

ut
io

ns
 u

se
 o

nl
y

TH
ES

E
eK

IT
 M

AT
ER

IA
LS

 A
R

E
FO

R
 Y

O
U

R
 U

SE
 IN

 T
H

IS
 C

LA
SS

R
O

O
M

 O
N

LY
.

C
O

PY
IN

G
 e

KI
T

M
AT

ER
IA

LS
 F

R
O

M
 T

H
IS

 C
O

M
PU

TE
R

 IS
 S

TR
IC

TL
Y

PR
O

H
IB

IT
ED

Benefits of ER Modeling

• Documents information for the organization in a clear, precise format

• Provides a clear picture of the scope of the information requirement

• Provides an easily understood pictorial map for database design

• Offers an effective framework for integrating multiple applications

Key Components

• Entity: An aspect of significance about which information must be known. Examples are
departments, employees, and orders.

• Attribute: Something that describes or qualifies an entity. For example, for the employee
entity, the attributes would be the employee number, name, job title, hire date, department
number, and so on. Each of the attributes is either required or optional. This state is called
optionality.

• Relationship: A named association between entities showing optionality and degree.
Examples are employees and departments, and orders and items.

Oracle Database 12c: SQL Workshop I 1 - 24

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 E

ga
bi

 S
ol

ut
io

ns
 u

se
 o

nl
y

TH
ES

E
eK

IT
 M

AT
ER

IA
LS

 A
R

E
FO

R
 Y

O
U

R
 U

SE
 IN

 T
H

IS
 C

LA
SS

R
O

O
M

 O
N

LY
.

C
O

PY
IN

G
 e

KI
T

M
AT

ER
IA

LS
 F

R
O

M
 T

H
IS

 C
O

M
PU

TE
R

 IS
 S

TR
IC

TL
Y

PR
O

H
IB

IT
ED

Entities

To represent an entity in a model, use the following conventions:

• Singular, unique entity name

• Entity name in uppercase

• Soft box

• Optional synonym names in uppercase within parentheses: ()

Attributes

To represent an attribute in a model, use the following conventions:

• Singular name in lowercase

• Asterisk (*) tag for mandatory attributes (that is, values that must be known)

• Letter “o” tag for optional attributes (that is, values that may be known)

Oracle Database 12c: SQL Workshop I 1 - 25

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

Entity Relationship Modeling Conventions

Entity:

• Singular, unique name

• Uppercase

• Soft box

• Synonym in parentheses

Unique Identifier (UID)
Primary marked with “#”
Secondary marked with “(#)”

EMPLOYEE
#* number
* name
o job title

DEPARTMENT
#* number
* name
o location

assigned to

composed of

Attribute:
• Singular name
• Lowercase
• Mandatory marked with “*”
• Optional marked with “o”

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 E

ga
bi

 S
ol

ut
io

ns
 u

se
 o

nl
y

TH
ES

E
eK

IT
 M

AT
ER

IA
LS

 A
R

E
FO

R
 Y

O
U

R
 U

SE
 IN

 T
H

IS
 C

LA
SS

R
O

O
M

 O
N

LY
.

C
O

PY
IN

G
 e

KI
T

M
AT

ER
IA

LS
 F

R
O

M
 T

H
IS

 C
O

M
PU

TE
R

 IS
 S

TR
IC

TL
Y

PR
O

H
IB

IT
ED

Relationships
Each direction of the relationship contains:

• A label: For example, taught by or assigned to
• An optionality: Either must be or maybe
• A degree: Either one and only one or one or more

Note: The term cardinality is a synonym for the term degree.

Each source entity {may be | must be} in relation {one and only one | one or more} with the
destination entity.

Note: The convention is to read clockwise.

Unique Identifiers

A unique identifier (UID) is any combination of attributes or relationships, or both, that serves to
distinguish occurrences of an entity. Each entity occurrence must be uniquely identifiable.

• Tag each attribute that is part of the UID with a hash sign “#”.

• Tag secondary UIDs with a hash sign in parentheses (#).

Symbol Description

Dashed line Optional element indicating “maybe”

Solid line Mandatory element indicating “must be”

Crow’s foot Degree element indicating “one or more”

Single line Degree element indicating “one and only one”

Oracle Database 12c: SQL Workshop I 1 - 26

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 E

ga
bi

 S
ol

ut
io

ns
 u

se
 o

nl
y

TH
ES

E
eK

IT
 M

AT
ER

IA
LS

 A
R

E
FO

R
 Y

O
U

R
 U

SE
 IN

 T
H

IS
 C

LA
SS

R
O

O
M

 O
N

LY
.

C
O

PY
IN

G
 e

KI
T

M
AT

ER
IA

LS
 F

R
O

M
 T

H
IS

 C
O

M
PU

TE
R

 IS
 S

TR
IC

TL
Y

PR
O

H
IB

IT
ED

Each table contains data that describes exactly one entity. For example, the EMPLOYEES
table contains information about employees. Categories of data are listed across the top of
each table, and individual cases are listed below. By using a table format, you can readily
visualize, understand, and use information.

Because data about different entities is stored in different tables, you may need to combine
two or more tables to answer a particular question. For example, you may want to know the
location of the department where an employee works. In this scenario, you need information
from the EMPLOYEES table (which contains data about employees) and the DEPARTMENTS
table (which contains information about departments). With an RDBMS, you can relate the
data in one table to the data in another by using the foreign keys. A foreign key is a column
(or a set of columns) that refers to a primary key in the same table or another table.

You can use the ability to relate data in one table to data in another to organize information in
separate, manageable units. Employee data can be kept logically distinct from the department
data by storing it in a separate table.

Oracle Database 12c: SQL Workshop I 1 - 27

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

Relating Multiple Tables

• Each row of data in a table can be uniquely identified by a
primary key.

• You can logically relate data from multiple tables using
foreign keys.

Table name: EMPLOYEES

Table name: DEPARTMENTS

Primary key

Primary key

Foreign key

…

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 E

ga
bi

 S
ol

ut
io

ns
 u

se
 o

nl
y

TH
ES

E
eK

IT
 M

AT
ER

IA
LS

 A
R

E
FO

R
 Y

O
U

R
 U

SE
 IN

 T
H

IS
 C

LA
SS

R
O

O
M

 O
N

LY
.

C
O

PY
IN

G
 e

KI
T

M
AT

ER
IA

LS
 F

R
O

M
 T

H
IS

 C
O

M
PU

TE
R

 IS
 S

TR
IC

TL
Y

PR
O

H
IB

IT
ED

Guidelines for Primary Keys and Foreign Keys

• You cannot use duplicate values in a primary key.

• Primary keys generally cannot be changed.

• Foreign keys are based on data values and are purely logical (not physical) pointers.

• A foreign key value must match an existing primary key value or unique key value;
otherwise, it must be null.

• A foreign key must reference either a primary key or a unique key column.

Oracle Database 12c: SQL Workshop I 1 - 28

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 E

ga
bi

 S
ol

ut
io

ns
 u

se
 o

nl
y

TH
ES

E
eK

IT
 M

AT
ER

IA
LS

 A
R

E
FO

R
 Y

O
U

R
 U

SE
 IN

 T
H

IS
 C

LA
SS

R
O

O
M

 O
N

LY
.

C
O

PY
IN

G
 e

KI
T

M
AT

ER
IA

LS
 F

R
O

M
 T

H
IS

 C
O

M
PU

TE
R

 IS
 S

TR
IC

TL
Y

PR
O

H
IB

IT
ED

A relational database can contain one or many tables. A table is the basic storage structure of
an RDBMS. A table holds all the data necessary about something in the real world, such as
employees, invoices, or customers.

The slide shows the contents of the EMPLOYEES table or relation. The numbers indicate the
following:

1. A single row (or tuple) representing all the data required for a particular employee. Each
row in a table should be identified by a primary key, which permits no duplicate rows.
The order of rows is insignificant; specify the row order when the data is retrieved.

2. A column or attribute containing the employee number. The employee number identifies
a unique employee in the EMPLOYEES table. In this example, the employee number
column is designated as the primary key. A primary key must contain a value and the
value must be unique.

3. A column that is not a key value. A column represents one kind of data in a table; in this
example, the data is the salaries of all the employees. Column order is insignificant
when storing data; specify the column order when the data is retrieved.

Oracle Database 12c: SQL Workshop I 1 - 29

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

Relational Database Terminology

1

2

3

4

6
5

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 E

ga
bi

 S
ol

ut
io

ns
 u

se
 o

nl
y

TH
ES

E
eK

IT
 M

AT
ER

IA
LS

 A
R

E
FO

R
 Y

O
U

R
 U

SE
 IN

 T
H

IS
 C

LA
SS

R
O

O
M

 O
N

LY
.

C
O

PY
IN

G
 e

KI
T

M
AT

ER
IA

LS
 F

R
O

M
 T

H
IS

 C
O

M
PU

TE
R

 IS
 S

TR
IC

TL
Y

PR
O

H
IB

IT
ED

4. A column containing the department number, which is also a foreign key. A foreign key
is a column that defines how tables relate to each other. A foreign key refers to a
primary key or a unique key in the same table or in another table. In the example,
DEPARTMENT_ID uniquely identifies a department in the DEPARTMENTS table.

5. A field can be found at the intersection of a row and a column. There can be only one
value in it.

6. A field may have no value in it. This is called a null value. In the EMPLOYEES table, only
those employees who have the role of sales representative have a value in the
COMMISSION_PCT (commission) field.

Oracle Database 12c: SQL Workshop I 1 - 30

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 E

ga
bi

 S
ol

ut
io

ns
 u

se
 o

nl
y

TH
ES

E
eK

IT
 M

AT
ER

IA
LS

 A
R

E
FO

R
 Y

O
U

R
 U

SE
 IN

 T
H

IS
 C

LA
SS

R
O

O
M

 O
N

LY
.

C
O

PY
IN

G
 e

KI
T

M
AT

ER
IA

LS
 F

R
O

M
 T

H
IS

 C
O

M
PU

TE
R

 IS
 S

TR
IC

TL
Y

PR
O

H
IB

IT
ED

Oracle Database 12c: SQL Workshop I 1 - 31

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

Lesson Agenda

• Course objectives, agenda, and appendixes used in the
course

• Overview of Oracle Database 12c and related products

• Overview of relational database management concepts
and terminologies

• Introduction to SQL and its development environments

• The Human Resource(HR) Schema and the tables used in
this course

• Oracle database 12c SQL Documentation and Additional
Resources

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 E

ga
bi

 S
ol

ut
io

ns
 u

se
 o

nl
y

TH
ES

E
eK

IT
 M

AT
ER

IA
LS

 A
R

E
FO

R
 Y

O
U

R
 U

SE
 IN

 T
H

IS
 C

LA
SS

R
O

O
M

 O
N

LY
.

C
O

PY
IN

G
 e

KI
T

M
AT

ER
IA

LS
 F

R
O

M
 T

H
IS

 C
O

M
PU

TE
R

 IS
 S

TR
IC

TL
Y

PR
O

H
IB

IT
ED

In a relational database, you do not specify the access route to the tables, and you do not
need to know how the data is arranged physically.

To access the database, you execute a structured query language (SQL) statement, which is
the American National Standards Institute (ANSI) standard language for operating relational
databases. SQL is also compliant to ISO Standard (SQL 1999).

SQL is a set of statements with which all programs and users access data in an Oracle
Database. Application programs and Oracle tools often allow users access to the database
without using SQL directly, but these applications, in turn, must use SQL when executing the
user’s request.

SQL provides statements for a variety of tasks, including:

• Querying data

• Inserting, updating, and deleting rows in a table

• Creating, replacing, altering, and dropping objects

• Controlling access to the database and its objects

• Guaranteeing database consistency and integrity

SQL unifies all of the preceding tasks in one consistent language and enables you to work
with data at a logical level.

Oracle Database 12c: SQL Workshop I 1 - 32

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

Using SQL to Query Your Database

Structured query language (SQL) is:

• The ANSI standard language for operating relational
databases

• Efficient, easy to learn, and use

• Functionally complete (With SQL, you can define, retrieve,
and manipulate data in the tables.)

SELECT department_name
FROM departments;

Oracle
server

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 E

ga
bi

 S
ol

ut
io

ns
 u

se
 o

nl
y

TH
ES

E
eK

IT
 M

AT
ER

IA
LS

 A
R

E
FO

R
 Y

O
U

R
 U

SE
 IN

 T
H

IS
 C

LA
SS

R
O

O
M

 O
N

LY
.

C
O

PY
IN

G
 e

KI
T

M
AT

ER
IA

LS
 F

R
O

M
 T

H
IS

 C
O

M
PU

TE
R

 IS
 S

TR
IC

TL
Y

PR
O

H
IB

IT
ED

Statement Description

SELECT
INSERT
UPDATE
DELETE
MERGE

Retrieves data from the database, enters new rows, changes existing rows, and
removes unwanted rows from tables in the database, respectively. Collectively
known as data manipulation language (DML)

CREATE
ALTER
DROP
RENAME
TRUNCATE
COMMENT

Sets up, changes, and removes data structures from tables. Collectively known as
data definition language (DDL)

GRANT
REVOKE

Provides or removes access rights to both the Oracle Database and the structures
within it

COMMIT
ROLLBACK
SAVEPOINT

Manages the changes made by DML statements. Changes to the data can be
grouped together into logical transactions

SQL Statements

SQL statements supported by Oracle comply with industry standards. Oracle Corporation
ensures future compliance with evolving standards by actively involving key personnel in SQL
standards committees. The industry-accepted committees are ANSI and International
Standards Organization (ISO). Both ANSI and ISO have accepted SQL as the standard
language for relational databases.

Oracle Database 12c: SQL Workshop I 1 - 33

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

SQL Statements Used in the Course

SELECT
INSERT
UPDATE
DELETE
MERGE

CREATE
ALTER
DROP
RENAME
TRUNCATE
COMMENT

GRANT
REVOKE

COMMIT
ROLLBACK
SAVEPOINT

Data manipulation language (DML)

Data definition language (DDL)

Transaction control

Data control language (DCL)

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 E

ga
bi

 S
ol

ut
io

ns
 u

se
 o

nl
y

TH
ES

E
eK

IT
 M

AT
ER

IA
LS

 A
R

E
FO

R
 Y

O
U

R
 U

SE
 IN

 T
H

IS
 C

LA
SS

R
O

O
M

 O
N

LY
.

C
O

PY
IN

G
 e

KI
T

M
AT

ER
IA

LS
 F

R
O

M
 T

H
IS

 C
O

M
PU

TE
R

 IS
 S

TR
IC

TL
Y

PR
O

H
IB

IT
ED

SQL Developer

This course is developed using Oracle SQL Developer as the tool for running the SQL
statements discussed in the examples in the lessons and the practices. SQL Developer is the
default tool for this class.

SQL*Plus

The SQL*Plus environment can also be used to run all SQL commands covered in this
course.

Note

• See Appendix B for information about using SQL Developer, including simple
instructions on installation process.

• See Appendix C for information about using SQL*Plus.

Oracle Database 12c: SQL Workshop I 1 - 34

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

Development Environments for SQL

There are two development environments for this course:

• The primary tool is Oracle SQL Developer.

• SQL*Plus command-line interface can also be used.

SQL Developer
SQL*Plus

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 E

ga
bi

 S
ol

ut
io

ns
 u

se
 o

nl
y

TH
ES

E
eK

IT
 M

AT
ER

IA
LS

 A
R

E
FO

R
 Y

O
U

R
 U

SE
 IN

 T
H

IS
 C

LA
SS

R
O

O
M

 O
N

LY
.

C
O

PY
IN

G
 e

KI
T

M
AT

ER
IA

LS
 F

R
O

M
 T

H
IS

 C
O

M
PU

TE
R

 IS
 S

TR
IC

TL
Y

PR
O

H
IB

IT
ED

Oracle Database 12c: SQL Workshop I 1 - 35

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

Lesson Agenda

• Course objectives, agenda, and appendixes used in the
course

• Overview of Oracle Database 12c and related products

• Overview of relational database management concepts
and terminologies

• Introduction to SQL and its development environments

• The Human Resource(HR) Schema and the tables used in
this course

• Oracle database 12c SQL Documentation and Additional
Resources

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 E

ga
bi

 S
ol

ut
io

ns
 u

se
 o

nl
y

TH
ES

E
eK

IT
 M

AT
ER

IA
LS

 A
R

E
FO

R
 Y

O
U

R
 U

SE
 IN

 T
H

IS
 C

LA
SS

R
O

O
M

 O
N

LY
.

C
O

PY
IN

G
 e

KI
T

M
AT

ER
IA

LS
 F

R
O

M
 T

H
IS

 C
O

M
PU

TE
R

 IS
 S

TR
IC

TL
Y

PR
O

H
IB

IT
ED

Human Resources (HR)Schema Description
The Human Resources (HR) schema is a part of the Oracle Sample Schemas that can be
installed in an Oracle Database. The practice sessions in this course use data from the HR
schema.

Table Descriptions
• REGIONS contains rows that represent a region such as America, Asia, and so on.
• COUNTRIES contains rows for countries, each of which is associated with a region.
• LOCATIONS contains the specific address of a specific office, warehouse, or production

site of a company in a particular country.
• DEPARTMENTS shows details about the departments in which the employees work. Each

department may have a relationship representing the department manager in the
EMPLOYEES table.

• EMPLOYEES contains details about each employee working for a department. Some
employees may not be assigned to any department.

• JOBS contains the job types that can be held by each employee.
• JOB_HISTORY contains the job history of the employees. If an employee changes

departments within a job or changes jobs within a department, a new row is inserted into
this table with the earlier job information of the employee.

Oracle Database 12c: SQL Workshop I 1 - 36

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

Human Resources (HR) Schema

DEPARTMENTS
department_id

department name
manager_id
location_id

LOCATIONS
location_id

street address
postal code

city
state province

Country id

COUNTRIES
country_id

country_name
region_id

REGIONS
region_id

region_name

EMPLOYEES
employee_id
first_name
last_name

email
phone_number

hire_date
job_id
salary

commission_pct
manager_id

department_id
JOBS

job_id
job_title

min_salary
max_salary

JOB_HISTORY
employee_id
start_date
end_date

job_id
department_id

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 E

ga
bi

 S
ol

ut
io

ns
 u

se
 o

nl
y

TH
ES

E
eK

IT
 M

AT
ER

IA
LS

 A
R

E
FO

R
 Y

O
U

R
 U

SE
 IN

 T
H

IS
 C

LA
SS

R
O

O
M

 O
N

LY
.

C
O

PY
IN

G
 e

KI
T

M
AT

ER
IA

LS
 F

R
O

M
 T

H
IS

 C
O

M
PU

TE
R

 IS
 S

TR
IC

TL
Y

PR
O

H
IB

IT
ED

The following main tables are used in this course:

• EMPLOYEES table: Gives details of all the employees

• DEPARTMENTS table: Gives details of all the departments

• JOB_GRADES table: Gives details of salaries for various grades

Apart from these tables, you will also use the other tables listed in the previous slide such as
the LOCATIONS and the JOB_HISTORY table.

Note: The structure and data for all the tables are provided in Appendix A.

Oracle Database 12c: SQL Workshop I 1 - 37

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

Tables Used in the Course
EMPLOYEES

DEPARTMENTS
JOB_GRADES

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 E

ga
bi

 S
ol

ut
io

ns
 u

se
 o

nl
y

TH
ES

E
eK

IT
 M

AT
ER

IA
LS

 A
R

E
FO

R
 Y

O
U

R
 U

SE
 IN

 T
H

IS
 C

LA
SS

R
O

O
M

 O
N

LY
.

C
O

PY
IN

G
 e

KI
T

M
AT

ER
IA

LS
 F

R
O

M
 T

H
IS

 C
O

M
PU

TE
R

 IS
 S

TR
IC

TL
Y

PR
O

H
IB

IT
ED

Oracle Database 12c: SQL Workshop I 1 - 38

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

Lesson Agenda

• Course objectives, agenda, and appendixes used in the
course

• Overview of Oracle Database 12c and related products

• Overview of relational database management concepts
and terminologies

• Introduction to SQL and its development environments

• The Human Resource(HR) Schema and the tables used in
this course

• Oracle database 12c SQL Documentation and Additional
Resources

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 E

ga
bi

 S
ol

ut
io

ns
 u

se
 o

nl
y

TH
ES

E
eK

IT
 M

AT
ER

IA
LS

 A
R

E
FO

R
 Y

O
U

R
 U

SE
 IN

 T
H

IS
 C

LA
SS

R
O

O
M

 O
N

LY
.

C
O

PY
IN

G
 e

KI
T

M
AT

ER
IA

LS
 F

R
O

M
 T

H
IS

 C
O

M
PU

TE
R

 IS
 S

TR
IC

TL
Y

PR
O

H
IB

IT
ED

Navigate to http://www.oracle.com/pls/db102/homepage to access the Oracle Database 10g
documentation library.

Navigate to http://www.oracle.com/pls/db112/homepage to access the Oracle Database 11g
documentation library.

Oracle Database 12c: SQL Workshop I 1 - 39

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

Oracle Database Documentation

• Oracle Database New Features Guide

• Oracle Database Reference

• Oracle Database SQL Language Reference

• Oracle Database Concepts

• Oracle Database SQL Developer User's Guide

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 E

ga
bi

 S
ol

ut
io

ns
 u

se
 o

nl
y

TH
ES

E
eK

IT
 M

AT
ER

IA
LS

 A
R

E
FO

R
 Y

O
U

R
 U

SE
 IN

 T
H

IS
 C

LA
SS

R
O

O
M

 O
N

LY
.

C
O

PY
IN

G
 e

KI
T

M
AT

ER
IA

LS
 F

R
O

M
 T

H
IS

 C
O

M
PU

TE
R

 IS
 S

TR
IC

TL
Y

PR
O

H
IB

IT
ED

Oracle Database 12c: SQL Workshop I 1 - 40

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

Additional Resources

For additional information about Oracle Database 12c, refer to
the following:

• Oracle Database 12c: New Features eStudies
• Oracle Learning Library:

– http://www.oracle.com/goto/oll

• Oracle Cloud :
– www.cloud.oracle.com

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 E

ga
bi

 S
ol

ut
io

ns
 u

se
 o

nl
y

TH
ES

E
eK

IT
 M

AT
ER

IA
LS

 A
R

E
FO

R
 Y

O
U

R
 U

SE
 IN

 T
H

IS
 C

LA
SS

R
O

O
M

 O
N

LY
.

C
O

PY
IN

G
 e

KI
T

M
AT

ER
IA

LS
 F

R
O

M
 T

H
IS

 C
O

M
PU

TE
R

 IS
 S

TR
IC

TL
Y

PR
O

H
IB

IT
ED

Relational database management systems are composed of objects or relations. They are
managed by operations and governed by data integrity constraints.

Oracle Corporation produces products and services to meet your RDBMS needs. The main
products are the following:

• Oracle Database with which you store and manage information by using SQL

• Oracle Fusion Middleware with which you develop, deploy, and manage modular
business services that can be integrated and reused

• Oracle Enterprise Manager Grid Control, which you use to manage and automate
administrative tasks across sets of systems in a grid environment

SQL

The Oracle server supports ANSI-standard SQL and contains extensions. SQL is the
language that is used to communicate with the server to access, manipulate, and control data.

Oracle Database 12c: SQL Workshop I 1 - 41

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

Summary

In this lesson, you should have learned that:

• Oracle Database 12c extends:
– The benefits of infrastructure grids
– The existing information management capabilities
– The capabilities to use the major application development

environments such as PL/SQL, Oracle Java/JDBC, .NET,
XML, and so on

– Oracle Cloud

• The database is based on ORDBMS
• Relational databases are composed of relations, managed

by relational operations, and governed by data integrity
constraints

• With the Oracle server, you can store and manage
information by using SQL

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 E

ga
bi

 S
ol

ut
io

ns
 u

se
 o

nl
y

TH
ES

E
eK

IT
 M

AT
ER

IA
LS

 A
R

E
FO

R
 Y

O
U

R
 U

SE
 IN

 T
H

IS
 C

LA
SS

R
O

O
M

 O
N

LY
.

C
O

PY
IN

G
 e

KI
T

M
AT

ER
IA

LS
 F

R
O

M
 T

H
IS

 C
O

M
PU

TE
R

 IS
 S

TR
IC

TL
Y

PR
O

H
IB

IT
ED

In this practice, you perform the following:

• Start Oracle SQL Developer and create a new connection to the ora1 account.

• Use Oracle SQL Developer to examine data objects in the ora1 account. The ora1
account contains the HR schema tables.

Note the following location for the lab files:

/home/oracle/labs/sql1/labs

If you are asked to save any lab files, save them in this location.

In any practice, there may be exercises that are prefaced with the phrases “If you have time”
or “If you want an extra challenge.” Work on these exercises only if you have completed all
other exercises within the allocated time and would like a further challenge to your skills.

Perform the practices slowly and precisely. You can experiment with saving and running
command files. If you have any questions at any time, ask your instructor.

Note: All written practices use Oracle SQL Developer as the development environment.
Although it is recommended that you use Oracle SQL Developer, you can also use SQL*Plus
that is available in this course.

Oracle Database 12c: SQL Workshop I 1 - 42

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

Practice 1: Overview

This practice covers the following topics:

• Starting Oracle SQL Developer

• Creating a new database connection
• Browsing the HR tables

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 E

ga
bi

 S
ol

ut
io

ns
 u

se
 o

nl
y

TH
ES

E
eK

IT
 M

AT
ER

IA
LS

 A
R

E
FO

R
 Y

O
U

R
 U

SE
 IN

 T
H

IS
 C

LA
SS

R
O

O
M

 O
N

LY
.

C
O

PY
IN

G
 e

KI
T

M
AT

ER
IA

LS
 F

R
O

M
 T

H
IS

 C
O

M
PU

TE
R

 IS
 S

TR
IC

TL
Y

PR
O

H
IB

IT
ED

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

Retrieving Data Using
the SQL SELECT Statement

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 E

ga
bi

 S
ol

ut
io

ns
 u

se
 o

nl
y

TH
ES

E
eK

IT
 M

AT
ER

IA
LS

 A
R

E
FO

R
 Y

O
U

R
 U

SE
 IN

 T
H

IS
 C

LA
SS

R
O

O
M

 O
N

LY
.

C
O

PY
IN

G
 e

KI
T

M
AT

ER
IA

LS
 F

R
O

M
 T

H
IS

 C
O

M
PU

TE
R

 IS
 S

TR
IC

TL
Y

PR
O

H
IB

IT
ED

To extract data from the database, you need to use the SQL SELECT statement. However,
you may need to restrict the columns that are displayed. This lesson describes the SELECT
statement that is needed to perform these actions. Further, you may want to create SELECT
statements that can be used more than once.

Oracle Database 12c: SQL Workshop I 2 - 2

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

Objectives

After completing this lesson, you should be able to do the
following:
• List the capabilities of SQL SELECT statements

• Execute a basic SELECT statement

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 E

ga
bi

 S
ol

ut
io

ns
 u

se
 o

nl
y

TH
ES

E
eK

IT
 M

AT
ER

IA
LS

 A
R

E
FO

R
 Y

O
U

R
 U

SE
 IN

 T
H

IS
 C

LA
SS

R
O

O
M

 O
N

LY
.

C
O

PY
IN

G
 e

KI
T

M
AT

ER
IA

LS
 F

R
O

M
 T

H
IS

 C
O

M
PU

TE
R

 IS
 S

TR
IC

TL
Y

PR
O

H
IB

IT
ED

Oracle Database 12c: SQL Workshop I 2 - 3

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

Lesson Agenda

• Capabilities of SQL SELECT Statements

• Arithmetic expressions and NULL values in the SELECT
statement

• Column aliases

• Use of concatenation operator, literal character strings,
alternative quote operator, and the DISTINCT keyword

• DESCRIBE command

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 E

ga
bi

 S
ol

ut
io

ns
 u

se
 o

nl
y

TH
ES

E
eK

IT
 M

AT
ER

IA
LS

 A
R

E
FO

R
 Y

O
U

R
 U

SE
 IN

 T
H

IS
 C

LA
SS

R
O

O
M

 O
N

LY
.

C
O

PY
IN

G
 e

KI
T

M
AT

ER
IA

LS
 F

R
O

M
 T

H
IS

 C
O

M
PU

TE
R

 IS
 S

TR
IC

TL
Y

PR
O

H
IB

IT
ED

A SELECT statement retrieves information from the database. With a SELECT statement, you
can do the following:

• Projection: Selects the columns in a table that are returned by a query. Selects a few or
as many of the columns as required.

• Selection: Selects the rows in a table that are returned by a query. Various criteria can
be used to restrict the rows that are retrieved.

• Joins: Brings together data that is stored in different tables by specifying the link
between them. SQL joins are covered in more detail in the lesson titled “Displaying Data
from Multiple Tables Using Joins.”

Oracle Database 12c: SQL Workshop I 2 - 4

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

Capabilities of SQL SELECT Statements

SelectionProjection

Table 1 Table 2

Table 1Table 1

Join

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 E

ga
bi

 S
ol

ut
io

ns
 u

se
 o

nl
y

TH
ES

E
eK

IT
 M

AT
ER

IA
LS

 A
R

E
FO

R
 Y

O
U

R
 U

SE
 IN

 T
H

IS
 C

LA
SS

R
O

O
M

 O
N

LY
.

C
O

PY
IN

G
 e

KI
T

M
AT

ER
IA

LS
 F

R
O

M
 T

H
IS

 C
O

M
PU

TE
R

 IS
 S

TR
IC

TL
Y

PR
O

H
IB

IT
ED

In its simplest form, a SELECT statement must include the following:

• A SELECT clause, which specifies the columns to be displayed

• A FROM clause, which identifies the table containing the columns that are listed in the
SELECT clause

In the syntax:

SELECT Is a list of one or more columns

* Selects all columns

DISTINCT Suppresses duplicates

column|expression Selects the named column or the expression

alias Gives different headings to the selected columns

FROM table Specifies the table containing the columns

Note: Throughout this course, the words keyword, clause, and statement are used as follows:

• A keyword refers to an individual SQL element—for example, SELECT and FROM are
keywords.

• A clause is a part of a SQL statement—for example, SELECT employee_id,
last_name, and so on.

• A statement is a combination of two or more clauses—for example, SELECT * FROM
employees.

Oracle Database 12c: SQL Workshop I 2 - 5

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

Basic SELECT Statement

• SELECT identifies the columns to be displayed.

• FROM identifies the table containing those columns.

SELECT {*|[DISTINCT] column|expression [alias],...}
FROM table;

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 E

ga
bi

 S
ol

ut
io

ns
 u

se
 o

nl
y

TH
ES

E
eK

IT
 M

AT
ER

IA
LS

 A
R

E
FO

R
 Y

O
U

R
 U

SE
 IN

 T
H

IS
 C

LA
SS

R
O

O
M

 O
N

LY
.

C
O

PY
IN

G
 e

KI
T

M
AT

ER
IA

LS
 F

R
O

M
 T

H
IS

 C
O

M
PU

TE
R

 IS
 S

TR
IC

TL
Y

PR
O

H
IB

IT
ED

You can display all columns of data in a table by following the SELECT keyword with an
asterisk (*). In the example in the slide, the DEPARTMENTS table contains four columns:
DEPARTMENT_ID, DEPARTMENT_NAME, MANAGER_ID, and LOCATION_ID. The table
contains eight rows, one for each department.

You can also display all columns in the table by listing them after the SELECT keyword. For
example, the following SQL statement (like the example in the slide) displays all columns and
all rows of the DEPARTMENTS table:

SELECT department_id, department_name, manager_id, location_id
FROM departments;

Note: In SQL Developer, you can enter your SQL statement in a SQL Worksheet and click the
“Execute Statement” icon or press [F9] to execute the statement. The output displayed on the
Results tabbed page appears as shown in the slide.

Oracle Database 12c: SQL Workshop I 2 - 6

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

Selecting All Columns

SELECT *
FROM departments;

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 E

ga
bi

 S
ol

ut
io

ns
 u

se
 o

nl
y

TH
ES

E
eK

IT
 M

AT
ER

IA
LS

 A
R

E
FO

R
 Y

O
U

R
 U

SE
 IN

 T
H

IS
 C

LA
SS

R
O

O
M

 O
N

LY
.

C
O

PY
IN

G
 e

KI
T

M
AT

ER
IA

LS
 F

R
O

M
 T

H
IS

 C
O

M
PU

TE
R

 IS
 S

TR
IC

TL
Y

PR
O

H
IB

IT
ED

You can use the SELECT statement to display specific columns of the table by specifying the
column names, separated by commas. The example in the slide displays all the department
numbers and location numbers from the DEPARTMENTS table.

In the SELECT clause, specify the columns that you want in the order in which you want them
to appear in the output. For example, to display location before department number (from left
to right), you use the following statement:

SELECT location_id, department_id

FROM departments ;

…

Oracle Database 12c: SQL Workshop I 2 - 7

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

Selecting Specific Columns

SELECT department_id, location_id
FROM departments;

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 E

ga
bi

 S
ol

ut
io

ns
 u

se
 o

nl
y

TH
ES

E
eK

IT
 M

AT
ER

IA
LS

 A
R

E
FO

R
 Y

O
U

R
 U

SE
 IN

 T
H

IS
 C

LA
SS

R
O

O
M

 O
N

LY
.

C
O

PY
IN

G
 e

KI
T

M
AT

ER
IA

LS
 F

R
O

M
 T

H
IS

 C
O

M
PU

TE
R

 IS
 S

TR
IC

TL
Y

PR
O

H
IB

IT
ED

Writing SQL Statements

By using the following simple rules and guidelines, you can construct valid statements that
are both easy to read and edit:

• SQL statements are not case sensitive (unless indicated).
• SQL statements can be entered on one or many lines.
• Keywords cannot be split across lines or abbreviated.
• Clauses are usually placed on separate lines for readability and ease of editing.
• Indents should be used to make code more readable.
• Keywords typically are entered in uppercase; all other words, such as table names and

columns names are entered in lowercase.

Executing SQL Statements

In SQL Developer, click the Run Script icon or press [F5] to run the command or commands
in the SQL Worksheet. You can also click the Execute Statement icon or press [F9] to run a
SQL statement in the SQL Worksheet. The Execute Statement icon executes the statement at
the mouse pointer in the Enter SQL Statement box while the Run Script icon executes all the
statements in the Enter SQL Statement box. The Execute Statement icon displays the output
of the query on the Results tabbed page, whereas the Run Script icon emulates the SQL*Plus
display and shows the output on the Script Output tabbed page.

In SQL*Plus, terminate the SQL statement with a semicolon, and then press [Enter] to run the
command.

Oracle Database 12c: SQL Workshop I 2 - 8

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

Writing SQL Statements

• SQL statements are not case sensitive.

• SQL statements can be entered on one or more lines.

• Keywords cannot be abbreviated or split across lines.

• Clauses are usually placed on separate lines.

• Indents are used to enhance readability.

• In SQL Developer, SQL statements can be optionally
terminated by a semicolon (;). Semicolons are required
when you execute multiple SQL statements.

• In SQL*Plus, you are required to end each SQL statement
with a semicolon (;).

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 E

ga
bi

 S
ol

ut
io

ns
 u

se
 o

nl
y

TH
ES

E
eK

IT
 M

AT
ER

IA
LS

 A
R

E
FO

R
 Y

O
U

R
 U

SE
 IN

 T
H

IS
 C

LA
SS

R
O

O
M

 O
N

LY
.

C
O

PY
IN

G
 e

KI
T

M
AT

ER
IA

LS
 F

R
O

M
 T

H
IS

 C
O

M
PU

TE
R

 IS
 S

TR
IC

TL
Y

PR
O

H
IB

IT
ED

In SQL Developer, column headings are displayed in uppercase and are left-aligned.
SELECT last_name, hire_date, salary
FROM employees;

. . .

You can override the column heading display with an alias. Column aliases are covered later
in this lesson.

Oracle Database 12c: SQL Workshop I 2 - 9

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

Column Heading Defaults

• SQL Developer:
– Default heading alignment: Left-aligned

– Default heading display: Uppercase

• SQL*Plus:
– Character and Date column headings are left-aligned.

– Number column headings are right-aligned.

– Default heading display: Uppercase

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 E

ga
bi

 S
ol

ut
io

ns
 u

se
 o

nl
y

TH
ES

E
eK

IT
 M

AT
ER

IA
LS

 A
R

E
FO

R
 Y

O
U

R
 U

SE
 IN

 T
H

IS
 C

LA
SS

R
O

O
M

 O
N

LY
.

C
O

PY
IN

G
 e

KI
T

M
AT

ER
IA

LS
 F

R
O

M
 T

H
IS

 C
O

M
PU

TE
R

 IS
 S

TR
IC

TL
Y

PR
O

H
IB

IT
ED

Oracle Database 12c: SQL Workshop I 2 - 10

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

Lesson Agenda

• Capabilities of SQL SELECT Statements

• Arithmetic expressions and NULL values in the SELECT
statement

• Column Aliases

• Use of concatenation operator, literal character strings,
alternative quote operator, and the DISTINCT keyword

• DESCRIBE command

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 E

ga
bi

 S
ol

ut
io

ns
 u

se
 o

nl
y

TH
ES

E
eK

IT
 M

AT
ER

IA
LS

 A
R

E
FO

R
 Y

O
U

R
 U

SE
 IN

 T
H

IS
 C

LA
SS

R
O

O
M

 O
N

LY
.

C
O

PY
IN

G
 e

KI
T

M
AT

ER
IA

LS
 F

R
O

M
 T

H
IS

 C
O

M
PU

TE
R

 IS
 S

TR
IC

TL
Y

PR
O

H
IB

IT
ED

You may need to modify the way in which data is displayed, or you may want to perform
calculations, or look at what-if scenarios. All these are possible using arithmetic expressions.
An arithmetic expression can contain column names, constant numeric values, and the
arithmetic operators.

Arithmetic Operators

The slide lists the arithmetic operators that are available in SQL. You can use arithmetic
operators in any clause of a SQL statement (except the FROM clause).

Note: With the DATE and TIMESTAMP data types, you can use the addition and subtraction
operators only.

Oracle Database 12c: SQL Workshop I 2 - 11

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

Arithmetic Expressions

Create expressions with number and date data by using
arithmetic operators.

Multiply*

Divide/

Subtract-

Add+

DescriptionOperator

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 E

ga
bi

 S
ol

ut
io

ns
 u

se
 o

nl
y

TH
ES

E
eK

IT
 M

AT
ER

IA
LS

 A
R

E
FO

R
 Y

O
U

R
 U

SE
 IN

 T
H

IS
 C

LA
SS

R
O

O
M

 O
N

LY
.

C
O

PY
IN

G
 e

KI
T

M
AT

ER
IA

LS
 F

R
O

M
 T

H
IS

 C
O

M
PU

TE
R

 IS
 S

TR
IC

TL
Y

PR
O

H
IB

IT
ED

The example in the slide uses the addition operator to calculate a salary increase of $300 for
all employees. The slide also displays a SALARY+300 column in the output.

Note that the resultant calculated column, SALARY+300, is not a new column in the
EMPLOYEES table; it is for display only. By default, the name of a new column comes from the
calculation that generated it—in this case, salary+300.

Note: The Oracle server ignores blank spaces before and after the arithmetic operator.

Operator Precedence

If an arithmetic expression contains more than one operator, multiplication and division are
evaluated first. If operators in an expression are of the same priority, evaluation is done from
left to right.

You can use parentheses to force the expression that is enclosed by the parentheses to be
evaluated first.

Rules of Precedence

• Multiplication and division occur before addition and subtraction.

• Operators of the same priority are evaluated from left to right.

• Parentheses are used to override the default precedence or to clarify the statement.

Oracle Database 12c: SQL Workshop I 2 - 12

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

SELECT last_name, salary, salary + 300
FROM employees;

Using Arithmetic Operators

…

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 E

ga
bi

 S
ol

ut
io

ns
 u

se
 o

nl
y

TH
ES

E
eK

IT
 M

AT
ER

IA
LS

 A
R

E
FO

R
 Y

O
U

R
 U

SE
 IN

 T
H

IS
 C

LA
SS

R
O

O
M

 O
N

LY
.

C
O

PY
IN

G
 e

KI
T

M
AT

ER
IA

LS
 F

R
O

M
 T

H
IS

 C
O

M
PU

TE
R

 IS
 S

TR
IC

TL
Y

PR
O

H
IB

IT
ED

The first example in the slide displays the last name, salary, and annual compensation of
employees. It calculates the annual compensation by multiplying the monthly salary with 12,
plus a one-time bonus of $100. Note that multiplication is performed before addition.

Note: Use parentheses to reinforce the standard order of precedence and to improve clarity.
For example, the expression in the slide can be written as (12*salary)+100 with no
change in the result.

Using Parentheses

You can override the rules of precedence by using parentheses to specify the desired order in
which the operators are to be executed.

The second example in the slide displays the last name, salary, and annual compensation of
employees. It calculates the annual compensation as follows: adding a monthly bonus of $100
to the monthly salary, and then multiplying that subtotal with 12. Because of the parentheses,
addition takes priority over multiplication.

Oracle Database 12c: SQL Workshop I 2 - 13

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

SELECT last_name, salary, 12*salary+100
FROM employees;

Operator Precedence

SELECT last_name, salary, 12*(salary+100)
FROM employees;

1

2

…

…

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 E

ga
bi

 S
ol

ut
io

ns
 u

se
 o

nl
y

TH
ES

E
eK

IT
 M

AT
ER

IA
LS

 A
R

E
FO

R
 Y

O
U

R
 U

SE
 IN

 T
H

IS
 C

LA
SS

R
O

O
M

 O
N

LY
.

