
Oracle Database 11g: PL/SQL
Fundamentals

Student Guide

D49990GC20

Edition 2.0

September 2009

D62728

Copyright © 2009, Oracle. All rights reserved.

Disclaimer

This document contains proprietary information and is protected by copyright and
other intellectual property laws. You may copy and print this document solely for your
own use in an Oracle training course. The document may not be modified or altered in
any way. Except where your use constitutes "fair use" under copyright law, you may
not use, share, download, upload, copy, print, display, perform, reproduce, publish,
license, post, transmit, or distribute this document in whole or in part without the
express authorization of Oracle.

The information contained in this document is subject to change without notice. If you
find any problems in the document, please report them in writing to: Oracle University,
500 Oracle Parkway, Redwood Shores, California 94065 USA. This document is not
warranted to be error-free.

Restricted Rights Notice

If this documentation is delivered to the United States Government or anyone using
the documentation on behalf of the United States Government, the following notice is
applicable:

U.S. GOVERNMENT RIGHTS
The U.S. Government’s rights to use, modify, reproduce, release, perform, display, or
disclose these training materials are restricted by the terms of the applicable Oracle
license agreement and/or the applicable U.S. Government contract.

Trademark Notice

Oracle is a registered trademark of Oracle Corporation and/or its affiliates. Other
names may be trademarks of their respective owners.

Author
Brian Pottle

Technical Contributors
and Reviewers
Tom Best
Christoph Burandt
Yanti Chang
Laszlo Czinkoczki
Ashita Dhir
Peter Driver
Gerlinde Frenzen
Nancy Greenberg
Chaitanya Kortamaddi
Tim Leblanc
Bryan Roberts
Abhishek X Singh
Puja Singh
Lex Van Der Werff

Graphic Designer
Satish Bettegowda

Editors
Vijayalakshmi Narasimhan
Daniel Milne

Publisher
Jobi Varghese

Copyright © 2009, Oracle. All rights reserved.

Introduction

Oracle Database 11g: PL/SQL Fundamentals I - 2

Copyright © 2009, Oracle. All rights reserved.I - 2

Lesson Objectives

After completing this lesson, you should be able to do the
following:
• Discuss the goals of the course
• Describe the HR database schema that is used in the

course
• Identify the available user interface environments that can

be used in this course
• Reference the available appendixes, documentation, and

other resources

Lesson Objectives
This lesson gives you a high-level overview of the course and its flow. You learn about the
database schema and the tables that the course uses. You are also introduced to different
products in the Oracle 11g grid infrastructure.

Oracle Database 11g: PL/SQL Fundamentals I - 3

Copyright © 2009, Oracle. All rights reserved.I - 3

Course Objectives

After completing this course, you should be able to do the
following:
• Identify the programming extensions that PL/SQL provides

to SQL
• Write PL/SQL code to interface with the database
• Design PL/SQL anonymous blocks that execute efficiently
• Use PL/SQL programming constructs and conditional

control statements
• Handle run-time errors
• Describe stored procedures and functions

Course Objectives
This course presents the basics of PL/SQL. You learn about PL/SQL syntax, blocks, and
programming constructs and also about the advantages of integrating SQL with those constructs.
You learn how to write PL/SQL program units and execute them efficiently. In addition, you
learn how to use SQL Developer as a development environment for PL/SQL. You also learn
how to design reusable program units such as procedures and functions.

Oracle Database 11g: PL/SQL Fundamentals I - 4

Copyright © 2009, Oracle. All rights reserved.I - 4

Human Resources (HR) Schema
for This Course

DEPARTMENTS
department_id

department_name
manager_id
location_id

LOCATIONS
location_id

street_address
postal_code

city
state_province

country_id

COUNTRIES
country_id

country_name
region_id

REGIONS
region_id

region_name

EMPLOYEES
employee_id

first_name
last_name

email
phone_number

hire_date
job_id
salary

commission_pct
manager_id

department_id
JOBS

job_id
job_title

min_salary
max_salary

JOB_HISTORY
employee_id
start_date
end_date

job_id
department_id

Human Resources (HR) Schema for This Course
The Human Resources (HR) schema is part of the Oracle Sample Schemas that can be installed
in an Oracle database. The practice sessions in this course use data from the HR schema.
Table Descriptions
• REGIONS contains rows that represent a region such as the Americas or Asia.
• COUNTRIES contains rows for countries, each of which is associated with a region.
• LOCATIONS contains the specific address of a specific office, warehouse, or production

site of a company in a particular country.
• DEPARTMENTS shows details about the departments in which employees work. Each

department may have a relationship representing the department manager in the
EMPLOYEES table.

• EMPLOYEES contains details about each employee working for a department. Some
employees may not be assigned to any department.

• JOBS contains the job types that can be held by each employee.
• JOB_HISTORY contains the job history of the employees. If an employee changes

departments within a job or changes jobs within a department, a new row is inserted into
this table with the old job information of the employee.

Oracle Database 11g: PL/SQL Fundamentals I - 5

Copyright © 2009, Oracle. All rights reserved.I - 5

Course Agenda

Day 1:
I. Introduction
1. Introduction to PL/SQL
2. Declaring PL/SQL Variables
3. Writing Executable Statements
4. Interacting with Oracle Database Server: SQL Statements

in PL/SQL Programs
5. Writing Control Structures

Day 2:
6. Working with Composite Data Types
7. Using Explicit Cursors
8. Handling Exceptions
9. Introducing Stored Procedures and Functions

Oracle Database 11g: PL/SQL Fundamentals I - 6

Copyright © 2009, Oracle. All rights reserved.I - 6

Class Account Information

• A cloned HR account ID is set up for you.
• Your account ID is ora41.
• The password matches your account ID.
• Each machine has its own complete environment, and is

assigned the same account.
• The instructor has a separate ID.

Oracle Database 11g: PL/SQL Fundamentals I - 7

Copyright © 2009, Oracle. All rights reserved.I - 7

Appendixes Used in This Course

• Appendix A: Practices and Solutions
• Appendix B: Table Descriptions and Data
• Appendix C: Using SQL Developer
• Appendix D: Using SQL*Plus
• Appendix E: Using JDeveloper
• Appendix F: REF Cursors
• Appendix AP: Additional Practices and Solutions

Oracle Database 11g: PL/SQL Fundamentals I - 8

Copyright © 2009, Oracle. All rights reserved.I - 8

PL/SQL Development Environments

This course setup provides the following tools for developing
PL/SQL code:
• Oracle SQL Developer (used in this course)
• Oracle SQL*Plus
• Oracle JDeveloper IDE

PL/SQL Development Environments
Oracle provides several tools that can be used to write PL/SQL code. Some of the development
tools that are available for use in this course:

• Oracle SQL Developer: A graphical tool
• Oracle SQL*Plus: A window or command-line application
• Oracle JDeveloper: A window-based integrated development environment (IDE)

Note: The code and screen examples presented in the course notes were generated from output
in the SQL Developer environment.

Oracle Database 11g: PL/SQL Fundamentals I - 9

Copyright © 2009, Oracle. All rights reserved.I - 9

What Is Oracle SQL Developer?

• Oracle SQL Developer is a free graphical tool that
enhances productivity and simplifies database
development tasks.

• You can connect to any target Oracle database schema
using standard Oracle database authentication.

• You will use SQL Developer in this course.
• Appendix C contains details on using SQL Developer.

SQL Developer

What Is Oracle SQL Developer?
Oracle SQL Developer is a free graphical tool designed to improve your productivity and
simplify the development of everyday database tasks. With just a few clicks, you can easily
create and maintain stored procedures, test SQL statements, and view optimizer plans.
SQL Developer, the visual tool for database development, simplifies the following tasks:

• Browsing and managing database objects
• Executing SQL statements and scripts
• Editing and debugging PL/SQL statements
• Creating reports

You can connect to any target Oracle database schema by using standard Oracle database
authentication. When you are connected, you can perform operations on objects in the database.
Appendix C
Appendix C of this course provides an introduction on using the SQL Developer interface. Refer
to the appendix for information about creating a database connection, interacting with data using
SQL and PL/SQL, and more.

Oracle Database 11g: PL/SQL Fundamentals I - 10

Copyright © 2009, Oracle. All rights reserved.I - 10

Coding PL/SQL in SQL*Plus

Coding PL/SQL in SQL*Plus
Oracle SQL*Plus is a command-line interface that enables you to submit SQL statements and
PL/SQL blocks for execution and receive the results in an application or a command window.
SQL*Plus is:

• Shipped with the database
• Installed on a client and on the database server system
• Accessed using an icon or the command line

When you code PL/SQL subprograms using SQL*Plus, remember the following:
• You create subprograms by using the CREATE SQL statement.
• You execute subprograms by using either an anonymous PL/SQL block or the EXECUTE

command.
• If you use the DBMS_OUTPUT package procedures to print text to the screen, you must

first execute the SET SERVEROUTPUT ON command in your session.
Note

• To launch SQL*Plus in Linux environment, open a Terminal window and enter the
command: sqlplus.

• For more information about using SQL*Plus, see Appendix D.

Oracle Database 11g: PL/SQL Fundamentals I - 11

Copyright © 2009, Oracle. All rights reserved.I - 11

Coding PL/SQL in Oracle JDeveloper

Coding PL/SQL in Oracle JDeveloper
Oracle JDeveloper allows developers to create, edit, test, and debug PL/SQL code by using a
sophisticated GUI. Oracle JDeveloper is a part of Oracle Developer Suite and is also available as
a separate product.
When you code PL/SQL in JDeveloper, consider the following:

• You first create a database connection to enable JDeveloper to access a database schema
owner for the subprograms.

• You can then use the JDeveloper context menus on the Database connection to create a
new subprogram construct using the built-in JDeveloper Code Editor.

• You invoke a subprogram by using a Run command on the context menu for the named
subprogram. The output appears in the JDeveloper Log Message window, as shown in the
lower portion of the screenshot.

Note
• JDeveloper provides color-coding syntax in the JDeveloper Code Editor and is sensitive to

PL/SQL language constructs and statements.
• For more information about using JDeveloper, see Appendix E.

Oracle Database 11g: PL/SQL Fundamentals I - 12

Copyright © 2009, Oracle. All rights reserved.I - 12

Oracle 11g SQL and PL/SQL Documentation

• Oracle Database New Features Guide 11g Release 2
(11.2)

• Oracle Database Advanced Application Developer’s Guide
11g Release 2 (11.2)

• Oracle Database PL/SQL Language Reference 11g
Release 2 (11.2)

• Oracle Database Reference 11g Release 2 (11.2)
• Oracle Database SQL Language Reference 11g Release 2

(11.2)
• Oracle Database Concepts 11g Release 2 (11.2)
• Oracle Database PL/SQL Packages and Types Reference

11g Release 2 (11.2)
• Oracle Database SQL Developer User’s Guide Release

1.5

Oracle Database 11g: PL/SQL Fundamentals I - 13

Copyright © 2009, Oracle. All rights reserved.I - 13

Summary

In this lesson, you should have learned how to:
• Discuss the goals of the course
• Describe the HR database schema that is used in the

course
• Identify the available user interface environments that can

be used in this course
• Reference the available appendixes, documentation, and

other resources

Oracle Database 11g: PL/SQL Fundamentals I - 14

Copyright © 2009, Oracle. All rights reserved.I - 14

Practice I Overview: Getting Started

This practice covers the following topics:
• Starting SQL Developer
• Creating a new database connection
• Browsing the HR schema tables
• Setting a SQL Developer preference

Practice I: Overview
In this practice, you use SQL Developer to execute SQL statements to examine data in the HR
schema. You also create a simple anonymous block.
Note: All written practices use SQL Developer as the development environment. Although it is
recommended that you use SQL Developer, you can also use the SQL*Plus or JDeveloper
environments that are available in this course.

Copyright © 2009, Oracle. All rights reserved.

Introduction to PL/SQL

Oracle Database 11g: PL/SQL Fundamentals 1 - 2

Copyright © 2009, Oracle. All rights reserved.1 - 2

Objectives

After completing this lesson, you should be able to do the
following:
• Explain the need for PL/SQL
• Explain the benefits of PL/SQL
• Identify the different types of PL/SQL blocks
• Output messages in PL/SQL

Objectives
This lesson introduces PL/SQL and the PL/SQL programming constructs. You also learn about
the benefits of PL/SQL.

Oracle Database 11g: PL/SQL Fundamentals 1 - 3

Copyright © 2009, Oracle. All rights reserved.1 - 3

Agenda

• Understanding the benefits and structure of PL/SQL
• Examining PL/SQL blocks
• Generating output messages in PL/SQL

Oracle Database 11g: PL/SQL Fundamentals 1 - 4

Copyright © 2009, Oracle. All rights reserved.1 - 4

About PL/SQL

PL/SQL:
• Stands for “Procedural Language extension to SQL”
• Is Oracle Corporation’s standard data access language for

relational databases
• Seamlessly integrates procedural constructs with SQL

About PL/SQL
Structured Query Language (SQL) is the primary language used to access and modify data in
relational databases. There are only a few SQL commands, so you can easily learn and use them.
Consider an example:

SELECT first_name, department_id, salary FROM employees;
The preceding SQL statement is simple and straightforward. However, if you want to alter any
data that is retrieved in a conditional manner, you soon encounter the limitations of SQL.
Consider a slightly modified problem statement: For every employee retrieved, check the
department ID and salary. Depending on the department’s performance and also the employee’s
salary, you may want to provide varying bonuses to the employees.
Looking at the problem, you know that you have to execute the preceding SQL statement,
collect the data, and apply logic to the data.