C
O

PY
IN

G
 e

KI
T

M
AT

ER
IA

LS
 F

R
O

M
 T

H
IS

 C
O

M
PU

TE
R

 IS
 S

TR
IC

TL
Y

PR
O

H
IB

IT
ED

If a row lacks a data value for a particular column, that value is said to be null or to contain a
null.

Null is a value that is unavailable, unassigned, unknown, or inapplicable. Null is not the same
as zero or a blank space. Zero is a number and blank space is a character.

Columns of any data type can contain nulls. However, some constraints (NOT NULL and
PRIMARY KEY) prevent nulls from being used in the column.

In the COMMISSION_PCT column in the EMPLOYEES table, notice that only a sales manager
or sales representative can earn a commission. Other employees are not entitled to earn
commissions. A null represents that fact.

Note: By default, SQL Developer uses the literal, (null), to identify null values. However, you
can set it to something more relevant to you. To do so, select Preferences from the Tools
menu. In the Preferences dialog box, expand the Database node. Click Advanced Parameters
and on the right pane, for the “Display Null value As,” enter the appropriate value.

Oracle Database 12c: SQL Workshop I 2 - 14

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

Defining a Null Value

• Null is a value that is unavailable, unassigned, unknown,
or inapplicable.

• Null is not the same as zero or a blank space.

SELECT last_name, job_id, salary, commission_pct
FROM employees;

…

…

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 E

ga
bi

 S
ol

ut
io

ns
 u

se
 o

nl
y

TH
ES

E
eK

IT
 M

AT
ER

IA
LS

 A
R

E
FO

R
 Y

O
U

R
 U

SE
 IN

 T
H

IS
 C

LA
SS

R
O

O
M

 O
N

LY
.

C
O

PY
IN

G
 e

KI
T

M
AT

ER
IA

LS
 F

R
O

M
 T

H
IS

 C
O

M
PU

TE
R

 IS
 S

TR
IC

TL
Y

PR
O

H
IB

IT
ED

If any column value in an arithmetic expression is null, the result is null. For example, if you
attempt to perform division by zero, you get an error. However, if you divide a number by null,
the result is a null or unknown.

In the example in the slide, employee Whalen does not get any commission. Because the
COMMISSION_PCT column in the arithmetic expression is null, the result is null.

For more information, see the section on “Basic Elements of Oracle SQL” in Oracle Database
SQL Language Reference for 12c database.

Oracle Database 12c: SQL Workshop I 2 - 15

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

SELECT last_name, 12*salary*commission_pct
FROM employees;

Null Values in Arithmetic Expressions

Arithmetic expressions containing a null value evaluate to null.

…

…

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 E

ga
bi

 S
ol

ut
io

ns
 u

se
 o

nl
y

TH
ES

E
eK

IT
 M

AT
ER

IA
LS

 A
R

E
FO

R
 Y

O
U

R
 U

SE
 IN

 T
H

IS
 C

LA
SS

R
O

O
M

 O
N

LY
.

C
O

PY
IN

G
 e

KI
T

M
AT

ER
IA

LS
 F

R
O

M
 T

H
IS

 C
O

M
PU

TE
R

 IS
 S

TR
IC

TL
Y

PR
O

H
IB

IT
ED

Oracle Database 12c: SQL Workshop I 2 - 16

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

Lesson Agenda

• Capabilities of SQL SELECT Statements

• Arithmetic expressions and NULL values in the SELECT
statement

• Column aliases

• Use of concatenation operator, literal character strings,
alternative quote operator, and the DISTINCT keyword

• DESCRIBE command

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 E

ga
bi

 S
ol

ut
io

ns
 u

se
 o

nl
y

TH
ES

E
eK

IT
 M

AT
ER

IA
LS

 A
R

E
FO

R
 Y

O
U

R
 U

SE
 IN

 T
H

IS
 C

LA
SS

R
O

O
M

 O
N

LY
.

C
O

PY
IN

G
 e

KI
T

M
AT

ER
IA

LS
 F

R
O

M
 T

H
IS

 C
O

M
PU

TE
R

 IS
 S

TR
IC

TL
Y

PR
O

H
IB

IT
ED

When displaying the result of a query, SQL Developer normally uses the name of the selected
column as the column heading. This heading may not be descriptive and, therefore, may be
difficult to understand. You can change a column heading by using a column alias.

Specify the alias after the column in the SELECT list using blank space as a separator. By
default, alias headings appear in uppercase. If the alias contains spaces or special characters
(such as # or $), or if it is case-sensitive, enclose the alias in double quotation marks (“ “).

Oracle Database 12c: SQL Workshop I 2 - 17

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

Defining a Column Alias

A column alias:

• Renames a column heading

• Is useful with calculations

• Immediately follows the column name (There can also be
the optional AS keyword between the column name and
the alias.)

• Requires double quotation marks if it contains spaces or
special characters, or if it is case-sensitive

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 E

ga
bi

 S
ol

ut
io

ns
 u

se
 o

nl
y

TH
ES

E
eK

IT
 M

AT
ER

IA
LS

 A
R

E
FO

R
 Y

O
U

R
 U

SE
 IN

 T
H

IS
 C

LA
SS

R
O

O
M

 O
N

LY
.

C
O

PY
IN

G
 e

KI
T

M
AT

ER
IA

LS
 F

R
O

M
 T

H
IS

 C
O

M
PU

TE
R

 IS
 S

TR
IC

TL
Y

PR
O

H
IB

IT
ED

The first example displays the names and the commission percentages of all the employees.
Note that the optional AS keyword has been used before the column alias name. The result of
the query is the same whether the AS keyword is used or not. Also, note that the SQL
statement has the column aliases, name and comm, in lowercase, whereas the result of the
query displays the column headings in uppercase. As mentioned in the preceding slide,
column headings appear in uppercase by default.

The second example displays the last names and annual salaries of all the employees.
Because Annual Salary contains a space, it has been enclosed in double quotation marks.
Note that the column heading in the output is exactly the same as the column alias.

Note: An alias cannot be referenced in the column list that contains the alias definition.

Oracle Database 12c: SQL Workshop I 2 - 18

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

Using Column Aliases

SELECT last_name "Name" , salary*12 "Annual Salary"
FROM employees;

SELECT last_name AS name, commission_pct comm
FROM employees;

…

…

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 E

ga
bi

 S
ol

ut
io

ns
 u

se
 o

nl
y

TH
ES

E
eK

IT
 M

AT
ER

IA
LS

 A
R

E
FO

R
 Y

O
U

R
 U

SE
 IN

 T
H

IS
 C

LA
SS

R
O

O
M

 O
N

LY
.

C
O

PY
IN

G
 e

KI
T

M
AT

ER
IA

LS
 F

R
O

M
 T

H
IS

 C
O

M
PU

TE
R

 IS
 S

TR
IC

TL
Y

PR
O

H
IB

IT
ED

Oracle Database 12c: SQL Workshop I 2 - 19

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

Lesson Agenda

• Capabilities of SQL SELECT Statements

• Arithmetic Expressions and NULL values in SELECT
statement

• Column Aliases

• Use of concatenation operator, literal character strings,
alternative quote operator, and the DISTINCT keyword

• DESCRIBE command

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 E

ga
bi

 S
ol

ut
io

ns
 u

se
 o

nl
y

TH
ES

E
eK

IT
 M

AT
ER

IA
LS

 A
R

E
FO

R
 Y

O
U

R
 U

SE
 IN

 T
H

IS
 C

LA
SS

R
O

O
M

 O
N

LY
.

C
O

PY
IN

G
 e

KI
T

M
AT

ER
IA

LS
 F

R
O

M
 T

H
IS

 C
O

M
PU

TE
R

 IS
 S

TR
IC

TL
Y

PR
O

H
IB

IT
ED

You can link columns to other columns, arithmetic expressions, or constant values to create a
character expression by using the concatenation operator (||). Columns on either side of the
operator are combined to make a single output column.

In the example, LAST_NAME and JOB_ID are concatenated, and given the alias Employees.
Note that the last name of the employee and the job code are combined to make a single
output column.

The AS keyword before the alias name makes the SELECT clause easier to read.

Null Values with the Concatenation Operator

If you concatenate a null value with a character string, the result is a character string.
LAST_NAME || NULL results in LAST_NAME.

Note: You can also concatenate date expressions with other expressions or columns.

Oracle Database 12c: SQL Workshop I 2 - 20

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

Concatenation Operator

A concatenation operator:

• Links columns or character strings to other columns

• Is represented by two vertical bars (||)

• Creates a resultant column that is a character expression

SELECT last_name||job_id AS "Employees"
FROM employees;

…

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 E

ga
bi

 S
ol

ut
io

ns
 u

se
 o

nl
y

TH
ES

E
eK

IT
 M

AT
ER

IA
LS

 A
R

E
FO

R
 Y

O
U

R
 U

SE
 IN

 T
H

IS
 C

LA
SS

R
O

O
M

 O
N

LY
.

C
O

PY
IN

G
 e

KI
T

M
AT

ER
IA

LS
 F

R
O

M
 T

H
IS

 C
O

M
PU

TE
R

 IS
 S

TR
IC

TL
Y

PR
O

H
IB

IT
ED

A literal is a character, a number, or a date that is included in the SELECT list. It is not a
column name or a column alias. It is printed for each row returned. Literal strings of free-
format text can be included in the query result and are treated the same as a column in the
SELECT list.

The date and character literals must be enclosed within single quotation marks (''); number
literals need not be enclosed in a similar manner.

Oracle Database 12c: SQL Workshop I 2 - 21

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

Literal Character Strings

• A literal is a character, a number, or a date that is included
in the SELECT statement.

• Date and character literal values must be enclosed within
single quotation marks.

• Each character string is output once for each row returned.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 E

ga
bi

 S
ol

ut
io

ns
 u

se
 o

nl
y

TH
ES

E
eK

IT
 M

AT
ER

IA
LS

 A
R

E
FO

R
 Y

O
U

R
 U

SE
 IN

 T
H

IS
 C

LA
SS

R
O

O
M

 O
N

LY
.

C
O

PY
IN

G
 e

KI
T

M
AT

ER
IA

LS
 F

R
O

M
 T

H
IS

 C
O

M
PU

TE
R

 IS
 S

TR
IC

TL
Y

PR
O

H
IB

IT
ED

The example in the slide displays the last names and job codes of all employees. The column
has the heading Employee Details. Note the spaces between the single quotation marks in
the SELECT statement. The spaces improve the readability of the output.

In the following example, the last name and salary for each employee are concatenated with a
literal, to give the returned rows more meaning:

SELECT last_name ||': 1 Month salary = '||salary Monthly

FROM employees;

…

Oracle Database 12c: SQL Workshop I 2 - 22

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

Using Literal Character Strings

SELECT last_name ||' is a '||job_id
AS "Employee Details"

FROM employees;

…

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 E

ga
bi

 S
ol

ut
io

ns
 u

se
 o

nl
y

TH
ES

E
eK

IT
 M

AT
ER

IA
LS

 A
R

E
FO

R
 Y

O
U

R
 U

SE
 IN

 T
H

IS
 C

LA
SS

R
O

O
M

 O
N

LY
.

C
O

PY
IN

G
 e

KI
T

M
AT

ER
IA

LS
 F

R
O

M
 T

H
IS

 C
O

M
PU

TE
R

 IS
 S

TR
IC

TL
Y

PR
O

H
IB

IT
ED

Many SQL statements use character literals in expressions or conditions. If the literal itself
contains a single quotation mark, you can use the quote (q) operator and select your own
quotation mark delimiter.

You can choose any convenient delimiter, single-byte or multibyte, or any of the following
character pairs: [], { }, (), or < >.

In the example shown, the string contains a single quotation mark, which is normally
interpreted as a delimiter of a character string. By using the q operator, however, brackets []
are used as the quotation mark delimiters. The string between the brackets delimiters is
interpreted as a literal character string.

Oracle Database 12c: SQL Workshop I 2 - 23

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

Alternative Quote (q) Operator

• Specify your own quotation mark delimiter.

• Select any delimiter.

• Increase readability and usability.

SELECT department_name || q'[Department's Manager Id:]'
|| manager_id
AS "Department and Manager"

FROM departments;

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 E

ga
bi

 S
ol

ut
io

ns
 u

se
 o

nl
y

TH
ES

E
eK

IT
 M

AT
ER

IA
LS

 A
R

E
FO

R
 Y

O
U

R
 U

SE
 IN

 T
H

IS
 C

LA
SS

R
O

O
M

 O
N

LY
.

C
O

PY
IN

G
 e

KI
T

M
AT

ER
IA

LS
 F

R
O

M
 T

H
IS

 C
O

M
PU

TE
R

 IS
 S

TR
IC

TL
Y

PR
O

H
IB

IT
ED

Unless you indicate otherwise, SQL displays the results of a query without eliminating the
duplicate rows. The first example in the slide displays all the department numbers from the
EMPLOYEES table. Note that the department numbers are repeated.

To eliminate duplicate rows in the result, include the DISTINCT keyword in the SELECT
clause immediately after the SELECT keyword. In the second example in the slide, the
EMPLOYEES table actually contains 20 rows, but there are only seven unique department
numbers in the table.

You can specify multiple columns after the DISTINCT qualifier. The DISTINCT qualifier
affects all the selected columns, and the result is every distinct combination of the columns.

SELECT DISTINCT department_id, job_id

FROM employees;

Note: You may also specify the keyword UNIQUE, which is a synonym for the keyword
DISTINCT.

…

Oracle Database 12c: SQL Workshop I 2 - 24

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

Duplicate Rows

The default display of queries is all rows, including duplicate
rows.

SELECT department_id
FROM employees;

SELECT DISTINCT department_id
FROM employees;

…

1 2

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 E

ga
bi

 S
ol

ut
io

ns
 u

se
 o

nl
y

TH
ES

E
eK

IT
 M

AT
ER

IA
LS

 A
R

E
FO

R
 Y

O
U

R
 U

SE
 IN

 T
H

IS
 C

LA
SS

R
O

O
M

 O
N

LY
.

C
O

PY
IN

G
 e

KI
T

M
AT

ER
IA

LS
 F

R
O

M
 T

H
IS

 C
O

M
PU

TE
R

 IS
 S

TR
IC

TL
Y

PR
O

H
IB

IT
ED

Oracle Database 12c: SQL Workshop I 2 - 25

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

Lesson Agenda

• Capabilities of SQL SELECT Statements

• Arithmetic expressions and NULL values in the SELECT
statement

• Column aliases

• Use of concatenation operator, literal character strings,
alternative quote operator, and the DISTINCT keyword

• DESCRIBE command

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 E

ga
bi

 S
ol

ut
io

ns
 u

se
 o

nl
y

TH
ES

E
eK

IT
 M

AT
ER

IA
LS

 A
R

E
FO

R
 Y

O
U

R
 U

SE
 IN

 T
H

IS
 C

LA
SS

R
O

O
M

 O
N

LY
.

C
O

PY
IN

G
 e

KI
T

M
AT

ER
IA

LS
 F

R
O

M
 T

H
IS

 C
O

M
PU

TE
R

 IS
 S

TR
IC

TL
Y

PR
O

H
IB

IT
ED

You can display the structure of a table by using the DESCRIBE command. The command
displays the column names and the data types, and it shows you whether a column must
contain data (that is, whether the column has a NOT NULL constraint).

In the syntax, table name is the name of any existing table, view, or synonym that is
accessible to the user.

Using the SQL Developer GUI interface, you can select the table in the Connections tree and
use the Columns tab to view the table structure.

Note: DESCRIBE is a SQL *PLUS command supported by SQL Developer. It is abbreviated
as DESC.

Oracle Database 12c: SQL Workshop I 2 - 26

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

Displaying the Table Structure

• Use the DESCRIBE command to display the structure of a
table.

• Or, select the table in the Connections tree and use the
Columns tab to view the table structure.

DESC[RIBE] tablename

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 E

ga
bi

 S
ol

ut
io

ns
 u

se
 o

nl
y

TH
ES

E
eK

IT
 M

AT
ER

IA
LS

 A
R

E
FO

R
 Y

O
U

R
 U

SE
 IN

 T
H

IS
 C

LA
SS

R
O

O
M

 O
N

LY
.

C
O

PY
IN

G
 e

KI
T

M
AT

ER
IA

LS
 F

R
O

M
 T

H
IS

 C
O

M
PU

TE
R

 IS
 S

TR
IC

TL
Y

PR
O

H
IB

IT
ED

The example in the slide displays information about the structure of the EMPLOYEES table
using the DESCRIBE command.

In the resulting display, Null indicates that the values for this column may be unknown. NOT
NULL indicates that a column must contain data. Type displays the data type for a column.

The data types are described in the following table:

Data Type Description

NUMBER(p,s)

Number value having a maximum number of digits p, with s
digits to the right of the decimal point

VARCHAR2(s) Variable-length character value of maximum size s
DATE Date and time value between January 1, 4712 B.C. and

December 31, A.D. 9999

Oracle Database 12c: SQL Workshop I 2 - 27

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

Using the DESCRIBE Command

DESCRIBE employees

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 E

ga
bi

 S
ol

ut
io

ns
 u

se
 o

nl
y

TH
ES

E
eK

IT
 M

AT
ER

IA
LS

 A
R

E
FO

R
 Y

O
U

R
 U

SE
 IN

 T
H

IS
 C

LA
SS

R
O

O
M

 O
N

LY
.

C
O

PY
IN

G
 e

KI
T

M
AT

ER
IA

LS
 F

R
O

M
 T

H
IS

 C
O

M
PU

TE
R

 IS
 S

TR
IC

TL
Y

PR
O

H
IB

IT
ED

Answer: b, c

Oracle Database 12c: SQL Workshop I 2 - 28

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

Quiz

Identify the two SELECT statements that execute successfully.
a. SELECT first_name, last_name, job_id, salary*12

AS Yearly Sal
FROM employees;

b. SELECT first_name, last_name, job_id, salary*12
"yearly sal"
FROM employees;

c. SELECT first_name, last_name, job_id, salary AS
"yearly sal"
FROM employees;

d. SELECT first_name+last_name AS name, job_Id,
salary*12 yearly sal
FROM employees;

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 E

ga
bi

 S
ol

ut
io

ns
 u

se
 o

nl
y

TH
ES

E
eK

IT
 M

AT
ER

IA
LS

 A
R

E
FO

R
 Y

O
U

R
 U

SE
 IN

 T
H

IS
 C

LA
SS

R
O

O
M

 O
N

LY
.

C
O

PY
IN

G
 e

KI
T

M
AT

ER
IA

LS
 F

R
O

M
 T

H
IS

 C
O

M
PU

TE
R

 IS
 S

TR
IC

TL
Y

PR
O

H
IB

IT
ED

In this lesson, you should have learned how to retrieve data from a database table with the
SELECT statement.

SELECT *|{[DISTINCT] column [alias],...}

FROM table;

In the syntax:

SELECT Is a list of one or more columns

* Selects all columns

DISTINCT Suppresses duplicates

column|expression Selects the named column or the expression

alias Gives different headings to the selected columns

FROM table Specifies the table containing the columns

Oracle Database 12c: SQL Workshop I 2 - 29

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

Summary

In this lesson, you should have learned how to:
• Write a SELECT statement that:

– Returns all rows and columns from a table

– Returns specified columns from a table

– Uses column aliases to display more descriptive column
headings

SELECT *|{[DISTINCT] column|expression [alias],...}
FROM table;

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 E

ga
bi

 S
ol

ut
io

ns
 u

se
 o

nl
y

TH
ES

E
eK

IT
 M

AT
ER

IA
LS

 A
R

E
FO

R
 Y

O
U

R
 U

SE
 IN

 T
H

IS
 C

LA
SS

R
O

O
M

 O
N

LY
.

C
O

PY
IN

G
 e

KI
T

M
AT

ER
IA

LS
 F

R
O

M
 T

H
IS

 C
O

M
PU

TE
R

 IS
 S

TR
IC

TL
Y

PR
O

H
IB

IT
ED

In this practice, you write simple SELECT queries. The queries cover most of the SELECT
clauses and operations that you learned in this lesson.

Oracle Database 12c: SQL Workshop I 2 - 30

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

Practice 2: Overview

This practice covers the following topics:

• Selecting all data from different tables

• Describing the structure of tables

• Performing arithmetic calculations and specifying column
names

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 E

ga
bi

 S
ol

ut
io

ns
 u

se
 o

nl
y

TH
ES

E
eK

IT
 M

AT
ER

IA
LS

 A
R

E
FO

R
 Y

O
U

R
 U

SE
 IN

 T
H

IS
 C

LA
SS

R
O

O
M

 O
N

LY
.

C
O

PY
IN

G
 e

KI
T

M
AT

ER
IA

LS
 F

R
O

M
 T

H
IS

 C
O

M
PU

TE
R

 IS
 S

TR
IC

TL
Y

PR
O

H
IB

IT
ED

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

Restricting and Sorting Data

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 E

ga
bi

 S
ol

ut
io

ns
 u

se
 o

nl
y

TH
ES

E
eK

IT
 M

AT
ER

IA
LS

 A
R

E
FO

R
 Y

O
U

R
 U

SE
 IN

 T
H

IS
 C

LA
SS

R
O

O
M

 O
N

LY
.

C
O

PY
IN

G
 e

KI
T

M
AT

ER
IA

LS
 F

R
O

M
 T

H
IS

 C
O

M
PU

TE
R

 IS
 S

TR
IC

TL
Y

PR
O

H
IB

IT
ED

When retrieving data from the database, you may need to do the following:

• Restrict the rows of data that are displayed

• Specify the order in which the rows are displayed

This lesson explains the SQL statements that you use to perform the actions listed above.

Oracle Database 12c: SQL Workshop I 3 - 2

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

Objectives

After completing this lesson, you should be able to do the
following:

• Limit the rows that are retrieved by a query

• Sort the rows that are retrieved by a query

• Use ampersand substitution to restrict and sort output at
run time

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 E

ga
bi

 S
ol

ut
io

ns
 u

se
 o

nl
y

TH
ES

E
eK

IT
 M

AT
ER

IA
LS

 A
R

E
FO

R
 Y

O
U

R
 U

SE
 IN

 T
H

IS
 C

LA
SS

R
O

O
M

 O
N

LY
.

C
O

PY
IN

G
 e

KI
T

M
AT

ER
IA

LS
 F

R
O

M
 T

H
IS

 C
O

M
PU

TE
R

 IS
 S

TR
IC

TL
Y

PR
O

H
IB

IT
ED

Oracle Database 12c: SQL Workshop I 3 - 3

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

Lesson Agenda

• Limiting rows with:
– The WHERE clause

– The comparison operators using =, <=, BETWEEN, IN, LIKE,
and NULL conditions

– Logical conditions using AND, OR, and NOT operators

• Rules of precedence for operators in an expression
• Sorting rows using the ORDER BY clause

• SQL Row limiting clause in a query

• Substitution variables
• DEFINE and VERIFY commands

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 E

ga
bi

 S
ol

ut
io

ns
 u

se
 o

nl
y

TH
ES

E
eK

IT
 M

AT
ER

IA
LS

 A
R

E
FO

R
 Y

O
U

R
 U

SE
 IN

 T
H

IS
 C

LA
SS

R
O

O
M

 O
N

LY
.

C
O

PY
IN

G
 e

KI
T

M
AT

ER
IA

LS
 F

R
O

M
 T

H
IS

 C
O

M
PU

TE
R

 IS
 S

TR
IC

TL
Y

PR
O

H
IB

IT
ED

In the slide example, assume that you want to display all the employees in department 90.
The rows with a value of 90 in the DEPARTMENT_ID column are the only ones that are
returned. This method of restriction is the basis of the WHERE clause in SQL.

Oracle Database 12c: SQL Workshop I 3 - 4

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

Limiting Rows Using a Selection

“retrieve all
employees in
department 90”

EMPLOYEES

…

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 E

ga
bi

 S
ol

ut
io

ns
 u

se
 o

nl
y

TH
ES

E
eK

IT
 M

AT
ER

IA
LS

 A
R

E
FO

R
 Y

O
U

R
 U

SE
 IN

 T
H

IS
 C

LA
SS

R
O

O
M

 O
N

LY
.

C
O

PY
IN

G
 e

KI
T

M
AT

ER
IA

LS
 F

R
O

M
 T

H
IS

 C
O

M
PU

TE
R

 IS
 S

TR
IC

TL
Y

PR
O

H
IB

IT
ED

You can restrict the rows that are returned from the query by using the WHERE clause. A
WHERE clause contains a condition that must be met and it directly follows the FROM clause. If
the condition is true, the row meeting the condition is returned.

In the syntax:
WHERE Restricts the query to rows that meet a condition

logical expression Is composed of column names,
constants, and a comparison operator. It specifies
a combination of one or more expressions and
Boolean operators, and returns a value of TRUE,
FALSE, or UNKNOWN.

The WHERE clause can compare values in columns, literal, arithmetic expressions, or
functions. It consists of three elements:

• Column name
• Comparison condition
• Column name, constant, or list of values

Oracle Database 12c: SQL Workshop I 3 - 5

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

Limiting the Rows That Are Selected

• Restrict the rows that are returned by using the WHERE
clause:

• The WHERE clause follows the FROM clause.

SELECT *|{[DISTINCT] column|expression [alias],...}
FROM table
[WHERE logical expression(s)];

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 E

ga
bi

 S
ol

ut
io

ns
 u

se
 o

nl
y

TH
ES

E
eK

IT
 M

AT
ER

IA
LS

 A
R

E
FO

R
 Y

O
U

R
 U

SE
 IN

 T
H

IS
 C

LA
SS

R
O

O
M

 O
N

LY
.

C
O

PY
IN

G
 e

KI
T

M
AT

ER
IA

LS
 F

R
O

M
 T

H
IS

 C
O

M
PU

TE
R

 IS
 S

TR
IC

TL
Y

PR
O

H
IB

IT
ED

In the example, the SELECT statement retrieves the employee ID, last name, job ID, and
department number of all employees who are in department 90.

Note: You cannot use column alias in the WHERE clause.

Oracle Database 12c: SQL Workshop I 3 - 6

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

SELECT employee_id, last_name, job_id, department_id
FROM employees
WHERE department_id = 90 ;

Using the WHERE Clause

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 E

ga
bi

 S
ol

ut
io

ns
 u

se
 o

nl
y

TH
ES

E
eK

IT
 M

AT
ER

IA
LS

 A
R

E
FO

R
 Y

O
U

R
 U

SE
 IN

 T
H

IS
 C

LA
SS

R
O

O
M

 O
N

LY
.

C
O

PY
IN

G
 e

KI
T

M
AT

ER
IA

LS
 F

R
O

M
 T

H
IS

 C
O

M
PU

TE
R

 IS
 S

TR
IC

TL
Y

PR
O

H
IB

IT
ED

Character strings and dates in the WHERE clause must be enclosed with single quotation
marks (''). Number constants, however, need not be enclosed with single quotation marks.

All character searches are case-sensitive. In the following example, no rows are returned
because the EMPLOYEES table stores all the last names in mixed case:

SELECT last_name, job_id, department_id

FROM employees

WHERE last_name = 'WHALEN';

Oracle databases store dates in an internal numeric format, representing the century, year,
month, day, hours, minutes, and seconds. The default date display is in the DD-MON-RR
format.

Note: For details about the RR format and about changing the default date format, see the
lesson titled “Using Single-Row Functions to Customize Output.” Also, you learn about the
use of single-row functions such as UPPER and LOWER to override the case sensitivity in the
same lesson.

Oracle Database 12c: SQL Workshop I 3 - 7

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

SELECT last_name, job_id, department_id
FROM employees
WHERE last_name = 'Whalen' ;

Character Strings and Dates

• Character strings and date values are enclosed with single
quotation marks.

• Character values are case-sensitive and date values are
format-sensitive.

• The default date display format is DD-MON-RR.

SELECT last_name
FROM employees
WHERE hire_date = '17-OCT-03' ;

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 E

ga
bi

 S
ol

ut
io

ns
 u

se
 o

nl
y

TH
ES

E
eK

IT
 M

AT
ER

IA
LS

 A
R

E
FO

R
 Y

O
U

R
 U

SE
 IN

 T
H

IS
 C

LA
SS

R
O

O
M

 O
N

LY
.

C
O

PY
IN

G
 e

KI
T

M
AT

ER
IA

LS
 F

R
O

M
 T

H
IS

 C
O

M
PU

TE
R

 IS
 S

TR
IC

TL
Y

PR
O

H
IB

IT
ED

Comparison operators are used in conditions that compare one expression with another value
or expression. They are used in the WHERE clause in the following format:

Syntax
... WHERE expr operator value

Example
... WHERE hire_date = '01-JAN-05‘

... WHERE salary >= 6000

... WHERE last_name = 'Smith'

Remember, an alias cannot be used in the WHERE clause.

Note: The symbols != and ^= can also represent the not equal to condition

Oracle Database 12c: SQL Workshop I 3 - 8

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

Comparison Operators

Not equal to<>

Between two values (inclusive)BETWEEN
...AND...

Match any of a list of values IN(set)

Match a character pattern LIKE

Is a null value IS NULL

Less than<

Less than or equal to<=

Greater than or equal to>=

Greater than>

Equal to=

MeaningOperator

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 E

ga
bi

 S
ol

ut
io

ns
 u

se
 o

nl
y

TH
ES

E
eK

IT
 M

AT
ER

IA
LS

 A
R

E
FO

R
 Y

O
U

R
 U

SE
 IN

 T
H

IS
 C

LA
SS

R
O

O
M

 O
N

LY
.

C
O

PY
IN

G
 e

KI
T

M
AT

ER
IA

LS
 F

R
O

M
 T

H
IS

 C
O

M
PU

TE
R

 IS
 S

TR
IC

TL
Y

PR
O

H
IB

IT
ED

In the example, the SELECT statement retrieves the last name and salary from the
EMPLOYEES table for any employee whose salary is less than or equal to $3,000. Note that
there is an explicit value supplied to the WHERE clause. The explicit value of 3000 is
compared to the salary value in the SALARY column of the EMPLOYEES table.

Oracle Database 12c: SQL Workshop I 3 - 9

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

SELECT last_name, salary
FROM employees
WHERE salary <= 3000 ;

Using Comparison Operators

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 E

ga
bi

 S
ol

ut
io

ns
 u

se
 o

nl
y

TH
ES

E
eK

IT
 M

AT
ER

IA
LS

 A
R

E
FO

R
 Y

O
U

R
 U

SE
 IN

 T
H

IS
 C

LA
SS

R
O

O
M

 O
N

LY
.

C
O

PY
IN

G
 e

KI
T

M
AT

ER
IA

LS
 F

R
O

M
 T

H
IS

 C
O

M
PU

TE
R

 IS
 S

TR
IC

TL
Y

PR
O

H
IB

IT
ED

You can display rows based on a range of values using the BETWEEN operator. The range
that you specify contains a lower limit and an upper limit.

The SELECT statement in the slide returns rows from the EMPLOYEES table for any employee
whose salary is between $2,500 and $3,500.
Values that are specified with the BETWEEN operator are inclusive. However, you must specify
the lower limit first.

You can also use the BETWEEN operator on character values:
SELECT last_name
FROM employees
WHERE last_name BETWEEN 'King' AND 'Smith';

10

Oracle Database 12c: SQL Workshop I 3 - 10

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

SELECT last_name, salary
FROM employees
WHERE salary BETWEEN 2500 AND 3500 ;

Range Conditions Using the BETWEEN Operator

Use the BETWEEN operator to display rows based on a range of
values:

Lower limit Upper limit

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 E

ga
bi

 S
ol

ut
io

ns
 u

se
 o

nl
y

TH
ES

E
eK

IT
 M

AT
ER

IA
LS

 A
R

E
FO

R
 Y

O
U

R
 U

SE
 IN

 T
H

IS
 C

LA
SS

R
O

O
M

 O
N

LY
.

C
O

PY
IN

G
 e

KI
T

M
AT

ER
IA

LS
 F

R
O

M
 T

H
IS

 C
O

M
PU

TE
R

 IS
 S

TR
IC

TL
Y

PR
O

H
IB

IT
ED

To test for values in a specified set of values, use the IN operator. The condition defined
using the IN operator is also known as the membership condition.

The slide example displays employee numbers, last names, salaries, and manager’s
employee numbers for all the employees whose manager’s employee number is 100, 101, or
201.

Note: The set of values can be specified in any random order—for example, (201,100,101).

The IN operator can be used with any data type. The following example returns a row from
the EMPLOYEES table, for any employee whose last name is included in the list of names in
the WHERE clause:

SELECT employee_id, manager_id, department_id

FROM employees

WHERE last_name IN ('Hartstein', 'Vargas');

If characters or dates are used in a list, they must be enclosed with single quotation marks
('').

Note: The IN operator is internally evaluated by the Oracle server as a set of OR conditions,
such as a=value1 or a=value2 or a=value3. Therefore, using the IN operator has no
performance benefits and is used only for logical simplicity.

Oracle Database 12c: SQL Workshop I 3 - 11

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

SELECT employee_id, last_name, salary, manager_id
FROM employees
WHERE manager_id IN (100, 101, 201) ;

Membership Condition Using the IN Operator

Use the IN operator to test for values in a list:

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 E

ga
bi

 S
ol

ut
io

ns
 u

se
 o

nl
y

TH
ES

E
eK

IT
 M

AT
ER

IA
LS

 A
R

E
FO

R
 Y

O
U

R
 U

SE
 IN

 T
H

IS
 C

LA
SS

R
O

O
M

 O
N

LY
.

C
O

PY
IN

G
 e

KI
T

M
AT

ER
IA

LS
 F

R
O

M
 T

H
IS

 C
O

M
PU

TE
R

 IS
 S

TR
IC

TL
Y

PR
O

H
IB

IT
ED

You may not always know the exact value to search for. You can select rows that match a
character pattern by using the LIKE operator. The character pattern–matching operation is
referred to as a wildcard search. Two symbols can be used to construct the search string.

The SELECT statement in the slide returns the first name from the EMPLOYEES table for any
employee whose first name begins with the letter “S.” Note the uppercase “S.” Consequently,
names beginning with a lowercase “s” are not returned.

The LIKE operator can be used as a shortcut for some BETWEEN comparisons. The following
example displays the last names and hire dates of all employees who joined between
January, 2005 and December, 2005:

SELECT last_name, hire_date

FROM employees

WHERE hire_date LIKE '%05';

Symbol Description

% Represents any sequence of zero or more characters

_ Represents any single character

Oracle Database 12c: SQL Workshop I 3 - 12

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

SELECT first_name
FROM employees
WHERE first_name LIKE 'S%' ;

Pattern Matching Using the LIKE Operator

• Use the LIKE operator to perform wildcard searches of
valid search string values.

• Search conditions can contain either literal characters or
numbers:
– % denotes zero or more characters.

– _ denotes one character.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 E

ga
bi

 S
ol

ut
io

ns
 u

se
 o

nl
y

TH
ES

E
eK

IT
 M

AT
ER

IA
LS

 A
R

E
FO

R
 Y

O
U

R
 U

SE
 IN

 T
H

IS
 C

LA
SS

R
O

O
M

 O
N

LY
.

C
O

PY
IN

G
 e

KI
T

M
AT

ER
IA

LS
 F

R
O

M
 T

H
IS

 C
O

M
PU

TE
R

 IS
 S

TR
IC

TL
Y

PR
O

H
IB

IT
ED

The % and _ symbols can be used in any combination with literal characters. The example in
the slide displays the names of all employees whose last names have the letter “o” as the
second character.

ESCAPE Identifier

When you need to have an exact match for the actual % and _ characters, use the ESCAPE
identifier. This option specifies what the escape character is. If you want to search for strings
that contain SA_, you can use the following SQL statement:

SELECT employee_id, last_name, job_id

FROM employees WHERE job_id LIKE '%SA_%' ESCAPE '\';

The ESCAPE identifier identifies the backslash (\) as the escape character. In the SQL
statement, the escape character precedes the underscore (_). This causes the Oracle server
to interpret the underscore literally.

Oracle Database 12c: SQL Workshop I 3 - 13

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

Combining Wildcard Characters

• You can combine the two wildcard characters (%, _) with
literal characters for pattern matching:

• You can use the ESCAPE identifier to search for the actual
% and _ symbols.

SELECT last_name
FROM employees
WHERE last_name LIKE '_o%' ;

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 E

ga
bi

 S
ol

ut
io

ns
 u

se
 o

nl
y

TH
ES

E
eK

IT
 M

AT
ER

IA
LS

 A
R

E
FO

R
 Y

O
U

R
 U

SE
 IN

 T
H

IS
 C

LA
SS

R
O

O
M

 O
N

LY
.

C
O

PY
IN

G
 e

KI
T

M
AT

ER
IA

LS
 F

R
O

M
 T

H
IS

 C
O

M
PU

TE
R

 IS
 S

TR
IC

TL
Y

PR
O

H
IB

IT
ED

…

The NULL conditions include the IS NULL condition and the IS NOT NULL condition.

The IS NULL condition tests for nulls. A null value means that the value is unavailable,
unassigned, unknown, or inapplicable. Therefore, you cannot test with =, because a null
cannot be equal or unequal to any value. The example in the slide retrieves the last names
and managers of all employees who do not have a manager.

Here is another example: To display the last name, job ID, and commission for all
employees who are not entitled to receive a commission, use the following SQL statement:

SELECT last_name, job_id, commission_pct

FROM employees

WHERE commission_pct IS NULL;

Oracle Database 12c: SQL Workshop I 3 - 14

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

SELECT last_name, manager_id
FROM employees
WHERE manager_id IS NULL ;

Using the NULL Conditions

Test for nulls with the IS NULL operator.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 E

ga
bi

 S
ol

ut
io

ns
 u

se
 o

nl
y

TH
ES

E
eK

IT
 M

AT
ER

IA
LS

 A
R

E
FO

R
 Y

O
U

R
 U

SE
 IN

 T
H

IS
 C

LA
SS

R
O

O
M

 O
N

LY
.

C
O

PY
IN

G
 e

KI
T

M
AT

ER
IA

LS
 F

R
O

M
 T

H
IS

 C
O

M
PU

TE
R

 IS
 S

TR
IC

TL
Y

PR
O

H
IB

IT
ED

A logical condition combines the result of two component conditions to produce a single result
based on those conditions or it inverts the result of a single condition. A row is returned only if
the overall result of the condition is true.

Three logical operators are available in SQL:
• AND

• OR

• NOT

All the examples so far have specified only one condition in the WHERE clause. You can use
several conditions in a single WHERE clause using the AND and OR operators.

Oracle Database 12c: SQL Workshop I 3 - 15

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

Defining Conditions Using the Logical Operators

Returns TRUE if the condition is falseNOT

Returns TRUE if either component condition
is true

OR

Returns TRUE if both component conditions
are true

AND

MeaningOperator

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 E

ga
bi

 S
ol

ut
io

ns
 u

se
 o

nl
y

TH
ES

E
eK

IT
 M

AT
ER

IA
LS

 A
R

E
FO

R
 Y

O
U

R
 U

SE
 IN

 T
H

IS
 C

LA
SS

R
O

O
M

 O
N

LY
.

C
O

PY
IN

G
 e

KI
T

M
AT

ER
IA

LS
 F

R
O

M
 T

H
IS

 C
O

M
PU

TE
R

 IS
 S

TR
IC

TL
Y

PR
O

H
IB

IT
ED

In the example, both the component conditions must be true for any record to be selected.
Therefore, only those employees who have a job title that contains the string ‘MAN’ and earn
$10,000 or more are selected.

All character searches are case-sensitive, that is, no rows are returned if ‘MAN’ is not
uppercase. Further, character strings must be enclosed with quotation marks.

AND Truth Table

The following table shows the results of combining two expressions with AND:

AND TRUE FALSE NULL

TRUE TRUE FALSE NULL

FALSE FALSE FALSE FALSE

NULL NULL FALSE NULL

Oracle Database 12c: SQL Workshop I 3 - 16

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

Using the AND Operator

AND requires both the component conditions to be true:

SELECT employee_id, last_name, job_id, salary
FROM employees
WHERE salary >= 10000
AND job_id LIKE '%MAN%' ;

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 E

ga
bi

 S
ol

ut
io

ns
 u

se
 o

nl
y

TH
ES

E
eK

IT
 M

AT
ER

IA
LS

 A
R

E
FO

R
 Y

O
U

R
 U

SE
 IN

 T
H

IS
 C

LA
SS

R
O

O
M

 O
N

LY
.

C
O

PY
IN

G
 e

KI
T

M
AT

ER
IA

LS
 F

R
O

M
 T

H
IS

 C
O

M
PU

TE
R

 IS
 S

TR
IC

TL
Y

PR
O

H
IB

IT
ED

In the example, either component condition can be true for any record to be selected.
Therefore, any employee who has a job ID that contains the string ‘MAN’ or earns $10,000 or
more is selected.

OR Truth Table

The following table shows the results of combining two expressions with OR:

OR TRUE FALSE NULL

TRUE TRUE TRUE TRUE

FALSE TRUE FALSE NULL

NULL TRUE NULL NULL

Oracle Database 12c: SQL Workshop I 3 - 17

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

SELECT employee_id, last_name, job_id, salary
FROM employees
WHERE salary >= 10000
OR job_id LIKE '%MAN%' ;

Using the OR Operator

OR requires either component condition to be true:

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 E

ga
bi

 S
ol

ut
io

ns
 u

se
 o

nl
y

TH
ES

E
eK

IT
 M

AT
ER

IA
LS

 A
R

E
FO

R
 Y

O
U

R
 U

SE
 IN

 T
H

IS
 C

LA
SS

R
O

O
M

 O
N

LY
.

C
O

PY
IN

G
 e

KI
T

M
AT

ER
IA

LS
 F

R
O

M
 T

H
IS

 C
O

M
PU

TE
R

 IS
 S

TR
IC

TL
Y

PR
O

H
IB

IT
ED

The example in the slide displays the last name and job ID of all employees whose job ID is
not IT_PROG, ST_CLERK, or SA_REP.

NOT Truth Table

The following table shows the result of applying the NOT operator to a condition:

Note: The NOT operator can also be used with other SQL operators, such as BETWEEN, LIKE,
and NULL.

... WHERE job_id NOT IN ('AC_ACCOUNT', 'AD_VP')

... WHERE salary NOT BETWEEN 10000 AND 15000

... WHERE last_name NOT LIKE '%A%'

... WHERE commission_pct IS NOT NULL

NOT TRUE FALSE NULL

 FALSE TRUE NULL

Oracle Database 12c: SQL Workshop I 3 - 18

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

SELECT last_name, job_id
FROM employees
WHERE job_id

NOT IN ('IT_PROG', 'ST_CLERK', 'SA_REP') ;

Using the NOT Operator

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 E

ga
bi

 S
ol

ut
io

ns
 u

se
 o

nl
y

TH
ES

E
eK

IT
 M

AT
ER

IA
LS

 A
R

E
FO

R
 Y

O
U

R
 U

SE
 IN

 T
H

IS
 C

LA
SS

R
O

O
M

 O
N

LY
.

C
O

PY
IN

G
 e

KI
T

M
AT

ER
IA

LS
 F

R
O

M
 T

H
IS

 C
O

M
PU

TE
R

 IS
 S

TR
IC

TL
Y

PR
O

H
IB

IT
ED

Oracle Database 12c: SQL Workshop I 3 - 19

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

Lesson Agenda

• Limiting rows with:
– The WHERE clause

– The comparison conditions using =, <=, BETWEEN, IN, LIKE,
and NULL operators

– Logical conditions using AND, OR, and NOT operators

• Rules of precedence for operators in an expression
• Sorting rows using the ORDER BY clause

• SQL Row limiting clause in a query

• Substitution variables
• DEFINE and VERIFY commands

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 E

ga
bi

 S
ol

ut
io

ns
 u

se
 o

nl
y

TH
ES

E
eK

IT
 M

AT
ER

IA
LS

 A
R

E
FO

R
 Y

O
U

R
 U

SE
 IN

 T
H

IS
 C

LA
SS

R
O

O
M

 O
N

LY
.

C
O

PY
IN

G
 e

KI
T

M
AT

ER
IA

LS
 F

R
O

M
 T

H
IS

 C
O

M
PU

TE
R

 IS
 S

TR
IC

TL
Y

PR
O

H
IB

IT
ED

The rules of precedence determine the order in which expressions are evaluated and
calculated. The table in the slide lists the default order of precedence. However, you can
override the default order by using parentheses around the expressions that you want to
calculate first.

Oracle Database 12c: SQL Workshop I 3 - 20

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

Rules of Precedence

You can use parentheses to override rules of precedence.

Not equal to6

NOT logical operator7

AND logical operator8

OR logical operator9

IS [NOT] NULL, LIKE, [NOT] IN4

[NOT] BETWEEN5

Comparison conditions3

Concatenation operator2

Arithmetic operators1

MeaningOperator

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 E

ga
bi

 S
ol

ut
io

ns
 u

se
 o

nl
y

TH
ES

E
eK

IT
 M

AT
ER

IA
LS

 A
R

E
FO

R
 Y

O
U

R
 U

SE
 IN

 T
H

IS
 C

LA
SS

R
O

O
M

 O
N

LY
.

C
O

PY
IN

G
 e

KI
T

M
AT

ER
IA

LS
 F

R
O

M
 T

H
IS

 C
O

M
PU

TE
R

 IS
 S

TR
IC

TL
Y

PR
O

H
IB

IT
ED

1. Precedence of the AND Operator: Example

In this example, there are two conditions:

- The first condition is that the job ID is AD_PRES and the salary is greater than
$15,000.

- The second condition is that the job ID is SA_REP.

Therefore, the SELECT statement reads as follows:

“Select the row if an employee is a president and earns more than $15,000, or if the
employee is a sales representative.”

2. Using Parentheses: Example

In this example, there are two conditions:

- The first condition is that the job ID is AD_PRES or SA_REP.

- The second condition is that the salary is greater than $15,000.
Therefore, the SELECT statement reads as follows:

“Select the row if an employee is a president or a sales representative, and if the
employee earns more than $15,000.”

Oracle Database 12c: SQL Workshop I 3 - 21

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

SELECT last_name, job_id, salary
FROM employees
WHERE job_id = 'SA_REP'
OR job_id = 'AD_PRES'
AND salary > 15000;

Rules of Precedence

SELECT last_name, job_id, salary
FROM employees
WHERE (job_id = 'SA_REP'
OR job_id = 'AD_PRES')
AND salary > 15000;

1

2

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 E

ga
bi

 S
ol

ut
io

ns
 u

se
 o

nl
y

TH
ES

E
eK

IT
 M

AT
ER

IA
LS

 A
R

E
FO

R
 Y

O
U

R
 U

SE
 IN

 T
H

IS
 C

LA
SS

R
O

O
M

 O
N

LY
.

C
O

PY
IN

G
 e

KI
T

M
AT

ER
IA

LS
 F

R
O

M
 T

H
IS

 C
O

M
PU

TE
R

 IS
 S

TR
IC

TL
Y

PR
O

H
IB

IT
ED

Oracle Database 12c: SQL Workshop I 3 - 22

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

Lesson Agenda

• Limiting rows with:
– The WHERE clause

– The comparison conditions using =, <=, BETWEEN, IN, LIKE,
and NULL operators

– Logical conditions using AND, OR, and NOT operators

• Rules of precedence for operators in an expression
• Sorting rows using the ORDER BY clause

• SQL Row limiting clause in a query

• Substitution variables
• DEFINE and VERIFY commands

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 E

ga
bi

 S
ol

ut
io

ns
 u

se
 o

nl
y

TH
ES

E
eK

IT
 M

AT
ER

IA
LS

 A
R

E
FO

R
 Y

O
U

R
 U

SE
 IN

 T
H

IS
 C

LA
SS

R
O

O
M

 O
N

LY
.

C
O

PY
IN

G
 e

KI
T

M
AT

ER
IA

LS
 F

R
O

M
 T

H
IS

 C
O

M
PU

TE
R

 IS
 S

TR
IC

TL
Y

PR
O

H
IB

IT
ED

The order of rows that are returned in a query result is undefined. The ORDER BY clause can
be used to sort the rows. However, if you use the ORDER BY clause, it must be the last clause
of the SQL statement. Further, you can specify an expression, an alias, or a column position
as the sort condition.

Syntax
SELECT expr
FROM table
[WHERE condition(s)]
[ORDER BY {column, expr, numeric_position} [ASC|DESC]];

In the syntax:
ORDER BY specifies the order in which the retrieved rows are displayed
ASC orders the rows in ascending order (This is the default order.)
DESC orders the rows in descending order

If the ORDER BY clause is not used, the sort order is undefined, and the Oracle server may not
fetch rows in the same order for the same query twice. Use the ORDER BY clause to display
the rows in a specific order.
Note: Use the keywords NULLS FIRST or NULLS LAST to specify whether returned rows
containing null values should appear first or last in the ordering sequence.

Oracle Database 12c: SQL Workshop I 3 - 23

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

Using the ORDER BY Clause

• Sort the retrieved rows with the ORDER BY clause:
– ASC: Ascending order, default

– DESC: Descending order

• The ORDER BY clause comes last in the SELECT
statement:

SELECT last_name, job_id, department_id, hire_date
FROM employees
ORDER BY hire_date ;

…

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 E

ga
bi

 S
ol

ut
io

ns
 u

se
 o

nl
y

TH
ES

E
eK

IT
 M

AT
ER

IA
LS

 A
R

E
FO

R
 Y

O
U

R
 U

SE
 IN

 T
H

IS
 C

LA
SS

R
O

O
M

 O
N

LY
.

C
O

PY
IN

G
 e

KI
T

M
AT

ER
IA

LS
 F

R
O

M
 T

H
IS

 C
O

M
PU

TE
R

 IS
 S

TR
IC

TL
Y

PR
O

H
IB

IT
ED

The default sort order is ascending:

• Numeric values are displayed with the lowest values first (for example, 1 to 999).

• Date values are displayed with the earliest value first (for example, 01-JAN-92 before
01-JAN-95).

• Character values are displayed in the alphabetical order (for example, “A” first and “Z”
last).

• Null values are displayed last for ascending sequences and first for descending
sequences.

• You can also sort by a column that is not in the SELECT list.

Examples

1. To reverse the order in which the rows are displayed, specify the DESC keyword after
the column name in the ORDER BY clause. The example in the slide sorts the result by
the most recently hired employee.

2. You can also use a column alias in the ORDER BY clause. The slide example sorts the
data by annual salary.

Note: The DESC keyword used here for sorting in descending order should not be confused
with the DESC keyword used to describe table structures.

Oracle Database 12c: SQL Workshop I 3 - 24

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

Sorting

• Sorting in descending order:

• Sorting by column alias:

SELECT last_name, job_id, department_id, hire_date
FROM employees
ORDER BY hire_date DESC ;

SELECT employee_id, last_name, salary*12 annsal
FROM employees
ORDER BY annsal ;

1

2

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 E

ga
bi

 S
ol

ut
io

ns
 u

se
 o

nl
y

TH
ES

E
eK

IT
 M

AT
ER

IA
LS

 A
R

E
FO

R
 Y

O
U

R
 U

SE
 IN

 T
H

IS
 C

LA
SS

R
O

O
M

 O
N

LY
.

C
O

PY
IN

G
 e

KI
T

M
AT

ER
IA

LS
 F

R
O

M
 T

H
IS

 C
O

M
PU

TE
R

 IS
 S

TR
IC

TL
Y

PR
O

H
IB

IT
ED

Examples

3. You can sort query results by specifying the numeric position of the column in the
SELECT clause. The example in the slide sorts the result by the department_id as
this column is at the third position in the SELECT clause.

4. You can sort query results by more than one column. The sort limit is the number of
columns in the given table. In the ORDER BY clause, specify the columns and separate
the column names using commas. If you want to reverse the order of a column, specify
DESC after its name. The result of the query example shown in the slide is sorted by
department_id in ascending order and also by salary in descending order.

Oracle Database 12c: SQL Workshop I 3 - 25

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

Sorting

• Sorting by using the column’s numeric position:

• Sorting by multiple columns:

SELECT last_name, job_id, department_id, hire_date
FROM employees
ORDER BY 3;

SELECT last_name, department_id, salary
FROM employees
ORDER BY department_id, salary DESC;

3

4

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 E

ga
bi

 S
ol

ut
io

ns
 u

se
 o

nl
y

TH
ES

E
eK

IT
 M

AT
ER

IA
LS

 A
R

E
FO

R
 Y

O
U

R
 U

SE
 IN

 T
H

IS
 C

LA
SS

R
O

O
M

 O
N

LY
.

C
O

PY
IN

G
 e

KI
T

M
AT

ER
IA

LS
 F

R
O

M
 T

H
IS

 C
O

M
PU

TE
R

 IS
 S

TR
IC

TL
Y

PR
O

H
IB

IT
ED

Oracle Database 12c: SQL Workshop I 3 - 26

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

Lesson Agenda

• Limiting rows with:
– The WHERE clause

– The comparison conditions using =, <=, BETWEEN, IN, LIKE,
and NULL operators

– Logical conditions using AND, OR, and NOT operators

• Rules of precedence for operators in an expression
• Sorting rows using the ORDER BY clause

• SQL Row limiting clause in a query

• Substitution variables
• DEFINE and VERIFY commands

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 E

ga
bi

 S
ol

ut
io

ns
 u

se
 o

nl
y

TH
ES

E
eK

IT
 M

AT
ER

IA
LS

 A
R

E
FO

R
 Y

O
U

R
 U

SE
 IN

 T
H

IS
 C

LA
SS

R
O

O
M

 O
N

LY
.

C
O

PY
IN

G
 e

KI
T

M
AT

ER
IA

LS
 F

R
O

M
 T

H
IS

 C
O

M
PU

TE
R

 IS
 S

TR
IC

TL
Y

PR
O

H
IB

IT
ED

SQL SELECT syntax is enhanced to allow a row_limiting_clause, which limits the
number of rows that are returned in the result set. The row_limiting_clause provides
both easy-to-understand syntax and expressive power. Limiting the number or rows returned
can be valuable for reporting, analysis, data browsing, and other tasks. Queries that order
data and then limit row output are widely used and are often referred to as Top-N queries.

You can specify the number of rows or percentage of rows to return with the FETCH_FIRST
keywords.

You can use the OFFSET keyword to specify that the returned rows begin with a row after the
first row of the full result set. The WITH TIES keyword includes rows with the same ordering
keys as the last row of the row-limited result set (you must specify ORDER BY in the query).
For consistent results, specify the order_by_clause to ensure a deterministic sort order.

The row_limiting_clause follows the ANSI SQL international standard for enhanced
compatibility and easier migration.

Oracle Database 12c: SQL Workshop I 3 - 27

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

SQL Row Limiting Clause

• The row_limiting_clause allows you to limit the rows
that are returned by the query.

• Queries that order data and then limit row output are
widely used and are often referred to as Top-N queries.

• You can specify the number of rows or percentage of rows
to return with the FETCH_FIRST keywords.

• You can use the OFFSET keyword to specify that the
returned rows begin with a row after the first row of the full
result set.

• The WITH TIES keyword includes additional rows with
the same ordering keys as the last row of the
row-limited result set (you must specify
ORDER BY in the query).

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 E

ga
bi

 S
ol

ut
io

ns
 u

se
 o

nl
y

TH
ES

E
eK

IT
 M

AT
ER

IA
LS

 A
R

E
FO

R
 Y

O
U

R
 U

SE
 IN

 T
H

IS
 C

LA
SS

R
O

O
M

 O
N

LY
.

C
O

PY
IN

G
 e

KI
T

M
AT

ER
IA

LS
 F

R
O

M
 T

H
IS

 C
O

M
PU

TE
R

 IS
 S

TR
IC

TL
Y

PR
O

H
IB

IT
ED

You can specify the row_limiting_clause in the SQL SELECT statement by placing it
after the ORDER BY clause. Note that an ORDER BY clause is not required.

OFFSET: Use this clause to specify the number of rows to skip before row limiting begins. The
value for offset must be a number. If you specify a negative number, offset is treated as 0. If
you

specify NULL or a number greater than or equal to the number of rows that are returned by the
query, 0 rows are returned.

ROW | ROWS: Use these keywords interchangeably. They are provided for semantic clarity.

FETCH: Use this clause to specify the number of rows or percentage of rows to return.

FIRST | NEXT: Use these keywords interchangeably. They are provided for semantic
clarity.

row_count | percent PERCENT: Use row_count to specify the number of rows to return. Use
percent PERCENT to specify the percentage of the total number of selected rows to return.
The value for percent must be a number.

ONLY | WITH TIES: Specify ONLY to return exactly the specified number of rows or
percentage of rows. Specify WITH TIES to return all rows that have the same sort keys as
the last row of the row-limited result set (WITH TIES requires an ORDER BY clause).

Oracle Database 12c: SQL Workshop I 3 - 28

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

Using SQL Row Limiting Clause in a Query
Using SQL Row Limiting Clause

You can specify the row_limiting_clause in the SQL
SELECT statement by placing it after the ORDER BY clause.
Syntax:
subquery::=
{ query_block

| subquery { UNION [ALL] | INTERSECT | MINUS }
subquery

[{ UNION [ALL] | INTERSECT | MINUS } subquery]...

| (subquery)

{
[order_by_clause]
[OFFSET offset { ROW | ROWS }]

[FETCH { FIRST | NEXT } [{ row_count | percent PERCENT
}] { ROW | ROWS }

{ ONLY | WITH TIES }]

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 E

ga
bi

 S
ol

ut
io

ns
 u

se
 o

nl
y

TH
ES

E
eK

IT
 M

AT
ER

IA
LS

 A
R

E
FO

R
 Y

O
U

R
 U

SE
 IN

 T
H

IS
 C

LA
SS

R
O

O
M

 O
N

LY
.

C
O

PY
IN

G
 e

KI
T

M
AT

ER
IA

LS
 F

R
O

M
 T

H
IS

 C
O

M
PU

TE
R

 IS
 S

TR
IC

TL
Y

PR
O

H
IB

IT
ED

The first code example returns the five employees with the lowest employee_id.

The second code example returns the five employees with the next set of lowest
employee_id.

Note: If employee_id is assigned sequentially by the date when the employee joined the
organization, these examples give us the top 5 employees and then employees 6-10, all in
terms of seniority.

Oracle Database 12c: SQL Workshop I 3 - 29

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

SQL Row Limiting Clause Example

SELECT employee_id, first_name

FROM employees

ORDER BY employee_id

FETCH FIRST 5 ROWS ONLY;

SELECT employee_id, first_name

FROM employees

ORDER BY employee_id

OFFSET 5 ROWS FETCH NEXT 5 ROWS ONLY;

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 E

ga
bi

 S
ol

ut
io

ns
 u

se
 o

nl
y

TH
ES

E
eK

IT
 M

AT
ER

IA
LS

 A
R

E
FO

R
 Y

O
U

R
 U

SE
 IN

 T
H

IS
 C

LA
SS

R
O

O
M

 O
N

LY
.

C
O

PY
IN

G
 e

KI
T

M
AT

ER
IA

LS
 F

R
O

M
 T

H
IS

 C
O

M
PU

TE
R

 IS
 S

TR
IC

TL
Y

PR
O

H
IB

IT
ED

Oracle Database 12c: SQL Workshop I 3 - 30

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

Lesson Agenda

• Limiting rows with:
– The WHERE clause

– The comparison conditions using =, <=, BETWEEN, IN, LIKE,
and NULL operators

– Logical conditions using AND, OR, and NOT operators

• Rules of precedence for operators in an expression
• Sorting rows using the ORDER BY clause

• SQL Row limiting clause in a query

• Substitution variables
• DEFINE and VERIFY commands

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 E

ga
bi

 S
ol

ut
io

ns
 u

se
 o

nl
y

TH
ES

E
eK

IT
 M

AT
ER

IA
LS

 A
R

E
FO

R
 Y

O
U

R
 U

SE
 IN

 T
H

IS
 C

LA
SS

R
O

O
M

 O
N

LY
.

C
O

PY
IN

G
 e

KI
T

M
AT

ER
IA

LS
 F

R
O

M
 T

H
IS

 C
O

M
PU

TE
R

 IS
 S

TR
IC

TL
Y

PR
O

H
IB

IT
ED

So far, all the SQL statements were executed with predetermined columns, conditions, and
their values. Suppose that you want a query that lists the employees with various jobs and not
just those whose job_ID is SA_REP. You can edit the WHERE clause to provide a different
value each time you run the command, but there is also an easier way.

By using a substitution variable in place of the exact values in the WHERE clause, you can run
the same query for different values.

You can create reports that prompt users to supply their own values to restrict the range of
data returned, by using substitution variables. You can embed substitution variables in a
command file or in a single SQL statement. A variable can be thought of as a container in
which values are temporarily stored. When the statement is run, the stored value is
substituted.

Oracle Database 12c: SQL Workshop I 3 - 31

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

Substitution Variables

... salary = ? …
… department_id = ? …
... last_name = ? ...

I want
to query
different
values.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 E

ga
bi

 S
ol

ut
io

ns
 u

se
 o

nl
y

TH
ES

E
eK

IT
 M

AT
ER

IA
LS

 A
R

E
FO

R
 Y

O
U

R
 U

SE
 IN

 T
H

IS
 C

LA
SS

R
O

O
M

 O
N

LY
.

C
O

PY
IN

G
 e

KI
T

M
AT

ER
IA

LS
 F

R
O

M
 T

H
IS

 C
O

M
PU

TE
R

 IS
 S

TR
IC

TL
Y

PR
O

H
IB

IT
ED

You can use single-ampersand (&) substitution variables to temporarily store values.

You can also predefine variables by using the DEFINE command. DEFINE creates and
assigns a value to a variable.

Restricted Ranges of Data: Examples

• Reporting figures only for the current quarter or specified date range

• Reporting on data relevant only to the user requesting the report

• Displaying personnel only within a given department

Other Interactive Effects

Interactive effects are not restricted to direct user interaction with the WHERE clause. The
same principles can also be used to achieve other goals, such as:

• Obtaining input values from a file rather than from a person

• Passing values from one SQL statement to another

Note: Both SQL Developer and SQL* Plus support substitution variables and the
DEFINE/UNDEFINE commands. Neither SQL Developer nor SQL* Plus support validation
checks (except for data type) on user input. If used in scripts that are deployed to users,
substitution variables can be subverted for SQL injection attacks.

Oracle Database 12c: SQL Workshop I 3 - 32

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

Substitution Variables

• Use substitution variables to:
– Temporarily store values with single-ampersand (&) and

double-ampersand (&&) substitution

• Use substitution variables to supplement the following:
– WHERE conditions

– ORDER BY clauses

– Column expressions

– Table names
– Entire SELECT statements

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 E

ga
bi

 S
ol

ut
io

ns
 u

se
 o

nl
y

TH
ES

E
eK

IT
 M

AT
ER

IA
LS

 A
R

E
FO

R
 Y

O
U

R
 U

SE
 IN

 T
H

IS
 C

LA
SS

R
O

O
M

 O
N

LY
.

C
O

PY
IN

G
 e

KI
T

M
AT

ER
IA

LS
 F

R
O

M
 T

H
IS

 C
O

M
PU

TE
R

 IS
 S

TR
IC

TL
Y

PR
O

H
IB

IT
ED

When running a report, users often want to restrict the data that is returned dynamically.
SQL*Plus or SQL Developer provides this flexibility with user variables. Use an ampersand
(&) to identify each variable in your SQL statement. However, you do not need to define the
value of each variable.

The example in the slide creates a SQL Developer substitution variable for an employee
number. When the statement is executed, SQL Developer prompts the user for an employee
number and then displays the employee number, last name, salary, and department number
for that employee.

With the single ampersand, the user is prompted every time the command is executed if the
variable does not exist.

Notation Description

&user_variable Indicates a variable in a SQL statement; if the variable does
not exist, SQL*Plus or SQL Developer prompts the user for a
value (the new variable is discarded after it is used.)

Oracle Database 12c: SQL Workshop I 3 - 33

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

SELECT employee_id, last_name, salary, department_id
FROM employees
WHERE employee_id = &employee_num ;

Using the Single-Ampersand Substitution
Variable

Use a variable prefixed with an ampersand (&) to prompt the
user for a value:

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 E

ga
bi

 S
ol

ut
io

ns
 u

se
 o

nl
y

TH
ES

E
eK

IT
 M

AT
ER

IA
LS

 A
R

E
FO

R
 Y

O
U

R
 U

SE
 IN

 T
H

IS
 C

LA
SS

R
O

O
M

 O
N

LY
.

C
O

PY
IN

G
 e

KI
T

M
AT

ER
IA

LS
 F

R
O

M
 T

H
IS

 C
O

M
PU

TE
R

 IS
 S

TR
IC

TL
Y

PR
O

H
IB

IT
ED

When SQL Developer detects that the SQL statement contains an ampersand, you are
prompted to enter a value for the substitution variable that is named in the SQL statement.

After you enter a value and click the OK button, the results are displayed in the Results tab of
your SQL Developer session.

Oracle Database 12c: SQL Workshop I 3 - 34

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

Using the Single-Ampersand Substitution
Variable

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 E

ga
bi

 S
ol

ut
io

ns
 u

se
 o

nl
y

TH
ES

E
eK

IT
 M

AT
ER

IA
LS

 A
R

E
FO

R
 Y

O
U

R
 U

SE
 IN

 T
H

IS
 C

LA
SS

R
O

O
M

 O
N

LY
.

C
O

PY
IN

G
 e

KI
T

M
AT

ER
IA

LS
 F

R
O

M
 T

H
IS

 C
O

M
PU

TE
R

 IS
 S

TR
IC

TL
Y

PR
O

H
IB

IT
ED

In a WHERE clause, date and character values must be enclosed with single quotation marks.
The same rule applies to the substitution variables.

Enclose the variable with single quotation marks within the SQL statement itself.

The slide shows a query to retrieve the employee names, department numbers, and annual
salaries of all employees based on the job title value of the SQL Developer substitution
variable.

Oracle Database 12c: SQL Workshop I 3 - 35

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

SELECT last_name, department_id, salary*12
FROM employees
WHERE job_id = '&job_title' ;

Character and Date Values with
Substitution Variables

Use single quotation marks for date and character values:

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 E

ga
bi

 S
ol

ut
io

ns
 u

se
 o

nl
y

TH
ES

E
eK

IT
 M

AT
ER

IA
LS

 A
R

E
FO

R
 Y

O
U

R
 U

SE
 IN

 T
H

IS
 C

LA
SS

R
O

O
M

 O
N

LY
.

C
O

PY
IN

G
 e

KI
T

M
AT

ER
IA

LS
 F

R
O

M
 T

H
IS

 C
O

M
PU

TE
R

 IS
 S

TR
IC

TL
Y

PR
O

H
IB

IT
ED

You can use the substitution variables not only in the WHERE clause of a SQL statement, but
also as substitution for column names, expressions, or text.

Example

The example in the slide displays the employee number, last name, job title, and any other
column that is specified by the user at run time, from the EMPLOYEES table. For each
substitution variable in the SELECT statement, you are prompted to enter a value, and then
click OK to proceed.

If you do not enter a value for the substitution variable, you get an error when you execute the
preceding statement.

Note: A substitution variable can be used anywhere in the SELECT statement, except as the
first word entered at the command prompt.

Oracle Database 12c: SQL Workshop I 3 - 36

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

Specifying Column Names, Expressions, and Text

SELECT employee_id, last_name, job_id,&column_name
FROM employees
WHERE &condition
ORDER BY &order_column ;

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 E

ga
bi

 S
ol

ut
io

ns
 u

se
 o

nl
y

TH
ES

E
eK

IT
 M

AT
ER

IA
LS

 A
R

E
FO

R
 Y

O
U

R
 U

SE
 IN

 T
H

IS
 C

LA
SS

R
O

O
M

 O
N

LY
.

C
O

PY
IN

G
 e

KI
T

M
AT

ER
IA

LS
 F

R
O

M
 T

H
IS

 C
O

M
PU

TE
R

 IS
 S

TR
IC

TL
Y

PR
O

H
IB

IT
ED

You can use the double-ampersand (&&) substitution variable if you want to reuse the variable
value without prompting the user each time. The user sees the prompt for the value only
once. In the example in the slide, the user is asked to give the value for the variable,
column_name, only once. The value that is supplied by the user (department_id) is used
for both display and ordering of data. If you run the query again, you will not be prompted for
the value of the variable.

SQL Developer stores the value that is supplied by using the DEFINE command; it uses it
again whenever you reference the variable name. After a user variable is in place, you need
to use the UNDEFINE command to delete it:

UNDEFINE column_name;

Double-ampersand can also be used with the ACCEPT command. The ACCEPT command
reads a line of input and stores it in a given user variable.

Example

ACCEPT col_name PROMPT 'Please specify the column name:‘

SELECT &&col_name
FROM employees
ORDER BY &col_name;

Oracle Database 12c: SQL Workshop I 3 - 37

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

SELECT employee_id, last_name, job_id, &&column_name
FROM employees
ORDER BY &column_name ;

…

Using the Double-Ampersand
Substitution Variable

Use double ampersand (&&) if you want to reuse the variable
value without prompting the user each time:

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 E

ga
bi

 S
ol

ut
io

ns
 u

se
 o

nl
y

TH
ES

E
eK

IT
 M

AT
ER

IA
LS

 A
R

E
FO

R
 Y

O
U

R
 U

SE
 IN

 T
H

IS
 C

LA
SS

R
O

O
M

 O
N

LY
.

C
O

PY
IN

G
 e

KI
T

M
AT

ER
IA

LS
 F

R
O

M
 T

H
IS

 C
O

M
PU

TE
R

 IS
 S

TR
IC

TL
Y

PR
O

H
IB

IT
ED

Oracle Database 12c: SQL Workshop I 3 - 38

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

Lesson Agenda

• Limiting rows with:
– The WHERE clause

– The comparison conditions using =, <=, BETWEEN, IN, LIKE,
and NULL operators

– Logical conditions using AND, OR, and NOT operators

• SQL Row limiting clause in a query

• Rules of precedence for operators in an expression
• Sorting rows using the ORDER BY clause

• Substitution variables
• DEFINE and VERIFY commands

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 E

ga
bi

 S
ol

ut
io

ns
 u

se
 o

nl
y

TH
ES

E
eK

IT
 M

AT
ER

IA
LS

 A
R

E
FO

R
 Y

O
U

R
 U

SE
 IN

 T
H

IS
 C

LA
SS

R
O

O
M

 O
N

LY
.

C
O

PY
IN

G
 e

KI
T

M
AT

ER
IA

LS
 F

R
O

M
 T

H
IS

 C
O

M
PU

TE
R

 IS
 S

TR
IC

TL
Y

PR
O

H
IB

IT
ED

The example shown creates a substitution variable for an employee number by using the
DEFINE command. At run time, this displays the employee number, name, salary, and
department number for that employee.

Because the variable is created using the SQL Developer DEFINE command, the user is not
prompted to enter a value for the employee number. Instead, the defined variable value is
automatically substituted in the SELECT statement.

The EMPLOYEE_NUM substitution variable is present in the session until the user undefines it
or exits the SQL Developer session.

Oracle Database 12c: SQL Workshop I 3 - 39

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

Using the DEFINE Command

• Use the DEFINE command to create and assign a value to
a variable.

• Use the UNDEFINE command to remove a variable.

DEFINE employee_num = 200

SELECT employee_id, last_name, salary, department_id
FROM employees
WHERE employee_id = &employee_num ;

UNDEFINE employee_num

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 E

ga
bi

 S
ol

ut
io

ns
 u

se
 o

nl
y

TH
ES

E
eK

IT
 M

AT
ER

IA
LS

 A
R

E
FO

R
 Y

O
U

R
 U

SE
 IN

 T
H

IS
 C

LA
SS

R
O

O
M

 O
N

LY
.

C
O

PY
IN

G
 e

KI
T

M
AT

ER
IA

LS
 F

R
O

M
 T

H
IS

 C
O

M
PU

TE
R

 IS
 S

TR
IC

TL
Y

PR
O

H
IB

IT
ED

To confirm the changes in the SQL statement, use the VERIFY command. Setting SET
VERIFY ON forces SQL Developer to display the text of a command after it replaces
substitution variables with values. To see the VERIFY output, you should use the Run Script
(F5) icon in the SQL Worksheet. SQL Developer displays the text of a command after it
replaces substitution variables with values, in the Script Output tab as shown in the slide.

The example in the slide displays the new value of the EMPLOYEE_ID column in the SQL
statement followed by the output.

SQL*Plus System Variables

SQL*Plus uses various system variables that control the working environment. One of the
variables is VERIFY. To obtain a complete list of all the system variables, you can issue the
SHOW ALL command on the SQL*Plus command prompt.

Oracle Database 12c: SQL Workshop I 3 - 40

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

Using the VERIFY Command

Use the VERIFY command to toggle the display of the
substitution variable, both before and after SQL Developer
replaces substitution variables with values:

SET VERIFY ON
SELECT employee_id, last_name, salary
FROM employees
WHERE employee_id = &employee_num;

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 E

ga
bi

 S
ol

ut
io

ns
 u

se
 o

nl
y

TH
ES

E
eK

IT
 M

AT
ER

IA
LS

 A
R

E
FO

R
 Y

O
U

R
 U

SE
 IN

 T
H

IS
 C

LA
SS

R
O

O
M

 O
N

LY
.

C
O

PY
IN

G
 e

KI
T

M
AT

ER
IA

LS
 F

R
O

M
 T

H
IS

 C
O

M
PU

TE
R

 IS
 S

TR
IC

TL
Y

PR
O

H
IB

IT
ED

Answer: a, b, c, f

Oracle Database 12c: SQL Workshop I 3 - 41

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

Quiz

Which four of the following are valid operators for the WHERE
clause?
a. >=

b. IS NULL

c. !=

d. IS LIKE

e. IN BETWEEN

f. <>

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 E

ga
bi

 S
ol

ut
io

ns
 u

se
 o

nl
y

TH
ES

E
eK

IT
 M

AT
ER

IA
LS

 A
R

E
FO

R
 Y

O
U

R
 U

SE
 IN

 T
H

IS
 C

LA
SS

R
O

O
M

 O
N

LY
.

C
O

PY
IN

G
 e

KI
T

M
AT

ER
IA

LS
 F

R
O

M
 T

H
IS

 C
O

M
PU

TE
R

 IS
 S

TR
IC

TL
Y

PR
O

H
IB

IT
ED

In this lesson, you should have learned about restricting and sorting rows that are returned by
the SELECT statement. You should also have learned how to implement various operators
and conditions.

By using the substitution variables, you can add flexibility to your SQL statements. This
enables the queries to prompt for the filter condition for the rows during run time.

Oracle Database 12c: SQL Workshop I 3 - 42

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

In this lesson, you should have learned how to:
• Use the WHERE clause to restrict rows of output:

– Use the comparison conditions
– Use the BETWEEN, IN, LIKE, and NULL operators

– Apply the logical AND, OR, and NOT operators

• Use the ORDER BY clause to sort rows of output:

• Use ampersand substitution to restrict and sort output at
run time

SELECT {*|[DISTINCT] column|expression [alias],...}
FROM table
[WHERE condition(s)]
[ORDER BY {column, expr, alias} [ASC|DESC]] ;

Summary

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 E

ga
bi

 S
ol

ut
io

ns
 u

se
 o

nl
y

TH
ES

E
eK

IT
 M

AT
ER

IA
LS

 A
R

E
FO

R
 Y

O
U

R
 U

SE
 IN

 T
H

IS
 C

LA
SS

R
O

O
M

 O
N

LY
.

C
O

PY
IN

G
 e

KI
T

M
AT

ER
IA

LS
 F

R
O

M
 T

H
IS

 C
O

M
PU

TE
R

 IS
 S

TR
IC

TL
Y

PR
O

H
IB

IT
ED

In this practice, you build more reports, including statements that use the WHERE clause and
the ORDER BY clause. You make the SQL statements more reusable and generic by including
the ampersand substitution.

Oracle Database 12c: SQL Workshop I 3 - 43

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

Practice 3: Overview

This practice covers the following topics:

• Selecting data and changing the order of the rows
that are displayed

• Restricting rows by using the WHERE clause

• Sorting rows by using the ORDER BY clause

• Using substitution variables to add flexibility to your
SQL SELECT statements

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 E

ga
bi

 S
ol

ut
io

ns
 u

se
 o

nl
y

TH
ES

E
eK

IT
 M

AT
ER

IA
LS

 A
R

E
FO

R
 Y

O
U

R
 U

SE
 IN

 T
H

IS
 C

LA
SS

R
O

O
M

 O
N

LY
.

C
O

PY
IN

G
 e

KI
T

M
AT

ER
IA

LS
 F

R
O

M
 T

H
IS

 C
O

M
PU

TE
R

 IS
 S

TR
IC

TL
Y

PR
O

H
IB

IT
ED

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 E

ga
bi

 S
ol

ut
io

ns
 u

se
 o

nl
y

TH
ES

E
eK

IT
 M

AT
ER

IA
LS

 A
R

E
FO

R
 Y

O
U

R
 U

SE
 IN

 T
H

IS
 C

LA
SS

R
O

O
M

 O
N

LY
.

C
O

PY
IN

G
 e

KI
T

M
AT

ER
IA

LS
 F

R
O

M
 T

H
IS

 C
O

M
PU

TE
R

 IS
 S

TR
IC

TL
Y

PR
O

H
IB

IT
ED

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

Using Single-Row Functions to
Customize Output

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 E

ga
bi

 S
ol

ut
io

ns
 u

se
 o

nl
y

TH
ES

E
eK

IT
 M

AT
ER

IA
LS

 A
R

E
FO

R
 Y

O
U

R
 U

SE
 IN

 T
H

IS
 C

LA
SS

R
O

O
M

 O
N

LY
.

C
O

PY
IN

G
 e

KI
T

M
AT

ER
IA

LS
 F

R
O

M
 T

H
IS

 C
O

M
PU

TE
R

 IS
 S

TR
IC

TL
Y

PR
O

H
IB

IT
ED

Functions make the basic query block more powerful, and they are used to manipulate data
values. This is the first of two lessons that explore functions. It focuses on single-row
character, number, and date functions.

Oracle Database 12c: SQL Workshop I 4 - 2

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

Objectives

After completing this lesson, you should be able to do the
following:

• Describe the various types of functions available in SQL
• Use the character, number, and date functions in SELECT

statements

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 E

ga
bi

 S
ol

ut
io

ns
 u

se
 o

nl
y

TH
ES

E
eK

IT
 M

AT
ER

IA
LS

 A
R

E
FO

R
 Y

O
U

R
 U

SE
 IN

 T
H

IS
 C

LA
SS

R
O

O
M

 O
N

LY
.

C
O

PY
IN

G
 e

KI
T

M
AT

ER
IA

LS
 F

R
O

M
 T

H
IS

 C
O

M
PU

TE
R

 IS
 S

TR
IC

TL
Y

PR
O

H
IB

IT
ED

Oracle Database 12c: SQL Workshop I 4 - 3

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

Lesson Agenda

• Single-row SQL functions

• Character functions

• Nesting functions

• Number functions

• Working with dates

• Date functions

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 E

ga
bi

 S
ol

ut
io

ns
 u

se
 o

nl
y

TH
ES

E
eK

IT
 M

AT
ER

IA
LS

 A
R

E
FO

R
 Y

O
U

R
 U

SE
 IN

 T
H

IS
 C

LA
SS

R
O

O
M

 O
N

LY
.

C
O

PY
IN

G
 e

KI
T

M
AT

ER
IA

LS
 F

R
O

M
 T

H
IS

 C
O

M
PU

TE
R

 IS
 S

TR
IC

TL
Y

PR
O

H
IB

IT
ED

Functions are a very powerful feature of SQL. They can be used to do the following:

• Perform calculations on data

• Modify individual data items

• Manipulate output for groups of rows

• Format dates and numbers for display

• Convert column data types

SQL functions sometimes take arguments and always return a value.

Note: If you want to know whether a function is a SQL:2003 compliant function, refer to the
“Oracle Compliance to Core SQL:2003” section in Oracle Database SQL Language
Reference for 10g or 11g database.

Oracle Database 12c: SQL Workshop I 4 - 4

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

SQL Functions

Function

Input

arg 1

arg 2

arg n

Function performs
action

Output

Result
value

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 E

ga
bi

 S
ol

ut
io

ns
 u

se
 o

nl
y

TH
ES

E
eK

IT
 M

AT
ER

IA
LS

 A
R

E
FO

R
 Y

O
U

R
 U

SE
 IN

 T
H

IS
 C

LA
SS

R
O

O
M

 O
N

LY
.

C
O

PY
IN

G
 e

KI
T

M
AT

ER
IA

LS
 F

R
O

M
 T

H
IS

 C
O

M
PU

TE
R

 IS
 S

TR
IC

TL
Y

PR
O

H
IB

IT
ED

There are two types of functions:

• Single-row functions

• Multiple-row functions

Single-Row Functions

These functions operate on single rows only and return one result per row. There are different
types of single-row functions. This lesson covers the following functions:

• Character

• Number

• Date

• Conversion

• General

Multiple-Row Functions

Functions can manipulate groups of rows to give one result per group of rows. These
functions are also known as group functions (covered in the lesson titled “Reporting
Aggregated Data Using the Group Functions”).

Note: For more information and a complete list of available functions and their syntax, see the
“Functions” section in Oracle Database SQL Language Reference for 12c database.

Oracle Database 12c: SQL Workshop I 4 - 5

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

Two Types of SQL Functions

Single-row
functions

Multiple-row
functions

Return one result
per row

Return one result
per set of rows

Functions

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 E

ga
bi

 S
ol

ut
io

ns
 u

se
 o

nl
y

TH
ES

E
eK

IT
 M

AT
ER

IA
LS

 A
R

E
FO

R
 Y

O
U

R
 U

SE
 IN

 T
H

IS
 C

LA
SS

R
O

O
M

 O
N

LY
.

C
O

PY
IN

G
 e

KI
T

M
AT

ER
IA

LS
 F

R
O

M
 T

H
IS

 C
O

M
PU

TE
R

 IS
 S

TR
IC

TL
Y

PR
O

H
IB

IT
ED

Single-row functions are used to manipulate data items. They accept one or more arguments
and return one value for each row that is returned by the query. An argument can be one of
the following:

• User-supplied constant

• Variable value

• Column name

• Expression

Features of single-row functions include:

• Acting on each row that is returned in the query

• Returning one result per row

• Possibly returning a data value of a different type than the one that is referenced

• Possibly expecting one or more arguments

• Can be used in SELECT, WHERE, and ORDER BY clauses; can be nested.

In the syntax:

function_name Is the name of the function

arg1, arg2 Is any argument to be used by the function. This can be
represented by a column name or expression.

Oracle Database 12c: SQL Workshop I 4 - 6

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

Single-Row Functions

Single-row functions:

• Manipulate data items

• Accept arguments and return one value

• Act on each row that is returned

• Return one result per row

• May modify the data type

• Can be nested

• Accept arguments that can be a column or an expression

function_name [(arg1, arg2,...)]