• One solution is to write a SQL statement for each department to give bonuses to the
employees in that department. Remember that you also have to check the salary
component before deciding the bonus amount. This makes it a little complicated.

• A more effective solution might include conditional statements. PL/SQL is designed to
meet such requirements. It provides a programming extension to the already-existing SQL.

Oracle Database 11g: PL/SQL Fundamentals 1 - 5

Copyright © 2009, Oracle. All rights reserved.1 - 5

About PL/SQL

PL/SQL:
• Provides a block structure for executable units of code.

Maintenance of code is made easier with such a well-
defined structure.

• Provides procedural constructs such as:
– Variables, constants, and data types
– Control structures such as conditional statements and loops
– Reusable program units that are written once and executed

many times

About PL/SQL (continued)
PL/SQL defines a block structure for writing code. Maintaining and debugging code is made
easier with such a structure because you can easily understand the flow and execution of the
program unit.
PL/SQL offers modern software engineering features such as data encapsulation, exception
handling, information hiding, and object orientation. It brings state-of-the-art programming to
the Oracle Server and toolset. PL/SQL provides all the procedural constructs that are available in
any third-generation language (3GL).

Oracle Database 11g: PL/SQL Fundamentals 1 - 6

Copyright © 2009, Oracle. All rights reserved.1 - 6

PL/SQL Run-Time Architecture

SQ
L

PL
/S

Q
L

PL/SQL block

procedural

Procedural statement
executor

SQL statement executor

Oracle Server

PL/SQL Engine

PL/SQL Run-Time Architecture
The diagram in the slide shows a PL/SQL block being executed by the PL/SQL engine. The
PL/SQL engine resides in:

• The Oracle database for executing stored subprograms
• The Oracle Forms client when you run client/server applications, or in the Oracle

Application Server when you use Oracle Forms Services to run Forms on the Web
Irrespective of the PL/SQL run-time environment, the basic architecture remains the same.
Therefore, all PL/SQL statements are processed in the Procedural Statement Executor, and all
SQL statements must be sent to the SQL Statement Executor for processing by the Oracle Server
processes. The SQL environment may also invoke the PL/SQL environment. For example, the
PL/SQL environment is invoked when a PL/SQL function is used in a SELECT statement.
The PL/SQL engine is a virtual machine that resides in memory and processes the PL/SQL
m-code instructions. When the PL/SQL engine encounters a SQL statement, a context switch is
made to pass the SQL statement to the Oracle Server processes. The PL/SQL engine waits for
the SQL statement to complete and for the results to be returned before it continues to process
subsequent statements in the PL/SQL block. The Oracle Forms PL/SQL engine runs in the client
for the client/server implementation, and in the application server for the Forms Services
implementation. In either case, SQL statements are typically sent over a network to an Oracle
Server for processing.

Oracle Database 11g: PL/SQL Fundamentals 1 - 7

Copyright © 2009, Oracle. All rights reserved.1 - 7

Benefits of PL/SQL

• Integration of procedural constructs with SQL
• Improved performance

SQL
IF...THEN

SQL
ELSE

SQL
END IF;
SQL

SQL 1

SQL 2
…

Benefits of PL/SQL
Integration of procedural constructs with SQL: The most important advantage of PL/SQL is
the integration of procedural constructs with SQL. SQL is a nonprocedural language. When you
issue a SQL command, your command tells the database server what to do. However, you
cannot specify how to do it. PL/SQL integrates control statements and conditional statements
with SQL, giving you better control of your SQL statements and their execution. Earlier in this
lesson, you saw an example of the need for such integration.
Improved performance: Without PL/SQL, you would not be able to logically combine SQL
statements as one unit. If you have designed an application that contains forms, you may have
many different forms with fields in each form. When a form submits data, you may have to
execute a number of SQL statements. SQL statements are sent to the database one at a time. This
results in many network trips and one call to the database for each SQL statement, thereby
increasing network traffic and reducing performance (especially in a client/server model).
With PL/SQL, you can combine all these SQL statements into a single program unit. The
application can send the entire block to the database instead of sending the SQL statements one
at a time. This significantly reduces the number of database calls. As the slide illustrates, if the
application is SQL intensive, you can use PL/SQL blocks to group SQL statements before
sending them to the Oracle database server for execution.

Oracle Database 11g: PL/SQL Fundamentals 1 - 8

Copyright © 2009, Oracle. All rights reserved.1 - 8

Benefits of PL/SQL

• Modularized program development
• Integration with Oracle tools
• Portability
• Exception handling

Benefits of PL/SQL (continued)
Modularized program development: The basic unit in all PL/SQL programs is the block.
Blocks can be in a sequence or they can be nested in other blocks. Modularized program
development has the following advantages:

• You can group logically related statements within blocks.
• You can nest blocks inside larger blocks to build powerful programs.
• You can break your application into smaller modules. If you are designing a complex

application, PL/SQL allows you to break down the application into smaller, manageable,
and logically related modules.

• You can easily maintain and debug code.
In PL/SQL, modularization is implemented using procedures, functions, and packages, which
are discussed in the lesson titled “Introducing Stored Procedures and Functions.”
Integration with tools: The PL/SQL engine is integrated in Oracle tools such as Oracle Forms
and Oracle Reports. When you use these tools, the locally available PL/SQL engine processes
the procedural statements; only the SQL statements are passed to the database.

Oracle Database 11g: PL/SQL Fundamentals 1 - 9

Benefits of PL/SQL (continued)
Portability: PL/SQL programs can run anywhere an Oracle Server runs, irrespective of the
operating system and platform. You do not need to customize them to each new environment.
You can write portable program packages and create libraries that can be reused in different
environments.
Exception handling: PL/SQL enables you to handle exceptions efficiently. You can define
separate blocks for dealing with exceptions. You learn more about exception handling in the
lesson titled “Handling Exceptions.”
PL/SQL shares the same data type system as SQL (with some extensions) and uses the same
expression syntax.

Oracle Database 11g: PL/SQL Fundamentals 1 - 10

Copyright © 2009, Oracle. All rights reserved.1 - 10

PL/SQL Block Structure

• DECLARE (optional)
– Variables, cursors, user-defined exceptions

• BEGIN (mandatory)
– SQL statements
– PL/SQL statements

• EXCEPTION (optional)
– Actions to perform

when exceptions occur
• END; (mandatory)

PL/SQL Block Structure
The slide shows a basic PL/SQL block. A PL/SQL block consists of four sections:

• Declarative (optional): The declarative section begins with the keyword DECLARE and
ends when the executable section starts.

• Begin (required): The executable section begins with the keyword BEGIN. This section
needs to have at least one statement. However, the executable section of a PL/SQL block
can include any number of PL/SQL blocks.

• Exception handling (optional): The exception section is nested within the executable
section. This section begins with the keyword EXCEPTION.

• End (required): All PL/SQL blocks must conclude with an END statement. Observe that
END is terminated with a semicolon.

Oracle Database 11g: PL/SQL Fundamentals 1 - 11

PL/SQL Block Structure (continued)
In a PL/SQL block, the keywords DECLARE, BEGIN, and EXCEPTION are not terminated by a
semicolon. However, the keyword END, all SQL statements, and PL/SQL statements must be
terminated with a semicolon.

Section Description Inclusion
Declarative
(DECLARE)

Contains declarations of all variables, constants,
cursors, and user-defined exceptions that are
referenced in the executable and exception sections

Optional

Executable
(BEGIN …
END)

Contains SQL statements to retrieve data from the
database; contains PL/SQL statements to manipulate
data in the block

Mandatory

Exception
(EXCEPTION)

Specifies the actions to perform when errors and
abnormal conditions arise in the executable section

Optional

Oracle Database 11g: PL/SQL Fundamentals 1 - 12

Copyright © 2009, Oracle. All rights reserved.1 - 12

Agenda

• Understanding the benefits and structure of PL/SQL
• Examining PL/SQL blocks
• Generating output messages in PL/SQL

Oracle Database 11g: PL/SQL Fundamentals 1 - 13

Copyright © 2009, Oracle. All rights reserved.1 - 13

Block Types

Procedure Function Anonymous

PROCEDURE name
IS

BEGIN
--statements

[EXCEPTION]

END;

FUNCTION name
RETURN datatype
IS
BEGIN

--statements
RETURN value;

[EXCEPTION]

END;

[DECLARE]

BEGIN
--statements

[EXCEPTION]

END;

Block Types
A PL/SQL program comprises one or more blocks. These blocks can be entirely separate or
nested within another block.
There are three types of blocks that make up a PL/SQL program:

• Procedures
• Functions
• Anonymous blocks

Procedures: Procedures are named objects that contain SQL and/or PL/SQL statements.
Functions: Functions are named objects that contain SQL and/or PL/SQL statements. Unlike a
procedure, a function returns a value of a specified data type.
Anonymous blocks
Anonymous blocks are unnamed blocks. They are declared inline at the point in an application
where they are to be executed and are compiled each time the application is executed. These
blocks are not stored in the database. They are passed to the PL/SQL engine for execution at run
time. Triggers in Oracle Developer components consist of such blocks.
If you want to execute the same block again, you have to rewrite the block. You cannot invoke
or call the block that you wrote earlier because blocks are anonymous and do not exist after they
are executed.

Oracle Database 11g: PL/SQL Fundamentals 1 - 14

Block Types (continued)
Subprograms
Subprograms are complementary to anonymous blocks. They are named PL/SQL blocks that are
stored in the database. Because they are named and stored, you can invoke them whenever you
want (depending on your application). You can declare them either as procedures or as
functions. You typically use a procedure to perform an action and a function to compute and
return a value.
Subprograms can be stored at the server or application level. Using Oracle Developer
components (Forms, Reports), you can declare procedures and functions as part of the
application (a form or report) and call them from other procedures, functions, and triggers within
the same application, whenever necessary.

Oracle Database 11g: PL/SQL Fundamentals 1 - 15

Copyright © 2009, Oracle. All rights reserved.1 - 15

Program Constructs

Application triggers

Application packages

Application procedures
or functions

Anonymous blocks

Tools Constructs

Object types

Database triggers

Stored packages

Stored procedures or
functions

Anonymous blocks

Database Server
Constructs

Object types

Program Constructs
The following table outlines a variety of PL/SQL program constructs that use the basic PL/SQL
block. The program constructs are available based on the environment in which they are
executed.

Program
Construct

Description

Availability

Anonymous
blocks

Unnamed PL/SQL blocks that are embedded
within an application or are issued interactively

All PL/SQL environments

Application
procedures or
functions

Named PL/SQL blocks that are stored in an Oracle
Forms Developer application or a shared library;
can accept parameters and can be invoked
repeatedly by name

Oracle Developer tools
components (for example, Oracle
Forms Developer, Oracle
Reports)

Stored
procedures or
functions

Named PL/SQL blocks that are stored in the
Oracle server; can accept parameters and can be
invoked repeatedly by name

Oracle server or Oracle Developer
tools

Packages
(application or
stored)

Named PL/SQL modules that group related
procedures, functions, and identifiers

Oracle server and Oracle
Developer tools components (for
example, Oracle Forms
Developer)

Oracle Database 11g: PL/SQL Fundamentals 1 - 16

Program Constructs (continued)

Program
Construct

Description

Availability

Database triggers PL/SQL blocks that are associated with a database
table and are fired automatically when triggered by
various events

Oracle server or any Oracle tool
that issues the DML

Application
triggers

PL/SQL blocks that are associated either with a
database table or system events. They are fired
automatically when triggered by a DML or a
system event respectively.

Oracle Developer tools
components (for example, Oracle
Forms Developer)

Object types User-defined composite data types that encapsulate
a data structure along with the functions and
procedures needed to manipulate data

Oracle server and Oracle
Developer tools

Oracle Database 11g: PL/SQL Fundamentals 1 - 17

Copyright © 2009, Oracle. All rights reserved.1 - 17

Examining an Anonymous Block

An anonymous block in the SQL Developer workspace:

Examining an Anonymous Block
To create an anonymous block by using SQL Developer, enter the block in the workspace (as
shown in the slide).
Example
The example block has the declarative section and the executable section. You need not pay
attention to the syntax of statements in the block; you learn the syntax later in the course.
The anonymous block gets the first_name of the employee whose employee_id is 100,
and stores it in a variable called v_fname.

Oracle Database 11g: PL/SQL Fundamentals 1 - 18

Copyright © 2009, Oracle. All rights reserved.1 - 18

Executing an Anonymous Block

Click the Run Script button to execute the anonymous block:
Run Script (or F5)

Executing an Anonymous Block
To execute an anonymous block, click the Run Script button (or press F5).
Note: The message “anonymous block completed” is displayed in the Script Output window
after the block is executed.

Oracle Database 11g: PL/SQL Fundamentals 1 - 19

Copyright © 2009, Oracle. All rights reserved.1 - 19

Agenda

• Understanding the benefits and structure of PL/SQL
• Examining PL/SQL blocks
• Generating output messages in PL/SQL

Oracle Database 11g: PL/SQL Fundamentals 1 - 20

Copyright © 2009, Oracle. All rights reserved.1 - 20

Enabling Output of a PL/SQL Block

1. To enable output in SQL Developer, execute the following
command before running the PL/SQL block:

2. Use a predefined Oracle package and its procedure in the
anonymous block:
– DBMS_OUTPUT.PUT_LINE

DBMS_OUTPUT.PUT_LINE(' The First Name of the
Employee is ' || v_fname);
…

SET SERVEROUTPUT ON

Enabling Output of a PL/SQL Block
In the example shown in the previous slide, a value is stored in the v_fname variable.
However, the value has not been printed.
PL/SQL does not have built-in input or output functionality. Therefore, you need to use
predefined Oracle packages for input and output. To generate output, you must perform the
following:

1. Execute the following command:

SET SERVEROUTPUT ON

Note: To enable output in SQL*Plus, you must explicitly issue the SET SERVEROUTPUT
ON command.