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 E

ga
bi

 S
ol

ut
io

ns
 u

se
 o

nl
y

TH
ES

E
eK

IT
 M

AT
ER

IA
LS

 A
R

E
FO

R
 Y

O
U

R
 U

SE
 IN

 T
H

IS
 C

LA
SS

R
O

O
M

 O
N

LY
.

C
O

PY
IN

G
 e

KI
T

M
AT

ER
IA

LS
 F

R
O

M
 T

H
IS

 C
O

M
PU

TE
R

 IS
 S

TR
IC

TL
Y

PR
O

H
IB

IT
ED

This lesson covers the following single-row functions:

• Character functions: Αccept character input and can return both character and number
values

• Number functions: Accept numeric input and return numeric values

• Date functions: Operate on values of the DATE data type (All date functions return a
value of the DATE data type except the MONTHS_BETWEEN function, which returns a
number.)

The following single-row functions are discussed in the lesson titled “Using Conversion
Functions and Conditional Expressions”:

• Conversion functions: Convert a value from one data type to another

• General functions:
- NVL

- NVL2

- NULLIF

- COALESCE

- CASE

- DECODE

Oracle Database 12c: SQL Workshop I 4 - 7

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

Single-Row Functions

Conversion

Character

Number

Date

General
Single-row
functions

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 E

ga
bi

 S
ol

ut
io

ns
 u

se
 o

nl
y

TH
ES

E
eK

IT
 M

AT
ER

IA
LS

 A
R

E
FO

R
 Y

O
U

R
 U

SE
 IN

 T
H

IS
 C

LA
SS

R
O

O
M

 O
N

LY
.

C
O

PY
IN

G
 e

KI
T

M
AT

ER
IA

LS
 F

R
O

M
 T

H
IS

 C
O

M
PU

TE
R

 IS
 S

TR
IC

TL
Y

PR
O

H
IB

IT
ED

Oracle Database 12c: SQL Workshop I 4 - 8

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

Lesson Agenda

• Single-row SQL functions

• Character functions

• Nesting functions

• Number functions

• Working with dates

• Date functions

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 E

ga
bi

 S
ol

ut
io

ns
 u

se
 o

nl
y

TH
ES

E
eK

IT
 M

AT
ER

IA
LS

 A
R

E
FO

R
 Y

O
U

R
 U

SE
 IN

 T
H

IS
 C

LA
SS

R
O

O
M

 O
N

LY
.

C
O

PY
IN

G
 e

KI
T

M
AT

ER
IA

LS
 F

R
O

M
 T

H
IS

 C
O

M
PU

TE
R

 IS
 S

TR
IC

TL
Y

PR
O

H
IB

IT
ED

Function Purpose

LOWER(column|expression) Converts alpha character values to lowercase

UPPER(column|expression) Converts alpha character values to uppercase

INITCAP(column|expression) Converts alpha character values to uppercase for the
first letter of each word; all other letters in lowercase

CONCAT(column1|expression1,
column2|expression2)

Concatenates the first character value to the second
character value; equivalent to concatenation operator
(||)

SUBSTR(column|expression,m[
,n])

Returns specified characters from character value
starting at character position m, n characters long (If m
is negative, the count starts from the end of the
character value. If n is omitted, all characters to the
end of the string are returned.)

Single-row character functions accept character data as input and can return both character
and numeric values. Character functions can be divided into the following:

• Case-conversion functions

• Character-manipulation functions

Note: The functions discussed in this lesson are only some of the available functions.

Oracle Database 12c: SQL Workshop I 4 - 9

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

Character Functions

Character
functions

LOWER

UPPER

INITCAP

CONCAT

SUBSTR

LENGTH
INSTR

LPAD | RPAD

TRIM

REPLACE

Case-conversion
functions

Character-manipulation
functions

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 E

ga
bi

 S
ol

ut
io

ns
 u

se
 o

nl
y

TH
ES

E
eK

IT
 M

AT
ER

IA
LS

 A
R

E
FO

R
 Y

O
U

R
 U

SE
 IN

 T
H

IS
 C

LA
SS

R
O

O
M

 O
N

LY
.

C
O

PY
IN

G
 e

KI
T

M
AT

ER
IA

LS
 F

R
O

M
 T

H
IS

 C
O

M
PU

TE
R

 IS
 S

TR
IC

TL
Y

PR
O

H
IB

IT
ED

Note: Some of the functions that are fully or partially SQL:2003 compliant are:
• UPPER

• LOWER

• TRIM

• LENGTH

• SUBSTR

• INSTR

For more information, refer to the “Oracle Compliance to Core SQL:2003” section in Oracle
Database SQL Language Reference for 10g or 11g database.

Function Purpose

LENGTH(column|expression) Returns the number of characters in the expression

INSTR(column|expression,
’string’, [,m], [n])

Returns the numeric position of a named string.
Optionally, you can provide a position m to start
searching, and the occurrence n of the string. m and n
default to 1, meaning start the search at the beginning
of the string and report the first occurrence.

LPAD(column|expression, n,
 'string')
RPAD(column|expression, n,
 'string')

Returns an expression left-padded to length of n
characters with a character expression.
Returns an expression right-padded to length of n
characters with a character expression.

TRIM(leading|trailing|both,
trim_character FROM
trim_source)

Enables you to trim leading or trailing characters (or
both) from a character string. If trim_character or
trim_source is a character literal, you must enclose it
in single quotation marks.
This is a feature that is available in Oracle8i and later
versions.

REPLACE(text,
search_string,
replacement_string)

Searches a text expression for a character string and,
if found, replaces it with a specified replacement string

Oracle Database 12c: SQL Workshop I 4 - 10

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 E

ga
bi

 S
ol

ut
io

ns
 u

se
 o

nl
y

TH
ES

E
eK

IT
 M

AT
ER

IA
LS

 A
R

E
FO

R
 Y

O
U

R
 U

SE
 IN

 T
H

IS
 C

LA
SS

R
O

O
M

 O
N

LY
.

C
O

PY
IN

G
 e

KI
T

M
AT

ER
IA

LS
 F

R
O

M
 T

H
IS

 C
O

M
PU

TE
R

 IS
 S

TR
IC

TL
Y

PR
O

H
IB

IT
ED

LOWER, UPPER, and INITCAP are the three case-conversion functions.

• LOWER: Converts mixed-case or uppercase character strings to lowercase

• UPPER: Converts mixed-case or lowercase character strings to uppercase

• INITCAP: Converts the first letter of each word to uppercase and the remaining letters
to lowercase

SELECT 'The job id for '||UPPER(last_name)||' is '

||LOWER(job_id) AS "EMPLOYEE DETAILS"

FROM employees;

…
Oracle Database 12c: SQL Workshop I 4 - 11

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

Case-Conversion Functions

These functions convert the case for character strings:

sql courseLOWER('SQL Course')

Sql CourseINITCAP('SQL Course')

SQL COURSEUPPER('SQL Course')

ResultFunction

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 E

ga
bi

 S
ol

ut
io

ns
 u

se
 o

nl
y

TH
ES

E
eK

IT
 M

AT
ER

IA
LS

 A
R

E
FO

R
 Y

O
U

R
 U

SE
 IN

 T
H

IS
 C

LA
SS

R
O

O
M

 O
N

LY
.

C
O

PY
IN

G
 e

KI
T

M
AT

ER
IA

LS
 F

R
O

M
 T

H
IS

 C
O

M
PU

TE
R

 IS
 S

TR
IC

TL
Y

PR
O

H
IB

IT
ED

The slide example displays the employee number, name, and department number of
employee Higgins.

The WHERE clause of the first SQL statement specifies the employee name as higgins.
Because all the data in the EMPLOYEES table is stored in proper case, the name higgins
does not find a match in the table, and no rows are selected.

The WHERE clause of the second SQL statement specifies that the employee name in the
EMPLOYEES table is compared to higgins, converting the LAST_NAME column to lowercase
for comparison purposes. Because both names are now lowercase, a match is found and one
row is selected. The WHERE clause can be rewritten in the following manner to produce the
same result:

...WHERE last_name = 'Higgins'

The name in the output appears as it was stored in the database. To display the name in
uppercase, use the UPPER function in the SELECT statement.

SELECT employee_id, UPPER(last_name), department_id

FROM employees

WHERE INITCAP(last_name) = 'Higgins

Oracle Database 12c: SQL Workshop I 4 - 12

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

Using Case-Conversion Functions

Display the employee number, name, and department number
for employee Higgins:

SELECT employee_id, last_name, department_id
FROM employees
WHERE LOWER(last_name) = 'higgins';

SELECT employee_id, last_name, department_id
FROM employees
WHERE last_name = 'higgins';

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 E

ga
bi

 S
ol

ut
io

ns
 u

se
 o

nl
y

TH
ES

E
eK

IT
 M

AT
ER

IA
LS

 A
R

E
FO

R
 Y

O
U

R
 U

SE
 IN

 T
H

IS
 C

LA
SS

R
O

O
M

 O
N

LY
.

C
O

PY
IN

G
 e

KI
T

M
AT

ER
IA

LS
 F

R
O

M
 T

H
IS

 C
O

M
PU

TE
R

 IS
 S

TR
IC

TL
Y

PR
O

H
IB

IT
ED

CONCAT, SUBSTR, LENGTH, INSTR, LPAD, RPAD, and TRIM are the character-manipulation
functions that are covered in this lesson.

• CONCAT: Joins values together (You are limited to using two parameters with CONCAT.)

• SUBSTR: Extracts a string of determined length

• LENGTH: Shows the length of a string as a numeric value

• INSTR: Finds the numeric position of a named character

• LPAD: Returns an expression left-padded to the length of n characters with a character
expression

• RPAD: Returns an expression right-padded to the length of n characters with a character
expression

• TRIM: Trims leading or trailing characters (or both) from a character string (If
trim_character or trim_source is a character literal, you must enclose it within
single quotation marks.)

Note: You can use functions such as UPPER and LOWER with ampersand substitution. For
example, use UPPER('&job_title')so that the user does not have to enter the job title in
a specific case.

Oracle Database 12c: SQL Workshop I 4 - 13

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

Character-Manipulation Functions

These functions manipulate character strings:

BLACK and BLUE REPLACE
('JACK and JUE','J','BL')

10LENGTH('HelloWorld')

6INSTR('HelloWorld', 'W')

*****24000LPAD(salary,10,'*')

24000*****RPAD(salary, 10, '*')

HelloWorldCONCAT('Hello', 'World')

elloWorldTRIM('H' FROM 'HelloWorld')

HelloSUBSTR('HelloWorld',1,5)

ResultFunction

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 E

ga
bi

 S
ol

ut
io

ns
 u

se
 o

nl
y

TH
ES

E
eK

IT
 M

AT
ER

IA
LS

 A
R

E
FO

R
 Y

O
U

R
 U

SE
 IN

 T
H

IS
 C

LA
SS

R
O

O
M

 O
N

LY
.

C
O

PY
IN

G
 e

KI
T

M
AT

ER
IA

LS
 F

R
O

M
 T

H
IS

 C
O

M
PU

TE
R

 IS
 S

TR
IC

TL
Y

PR
O

H
IB

IT
ED

The example in the slide displays employee first names and last names joined together, the
length of the employee last name, and the numeric position of the letter “a” in the employee
last name for all employees who have the string, REP, contained in the job ID starting at the
fourth position of the job ID.

Example

Modify the SQL statement in the slide to display the data for those employees whose last
names end with the letter “n.”

SELECT employee_id, CONCAT(first_name, last_name) NAME,

LENGTH (last_name), INSTR(last_name, 'a') "Contains 'a'?"

FROM employees

WHERE SUBSTR(last_name, -1, 1) = 'n';

Oracle Database 12c: SQL Workshop I 4 - 14

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

Using the Character-Manipulation Functions

SELECT employee_id, CONCAT(first_name, last_name) NAME,

job_id, LENGTH (last_name),
INSTR(last_name, 'a') "Contains 'a'?"

FROM employees

WHERE SUBSTR(job_id, 4) = 'REP';

31 2

1

2

3

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 E

ga
bi

 S
ol

ut
io

ns
 u

se
 o

nl
y

TH
ES

E
eK

IT
 M

AT
ER

IA
LS

 A
R

E
FO

R
 Y

O
U

R
 U

SE
 IN

 T
H

IS
 C

LA
SS

R
O

O
M

 O
N

LY
.

C
O

PY
IN

G
 e

KI
T

M
AT

ER
IA

LS
 F

R
O

M
 T

H
IS

 C
O

M
PU

TE
R

 IS
 S

TR
IC

TL
Y

PR
O

H
IB

IT
ED

Oracle Database 12c: SQL Workshop I 4 - 15

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

Lesson Agenda

• Single-row SQL functions

• Character functions

• Nesting functions

• Number functions

• Working with dates

• Date functions

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 E

ga
bi

 S
ol

ut
io

ns
 u

se
 o

nl
y

TH
ES

E
eK

IT
 M

AT
ER

IA
LS

 A
R

E
FO

R
 Y

O
U

R
 U

SE
 IN

 T
H

IS
 C

LA
SS

R
O

O
M

 O
N

LY
.

C
O

PY
IN

G
 e

KI
T

M
AT

ER
IA

LS
 F

R
O

M
 T

H
IS

 C
O

M
PU

TE
R

 IS
 S

TR
IC

TL
Y

PR
O

H
IB

IT
ED

Single-row functions can be nested to any depth. Nested functions are evaluated from the
innermost level to the outermost level. Some examples follow to show you the flexibility of
these functions.

Oracle Database 12c: SQL Workshop I 4 - 16

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

Nesting Functions

• Single-row functions can be nested to any level.

• Nested functions are evaluated from the deepest level to
the least deep level.

F3(F2(F1(col,arg1),arg2),arg3)

Step 1 = Result 1

Step 2 = Result 2

Step 3 = Result 3

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 E

ga
bi

 S
ol

ut
io

ns
 u

se
 o

nl
y

TH
ES

E
eK

IT
 M

AT
ER

IA
LS

 A
R

E
FO

R
 Y

O
U

R
 U

SE
 IN

 T
H

IS
 C

LA
SS

R
O

O
M

 O
N

LY
.

C
O

PY
IN

G
 e

KI
T

M
AT

ER
IA

LS
 F

R
O

M
 T

H
IS

 C
O

M
PU

TE
R

 IS
 S

TR
IC

TL
Y

PR
O

H
IB

IT
ED

The example in the slide displays the last names of employees in department 60. The
evaluation of the SQL statement involves three steps:

1. The inner function retrieves the first eight characters of the last name.
Result1 = SUBSTR (LAST_NAME, 1, 8)

2. The outer function concatenates the result with _US.
Result2 = CONCAT(Result1, '_US')

3. The outermost function converts the results to uppercase.

The entire expression becomes the column heading because no column alias was given.

Example

Display the date of the next Friday that is six months from the hire date. The resulting date
should appear as Friday, July 20th, 2001. Order the results by hire date.

SELECT TO_CHAR(NEXT_DAY(ADD_MONTHS

(hire_date, 6), 'FRIDAY'),

'fmDay, Month ddth, YYYY')

"Next 6 Month Review"

FROM employees

ORDER BY hire_date;

Oracle Database 12c: SQL Workshop I 4 - 17

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

Nesting Functions: Example

SELECT last_name,
UPPER(CONCAT(SUBSTR (LAST_NAME, 1, 8), '_US'))

FROM employees
WHERE department_id = 60;

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 E

ga
bi

 S
ol

ut
io

ns
 u

se
 o

nl
y

TH
ES

E
eK

IT
 M

AT
ER

IA
LS

 A
R

E
FO

R
 Y

O
U

R
 U

SE
 IN

 T
H

IS
 C

LA
SS

R
O

O
M

 O
N

LY
.

C
O

PY
IN

G
 e

KI
T

M
AT

ER
IA

LS
 F

R
O

M
 T

H
IS

 C
O

M
PU

TE
R

 IS
 S

TR
IC

TL
Y

PR
O

H
IB

IT
ED

Oracle Database 12c: SQL Workshop I 4 - 18

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

Lesson Agenda

• Single-row SQL functions

• Character functions

• Nesting functions

• Number functions

• Working with dates

• Date Functions

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 E

ga
bi

 S
ol

ut
io

ns
 u

se
 o

nl
y

TH
ES

E
eK

IT
 M

AT
ER

IA
LS

 A
R

E
FO

R
 Y

O
U

R
 U

SE
 IN

 T
H

IS
 C

LA
SS

R
O

O
M

 O
N

LY
.

C
O

PY
IN

G
 e

KI
T

M
AT

ER
IA

LS
 F

R
O

M
 T

H
IS

 C
O

M
PU

TE
R

 IS
 S

TR
IC

TL
Y

PR
O

H
IB

IT
ED

Numeric functions accept numeric input and return numeric values. This section describes
some of the numeric functions.

Note: This list contains only some of the available numeric functions.

For more information, see the “Numeric Functions” section in Oracle Database SQL
Language Reference for 12c database.

Function Purpose

ROUND(column|expression, n) Rounds the column, expression, or value to n decimal
places or, if n is omitted, no decimal places (If n is
negative, numbers to the left of decimal point are rounded.

TRUNC(column|expression, n) Truncates the column, expression, or value to n decimal
places or, if n is omitted, n defaults to zero

MOD(m,n) Returns the remainder of m divided by n

Oracle Database 12c: SQL Workshop I 4 - 19

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

Numeric Functions

• ROUND: Rounds value to a specified decimal

• TRUNC: Truncates value to a specified decimal

• MOD: Returns remainder of division

100MOD(1600, 300)

45.93ROUND(45.926, 2)

45.92TRUNC(45.926, 2)

ResultFunction

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 E

ga
bi

 S
ol

ut
io

ns
 u

se
 o

nl
y

TH
ES

E
eK

IT
 M

AT
ER

IA
LS

 A
R

E
FO

R
 Y

O
U

R
 U

SE
 IN

 T
H

IS
 C

LA
SS

R
O

O
M

 O
N

LY
.

C
O

PY
IN

G
 e

KI
T

M
AT

ER
IA

LS
 F

R
O

M
 T

H
IS

 C
O

M
PU

TE
R

 IS
 S

TR
IC

TL
Y

PR
O

H
IB

IT
ED

The ROUND function rounds the column, expression, or value to n decimal places. If the
second argument is 0 or is missing, the value is rounded to zero decimal places. If the second
argument is 2, the value is rounded to two decimal places. Conversely, if the second
argument is –2, the value is rounded to two decimal places to the left (rounded to the nearest
unit of 100).

The ROUND function can also be used with date functions. You will see examples later in this
lesson.

DUAL Table

The DUAL table is owned by the user SYS and can be accessed by all users. It contains one
column, DUMMY, and one row with the value X. The DUAL table is useful when you want to
return a value only once (for example, the value of a constant, pseudocolumn, or expression
that is not derived from a table with user data). The DUAL table is generally used for
completeness of the SELECT clause syntax, because both SELECT and FROM clauses are
mandatory, and several calculations do not need to select from the actual tables.

Oracle Database 12c: SQL Workshop I 4 - 20

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

SELECT ROUND(45.923,2), ROUND(45.923,0),
ROUND(45.923,-1)

FROM DUAL;

Using the ROUND Function

DUAL is a public table that you can use to view results
from functions and calculations.

31 2

3

21

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 E

ga
bi

 S
ol

ut
io

ns
 u

se
 o

nl
y

TH
ES

E
eK

IT
 M

AT
ER

IA
LS

 A
R

E
FO

R
 Y

O
U

R
 U

SE
 IN

 T
H

IS
 C

LA
SS

R
O

O
M

 O
N

LY
.

C
O

PY
IN

G
 e

KI
T

M
AT

ER
IA

LS
 F

R
O

M
 T

H
IS

 C
O

M
PU

TE
R

 IS
 S

TR
IC

TL
Y

PR
O

H
IB

IT
ED

The TRUNC function truncates the column, expression, or value to n decimal places.

The TRUNC function works with arguments similar to those of the ROUND function. If the
second argument is 0 or is missing, the value is truncated to zero decimal places. If the
second argument is 2, the value is truncated to two decimal places. Conversely, if the second
argument is –2, the value is truncated to two decimal places to the left. If the second
argument is –1, the value is truncated to one decimal place to the left.

Like the ROUND function, the TRUNC function can be used with date functions.

Oracle Database 12c: SQL Workshop I 4 - 21

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

Using the TRUNC Function

SELECT TRUNC(45.923,2), TRUNC(45.923),
TRUNC(45.923,-1)

FROM DUAL;

31 2

3

21

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 E

ga
bi

 S
ol

ut
io

ns
 u

se
 o

nl
y

TH
ES

E
eK

IT
 M

AT
ER

IA
LS

 A
R

E
FO

R
 Y

O
U

R
 U

SE
 IN

 T
H

IS
 C

LA
SS

R
O

O
M

 O
N

LY
.

C
O

PY
IN

G
 e

KI
T

M
AT

ER
IA

LS
 F

R
O

M
 T

H
IS

 C
O

M
PU

TE
R

 IS
 S

TR
IC

TL
Y

PR
O

H
IB

IT
ED

The MOD function finds the remainder of the first argument divided by the second argument.
The slide example calculates the remainder of the salary after dividing it by 5,000 for all
employees whose job ID is SA_REP.

Note: The MOD function is often used to determine whether a value is odd or even. The MOD
function is also the Oracle hash function.

Oracle Database 12c: SQL Workshop I 4 - 22

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

SELECT last_name, salary, MOD(salary, 5000)
FROM employees
WHERE job_id = 'SA_REP';

Using the MOD Function

For all employees with the job title of Sales Representative,
calculate the remainder of the salary after it is divided by 5,000.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 E

ga
bi

 S
ol

ut
io

ns
 u

se
 o

nl
y

TH
ES

E
eK

IT
 M

AT
ER

IA
LS

 A
R

E
FO

R
 Y

O
U

R
 U

SE
 IN

 T
H

IS
 C

LA
SS

R
O

O
M

 O
N

LY
.

C
O

PY
IN

G
 e

KI
T

M
AT

ER
IA

LS
 F

R
O

M
 T

H
IS

 C
O

M
PU

TE
R

 IS
 S

TR
IC

TL
Y

PR
O

H
IB

IT
ED

Oracle Database 12c: SQL Workshop I 4 - 23

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

Lesson Agenda

• Single-row SQL functions

• Character functions

• Nesting functions

• Number functions

• Working with dates

• Date functions

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 E

ga
bi

 S
ol

ut
io

ns
 u

se
 o

nl
y

TH
ES

E
eK

IT
 M

AT
ER

IA
LS

 A
R

E
FO

R
 Y

O
U

R
 U

SE
 IN

 T
H

IS
 C

LA
SS

R
O

O
M

 O
N

LY
.

C
O

PY
IN

G
 e

KI
T

M
AT

ER
IA

LS
 F

R
O

M
 T

H
IS

 C
O

M
PU

TE
R

 IS
 S

TR
IC

TL
Y

PR
O

H
IB

IT
ED

The Oracle Database stores dates in an internal numeric format, representing the century,
year, month, day, hours, minutes, and seconds.

The default display and input format for any date is DD-MON-RR. Valid Oracle dates are
between January 1, 4712 B.C., and December 31, 9999 A.D.

In the example in the slide, the HIRE_DATE column output is displayed in the default format
DD-MON-RR. However, dates are not stored in the database in this format. All the components
of the date and time are stored. So, although a HIRE_DATE such as 17-JUN-03 is displayed
as day, month, and year, there is also time and century information associated with the date.
The complete data might be June 17, 2003, 5:10:43 PM.

Oracle Database 12c: SQL Workshop I 4 - 24

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

SELECT last_name, hire_date
FROM employees
WHERE hire_date < '01-FEB-08';

Working with Dates

• The Oracle Database stores dates in an internal numeric
format: century, year, month, day, hours, minutes, and
seconds.

• The default date display format is DD-MON-RR.
– Enables you to store 21st-century dates in the 20th century

by specifying only the last two digits of the year

– Enables you to store 20th-century dates in the
21st century in the same way

…

…

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 E

ga
bi

 S
ol

ut
io

ns
 u

se
 o

nl
y

TH
ES

E
eK

IT
 M

AT
ER

IA
LS

 A
R

E
FO

R
 Y

O
U

R
 U

SE
 IN

 T
H

IS
 C

LA
SS

R
O

O
M

 O
N

LY
.

C
O

PY
IN

G
 e

KI
T

M
AT

ER
IA

LS
 F

R
O

M
 T

H
IS

 C
O

M
PU

TE
R

 IS
 S

TR
IC

TL
Y

PR
O

H
IB

IT
ED

The RR date format is similar to the YY element, but you can use it to specify different
centuries. Use the RR date format element instead of YY so that the century of the return value
varies according to the specified two-digit year and the last two digits of the current year. The
table in the slide summarizes the behavior of the RR element.

Note the values shown in the last two rows of the above table. As we approach the middle of
the century, then the RR behavior is probably not what you want.

Current Year Given Date Interpreted (RR) Interpreted (YY)

1994 27-OCT-95 1995 1995

1994 27-OCT-17 2017 1917

2001 27-OCT-17 2017 2017

2048 27-OCT-52 1952 2052

2051 27-OCT-47 2147 2047

Oracle Database 12c: SQL Workshop I 4 - 25

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

RR Date Format

Current Year
1995
1995
2001
2001

27-OCT-95
27-OCT-17
27-OCT-17
27-OCT-95

1995
2017
2017
1995

1995
1917
2017
2095

If two digits
of the current
year are:

0–49

0–49 50–99

50–99

The return date is in
the current century

The return date is in
the century after the
current one

The return date is in
the century before the
current one
The return date is in
the current century

If the specified two-digit year is:

YY FormatRR FormatSpecified DateCurrent Year

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 E

ga
bi

 S
ol

ut
io

ns
 u

se
 o

nl
y

TH
ES

E
eK

IT
 M

AT
ER

IA
LS

 A
R

E
FO

R
 Y

O
U

R
 U

SE
 IN

 T
H

IS
 C

LA
SS

R
O

O
M

 O
N

LY
.

C
O

PY
IN

G
 e

KI
T

M
AT

ER
IA

LS
 F

R
O

M
 T

H
IS

 C
O

M
PU

TE
R

 IS
 S

TR
IC

TL
Y

PR
O

H
IB

IT
ED

This data is stored internally as follows:

CENTURY YEAR MONTH DAY HOUR MINUTE SECOND

19 87 06 17 17 10 43

Centuries and the Year 2000

When a record with a date column is inserted into a table, the century information is picked up
from the SYSDATE function. However, when the date column is displayed on the screen, the
century component is not displayed (by default).

The DATE data type uses 2 bytes for the year information, one for century and one for year.
The century value is always included, whether or not it is specified or displayed. In this case,
RR determines the default value for century on INSERT.

Oracle Database 12c: SQL Workshop I 4 - 26

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 E

ga
bi

 S
ol

ut
io

ns
 u

se
 o

nl
y

TH
ES

E
eK

IT
 M

AT
ER

IA
LS

 A
R

E
FO

R
 Y

O
U

R
 U

SE
 IN

 T
H

IS
 C

LA
SS

R
O

O
M

 O
N

LY
.

C
O

PY
IN

G
 e

KI
T

M
AT

ER
IA

LS
 F

R
O

M
 T

H
IS

 C
O

M
PU

TE
R

 IS
 S

TR
IC

TL
Y

PR
O

H
IB

IT
ED

SYSDATE is a date function that returns the current database server date and time. You can
use SYSDATE just as you would use any other column name. For example, you can display
the current date by selecting SYSDATE from a table. It is customary to select SYSDATE from a
public table called DUAL.

Note: SYSDATE returns the current date and time set for the operating system on which the
database resides. Therefore, if you are in a place in Australia and connected to a remote
database in a location in the United States (U.S.), the sysdate function will return the U.S.
date and time. In that case, you can use the CURRENT_DATE function that returns the current
date in the session time zone.

The CURRENT_DATE function and other related time zone functions are discussed in detail in
Oracle Database: SQL Workshop II.

Oracle Database 12c: SQL Workshop I 4 - 27

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

Using the SYSDATE Function

SYSDATE is a function that returns:

• Date

• Time

SELECT sysdate
FROM dual;

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 E

ga
bi

 S
ol

ut
io

ns
 u

se
 o

nl
y

TH
ES

E
eK

IT
 M

AT
ER

IA
LS

 A
R

E
FO

R
 Y

O
U

R
 U

SE
 IN

 T
H

IS
 C

LA
SS

R
O

O
M

 O
N

LY
.

C
O

PY
IN

G
 e

KI
T

M
AT

ER
IA

LS
 F

R
O

M
 T

H
IS

 C
O

M
PU

TE
R

 IS
 S

TR
IC

TL
Y

PR
O

H
IB

IT
ED

Because the database stores dates as numbers, you can perform calculations using
arithmetic operators such as addition and subtraction. You can add and subtract number
constants as well as dates.

You can perform the following operations:

Operation Result Description

date + number Date Adds a number of days to a date

date – number Date Subtracts a number of days from a date

date – date Number of days Subtracts one date from another

date + number/24 Date Adds a number of hours to a date

Oracle Database 12c: SQL Workshop I 4 - 28

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

Arithmetic with Dates

• Add to or subtract a number from a date for a resultant
date value.

• Subtract two dates to find the number of days between
those dates.

• Add hours to a date by dividing the number of hours by 24.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 E

ga
bi

 S
ol

ut
io

ns
 u

se
 o

nl
y

TH
ES

E
eK

IT
 M

AT
ER

IA
LS

 A
R

E
FO

R
 Y

O
U

R
 U

SE
 IN

 T
H

IS
 C

LA
SS

R
O

O
M

 O
N

LY
.

C
O

PY
IN

G
 e

KI
T

M
AT

ER
IA

LS
 F

R
O

M
 T

H
IS

 C
O

M
PU

TE
R

 IS
 S

TR
IC

TL
Y

PR
O

H
IB

IT
ED

The example in the slide displays the last name and the number of weeks employed for all
employees in department 90. It subtracts the date on which the employee was hired from the
current date (SYSDATE) and divides the result by 7 to calculate the number of weeks that a
worker has been employed.

Note: SYSDATE is a SQL function that returns the current date and time. Your results may
differ depending on the date and time set for the operating system of your local database
when you run the SQL query.

If a more current date is subtracted from an older date, the difference is a negative number.

Oracle Database 12c: SQL Workshop I 4 - 29

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

SELECT last_name, (SYSDATE-hire_date)/7 AS WEEKS
FROM employees
WHERE department_id = 90;

Using Arithmetic Operators
with Dates

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 E

ga
bi

 S
ol

ut
io

ns
 u

se
 o

nl
y

TH
ES

E
eK

IT
 M

AT
ER

IA
LS

 A
R

E
FO

R
 Y

O
U

R
 U

SE
 IN

 T
H

IS
 C

LA
SS

R
O

O
M

 O
N

LY
.

C
O

PY
IN

G
 e

KI
T

M
AT

ER
IA

LS
 F

R
O

M
 T

H
IS

 C
O

M
PU

TE
R

 IS
 S

TR
IC

TL
Y

PR
O

H
IB

IT
ED

Oracle Database 12c: SQL Workshop I 4 - 30

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

Lesson Agenda

• Single-row SQL functions

• Character functions

• Nesting functions

• Number functions

• Working with dates

• Date functions

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 E

ga
bi

 S
ol

ut
io

ns
 u

se
 o

nl
y

TH
ES

E
eK

IT
 M

AT
ER

IA
LS

 A
R

E
FO

R
 Y

O
U

R
 U

SE
 IN

 T
H

IS
 C

LA
SS

R
O

O
M

 O
N

LY
.

C
O

PY
IN

G
 e

KI
T

M
AT

ER
IA

LS
 F

R
O

M
 T

H
IS

 C
O

M
PU

TE
R

 IS
 S

TR
IC

TL
Y

PR
O

H
IB

IT
ED

Date functions operate on Oracle dates. All date functions return a value of the DATE data
type except MONTHS_BETWEEN, which returns a numeric value.
• MONTHS_BETWEEN(date1, date2): Finds the number of months between date1

and date2. The result can be positive or negative. If date1 is later than date2, the
result is positive; if date1 is earlier than date2, the result is negative. The noninteger
part of the result represents a portion of the month.

• ADD_MONTHS(date, n): Adds n number of calendar months to date. The value of n
must be an integer and can be negative.

• NEXT_DAY(date, 'char'): Finds the date of the next specified day of the week
('char') following date. The value of char may be a number representing a day or a
character string.

• LAST_DAY(date): Finds the date of the last day of the month that contains date
The above list is a subset of the available date functions. ROUND and TRUNC number functions
can also be used to manipulate the date values as shown below:
• ROUND(date[,'fmt']): Returns date rounded to the unit that is specified by the

format model fmt. If the format model fmt is omitted, date is rounded to the nearest day.
• TRUNC(date[, 'fmt']): Returns date with the time portion of the day truncated to

the unit that is specified by the format model fmt. If the format model fmt is omitted,
date is truncated to the nearest day.

The format models are covered in detail in the lesson titled “Using Conversion Functions and
Conditional Expressions.”

Oracle Database 12c: SQL Workshop I 4 - 31

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

Date-Manipulation Functions

Week day of the date specifiedNEXT_DAY

Last day of the monthLAST_DAY

Round dateROUND

Truncate dateTRUNC

Number of months between two datesMONTHS_BETWEEN

Add calendar months to dateADD_MONTHS

ResultFunction

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 E

ga
bi

 S
ol

ut
io

ns
 u

se
 o

nl
y

TH
ES

E
eK

IT
 M

AT
ER

IA
LS

 A
R

E
FO

R
 Y

O
U

R
 U

SE
 IN

 T
H

IS
 C

LA
SS

R
O

O
M

 O
N

LY
.

C
O

PY
IN

G
 e

KI
T

M
AT

ER
IA

LS
 F

R
O

M
 T

H
IS

 C
O

M
PU

TE
R

 IS
 S

TR
IC

TL
Y

PR
O

H
IB

IT
ED

In the example in the slide, the ADD_MONTHS function adds one month to the supplied date
value “31-JAN-96” and returns “29-FEB-96.” The function recognizes the year 1996 as the
leap year and, therefore, returns the last day of the February month. If you change the input
date value to “31-JAN-95,” the function returns “28-FEB-95.”

For example, display the employee number, hire date, number of months employed, six-
month review date, first Friday after hire date, and the last day of the hire month for all
employees who have been employed for fewer than 150 months.

SELECT employee_id, hire_date, MONTHS_BETWEEN (SYSDATE, hire_date)
TENURE, ADD_MONTHS (hire_date, 6) REVIEW, NEXT_DAY (hire_date,
'FRIDAY'), LAST_DAY(hire_date)

FROM employees WHERE MONTHS_BETWEEN (SYSDATE, hire_date) < 150;

… Oracle Database 12c: SQL Workshop I 4 - 32

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

Using Date Functions

'08-SEP-95'NEXT_DAY ('01-SEP-95','FRIDAY')

'28-FEB-95'LAST_DAY ('01-FEB-95')

19.6774194MONTHS_BETWEEN
('01-SEP-95','11-JAN-94')

'29-FEB-96'ADD_MONTHS ('31-JAN-96',1)

ResultFunction

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 E

ga
bi

 S
ol

ut
io

ns
 u

se
 o

nl
y

TH
ES

E
eK

IT
 M

AT
ER

IA
LS

 A
R

E
FO

R
 Y

O
U

R
 U

SE
 IN

 T
H

IS
 C

LA
SS

R
O

O
M

 O
N

LY
.

C
O

PY
IN

G
 e

KI
T

M
AT

ER
IA

LS
 F

R
O

M
 T

H
IS

 C
O

M
PU

TE
R

 IS
 S

TR
IC

TL
Y

PR
O

H
IB

IT
ED

The ROUND and TRUNC functions can be used for number and date values. When used with
dates, these functions round or truncate to the specified format model. Therefore, you can
round dates to the nearest year or month. If the format model is month, dates 1-15 result in
the first day of the current month. Dates 16-31 result in the first day of the next month. If the
format model is year, months 1-6 result in January 1 of the current year. Months 7-12 result in
January 1 of the next year.

Example

Compare the hire dates for all employees who started in 2004. Display the employee number,
hire date, and starting month using the ROUND and TRUNC functions.

SELECT employee_id, hire_date,

ROUND(hire_date, 'MONTH'), TRUNC(hire_date, 'MONTH')

FROM employees

WHERE hire_date LIKE '%04

Oracle Database 12c: SQL Workshop I 4 - 33

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

Using ROUND and TRUNC Functions with Dates

Assume SYSDATE = '25-JUL-03':

01-JUL-03TRUNC(SYSDATE ,'MONTH')

01-JAN-03TRUNC(SYSDATE ,'YEAR')

01-AUG-03ROUND(SYSDATE,'MONTH')

01-JAN-04ROUND(SYSDATE ,'YEAR')

ResultFunction

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 E

ga
bi

 S
ol

ut
io

ns
 u

se
 o

nl
y

TH
ES

E
eK

IT
 M

AT
ER

IA
LS

 A
R

E
FO

R
 Y

O
U

R
 U

SE
 IN

 T
H

IS
 C

LA
SS

R
O

O
M

 O
N

LY
.

C
O

PY
IN

G
 e

KI
T

M
AT

ER
IA

LS
 F

R
O

M
 T

H
IS

 C
O

M
PU

TE
R

 IS
 S

TR
IC

TL
Y

PR
O

H
IB

IT
ED

Answer: a, c, f, g

Oracle Database 12c: SQL Workshop I 4 - 34

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

Quiz

Which four of the following statements are true about single-
row functions?

a. Manipulate data items

b. Accept arguments and return one value per argument

c. Act on each row that is returned

d. Return one result per set of rows

e. May not modify the data type

f. Can be nested

g. Accept arguments that can be a column or an expression

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 E

ga
bi

 S
ol

ut
io

ns
 u

se
 o

nl
y

TH
ES

E
eK

IT
 M

AT
ER

IA
LS

 A
R

E
FO

R
 Y

O
U

R
 U

SE
 IN

 T
H

IS
 C

LA
SS

R
O

O
M

 O
N

LY
.

C
O

PY
IN

G
 e

KI
T

M
AT

ER
IA

LS
 F

R
O

M
 T

H
IS

 C
O

M
PU

TE
R

 IS
 S

TR
IC

TL
Y

PR
O

H
IB

IT
ED

Single-row functions can be nested to any level. Single-row functions can manipulate the
following:

• Character data: LOWER, UPPER, INITCAP, CONCAT, SUBSTR, INSTR, LENGTH

• Number data: ROUND, TRUNC, MOD

• Date values: SYSDATE, MONTHS_BETWEEN, ADD_MONTHS, NEXT_DAY, LAST_DAY

Remember the following:

• Date values can also use arithmetic operators.

• ROUND and TRUNC functions can also be used with date values.

SYSDATE and DUAL

SYSDATE is a date function that returns the current date and time. It is customary to select
SYSDATE from a single-row public table called DUAL

Oracle Database 12c: SQL Workshop I 4 - 35

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

Summary

In this lesson, you should have learned how to:

• Perform calculations on data using functions

• Modify individual data items using functions

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 E

ga
bi

 S
ol

ut
io

ns
 u

se
 o

nl
y

TH
ES

E
eK

IT
 M

AT
ER

IA
LS

 A
R

E
FO

R
 Y

O
U

R
 U

SE
 IN

 T
H

IS
 C

LA
SS

R
O

O
M

 O
N

LY
.

C
O

PY
IN

G
 e

KI
T

M
AT

ER
IA

LS
 F

R
O

M
 T

H
IS

 C
O

M
PU

TE
R

 IS
 S

TR
IC

TL
Y

PR
O

H
IB

IT
ED

This practice provides a variety of exercises using different functions that are available for
character, number, and date data types.

Oracle Database 12c: SQL Workshop I 4 - 36

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

Practice 4: Overview

This practice covers the following topics:

• Writing a query that displays the current date

• Creating queries that require the use of numeric,
character, and date functions

• Performing calculations of years and months of service for
an employee

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 E

ga
bi

 S
ol

ut
io

ns
 u

se
 o

nl
y

TH
ES

E
eK

IT
 M

AT
ER

IA
LS

 A
R

E
FO

R
 Y

O
U

R
 U

SE
 IN

 T
H

IS
 C

LA
SS

R
O

O
M

 O
N

LY
.

C
O

PY
IN

G
 e

KI
T

M
AT

ER
IA

LS
 F

R
O

M
 T

H
IS

 C
O

M
PU

TE
R

 IS
 S

TR
IC

TL
Y

PR
O

H
IB

IT
ED

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

Using Conversion Functions and
Conditional Expressions

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 E

ga
bi

 S
ol

ut
io

ns
 u

se
 o

nl
y

TH
ES

E
eK

IT
 M

AT
ER

IA
LS

 A
R

E
FO

R
 Y

O
U

R
 U

SE
 IN

 T
H

IS
 C

LA
SS

R
O

O
M

 O
N

LY
.

C
O

PY
IN

G
 e

KI
T

M
AT

ER
IA

LS
 F

R
O

M
 T

H
IS

 C
O

M
PU

TE
R

 IS
 S

TR
IC

TL
Y

PR
O

H
IB

IT
ED

This lesson focuses on functions that convert data from one type to another (for example,
conversion from character data to numeric data) and discusses the conditional expressions in
SQL SELECT statements.

Oracle Database 12c: SQL Workshop I 5 - 2

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

Objectives

After completing this lesson, you should be able to do the
following:

• Describe the various types of conversion functions that are
available in SQL

• Use the TO_CHAR, TO_NUMBER, and TO_DATE conversion
functions

• Apply conditional expressions in a SELECT statement

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 E

ga
bi

 S
ol

ut
io

ns
 u

se
 o

nl
y

TH
ES

E
eK

IT
 M

AT
ER

IA
LS

 A
R

E
FO

R
 Y

O
U

R
 U

SE
 IN

 T
H

IS
 C

LA
SS

R
O

O
M

 O
N

LY
.

C
O

PY
IN

G
 e

KI
T

M
AT

ER
IA

LS
 F

R
O

M
 T

H
IS

 C
O

M
PU

TE
R

 IS
 S

TR
IC

TL
Y

PR
O

H
IB

IT
ED

Oracle Database 12c: SQL Workshop I 5 - 3

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

Lesson Agenda

• Implicit and explicit data type conversion
• TO_CHAR, TO_DATE, TO_NUMBER functions

• General functions:
– NVL

– NVL2

– NULLIF

– COALESCE

• Conditional expressions:
– CASE

– DECODE

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 E

ga
bi

 S
ol

ut
io

ns
 u

se
 o

nl
y

TH
ES

E
eK

IT
 M

AT
ER

IA
LS

 A
R

E
FO

R
 Y

O
U

R
 U

SE
 IN

 T
H

IS
 C

LA
SS

R
O

O
M

 O
N

LY
.

C
O

PY
IN

G
 e

KI
T

M
AT

ER
IA

LS
 F

R
O

M
 T

H
IS

 C
O

M
PU

TE
R

 IS
 S

TR
IC

TL
Y

PR
O

H
IB

IT
ED

In addition to Oracle data types, columns of tables in an Oracle Database can be defined by
using the American National Standards Institute (ANSI), DB2, and SQL/DS data types.
However, the Oracle server internally converts such data types to Oracle data types.

In some cases, the Oracle server receives data of one data type where it expects data of a
different data type. When this happens, the Oracle server can automatically convert the data
to the expected data type. This data type conversion can be done implicitly by the Oracle
server or explicitly by the user.

Implicit data type conversions work according to the rules explained in the following slides.

Explicit data type conversions are performed by using the conversion functions. Conversion
functions convert a value from one data type to another. Generally, the form of the function
names follows the convention data type TO data type. The first data type is the input data
type and the second data type is the output.

Note: Although implicit data type conversion is available, it is recommended that you do the
explicit data type conversion to ensure the reliability of your SQL statements.

Oracle Database 12c: SQL Workshop I 5 - 4

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

Conversion Functions

Implicit data type
conversion

Explicit data type
conversion

Data type
conversion

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 E

ga
bi

 S
ol

ut
io

ns
 u

se
 o

nl
y

TH
ES

E
eK

IT
 M

AT
ER

IA
LS

 A
R

E
FO

R
 Y

O
U

R
 U

SE
 IN

 T
H

IS
 C

LA
SS

R
O

O
M

 O
N

LY
.

C
O

PY
IN

G
 e

KI
T

M
AT

ER
IA

LS
 F

R
O

M
 T

H
IS

 C
O

M
PU

TE
R

 IS
 S

TR
IC

TL
Y

PR
O

H
IB

IT
ED

Oracle server can automatically perform data type conversion in an expression. For example,
the expression hire_date > '01-JAN-90' results in the implicit conversion from the
string '01-JAN-90' to a date. Therefore, a VARCHAR2 or CHAR value can be implicitly
converted to a number or date data type in an expression.

Note: CHAR to NUMBER conversions succeed only if the character string represents a valid
number.

Oracle Database 12c: SQL Workshop I 5 - 5

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

Implicit Data Type Conversion

In expressions, the Oracle server can automatically convert the
following:

NUMBERVARCHAR2 or CHAR

DATEVARCHAR2 or CHAR

ToFrom

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 E

ga
bi

 S
ol

ut
io

ns
 u

se
 o

nl
y

TH
ES

E
eK

IT
 M

AT
ER

IA
LS

 A
R

E
FO

R
 Y

O
U

R
 U

SE
 IN

 T
H

IS
 C

LA
SS

R
O

O
M

 O
N

LY
.

C
O

PY
IN

G
 e

KI
T

M
AT

ER
IA

LS
 F

R
O

M
 T

H
IS

 C
O

M
PU

TE
R

 IS
 S

TR
IC

TL
Y

PR
O

H
IB

IT
ED

In general, the Oracle server uses the rule for expressions when a data type conversion is
needed. For example, the expression grade = 2 results in the implicit conversion of the
number 2 to the string “2” because grade is a CHAR(2) column.

Oracle Database 12c: SQL Workshop I 5 - 6

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

Implicit Data Type Conversion

For expression evaluation, the Oracle server can automatically
convert the following:

VARCHAR2 or CHARNUMBER

VARCHAR2 or CHARDATE

ToFrom

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 E

ga
bi

 S
ol

ut
io

ns
 u

se
 o

nl
y

TH
ES

E
eK

IT
 M

AT
ER

IA
LS

 A
R

E
FO

R
 Y

O
U

R
 U

SE
 IN

 T
H

IS
 C

LA
SS

R
O

O
M

 O
N

LY
.

C
O

PY
IN

G
 e

KI
T

M
AT

ER
IA

LS
 F

R
O

M
 T

H
IS

 C
O

M
PU

TE
R

 IS
 S

TR
IC

TL
Y

PR
O

H
IB

IT
ED

SQL provides three functions to convert a value from one data type to another:

Function Purpose

TO_CHAR(number|date [, fmt [,
nlsparams]])

Converts a number or date value to a VARCHAR2
character string with the format model fmt
Number conversion: The nlsparams
parameter specifies the following characters,
which are returned by number format elements:

• Decimal character

• Group separator

• Local currency symbol

• International currency symbol

If nlsparams or any other parameter is omitted,
this function uses the default parameter values
for the session.

Oracle Database 12c: SQL Workshop I 5 - 7

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

Explicit Data Type Conversion

NUMBER CHARACTER

TO_CHAR

TO_NUMBER

DATE

TO_CHAR

TO_DATE

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 E

ga
bi

 S
ol

ut
io

ns
 u

se
 o

nl
y

TH
ES

E
eK

IT
 M

AT
ER

IA
LS

 A
R

E
FO

R
 Y

O
U

R
 U

SE
 IN

 T
H

IS
 C

LA
SS

R
O

O
M

 O
N

LY
.

C
O

PY
IN

G
 e

KI
T

M
AT

ER
IA

LS
 F

R
O

M
 T

H
IS

 C
O

M
PU

TE
R

 IS
 S

TR
IC

TL
Y

PR
O

H
IB

IT
ED

Note: The list of functions mentioned in this lesson includes only some of the available
conversion functions.

For more information, see the “Conversion Functions” section in Oracle Database SQL
Language Reference for 12c database.

Function Purpose

TO_NUMBER(char[,fmt[,
nlsparams]])

Converts a character string containing digits to a
number in the format specified by the optional format
model fmt.
The nlsparams parameter has the same purpose in
this function as in the TO_CHAR function for number
conversion.

TO_DATE(char[,fmt[,nlsparam
s]])

Converts a character string representing a date to a
date value according to fmt that is specified. If fmt
is omitted, the format is DD-MON-YY.

The nlsparams parameter has the same purpose in
this function as in the TO_CHAR function for date
conversion.

Oracle Database 12c: SQL Workshop I 5 - 8

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 E

ga
bi

 S
ol

ut
io

ns
 u

se
 o

nl
y

TH
ES

E
eK

IT
 M

AT
ER

IA
LS

 A
R

E
FO

R
 Y

O
U

R
 U

SE
 IN

 T
H

IS
 C

LA
SS

R
O

O
M

 O
N

LY
.

C
O

PY
IN

G
 e

KI
T

M
AT

ER
IA

LS
 F

R
O

M
 T

H
IS

 C
O

M
PU

TE
R

 IS
 S

TR
IC

TL
Y

PR
O

H
IB

IT
ED

Oracle Database 12c: SQL Workshop I 5 - 9

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

Lesson Agenda

• Implicit and explicit data type conversion
• TO_CHAR, TO_DATE, TO_NUMBER functions

• General functions:
– NVL

– NVL2

– NULLIF

– COALESCE

• Conditional expressions:
– CASE

– DECODE

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 E

ga
bi

 S
ol

ut
io

ns
 u

se
 o

nl
y

TH
ES

E
eK

IT
 M

AT
ER

IA
LS

 A
R

E
FO

R
 Y

O
U

R
 U

SE
 IN

 T
H

IS
 C

LA
SS

R
O

O
M

 O
N

LY
.

C
O

PY
IN

G
 e

KI
T

M
AT

ER
IA

LS
 F

R
O

M
 T

H
IS

 C
O

M
PU

TE
R

 IS
 S

TR
IC

TL
Y

PR
O

H
IB

IT
ED

TO_CHAR converts a datetime data type to a value of VARCHAR2 data type in the format
specified by the format_model. A format model is a character literal that describes the format
of datetime stored in a character string. For example, the datetime format model for the string
'11-Nov-2000' is 'DD-Mon-YYYY'. You can use the TO_CHAR function to convert a date
from its default format to the one that you specify.

Guidelines

• The format model must be enclosed with single quotation marks and is case-sensitive.

• The format model can include any valid date format element. But be sure to separate
the date value from the format model with a comma.

• The names of days and months in the output are automatically padded with blanks.

• To remove padded blanks or to suppress leading zeros, use the fill mode fm element.
SELECT employee_id, TO_CHAR(hire_date, 'MM/YY') Month_Hired

FROM employees

WHERE last_name = 'Higgins';

Oracle Database 12c: SQL Workshop I 5 - 10

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

Using the TO_CHAR Function with Dates

The format model:

• Must be enclosed with single quotation marks

• Is case-sensitive

• Can include any valid date format element
• Has an fm element to remove padded blanks or suppress

leading zeros

• Is separated from the date value by a comma

TO_CHAR(date[,'format_model'])

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 E

ga
bi

 S
ol

ut
io

ns
 u

se
 o

nl
y

TH
ES

E
eK

IT
 M

AT
ER

IA
LS

 A
R

E
FO

R
 Y

O
U

R
 U

SE
 IN

 T
H

IS
 C

LA
SS

R
O

O
M

 O
N

LY
.

C
O

PY
IN

G
 e

KI
T

M
AT

ER
IA

LS
 F

R
O

M
 T

H
IS

 C
O

M
PU

TE
R

 IS
 S

TR
IC

TL
Y

PR
O

H
IB

IT
ED

Oracle Database 12c: SQL Workshop I 5 - 11

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

Elements of the Date Format Model

Three-letter abbreviation of the day of the weekDY

Full name of the day of the weekDAY

Two-digit value for the monthMM

Full name of the monthMONTH

Three-letter abbreviation of the monthMON

Numeric day of the monthDD

Full year in numbersYYYY

Year spelled out (in English)YEAR

ResultElement

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 E

ga
bi

 S
ol

ut
io

ns
 u

se
 o

nl
y

TH
ES

E
eK

IT
 M

AT
ER

IA
LS

 A
R

E
FO

R
 Y

O
U

R
 U

SE
 IN

 T
H

IS
 C

LA
SS

R
O

O
M

 O
N

LY
.

C
O

PY
IN

G
 e

KI
T

M
AT

ER
IA

LS
 F

R
O

M
 T

H
IS

 C
O

M
PU

TE
R

 IS
 S

TR
IC

TL
Y

PR
O

H
IB

IT
ED

Use the formats that are listed in the following tables to display time information and literals,
and to change numerals to spelled numbers.

Element Description

AM or PM Meridian indicator

A.M. or P.M. Meridian indicator with periods

HH or HH12 12 hour format

HH24 24 hour format

MI Minute (0–59)

SS Second (0–59)

SSSSS Seconds past midnight (0–86399)

Oracle Database 12c: SQL Workshop I 5 - 12

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

Elements of the Date Format Model

• Time elements format the time portion of the date:

• Add character strings by enclosing them with double
quotation marks:

• Number suffixes spell out numbers:

DD "of" MONTH 12 of OCTOBER

ddspth fourteenth

HH24:MI:SS AM 15:45:32 PM

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 E

ga
bi

 S
ol

ut
io

ns
 u

se
 o

nl
y

TH
ES

E
eK

IT
 M

AT
ER

IA
LS

 A
R

E
FO

R
 Y

O
U

R
 U

SE
 IN

 T
H

IS
 C

LA
SS

R
O

O
M

 O
N

LY
.

C
O

PY
IN

G
 e

KI
T

M
AT

ER
IA

LS
 F

R
O

M
 T

H
IS

 C
O

M
PU

TE
R

 IS
 S

TR
IC

TL
Y

PR
O

H
IB

IT
ED

Element Description

/ . , Punctuation is reproduced in the result.

“of the” Quoted string is reproduced in the result.

Element Description

TH Ordinal number (for example, DDTH for 4TH)

SP Spelled-out number (for example, DDSP for FOUR)

SPTH or THSP Spelled-out ordinal numbers (for example, DDSPTH for
FOURTH)

Other Formats

Specifying Suffixes to Influence Number Display

Oracle Database 12c: SQL Workshop I 5 - 13

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 E

ga
bi

 S
ol

ut
io

ns
 u

se
 o

nl
y

TH
ES

E
eK

IT
 M

AT
ER

IA
LS

 A
R

E
FO

R
 Y

O
U

R
 U

SE
 IN

 T
H

IS
 C

LA
SS

R
O

O
M

 O
N

LY
.

C
O

PY
IN

G
 e

KI
T

M
AT

ER
IA

LS
 F

R
O

M
 T

H
IS

 C
O

M
PU

TE
R

 IS
 S

TR
IC

TL
Y

PR
O

H
IB

IT
ED

The SQL statement in the slide displays the last names and hire dates for all the employees.
The hire date appears as 17 June 2003.

Example

Modify the example in the slide to display the dates in a format that appears as “Seventeenth
of June 2003 12:00:00 AM.”

SELECT last_name,

TO_CHAR(hire_date,

'fmDdspth "of" Month YYYY fmHH:MI:SS AM')

HIREDATE

FROM employees;

Notice that the month follows the format model specified; in other words, the first letter is
capitalized and the rest are in lowercase.

…

Oracle Database 12c: SQL Workshop I 5 - 14

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

SELECT last_name,
TO_CHAR(hire_date, 'fmDD Month YYYY')
AS HIREDATE

FROM employees;

Using the TO_CHAR Function with Dates

…

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 E

ga
bi

 S
ol

ut
io

ns
 u

se
 o

nl
y

TH
ES

E
eK

IT
 M

AT
ER

IA
LS

 A
R

E
FO

R
 Y

O
U

R
 U

SE
 IN

 T
H

IS
 C

LA
SS

R
O

O
M

 O
N

LY
.

C
O

PY
IN

G
 e

KI
T

M
AT

ER
IA

LS
 F

R
O

M
 T

H
IS

 C
O

M
PU

TE
R

 IS
 S

TR
IC

TL
Y

PR
O

H
IB

IT
ED

When working with number values, such as character strings, you should convert those
numbers to the character data type using the TO_CHAR function, which translates a value of
NUMBER data type to VARCHAR2 data type. This technique is especially useful with
concatenation.

Oracle Database 12c: SQL Workshop I 5 - 15

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

Using the TO_CHAR Function with Numbers

These are some of the format elements that you can use with
the TO_CHAR function to display a number value as a
character:

Prints a decimal point.

Prints a comma as a thousands indicator,

Places a floating dollar sign$

Uses the floating local currency symbolL

Represents a number9

Forces a zero to be displayed0

ResultElement

TO_CHAR(number[, 'format_model'])

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 E

ga
bi

 S
ol

ut
io

ns
 u

se
 o

nl
y

TH
ES

E
eK

IT
 M

AT
ER

IA
LS

 A
R

E
FO

R
 Y

O
U

R
 U

SE
 IN

 T
H

IS
 C

LA
SS

R
O

O
M

 O
N

LY
.

C
O

PY
IN

G
 e

KI
T

M
AT

ER
IA

LS
 F

R
O

M
 T

H
IS

 C
O

M
PU

TE
R

 IS
 S

TR
IC

TL
Y

PR
O

H
IB

IT
ED

Element Description Example Result

9 Numeric position (number of 9s determine display
width)

999999 1234

0 Display leading zeros 099999 001234

$ Floating dollar sign $999999 $1234

L Floating local currency symbol L999999 FF1234

D Returns the decimal character in the specified
position. The default is a period (.).

9999D99 1234.00

. Decimal point in position specified 999999.99 1234.00

G Returns the group separator in the specified
position. You can specify multiple group
separators in a number format model.

9G999 1,234

, Comma in position specified 999,999 1,234

MI Minus signs to right (negative values) 999999MI 1234-

PR Parenthesize negative numbers 999999PR <1234>

EEEE Scientific notation (format must specify four Es) 99.999EEEE 1.234E+03

U Returns in the specified position the “Euro” (or
other) dual currency

U9999 €1234

V Multiply by 10 n times (n = number of 9s after V) 9999V99 123400

S Returns the negative or positive value S9999 -1234 or
+1234

B Display zero values as blank, not 0 B9999.99 1234.00

Number Format Elements

If you are converting a number to the character data type, you can use the following format
elements:

Oracle Database 12c: SQL Workshop I 5 - 16

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 E

ga
bi

 S
ol

ut
io

ns
 u

se
 o

nl
y

TH
ES

E
eK

IT
 M

AT
ER

IA
LS

 A
R

E
FO

R
 Y

O
U

R
 U

SE
 IN

 T
H

IS
 C

LA
SS

R
O

O
M

 O
N

LY
.

C
O

PY
IN

G
 e

KI
T

M
AT

ER
IA

LS
 F

R
O

M
 T

H
IS

 C
O

M
PU

TE
R

 IS
 S

TR
IC

TL
Y

PR
O

H
IB

IT
ED

• The Oracle server displays a string of number signs (#) in place of a whole number
whose digits exceed the number of digits provided in the format model.

• The Oracle server rounds the stored decimal value to the number of decimal places
provided in the format model.

Oracle Database 12c: SQL Workshop I 5 - 17

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

SELECT TO_CHAR(salary, '$99,999.00') SALARY
FROM employees
WHERE last_name = 'Ernst';

Using the TO_CHAR Function with Numbers

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 E

ga
bi

 S
ol

ut
io

ns
 u

se
 o

nl
y

TH
ES

E
eK

IT
 M

AT
ER

IA
LS

 A
R

E
FO

R
 Y

O
U

R
 U

SE
 IN

 T
H

IS
 C

LA
SS

R
O

O
M

 O
N

LY
.

C
O

PY
IN

G
 e

KI
T

M
AT

ER
IA

LS
 F

R
O

M
 T

H
IS

 C
O

M
PU

TE
R

 IS
 S

TR
IC

TL
Y

PR
O

H
IB

IT
ED

You may want to convert a character string to either a number or a date. To accomplish this
task, use the TO_NUMBER or TO_DATE functions. The format model that you select is based
on the previously demonstrated format elements.

The fx modifier specifies the exact match for the character argument and date format model
of a TO_DATE function:

• Punctuation and quoted text in the character argument must exactly match (except for
case) the corresponding parts of the format model.

• The character argument cannot have extra blanks. Without fx, the Oracle server
ignores extra blanks.

• Numeric data in the character argument must have the same number of digits as the
corresponding element in the format model. Without fx, the numbers in the character
argument can omit leading zeros.

Oracle Database 12c: SQL Workshop I 5 - 18

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

Using the TO_NUMBER and TO_DATE Functions

• Convert a character string to a number format using the
TO_NUMBER function:

• Convert a character string to a date format using the
TO_DATE function:

• These functions have an fx modifier. This modifier
specifies the exact match for the character argument and
date format model of a TO_DATE function.

TO_NUMBER(char[, 'format_model'])

TO_DATE(char[, 'format_model'])

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 E

ga
bi

 S
ol

ut
io

ns
 u

se
 o

nl
y

TH
ES

E
eK

IT
 M

AT
ER

IA
LS

 A
R

E
FO

R
 Y

O
U

R
 U

SE
 IN

 T
H

IS
 C

LA
SS

R
O

O
M

 O
N

LY
.

C
O

PY
IN

G
 e

KI
T

M
AT

ER
IA

LS
 F

R
O

M
 T

H
IS

 C
O

M
PU

TE
R

 IS
 S

TR
IC

TL
Y

PR
O

H
IB

IT
ED

Example

Display the name and hire date for all employees who started on May 24, 2007. There are two
spaces after the month May and before the number 24 in the following example. Because the
fx modifier is used, an exact match is required and the spaces after the word May are not
recognized:
SELECT last_name, hire_date

FROM employees

WHERE hire_date = TO_DATE('May 24, 2007', 'fxMonth DD, YYYY');

The resulting error output looks like this:

To see the output, correct the query by deleting the extra space between ‘May’ and ‘24’.
SELECT last_name, hire_date

FROM employees

WHERE hire_date = TO_DATE('May 24, 2007', 'fxMonth DD, YYYY');

Oracle Database 12c: SQL Workshop I 5 - 19

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 E

ga
bi

 S
ol

ut
io

ns
 u

se
 o

nl
y

TH
ES

E
eK

IT
 M

AT
ER

IA
LS

 A
R

E
FO

R
 Y

O
U

R
 U

SE
 IN

 T
H

IS
 C

LA
SS

R
O

O
M

 O
N

LY
.

C
O

PY
IN

G
 e

KI
T

M
AT

ER
IA

LS
 F

R
O

M
 T

H
IS

 C
O

M
PU

TE
R

 IS
 S

TR
IC

TL
Y

PR
O

H
IB

IT
ED

To find employees who were hired before 1990, the RR format can be used. Because the
current year is greater than 1999, the RR format interprets the year portion of the date from
1950 to 1999.

Alternatively, the following command, results in no rows being selected because the YY
format interprets the year portion of the date in the current century (2090).

SELECT last_name, TO_CHAR(hire_date, 'DD-Mon-yyyy')

FROM employees

WHERE TO_DATE(hire_date, 'DD-Mon-yy') < '01-Jan-90';

Notice that no rows are retrieved from the above query.

Oracle Database 12c: SQL Workshop I 5 - 20

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

Using TO_CHAR and TO_DATE Functions
with the RR Date Format

To find employees hired before 1990, use the RR date format,
which produces the same results whether the command is run
in 1999 or now:

SELECT last_name, TO_CHAR(hire_date, 'DD-Mon-YYYY')
FROM employees
WHERE hire_date < TO_DATE('01-Jan-90','DD-Mon-RR');

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 E

ga
bi

 S
ol

ut
io

ns
 u

se
 o

nl
y

TH
ES

E
eK

IT
 M

AT
ER

IA
LS

 A
R

E
FO

R
 Y

O
U

R
 U

SE
 IN

 T
H

IS
 C

LA
SS

R
O

O
M

 O
N

LY
.

C
O

PY
IN

G
 e

KI
T

M
AT

ER
IA

LS
 F

R
O

M
 T

H
IS

 C
O

M
PU

TE
R

 IS
 S

TR
IC

TL
Y

PR
O

H
IB

IT
ED

Oracle Database 12c: SQL Workshop I 5 - 21

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

Lesson Agenda

• Implicit and explicit data type conversion
• TO_CHAR, TO_DATE, TO_NUMBER functions

• General functions:
– NVL

– NVL2

– NULLIF

– COALESCE

• Conditional expressions:
– CASE

– DECODE

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 E

ga
bi

 S
ol

ut
io

ns
 u

se
 o

nl
y

TH
ES

E
eK

IT
 M

AT
ER

IA
LS

 A
R

E
FO

R
 Y

O
U

R
 U

SE
 IN

 T
H

IS
 C

LA
SS

R
O

O
M

 O
N

LY
.

C
O

PY
IN

G
 e

KI
T

M
AT

ER
IA

LS
 F

R
O

M
 T

H
IS

 C
O

M
PU

TE
R

 IS
 S

TR
IC

TL
Y

PR
O

H
IB

IT
ED

These functions work with any data type and pertain to the use of null values in the
expression list.

Note: For more information about the hundreds of functions available, see the “Functions”
section in Oracle Database SQL Language Reference for 12c database.

Function Description

NVL Converts a null value to an actual value

NVL2 If expr1 is not null, NVL2 returns expr2. If expr1 is null, NVL2
returns expr3. The argument expr1 can have any data type.

NULLIF Compares two expressions and returns null if they are equal; returns
the first expression if they are not equal

COALESCE Returns the first non-null expression in the expression list

Oracle Database 12c: SQL Workshop I 5 - 22

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

General Functions

The following functions work with any data type and pertain to
using nulls:
• NVL (expr1, expr2)

• NVL2 (expr1, expr2, expr3)

• NULLIF (expr1, expr2)

• COALESCE (expr1, expr2, ..., exprn)

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 E

ga
bi

 S
ol

ut
io

ns
 u

se
 o

nl
y

TH
ES

E
eK

IT
 M

AT
ER

IA
LS

 A
R

E
FO

R
 Y

O
U

R
 U

SE
 IN

 T
H

IS
 C

LA
SS

R
O

O
M

 O
N

LY
.

C
O

PY
IN

G
 e

KI
T

M
AT

ER
IA

LS
 F

R
O

M
 T

H
IS

 C
O

M
PU

TE
R

 IS
 S

TR
IC

TL
Y

PR
O

H
IB

IT
ED

To convert a null value to an actual value, use the NVL function.

Syntax

NVL (expr1, expr2)

In the syntax:

• expr1 is the source value or expression that may contain a null

• expr2 is the target value for converting the null

You can use the NVL function with any data type, but the return value is always the same as
the data type of expr1.

NVL Conversions for Various Data Types

Data Type Conversion Example

NUMBER NVL(number_column,9)

DATE NVL(date_column, '01-JAN-95')

CHAR or VARCHAR2 NVL(character_column, 'Unavailable')

Oracle Database 12c: SQL Workshop I 5 - 23

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

NVL Function

Converts a null value to an actual value:

• Data types that can be used are date, character, and
number.

• Data types must match:
– NVL(commission_pct,0)

– NVL(hire_date,'01-JAN-97')

– NVL(job_id,'No Job Yet')

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 E

ga
bi

 S
ol

ut
io

ns
 u

se
 o

nl
y

TH
ES

E
eK

IT
 M

AT
ER

IA
LS

 A
R

E
FO

R
 Y

O
U

R
 U

SE
 IN

 T
H

IS
 C

LA
SS

R
O

O
M

 O
N

LY
.

C
O

PY
IN

G
 e

KI
T

M
AT

ER
IA

LS
 F

R
O

M
 T

H
IS

 C
O

M
PU

TE
R

 IS
 S

TR
IC

TL
Y

PR
O

H
IB

IT
ED

…

To calculate the annual compensation of all employees, you need to multiply the monthly
salary by 12 and then add the commission percentage to the result:

SELECT last_name, salary, commission_pct,

(salary*12) + (salary*12*commission_pct) AN_SAL

FROM employees;

Notice that the annual compensation is calculated for only those employees who earn a
commission. If any column value in an expression is null, the result is null. To calculate values
for all employees, you must convert the null value to a number before applying the arithmetic
operator. In the example in the slide, the NVL function is used to convert null values to zero.

Oracle Database 12c: SQL Workshop I 5 - 24

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

SELECT last_name, salary, NVL(commission_pct, 0),
(salary*12) + (salary*12*NVL(commission_pct, 0)) AN_SAL

FROM employees;

Using the NVL Function

…
2

2

1

1

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 E

ga
bi

 S
ol

ut
io

ns
 u

se
 o

nl
y

TH
ES

E
eK

IT
 M

AT
ER

IA
LS

 A
R

E
FO

R
 Y

O
U

R
 U

SE
 IN

 T
H

IS
 C

LA
SS

R
O

O
M

 O
N

LY
.

C
O

PY
IN

G
 e

KI
T

M
AT

ER
IA

LS
 F

R
O

M
 T

H
IS

 C
O

M
PU

TE
R

 IS
 S

TR
IC

TL
Y

PR
O

H
IB

IT
ED

The NVL2 function examines the first expression. If the first expression is not null, the NVL2
function returns the second expression. If the first expression is null, the third expression is
returned.
Syntax

NVL2(expr1, expr2, expr3)

In the syntax:

• expr1 is the source value or expression that may contain a null

• expr2 is the value that is returned if expr1 is not null

• expr3 is the value that is returned if expr1 is null

In the example shown in the slide, the COMMISSION_PCT column is examined. If a value is
detected, the text literal value of SAL+COMM is returned. If the COMMISSION_PCT column
contains a null value, the text literal value of SAL is returned.

Note: The argument expr1 can have any data type. The arguments expr2 and expr3 can
have any data types except LONG.

Oracle Database 12c: SQL Workshop I 5 - 25

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

SELECT last_name, salary, commission_pct,
NVL2(commission_pct,

'SAL+COMM', 'SAL') income
FROM employees WHERE department_id IN (50, 80);

Using the NVL2 Function

2

2

1

1

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 E

ga
bi

 S
ol

ut
io

ns
 u

se
 o

nl
y

TH
ES

E
eK

IT
 M

AT
ER

IA
LS

 A
R

E
FO

R
 Y

O
U

R
 U

SE
 IN

 T
H

IS
 C

LA
SS

R
O

O
M

 O
N

LY
.

C
O

PY
IN

G
 e

KI
T

M
AT

ER
IA

LS
 F

R
O

M
 T

H
IS

 C
O

M
PU

TE
R

 IS
 S

TR
IC

TL
Y

PR
O

H
IB

IT
ED

The NULLIF function compares two expressions.

Syntax

NULLIF (expr1, expr2)

In the syntax:

• NULLIF compares expr1 and expr2. If they are equal, the function returns null. If they
are not, the function returns expr1. However, you cannot specify the literal NULL for
expr1.

In the example shown in the slide, the length of the first name in the EMPLOYEES table is
compared to the length of the last name in the EMPLOYEES table. When the lengths of the
names are equal, a null value is displayed. When the lengths of the names are not equal, the
length of the first name is displayed.

Oracle Database 12c: SQL Workshop I 5 - 26

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

SELECT first_name, LENGTH(first_name) "expr1",
last_name, LENGTH(last_name) "expr2",
NULLIF(LENGTH(first_name), LENGTH(last_name)) result

FROM employees;

Using the NULLIF Function

…

2

2

1

1

3

3

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 E

ga
bi

 S
ol

ut
io

ns
 u

se
 o

nl
y

TH
ES

E
eK

IT
 M

AT
ER

IA
LS

 A
R

E
FO

R
 Y

O
U

R
 U

SE
 IN

 T
H

IS
 C

LA
SS

R
O

O
M

 O
N

LY
.

C
O

PY
IN

G
 e

KI
T

M
AT

ER
IA

LS
 F

R
O

M
 T

H
IS

 C
O

M
PU

TE
R

 IS
 S

TR
IC

TL
Y

PR
O

H
IB

IT
ED

The COALESCE function returns the first non-null expression in the list.

Syntax
COALESCE (expr1, expr2, ... exprn)

In the syntax:

• expr1 returns this expression if it is not null

• expr2 returns this expression if the first expression is null and this expression is not null

• exprn returns this expression if the preceding expressions are null

Note that all expressions must be of the same data type.

Oracle Database 12c: SQL Workshop I 5 - 27

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

Using the COALESCE Function

• The advantage of the COALESCE function over the NVL
function is that the COALESCE function can take multiple
alternate values.

• If the first expression is not null, the COALESCE function
returns that expression; otherwise, it does a COALESCE of
the remaining expressions.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 E

ga
bi

 S
ol

ut
io

ns
 u

se
 o

nl
y

TH
ES

E
eK

IT
 M

AT
ER

IA
LS

 A
R

E
FO

R
 Y

O
U

R
 U

SE
 IN

 T
H

IS
 C

LA
SS

R
O

O
M

 O
N

LY
.

C
O

PY
IN

G
 e

KI
T

M
AT

ER
IA

LS
 F

R
O

M
 T

H
IS

 C
O

M
PU

TE
R

 IS
 S

TR
IC

TL
Y

PR
O

H
IB

IT
ED

In the example shown in the slide, if the manager_id value is not null, it is displayed. If the
manager_id value is null, the commission_pct is displayed. If the manager_id and
commission_pct values are null, “No commission and no manager” is displayed. Note that
TO_CHAR function is applied so that all expressions are of the same data type.

Oracle Database 12c: SQL Workshop I 5 - 28

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

SELECT last_name, employee_id,
COALESCE(TO_CHAR(commission_pct),TO_CHAR(manager_id),

'No commission and no manager')
FROM employees;

Using the COALESCE Function

…

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 E

ga
bi

 S
ol

ut
io

ns
 u

se
 o

nl
y

TH
ES

E
eK

IT
 M

AT
ER

IA
LS

 A
R

E
FO

R
 Y

O
U

R
 U

SE
 IN

 T
H

IS
 C

LA
SS

R
O

O
M

 O
N

LY
.

C
O

PY
IN

G
 e

KI
T

M
AT

ER
IA

LS
 F

R
O

M
 T

H
IS

 C
O

M
PU

TE
R

 IS
 S

TR
IC

TL
Y

PR
O

H
IB

IT
ED

Example

For the employees who do not get any commission, your organization wants to give a salary
increment of $2,000 and for employees who get commission, the query should compute the
new salary that is equal to the existing salary added to the commission amount.

SELECT last_name, salary, commission_pct,

COALESCE((salary+(commission_pct*salary)), salary+2000)"New
Salary"

FROM employees;

Note: Examine the output. For employees who do not get any commission, the New Salary
column shows the salary incremented by $2,000 and for employees who get commission, the
New Salary column shows the computed commission amount added to the salary.

Oracle Database 12c: SQL Workshop I 5 - 29

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 E

ga
bi

 S
ol

ut
io

ns
 u

se
 o

nl
y

TH
ES

E
eK

IT
 M

AT
ER

IA
LS

 A
R

E
FO

R
 Y

O
U

R
 U

SE
 IN

 T
H

IS
 C

LA
SS

R
O

O
M

 O
N

LY
.

C
O

PY
IN

G
 e

KI
T

M
AT

ER
IA

LS
 F

R
O

M
 T

H
IS

 C
O

M
PU

TE
R

 IS
 S

TR
IC

TL
Y

PR
O

H
IB

IT
ED

Oracle Database 12c: SQL Workshop I 5 - 30

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

Lesson Agenda

• Implicit and explicit data type conversion
• TO_CHAR, TO_DATE, TO_NUMBER functions

• General functions:
– NVL

– NVL2

– NULLIF

– COALESCE

• Conditional expressions:
– CASE

– DECODE

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 E

ga
bi

 S
ol

ut
io

ns
 u

se
 o

nl
y

TH
ES

E
eK

IT
 M

AT
ER

IA
LS

 A
R

E
FO

R
 Y

O
U

R
 U

SE
 IN

 T
H

IS
 C

LA
SS

R
O

O
M

 O
N

LY
.

C
O

PY
IN

G
 e

KI
T

M
AT

ER
IA

LS
 F

R
O

M
 T

H
IS

 C
O

M
PU

TE
R

 IS
 S

TR
IC

TL
Y

PR
O

H
IB

IT
ED

The two methods that are used to implement conditional processing (IF-THEN-ELSE logic) in
a SQL statement are the CASE expression and the DECODE function.

Note: The CASE expression complies with the ANSI SQL. The DECODE function is specific to
Oracle syntax.

Oracle Database 12c: SQL Workshop I 5 - 31

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

Conditional Expressions

• Provide the use of the IF-THEN-ELSE logic within a SQL
statement.

• Use two methods:
– CASE expression

– DECODE function

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 E

ga
bi

 S
ol

ut
io

ns
 u

se
 o

nl
y

TH
ES

E
eK

IT
 M

AT
ER

IA
LS

 A
R

E
FO

R
 Y

O
U

R
 U

SE
 IN

 T
H

IS
 C

LA
SS

R
O

O
M

 O
N

LY
.

C
O

PY
IN

G
 e

KI
T

M
AT

ER
IA

LS
 F

R
O

M
 T

H
IS

 C
O

M
PU

TE
R

 IS
 S

TR
IC

TL
Y

PR
O

H
IB

IT
ED

CASE expressions allow you to use the IF-THEN-ELSE logic in SQL statements without
having to invoke procedures.

In a simple CASE expression, the Oracle server searches for the first WHEN ... THEN pair
for which expr is equal to comparison_expr and returns return_expr. If none of the
WHEN ... THEN pairs meet this condition, and if an ELSE clause exists, the Oracle server
returns else_expr. Otherwise, the Oracle server returns a null. You cannot specify the literal
NULL for all the return_exprs and the else_expr.

The expressions expr and comparison_expr must be of the same data type, which can be
CHAR, VARCHAR2, NCHAR, or NVARCHAR2,NUMBER,BINARY_FLOAT,or BINARY_DOUBLE
or must all have a numeric datatype. All of the return values (return_expr) must be of the
same data type.

If all expressions have a numeric datatype, then Oracle determines the argument with the
highest numeric precedence, implicitly converts the remaining arguments to that datatype,
and returns that datatype.

Oracle Database 12c: SQL Workshop I 5 - 32

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

CASE Expression

Facilitates conditional inquiries by doing the work of an
IF-THEN-ELSE statement:

CASE expr WHEN comparison_expr1 THEN return_expr1
[WHEN comparison_expr2 THEN return_expr2
WHEN comparison_exprn THEN return_exprn
ELSE else_expr]

END

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 E

ga
bi

 S
ol

ut
io

ns
 u

se
 o

nl
y

TH
ES

E
eK

IT
 M

AT
ER

IA
LS

 A
R

E
FO

R
 Y

O
U

R
 U

SE
 IN

 T
H

IS
 C

LA
SS

R
O

O
M

 O
N

LY
.

C
O

PY
IN

G
 e

KI
T

M
AT

ER
IA

LS
 F

R
O

M
 T

H
IS

 C
O

M
PU

TE
R

 IS
 S

TR
IC

TL
Y

PR
O

H
IB

IT
ED

In the SQL statement in the slide, the value of JOB_ID is decoded. If JOB_ID is IT_PROG,
the salary increase is 10%; if JOB_ID is ST_CLERK, the salary increase is 15%; if JOB_ID is
SA_REP, the salary increase is 20%. For all other job roles, there is no increase in salary.

The same statement can be written with the DECODE function.

The following code is an example of the searched CASE expression. In a searched CASE
expression, the search occurs from left to right until an occurrence of the listed condition is
found, and then it returns the return expression. If no condition is found to be true, and if an
ELSE clause exists, the return expression in the ELSE clause is returned; otherwise, a NULL is
returned.

SELECT last_name,salary,

(CASE WHEN salary<5000 THEN 'Low'

WHEN salary<10000 THEN 'Medium'

WHEN salary<20000 THEN 'Good'

ELSE 'Excellent'

END) qualified_salary

FROM employees;

Oracle Database 12c: SQL Workshop I 5 - 33

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

SELECT last_name, job_id, salary,
CASE job_id WHEN 'IT_PROG' THEN 1.10*salary

WHEN 'ST_CLERK' THEN 1.15*salary
WHEN 'SA_REP' THEN 1.20*salary

ELSE salary END "REVISED_SALARY"
FROM employees;

Using the CASE Expression

Facilitates conditional inquiries by doing the work of an
IF-THEN-ELSE statement:

…

…

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 E

ga
bi

 S
ol

ut
io

ns
 u

se
 o

nl
y

TH
ES

E
eK

IT
 M

AT
ER

IA
LS

 A
R

E
FO

R
 Y

O
U

R
 U

SE
 IN

 T
H

IS
 C

LA
SS

R
O

O
M

 O
N

LY
.

C
O

PY
IN

G
 e

KI
T

M
AT

ER
IA

LS
 F

R
O

M
 T

H
IS

 C
O

M
PU

TE
R

 IS
 S

TR
IC

TL
Y

PR
O

H
IB

IT
ED

The DECODE function decodes an expression in a way similar to the IF-THEN-ELSE logic
that is used in various languages. The DECODE function decodes expression after
comparing it to each search value. If the expression is the same as search, result is
returned.

If the default value is omitted, a null value is returned where a search value does not match
any of the result values.

Oracle Database 12c: SQL Workshop I 5 - 34

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

DECODE Function

Facilitates conditional inquiries by doing the work of a CASE
expression or an IF-THEN-ELSE statement:

DECODE(col|expression, search1, result1
[, search2, result2,...,]
[, default])

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 E

ga
bi

 S
ol

ut
io

ns
 u

se
 o

nl
y

TH
ES

E
eK

IT
 M

AT
ER

IA
LS

 A
R

E
FO

R
 Y

O
U

R
 U

SE
 IN

 T
H

IS
 C

LA
SS

R
O

O
M

 O
N

LY
.

C
O

PY
IN

G
 e

KI
T

M
AT

ER
IA

LS
 F

R
O

M
 T

H
IS

 C
O

M
PU

TE
R

 IS
 S

TR
IC

TL
Y

PR
O

H
IB

IT
ED

In the SQL statement in the slide, the value of JOB_ID is tested. If JOB_ID is IT_PROG, the
salary increase is 10%; if JOB_ID is ST_CLERK, the salary increase is 15%; if JOB_ID is
SA_REP, the salary increase is 20%. For all other job roles, there is no increase in salary.

The same statement can be expressed in pseudocode as an IF-THEN-ELSE statement:
IF job_id = 'IT_PROG' THEN salary = salary*1.10

IF job_id = 'ST_CLERK' THEN salary = salary*1.15

IF job_id = 'SA_REP' THEN salary = salary*1.20

ELSE salary = salary

Oracle Database 12c: SQL Workshop I 5 - 35

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

SELECT last_name, job_id, salary,
DECODE(job_id, 'IT_PROG', 1.10*salary,

'ST_CLERK', 1.15*salary,
'SA_REP', 1.20*salary,

salary)
REVISED_SALARY

FROM employees;

Using the DECODE Function

…

…

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 E

ga
bi

 S
ol

ut
io

ns
 u

se
 o

nl
y

TH
ES

E
eK

IT
 M

AT
ER

IA
LS

 A
R

E
FO

R
 Y

O
U

R
 U

SE
 IN

 T
H

IS
 C

LA
SS

R
O

O
M

 O
N

LY
.