2. In the PL/SQL block, use the PUT_LINE procedure of the DBMS_OUTPUT package to
display the output. Pass the value that has to be printed as an argument to this procedure
(as shown in the slide). The procedure then outputs the argument.

Oracle Database 11g: PL/SQL Fundamentals 1 - 21

Copyright © 2009, Oracle. All rights reserved.1 - 21

Viewing the Output of a PL/SQL Block

Press F5 to execute the
command and PL/SQL

block.

Viewing the Output of a PL/SQL Block
Press F5 (or click the Run Script icon) to view the output for the PL/SQL block. This action:

1. Executes the SET SERVEROUTPUT ON command
2. Runs the anonymous PL/SQL block

The output appears on the Script Output tab.

Oracle Database 11g: PL/SQL Fundamentals 1 - 22

Copyright © 2009, Oracle. All rights reserved.1 - 22

Quiz

A PL/SQL block must consist of the following three sections:
• A Declarative section, which begins with the keyword

DECLARE and ends when the executable section starts.
• An Executable section, which begins with the keyword

BEGIN and ends with END.
• An Exception handling section, which begins with the

keyword EXCEPTION and is nested within the executable
section.

1. True
2. False

Answer: 2
A PL/SQL block consists of three sections:

• Declarative (optional): The optional declarative section begins with the keyword
DECLARE and ends when the executable section starts.

• Executable (required): The required executable section begins with the keyword BEGIN
and ends with END. This section essentially needs to have at least one statement. Observe
that END is terminated with a semicolon. The executable section of a PL/SQL block can, in
turn, include any number of PL/SQL blocks.

• Exception handling (optional): The optional exception section is nested within the
executable section. This section begins with the keyword EXCEPTION.

Oracle Database 11g: PL/SQL Fundamentals 1 - 23

Copyright © 2009, Oracle. All rights reserved.1 - 23

Summary

In this lesson, you should have learned how to:
• Integrate SQL statements with PL/SQL program constructs
• Describe the benefits of PL/SQL
• Differentiate between PL/SQL block types
• Output messages in PL/SQL

Summary
PL/SQL is a language that has programming features that serve as extensions to SQL. SQL,
which is a nonprocedural language, is made procedural with PL/SQL programming constructs.
PL/SQL applications can run on any platform or operating system on which an Oracle Server
runs. In this lesson, you learned how to build basic PL/SQL blocks.

Oracle Database 11g: PL/SQL Fundamentals 1 - 24

Copyright © 2009, Oracle. All rights reserved.1 - 24

Practice 1: Overview

This practice covers the following topics:
• Identifying the PL/SQL blocks that execute successfully
• Creating and executing a simple PL/SQL block

Practice 1: Overview
This practice reinforces the basics of PL/SQL covered in this lesson.

• Exercise 1 is a paper-based exercise in which you identify PL/SQL blocks that execute
successfully.

• Exercise 2 involves creating and executing a simple PL/SQL block.

Copyright © 2009, Oracle. All rights reserved.

Declaring PL/SQL Variables

Oracle Database 11g: PL/SQL Fundamentals 2 - 2

Copyright © 2009, Oracle. All rights reserved.2 - 2

Objectives

After completing this lesson, you should be able to do the
following:
• Recognize valid and invalid identifiers
• List the uses of variables
• Declare and initialize variables
• List and describe various data types
• Identify the benefits of using the %TYPE attribute
• Declare, use, and print bind variables

Objectives
You have already learned about basic PL/SQL blocks and their sections. In this lesson, you learn
about valid and invalid identifiers. You learn how to declare and initialize variables in the
declarative section of a PL/SQL block. The lesson describes the various data types. You also
learn about the %TYPE attribute and its benefits.

Oracle Database 11g: PL/SQL Fundamentals 2 - 3

Copyright © 2009, Oracle. All rights reserved.2 - 3

Agenda

• Introducing variables
• Examining variable data types and the %TYPE attribute
• Examining bind variables

Oracle Database 11g: PL/SQL Fundamentals 2 - 4

Copyright © 2009, Oracle. All rights reserved.2 - 4

Use of Variables

Variables can be used for:
• Temporary storage of data
• Manipulation of stored values
• Reusability

SELECT
first_name,
department_id

INTO
v_fname,
v_deptno

FROM …

v_fname

v_deptno

Jennifer

10

Use of Variables
With PL/SQL, you can declare variables, and then use them in SQL and procedural statements.
Variables are mainly used for storage of data and manipulation of stored values. Consider the
PL/SQL statement in the slide. The statement retrieves first_name and department_id
from the table. If you have to manipulate first_name or department_id, you have to
store the retrieved value. Variables are used to temporarily store the value. You can use the
value stored in these variables for processing and manipulating data. Variables can store any
PL/SQL object such as variables, types, cursors, and subprograms.
Reusability is another advantage of declaring variables. After the variables are declared, you can
use them repeatedly in an application by referring to them multiple times in various statements.

Oracle Database 11g: PL/SQL Fundamentals 2 - 5

Copyright © 2009, Oracle. All rights reserved.2 - 5

Requirements for Variable Names

A variable name:
• Must start with a letter
• Can include letters or numbers
• Can include special characters (such as $, _, and #)
• Must contain no more than 30 characters
• Must not include reserved words

Requirements for Variable Names
The rules for naming a variable are listed in the slide.

Oracle Database 11g: PL/SQL Fundamentals 2 - 6

Copyright © 2009, Oracle. All rights reserved.2 - 6

Handling Variables in PL/SQL

Variables are:
• Declared and (optionally) initialized in the declarative

section
• Used and assigned new values in the executable section
• Passed as parameters to PL/SQL subprograms
• Used to hold the output of a PL/SQL subprogram

Handling Variables in PL/SQL
You can use variables in the following ways:

• Declare and initialize them in the declaration section: You can declare variables in the
declarative part of any PL/SQL block, subprogram, or package. Declarations allocate
storage space for a value, specify its data type, and name the storage location so that you
can reference it. Declarations can also assign an initial value and impose the NOT NULL
constraint on the variable. Forward references are not allowed. You must declare a variable
before referencing it in other statements, including other declarative statements.

• Use them and assign new values to them in the executable section: In the executable
section, the existing value of the variable can be replaced with a new value.

• Pass them as parameters to PL/SQL subprograms: Subprograms can take parameters.
You can pass variables as parameters to subprograms.

• Use them to hold the output of a PL/SQL subprogram: Variables can be used to hold
the value that is returned by a function.

Oracle Database 11g: PL/SQL Fundamentals 2 - 7

Copyright © 2009, Oracle. All rights reserved.2 - 7

Declaring and Initializing PL/SQL Variables

Syntax:

Examples:

identifier [CONSTANT] datatype [NOT NULL]
[:= | DEFAULT expr];

DECLARE
v_hiredate DATE;
v_deptno NUMBER(2) NOT NULL := 10;
v_location VARCHAR2(13) := 'Atlanta';
c_comm CONSTANT NUMBER := 1400;

Declaring and Initializing PL/SQL Variables
You must declare all PL/SQL identifiers in the declaration section before referencing them in
the PL/SQL block. You have the option of assigning an initial value to a variable (as shown in
the slide). You do not need to assign a value to a variable in order to declare it. If you refer to
other variables in a declaration, be sure that they are already declared separately in a previous
statement.
In the syntax:
identifier Is the name of the variable
CONSTANT Constrains the variable so that its value cannot change (Constants must be

initialized.)
data type Is a scalar, composite, reference, or LOB data type (This course covers only

scalar, composite, and LOB data types.)
NOT NULL Constrains the variable so that it contains a value (NOT NULL

variables must be initialized.)
expr Is any PL/SQL expression that can be a literal expression, another variable,

or an expression involving operators and functions
Note: In addition to variables, you can also declare cursors and exceptions in the declarative
section. You learn about declaring cursors in the lesson titled “Using Explicit Cursors” and
about exceptions in the lesson titled “Handling Exceptions.”

Oracle Database 11g: PL/SQL Fundamentals 2 - 8

Copyright © 2009, Oracle. All rights reserved.2 - 8

Declaring and Initializing PL/SQL Variables

DECLARE
v_myName VARCHAR2(20);

BEGIN
DBMS_OUTPUT.PUT_LINE('My name is: '|| v_myName);
v_myName := 'John';
DBMS_OUTPUT.PUT_LINE('My name is: '|| v_myName);
END;
/

DECLARE
v_myName VARCHAR2(20):= 'John';
BEGIN
v_myName := 'Steven';
DBMS_OUTPUT.PUT_LINE('My name is: '|| v_myName);
END;
/

1

2

Declaring and Initializing PL/SQL Variables (continued)
Examine the two code blocks in the slide.

1. In the first block, the v_myName variable is declared but not initialized. A value John is
assigned to the variable in the executable section.
- String literals must be enclosed in single quotation marks. If your string has a

quotation mark as in “Today’s Date,” the string would be 'Today''s Date'.
- The assignment operator is: “:=”.
- The PUT_LINE procedure is invoked by passing the v_myName variable. The value

of the variable is concatenated with the string 'My name is:'.
- Output of this anonymous block is:

2. In the second block, the v_myName variable is declared and initialized in the declarative
section. v_myName holds the value John after initialization. This value is manipulated in
the executable section of the block. The output of this anonymous block is:

Oracle Database 11g: PL/SQL Fundamentals 2 - 9

Copyright © 2009, Oracle. All rights reserved.2 - 9

Delimiters in String Literals

DECLARE
v_event VARCHAR2(15);

BEGIN
v_event := q'!Father's day!';
DBMS_OUTPUT.PUT_LINE('3rd Sunday in June is :
'|| v_event);
v_event := q'[Mother's day]';
DBMS_OUTPUT.PUT_LINE('2nd Sunday in May is :
'|| v_event);

END;
/

Resulting
output

Delimiters in String Literals
If your string contains an apostrophe (identical to a single quotation mark), you must double the
quotation mark, as in the following example:

v_event VARCHAR2(15):='Father''s day';
The first quotation mark acts as the escape character. This makes your string complicated,
especially if you have SQL statements as strings. You can specify any character that is not
present in the string as a delimiter. The slide shows how to use the q' notation to specify the
delimiter. The example uses ! and [as delimiters. Consider the following example:

v_event := q'!Father's day!';
You can compare this with the first example on this page. You start the string with q' if you
want to use a delimiter. The character following the notation is the delimiter used. Enter your
string after specifying the delimiter, close the delimiter, and close the notation with a single
quotation mark. The following example shows how to use [as a delimiter:

v_event := q'[Mother's day]';

Oracle Database 11g: PL/SQL Fundamentals 2 - 10

Copyright © 2009, Oracle. All rights reserved.2 - 10

Agenda

• Introducing variables
• Examining variable data types and the %TYPE attribute
• Examining bind variables

Oracle Database 11g: PL/SQL Fundamentals 2 - 11

Copyright © 2009, Oracle. All rights reserved.2 - 11

Types of Variables

• PL/SQL variables:
– Scalar
– Reference
– Large object (LOB)
– Composite

• Non-PL/SQL variables: Bind variables

Types of Variables
Every PL/SQL variable has a data type, which specifies a storage format, constraints, and a valid
range of values. PL/SQL supports several data type categories, including scalar, reference, large
object (LOB), and composite.

• Scalar data types: Scalar data types hold a single value. The value depends on the data
type of the variable. For example, the v_myName variable in the example in the section
“Declaring and Initializing PL/SQL Variables” (in this lesson) is of type VARCHAR2.
Therefore, v_myName can hold a string value. PL/SQL also supports Boolean variables.

• Reference data types: Reference data types hold values, called pointers, which point to a
storage location.

• LOB data types: LOB data types hold values, called locators, which specify the location of
large objects (such as graphic images) that are stored outside the table.

• Composite data types: Composite data types are available by using PL/SQL collection
and record variables. PL/SQL collections and records contain internal elements that you
can treat as individual variables.

Non-PL/SQL variables include host language variables declared in precompiler programs,
screen fields in Forms applications, and host variables. You learn about host variables later in
this lesson.
For more information about LOBs, see the PL/SQL User’s Guide and Reference.

Oracle Database 11g: PL/SQL Fundamentals 2 - 12

Copyright © 2009, Oracle. All rights reserved.2 - 12

Types of Variables

TRUE 15-JAN-09

Atlanta
256120.08

Snow White
Long, long ago,

in a land far, far away,
there lived a princess called

Snow White. . .

Types of Variables (continued)
The slide illustrates the following data types:
• TRUE represents a Boolean value.
• 15-JAN-09 represents a DATE.
• The image represents a BLOB.
• The text in the callout can represent a VARCHAR2 data type or a CLOB.
• 256120.08 represents a NUMBER data type with precision and scale.
• The film reel represents a BFILE.
• The city name Atlanta represents a VARCHAR2 data type.