C
O

PY
IN

G
 e

KI
T

M
AT

ER
IA

LS
 F

R
O

M
 T

H
IS

 C
O

M
PU

TE
R

 IS
 S

TR
IC

TL
Y

PR
O

H
IB

IT
ED

This slide shows another example using the DECODE function. In this example, you determine
the tax rate for each employee in department 80 based on the monthly salary. The tax rates
are as follows:

Monthly Salary Range Tax Rate
$0.00–1,999.99 00%
$2,000.00–3,999.99 09%
$4,000.00–5,999.99 20%
$6,000.00–7,999.99 30%
$8,000.00–9,999.99 40%
$10,000.00–11,999.99 42%
$12,200.00–13,999.99 44%
$14,000.00 or greater 45%

Oracle Database 12c: SQL Workshop I 5 - 36

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

SELECT last_name, salary,
DECODE (TRUNC(salary/2000, 0),

0, 0.00,
1, 0.09,
2, 0.20,
3, 0.30,
4, 0.40,
5, 0.42,
6, 0.44,

0.45) TAX_RATE
FROM employees
WHERE department_id = 80;

Using the DECODE Function

Display the applicable tax rate for each employee in
department 80:

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 E

ga
bi

 S
ol

ut
io

ns
 u

se
 o

nl
y

TH
ES

E
eK

IT
 M

AT
ER

IA
LS

 A
R

E
FO

R
 Y

O
U

R
 U

SE
 IN

 T
H

IS
 C

LA
SS

R
O

O
M

 O
N

LY
.

C
O

PY
IN

G
 e

KI
T

M
AT

ER
IA

LS
 F

R
O

M
 T

H
IS

 C
O

M
PU

TE
R

 IS
 S

TR
IC

TL
Y

PR
O

H
IB

IT
ED

Answer: b

Oracle Database 12c: SQL Workshop I 5 - 37

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

Quiz

The TO_NUMBER function converts either character strings or
date values to a number in the format specified by the optional
format model.

a. True

b. False

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 E

ga
bi

 S
ol

ut
io

ns
 u

se
 o

nl
y

TH
ES

E
eK

IT
 M

AT
ER

IA
LS

 A
R

E
FO

R
 Y

O
U

R
 U

SE
 IN

 T
H

IS
 C

LA
SS

R
O

O
M

 O
N

LY
.

C
O

PY
IN

G
 e

KI
T

M
AT

ER
IA

LS
 F

R
O

M
 T

H
IS

 C
O

M
PU

TE
R

 IS
 S

TR
IC

TL
Y

PR
O

H
IB

IT
ED

Remember the following:

• Conversion functions can convert character, date, and numeric values: TO_CHAR,
TO_DATE, TO_NUMBER

• There are several functions that pertain to nulls, including NVL, NVL2, NULLIF, and
COALESCE.

• The IF-THEN-ELSE logic can be applied within a SQL statement by using the CASE
expression or the DECODE function.

Oracle Database 12c: SQL Workshop I 5 - 38

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

Summary

In this lesson, you should have learned how to:

• Alter date formats for display using functions

• Convert column data types using functions
• Use NVL functions

• Use IF-THEN-ELSE logic and other conditional
expressions in a SELECT statement

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 E

ga
bi

 S
ol

ut
io

ns
 u

se
 o

nl
y

TH
ES

E
eK

IT
 M

AT
ER

IA
LS

 A
R

E
FO

R
 Y

O
U

R
 U

SE
 IN

 T
H

IS
 C

LA
SS

R
O

O
M

 O
N

LY
.

C
O

PY
IN

G
 e

KI
T

M
AT

ER
IA

LS
 F

R
O

M
 T

H
IS

 C
O

M
PU

TE
R

 IS
 S

TR
IC

TL
Y

PR
O

H
IB

IT
ED

This practice provides a variety of exercises using TO_CHAR and TO_DATE functions, and
conditional expressions such as DECODE and CASE. Remember that for nested functions, the
results are evaluated from the innermost function to the outermost function.

Oracle Database 12c: SQL Workshop I 5 - 39

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

Practice 5: Overview

This practice covers the following topics:
• Creating queries that use TO_CHAR, TO_DATE, and other

DATE functions

• Creating queries that use conditional expressions such as
DECODE and CASE

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 E

ga
bi

 S
ol

ut
io

ns
 u

se
 o

nl
y

TH
ES

E
eK

IT
 M

AT
ER

IA
LS

 A
R

E
FO

R
 Y

O
U

R
 U

SE
 IN

 T
H

IS
 C

LA
SS

R
O

O
M

 O
N

LY
.

C
O

PY
IN

G
 e

KI
T

M
AT

ER
IA

LS
 F

R
O

M
 T

H
IS

 C
O

M
PU

TE
R

 IS
 S

TR
IC

TL
Y

PR
O

H
IB

IT
ED

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 E

ga
bi

 S
ol

ut
io

ns
 u

se
 o

nl
y

TH
ES

E
eK

IT
 M

AT
ER

IA
LS

 A
R

E
FO

R
 Y

O
U

R
 U

SE
 IN

 T
H

IS
 C

LA
SS

R
O

O
M

 O
N

LY
.

C
O

PY
IN

G
 e

KI
T

M
AT

ER
IA

LS
 F

R
O

M
 T

H
IS

 C
O

M
PU

TE
R

 IS
 S

TR
IC

TL
Y

PR
O

H
IB

IT
ED

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

Reporting Aggregated Data
Using the Group Functions

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 E

ga
bi

 S
ol

ut
io

ns
 u

se
 o

nl
y

TH
ES

E
eK

IT
 M

AT
ER

IA
LS

 A
R

E
FO

R
 Y

O
U

R
 U

SE
 IN

 T
H

IS
 C

LA
SS

R
O

O
M

 O
N

LY
.

C
O

PY
IN

G
 e

KI
T

M
AT

ER
IA

LS
 F

R
O

M
 T

H
IS

 C
O

M
PU

TE
R

 IS
 S

TR
IC

TL
Y

PR
O

H
IB

IT
ED

This lesson further addresses functions. It focuses on obtaining summary information (such
as averages) for groups of rows. It discusses how to group rows in a table into smaller sets
and how to specify search criteria for groups of rows.

Oracle Database 12c: SQL Workshop I 6 - 2

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

Objectives

After completing this lesson, you should be able to do the
following:

• Identify the available group functions

• Describe the use of group functions
• Group data by using the GROUP BY clause

• Include or exclude grouped rows by using the HAVING
clause

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 E

ga
bi

 S
ol

ut
io

ns
 u

se
 o

nl
y

TH
ES

E
eK

IT
 M

AT
ER

IA
LS

 A
R

E
FO

R
 Y

O
U

R
 U

SE
 IN

 T
H

IS
 C

LA
SS

R
O

O
M

 O
N

LY
.

C
O

PY
IN

G
 e

KI
T

M
AT

ER
IA

LS
 F

R
O

M
 T

H
IS

 C
O

M
PU

TE
R

 IS
 S

TR
IC

TL
Y

PR
O

H
IB

IT
ED

Oracle Database 12c: SQL Workshop I 6 - 3

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

Lesson Agenda

• Group functions:
– Types and syntax
– Use AVG, SUM, MIN, MAX, COUNT

– Use the DISTINCT keyword within group functions

– NULL values in a group function

• Grouping rows:
– GROUP BY clause

– HAVING clause

• Nesting group functions

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 E

ga
bi

 S
ol

ut
io

ns
 u

se
 o

nl
y

TH
ES

E
eK

IT
 M

AT
ER

IA
LS

 A
R

E
FO

R
 Y

O
U

R
 U

SE
 IN

 T
H

IS
 C

LA
SS

R
O

O
M

 O
N

LY
.

C
O

PY
IN

G
 e

KI
T

M
AT

ER
IA

LS
 F

R
O

M
 T

H
IS

 C
O

M
PU

TE
R

 IS
 S

TR
IC

TL
Y

PR
O

H
IB

IT
ED

Unlike single-row functions, group functions operate on sets of rows to give one result per
group. These sets may comprise the entire table or the table split into groups.

Oracle Database 12c: SQL Workshop I 6 - 4

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

What Are Group Functions?

Group functions operate on sets of rows to give one result per
group.

EMPLOYEES

Maximum salary in
EMPLOYEES table

…

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 E

ga
bi

 S
ol

ut
io

ns
 u

se
 o

nl
y

TH
ES

E
eK

IT
 M

AT
ER

IA
LS

 A
R

E
FO

R
 Y

O
U

R
 U

SE
 IN

 T
H

IS
 C

LA
SS

R
O

O
M

 O
N

LY
.

C
O

PY
IN

G
 e

KI
T

M
AT

ER
IA

LS
 F

R
O

M
 T

H
IS

 C
O

M
PU

TE
R

 IS
 S

TR
IC

TL
Y

PR
O

H
IB

IT
ED

Each of the functions accepts an argument. The following table identifies the options that you
can use in the syntax:

Function Description

AVG([DISTINCT|ALL]n) Average value of n, ignoring null values

COUNT Number of rows, where expr evaluates to
something other than null (count all selected
rows using *, including duplicates and rows
with nulls)

MAX([DISTINCT|ALL]expr) Maximum value of expr, ignoring null values

MIN([DISTINCT|ALL]expr) Minimum value of expr, ignoring null values
STDDEV([DISTINCT|ALL]n) Standard deviation of n, ignoring null values

SUM([DISTINCT|ALL]n) Sum values of n, ignoring null values
LISTAGG Orders data within each group specified in

the ORDER BY clause and then concatenates
the values of the measure column

VARIANCE([DISTINCT|ALL]n) Variance of n, ignoring null values

Oracle Database 12c: SQL Workshop I 6 - 5

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

Types of Group Functions

• AVG

• COUNT

• MAX

• MIN

• SUM

• LISTAGG

• STDDEV

• VARIANCE

Group
functions

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 E

ga
bi

 S
ol

ut
io

ns
 u

se
 o

nl
y

TH
ES

E
eK

IT
 M

AT
ER

IA
LS

 A
R

E
FO

R
 Y

O
U

R
 U

SE
 IN

 T
H

IS
 C

LA
SS

R
O

O
M

 O
N

LY
.

C
O

PY
IN

G
 e

KI
T

M
AT

ER
IA

LS
 F

R
O

M
 T

H
IS

 C
O

M
PU

TE
R

 IS
 S

TR
IC

TL
Y

PR
O

H
IB

IT
ED

Oracle Database 12c: SQL Workshop I 6 - 6

The group function is placed after the SELECT keyword. You may have multiple group
functions separated by commas.

Syntax:
group_function([DISTINCT|ALL]expr)

Guidelines for using the group functions:

• DISTINCT makes the function consider only nonduplicate values; ALL makes it
consider every value, including duplicates. The default is ALL and, therefore, does not
need to be specified.

• The data types for the functions with an expr argument may be CHAR, VARCHAR2,
NUMBER, or DATE.

• All group functions ignore null values. To substitute a value for null values, use the NVL,
NVL2, COALESCE, CASE, or DECODE functions.

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

Group Functions: Syntax

SELECT group_function(column), ...
FROM table
[WHERE condition];

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 E

ga
bi

 S
ol

ut
io

ns
 u

se
 o

nl
y

TH
ES

E
eK

IT
 M

AT
ER

IA
LS

 A
R

E
FO

R
 Y

O
U

R
 U

SE
 IN

 T
H

IS
 C

LA
SS

R
O

O
M

 O
N

LY
.

C
O

PY
IN

G
 e

KI
T

M
AT

ER
IA

LS
 F

R
O

M
 T

H
IS

 C
O

M
PU

TE
R

 IS
 S

TR
IC

TL
Y

PR
O

H
IB

IT
ED

You can use the AVG, SUM, MIN, and MAX functions against the columns that can store
numeric data. The example in the slide displays the average, highest, lowest, and sum of
monthly salaries for all sales representatives.

Oracle Database 12c: SQL Workshop I 6 - 7

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

SELECT AVG(salary), MAX(salary),
MIN(salary), SUM(salary)

FROM employees
WHERE job_id LIKE '%REP%';

Using the AVG and SUM Functions

You can use AVG and SUM for numeric data.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 E

ga
bi

 S
ol

ut
io

ns
 u

se
 o

nl
y

TH
ES

E
eK

IT
 M

AT
ER

IA
LS

 A
R

E
FO

R
 Y

O
U

R
 U

SE
 IN

 T
H

IS
 C

LA
SS

R
O

O
M

 O
N

LY
.

C
O

PY
IN

G
 e

KI
T

M
AT

ER
IA

LS
 F

R
O

M
 T

H
IS

 C
O

M
PU

TE
R

 IS
 S

TR
IC

TL
Y

PR
O

H
IB

IT
ED

You can use the MAX and MIN functions for numeric, character, and date data types. The
example in the slide displays the most junior and most senior employees.

The following example displays the employee last name that is first and the employee last
name that is last in an alphabetic list of all employees:

SELECT MIN(last_name), MAX(last_name)

FROM employees;

Note: The AVG, SUM, VARIANCE, and STDDEV functions can be used only with numeric data
types. MAX and MIN cannot be used with LOB or LONG data types.

Oracle Database 12c: SQL Workshop I 6 - 8

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

Using the MIN and MAX Functions

You can use MIN and MAX for numeric, character, and date
data types.

SELECT MIN(hire_date), MAX(hire_date)
FROM employees;

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 E

ga
bi

 S
ol

ut
io

ns
 u

se
 o

nl
y

TH
ES

E
eK

IT
 M

AT
ER

IA
LS

 A
R

E
FO

R
 Y

O
U

R
 U

SE
 IN

 T
H

IS
 C

LA
SS

R
O

O
M

 O
N

LY
.

C
O

PY
IN

G
 e

KI
T

M
AT

ER
IA

LS
 F

R
O

M
 T

H
IS

 C
O

M
PU

TE
R

 IS
 S

TR
IC

TL
Y

PR
O

H
IB

IT
ED

The COUNT function has three formats:

• COUNT(*)

• COUNT(expr)

• COUNT(DISTINCT expr)

COUNT(*) returns the number of rows in a table that satisfy the criteria of the SELECT
statement, including duplicate rows and rows containing null values in any of the columns. If a
WHERE clause is included in the SELECT statement, COUNT(*) returns the number of rows
that satisfy the condition in the WHERE clause.

In contrast, COUNT(expr) returns the number of non-null values that are in the column
identified by expr.

COUNT(DISTINCT expr) returns the number of unique, non-null values that are in the
column identified by expr.

Examples

1. The example in the slide displays the number of employees in department 50.

2. The example in the slide displays the number of employees in department 50 who can
earn a commission.

Oracle Database 12c: SQL Workshop I 6 - 9

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

Using the COUNT Function

COUNT(*) returns the number of rows in a table:

COUNT(expr) returns the number of rows with non-null values
for expr:

SELECT COUNT(commission_pct)
FROM employees
WHERE department_id = 50;

SELECT COUNT(*)
FROM employees
WHERE department_id = 50;

2

1

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 E

ga
bi

 S
ol

ut
io

ns
 u

se
 o

nl
y

TH
ES

E
eK

IT
 M

AT
ER

IA
LS

 A
R

E
FO

R
 Y

O
U

R
 U

SE
 IN

 T
H

IS
 C

LA
SS

R
O

O
M

 O
N

LY
.

C
O

PY
IN

G
 e

KI
T

M
AT

ER
IA

LS
 F

R
O

M
 T

H
IS

 C
O

M
PU

TE
R

 IS
 S

TR
IC

TL
Y

PR
O

H
IB

IT
ED

Use the DISTINCT keyword to suppress the counting of any duplicate values in a column.

The example in the slide displays the number of distinct department values that are in the
EMPLOYEES table.

Oracle Database 12c: SQL Workshop I 6 - 10

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

SELECT COUNT(DISTINCT department_id)
FROM employees;

Using the DISTINCT Keyword

• COUNT(DISTINCT expr) returns the number of distinct
non-null values of expr.

• To display the number of distinct department values in the
EMPLOYEES table:

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 E

ga
bi

 S
ol

ut
io

ns
 u

se
 o

nl
y

TH
ES

E
eK

IT
 M

AT
ER

IA
LS

 A
R

E
FO

R
 Y

O
U

R
 U

SE
 IN

 T
H

IS
 C

LA
SS

R
O

O
M

 O
N

LY
.

C
O

PY
IN

G
 e

KI
T

M
AT

ER
IA

LS
 F

R
O

M
 T

H
IS

 C
O

M
PU

TE
R

 IS
 S

TR
IC

TL
Y

PR
O

H
IB

IT
ED

All group functions ignore null values in the column.

However, the NVL function forces group functions to include null values.

Examples

1. The average is calculated based on only those rows in the table in which a valid value is
stored in the COMMISSION_PCT column. The average is calculated as the total
commission that is paid to all employees divided by the number of employees receiving
a commission (four).

2. The average is calculated based on all rows in the table, regardless of whether null
values are stored in the COMMISSION_PCT column. The average is calculated as the
total commission that is paid to all employees divided by the total number of employees
in the company (20).

Oracle Database 12c: SQL Workshop I 6 - 11

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

Group Functions and Null Values

Group functions ignore null values in the column:

The NVL function forces group functions to include null values:

SELECT AVG(commission_pct)
FROM employees;

SELECT AVG(NVL(commission_pct, 0))
FROM employees;2

1

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 E

ga
bi

 S
ol

ut
io

ns
 u

se
 o

nl
y

TH
ES

E
eK

IT
 M

AT
ER

IA
LS

 A
R

E
FO

R
 Y

O
U

R
 U

SE
 IN

 T
H

IS
 C

LA
SS

R
O

O
M

 O
N

LY
.

C
O

PY
IN

G
 e

KI
T

M
AT

ER
IA

LS
 F

R
O

M
 T

H
IS

 C
O

M
PU

TE
R

 IS
 S

TR
IC

TL
Y

PR
O

H
IB

IT
ED

Oracle Database 12c: SQL Workshop I 6 - 12

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

Lesson Agenda

• Group functions:
– Types and syntax
– Use AVG, SUM, MIN, MAX, COUNT

– Use DISTINCT keyword within group functions

– NULL values in a group function

• Grouping rows:
– GROUP BY clause

– HAVING clause

• Nesting group functions

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 E

ga
bi

 S
ol

ut
io

ns
 u

se
 o

nl
y

TH
ES

E
eK

IT
 M

AT
ER

IA
LS

 A
R

E
FO

R
 Y

O
U

R
 U

SE
 IN

 T
H

IS
 C

LA
SS

R
O

O
M

 O
N

LY
.

C
O

PY
IN

G
 e

KI
T

M
AT

ER
IA

LS
 F

R
O

M
 T

H
IS

 C
O

M
PU

TE
R

 IS
 S

TR
IC

TL
Y

PR
O

H
IB

IT
ED

Until this point in the discussion, all group functions have treated the table as one large group
of information. At times, however, you need to divide the table of information into smaller
groups. This can be done by using the GROUP BY clause.

Oracle Database 12c: SQL Workshop I 6 - 13

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

Creating Groups of Data

EMPLOYEES

…

4400

9500

3500

6400

10033

Average salary in the
EMPLOYEES table for
each department

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 E

ga
bi

 S
ol

ut
io

ns
 u

se
 o

nl
y

TH
ES

E
eK

IT
 M

AT
ER

IA
LS

 A
R

E
FO

R
 Y

O
U

R
 U

SE
 IN

 T
H

IS
 C

LA
SS

R
O

O
M

 O
N

LY
.

C
O

PY
IN

G
 e

KI
T

M
AT

ER
IA

LS
 F

R
O

M
 T

H
IS

 C
O

M
PU

TE
R

 IS
 S

TR
IC

TL
Y

PR
O

H
IB

IT
ED

You can use the GROUP BY clause to divide the rows in a table into groups. You can then use
the group functions to return summary information for each group.

In the syntax:

group_by_expression Specifies the columns whose values determine the basis
for grouping rows

Guidelines

• If you include a group function in a SELECT clause, you cannot select individual column
as well, unless the individual column appears in the GROUP BY clause. You receive an
error message if you fail to include the column list in the GROUP BY clause.

• Using a WHERE clause, you can exclude rows before dividing them into groups.

• You can substitute column by an Expression in the SELECT statement.

• You must include the columns in the GROUP BY clause.

• You cannot use a column alias in the GROUP BY clause.

Oracle Database 12c: SQL Workshop I 6 - 14

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

Creating Groups of Data: GROUP BY Clause Syntax

You can divide rows in a table into smaller groups by using the
GROUP BY clause.

SELECT column, group_function(column)
FROM table
[WHERE condition]
[GROUP BY group_by_expression]
[ORDER BY column];

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 E

ga
bi

 S
ol

ut
io

ns
 u

se
 o

nl
y

TH
ES

E
eK

IT
 M

AT
ER

IA
LS

 A
R

E
FO

R
 Y

O
U

R
 U

SE
 IN

 T
H

IS
 C

LA
SS

R
O

O
M

 O
N

LY
.

C
O

PY
IN

G
 e

KI
T

M
AT

ER
IA

LS
 F

R
O

M
 T

H
IS

 C
O

M
PU

TE
R

 IS
 S

TR
IC

TL
Y

PR
O

H
IB

IT
ED

When using the GROUP BY clause, make sure that all columns in the SELECT list that are not
group functions are included in the GROUP BY clause. The example in the slide displays the
department number and the average salary for each department. Here is how this SELECT
statement, containing a GROUP BY clause, is evaluated:

• The SELECT clause specifies the columns to be retrieved, as follows:

- Department number column in the EMPLOYEES table

- The average of all salaries in the group that you specified in the GROUP BY clause

• The FROM clause specifies the tables that the database must access: the EMPLOYEES
table.

• The WHERE clause specifies the rows to be retrieved. Because there is no WHERE
clause, all rows are retrieved by default.

• The GROUP BY clause specifies how the rows should be grouped. The rows are
grouped by department number, so the AVG function that is applied to the salary column
calculates the average salary for each department.

Note: To order the query results in ascending or descending order, include the ORDER BY
clause in the query.

Oracle Database 12c: SQL Workshop I 6 - 15

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

SELECT department_id, AVG(salary)
FROM employees
GROUP BY department_id ;

Using the GROUP BY Clause

All the columns in the SELECT list that are not in group
functions must be in the GROUP BY clause.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 E

ga
bi

 S
ol

ut
io

ns
 u

se
 o

nl
y

TH
ES

E
eK

IT
 M

AT
ER

IA
LS

 A
R

E
FO

R
 Y

O
U

R
 U

SE
 IN

 T
H

IS
 C

LA
SS

R
O

O
M

 O
N

LY
.

C
O

PY
IN

G
 e

KI
T

M
AT

ER
IA

LS
 F

R
O

M
 T

H
IS

 C
O

M
PU

TE
R

 IS
 S

TR
IC

TL
Y

PR
O

H
IB

IT
ED

The GROUP BY column does not have to be in the SELECT clause. For example, the SELECT
statement in the slide displays the average salaries for each department without displaying
the respective department numbers. Without the department numbers, however, the results
do not look meaningful.

You can also use the group function in the ORDER BY clause:
SELECT department_id, AVG(salary)

FROM employees

GROUP BY department_id

ORDER BY AVG(salary);

Oracle Database 12c: SQL Workshop I 6 - 16

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

Using the GROUP BY Clause

The GROUP BY column does not have to be in the SELECT list.

SELECT AVG(salary)
FROM employees
GROUP BY department_id ;

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 E

ga
bi

 S
ol

ut
io

ns
 u

se
 o

nl
y

TH
ES

E
eK

IT
 M

AT
ER

IA
LS

 A
R

E
FO

R
 Y

O
U

R
 U

SE
 IN

 T
H

IS
 C

LA
SS

R
O

O
M

 O
N

LY
.

C
O

PY
IN

G
 e

KI
T

M
AT

ER
IA

LS
 F

R
O

M
 T

H
IS

 C
O

M
PU

TE
R

 IS
 S

TR
IC

TL
Y

PR
O

H
IB

IT
ED

Sometimes, you need to see results for groups within groups. The slide shows a report that
displays the total salary that is paid to each job title in each department.

The EMPLOYEES table is grouped first by the department number, and then by the job title
within that grouping. For example, the four stock clerks in department 50 are grouped
together, and a single result (total salary) is produced for all stock clerks in the group.

The following SELECT statement returns the result shown in the slide:
SELECT department_id, job_id, sum(salary)

FROM employees

GROUP BY department_id, job_id

ORDER BY job_id;

Oracle Database 12c: SQL Workshop I 6 - 17

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

Grouping by More Than One Column

EMPLOYEES Add the salaries in the EMPLOYEES
table for each job, grouped by
department.

…

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 E

ga
bi

 S
ol

ut
io

ns
 u

se
 o

nl
y

TH
ES

E
eK

IT
 M

AT
ER

IA
LS

 A
R

E
FO

R
 Y

O
U

R
 U

SE
 IN

 T
H

IS
 C

LA
SS

R
O

O
M

 O
N

LY
.

C
O

PY
IN

G
 e

KI
T

M
AT

ER
IA

LS
 F

R
O

M
 T

H
IS

 C
O

M
PU

TE
R

 IS
 S

TR
IC

TL
Y

PR
O

H
IB

IT
ED

Oracle Database 12c: SQL Workshop I 6 - 18

You can return summary results for groups and subgroups by listing multiple GROUP BY
columns. The GROUP BY clause groups rows but does not guarantee the order of the result
set. To order the groupings, use the ORDER BY clause.

In the example in the slide, the SELECT statement that contains a GROUP BY clause is
evaluated as follows:

• The SELECT clause specifies the column to be retrieved:
- DEPARTMENT ID in the EMPLOYEES table
- JOB ID in the EMPLOYEES table
- The sum of all salaries in the group that you specified in the GROUP BY clause

• The FROM clause specifies the tables that the database must access: the EMPLOYEES
table.

• The WHERE clause reduces the result set to those rows where department ID is greater
than 40.

• The GROUP BY clause specifies how you must group the resulting rows:
- First, the rows are grouped by the DEPARTMENT ID.
- Second, the rows are grouped by JOB ID in the DEPARTMENTID groups.

• The ORDER BY clause sorts the results by department ID.

Note: The SUM function is applied to the salary column for all job IDs in the result set in each
DEPARTMENT ID group. Also, note that the SA_REP row is not returned. The DEPARTMENT
ID for this row is NULL and, therefore, does not meet the WHERE condition.

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

SELECT department_id, job_id, SUM(salary)
FROM employees
WHERE department_id > 40
GROUP BY department_id, job_id
ORDER BY department_id;

Using the GROUP BY Clause on Multiple Columns

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 E

ga
bi

 S
ol

ut
io

ns
 u

se
 o

nl
y

TH
ES

E
eK

IT
 M

AT
ER

IA
LS

 A
R

E
FO

R
 Y

O
U

R
 U

SE
 IN

 T
H

IS
 C

LA
SS

R
O

O
M

 O
N

LY
.

C
O

PY
IN

G
 e

KI
T

M
AT

ER
IA

LS
 F

R
O

M
 T

H
IS

 C
O

M
PU

TE
R

 IS
 S

TR
IC

TL
Y

PR
O

H
IB

IT
ED

Whenever you use a mixture of individual items (DEPARTMENT_ID) and group functions
(COUNT) in the same SELECT statement, you must include a GROUP BY clause that specifies
the individual items (in this case, DEPARTMENT_ID). If the GROUP BY clause is missing, the
error message “not a single-group group function” appears and an asterisk (*) points to the
offending column. You can correct the error in the first example in the slide by adding the
GROUP BY clause:

SELECT department_id, count(last_name)

FROM employees

GROUP BY department_id;

Any column or expression in the SELECT list that is not an aggregate function must be in the
GROUP BY clause. In the second example in the slide, job_id is neither in the GROUP BY
clause nor is it being used by a group function, so there is a “not a GROUP BY expression”
error. You can correct the error in the second slide example by adding job_id in the GROUP
BY clause.

SELECT department_id, job_id, COUNT(last_name)

FROM employees

GROUP BY department_id, job_id;

Oracle Database 12c: SQL Workshop I 6 - 19

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

Illegal Queries Using Group Functions

Any column or expression in the SELECT list that is not an
aggregate function must be in the GROUP BY clause:

SELECT department_id, COUNT(last_name)
FROM employees;

SELECT department_id, job_id, COUNT(last_name)
FROM employees
GROUP BY department_id;

A GROUP BY clause must be added to
count the last names for each
department_id.

Either add job_id in the GROUP BY or
remove the job_id column from the
SELECT list.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 E

ga
bi

 S
ol

ut
io

ns
 u

se
 o

nl
y

TH
ES

E
eK

IT
 M

AT
ER

IA
LS

 A
R

E
FO

R
 Y

O
U

R
 U

SE
 IN

 T
H

IS
 C

LA
SS

R
O

O
M

 O
N

LY
.

C
O

PY
IN

G
 e

KI
T

M
AT

ER
IA

LS
 F

R
O

M
 T

H
IS

 C
O

M
PU

TE
R

 IS
 S

TR
IC

TL
Y

PR
O

H
IB

IT
ED

The WHERE clause cannot be used to restrict groups. The SELECT statement in the example
in the slide results in an error because it uses the WHERE clause to restrict the display of the
average salaries of those departments that have an average salary greater than $8,000.

However, you can correct the error in the example by using the HAVING clause to restrict
groups:

SELECT department_id, AVG(salary)

FROM employees

GROUP BY department_id

HAVING AVG(salary) > 8000;

Oracle Database 12c: SQL Workshop I 6 - 20

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

Illegal Queries Using Group Functions

• You cannot use the WHERE clause to restrict groups.

• You use the HAVING clause to restrict groups.

• You cannot use group functions in the WHERE clause.

SELECT department_id, AVG(salary)
FROM employees
WHERE AVG(salary) > 8000
GROUP BY department_id;

Cannot use the
WHERE clause to
restrict groups

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 E

ga
bi

 S
ol

ut
io

ns
 u

se
 o

nl
y

TH
ES

E
eK

IT
 M

AT
ER

IA
LS

 A
R

E
FO

R
 Y

O
U

R
 U

SE
 IN

 T
H

IS
 C

LA
SS

R
O

O
M

 O
N

LY
.

C
O

PY
IN

G
 e

KI
T

M
AT

ER
IA

LS
 F

R
O

M
 T

H
IS

 C
O

M
PU

TE
R

 IS
 S

TR
IC

TL
Y

PR
O

H
IB

IT
ED

You use the HAVING clause to restrict groups in the same way that you use the WHERE clause
to restrict the rows that you select. To find the maximum salary in each of the departments
that have a maximum salary greater than $10,000, you need to do the following:

1. Find the average salary for each department by grouping by department number.

2. Restrict the groups to those departments with a maximum salary greater than $10,000.

Oracle Database 12c: SQL Workshop I 6 - 21

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

Restricting Group Results

EMPLOYEES

…

The maximum salary per
department when it is
greater than $10,000

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 E

ga
bi

 S
ol

ut
io

ns
 u

se
 o

nl
y

TH
ES

E
eK

IT
 M

AT
ER

IA
LS

 A
R

E
FO

R
 Y

O
U

R
 U

SE
 IN

 T
H

IS
 C

LA
SS

R
O

O
M

 O
N

LY
.

C
O

PY
IN

G
 e

KI
T

M
AT

ER
IA

LS
 F

R
O

M
 T

H
IS

 C
O

M
PU

TE
R

 IS
 S

TR
IC

TL
Y

PR
O

H
IB

IT
ED

You use the HAVING clause to specify the groups that are to be displayed, thus further
restricting the groups on the basis of aggregate information.

In the syntax, group_condition restricts the groups of rows returned to those groups for
which the specified condition is true.

The Oracle server performs the following steps when you use the HAVING clause:

1. Rows are grouped.

2. The group function is applied to the group.

3. The groups that match the criteria in the HAVING clause are displayed.

The HAVING clause can precede the GROUP BY clause, but it is recommended that you place
the GROUP BY clause first because it is more logical. Groups are formed and group functions
are calculated before the HAVING clause is applied to the groups in the SELECT list.

Note: The WHERE clause restricts rows, whereas the HAVING clause restricts groups.

Oracle Database 12c: SQL Workshop I 6 - 22

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

SELECT column, group_function
FROM table
[WHERE condition]
[GROUP BY group_by_expression]
[HAVING group_condition]
[ORDER BY column];

Restricting Group Results with the HAVING Clause

When you use the HAVING clause, the Oracle server restricts
groups as follows:

1. Rows are grouped.

2. The group function is applied.
3. Groups matching the HAVING clause are displayed.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 E

ga
bi

 S
ol

ut
io

ns
 u

se
 o

nl
y

TH
ES

E
eK

IT
 M

AT
ER

IA
LS

 A
R

E
FO

R
 Y

O
U

R
 U

SE
 IN

 T
H

IS
 C

LA
SS

R
O

O
M

 O
N

LY
.

C
O

PY
IN

G
 e

KI
T

M
AT

ER
IA

LS
 F

R
O

M
 T

H
IS

 C
O

M
PU

TE
R

 IS
 S

TR
IC

TL
Y

PR
O

H
IB

IT
ED

The example in the slide displays the department numbers and maximum salaries for those
departments with a maximum salary greater than $10,000.

You can use the GROUP BY clause without using a group function in the SELECT list. If you
restrict rows based on the result of a group function, you must have a GROUP BY clause as
well as the HAVING clause.

The following example displays the department numbers and average salaries for those
departments with a maximum salary greater than $10,000:

SELECT department_id, AVG(salary)

FROM employees

GROUP BY department_id

HAVING max(salary)>10000;

Oracle Database 12c: SQL Workshop I 6 - 23

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

SELECT department_id, MAX(salary)
FROM employees
GROUP BY department_id
HAVING MAX(salary)>10000 ;

Using the HAVING Clause

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 E

ga
bi

 S
ol

ut
io

ns
 u

se
 o

nl
y

TH
ES

E
eK

IT
 M

AT
ER

IA
LS

 A
R

E
FO

R
 Y

O
U

R
 U

SE
 IN

 T
H

IS
 C

LA
SS

R
O

O
M

 O
N

LY
.

C
O

PY
IN

G
 e

KI
T

M
AT

ER
IA

LS
 F

R
O

M
 T

H
IS

 C
O

M
PU

TE
R

 IS
 S

TR
IC

TL
Y

PR
O

H
IB

IT
ED

The example in the slide displays the JOB ID and total monthly salary for each job that has
a total payroll exceeding $13,000. The example excludes sales representatives and sorts the
list by the total monthly salary.

Oracle Database 12c: SQL Workshop I 6 - 24

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

SELECT job_id, SUM(salary) PAYROLL
FROM employees
WHERE job_id NOT LIKE '%REP%'
GROUP BY job_id
HAVING SUM(salary) > 13000
ORDER BY SUM(salary);

Using the HAVING Clause

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 E

ga
bi

 S
ol

ut
io

ns
 u

se
 o

nl
y

TH
ES

E
eK

IT
 M

AT
ER

IA
LS

 A
R

E
FO

R
 Y

O
U

R
 U

SE
 IN

 T
H

IS
 C

LA
SS

R
O

O
M

 O
N

LY
.

C
O

PY
IN

G
 e

KI
T

M
AT

ER
IA

LS
 F

R
O

M
 T

H
IS

 C
O

M
PU

TE
R

 IS
 S

TR
IC

TL
Y

PR
O

H
IB

IT
ED

Oracle Database 12c: SQL Workshop I 6 - 25

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

Lesson Agenda

• Group functions:
– Types and syntax
– Use AVG, SUM, MIN, MAX, COUNT

– Use DISTINCT keyword within group functions

– NULL values in a group function

• Grouping rows:
– GROUP BY clause

– HAVING clause

• Nesting group functions

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 E

ga
bi

 S
ol

ut
io

ns
 u

se
 o

nl
y

TH
ES

E
eK

IT
 M

AT
ER

IA
LS

 A
R

E
FO

R
 Y

O
U

R
 U

SE
 IN

 T
H

IS
 C

LA
SS

R
O

O
M

 O
N

LY
.

C
O

PY
IN

G
 e

KI
T

M
AT

ER
IA

LS
 F

R
O

M
 T

H
IS

 C
O

M
PU

TE
R

 IS
 S

TR
IC

TL
Y

PR
O

H
IB

IT
ED

Group functions can be nested to a depth of two functions. The example in the slide
calculates the average salary for each department_id and then displays the maximum
average salary.

Note that GROUP BY clause is mandatory when nesting group functions.

Oracle Database 12c: SQL Workshop I 6 - 26

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

SELECT MAX(AVG(salary))
FROM employees
GROUP BY department_id;

Nesting Group Functions

Display the maximum average salary:

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 E

ga
bi

 S
ol

ut
io

ns
 u

se
 o

nl
y

TH
ES

E
eK

IT
 M

AT
ER

IA
LS

 A
R

E
FO

R
 Y

O
U

R
 U

SE
 IN

 T
H

IS
 C

LA
SS

R
O

O
M

 O
N

LY
.

C
O

PY
IN

G
 e

KI
T

M
AT

ER
IA

LS
 F

R
O

M
 T

H
IS

 C
O

M
PU

TE
R

 IS
 S

TR
IC

TL
Y

PR
O

H
IB

IT
ED

Answer: a, c

Oracle Database 12c: SQL Workshop I 6 - 27

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

Quiz

Identify the two guidelines for group functions and the GROUP
BY clause.

a. You cannot use a column alias in the GROUP BY clause.

b. The GROUP BY column must be in the SELECT clause.

c. By using a WHERE clause, you can exclude rows before
dividing them into groups.

d. The GROUP BY clause groups rows and ensures order of
the result set.

e. If you include a group function in a SELECT clause, you
must include a GROUP BY clause.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 E

ga
bi

 S
ol

ut
io

ns
 u

se
 o

nl
y

TH
ES

E
eK

IT
 M

AT
ER

IA
LS

 A
R

E
FO

R
 Y

O
U

R
 U

SE
 IN

 T
H

IS
 C

LA
SS

R
O

O
M

 O
N

LY
.

C
O

PY
IN

G
 e

KI
T

M
AT

ER
IA

LS
 F

R
O

M
 T

H
IS

 C
O

M
PU

TE
R

 IS
 S

TR
IC

TL
Y

PR
O

H
IB

IT
ED

There are several group functions available in SQL, such as AVG, COUNT, MAX, MIN, SUM,
STDDEV, and VARIANCE.

You can create subgroups by using the GROUP BY clause. Further, groups can be restricted
using the HAVING clause.

Place the HAVING and GROUP BY clauses after the WHERE clause in a statement. The order of
the GROUP BY and HAVING clauses following the WHERE clause is not important. You can
have either the GROUP BY clause or the HAVING clause first as long as they follow the
WHERE clause. Place the ORDER BY clause at the end.

The Oracle server evaluates the clauses in the following order:

1. If the statement contains a WHERE clause, the server establishes the candidate rows.

2. The server identifies the groups that are specified in the GROUP BY clause.

3. The HAVING clause further restricts result groups that do not meet the group criteria in
the HAVING clause.

Note: For a complete list of the group functions, see Oracle Database SQL Language
Reference for 12c database.

Oracle Database 12c: SQL Workshop I 6 - 28

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

SELECT column, group_function
FROM table
[WHERE condition]
[GROUP BY group_by_expression]
[HAVING group_condition]
[ORDER BY column];

Summary

In this lesson, you should have learned how to:
• Use the group functions COUNT, MAX, MIN, SUM, and AVG

• Write queries that use the GROUP BY clause

• Write queries that use the HAVING clause

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 E

ga
bi

 S
ol

ut
io

ns
 u

se
 o

nl
y

TH
ES

E
eK

IT
 M

AT
ER

IA
LS

 A
R

E
FO

R
 Y

O
U

R
 U

SE
 IN

 T
H

IS
 C

LA
SS

R
O

O
M

 O
N

LY
.

C
O

PY
IN

G
 e

KI
T

M
AT

ER
IA

LS
 F

R
O

M
 T

H
IS

 C
O

M
PU

TE
R

 IS
 S

TR
IC

TL
Y

PR
O

H
IB

IT
ED

In this practice, you learn to use group functions and select groups of data.

Oracle Database 12c: SQL Workshop I 6 - 29

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

Practice 6: Overview

This practice covers the following topics:

• Writing queries that use the group functions

• Grouping by rows to achieve more than one result
• Restricting groups by using the HAVING clause

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 E

ga
bi

 S
ol

ut
io

ns
 u

se
 o

nl
y

TH
ES

E
eK

IT
 M

AT
ER

IA
LS

 A
R

E
FO

R
 Y

O
U

R
 U

SE
 IN

 T
H

IS
 C

LA
SS

R
O

O
M

 O
N

LY
.

C
O

PY
IN

G
 e

KI
T

M
AT

ER
IA

LS
 F

R
O

M
 T

H
IS

 C
O

M
PU

TE
R

 IS
 S

TR
IC

TL
Y

PR
O

H
IB

IT
ED

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 E

ga
bi

 S
ol

ut
io

ns
 u

se
 o

nl
y

TH
ES

E
eK

IT
 M

AT
ER

IA
LS

 A
R

E
FO

R
 Y

O
U

R
 U

SE
 IN

 T
H

IS
 C

LA
SS

R
O

O
M

 O
N

LY
.