Oracle Database 11g: PL/SQL Fundamentals 2 - 13

Copyright © 2009, Oracle. All rights reserved.2 - 13

Guidelines for Declaring and Initializing
PL/SQL Variables

• Follow consistent naming conventions.
• Use meaningful identifiers for variables.
• Initialize variables that are designated as NOT NULL and

CONSTANT.
• Initialize variables with the assignment operator (:=) or the

DEFAULT keyword:

• Declare one identifier per line for better readability and
code maintenance.

v_myName VARCHAR2(20):='John';

v_myName VARCHAR2(20) DEFAULT 'John';

Guidelines for Declaring and Initializing PL/SQL Variables
Here are some guidelines to follow when you declare PL/SQL variables.

• Follow consistent naming conventions—for example, you might use name to represent a
variable and c_name to represent a constant. Similarly, to name a variable, you can use
v_fname. The key is to apply your naming convention consistently for easier
identification.

• Use meaningful and appropriate identifiers for variables. For example, consider using
salary and sal_with_commission instead of salary1 and salary2.

• If you use the NOT NULL constraint, you must assign a value when you declare the
variable.

• In constant declarations, the CONSTANT keyword must precede the type specifier. The
following declaration names a constant of NUMBER type and assigns the value of 50,000 to
the constant. A constant must be initialized in its declaration; otherwise, you get a
compilation error. After initializing a constant, you cannot change its value.

sal CONSTANT NUMBER := 50000.00;

Oracle Database 11g: PL/SQL Fundamentals 2 - 14

Copyright © 2009, Oracle. All rights reserved.2 - 14

Guidelines for Declaring PL/SQL Variables

• Avoid using column names as identifiers.

• Use the NOT NULL constraint when the variable must hold
a value.

DECLARE
employee_id NUMBER(6);

BEGIN
SELECT employee_id
INTO employee_id
FROM employees
WHERE last_name = 'Kochhar';

END;
/

Guidelines for Declaring PL/SQL Variables
• Initialize the variable to an expression with the assignment operator (:=) or with the

DEFAULT reserved word. If you do not assign an initial value, the new variable contains
NULL by default until you assign a value. To assign or reassign a value to a variable, you
write a PL/SQL assignment statement. However, it is good programming practice to
initialize all variables.

• Two objects can have the same name only if they are defined in different blocks. Where
they coexist, you can qualify them with labels and use them.

• Avoid using column names as identifiers. If PL/SQL variables occur in SQL statements
and have the same name as a column, the Oracle Server assumes that it is the column that
is being referenced. Although the code example in the slide works, code that is written
using the same name for a database table and a variable is not easy to read or maintain.

• Impose the NOT NULL constraint when the variable must contain a value. You cannot
assign nulls to a variable that is defined as NOT NULL. The NOT NULL constraint must be
followed by an initialization clause.

pincode VARCHAR2(15) NOT NULL := 'Oxford';

Oracle Database 11g: PL/SQL Fundamentals 2 - 15

Copyright © 2009, Oracle. All rights reserved.2 - 15

Naming Conventions of PL/SQL
Structures Used in This Course

f_filef_file_handle_nameFile handle

e_exception_name

type_name_type

rec_record_name

cur_cursor_name

b_bind_name

p_parameter_name

c_constant_name

v_variable_name

Convention

e_products_invalidException

ename_table_typeType

rec_emp

cur_emp

b_salary

p_id

c_rate

v_rate

Example

Bind (host) variable

Subprogram
parameter

Cursor

Variable

Record

Constant

PL/SQL Structure

Naming Conventions of PL/SQL Structures Used in This Course
The table in the slide displays some examples of the naming conventions for PL/SQL structures
that are used in this course.

Oracle Database 11g: PL/SQL Fundamentals 2 - 16

Copyright © 2009, Oracle. All rights reserved.2 - 16

Scalar Data Types

• Hold a single value
• Have no internal components

Atlanta

TRUE 15-JAN-09

256120.08

The soul of the lazy man
desires, and he has nothing;

but the soul of the diligent
shall be made rich.

Scalar Data Types
PL/SQL provides a variety of predefined data types. For instance, you can choose from integer,
floating point, character, Boolean, date, collection, and LOB types. This lesson covers the basic
types that are used frequently in PL/SQL programs.
A scalar data type holds a single value and has no internal components. Scalar data types can be
classified into four categories: number, character, date, and Boolean. Character and number data
types have subtypes that associate a base type to a constraint. For example, INTEGER and
POSITIVE are subtypes of the NUMBER base type.
For more information about scalar data types (as well as a complete list), see the PL/SQL User’s
Guide and Reference.

Oracle Database 11g: PL/SQL Fundamentals 2 - 17

Copyright © 2009, Oracle. All rights reserved.2 - 17

Base Scalar Data Types

• CHAR [(maximum_length)]
• VARCHAR2 (maximum_length)
• NUMBER [(precision, scale)]
• BINARY_INTEGER
• PLS_INTEGER
• BOOLEAN
• BINARY_FLOAT
• BINARY_DOUBLE

Base Scalar Data Types

Data Type Description
CHAR
[(maximum_length)]

Base type for fixed-length character data up to 32,767 bytes. If you do
not specify a maximum length, the default length is set to 1.

VARCHAR2
(maximum_length)

Base type for variable-length character data up to 32,767 bytes. There
is no default size for VARCHAR2 variables and constants.

NUMBER
[(precision,
scale)]

Number having precision p and scale s. The precision p can range
from 1 through 38. The scale s can range from –84 through 127.

BINARY_INTEGER Base type for integers between –2,147,483,647 and 2,147,483,647

Oracle Database 11g: PL/SQL Fundamentals 2 - 18

Base Scalar Data Types (continued)

Data Type Description
PLS_INTEGER Base type for signed integers between –2,147,483,647 and

2,147,483,647. PLS_INTEGER values require less storage and are
faster than NUMBER values. In Oracle Database 11g, the
PLS_INTEGER and BINARY_INTEGER data types are identical.
The arithmetic operations on PLS_INTEGER and
BINARY_INTEGER values are faster than on NUMBER values.

BOOLEAN Base type that stores one of the three possible values used for
logical calculations: TRUE, FALSE, and NULL

BINARY_FLOAT Represents floating-point number in IEEE 754 format. It requires 5
bytes to store the value.

BINARY_DOUBLE Represents floating-point number in IEEE 754 format. It requires 9
bytes to store the value.

Oracle Database 11g: PL/SQL Fundamentals 2 - 19

Copyright © 2009, Oracle. All rights reserved.2 - 19

Base Scalar Data Types

• DATE
• TIMESTAMP
• TIMESTAMP WITH TIME ZONE
• TIMESTAMP WITH LOCAL TIME ZONE
• INTERVAL YEAR TO MONTH
• INTERVAL DAY TO SECOND

Base Scalar Data Types (continued)

Data Type Description
DATE Base type for dates and times. DATE values include the time of day in seconds

since midnight. The range for dates is between 4712 B.C. and A.D. 9999.

TIMESTAMP The TIMESTAMP data type, which extends the DATE data type, stores the year,
month, day, hour, minute, second, and fraction of second. The syntax is
TIMESTAMP[(precision)], where the optional parameter precision
specifies the number of digits in the fractional part of the seconds field. To
specify the precision, you must use an integer in the range 0–9. The default is 6.

TIMESTAMP WITH
TIME ZONE

The TIMESTAMP WITH TIME ZONE data type, which extends the TIMESTAMP
data type, includes a time-zone displacement. The time-zone displacement is the
difference (in hours and minutes) between local time and Coordinated Universal
Time (UTC), formerly known as Greenwich Mean Time. The syntax is
TIMESTAMP[(precision)] WITH TIME ZONE, where the optional
parameter precision specifies the number of digits in the fractional part of the
seconds field. To specify the precision, you must use an integer in the range 0–9.
The default is 6.

Oracle Database 11g: PL/SQL Fundamentals 2 - 20

Base Scalar Data Types (continued)
Data Type Description
TIMESTAMP WITH
LOCAL TIME ZONE

The TIMESTAMP WITH LOCAL TIME ZONE data type, which extends the
TIMESTAMP data type, includes a time-zone displacement. The time-zone
displacement is the difference (in hours and minutes) between local time and
Coordinated Universal Time (UTC), formerly known as Greenwich Mean
Time. The syntax is TIMESTAMP[(precision)] WITH LOCAL TIME
ZONE, where the optional parameter precision specifies the number of
digits in the fractional part of the seconds field. You cannot use a symbolic
constant or variable to specify the precision; you must use an integer literal in
the range 0–9. The default is 6.
This data type differs from TIMESTAMP WITH TIME ZONE in that when
you insert a value into a database column, the value is normalized to the
database time zone, and the time-zone displacement is not stored in the
column. When you retrieve the value, the Oracle server returns the value in
your local session time zone.

INTERVAL YEAR
TO MONTH

You use the INTERVAL YEAR TO MONTH data type to store and manipulate
intervals of years and months. The syntax is INTERVAL
YEAR[(precision)] TO MONTH, where precision specifies the
number of digits in the years field. You cannot use a symbolic constant or
variable to specify the precision; you must use an integer literal in the range
0–4. The default is 2.

INTERVAL DAY TO
SECOND

You use the INTERVAL DAY TO SECOND data type to store and manipulate
intervals of days, hours, minutes, and seconds. The syntax is INTERVAL
DAY[(precision1)] TO SECOND[(precision2)], where
precision1 and precision2 specify the number of digits in the days
field and seconds field, respectively. In both cases, you cannot use a symbolic
constant or variable to specify the precision; you must use an integer literal in
the range 0–9. The defaults are 2 and 6, respectively.

Oracle Database 11g: PL/SQL Fundamentals 2 - 21

Copyright © 2009, Oracle. All rights reserved.2 - 21

Declaring Scalar Variables

Examples:

DECLARE
v_emp_job VARCHAR2(9);
v_count_loop BINARY_INTEGER := 0;
v_dept_total_sal NUMBER(9,2) := 0;
v_orderdate DATE := SYSDATE + 7;
c_tax_rate CONSTANT NUMBER(3,2) := 8.25;
v_valid BOOLEAN NOT NULL := TRUE;
...

Declaring Scalar Variables
The examples of variable declaration shown in the slide are defined as follows:
• v_emp_job: Variable to store an employee job title
• v_count_loop: Variable to count the iterations of a loop; initialized to 0
• v_dept_total_sal: Variable to accumulate the total salary for a department;

initialized to 0
• v_orderdate: Variable to store the ship date of an order; initialized to one week from

today
• c_tax_rate: Constant variable for the tax rate (which never changes throughout the

PL/SQL block); set to 8.25
• v_valid: Flag to indicate whether a piece of data is valid or invalid; initialized to TRUE

Oracle Database 11g: PL/SQL Fundamentals 2 - 22

Copyright © 2009, Oracle. All rights reserved.2 - 22

%TYPE Attribute

• Is used to declare a variable according to:
– A database column definition
– Another declared variable

• Is prefixed with:
– The database table and column name
– The name of the declared variable

%TYPE Attribute
PL/SQL variables are usually declared to hold and manipulate data stored in a database. When
you declare PL/SQL variables to hold column values, you must ensure that the variable is of the
correct data type and precision. If it is not, a PL/SQL error occurs during execution. If you have
to design large subprograms, this can be time consuming and error prone.
Rather than hard-coding the data type and precision of a variable, you can use the %TYPE
attribute to declare a variable according to another previously declared variable or database
column. The %TYPE attribute is most often used when the value stored in the variable is derived
from a table in the database. When you use the %TYPE attribute to declare a variable, you should
prefix it with the database table and column name. If you refer to a previously declared variable,
prefix the variable name of the previously declared variable to the variable being declared.

Oracle Database 11g: PL/SQL Fundamentals 2 - 23

%TYPE Attribute (continued)
Advantages of the %TYPE Attribute

• You can avoid errors caused by data type mismatch or wrong precision.
• You can avoid hard coding the data type of a variable.
• You need not change the variable declaration if the column definition changes. If you have

already declared some variables for a particular table without using the %TYPE attribute,
the PL/SQL block may throw errors if the column for which the variable is declared is
altered. When you use the %TYPE attribute, PL/SQL determines the data type and size of
the variable when the block is compiled. This ensures that such a variable is always
compatible with the column that is used to populate it.

Oracle Database 11g: PL/SQL Fundamentals 2 - 24

Copyright © 2009, Oracle. All rights reserved.2 - 24

Declaring Variables
with the %TYPE Attribute

Syntax

Examples

...
v_emp_lname employees.last_name%TYPE;

...

identifier table.column_name%TYPE;

...
v_balance NUMBER(7,2);
v_min_balance v_balance%TYPE := 1000;

...

Declaring Variables with the %TYPE Attribute
Declare variables to store the last name of an employee. The v_emp_lname variable is defined
to be of the same data type as the v_last_name column in the employees table. The
%TYPE attribute provides the data type of a database column.
Declare variables to store the balance of a bank account, as well as the minimum balance, which
is 1,000. The v_min_balance variable is defined to be of the same data type as the
v_balance variable. The %TYPE attribute provides the data type of a variable.
A NOT NULL database column constraint does not apply to variables that are declared using
%TYPE. Therefore, if you declare a variable using the %TYPE attribute that uses a database
column defined as NOT NULL, you can assign the NULL value to the variable.

Oracle Database 11g: PL/SQL Fundamentals 2 - 25

Copyright © 2009, Oracle. All rights reserved.2 - 25

Declaring Boolean Variables

• Only the TRUE, FALSE, and NULL values can be assigned
to a Boolean variable.

• Conditional expressions use the logical operators AND and
OR, and the unary operator NOT to check the variable
values.

• The variables always yield TRUE, FALSE, or NULL.
• Arithmetic, character, and date expressions can be used to

return a Boolean value.

Declaring Boolean Variables
With PL/SQL, you can compare variables in both SQL and procedural statements. These
comparisons, called Boolean expressions, consist of simple or complex expressions separated by
relational operators. In a SQL statement, you can use Boolean expressions to specify the rows in
a table that are affected by the statement. In a procedural statement, Boolean expressions are the
basis for conditional control. NULL stands for a missing, inapplicable, or unknown value.
Examples

emp_sal1 := 50000;
emp_sal2 := 60000;

The following expression yields TRUE:
emp_sal1 < emp_sal2

Declare and initialize a Boolean variable:
DECLARE
flag BOOLEAN := FALSE;

BEGIN
flag := TRUE;

END;
/

Oracle Database 11g: PL/SQL Fundamentals 2 - 26

Copyright © 2009, Oracle. All rights reserved.2 - 26

LOB Data Type Variables

Book
(CLOB)

Photo
(BLOB)

Movie
(BFILE)

NCLOB

LOB Data Type Variables
Large objects (LOBs) are meant to store a large amount of data. A database column can be of the
LOB category. With the LOB category of data types (BLOB, CLOB, and so on), you can store
blocks of unstructured data (such as text, graphic images, video clips, and sound wave forms) of
up to 128 terabytes depending on the database block size. LOB data types allow efficient,
random, piecewise access to data and can be attributes of an object type.

• The character large object (CLOB) data type is used to store large blocks of character
data in the database.

• The binary large object (BLOB) data type is used to store large unstructured or structured
binary objects in the database. When you insert or retrieve such data into or from the
database, the database does not interpret the data. External applications that use this data
must interpret the data.

• The binary file (BFILE) data type is used to store large binary files. Unlike other LOBs,
BFILES are stored outside the database and not in the database. They could be operating
system files. Only a pointer to the BFILE is stored in the database.

• The national language character large object (NCLOB) data type is used to store large
blocks of single-byte or fixed-width multibyte NCHAR unicode data in the database.

Oracle Database 11g: PL/SQL Fundamentals 2 - 27

Copyright © 2009, Oracle. All rights reserved.2 - 27

Composite Data Types: Records and Collections

TRUE 23-DEC-98 ATLANTA

1 5000
2 2345
3 12
4 3456

1 SMITH
2 JONES
3 NANCY
4 TIM

PL/SQL Record:

PL/SQL Collections:

PLS_INTEGER
VARCHAR2

PLS_INTEGER
NUMBER

Composite Data Types: Records and Collections
As mentioned previously, a scalar data type holds a single value and has no internal components.
Composite data types—called PL/SQL Records and PL/SQL Collections—have internal
components that that you can treat as individual variables.

• In a PL/SQL record, the internal components can be of different data types, and are called
fields. You access each field with this syntax: record_name.field_name. A record
variable can hold a table row, or some columns from a table row. Each record field
corresponds to a table column.

• In a PL/SQL collection, the internal components are always of the same data type, and are
called elements. You access each element by its unique subscript. Lists and arrays are
classic examples of collections. There are three types of PL/SQL collections: Associative
Arrays, Nested Tables, and VARRAY types.

Note
• PL/SQL Records and Associative Arrays are covered in the lesson titled: “Working with

Composite Data Types.”
• NESTED TABLE and VARRAY data types are covered in the course titled Oracle Database

11g: Advanced PL/SQL.

Oracle Database 11g: PL/SQL Fundamentals 2 - 28

Copyright © 2009, Oracle. All rights reserved.2 - 28

Agenda

• Introducing variables
• Examining variable data types and the %TYPE attribute
• Examining bind variables

Oracle Database 11g: PL/SQL Fundamentals 2 - 29

Copyright © 2009, Oracle. All rights reserved.2 - 29

Bind Variables

Bind variables are:
• Created in the environment
• Also called host variables
• Created with the VARIABLE keyword*
• Used in SQL statements and PL/SQL blocks
• Accessed even after the PL/SQL block is executed
• Referenced with a preceding colon

Values can be output using the PRINT command.
* Required when using SQL*Plus and SQL Developer

Bind Variables
Bind variables are variables that you create in a host environment. For this reason, they are
sometimes called host variables.
Uses of Bind Variables
Bind variables are created in the environment and not in the declarative section of a PL/SQL
block. Therefore, bind variables are accessible even after the block is executed. When created,
bind variables can be used and manipulated by multiple subprograms. They can be used in SQL
statements and PL/SQL blocks just like any other variable. These variables can be passed as run-
time values into or out of PL/SQL subprograms.
Note: A bind variable is an environment variable, but is not a global variable.
Creating Bind Variables
To create a bind variable in SQL Developer, use the VARIABLE command. For example, you
declare a variable of type NUMBER and VARCHAR2 as follows:

VARIABLE return_code NUMBER
VARIABLE return_msg VARCHAR2(30)

Viewing Values in Bind Variables
You can reference the bind variable using SQL Developer and view its value using the PRINT
command.

Oracle Database 11g: PL/SQL Fundamentals 2 - 30

Bind Variables (continued)
Example
You can reference a bind variable in a PL/SQL program by preceding the variable with a colon.
For example, the following PL/SQL block creates and uses the bind variable b_result. The
output resulting from the PRINT command is shown below the code.

VARIABLE b_result NUMBER
BEGIN

SELECT (SALARY*12) + NVL(COMMISSION_PCT,0) INTO :b_result
FROM employees WHERE employee_id = 144;

END;
/
PRINT b_result

Note: If you are creating a bind variable of the NUMBER type, you cannot specify the precision
and scale. However, you can specify the size for character strings. An Oracle NUMBER is stored
in the same way regardless of the dimension. The Oracle Server uses the same number of bytes
to store 7, 70, and .0734. It is not practical to calculate the size of the Oracle number
representation from the number format, so the code always allocates the bytes needed. With
character strings, the user has to specify the size so that the required number of bytes can be
allocated.

Oracle Database 11g: PL/SQL Fundamentals 2 - 31

Copyright © 2009, Oracle. All rights reserved.2 - 31

Referencing Bind Variables

Example:

VARIABLE b_emp_salary NUMBER
BEGIN

SELECT salary INTO :b_emp_salary
FROM employees WHERE employee_id = 178;

END;
/
PRINT b_emp_salary
SELECT first_name, last_name
FROM employees
WHERE salary=:b_emp_salary;

Output

Referencing Bind Variables
As stated previously, after you create a bind variable, you can reference that variable in any
other SQL statement or PL/SQL program.
In the example, b_emp_salary is created as a bind variable in the PL/SQL block. Then, it is
used in the SELECT statement that follows.
When you execute the PL/SQL block shown in the slide, you see the following output:

• The PRINT command executes:
b_emp_salary

7000

• Then, the output of the SQL statement follows:
FIRST_NAME LAST_NAME
------------------ ----------------------
Oliver Tuvault
Sarath Sewall
Kimberely Grant

Note: To display all bind variables, use the PRINT command without a variable.

Oracle Database 11g: PL/SQL Fundamentals 2 - 32

Copyright © 2009, Oracle. All rights reserved.2 - 32

Using AUTOPRINT with Bind Variables

Using AUTOPRINT with Bind Variables
Use the SET AUTOPRINT ON command to automatically display the bind variables used in a
successful PL/SQL block.
Example
In the code example:

• A bind variable named b_emp_salary is created and AUTOPRINT is turned on.
• A variable named v_empno is declared, and a substitution variable is used to receive user

input.
• Finally, the bind variable and temporary variables are used in the executable section of the

PL/SQL block.
When a valid employee number is entered—in this case 178—the output of the bind variable is
automatically printed. The bind variable contains the salary for the employee number that is
provided by the user.

Oracle Database 11g: PL/SQL Fundamentals 2 - 33

Copyright © 2009, Oracle. All rights reserved.2 - 33

Quiz

The %TYPE attribute:
1. Is used to declare a variable according to a database

column definition
2. Is used to declare a variable according to a collection of

columns in a database table or view
3. Is used to declare a variable according to the definition of

another declared variable
4. Is prefixed with the database table and column name or

the name of the declared variable

Answer: 1, 3, 4
The %TYPE Attribute
PL/SQL variables are usually declared to hold and manipulate data stored in a database. When
you declare PL/SQL variables to hold column values, you must ensure that the variable is of the
correct data type and precision. If it is not, a PL/SQL error occurs during execution. If you have
to design large subprograms, this can be time consuming and error prone.
Rather than hard-coding the data type and precision of a variable, you can use the %TYPE
attribute to declare a variable according to another previously declared variable or database
column. The %TYPE attribute is most often used when the value stored in the variable is derived
from a table in the database. When you use the %TYPE attribute to declare a variable, you should
prefix it with the database table and column name. If you refer to a previously declared variable,
prefix the variable name of the previously declared variable to the variable being declared. The
benefit of %TYPE is that you do not have to change the variable if the column is altered. Also, if
the variable is used in any calculations, you need not worry about its precision.
The %ROWTYPE Attribute
The %ROWTYPE attribute is used to declare a record that can hold an entire row of a table or
view. You learn about this attribute in the lesson titled “Working with Composite Data Types.”

Oracle Database 11g: PL/SQL Fundamentals 2 - 34

Copyright © 2009, Oracle. All rights reserved.2 - 34

Summary

In this lesson, you should have learned how to:
• Recognize valid and invalid identifiers
• Declare variables in the declarative section of a PL/SQL

block
• Initialize variables and use them in the executable section
• Differentiate between scalar and composite data types
• Use the %TYPE attribute
• Use bind variables

Summary
An anonymous PL/SQL block is a basic, unnamed unit of a PL/SQL program. It consists of a set
of SQL or PL/SQL statements to perform a logical function. The declarative part is the first part
of a PL/SQL block and is used for declaring objects such as variables, constants, cursors, and
definitions of error situations called exceptions.
In this lesson, you learned how to declare variables in the declarative section. You saw some of
the guidelines for declaring variables. You learned how to initialize variables when you declare
them.
The executable part of a PL/SQL block is the mandatory part and contains SQL and PL/SQL
statements for querying and manipulating data. You learned how to initialize variables in the
executable section and also how to use them and manipulate the values of variables.

Oracle Database 11g: PL/SQL Fundamentals 2 - 35

Copyright © 2009, Oracle. All rights reserved.2 - 35

Practice 2: Overview

This practice covers the following topics:
• Determining valid identifiers
• Determining valid variable declarations
• Declaring variables within an anonymous block
• Using the %TYPE attribute to declare variables
• Declaring and printing a bind variable
• Executing a PL/SQL block

Practice 2: Overview
Exercises 1, 2, and 3 are paper based.

Copyright © 2009, Oracle. All rights reserved.

Writing Executable Statements

Oracle Database 11g: PL/SQL Fundamentals 3 - 2

Copyright © 2009, Oracle. All rights reserved.3 - 2

Objectives

After completing this lesson, you should be able to do the
following:
• Identify lexical units in a PL/SQL block
• Use built-in SQL functions in PL/SQL
• Describe when implicit conversions take place and when

explicit conversions have to be dealt with
• Write nested blocks and qualify variables with labels
• Write readable code with appropriate indentation
• Use sequences in PL/SQL expressions

Objectives
You learned how to declare variables and write executable statements in a PL/SQL block. In this
lesson, you learn how lexical units make up a PL/SQL block. You learn to write nested blocks.
You also learn about the scope and visibility of variables in nested blocks and about qualifying
variables with labels.

Oracle Database 11g: PL/SQL Fundamentals 3 - 3

Copyright © 2009, Oracle. All rights reserved.3 - 3

Agenda

• Writing executable statements in a PL/SQL block
• Writing nested blocks
• Using operators and developing readable code

Oracle Database 11g: PL/SQL Fundamentals 3 - 4

Copyright © 2009, Oracle. All rights reserved.3 - 4

Lexical Units in a PL/SQL Block

Lexical units:
• Are building blocks of any PL/SQL block
• Are sequences of characters including letters, numerals,

tabs, spaces, returns, and symbols
• Can be classified as:

– Identifiers: v_fname, c_percent
– Delimiters: ; , +, -
– Literals: John, 428, True
– Comments: --, /* */

Lexical Units in a PL/SQL Block
Lexical units include letters, numerals, special characters, tabs, spaces, returns, and symbols.

• Identifiers: Identifiers are the names given to PL/SQL objects. You learned to identify
valid and invalid identifiers. Recall that keywords cannot be used as identifiers.
Quoted identifiers:

- Make identifiers case-sensitive.
- Include characters such as spaces.
- Use reserved words.

Examples:
"begin date" DATE;
"end date" DATE;
"exception thrown" BOOLEAN DEFAULT TRUE;

All subsequent usage of these variables should have double quotation marks. However, use
of quoted identifiers is not recommended.

• Delimiters: Delimiters are symbols that have special meaning. You already learned that
the semicolon (;) is used to terminate a SQL or PL/SQL statement. Therefore, ; is an
example of a delimiter.
For more information, refer to the PL/SQL User’s Guide and Reference.