C
O

PY
IN

G
 e

KI
T

M
AT

ER
IA

LS
 F

R
O

M
 T

H
IS

 C
O

M
PU

TE
R

 IS
 S

TR
IC

TL
Y

PR
O

H
IB

IT
ED

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

Displaying Data
from Multiple Tables Using Joins

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 E

ga
bi

 S
ol

ut
io

ns
 u

se
 o

nl
y

TH
ES

E
eK

IT
 M

AT
ER

IA
LS

 A
R

E
FO

R
 Y

O
U

R
 U

SE
 IN

 T
H

IS
 C

LA
SS

R
O

O
M

 O
N

LY
.

C
O

PY
IN

G
 e

KI
T

M
AT

ER
IA

LS
 F

R
O

M
 T

H
IS

 C
O

M
PU

TE
R

 IS
 S

TR
IC

TL
Y

PR
O

H
IB

IT
ED

This lesson explains how to obtain data from more than one table. A join is used to view
information from multiple tables. Therefore, you can join tables together to view information
from more than one table.

Note: Information about joins is found in the “SQL Queries and Subqueries: Joins” section in
Oracle Database SQL Language Reference for 12c database.

Oracle Database 12c: SQL Workshop I 7 - 2

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

Objectives

After completing this lesson, you should be able to do the
following:
• Write SELECT statements to access data from more than

one table using equijoins and nonequijoins

• Join a table to itself by using a self-join

• View data that generally does not meet a join condition by
using OUTER joins

• Generate a Cartesian product of all rows from two or more
tables

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 E

ga
bi

 S
ol

ut
io

ns
 u

se
 o

nl
y

TH
ES

E
eK

IT
 M

AT
ER

IA
LS

 A
R

E
FO

R
 Y

O
U

R
 U

SE
 IN

 T
H

IS
 C

LA
SS

R
O

O
M

 O
N

LY
.

C
O

PY
IN

G
 e

KI
T

M
AT

ER
IA

LS
 F

R
O

M
 T

H
IS

 C
O

M
PU

TE
R

 IS
 S

TR
IC

TL
Y

PR
O

H
IB

IT
ED

Oracle Database 12c: SQL Workshop I 7 - 3

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

Lesson Agenda

• Types of JOINS and its syntax

• Natural join
• Join with the USING Clause

• Join with the ON Clause

• Self-join

• Nonequijoins
• OUTER join:

– LEFT OUTER join

– RIGHT OUTER join

– FULL OUTER join

• Cartesian product
– Cross join

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 E

ga
bi

 S
ol

ut
io

ns
 u

se
 o

nl
y

TH
ES

E
eK

IT
 M

AT
ER

IA
LS

 A
R

E
FO

R
 Y

O
U

R
 U

SE
 IN

 T
H

IS
 C

LA
SS

R
O

O
M

 O
N

LY
.

C
O

PY
IN

G
 e

KI
T

M
AT

ER
IA

LS
 F

R
O

M
 T

H
IS

 C
O

M
PU

TE
R

 IS
 S

TR
IC

TL
Y

PR
O

H
IB

IT
ED

Sometimes you need to use data from more than one table. In the example in the slide, the
report displays data from two separate tables:

• Employee IDs exist in the EMPLOYEES table.

• Department IDs exist in both the EMPLOYEES and DEPARTMENTS tables.

• Department names exist in the DEPARTMENTS table.

To produce the report, you need to link the EMPLOYEES and DEPARTMENTS tables, and
access data from both of them.

Oracle Database 12c: SQL Workshop I 7 - 4

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

Obtaining Data from Multiple Tables

EMPLOYEES DEPARTMENTS

…

…

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 E

ga
bi

 S
ol

ut
io

ns
 u

se
 o

nl
y

TH
ES

E
eK

IT
 M

AT
ER

IA
LS

 A
R

E
FO

R
 Y

O
U

R
 U

SE
 IN

 T
H

IS
 C

LA
SS

R
O

O
M

 O
N

LY
.

C
O

PY
IN

G
 e

KI
T

M
AT

ER
IA

LS
 F

R
O

M
 T

H
IS

 C
O

M
PU

TE
R

 IS
 S

TR
IC

TL
Y

PR
O

H
IB

IT
ED

To join tables, you can use a join syntax that is compliant with the SQL:1999 standard.

Note

• Before the Oracle9i release, the join syntax was different from the American National
Standards Institute (ANSI) standards. The SQL:1999–compliant join syntax does not
offer any performance benefits over the Oracle-proprietary join syntax that existed in the
prior releases.

• The following slide discusses the SQL:1999 join syntax.

Oracle Database 12c: SQL Workshop I 7 - 5

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

Types of Joins

Joins that are compliant with the SQL:1999 standard include
the following:
• Natural join with the NATURAL JOIN clause

• Join with the USING Clause

• Join with the ON Clause

• OUTER joins:
– LEFT OUTER JOIN

– RIGHT OUTER JOIN

– FULL OUTER JOIN

• Cross joins

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 E

ga
bi

 S
ol

ut
io

ns
 u

se
 o

nl
y

TH
ES

E
eK

IT
 M

AT
ER

IA
LS

 A
R

E
FO

R
 Y

O
U

R
 U

SE
 IN

 T
H

IS
 C

LA
SS

R
O

O
M

 O
N

LY
.

C
O

PY
IN

G
 e

KI
T

M
AT

ER
IA

LS
 F

R
O

M
 T

H
IS

 C
O

M
PU

TE
R

 IS
 S

TR
IC

TL
Y

PR
O

H
IB

IT
ED

In the syntax:

• table1.column denotes the table and the column from which data is retrieved

• NATURAL JOIN joins two tables based on the same column name

• JOIN table2 USING column_name performs an equijoin based on the column
name

• JOIN table2 ON table1.column_name = table2.column_name performs
an equijoin based on the condition in the ON clause

• LEFT/RIGHT/FULL OUTER is used to perform OUTER joins

• CROSS JOIN returns a Cartesian product from the two tables

For more information, see the section titled “SELECT” in Oracle Database SQL Language
Reference for 12c database.

Oracle Database 12c: SQL Workshop I 7 - 6

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

Joining Tables Using SQL:1999 Syntax

Use a join to query data from more than one table:

SELECT table1.column, table2.column
FROM table1
[NATURAL JOIN table2] |
[JOIN table2 USING (column_name)] |
[JOIN table2
ON (table1.column_name = table2.column_name)]|

[LEFT|RIGHT|FULL OUTER JOIN table2
ON (table1.column_name = table2.column_name)]|

[CROSS JOIN table2];

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 E

ga
bi

 S
ol

ut
io

ns
 u

se
 o

nl
y

TH
ES

E
eK

IT
 M

AT
ER

IA
LS

 A
R

E
FO

R
 Y

O
U

R
 U

SE
 IN

 T
H

IS
 C

LA
SS

R
O

O
M

 O
N

LY
.

C
O

PY
IN

G
 e

KI
T

M
AT

ER
IA

LS
 F

R
O

M
 T

H
IS

 C
O

M
PU

TE
R

 IS
 S

TR
IC

TL
Y

PR
O

H
IB

IT
ED

Oracle Database 12c: SQL Workshop I 7 - 7

When joining two or more tables, you need to qualify the names of the columns with the table
name to avoid ambiguity. Without the table prefixes, the DEPARTMENT_ID column in the
SELECT list could be from either the DEPARTMENTS table or the EMPLOYEES table. It is
necessary to add the table prefix to execute your query. If there are no common column
names between the two tables, there is no need to qualify the columns. However, using the
table prefix increases the speed of parsing of the statement , because you tell the Oracle
server exactly where to find the columns.

However, qualifying column names with table names can be time consuming, particularly if
the table names are lengthy. Instead, you can use table aliases. Just as a column alias gives
a column another name, a table alias gives a table another name. Table aliases help to keep
SQL code smaller, therefore, using less memory.

The table name is specified in full, followed by a space, and then the table alias. For example,
the EMPLOYEES table can be given an alias of e, and the DEPARTMENTS table an alias of d.

Guidelines
• Table aliases can be up to 30 characters in length, but shorter aliases are better than

longer ones.
• If a table alias is used for a particular table name in the FROM clause, that table alias

must be substituted for the table name throughout the SELECT statement.
• Table aliases should be meaningful.
• The table alias is valid for only the current SELECT statement.

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

Qualifying Ambiguous Column Names

• Use table prefixes to qualify column names that are in
multiple tables.

• Use table prefixes to increase the speed of parsing of the
statement .

• Instead of full table name prefixes, use table aliases.

• Table alias gives a table a shorter name:
– Keeps SQL code smaller, uses less memory

• Use column aliases to distinguish columns that have
identical names, but reside in different tables.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 E

ga
bi

 S
ol

ut
io

ns
 u

se
 o

nl
y

TH
ES

E
eK

IT
 M

AT
ER

IA
LS

 A
R

E
FO

R
 Y

O
U

R
 U

SE
 IN

 T
H

IS
 C

LA
SS

R
O

O
M

 O
N

LY
.

C
O

PY
IN

G
 e

KI
T

M
AT

ER
IA

LS
 F

R
O

M
 T

H
IS

 C
O

M
PU

TE
R

 IS
 S

TR
IC

TL
Y

PR
O

H
IB

IT
ED

Oracle Database 12c: SQL Workshop I 7 - 8

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

Lesson Agenda

• Types of JOINS and its syntax

• Natural join
• Join with the USING Clause

• Join with the ON Clause

• Self-join

• Nonequijoins
• OUTER join:

– LEFT OUTER join

– RIGHT OUTER join

– FULL OUTER join

• Cartesian product
– Cross join

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 E

ga
bi

 S
ol

ut
io

ns
 u

se
 o

nl
y

TH
ES

E
eK

IT
 M

AT
ER

IA
LS

 A
R

E
FO

R
 Y

O
U

R
 U

SE
 IN

 T
H

IS
 C

LA
SS

R
O

O
M

 O
N

LY
.

C
O

PY
IN

G
 e

KI
T

M
AT

ER
IA

LS
 F

R
O

M
 T

H
IS

 C
O

M
PU

TE
R

 IS
 S

TR
IC

TL
Y

PR
O

H
IB

IT
ED

You can join tables automatically based on the columns in the two tables that have matching
data types and names. You do this by using the NATURAL JOIN keywords.

Note: The join can happen on only those columns that have the same names and data types
in both tables. If the columns have the same name but different data types, the NATURAL
JOIN syntax causes an error.

Oracle Database 12c: SQL Workshop I 7 - 9

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

Creating Natural Joins

• The NATURAL JOIN clause is based on all the columns in
the two tables that have the same name.

• It selects rows from the two tables that have equal values
in all matched columns.

• If the columns having the same names have different data
types, an error is returned.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 E

ga
bi

 S
ol

ut
io

ns
 u

se
 o

nl
y

TH
ES

E
eK

IT
 M

AT
ER

IA
LS

 A
R

E
FO

R
 Y

O
U

R
 U

SE
 IN

 T
H

IS
 C

LA
SS

R
O

O
M

 O
N

LY
.

C
O

PY
IN

G
 e

KI
T

M
AT

ER
IA

LS
 F

R
O

M
 T

H
IS

 C
O

M
PU

TE
R

 IS
 S

TR
IC

TL
Y

PR
O

H
IB

IT
ED

Oracle Database 12c: SQL Workshop I 7 - 10

In the example in the slide, the DEPARTMENTS table is joined to the EMPLOYEES table by the
DEPARTMENT_ID column, which is the only column of the same name in both tables. If other
common columns were present, the join would have used them all.

Natural Joins with a WHERE Clause

Additional restrictions on a natural join are implemented by using a WHERE clause. The
following example limits the rows of output to those with a department ID equal to 20 or 50:

SELECT department_id, department_name,

location_id, city

FROM departments

NATURAL JOIN locations

WHERE department_id IN (20, 50);

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

SELECT employee_id,last_name,department_id,
department_name
from employees NATURAL JOIN departments;

Retrieving Records with Natural Joins

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 E

ga
bi

 S
ol

ut
io

ns
 u

se
 o

nl
y

TH
ES

E
eK

IT
 M

AT
ER

IA
LS

 A
R

E
FO

R
 Y

O
U

R
 U

SE
 IN

 T
H

IS
 C

LA
SS

R
O

O
M

 O
N

LY
.

C
O

PY
IN

G
 e

KI
T

M
AT

ER
IA

LS
 F

R
O

M
 T

H
IS

 C
O

M
PU

TE
R

 IS
 S

TR
IC

TL
Y

PR
O

H
IB

IT
ED

Natural joins use all columns with matching names and data types to join the tables. The
USING clause can be used to specify only those columns that should be used for an equijoin.

Oracle Database 12c: SQL Workshop I 7 - 11

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

Creating Joins with the USING Clause

• If several columns have the same names but the data
types do not match, use the USING clause to specify the
columns for the equijoin.

• Use the USING clause to match only one column when
more than one column matches.

• The NATURAL JOIN and USING clauses are mutually
exclusive.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 E

ga
bi

 S
ol

ut
io

ns
 u

se
 o

nl
y

TH
ES

E
eK

IT
 M

AT
ER

IA
LS

 A
R

E
FO

R
 Y

O
U

R
 U

SE
 IN

 T
H

IS
 C

LA
SS

R
O

O
M

 O
N

LY
.

C
O

PY
IN

G
 e

KI
T

M
AT

ER
IA

LS
 F

R
O

M
 T

H
IS

 C
O

M
PU

TE
R

 IS
 S

TR
IC

TL
Y

PR
O

H
IB

IT
ED

To determine an employee’s department name, you compare the value in the
DEPARTMENT_ID column in the EMPLOYEES table with the DEPARTMENT_ID values in the
DEPARTMENTS table. The relationship between the EMPLOYEES and DEPARTMENTS tables is
an equijoin; that is, values in the DEPARTMENT_ID column in both the tables must be equal.
Frequently, this type of join involves primary and foreign key complements.

Note: Equijoins are also called simple joins or inner joins.

Oracle Database 12c: SQL Workshop I 7 - 12

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

Joining Column Names

EMPLOYEES DEPARTMENTS

Foreign key

Primary key

…

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 E

ga
bi

 S
ol

ut
io

ns
 u

se
 o

nl
y

TH
ES

E
eK

IT
 M

AT
ER

IA
LS

 A
R

E
FO

R
 Y

O
U

R
 U

SE
 IN

 T
H

IS
 C

LA
SS

R
O

O
M

 O
N

LY
.

C
O

PY
IN

G
 e

KI
T

M
AT

ER
IA

LS
 F

R
O

M
 T

H
IS

 C
O

M
PU

TE
R

 IS
 S

TR
IC

TL
Y

PR
O

H
IB

IT
ED

In the example in the slide, the DEPARTMENT_ID columns in the EMPLOYEES and
DEPARTMENTS tables are joined and thus the LOCATION_ID of the department where an
employee works is shown.

Oracle Database 12c: SQL Workshop I 7 - 13

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

SELECT employee_id, last_name,
location_id, department_id

FROM employees JOIN departments
USING (department_id) ;

Retrieving Records with the USING Clause

…

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 E

ga
bi

 S
ol

ut
io

ns
 u

se
 o

nl
y

TH
ES

E
eK

IT
 M

AT
ER

IA
LS

 A
R

E
FO

R
 Y

O
U

R
 U

SE
 IN

 T
H

IS
 C

LA
SS

R
O

O
M

 O
N

LY
.

C
O

PY
IN

G
 e

KI
T

M
AT

ER
IA

LS
 F

R
O

M
 T

H
IS

 C
O

M
PU

TE
R

 IS
 S

TR
IC

TL
Y

PR
O

H
IB

IT
ED

When joining with the USING clause, you cannot qualify a column that is used in the USING
clause itself. Furthermore, if that column is used anywhere in the SQL statement, you cannot
alias it. For example, in the query mentioned in the slide, you should not alias the
location_id column in the WHERE clause because the column is used in the USING clause.

The columns that are referenced in the USING clause should not have a qualifier (table name
or alias) anywhere in the SQL statement. For example, the following statement is valid:

SELECT l.city, d.department_name

FROM locations l JOIN departments d USING (location_id)

WHERE location_id = 1400;

The columns that are common in both the tables, but not used in the USING clause, must be
prefixed with a table alias; otherwise, you get the “column ambiguously defined” error.

In the following statement, manager_id is present in both the employees and
departments table; if manager_id is not prefixed with a table alias, it gives a “column
ambiguously defined” error.

The following statement is valid:
SELECT first_name, d.department_name, d.manager_id

FROM employees e JOIN departments d USING (department_id)

WHERE department_id = 50;

Oracle Database 12c: SQL Workshop I 7 - 14

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

SELECT l.city, d.department_name
FROM locations l JOIN departments d
USING (location_id)
WHERE d.location_id = 1400;

Using Table Aliases with the USING Clause

• Do not qualify a column that is used in the USING clause.

• If the same column is used elsewhere in the SQL
statement, do not alias it.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 E

ga
bi

 S
ol

ut
io

ns
 u

se
 o

nl
y

TH
ES

E
eK

IT
 M

AT
ER

IA
LS

 A
R

E
FO

R
 Y

O
U

R
 U

SE
 IN

 T
H

IS
 C

LA
SS

R
O

O
M

 O
N

LY
.

C
O

PY
IN

G
 e

KI
T

M
AT

ER
IA

LS
 F

R
O

M
 T

H
IS

 C
O

M
PU

TE
R

 IS
 S

TR
IC

TL
Y

PR
O

H
IB

IT
ED

Use the ON clause to specify a join condition. With this, you can specify join conditions
separate from any search or filter conditions in the WHERE clause.

Oracle Database 12c: SQL Workshop I 7 - 15

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

Creating Joins with the ON Clause

• The join condition for the natural join is basically an
equijoin of all columns with the same name.

• Use the ON clause to specify arbitrary conditions or specify
columns to join.

• The join condition is separated from other search
conditions.

• The ON clause makes code easy to understand.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 E

ga
bi

 S
ol

ut
io

ns
 u

se
 o

nl
y

TH
ES

E
eK

IT
 M

AT
ER

IA
LS

 A
R

E
FO

R
 Y

O
U

R
 U

SE
 IN

 T
H

IS
 C

LA
SS

R
O

O
M

 O
N

LY
.

C
O

PY
IN

G
 e

KI
T

M
AT

ER
IA

LS
 F

R
O

M
 T

H
IS

 C
O

M
PU

TE
R

 IS
 S

TR
IC

TL
Y

PR
O

H
IB

IT
ED

In this example, the DEPARTMENT_ID columns in the EMPLOYEES and DEPARTMENTS table
are joined using the ON clause. Wherever a department ID in the EMPLOYEES table equals a
department ID in the DEPARTMENTS table, the row is returned. The table alias is necessary to
qualify the matching column_names.

You can also use the ON clause to join columns that have different names. The parenthesis
around the joined columns, as in the example in the slide, (e.department_id =
d.department_id) is optional. So, even ON e.department_id = d.department_id
will work.

Note: When you use the Execute Statement icon to run the query, SQL Developer suffixes a
‘_1’ to differentiate between the two department_ids.

Oracle Database 12c: SQL Workshop I 7 - 16

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

SELECT e.employee_id, e.last_name, e.department_id,
d.department_id, d.location_id

FROM employees e JOIN departments d
ON (e.department_id = d.department_id);

Retrieving Records with the ON Clause

…

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 E

ga
bi

 S
ol

ut
io

ns
 u

se
 o

nl
y

TH
ES

E
eK

IT
 M

AT
ER

IA
LS

 A
R

E
FO

R
 Y

O
U

R
 U

SE
 IN

 T
H

IS
 C

LA
SS

R
O

O
M

 O
N

LY
.

C
O

PY
IN

G
 e

KI
T

M
AT

ER
IA

LS
 F

R
O

M
 T

H
IS

 C
O

M
PU

TE
R

 IS
 S

TR
IC

TL
Y

PR
O

H
IB

IT
ED

A three-way join is a join of three tables. The optimizer decides the execution of the join as
well as the order. Here, the first join to be performed is EMPLOYEES JOIN DEPARTMENTS.
The first join condition can reference columns in EMPLOYEES and DEPARTMENTS but cannot
reference columns in LOCATIONS. The second join condition can reference columns from all
three tables.

Note: The code example in the slide can also be accomplished with the USING clause:

SELECT e.employee_id, l.city, d.department_name

FROM employees e

JOIN departments d

USING (department_id)

JOIN locations l

USING (location_id);

Oracle Database 12c: SQL Workshop I 7 - 17

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

SELECT employee_id, city, department_name
FROM employees e
JOIN departments d
ON d.department_id = e.department_id
JOIN locations l
ON d.location_id = l.location_id;

Creating Three-Way Joins with the ON Clause

…

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 E

ga
bi

 S
ol

ut
io

ns
 u

se
 o

nl
y

TH
ES

E
eK

IT
 M

AT
ER

IA
LS

 A
R

E
FO

R
 Y

O
U

R
 U

SE
 IN

 T
H

IS
 C

LA
SS

R
O

O
M

 O
N

LY
.

C
O

PY
IN

G
 e

KI
T

M
AT

ER
IA

LS
 F

R
O

M
 T

H
IS

 C
O

M
PU

TE
R

 IS
 S

TR
IC

TL
Y

PR
O

H
IB

IT
ED

You can apply additional conditions to the join.

The example shown performs a join on the EMPLOYEES and DEPARTMENTS tables and, in
addition, displays only employees who have a manager ID of 149. To add additional
conditions to the ON clause, you can add AND clauses. Alternatively, you can use a WHERE
clause to apply additional conditions.

Both the queries produce the same output

Oracle Database 12c: SQL Workshop I 7 - 18

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

Applying Additional Conditions to a Join

Use the AND clause or the WHERE clause to apply additional
conditions:

SELECT e.employee_id, e.last_name, e.department_id,
d.department_id, d.location_id

FROM employees e JOIN departments d
ON (e.department_id = d.department_id)
AND e.manager_id = 149 ;

SELECT e.employee_id, e.last_name, e.department_id,
d.department_id, d.location_id

FROM employees e JOIN departments d
ON (e.department_id = d.department_id)
WHERE e.manager_id = 149 ;

Or

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 E

ga
bi

 S
ol

ut
io

ns
 u

se
 o

nl
y

TH
ES

E
eK

IT
 M

AT
ER

IA
LS

 A
R

E
FO

R
 Y

O
U

R
 U

SE
 IN

 T
H

IS
 C

LA
SS

R
O

O
M

 O
N

LY
.

C
O

PY
IN

G
 e

KI
T

M
AT

ER
IA

LS
 F

R
O

M
 T

H
IS

 C
O

M
PU

TE
R

 IS
 S

TR
IC

TL
Y

PR
O

H
IB

IT
ED

Oracle Database 12c: SQL Workshop I 7 - 19

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

Lesson Agenda

• Types of JOINS and its syntax

• Natural join
• Join with the USING Clause

• Join with the ON Clause

• Self-join

• Nonequijoins
• OUTER join:

– LEFT OUTER join

– RIGHT OUTER join

– FULL OUTER join

• Cartesian product
– Cross join

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 E

ga
bi

 S
ol

ut
io

ns
 u

se
 o

nl
y

TH
ES

E
eK

IT
 M

AT
ER

IA
LS

 A
R

E
FO

R
 Y

O
U

R
 U

SE
 IN

 T
H

IS
 C

LA
SS

R
O

O
M

 O
N

LY
.

C
O

PY
IN

G
 e

KI
T

M
AT

ER
IA

LS
 F

R
O

M
 T

H
IS

 C
O

M
PU

TE
R

 IS
 S

TR
IC

TL
Y

PR
O

H
IB

IT
ED

Sometimes you need to join a table to itself. To find the name of each employee’s manager,
you need to join the EMPLOYEES table to itself, or perform a self-join. For example, to find the
name of Ernst’s manager, you need to:

• Find Ernst in the EMPLOYEES table by looking at the LAST_NAME column

• Find the manager number for Ernst by looking at the MANAGER_ID column. Ernst’s
manager number is 103.

• Find the name of the manager with EMPLOYEE_ID 103 by looking at the LAST_NAME
column. Hunold’s employee number is 103, so Hunold is Ernst’s manager.

In this process, you look in the table twice. The first time you look in the table to find Ernst in
the LAST_NAME column and the MANAGER_ID value of 103. The second time you look in the
EMPLOYEE_ID column to find 103 and the LAST_NAME column to find Hunold.

Oracle Database 12c: SQL Workshop I 7 - 20

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

Joining a Table to Itself

MANAGER_ID in the WORKER table is equal to
EMPLOYEE_ID in the MANAGER table.

EMPLOYEES (WORKER) EMPLOYEES (MANAGER)

… …

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 E

ga
bi

 S
ol

ut
io

ns
 u

se
 o

nl
y

TH
ES

E
eK

IT
 M

AT
ER

IA
LS

 A
R

E
FO

R
 Y

O
U

R
 U

SE
 IN

 T
H

IS
 C

LA
SS

R
O

O
M

 O
N

LY
.

C
O

PY
IN

G
 e

KI
T

M
AT

ER
IA

LS
 F

R
O

M
 T

H
IS

 C
O

M
PU

TE
R

 IS
 S

TR
IC

TL
Y

PR
O

H
IB

IT
ED

The ON clause can also be used to join columns that have different names, within the same
table or in a different table.

The example shown is a self-join of the EMPLOYEES table, based on the EMPLOYEE_ID and
MANAGER_ID columns.

Note: The parentheses around the joined columns as in the example in the slide,
(worker.manager_id = manager.employee_id) is optional. So, even ON
worker.manager_id = manager.employee_id will work.

Oracle Database 12c: SQL Workshop I 7 - 21

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

Self-Joins Using the ON Clause

SELECT worker.last_name emp, manager.last_name mgr
FROM employees worker JOIN employees manager
ON (worker.manager_id = manager.employee_id);

…

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 E

ga
bi

 S
ol

ut
io

ns
 u

se
 o

nl
y

TH
ES

E
eK

IT
 M

AT
ER

IA
LS

 A
R

E
FO

R
 Y

O
U

R
 U

SE
 IN

 T
H

IS
 C

LA
SS

R
O

O
M

 O
N

LY
.

C
O

PY
IN

G
 e

KI
T

M
AT

ER
IA

LS
 F

R
O

M
 T

H
IS

 C
O

M
PU

TE
R

 IS
 S

TR
IC

TL
Y

PR
O

H
IB

IT
ED

Oracle Database 12c: SQL Workshop I 7 - 22

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

Lesson Agenda

• Types of JOINS and its syntax

• Natural join
• Join with the USING Clause

• Join with the ON Clause

• Self-join

• Nonequijoins
• OUTER join:

– LEFT OUTER join

– RIGHT OUTER join

– FULL OUTER join

• Cartesian product
– Cross join

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 E

ga
bi

 S
ol

ut
io

ns
 u

se
 o

nl
y

TH
ES

E
eK

IT
 M

AT
ER

IA
LS

 A
R

E
FO

R
 Y

O
U

R
 U

SE
 IN

 T
H

IS
 C

LA
SS

R
O

O
M

 O
N

LY
.

C
O

PY
IN

G
 e

KI
T

M
AT

ER
IA

LS
 F

R
O

M
 T

H
IS

 C
O

M
PU

TE
R

 IS
 S

TR
IC

TL
Y

PR
O

H
IB

IT
ED

A nonequijoin is a join condition containing something other than an equality operator.

The relationship between the EMPLOYEES table and the JOB_GRADES table is an example of
a nonequijoin. The SALARY column in the EMPLOYEES table ranges between the values in the
LOWEST_SAL and HIGHEST_SAL columns of the JOB_GRADES table. Therefore, each
employee can be graded based on their salary. The relationship is obtained using an operator
other than the equality (=) operator.

Oracle Database 12c: SQL Workshop I 7 - 23

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

Nonequijoins

EMPLOYEES JOB_GRADES

…

The JOB_GRADES table defines the
LOWEST_SAL and HIGHEST_SAL range
of values for each GRADE_LEVEL.
Therefore, the GRADE_LEVEL column can
be used to assign grades to each
employee.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 E

ga
bi

 S
ol

ut
io

ns
 u

se
 o

nl
y

TH
ES

E
eK

IT
 M

AT
ER

IA
LS

 A
R

E
FO

R
 Y

O
U

R
 U

SE
 IN

 T
H

IS
 C

LA
SS

R
O

O
M

 O
N

LY
.

C
O

PY
IN

G
 e

KI
T

M
AT

ER
IA

LS
 F

R
O

M
 T

H
IS

 C
O

M
PU

TE
R

 IS
 S

TR
IC

TL
Y

PR
O

H
IB

IT
ED

The example in the slide creates a nonequijoin to evaluate an employee’s salary grade. The
salary must be between any pair of the low and high salary ranges.

It is important to note that all employees appear exactly once when this query is executed. No
employee is repeated in the list. There are two reasons for this:

• None of the rows in the JOB_GRADES table contain grades that overlap. That is, the
salary value for an employee can lie only between the low salary and high salary values
of one of the rows in the salary grade table.

• All of the employees’ salaries lie within the limits provided by the job grade table. That
is, no employee earns less than the lowest value contained in the LOWEST_SAL column
or more than the highest value contained in the HIGHEST_SAL column.

Note: Other conditions (such as <= and >=) can be used, but BETWEEN is the simplest.
Remember to specify the low value first and the high value last when using the BETWEEN
condition. The Oracle server translates the BETWEEN condition to a pair of AND conditions.
Therefore, using BETWEEN has no performance benefits, but should be used only for logical
simplicity.

Table aliases have been specified in the slide example for performance reasons, not because
of possible ambiguity.

Oracle Database 12c: SQL Workshop I 7 - 24

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

SELECT e.last_name, e.salary, j.grade_level
FROM employees e JOIN job_grades j
ON e.salary

BETWEEN j.lowest_sal AND j.highest_sal;

Retrieving Records with Nonequijoins

…

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 E

ga
bi

 S
ol

ut
io

ns
 u

se
 o

nl
y

TH
ES

E
eK

IT
 M

AT
ER

IA
LS

 A
R

E
FO

R
 Y

O
U

R
 U

SE
 IN

 T
H

IS
 C

LA
SS

R
O

O
M

 O
N

LY
.

C
O

PY
IN

G
 e

KI
T

M
AT

ER
IA

LS
 F

R
O

M
 T

H
IS

 C
O

M
PU

TE
R

 IS
 S

TR
IC

TL
Y

PR
O

H
IB

IT
ED

Oracle Database 12c: SQL Workshop I 7 - 25

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

Lesson Agenda

• Types of JOINS and its syntax

• Natural join
• Join with the USING Clause

• Join with the ON Clause

• Self-join

• Nonequijoins
• OUTER join:

– LEFT OUTER join

– RIGHT OUTER join

– FULL OUTER join

• Cartesian product
– Cross join

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 E

ga
bi

 S
ol

ut
io

ns
 u

se
 o

nl
y

TH
ES

E
eK

IT
 M

AT
ER

IA
LS

 A
R

E
FO

R
 Y

O
U

R
 U

SE
 IN

 T
H

IS
 C

LA
SS

R
O

O
M

 O
N

LY
.

C
O

PY
IN

G
 e

KI
T

M
AT

ER
IA

LS
 F

R
O

M
 T

H
IS

 C
O

M
PU

TE
R

 IS
 S

TR
IC

TL
Y

PR
O

H
IB

IT
ED

If a row does not satisfy a join condition, the row does not appear in the query result.

In the slide example, a simple equijoin condition is used on the EMPLOYEES and
DEPARTMENTS tables to return the result on the right. The result set does not contain the
following:

• Department ID 190, because there are no employees with that department ID recorded
in the EMPLOYEES table

• The employee with the last name of Grant, because this employee has not been
assigned a department ID

To return the department record that does not have any employees, or employees that do not
have an assigned department, you can use an OUTER join.

Oracle Database 12c: SQL Workshop I 7 - 26

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

Returning Records with No Direct Match
Using OUTER Joins

Equijoin with EMPLOYEESDEPARTMENTS

There are no employees
in department 190.

Employee “Grant” has
not been assigned a
department ID.

…

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 E

ga
bi

 S
ol

ut
io

ns
 u

se
 o

nl
y

TH
ES

E
eK

IT
 M

AT
ER

IA
LS

 A
R

E
FO

R
 Y

O
U

R
 U

SE
 IN

 T
H

IS
 C

LA
SS

R
O

O
M

 O
N

LY
.

C
O

PY
IN

G
 e

KI
T

M
AT

ER
IA

LS
 F

R
O

M
 T

H
IS

 C
O

M
PU

TE
R

 IS
 S

TR
IC

TL
Y

PR
O

H
IB

IT
ED

Joining tables with the NATURAL JOIN, USING, or ON clauses results in an INNER join. Any
unmatched rows are not displayed in the output. To return the unmatched rows, you can use
an OUTER join. An OUTER join returns all rows that satisfy the join condition and also returns
some or all of those rows from one table for which no rows from the other table satisfy the join
condition.

There are three types of OUTER joins:

• LEFT OUTER

• RIGHT OUTER

• FULL OUTER

Oracle Database 12c: SQL Workshop I 7 - 27

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

INNER Versus OUTER Joins

• In SQL:1999, the join of two tables returning only matched
rows is called an INNER join.

• A join between two tables that returns the results of the
INNER join as well as the unmatched rows from the left (or
right) table is called a left (or right) OUTER join.

• A join between two tables that returns the results of an
INNER join as well as the results of a left and right join is a
full OUTER join.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 E

ga
bi

 S
ol

ut
io

ns
 u

se
 o

nl
y

TH
ES

E
eK

IT
 M

AT
ER

IA
LS

 A
R

E
FO

R
 Y

O
U

R
 U

SE
 IN

 T
H

IS
 C

LA
SS

R
O

O
M

 O
N

LY
.

C
O

PY
IN

G
 e

KI
T

M
AT

ER
IA

LS
 F

R
O

M
 T

H
IS

 C
O

M
PU

TE
R

 IS
 S

TR
IC

TL
Y

PR
O

H
IB

IT
ED

This query retrieves all the rows in the EMPLOYEES table, which is the left table, even if there
is no match in the DEPARTMENTS table.

Oracle Database 12c: SQL Workshop I 7 - 28

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

SELECT e.last_name, e.department_id, d.department_name
FROM employees e LEFT OUTER JOIN departments d
ON (e.department_id = d.department_id) ;

LEFT OUTER JOIN

…

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 E

ga
bi

 S
ol

ut
io

ns
 u

se
 o

nl
y

TH
ES

E
eK

IT
 M

AT
ER

IA
LS

 A
R

E
FO

R
 Y

O
U

R
 U

SE
 IN

 T
H

IS
 C

LA
SS

R
O

O
M

 O
N

LY
.

C
O

PY
IN

G
 e

KI
T

M
AT

ER
IA

LS
 F

R
O

M
 T

H
IS

 C
O

M
PU

TE
R

 IS
 S

TR
IC

TL
Y

PR
O

H
IB

IT
ED

This query retrieves all the rows in the DEPARTMENTS table, which is the table at the right,
even if there is no match in the EMPLOYEES table.

Oracle Database 12c: SQL Workshop I 7 - 29

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

SELECT e.last_name, d.department_id, d.department_name
FROM employees e RIGHT OUTER JOIN departments d
ON (e.department_id = d.department_id) ;

RIGHT OUTER JOIN

…

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 E

ga
bi

 S
ol

ut
io

ns
 u

se
 o

nl
y

TH
ES

E
eK

IT
 M

AT
ER

IA
LS

 A
R

E
FO

R
 Y

O
U

R
 U

SE
 IN

 T
H

IS
 C

LA
SS

R
O

O
M

 O
N

LY
.

C
O

PY
IN

G
 e

KI
T

M
AT

ER
IA

LS
 F

R
O

M
 T

H
IS

 C
O

M
PU

TE
R

 IS
 S

TR
IC

TL
Y

PR
O

H
IB

IT
ED

This query retrieves all rows in the EMPLOYEES table, even if there is no match in the
DEPARTMENTS table. It also retrieves all rows in the DEPARTMENTS table, even if there is no
match in the EMPLOYEES table.

Oracle Database 12c: SQL Workshop I 7 - 30

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

SELECT e.last_name, d.department_id, d.department_name
FROM employees e FULL OUTER JOIN departments d
ON (e.department_id = d.department_id) ;

FULL OUTER JOIN

…

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 E

ga
bi

 S
ol

ut
io

ns
 u

se
 o

nl
y

TH
ES

E
eK

IT
 M

AT
ER

IA
LS

 A
R

E
FO

R
 Y

O
U

R
 U

SE
 IN

 T
H

IS
 C

LA
SS

R
O

O
M

 O
N

LY
.

C
O

PY
IN

G
 e

KI
T

M
AT

ER
IA

LS
 F

R
O

M
 T

H
IS

 C
O

M
PU

TE
R

 IS
 S

TR
IC

TL
Y

PR
O

H
IB

IT
ED

Oracle Database 12c: SQL Workshop I 7 - 31

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

Lesson Agenda

• Types of JOINS and its syntax

• Natural join
• Join with the USING Clause

• Join with the ON Clause

• Self-join

• Nonequijoins
• OUTER join:

– LEFT OUTER join

– RIGHT OUTER join

– FULL OUTER join

• Cartesian product
– Cross join

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 E

ga
bi

 S
ol

ut
io

ns
 u

se
 o

nl
y

TH
ES

E
eK

IT
 M

AT
ER

IA
LS

 A
R

E
FO

R
 Y

O
U

R
 U

SE
 IN

 T
H

IS
 C

LA
SS

R
O

O
M

 O
N

LY
.

C
O

PY
IN

G
 e

KI
T

M
AT

ER
IA

LS
 F

R
O

M
 T

H
IS

 C
O

M
PU

TE
R

 IS
 S

TR
IC

TL
Y

PR
O

H
IB

IT
ED

When a join condition is invalid or omitted completely, the result is a Cartesian product, in
which all combinations of rows are displayed. All rows in the first table are joined to all rows in
the second table.

A Cartesian product tends to generate a large number of rows and the result is rarely useful.
You should, therefore, always include a valid join condition unless you have a specific need to
combine all rows from all tables.

Cartesian products are useful for some tests when you need to generate a large number of
rows to simulate a reasonable amount of data.

Oracle Database 12c: SQL Workshop I 7 - 32

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

Cartesian Products

• A Cartesian product is formed when:
– A join condition is omitted

– A join condition is invalid

– All rows in the first table are joined to all rows in the second
table

• Always include a valid join condition if you want to avoid a
Cartesian product.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 E

ga
bi

 S
ol

ut
io

ns
 u

se
 o

nl
y

TH
ES

E
eK

IT
 M

AT
ER

IA
LS

 A
R

E
FO

R
 Y

O
U

R
 U

SE
 IN

 T
H

IS
 C

LA
SS

R
O

O
M

 O
N

LY
.

C
O

PY
IN

G
 e

KI
T

M
AT

ER
IA

LS
 F

R
O

M
 T

H
IS

 C
O

M
PU

TE
R

 IS
 S

TR
IC

TL
Y

PR
O

H
IB

IT
ED

A Cartesian product is generated if a join condition is omitted. The example in the slide
displays the employee last name and the department name from the EMPLOYEES and
DEPARTMENTS tables. Because no join condition was specified, all rows (20 rows) from the
EMPLOYEES table are joined with all rows (8 rows) in the DEPARTMENTS table, thereby
generating 160 rows in the output.

Oracle Database 12c: SQL Workshop I 7 - 33

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

Generating a Cartesian Product

Cartesian product:
20 x 8 = 160 rows

EMPLOYEES (20 rows) DEPARTMENTS (8 rows)

…

…

…

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 E

ga
bi

 S
ol

ut
io

ns
 u

se
 o

nl
y

TH
ES

E
eK

IT
 M

AT
ER

IA
LS

 A
R

E
FO

R
 Y

O
U

R
 U

SE
 IN

 T
H

IS
 C

LA
SS

R
O

O
M

 O
N

LY
.

C
O

PY
IN

G
 e

KI
T

M
AT

ER
IA

LS
 F

R
O

M
 T

H
IS

 C
O

M
PU

TE
R

 IS
 S

TR
IC

TL
Y

PR
O

H
IB

IT
ED

The example in the slide produces a Cartesian product of the EMPLOYEES and DEPARTMENTS
tables.

The CROSS JOIN technique can be applied to many situations usefully. For example, to
return total labor cost by office by month, even if month X has no labor cost, you can do a
cross join of Offices with a table of all Months.

It is a good practice to explicitly state CROSS JOIN in your SELECT when you intend to create
a Cartesian product. Therefore, it is very clear that you intend for this to happen and it is not
the result of missing joins.

Oracle Database 12c: SQL Workshop I 7 - 34

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

Creating Cross Joins

• The CROSS JOIN clause produces the cross-product of
two tables.

• This is also called a Cartesian product between the two
tables.

SELECT last_name, department_name
FROM employees
CROSS JOIN departments ;

…

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 E

ga
bi

 S
ol

ut
io

ns
 u

se
 o

nl
y

TH
ES

E
eK

IT
 M

AT
ER

IA
LS

 A
R

E
FO

R
 Y

O
U

R
 U

SE
 IN

 T
H

IS
 C

LA
SS

R
O

O
M

 O
N

LY
.

C
O

PY
IN

G
 e

KI
T

M
AT

ER
IA

LS
 F

R
O

M
 T

H
IS

 C
O

M
PU

TE
R

 IS
 S

TR
IC

TL
Y

PR
O

H
IB

IT
ED

Answer: e

Oracle Database 12c: SQL Workshop I 7 - 35

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

Quiz

If you join a table to itself, what kind of join are you using?

a. Nonequijoins
b. Left OUTER join

c. Right OUTER join

d. Full OUTER join

e. Self joins

f. Natural joins

g. Cartesian products

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 E

ga
bi

 S
ol

ut
io

ns
 u

se
 o

nl
y

TH
ES

E
eK

IT
 M

AT
ER

IA
LS

 A
R

E
FO

R
 Y

O
U

R
 U

SE
 IN

 T
H

IS
 C

LA
SS

R
O

O
M

 O
N

LY
.