Oracle Database 11g: PL/SQL Fundamentals 3 - 5

Lexical Units in a PL/SQL Block (continued)
• Delimiters (continued)

Delimiters are simple or compound symbols that have special meaning in PL/SQL.
Simple symbols

Compound symbols

Note: This is only a subset and not a complete list of delimiters.
• Literals: Any value that is assigned to a variable is a literal. Any character, numeral,

Boolean, or date value that is not an identifier is a literal. Literals are classified as:
- Character literals: All string literals have the data type CHAR or VARCHAR2 and

are, therefore, called character literals (for example, John, and 12C).
- Numeric literals: A numeric literal represents an integer or real value (for example,

428 and 1.276).
- Boolean literals: Values that are assigned to Boolean variables are Boolean literals.

TRUE, FALSE, and NULL are Boolean literals or keywords.
• Comments: It is good programming practice to explain what a piece of code is trying to

achieve. However, when you include the explanation in a PL/SQL block, the compiler
cannot interpret these instructions. Therefore, there should be a way in which you can
indicate that these instructions need not be compiled. Comments are mainly used for this
purpose. Any instruction that is commented is not interpreted by the compiler.

- Two hyphens (--) are used to comment a single line.
- The beginning and ending comment delimiters (/* and */) are used to comment

multiple lines.

Symbol Meaning
+ Addition operator
- Subtraction/negation operator
* Multiplication operator
/ Division operator
= Equality operator
@ Remote access indicator
; Statement terminator

Sym bol M eaning
<> Inequality operator
!= Inequality operator
|| Concatenation operator
-- Single-line comment indicator
/* Beginning comment delimiter
*/ Ending comment delimiter
:= Assignment operator

Oracle Database 11g: PL/SQL Fundamentals 3 - 6

Copyright © 2009, Oracle. All rights reserved.3 - 6

PL/SQL Block Syntax and Guidelines

• Using Literals
– Character and date literals must be enclosed in single quotation marks.
– Numbers can be simple values or in scientific notation.

• Formatting Code: Statements can span several lines.

v_name := 'Henderson';

1

2

3

PL/SQL Block Syntax and Guidelines
Using Literals
A literal is an explicit numeric, character string, date, or Boolean value that is not represented by
an identifier.

• Character literals include all printable characters in the PL/SQL character set: letters,
numerals, spaces, and special symbols.

• Numeric literals can be represented either by a simple value (for example, –32.5) or in
scientific notation (for example, 2E5 means 2 * 105 = 200,000).

Formatting Code
In a PL/SQL block, a SQL statement can span several lines (as shown in example 3 in the slide).
You can format an unformatted SQL statement (as shown in example 1 in the slide) by using the
SQL Worksheet shortcut menu. Right-click the active SQL Worksheet and, in the shortcut menu
that appears, select the Format option (as shown in example 2).
Note: You can also use the shortcut key combination of Ctrl + F7 to format your code.

Oracle Database 11g: PL/SQL Fundamentals 3 - 7

Copyright © 2009, Oracle. All rights reserved.3 - 7

Commenting Code

• Prefix single-line comments with two hyphens (--).
• Place a block comment between the symbols /* and */.

Example:

DECLARE
...
v_annual_sal NUMBER (9,2);
BEGIN
/* Compute the annual salary based on the

monthly salary input from the user */
v_annual_sal := monthly_sal * 12;
--The following line displays the annual salary
DBMS_OUTPUT.PUT_LINE(v_annual_sal);
END;
/

Commenting Code
You should comment code to document each phase and to assist debugging. In PL/SQL code:

• A single-line comment is commonly prefixed with two hyphens (--)
• You can also enclose a comment between the symbols /* and */

Note: For multiline comments, you can either precede each comment line with two hyphens, or
use the block comment format.
Comments are strictly informational and do not enforce any conditions or behavior on the logic
or data. Well-placed comments are extremely valuable for code readability and future code
maintenance.

Oracle Database 11g: PL/SQL Fundamentals 3 - 8

Copyright © 2009, Oracle. All rights reserved.3 - 8

SQL Functions in PL/SQL

• Available in procedural statements:
– Single-row functions

• Not available in procedural statements:
– DECODE
– Group functions

SQL Functions in PL/SQL
SQL provides several predefined functions that can be used in SQL statements. Most of these
functions (such as single-row number and character functions, data type conversion functions,
and date and time-stamp functions) are valid in PL/SQL expressions.
The following functions are not available in procedural statements:
• DECODE
• Group functions: AVG, MIN, MAX, COUNT, SUM, STDDEV, and VARIANCE

Group functions apply to groups of rows in a table and are, therefore, available only in
SQL statements in a PL/SQL block. The functions mentioned here are only a subset of the
complete list.

Oracle Database 11g: PL/SQL Fundamentals 3 - 9

Copyright © 2009, Oracle. All rights reserved.3 - 9

SQL Functions in PL/SQL: Examples

• Get the length of a string:

• Get the number of months an employee has worked:

v_desc_size INTEGER(5);
v_prod_description VARCHAR2(70):='You can use this
product with your radios for higher frequency';

-- get the length of the string in prod_description
v_desc_size:= LENGTH(v_prod_description);

v_tenure:= MONTHS_BETWEEN (CURRENT_DATE, v_hiredate);

SQL Functions in PL/SQL: Examples
You can use SQL functions to manipulate data. These functions are grouped into the following
categories:

• Number
• Character
• Conversion
• Date
• Miscellaneous

Oracle Database 11g: PL/SQL Fundamentals 3 - 10

Copyright © 2009, Oracle. All rights reserved.3 - 10

Using Sequences in PL/SQL Expressions

Starting in 11g:

Before 11g:
DECLARE

v_new_id NUMBER;
BEGIN

SELECT my_seq.NEXTVAL INTO v_new_id FROM Dual;
END;
/

DECLARE
v_new_id NUMBER;

BEGIN
v_new_id := my_seq.NEXTVAL;

END;
/

Accessing Sequence Values
In Oracle Database 11g, you can use the NEXTVAL and CURRVAL pseudocolumns in any
PL/SQL context, where an expression of the NUMBER data type may legally appear. Although
the old style of using a SELECT statement to query a sequence is still valid, it is recommended
that you do not use it.
Before Oracle Database 11g, you were forced to write a SQL statement in order to use a
sequence object value in a PL/SQL subroutine. Typically, you would write a SELECT statement
to reference the pseudocolumns of NEXTVAL and CURRVAL to obtain a sequence number. This
method created a usability problem.
In Oracle Database 11g, the limitation of forcing you to write a SQL statement to retrieve a
sequence value is eliminated. With the sequence enhancement feature:

• Sequence usability is improved
• The developer has to type less
• The resulting code is clearer

Oracle Database 11g: PL/SQL Fundamentals 3 - 11

Copyright © 2009, Oracle. All rights reserved.3 - 11

Data Type Conversion

• Converts data to comparable data types
• Is of two types:

– Implicit conversion
– Explicit conversion

• Functions:
– TO_CHAR
– TO_DATE
– TO_NUMBER
– TO_TIMESTAMP

Data Type Conversion
In any programming language, converting one data type to another is a common requirement.
PL/SQL can handle such conversions with scalar data types. Data type conversions can be of
two types:
Implicit conversions: PL/SQL attempts to convert data types dynamically if they are mixed in a
statement. Consider the following example:

DECLARE
v_salary NUMBER(6):=6000;
v_sal_hike VARCHAR2(5):='1000';
v_total_salary v_salary%TYPE;

BEGIN
v_total_salary:=v_salary + v_sal_hike;

END;
/

In this example, the sal_hike variable is of the VARCHAR2 type. When calculating the total
salary, PL/SQL first converts sal_hike to NUMBER, and then performs the operation. The
result is of the NUMBER type.
Implicit conversions can be between:

• Characters and numbers
• Characters and dates

Oracle Database 11g: PL/SQL Fundamentals 3 - 12

Data Type Conversion (continued)
Explicit conversions: To convert values from one data type to another, use built-in functions.
For example, to convert a CHAR value to a DATE or NUMBER value, use TO_DATE or
TO_NUMBER, respectively.

Oracle Database 11g: PL/SQL Fundamentals 3 - 13

Copyright © 2009, Oracle. All rights reserved.3 - 13

Data Type Conversion

-- implicit data type conversion
v_date_of_joining DATE:= '02-Feb-2000';

-- error in data type conversion
v_date_of_joining DATE:= 'February 02,2000';

-- explicit data type conversion
v_date_of_joining DATE:= TO_DATE('February
02,2000','Month DD, YYYY');

1

2

3

Data Type Conversion (continued)
Note the three examples of implicit and explicit conversions of the DATE data type in the slide:

1. Because the string literal being assigned to date_of_joining is in the default format,
this example performs implicit conversion and assigns the specified date to
date_of_joining.

2. The PL/SQL returns an error because the date that is being assigned is not in the default
format.

3. The TO_DATE function is used to explicitly convert the given date in a particular format
and assign it to the DATE data type variable date_of_joining.

Oracle Database 11g: PL/SQL Fundamentals 3 - 14

Copyright © 2009, Oracle. All rights reserved.3 - 14

Agenda

• Writing executable statements in a PL/SQL block
• Writing nested blocks
• Using operators and developing readable code

Oracle Database 11g: PL/SQL Fundamentals 3 - 15

Copyright © 2009, Oracle. All rights reserved.3 - 15

Nested Blocks

PL/SQL blocks can be nested.
• An executable section (BEGIN …

END) can contain nested blocks.
• An exception section can contain

nested blocks.

Nested Blocks
Being procedural gives PL/SQL the ability to nest statements. You can nest blocks wherever an
executable statement is allowed, thus making the nested block a statement. If your executable
section has code for many logically related functionalities to support multiple business
requirements, you can divide the executable section into smaller blocks. The exception section
can also contain nested blocks.

Oracle Database 11g: PL/SQL Fundamentals 3 - 16

Copyright © 2009, Oracle. All rights reserved.3 - 16

Nested Blocks: Example

DECLARE
v_outer_variable VARCHAR2(20):='GLOBAL VARIABLE';
BEGIN

DECLARE
v_inner_variable VARCHAR2(20):='LOCAL VARIABLE';
BEGIN
DBMS_OUTPUT.PUT_LINE(v_inner_variable);
DBMS_OUTPUT.PUT_LINE(v_outer_variable);
END;

DBMS_OUTPUT.PUT_LINE(v_outer_variable);
END;

Nested Blocks (continued)
The example shown in the slide has an outer (parent) block and a nested (child) block. The
v_outer_variable variable is declared in the outer block and the v_inner_variable
variable is declared in the inner block.
v_outer_variable is local to the outer block but global to the inner block. When you
access this variable in the inner block, PL/SQL first looks for a local variable in the inner block
with that name. There is no variable with the same name in the inner block, so PL/SQL looks for
the variable in the outer block. Therefore, v_outer_variable is considered to be the global
variable for all the enclosing blocks. You can access this variable in the inner block as shown in
the slide. Variables declared in a PL/SQL block are considered local to that block and global to
all its subblocks.
v_inner_variable is local to the inner block and is not global because the inner block does
not have any nested blocks. This variable can be accessed only within the inner block. If
PL/SQL does not find the variable declared locally, it looks upward in the declarative section of
the parent blocks. PL/SQL does not look downward in the child blocks.

Oracle Database 11g: PL/SQL Fundamentals 3 - 17

Copyright © 2009, Oracle. All rights reserved.3 - 17

Variable Scope and Visibility

DECLARE
v_father_name VARCHAR2(20):='Patrick';
v_date_of_birth DATE:='20-Apr-1972';
BEGIN
DECLARE
v_child_name VARCHAR2(20):='Mike';
v_date_of_birth DATE:='12-Dec-2002';

BEGIN
DBMS_OUTPUT.PUT_LINE('Father''s Name: '||v_father_name);
DBMS_OUTPUT.PUT_LINE('Date of Birth: '||v_date_of_birth);
DBMS_OUTPUT.PUT_LINE('Child''s Name: '||v_child_name);

END;
DBMS_OUTPUT.PUT_LINE('Date of Birth: '||v_date_of_birth);
END;
/

Variable Scope and Visibility
The output of the block shown in the slide is as follows:

anonymous block completed
Father's Name: Patrick
Date of Birth: 12-DEC-02
Child's Name: Mike
Date of Birth: 20-APR-72

Examine the date of birth that is printed for father and child. The output does not provide the
correct information, because the scope and visibility of the variables are not applied correctly.

• The scope of a variable is the portion of the program in which the variable is declared and
is accessible.

• The visibility of a variable is the portion of the program where the variable can be accessed
without using a qualifier.

Scope
• The v_father_name variable and the first occurrence of the v_date_of_birth

variable are declared in the outer block. These variables have the scope of the block in
which they are declared. Therefore, the scope of these variables is limited to the outer
block.

Oracle Database 11g: PL/SQL Fundamentals 3 - 18

Variable Scope and Visibility (continued)
Scope (continued)

• The v_child_name and v_date_of_birth variables are declared in the inner block
or the nested block. These variables are accessible only within the nested block and are not
accessible in the outer block. When a variable is out of scope, PL/SQL frees the memory
used to store the variable; therefore, these variables cannot be referenced.

Visibility
• The v_date_of_birth variable declared in the outer block has scope even in the inner

block. However, this variable is not visible in the inner block because the inner block has a
local variable with the same name.

1. Examine the code in the executable section of the PL/SQL block. You can print the
father’s name, the child’s name, and the date of birth. Only the child’s date of birth
can be printed here because the father’s date of birth is not visible.

2. The father’s date of birth is visible in the outer block and, therefore, can be printed.
Note: You cannot have variables with the same name in a block. However, as shown in this
example, you can declare variables with the same name in two different blocks (nested blocks).
The two items represented by identifiers are distinct; changes in one do not affect the other.