C
O

PY
IN

G
 e

KI
T

M
AT

ER
IA

LS
 F

R
O

M
 T

H
IS

 C
O

M
PU

TE
R

 IS
 S

TR
IC

TL
Y

PR
O

H
IB

IT
ED

There are multiple ways to join tables.

Types of Joins

• Equijoins

• Nonequijoins

• OUTER joins

• Self-joins

• Cross joins

• Natural joins
• Full (or two-sided) OUTER joins

Cartesian Products

A Cartesian product results in the display of all combinations of rows. This is done by either
omitting the WHERE clause or specifying the CROSS JOIN clause.

Table Aliases

• Table aliases speed up database access.

• Table aliases can help to keep SQL code smaller by conserving memory.

• Table aliases are sometimes mandatory to avoid column ambiguity.

Oracle Database 12c: SQL Workshop I 7 - 36

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

Summary

In this lesson, you should have learned how to use joins to
display data from multiple tables by using:

• Equijoins

• Nonequijoins
• OUTER joins

• Self-joins

• Cross joins

• Natural joins
• Full (or two-sided) OUTER joins

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 E

ga
bi

 S
ol

ut
io

ns
 u

se
 o

nl
y

TH
ES

E
eK

IT
 M

AT
ER

IA
LS

 A
R

E
FO

R
 Y

O
U

R
 U

SE
 IN

 T
H

IS
 C

LA
SS

R
O

O
M

 O
N

LY
.

C
O

PY
IN

G
 e

KI
T

M
AT

ER
IA

LS
 F

R
O

M
 T

H
IS

 C
O

M
PU

TE
R

 IS
 S

TR
IC

TL
Y

PR
O

H
IB

IT
ED

This practice is intended to give you experience in extracting data from more than one table
using the SQL:1999–compliant joins.

Oracle Database 12c: SQL Workshop I 7 - 37

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

Practice 7: Overview

This practice covers the following topics:

• Joining tables using an equijoin

• Performing outer and self-joins

• Adding conditions

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 E

ga
bi

 S
ol

ut
io

ns
 u

se
 o

nl
y

TH
ES

E
eK

IT
 M

AT
ER

IA
LS

 A
R

E
FO

R
 Y

O
U

R
 U

SE
 IN

 T
H

IS
 C

LA
SS

R
O

O
M

 O
N

LY
.

C
O

PY
IN

G
 e

KI
T

M
AT

ER
IA

LS
 F

R
O

M
 T

H
IS

 C
O

M
PU

TE
R

 IS
 S

TR
IC

TL
Y

PR
O

H
IB

IT
ED

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 E

ga
bi

 S
ol

ut
io

ns
 u

se
 o

nl
y

TH
ES

E
eK

IT
 M

AT
ER

IA
LS

 A
R

E
FO

R
 Y

O
U

R
 U

SE
 IN

 T
H

IS
 C

LA
SS

R
O

O
M

 O
N

LY
.

C
O

PY
IN

G
 e

KI
T

M
AT

ER
IA

LS
 F

R
O

M
 T

H
IS

 C
O

M
PU

TE
R

 IS
 S

TR
IC

TL
Y

PR
O

H
IB

IT
ED

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

Using Subqueries to Solve Queries

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 E

ga
bi

 S
ol

ut
io

ns
 u

se
 o

nl
y

TH
ES

E
eK

IT
 M

AT
ER

IA
LS

 A
R

E
FO

R
 Y

O
U

R
 U

SE
 IN

 T
H

IS
 C

LA
SS

R
O

O
M

 O
N

LY
.

C
O

PY
IN

G
 e

KI
T

M
AT

ER
IA

LS
 F

R
O

M
 T

H
IS

 C
O

M
PU

TE
R

 IS
 S

TR
IC

TL
Y

PR
O

H
IB

IT
ED

In this lesson, you learn about the more advanced features of the SELECT statement. You can
write subqueries in the WHERE clause of another SQL statement to obtain values based on an
unknown conditional value. This lesson also covers single-row subqueries and multiple-row
subqueries.

Oracle Database 12c: SQL Workshop I 8 - 2

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

Objectives

After completing this lesson, you should be able to do the
following:

• Define subqueries

• Describe the types of problems that the subqueries can
solve

• List the types of subqueries

• Write single-row and multiple-row subqueries

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 E

ga
bi

 S
ol

ut
io

ns
 u

se
 o

nl
y

TH
ES

E
eK

IT
 M

AT
ER

IA
LS

 A
R

E
FO

R
 Y

O
U

R
 U

SE
 IN

 T
H

IS
 C

LA
SS

R
O

O
M

 O
N

LY
.

C
O

PY
IN

G
 e

KI
T

M
AT

ER
IA

LS
 F

R
O

M
 T

H
IS

 C
O

M
PU

TE
R

 IS
 S

TR
IC

TL
Y

PR
O

H
IB

IT
ED

Oracle Database 12c: SQL Workshop I 8 - 3

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

Lesson Agenda

• Subquery: Types, syntax, and guidelines

• Single-row subqueries:
– Group functions in a subquery
– HAVING clause with subqueries

• Multiple-row subqueries
– Use ALL or ANY operator.

• Using the EXISTS operator

• Null values in a subquery

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 E

ga
bi

 S
ol

ut
io

ns
 u

se
 o

nl
y

TH
ES

E
eK

IT
 M

AT
ER

IA
LS

 A
R

E
FO

R
 Y

O
U

R
 U

SE
 IN

 T
H

IS
 C

LA
SS

R
O

O
M

 O
N

LY
.

C
O

PY
IN

G
 e

KI
T

M
AT

ER
IA

LS
 F

R
O

M
 T

H
IS

 C
O

M
PU

TE
R

 IS
 S

TR
IC

TL
Y

PR
O

H
IB

IT
ED

Suppose you want to write a query to find out who earns a salary greater than Abel’s salary.

To solve this problem, you need two queries: one to find how much Abel earns, and a second
query to find who earns more than that amount.

You can solve this problem by combining the two queries, placing one query inside the other
query.

The inner query (or subquery) returns a value that is used by the outer query (or main query).
The execution plan of the query depends on the optimizer's decision on the structure of the
subquery.

Oracle Database 12c: SQL Workshop I 8 - 4

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

Using a Subquery to Solve a Problem

Who has a salary greater than Abel’s?

Which employees have salaries greater than Abel’s
salary?

Main query:

What is Abel’s salary?

Subquery:

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 E

ga
bi

 S
ol

ut
io

ns
 u

se
 o

nl
y

TH
ES

E
eK

IT
 M

AT
ER

IA
LS

 A
R

E
FO

R
 Y

O
U

R
 U

SE
 IN

 T
H

IS
 C

LA
SS

R
O

O
M

 O
N

LY
.

C
O

PY
IN

G
 e

KI
T

M
AT

ER
IA

LS
 F

R
O

M
 T

H
IS

 C
O

M
PU

TE
R

 IS
 S

TR
IC

TL
Y

PR
O

H
IB

IT
ED

A subquery is a SELECT statement that is embedded in the clause of another SELECT
statement. You can build powerful statements out of simple ones by using subqueries. They
can be very useful when you need to select rows from a table with a condition that depends
on the data in the table itself.

You can place the subquery in a number of SQL clauses, including the following:
• WHERE clause

• HAVING clause

• FROM clause

In the syntax:

operator includes a comparison condition such as >, =, or IN

Note: Comparison conditions fall into two classes: single-row operators (>, =, >=, <, <>, <=)
and multiple-row operators (IN, ANY, ALL, EXISTS).

The subquery is often referred to as a nested SELECT, sub-SELECT, or inner SELECT
statement. The subquery generally executes first, and its output is used to complete the query
condition for the main (or outer) query.

Oracle Database 12c: SQL Workshop I 8 - 5

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

Subquery Syntax

• The subquery (inner query) executes before the main
query (outer query).

• The result of the subquery is used by the main query.

SELECT select_list
FROM table
WHERE expr operator

(SELECT select_list
FROM table);

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 E

ga
bi

 S
ol

ut
io

ns
 u

se
 o

nl
y

TH
ES

E
eK

IT
 M

AT
ER

IA
LS

 A
R

E
FO

R
 Y

O
U

R
 U

SE
 IN

 T
H

IS
 C

LA
SS

R
O

O
M

 O
N

LY
.

C
O

PY
IN

G
 e

KI
T

M
AT

ER
IA

LS
 F

R
O

M
 T

H
IS

 C
O

M
PU

TE
R

 IS
 S

TR
IC

TL
Y

PR
O

H
IB

IT
ED

In the slide, the inner query determines the salary of employee Abel. The outer query takes
the result of the inner query and uses this result to display all the employees who earn more
than employee Abel.

Oracle Database 12c: SQL Workshop I 8 - 6

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

SELECT last_name, salary
FROM employees
WHERE salary >

(SELECT salary
FROM employees
WHERE last_name = 'Abel');

Using a Subquery

11000

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 E

ga
bi

 S
ol

ut
io

ns
 u

se
 o

nl
y

TH
ES

E
eK

IT
 M

AT
ER

IA
LS

 A
R

E
FO

R
 Y

O
U

R
 U

SE
 IN

 T
H

IS
 C

LA
SS

R
O

O
M

 O
N

LY
.

C
O

PY
IN

G
 e

KI
T

M
AT

ER
IA

LS
 F

R
O

M
 T

H
IS

 C
O

M
PU

TE
R

 IS
 S

TR
IC

TL
Y

PR
O

H
IB

IT
ED

• A subquery must be enclosed in parentheses.

• Place the subquery on the right side of the comparison condition for readability.
However, the subquery can appear on either side of the comparison operator.

• Two classes of comparison conditions are used in subqueries: single-row operators and
multiple-row operators.

Oracle Database 12c: SQL Workshop I 8 - 7

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

Rules for Using Subqueries

• Enclose subqueries in parentheses.

• Place subqueries on the right side of the comparison
condition for readability. (However, the subquery can
appear on either side of the comparison operator.)

• Use single-row operators with single-row subqueries and
multiple-row operators with multiple-row subqueries.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 E

ga
bi

 S
ol

ut
io

ns
 u

se
 o

nl
y

TH
ES

E
eK

IT
 M

AT
ER

IA
LS

 A
R

E
FO

R
 Y

O
U

R
 U

SE
 IN

 T
H

IS
 C

LA
SS

R
O

O
M

 O
N

LY
.

C
O

PY
IN

G
 e

KI
T

M
AT

ER
IA

LS
 F

R
O

M
 T

H
IS

 C
O

M
PU

TE
R

 IS
 S

TR
IC

TL
Y

PR
O

H
IB

IT
ED

• Single-row subqueries: Queries that return only one row from the inner SELECT
statement

• Multiple-row subqueries: Queries that return more than one row from the inner
SELECT statement

Note: There are also multiple-column subqueries, which are queries that return more than
one column from the inner SELECT statement. These are covered in the Oracle Database:
SQL Workshop II course.

Oracle Database 12c: SQL Workshop I 8 - 8

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

Types of Subqueries

• Single-row subquery

• Multiple-row subquery

Main query

Subquery
returns

ST_CLERK

ST_CLERK
SA_MAN

Main query

Subquery
returns

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 E

ga
bi

 S
ol

ut
io

ns
 u

se
 o

nl
y

TH
ES

E
eK

IT
 M

AT
ER

IA
LS

 A
R

E
FO

R
 Y

O
U

R
 U

SE
 IN

 T
H

IS
 C

LA
SS

R
O

O
M

 O
N

LY
.

C
O

PY
IN

G
 e

KI
T

M
AT

ER
IA

LS
 F

R
O

M
 T

H
IS

 C
O

M
PU

TE
R

 IS
 S

TR
IC

TL
Y

PR
O

H
IB

IT
ED

Oracle Database 12c: SQL Workshop I 8 - 9

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

Lesson Agenda

• Subquery: Types, syntax, and guidelines

• Single-row subqueries:
– Group functions in a subquery
– HAVING clause with subqueries

• Multiple-row subqueries
– Use ALL or ANY operator

• Using the EXISTS operator

• Null values in a subquery

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 E

ga
bi

 S
ol

ut
io

ns
 u

se
 o

nl
y

TH
ES

E
eK

IT
 M

AT
ER

IA
LS

 A
R

E
FO

R
 Y

O
U

R
 U

SE
 IN

 T
H

IS
 C

LA
SS

R
O

O
M

 O
N

LY
.

C
O

PY
IN

G
 e

KI
T

M
AT

ER
IA

LS
 F

R
O

M
 T

H
IS

 C
O

M
PU

TE
R

 IS
 S

TR
IC

TL
Y

PR
O

H
IB

IT
ED

A single-row subquery is one that returns one row from the inner SELECT statement. This
type of subquery uses a single-row operator. The slide gives a list of single-row operators.

Example

Display the employees whose job ID is the same as that of employee 141:
SELECT last_name, job_id

FROM employees

WHERE job_id =

(SELECT job_id

FROM employees

WHERE employee_id = 141);

Oracle Database 12c: SQL Workshop I 8 - 10

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

Single-Row Subqueries

• Return only one row

• Use single-row comparison operators

Greater than or equal to >=

Less than <

Less than or equal to<=

Equal to=

Not equal to<>

Greater than >

MeaningOperator

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 E

ga
bi

 S
ol

ut
io

ns
 u

se
 o

nl
y

TH
ES

E
eK

IT
 M

AT
ER

IA
LS

 A
R

E
FO

R
 Y

O
U

R
 U

SE
 IN

 T
H

IS
 C

LA
SS

R
O

O
M

 O
N

LY
.

C
O

PY
IN

G
 e

KI
T

M
AT

ER
IA

LS
 F

R
O

M
 T

H
IS

 C
O

M
PU

TE
R

 IS
 S

TR
IC

TL
Y

PR
O

H
IB

IT
ED

A SELECT statement can be considered as a query block. The example in the slide displays
employees who do the same job as “Taylor,” but earn more salary than him.

The example consists of three query blocks: the outer query and two inner queries. The inner
query blocks are executed first, producing the query results SA_REP and 8600, respectively.
The outer query block is then processed and uses the values that were returned by the inner
queries to complete its search conditions.

Both inner queries return single values (SA_REP and 8600, respectively), so this SQL
statement is called a single-row subquery.

Note: The outer and inner queries can get data from different tables.

Oracle Database 12c: SQL Workshop I 8 - 11

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

SELECT last_name, job_id, salary
FROM employees
WHERE job_id =

(SELECT job_id
FROM employees
WHERE last_name = 'Taylor')

AND salary >
(SELECT salary
FROM employees
WHERE last_name = 'Taylor');

Executing Single-Row Subqueries

SA_REP

8600

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 E

ga
bi

 S
ol

ut
io

ns
 u

se
 o

nl
y

TH
ES

E
eK

IT
 M

AT
ER

IA
LS

 A
R

E
FO

R
 Y

O
U

R
 U

SE
 IN

 T
H

IS
 C

LA
SS

R
O

O
M

 O
N

LY
.

C
O

PY
IN

G
 e

KI
T

M
AT

ER
IA

LS
 F

R
O

M
 T

H
IS

 C
O

M
PU

TE
R

 IS
 S

TR
IC

TL
Y

PR
O

H
IB

IT
ED

You can display data from a main query by using a group function in a subquery to return a
single row. The subquery is in parentheses and is placed after the comparison condition.

The example in the slide displays the employee last name, job ID, and salary of all
employees whose salary is equal to the minimum salary. The MIN group function returns a
single value (2500) to the outer query.

Oracle Database 12c: SQL Workshop I 8 - 12

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

SELECT last_name, job_id, salary
FROM employees
WHERE salary =

(SELECT MIN(salary)
FROM employees);

Using Group Functions in a Subquery

2500

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 E

ga
bi

 S
ol

ut
io

ns
 u

se
 o

nl
y

TH
ES

E
eK

IT
 M

AT
ER

IA
LS

 A
R

E
FO

R
 Y

O
U

R
 U

SE
 IN

 T
H

IS
 C

LA
SS

R
O

O
M

 O
N

LY
.

C
O

PY
IN

G
 e

KI
T

M
AT

ER
IA

LS
 F

R
O

M
 T

H
IS

 C
O

M
PU

TE
R

 IS
 S

TR
IC

TL
Y

PR
O

H
IB

IT
ED

You can use subqueries not only in the WHERE clause, but also in the HAVING clause. The
Oracle server executes the subquery and the results are returned into the HAVING clause of
the main query.

The SQL statement in the slide displays all the departments that have a minimum salary
greater than that of department 50.

Example

Find the job with the lowest average salary.
SELECT job_id, AVG(salary)

FROM employees

GROUP BY job_id

HAVING AVG(salary) = (SELECT MIN(AVG(salary))

FROM employees

GROUP BY job_id);

Oracle Database 12c: SQL Workshop I 8 - 13

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

SELECT department_id, MIN(salary)
FROM employees
GROUP BY department_id
HAVING MIN(salary) >

(SELECT MIN(salary)
FROM employees
WHERE department_id = 50);

HAVING Clause with Subqueries

• The Oracle server executes the subqueries first.
• The Oracle server returns results into the HAVING clause

of the main query.

2500

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 E

ga
bi

 S
ol

ut
io

ns
 u

se
 o

nl
y

TH
ES

E
eK

IT
 M

AT
ER

IA
LS

 A
R

E
FO

R
 Y

O
U

R
 U

SE
 IN

 T
H

IS
 C

LA
SS

R
O

O
M

 O
N

LY
.

C
O

PY
IN

G
 e

KI
T

M
AT

ER
IA

LS
 F

R
O

M
 T

H
IS

 C
O

M
PU

TE
R

 IS
 S

TR
IC

TL
Y

PR
O

H
IB

IT
ED

A common error with subqueries occurs when more than one row is returned for a single-row
subquery.

In the SQL statement in the slide, the subquery contains a GROUP BY clause, which implies
that the subquery will return multiple rows, one for each group that it finds. In this case, the
results of the subquery are 4400, 6000, 2500, 4200, 7000, 17000, and 8300.

The outer query takes those results and uses them in its WHERE clause. The WHERE clause
contains an equal (=) operator, a single-row comparison operator that expects only one value.
The = operator cannot accept more than one value from the subquery and, therefore,
generates the error.

To correct this error, change the = operator to IN.

Oracle Database 12c: SQL Workshop I 8 - 14

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

SELECT employee_id, last_name
FROM employees
WHERE salary =

(SELECT MIN(salary)
FROM employees
GROUP BY department_id);

What Is Wrong with This Statement?

Single-row operator with
multiple-row subquery

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 E

ga
bi

 S
ol

ut
io

ns
 u

se
 o

nl
y

TH
ES

E
eK

IT
 M

AT
ER

IA
LS

 A
R

E
FO

R
 Y

O
U

R
 U

SE
 IN

 T
H

IS
 C

LA
SS

R
O

O
M

 O
N

LY
.

C
O

PY
IN

G
 e

KI
T

M
AT

ER
IA

LS
 F

R
O

M
 T

H
IS

 C
O

M
PU

TE
R

 IS
 S

TR
IC

TL
Y

PR
O

H
IB

IT
ED

Another common problem with subqueries occurs when no rows are returned by the inner
query.

In the SQL statement in the slide, the subquery contains a WHERE clause. Presumably, the
intention is to find the employee whose name is Haas. The statement is correct, but selects
no rows when executed because there is no employee named Haas. Therefore, the subquery
returns no rows.

The outer query takes the results of the subquery (null) and uses these results in its WHERE
clause. The outer query finds no employee with a job ID equal to NULL, and so returns no
rows. If a job existed with a value of null, the row is not returned because comparison of two
null values yields a null; therefore, the WHERE condition is not true.

Oracle Database 12c: SQL Workshop I 8 - 15

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

SELECT last_name, job_id
FROM employees
WHERE job_id =

(SELECT job_id
FROM employees
WHERE last_name = 'Haas');

No Rows Returned by the Inner Query

Subquery returns no rows because
there is no employee named “Haas.”

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 E

ga
bi

 S
ol

ut
io

ns
 u

se
 o

nl
y

TH
ES

E
eK

IT
 M

AT
ER

IA
LS

 A
R

E
FO

R
 Y

O
U

R
 U

SE
 IN

 T
H

IS
 C

LA
SS

R
O

O
M

 O
N

LY
.

C
O

PY
IN

G
 e

KI
T

M
AT

ER
IA

LS
 F

R
O

M
 T

H
IS

 C
O

M
PU

TE
R

 IS
 S

TR
IC

TL
Y

PR
O

H
IB

IT
ED

Oracle Database 12c: SQL Workshop I 8 - 16

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

Lesson Agenda

• Subquery: Types, syntax, and guidelines

• Single-row subqueries:
– Group functions in a subquery
– HAVING clause with subqueries

• Multiple-row subqueries
– Use IN, ALL, or ANY

• Using the EXISTS operator

• Null values in a subquery

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 E

ga
bi

 S
ol

ut
io

ns
 u

se
 o

nl
y

TH
ES

E
eK

IT
 M

AT
ER

IA
LS

 A
R

E
FO

R
 Y

O
U

R
 U

SE
 IN

 T
H

IS
 C

LA
SS

R
O

O
M

 O
N

LY
.

C
O

PY
IN

G
 e

KI
T

M
AT

ER
IA

LS
 F

R
O

M
 T

H
IS

 C
O

M
PU

TE
R

 IS
 S

TR
IC

TL
Y

PR
O

H
IB

IT
ED

Subqueries that return more than one row are called multiple-row subqueries. You use a
multiple-row operator, instead of a single-row operator, with a multiple-row subquery. The
multiple-row operator expects one or more values:

SELECT last_name, salary, department_id
FROM employees
WHERE salary IN (SELECT MIN(salary)

FROM employees
GROUP BY department_id);

Example

Find the employees who earn the same salary as the minimum salary for each department.

The inner query is executed first, producing a query result. The main query block is then
processed and uses the values that were returned by the inner query to complete its search
condition. In fact, the main query appears to the Oracle server as follows:

SELECT last_name, salary, department_id
FROM employees
WHERE salary IN (2500, 4200, 4400, 6000, 7000, 8300,

8600, 17000);

Oracle Database 12c: SQL Workshop I 8 - 17

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

Multiple-Row Subqueries

• Return more than one row

• Use multiple-row comparison operators

Must be preceded by =, !=, >, <, <=, >=. Returns
TRUE if the relation is TRUE for all elements in the

result set of the Subquery.

ALL

Equal to any member in the listIN

Must be preceded by =, !=, >, <, <=, >=. Returns
TRUE if at least one element exists in the result-set

of the Subquery for which the relation is TRUE.

ANY

MeaningOperator

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 E

ga
bi

 S
ol

ut
io

ns
 u

se
 o

nl
y

TH
ES

E
eK

IT
 M

AT
ER

IA
LS

 A
R

E
FO

R
 Y

O
U

R
 U

SE
 IN

 T
H

IS
 C

LA
SS

R
O

O
M

 O
N

LY
.

C
O

PY
IN

G
 e

KI
T

M
AT

ER
IA

LS
 F

R
O

M
 T

H
IS

 C
O

M
PU

TE
R

 IS
 S

TR
IC

TL
Y

PR
O

H
IB

IT
ED

The ANY operator (and its synonym, the SOME operator) compares a value to each value
returned by a subquery. The slide example displays employees who are not IT programmers
and whose salary is less than that of any IT programmer. The maximum salary that a
programmer earns is $9,000.

• <ANY means less than the maximum.

• >ANY means more than the minimum.

• =ANY is equivalent to IN.

Oracle Database 12c: SQL Workshop I 8 - 18

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

SELECT employee_id, last_name, job_id, salary
FROM employees
WHERE salary < ANY

(SELECT salary
FROM employees
WHERE job_id = 'IT_PROG')

AND job_id <> 'IT_PROG';

Using the ANY Operator
in Multiple-Row Subqueries

9000, 6000, 4200

…

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 E

ga
bi

 S
ol

ut
io

ns
 u

se
 o

nl
y

TH
ES

E
eK

IT
 M

AT
ER

IA
LS

 A
R

E
FO

R
 Y

O
U

R
 U

SE
 IN

 T
H

IS
 C

LA
SS

R
O

O
M

 O
N

LY
.

C
O

PY
IN

G
 e

KI
T

M
AT

ER
IA

LS
 F

R
O

M
 T

H
IS

 C
O

M
PU

TE
R

 IS
 S

TR
IC

TL
Y

PR
O

H
IB

IT
ED

The ALL operator compares a value to every value returned by a subquery. The example in
the slide displays employees whose salary is less than the salary of all employees with a job
ID of IT_PROG and whose job is not IT_PROG.

>ALL means more than the maximum and <ALL means less than the minimum.

The NOT operator can be used with IN, ANY, and ALL operators.

Oracle Database 12c: SQL Workshop I 8 - 19

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

SELECT employee_id, last_name, job_id, salary
FROM employees
WHERE salary < ALL

(SELECT salary
FROM employees
WHERE job_id = 'IT_PROG')

AND job_id <> 'IT_PROG';

Using the ALL Operator
in Multiple-Row Subqueries

9000, 6000, 4200

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 E

ga
bi

 S
ol

ut
io

ns
 u

se
 o

nl
y

TH
ES

E
eK

IT
 M

AT
ER

IA
LS

 A
R

E
FO

R
 Y

O
U

R
 U

SE
 IN

 T
H

IS
 C

LA
SS

R
O

O
M

 O
N

LY
.

C
O

PY
IN

G
 e

KI
T

M
AT

ER
IA

LS
 F

R
O

M
 T

H
IS

 C
O

M
PU

TE
R

 IS
 S

TR
IC

TL
Y

PR
O

H
IB

IT
ED

The EXISTS operator is used in queries where the query result depends on whether or not
certain rows exist in a table. It evaluates to TRUE if the subquery returns at least one row.

The first example in the slide displays managers in the EMPLOYEES table who earns a salary
more than 10000.For each row in EMPLOYEES table, the condition is checked whether there
exists a manager_id who earns a salary more than 10000.

The second example in the slide displays departments that have no employees. For each row
in the DEPARTMENTS table, the condition is checked whether there exists a row in the
EMPLOYEES table that has the same department ID. In case no such row exists, the condition
is satisfied for the row under consideration and it is selected. If there exists a corresponding
row in the EMPLOYEES table, the row is not selected.

Oracle Database 12c: SQL Workshop I 8 - 20

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

SELECT * FROM departments
WHERE NOT EXISTS
(SELECT * FROM employees
WHERE employees.department_id=departments.department_id);

Using the EXISTS Operator

SELECT employee_id,salary,last_name FROM employees M
WHERE EXISTS
(SELECT employee_id FROM employees W
WHERE (W.manager_id=M.employee_id) AND W.salary > 10000);

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 E

ga
bi

 S
ol

ut
io

ns
 u

se
 o

nl
y

TH
ES

E
eK

IT
 M

AT
ER

IA
LS

 A
R

E
FO

R
 Y

O
U

R
 U

SE
 IN

 T
H

IS
 C

LA
SS

R
O

O
M

 O
N

LY
.

C
O

PY
IN

G
 e

KI
T

M
AT

ER
IA

LS
 F

R
O

M
 T

H
IS

 C
O

M
PU

TE
R

 IS
 S

TR
IC

TL
Y

PR
O

H
IB

IT
ED

Oracle Database 12c: SQL Workshop I 8 - 21

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

Lesson Agenda

• Subquery: Types, syntax, and guidelines

• Single-row subqueries:
– Group functions in a subquery
– HAVING clause with subqueries

• Multiple-row subqueries
– Use ALL or ANY operator

• Using the EXISTS operator

• Null values in a subquery

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 E

ga
bi

 S
ol

ut
io

ns
 u

se
 o

nl
y

TH
ES

E
eK

IT
 M

AT
ER

IA
LS

 A
R

E
FO

R
 Y

O
U

R
 U

SE
 IN

 T
H

IS
 C

LA
SS

R
O

O
M

 O
N

LY
.

C
O

PY
IN

G
 e

KI
T

M
AT

ER
IA

LS
 F

R
O

M
 T

H
IS

 C
O

M
PU

TE
R

 IS
 S

TR
IC

TL
Y

PR
O

H
IB

IT
ED

The SQL statement in the slide attempts to display all the employees who do not have any
subordinates. Logically, this SQL statement should have returned 12 rows. However, the SQL
statement does not return any rows. One of the values returned by the inner query is a null
value and, therefore, the entire query returns no rows.

The reason is that all conditions that compare a null value result in a null. So whenever null
values are likely to be part of the results set of a subquery, do not use the NOT IN operator.
The NOT IN operator is equivalent to <> ALL.

Notice that the null value as part of the results set of a subquery is not a problem if you use
the IN operator. The IN operator is equivalent to =ANY. For example, to display the
employees who have subordinates, use the following SQL statement:

SELECT emp.last_name

FROM employees emp

WHERE emp.employee_id IN

(SELECT mgr.manager_id

FROM employees mgr);

Oracle Database 12c: SQL Workshop I 8 - 22

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

SELECT emp.last_name
FROM employees emp
WHERE emp.employee_id NOT IN

(SELECT mgr.manager_id
FROM employees mgr);

Null Values in a Subquery

Subquery returns no rows because
one of the values returned by a

subquery is Null.

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 E

ga
bi

 S
ol

ut
io

ns
 u

se
 o

nl
y

TH
ES

E
eK

IT
 M

AT
ER

IA
LS

 A
R

E
FO

R
 Y

O
U

R
 U

SE
 IN

 T
H

IS
 C

LA
SS

R
O

O
M

 O
N

LY
.

C
O

PY
IN

G
 e

KI
T

M
AT

ER
IA

LS
 F

R
O

M
 T

H
IS

 C
O

M
PU

TE
R

 IS
 S

TR
IC

TL
Y

PR
O

H
IB

IT
ED

Oracle Database 12c: SQL Workshop I 8 - 23

Alternatively, a WHERE clause can be included in the subquery to display all employees who
do not have any subordinates:

SELECT last_name FROM employees

WHERE employee_id NOT IN

(SELECT manager_id

FROM employees

WHERE manager_id IS NOT NULL);

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 E

ga
bi

 S
ol

ut
io

ns
 u

se
 o

nl
y

TH
ES

E
eK

IT
 M

AT
ER

IA
LS

 A
R

E
FO

R
 Y

O
U

R
 U

SE
 IN

 T
H

IS
 C

LA
SS

R
O

O
M

 O
N

LY
.

C
O

PY
IN

G
 e

KI
T

M
AT

ER
IA

LS
 F

R
O

M
 T

H
IS

 C
O

M
PU

TE
R

 IS
 S

TR
IC

TL
Y

PR
O

H
IB

IT
ED

Answer: a

Oracle Database 12c: SQL Workshop I 8 - 24

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

Quiz

Using a subquery is equivalent to performing two sequential
queries and using the result of the first query as the search
values in the second query.

a. True

b. False

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 E

ga
bi

 S
ol

ut
io

ns
 u

se
 o

nl
y

TH
ES

E
eK

IT
 M

AT
ER

IA
LS

 A
R

E
FO

R
 Y

O
U

R
 U

SE
 IN

 T
H

IS
 C

LA
SS

R
O

O
M

 O
N

LY
.

C
O

PY
IN

G
 e

KI
T

M
AT

ER
IA

LS
 F

R
O

M
 T

H
IS

 C
O

M
PU

TE
R

 IS
 S

TR
IC

TL
Y

PR
O

H
IB

IT
ED

In this lesson, you should have learned how to use subqueries. A subquery is a SELECT
statement that is embedded in the clause of another SQL statement. Subqueries are useful
when a query is based on a search criterion with unknown intermediate values.

Subqueries have the following characteristics:

• Can pass one row of data to a main statement that contains a single-row operator, such
as =, <>, >, >=, <, or <=

• Can pass multiple rows of data to a main statement that contains a multiple-row
operator, such as IN

• Are processed first by the Oracle server, after which the WHERE or HAVING clause uses
the results

• Can contain group functions

Oracle Database 12c: SQL Workshop I 8 - 25

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

SELECT select_list
FROM table
WHERE expr operator

(SELECT select_list
FROM table);

Summary

In this lesson, you should have learned how to:

• Identify when a subquery can help solve a problem

• Write subqueries when a query is based on unknown
values

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 E

ga
bi

 S
ol

ut
io

ns
 u

se
 o

nl
y

TH
ES

E
eK

IT
 M

AT
ER

IA
LS

 A
R

E
FO

R
 Y

O
U

R
 U

SE
 IN

 T
H

IS
 C

LA
SS

R
O

O
M

 O
N

LY
.

C
O

PY
IN

G
 e

KI
T

M
AT

ER
IA

LS
 F

R
O

M
 T

H
IS

 C
O

M
PU

TE
R

 IS
 S

TR
IC

TL
Y

PR
O

H
IB

IT
ED

In this practice, you write complex queries using nested SELECT statements.

For practice questions, you may want to create the inner query first. Make sure that it runs
and produces the data that you anticipate before you code the outer query.

Oracle Database 12c: SQL Workshop I 8 - 26

Copyright © 2013, Oracle and/or its affiliates. All rights reserved.

Practice 8: Overview

This practice covers the following topics:

• Creating subqueries to query values based on unknown
criteria

• Using subqueries to find out the values that exist in one set
of data and not in another

O
ra

cl
e

U
ni

ve
rs

ity
 a

nd
 E

ga
bi

 S
ol

ut
io

ns
 u

se
 o

nl
y

TH
ES

E
eK

IT
 M

AT
ER

IA
LS

 A
R

E
FO

R
 Y

O
U

R
 U

SE
 IN

 T
H

IS
 C

LA
SS

R
O

O
M

 O
N

LY
.

C
O

PY
IN

G
 e

KI
T

M
AT

ER
IA

LS
 F

R
O

M
 T

H
IS

 C
O

M
PU

TE
R

 IS
 S

TR
IC

TL
Y

PR
O

H
IB

IT
ED

	Oracle Database 12c: SQL Workshop I - Student Guide - Volume I
	Table of Contents
	Lesson 1: Introduction
	Lesson Objectives
	Lesson Agenda
	Course Objectives
	Course Agenda
	Appendices and Practices Used in the Course
	Lesson Agenda
	Oracle Database 12c: Focus Areas
	Oracle Database 12c
	Oracle Fusion Middleware
	Oracle Enterprise Manager Cloud Control
	Oracle Cloud
	Oracle Cloud Services
	Cloud Deployment Models
	Lesson Agenda
	Relational and Object Relational Database Management Systems
	Data Storage on Different Media
	Relational Database Concept
	Definition of a Relational Database
	Data Models
	Entity Relationship Model
	Entity Relationship Modeling Conventions
	Relating Multiple Tables
	Relational Database Terminology
	Lesson Agenda
	Using SQL to Query Your Database
	SQL Statements Used in the Course
	Development Environments for SQL
	Lesson Agenda
	Human Resources (HR) Schema
	Tables Used in the Course
	Lesson Agenda
	Oracle Database Documentation
	Additional Resources
	Summary
	Practice 1: Overview

	Lesson 2: Retrieving Data Using the SQL SELECT Statement
	Objectives
	Lesson Agenda
	Capabilities of SQL SELECT Statements
	Basic SELECT Statement
	Selecting All Columns
	Selecting Specific Columns
	Writing SQL Statements
	Column Heading Defaults
	Lesson Agenda
	Arithmetic Expressions
	Using Arithmetic Operators
	Operator Precedence
	Defining a Null Value
	Null Values in Arithmetic Expressions
	Lesson Agenda
	Defining a Column Alias
	Using Column Aliases
	Lesson Agenda
	Concatenation Operator
	Literal Character Strings
	Using Literal Character Strings
	Alternative Quote (q) Operator
	Duplicate Rows
	Lesson Agenda
	Displaying the Table Structure
	Using the DESCRIBE Command
	Quiz
	Summary
	Practice 2: Overview

	Lesson 3: Restricting and Sorting Data
	Objectives
	Lesson Agenda
	Limiting Rows Using a Selection
	Limiting the Rows That Are Selected
	Using the WHERE Clause
	Character Strings and Dates
	Comparison Operators
	Using Comparison Operators
	Range Conditions Using the BETWEEN Operator
	Membership Condition Using the IN Operator
	Pattern Matching Using the LIKE Operator
	Combining Wildcard Characters
	Using the NULL Conditions
	Defining Conditions Using the Logical Operators
	Using the AND Operator
	Using the OR Operator
	Using the NOT Operator
	Lesson Agenda
	Rules of Precedence
	Lesson Agenda
	Using the ORDER BY Clause
	Sorting
	Lesson Agenda
	SQL Row Limiting Clause
	Using SQL Row Limiting Clause in a Query
	SQL Row Limiting Clause Example
	Lesson Agenda
	Substitution Variables
	Using the Single-Ampersand Substitution Variable
	Character and Date Values with Substitution Variables
	Specifying Column Names
	Using the Double-Ampersand Substitution Variable
	Lesson Agenda
	Using the DEFINE Command
	Using the VERIFY Command
	Quiz
	Summary
	Practice 3: Overview

	Lesson 4: Using Single-Row Functions to Customize Output
	Objectives
	Lesson Agenda
	SQL Functions
	Two Types of SQL Functions
	Single-Row Functions
	Lesson Agenda
	Character Functions
	Case-Conversion Functions
	Using Case-Conversion Functions
	Character-Manipulation Functions
	Using the Character-Manipulation Functions
	Lesson Agenda
	Nesting Functions
	Nesting Functions: Example
	Lesson Agenda
	Numeric Functions
	Using the ROUND Function
	Using the TRUNC Function
	Using the MOD Function
	Lesson Agenda
	Working with Dates
	RR Date Format
	Using the SYSDATE Function
	Arithmetic with Dates
	Using Arithmetic Operators with Dates
	Lesson Agenda
	Date-Manipulation Functions
	Using Date Functions
	Using ROUND and TRUNC Functions with Dates
	Quiz
	Summary
	Practice 4: Overview

	Lesson 5: Using Conversion Functions and Conditional Expressions
	Objectives
	Lesson Agenda
	Conversion Functions
	Implicit Data Type Conversion
	Explicit Data Type Conversion
	Lesson Agenda
	Using the TO_CHAR Function with Dates
	Elements of the Date Format Model
	Using the TO_CHAR Function with Dates
	Using the TO_CHAR Function with Numbers
	Using the TO_NUMBER and TO_DATE Functions
	Using TO_CHAR and TO_DATE Functions with the RR Date Format
	Lesson Agenda
	General Functions
	NVL Function
	Using the NVL Function
	Using the NVL2 Function
	Using the NULLIF Function
	Using the COALESCE Function
	Lesson Agenda
	Conditional Expressions
	CASE Expression
	Using the CASE Expression
	DECODE Function
	Using the DECODE Function
	Quiz
	Summary
	Practice 5: Overview

	Lesson 6: Reporting Aggregated Data Using the Group Functions
	Objectives
	Lesson Agenda
	What Are Group Functions?
	Types of Group Functions
	Group Functions: Syntax
	Using the AVG and SUM Functions
	Using the MIN and MAX Functions
	Using the COUNT Function
	Using the DISTINCT Keyword
	Group Functions and Null Values
	Lesson Agenda
	Creating Groups of Data
	Creating Groups of Data: GROUP BY Clause Syntax
	Using the GROUP BY Clause
	Grouping by More Than One Column
	Using the GROUP BY Clause on Multiple Columns
	Illegal Queries Using Group Functions
	Restricting Group Results
	Restricting Group Results with the HAVING Clause
	Using the HAVING Clause
	Lesson Agenda
	Nesting Group Functions
	Quiz
	Summary
	Practice 6: Overview

	Lesson 7: Displaying Data from Multiple Tables Using Joins
	Objectives
	Lesson Agenda
	Obtaining Data from Multiple Tables
	Types of Joins
	Joining Tables Using SQL:1999 Syntax
	Qualifying Ambiguous Column Names
	Lesson Agenda
	Creating Natural Joins
	Retrieving Records with Natural Joins
	Creating Joins with the USING Clause
	Joining Column Names
	Retrieving Records with the USING Clause
	Using Table Aliases with the USING Clause
	Creating Joins with the ON Clause
	Retrieving Records with the ON Clause
	Creating Three-Way Joins with the ON Clause
	Applying Additional Conditions to a Join
	Lesson Agenda
	Joining a Table to Itself
	Self-Joins Using the ON Clause
	Lesson Agenda
	Nonequijoins
	Retrieving Records with Nonequijoins
	Lesson Agenda
	Returning Records with No Direct Match Using OUTER Joins
	INNER Versus OUTER Joins
	LEFT OUTER JOIN
	RIGHT OUTER JOIN
	FULL OUTER JOIN
	Lesson Agenda
	Cartesian Products
	Generating a Cartesian Product
	Creating Cross Joins
	Quiz
	Summary
	Practice 7: Overview

	Lesson 8: Using Subqueries to Solve Queries
	Objectives
	Lesson Agenda
	Using a Subquery to Solve a Problem
	Subquery Syntax
	Using a Subquery
	Rules for Using Subqueries
	Types of Subqueries
	Lesson Agenda
	Single-Row Subqueries
	Executing Single-Row Subqueries
	Using Group Functions in a Subquery
	HAVING Clause with Subqueries
	What Is Wrong with This Statement?
	No Rows Returned by the Inner Query
	Lesson Agenda
	Multiple-Row Subqueries
	Using the ANY Operator in Multiple-Row Subqueries
	Using the ALL Operator in Multiple-Row Subqueries
	Using the EXISTS Operator
	Lesson Agenda
	Null Values in a Subquery
	Quiz
	Summary
	Practice 8: Overview