Oracle Database 11g: PL/SQL Fundamentals 3 - 19

Copyright © 2009, Oracle. All rights reserved.3 - 19

Using a Qualifier with Nested Blocks

BEGIN <<outer>>
DECLARE
v_father_name VARCHAR2(20):='Patrick';
v_date_of_birth DATE:='20-Apr-1972';
BEGIN
DECLARE
v_child_name VARCHAR2(20):='Mike';
v_date_of_birth DATE:='12-Dec-2002';

BEGIN
DBMS_OUTPUT.PUT_LINE('Father''s Name: '||v_father_name);
DBMS_OUTPUT.PUT_LINE('Date of Birth: '

||outer.v_date_of_birth);
DBMS_OUTPUT.PUT_LINE('Child''s Name: '||v_child_name);
DBMS_OUTPUT.PUT_LINE('Date of Birth: '||v_date_of_birth);

END;
END;
END outer;

Using a Qualifier with Nested Blocks
A qualifier is a label given to a block. You can use a qualifier to access the variables that have
scope but are not visible.
Example
In the code example:

• The outer block is labeled outer
• Within the inner block, the outer qualifier is used to access the v_date_of_birth

variable that is declared in the outer block. Therefore, the father’s date of birth and the
child’s date of birth can both be printed from within the inner block.

• The output of the code in the slide shows the correct information:

Note: Labeling is not limited to the outer block. You can label any block.

Oracle Database 11g: PL/SQL Fundamentals 3 - 20

Copyright © 2009, Oracle. All rights reserved.3 - 20

Challenge: Determining Variable Scope

BEGIN <<outer>>
DECLARE
v_sal NUMBER(7,2) := 60000;
v_comm NUMBER(7,2) := v_sal * 0.20;
v_message VARCHAR2(255) := ' eligible for commission';

BEGIN
DECLARE

v_sal NUMBER(7,2) := 50000;
v_comm NUMBER(7,2) := 0;
v_total_comp NUMBER(7,2) := v_sal + v_comm;

BEGIN
v_message := 'CLERK not'||v_message;
outer.v_comm := v_sal * 0.30;

END;
v_message := 'SALESMAN'||v_message;
END;
END outer;
/

1

2

Challenge: Determining Variable Scope
Evaluate the PL/SQL block in the slide. Determine each of the following values according to the
rules of scoping:

1. Value of v_message at position 1

2. Value of v_total_comp at position 2

3. Value of v_comm at position 1

4. Value of outer.v_comm at position 1

5. Value of v_comm at position 2

6. Value of v_message at position 2

Oracle Database 11g: PL/SQL Fundamentals 3 - 21

Answers: Determining Variable Scope
Answers to the questions of scope are as follows:

1. Value of v_message at position 1: CLERK not eligible for commission

2. Value of v_total_comp at position 2: Error. v_total_comp is not visible here
because it is defined within the inner block.

3. Value of v_comm at position 1: 0

4. Value of outer.v_comm at position 1: 12000

5. Value of v_comm at position 2: 15000

6. Value of v_message at position 2: SALESMANCLERK not eligible for commission

Oracle Database 11g: PL/SQL Fundamentals 3 - 22

Copyright © 2009, Oracle. All rights reserved.3 - 22

Agenda

• Writing executable statements in a PL/SQL block
• Writing nested blocks
• Using operators and developing readable code

Oracle Database 11g: PL/SQL Fundamentals 3 - 23

Copyright © 2009, Oracle. All rights reserved.3 - 23

Operators in PL/SQL

• Logical
• Arithmetic
• Concatenation
• Parentheses to control order

of operations

• Exponential operator (**)

Same as in SQL

Operators in PL/SQL
The operations in an expression are performed in a particular order depending on their
precedence (priority). The following table shows the default order of operations from high
priority to low priority:

Operator Operation
** Exponentiation
+, - Identity, negation
*, / Multiplication, division
+, -, || Addition, subtraction, concatenation
=, <, >, <=, >=, <>, !=, ~=, ^=,
IS NULL, LIKE, BETWEEN, IN

Comparison

NOT Logical negation
AND Conjunction
OR Inclusion

Oracle Database 11g: PL/SQL Fundamentals 3 - 24

Copyright © 2009, Oracle. All rights reserved.3 - 24

Operators in PL/SQL: Examples

• Increment the counter for a loop.

• Set the value of a Boolean flag.

• Validate whether an employee number contains a value.

loop_count := loop_count + 1;

good_sal := sal BETWEEN 50000 AND 150000;

valid := (empno IS NOT NULL);

Operators in PL/SQL (continued)
When you are working with nulls, you can avoid some common mistakes by keeping in mind the
following rules:

• Comparisons involving nulls always yield NULL.
• Applying the logical operator NOT to a null yields NULL.
• In conditional control statements, if the condition yields NULL, its associated sequence

of statements is not executed.

Oracle Database 11g: PL/SQL Fundamentals 3 - 25

Copyright © 2009, Oracle. All rights reserved.3 - 25

Programming Guidelines

Make code maintenance easier by:
• Documenting code with comments
• Developing a case convention for the code
• Developing naming conventions for identifiers and other

objects
• Enhancing readability by indenting

Programming Guidelines
Follow programming guidelines shown in the slide to produce clear code and reduce
maintenance when developing a PL/SQL block.
Code Conventions
The following table provides guidelines for writing code in uppercase or lowercase characters to
help distinguish keywords from named objects.

Category Case Convention Examples

SQL statements Uppercase SELECT, INSERT

PL/SQL keywords Uppercase DECLARE, BEGIN, IF

Data types Uppercase VARCHAR2, BOOLEAN

Identifiers and parameters Lowercase v_sal, emp_cursor, g_sal,
p_empno

Database tables Lowercase, plural employees, departments

Database columns Lowercase, singular employee_id,
department_id

Oracle Database 11g: PL/SQL Fundamentals 3 - 26

Copyright © 2009, Oracle. All rights reserved.3 - 26

Indenting Code

For clarity, indent each level of code.

BEGIN
IF x=0 THEN

y:=1;
END IF;

END;
/

DECLARE
deptno NUMBER(4);
location_id NUMBER(4);

BEGIN
SELECT department_id,

location_id
INTO deptno,

location_id
FROM departments
WHERE department_name

= 'Sales';
...
END;
/

Indenting Code
For clarity and enhanced readability, indent each level of code. To show structure, you can
divide lines by using carriage returns and you can indent lines by using spaces and tabs.
Compare the following IF statements for readability:

IF x>y THEN max:=x;ELSE max:=y;END IF;

IF x > y THEN
max := x;

ELSE
max := y;

END IF;

Oracle Database 11g: PL/SQL Fundamentals 3 - 27

Copyright © 2009, Oracle. All rights reserved.3 - 27

Quiz

You can use most SQL single-row functions such as number,
character, conversion, and date single-row functions in PL/SQL
expressions.
1. True
2. False

Answer: 1
SQL Functions in PL/SQL
SQL provides several predefined functions that can be used in SQL statements. Most of these
functions (such as single-row number and character functions, data type conversion functions,
and date and time-stamp functions) are valid in PL/SQL expressions.
The following functions are not available in procedural statements:
• DECODE
• Group functions: AVG, MIN, MAX, COUNT, SUM, STDDEV, and VARIANCE

Group functions apply to groups of rows in a table and are, therefore, available only in
SQL statements in a PL/SQL block. The functions mentioned here are only a subset of the
complete list.

Oracle Database 11g: PL/SQL Fundamentals 3 - 28

Copyright © 2009, Oracle. All rights reserved.3 - 28

Summary

In this lesson, you should have learned how to:
• Identify lexical units in a PL/SQL block
• Use built-in SQL functions in PL/SQL
• Write nested blocks to break logically related functionalities
• Decide when to perform explicit conversions
• Qualify variables in nested blocks
• Use sequences in PL/SQL expressions

Summary
Because PL/SQL is an extension of SQL, the general syntax rules that apply to SQL also apply
to PL/SQL.
A block can have any number of nested blocks defined within its executable part. Blocks defined
within a block are called subblocks. You can nest blocks only in the executable part of a block.
Because the exception section is also a part of the executable section, it can also contain nested
blocks. Ensure correct scope and visibility of the variables when you have nested blocks. Avoid
using the same identifiers in the parent and child blocks.
Most of the functions available in SQL are also valid in PL/SQL expressions. Conversion
functions convert a value from one data type to another. Comparison operators compare one
expression with another. The result is always TRUE, FALSE, or NULL. Typically, you use
comparison operators in conditional control statements and in the WHERE clause of SQL data
manipulation statements. The relational operators enable you to compare arbitrarily complex
expressions.

Oracle Database 11g: PL/SQL Fundamentals 3 - 29

Copyright © 2009, Oracle. All rights reserved.3 - 29

Practice 3: Overview

This practice covers the following topics:
• Reviewing scoping and nesting rules
• Writing and testing PL/SQL blocks

Practice 3: Overview
Exercises 1 and 2 are paper based.

Copyright © 2009, Oracle. All rights reserved.

Interacting with Oracle Database Server:
SQL Statements in PL/SQL Programs

Oracle Database 11g: PL/SQL Fundamentals 4 - 2

Copyright © 2009, Oracle. All rights reserved.4 - 2

Objectives

After completing this lesson, you should be able to do the
following:
• Determine the SQL statements that can be directly

included in a PL/SQL executable block
• Manipulate data with DML statements in PL/SQL
• Use transaction control statements in PL/SQL
• Make use of the INTO clause to hold the values returned

by a SQL statement
• Differentiate between implicit cursors and explicit cursors
• Use SQL cursor attributes

Objectives
In this lesson, you learn to embed standard SQL SELECT, INSERT, UPDATE, DELETE, and
MERGE statements in PL/SQL blocks. You learn how to include data definition language (DDL)
and transaction control statements in PL/SQL. You learn the need for cursors and differentiate
between the two types of cursors. The lesson also presents the various SQL cursor attributes that
can be used with implicit cursors.

Oracle Database 11g: PL/SQL Fundamentals 4 - 3

Copyright © 2009, Oracle. All rights reserved.4 - 3

Agenda

• Retrieving data with PL/SQL
• Manipulating data with PL/SQL
• Introducing SQL cursors

Oracle Database 11g: PL/SQL Fundamentals 4 - 4

Copyright © 2009, Oracle. All rights reserved.4 - 4

SQL Statements in PL/SQL

• Retrieve a row from the database by using the SELECT
command.

• Make changes to rows in the database by using DML
commands.

• Control a transaction with the COMMIT, ROLLBACK, or
SAVEPOINT command.

SQL Statements in PL/SQL
In a PL/SQL block, you use SQL statements to retrieve and modify data from the database table.
PL/SQL supports data manipulation language (DML) and transaction control commands. You
can use DML commands to modify the data in a database table. However, remember the
following points while using DML statements and transaction control commands in PL/SQL
blocks:

• The END keyword signals the end of a PL/SQL block, not the end of a transaction. Just as a
block can span multiple transactions, a transaction can span multiple blocks.

• PL/SQL does not directly support data definition language (DDL) statements such as
CREATE TABLE, ALTER TABLE, or DROP TABLE. PL/SQL supports early binding,
which cannot happen if applications have to create database objects at run time by passing
values. DDL statements cannot be directly executed. These statements are dynamic SQL
statements. Dynamic SQL statements are built as character strings at run time and can
contain placeholders for parameters. Therefore, you can use dynamic SQL to execute your
DDL statements in PL/SQL. The details of working with dynamic SQL is covered in the
course titled Oracle Database 11g: Develop PL/SQL Program Units.

• PL/SQL does not directly support data control language (DCL) statements such as GRANT
or REVOKE. You can use dynamic SQL to execute them.

Oracle Database 11g: PL/SQL Fundamentals 4 - 5

Copyright © 2009, Oracle. All rights reserved.4 - 5

SELECT Statements in PL/SQL

Retrieve data from the database with a SELECT statement.
Syntax:
SELECT select_list
INTO {variable_name[, variable_name]...

| record_name}
FROM table
[WHERE condition];

SELECT Statements in PL/SQL
Use the SELECT statement to retrieve data from the database.

Guidelines for Retrieving Data in PL/SQL
• Terminate each SQL statement with a semicolon (;).
• Every value retrieved must be stored in a variable by using the INTO clause.
• The WHERE clause is optional and can be used to specify input variables, constants,

literals, and PL/SQL expressions. However, when you use the INTO clause, you should
fetch only one row; using the WHERE clause is required in such cases.

Is composed of column names, expressions, constants, and
comparison operators, including PL/SQL variables and constants

condition

Specifies the database table nametable

PL/SQL record that holds the retrieved valuesrecord_name

Scalar variable that holds the retrieved valuevariable_name

List of at least one column; can include SQL expressions, row
functions, or group functions

select_list

Oracle Database 11g: PL/SQL Fundamentals 4 - 6

SELECT Statements in PL/SQL (continued)
• Specify the same number of variables in the INTO clause as the number of database

columns in the SELECT clause. Be sure that they correspond positionally and that their
data types are compatible.

• Use group functions, such as SUM, in a SQL statement, because group functions apply to
groups of rows in a table.

Oracle Database 11g: PL/SQL Fundamentals 4 - 7

Copyright © 2009, Oracle. All rights reserved.4 - 7

SELECT Statements in PL/SQL

• The INTO clause is required.
• Queries must return only one row.
DECLARE
v_fname VARCHAR2(25);
BEGIN
SELECT first_name INTO v_fname
FROM employees WHERE employee_id=200;
DBMS_OUTPUT.PUT_LINE(' First Name is : '||v_fname);
END;
/

SELECT Statements in PL/SQL (continued)
INTO Clause
The INTO clause is mandatory and occurs between the SELECT and FROM clauses. It is used to
specify the names of variables that hold the values that SQL returns from the SELECT clause.
You must specify one variable for each item selected, and the order of the variables must
correspond with the items selected.
Use the INTO clause to populate either PL/SQL variables or host variables.
Queries Must Return Only One Row
SELECT statements within a PL/SQL block fall into the ANSI classification of embedded SQL,
for which the following rule applies: Queries must return only one row. A query that returns
more than one row or no row generates an error.
PL/SQL manages these errors by raising standard exceptions, which you can handle in the
exception section of the block with the NO_DATA_FOUND and TOO_MANY_ROWS exceptions.
Include a WHERE condition in the SQL statement so that the statement returns a single row. You
learn about exception handling in the lesson titled “Handling Exceptions.”
Note: In all cases where DBMS_OUTPUT.PUT_LINE is used in the code examples, the SET
SERVEROUTPUT ON statement precedes the block.

Oracle Database 11g: PL/SQL Fundamentals 4 - 8

SELECT Statements in PL/SQL (continued)
How to Retrieve Multiple Rows from a Table and Operate on the Data
A SELECT statement with the INTO clause can retrieve only one row at a time. If your
requirement is to retrieve multiple rows and operate on the data, you can make use of explicit
cursors. You are introduced to cursors later in this lesson and learn about explicit cursors in the
lesson titled “Using Explicit Cursors.”

Oracle Database 11g: PL/SQL Fundamentals 4 - 9

Copyright © 2009, Oracle. All rights reserved.4 - 9

Retrieving Data in PL/SQL: Example

Retrieve hire_date and salary for the specified employee.

DECLARE
v_emp_hiredate employees.hire_date%TYPE;
v_emp_salary employees.salary%TYPE;
BEGIN
SELECT hire_date, salary
INTO v_emp_hiredate, v_emp_salary
FROM employees
WHERE employee_id = 100;
DBMS_OUTPUT.PUT_LINE ('Hire date is :'|| v_emp_hiredate);
DBMS_OUTPUT.PUT_LINE ('Salary is :'|| v_emp_ salary);

END;
/

Retrieving Data in PL/SQL
In the example in the slide, the v_emp_hiredate and v_emp_salary variables are
declared in the declarative section of the PL/SQL block. In the executable section, the values of
the hire_date and salary columns for the employee with the employee_id 100 are
retrieved from the employees table. Next, they are stored in the emp_hiredate and
emp_salary variables, respectively. Observe how the INTO clause, along with the SELECT
statement, retrieves the database column values and stores them in the PL/SQL variables.
Note: The SELECT statement retrieves hire_date, and then salary. The variables in the
INTO clause must thus be in the same order. For example, if you exchange v_emp_hiredate
and v_emp_salary in the statement in the slide, the statement results in an error.

Oracle Database 11g: PL/SQL Fundamentals 4 - 10

Copyright © 2009, Oracle. All rights reserved.4 - 10

DECLARE
v_sum_sal NUMBER(10,2);
v_deptno NUMBER NOT NULL := 60;

BEGIN
SELECT SUM(salary) -- group function
INTO v_sum_sal FROM employees
WHERE department_id = v_deptno;
DBMS_OUTPUT.PUT_LINE ('The sum of salary is ' || v_sum_sal);

END;

Retrieving Data in PL/SQL

Return the sum of salaries for all the employees in the specified
department.
Example:

Retrieving Data in PL/SQL (continued)
In the example in the slide, the v_sum_sal and v_deptno variables are declared in the
declarative section of the PL/SQL block. In the executable section, the total salary for the
employees in the department with department_id 60 is computed using the SQL aggregate
function SUM. The calculated total salary is assigned to the v_sum_sal variable.
Note: Group functions cannot be used in PL/SQL syntax. They must be used in SQL statements
within a PL/SQL block as shown in the example in the slide.
For instance, you cannot use group functions using the following syntax:

V_sum_sal := SUM(employees.salary);

Oracle Database 11g: PL/SQL Fundamentals 4 - 11

Copyright © 2009, Oracle. All rights reserved.4 - 11

Naming Ambiguities

DECLARE
hire_date employees.hire_date%TYPE;
sysdate hire_date%TYPE;
employee_id employees.employee_id%TYPE := 176;

BEGIN
SELECT hire_date, sysdate
INTO hire_date, sysdate
FROM employees
WHERE employee_id = employee_id;

END;
/

Naming Ambiguities
In potentially ambiguous SQL statements, the names of database columns take precedence over
the names of local variables.
The example shown in the slide is defined as follows: Retrieve the hire date and today’s date
from the employees table for employee_id 176. This example raises an unhandled run-
time exception because, in the WHERE clause, the PL/SQL variable names are the same as the
database column names in the employees table.
The following DELETE statement removes all employees from the employees table, where
the last name is not null (not just “King”), because the Oracle Server assumes that both
occurrences of last_name in the WHERE clause refer to the database column:

DECLARE
last_name VARCHAR2(25) := 'King';

BEGIN
DELETE FROM employees WHERE last_name = last_name;

. . .

Oracle Database 11g: PL/SQL Fundamentals 4 - 12

Copyright © 2009, Oracle. All rights reserved.4 - 12

Naming Conventions

• Use a naming convention to avoid ambiguity in the WHERE
clause.

• Avoid using database column names as identifiers.
• Syntax errors can arise because PL/SQL checks the

database first for a column in the table.
• The names of local variables and formal parameters take

precedence over the names of database tables.
• The names of database table columns take precedence

over the names of local variables.

Naming Conventions
Avoid ambiguity in the WHERE clause by adhering to a naming convention that distinguishes
database column names from PL/SQL variable names.

• Database columns and identifiers should have distinct names.
• Syntax errors can arise because PL/SQL checks the database first for a column in the table.

Note: There is no possibility of ambiguity in the SELECT clause because any identifier in the
SELECT clause must be a database column name. There is no possibility of ambiguity in the
INTO clause because identifiers in the INTO clause must be PL/SQL variables. The possibility
of confusion is present only in the WHERE clause.

Oracle Database 11g: PL/SQL Fundamentals 4 - 13

Copyright © 2009, Oracle. All rights reserved.4 - 13

Agenda

• Retrieving data with PL/SQL
• Manipulating data with PL/SQL
• Introducing SQL cursors

Oracle Database 11g: PL/SQL Fundamentals 4 - 14

Copyright © 2009, Oracle. All rights reserved.4 - 14

Using PL/SQL to Manipulate Data

Make changes to database tables by using DML commands:
• INSERT
• UPDATE
• DELETE
• MERGE

DELETE

INSERT

UPDATE MERGE

Using PL/SQL to Manipulate Data
You manipulate data in the database by using DML commands. You can issue DML commands
such as INSERT, UPDATE, DELETE, and MERGE without restriction in PL/SQL. Row locks
(and table locks) are released by including the COMMIT or ROLLBACK statements in the
PL/SQL code.

• The INSERT statement adds new rows to the table.
• The UPDATE statement modifies existing rows in the table.
• The DELETE statement removes rows from the table.
• The MERGE statement selects rows from one table to update or insert into another table.

The decision whether to update or insert into the target table is based on a condition in the
ON clause.

Note: MERGE is a deterministic statement. That is, you cannot update the same row of the target
table multiple times in the same MERGE statement. You must have INSERT and UPDATE object
privileges on the target table and SELECT privilege on the source table.

Oracle Database 11g: PL/SQL Fundamentals 4 - 15

Copyright © 2009, Oracle. All rights reserved.4 - 15

Inserting Data: Example

Add new employee information to the EMPLOYEES table.

BEGIN
INSERT INTO employees
(employee_id, first_name, last_name, email,
hire_date, job_id, salary)
VALUES(employees_seq.NEXTVAL, 'Ruth', 'Cores',
'RCORES',CURRENT_DATE, 'AD_ASST', 4000);

END;
/

Inserting Data
In the example in the slide, an INSERT statement is used within a PL/SQL block to insert a
record into the employees table. While using the INSERT command in a PL/SQL block, you
can:

• Use SQL functions such as USER and CURRENT_DATE
• Generate primary key values by using existing database sequences
• Derive values in the PL/SQL block

Note: The data in the employees table needs to remain unchanged. Even though the
employees table is not read-only, inserting, updating, and deleting are not allowed on this
table to ensure consistency of output, as shown in code example code_04_15_s.sql.

Oracle Database 11g: PL/SQL Fundamentals 4 - 16

Copyright © 2009, Oracle. All rights reserved.4 - 16

Updating Data: Example

Increase the salary of all employees who are stock clerks.
DECLARE

sal_increase employees.salary%TYPE := 800;
BEGIN

UPDATE employees
SET salary = salary + sal_increase
WHERE job_id = 'ST_CLERK';

END;
/

. . .

Updating Data
There may be ambiguity in the SET clause of the UPDATE statement because, although the
identifier on the left of the assignment operator is always a database column, the identifier on the
right can be either a database column or a PL/SQL variable. Recall that if column names and
identifier names are identical in the WHERE clause, the Oracle Server looks to the database first
for the name.
Remember that the WHERE clause is used to determine the rows that are affected. If no rows are
modified, no error occurs (unlike the SELECT statement in PL/SQL).
Note: PL/SQL variable assignments always use :=, and SQL column assignments always use =.

Oracle Database 11g: PL/SQL Fundamentals 4 - 17

Copyright © 2009, Oracle. All rights reserved.4 - 17

Deleting Data: Example

Delete rows that belong to department 10 from the employees
table.

DECLARE
deptno employees.department_id%TYPE := 10;

BEGIN
DELETE FROM employees
WHERE department_id = deptno;

END;
/

Deleting Data
The DELETE statement removes unwanted rows from a table. If the WHERE clause is not used,
all the rows in a table can be removed if there are no integrity constraints.

Oracle Database 11g: PL/SQL Fundamentals 4 - 18

Copyright © 2009, Oracle. All rights reserved.4 - 18

Merging Rows

Insert or update rows in the copy_emp table to match the
employees table.

BEGIN
MERGE INTO copy_emp c

USING employees e
ON (e.employee_id = c.empno)

WHEN MATCHED THEN
UPDATE SET

c.first_name = e.first_name,
c.last_name = e.last_name,
c.email = e.email,
. . .

WHEN NOT MATCHED THEN
INSERT VALUES(e.employee_id, e.first_name, e.last_name,

. . .,e.department_id);
END;
/

Merging Rows
The MERGE statement inserts or updates rows in one table by using data from another table.
Each row is inserted or updated in the target table depending on an equijoin condition.
The example shown matches the empno column in the copy_emp table to the employee_id
column in the employees table. If a match is found, the row is updated to match the row in the
employees table. If the row is not found, it is inserted into the copy_emp table.
The complete example of using MERGE in a PL/SQL block is shown on the next page.

Oracle Database 11g: PL/SQL Fundamentals 4 - 19

Merging Rows (continued)
BEGIN
MERGE INTO copy_emp c

USING employees e
ON (e.employee_id = c.empno)

WHEN MATCHED THEN
UPDATE SET
c.first_name = e.first_name,
c.last_name = e.last_name,
c.email = e.email,
c.phone_number = e.phone_number,
c.hire_date = e.hire_date,
c.job_id = e.job_id,
c.salary = e.salary,
c.commission_pct = e.commission_pct,
c.manager_id = e.manager_id,
c.department_id = e.department_id

WHEN NOT MATCHED THEN
INSERT VALUES(e.employee_id, e.first_name, e.last_name,

e.email, e.phone_number, e.hire_date, e.job_id,
e.salary, e.commission_pct, e.manager_id,
e.department_id);

END;
/

Oracle Database 11g: PL/SQL Fundamentals 4 - 20

Copyright © 2009, Oracle. All rights reserved.4 - 20

Agenda

• Retrieving data with PL/SQL
• Manipulating data with PL/SQL
• Introducing SQL cursors

Oracle Database 11g: PL/SQL Fundamentals 4 - 21

Copyright © 2009, Oracle. All rights reserved.4 - 21

SQL Cursor

• A cursor is a pointer to the private memory area allocated
by the Oracle Server. It is used to handle the result set of a
SELECT statement.

• There are two types of cursors: implicit and explicit.
– Implicit: Created and managed internally by the Oracle

Server to process SQL statements
– Explicit: Declared explicitly by the programmer

Implicit cursor Explicit cursor

SQL Cursor
You have already learned that you can include SQL statements that return a single row in a
PL/SQL block. The data retrieved by the SQL statement should be held in variables using the
INTO clause.
Where Does the Oracle Server Process SQL Statements?
The Oracle Server allocates a private memory area called the context area for processing SQL
statements. The SQL statement is parsed and processed in this area. The information required for
processing and the information retrieved after processing are all stored in this area. You have no
control over this area because it is internally managed by the Oracle Server.
A cursor is a pointer to the context area. However, this cursor is an implicit cursor and is
automatically managed by the Oracle Server. When the executable block issues a SQL
statement, PL/SQL creates an implicit cursor.
Types of Cursors
There are two types of cursors:

• Implicit: An implicit cursor is created and managed by the Oracle Server. You do not have
access to it. The Oracle Server creates such a cursor when it has to execute a SQL
statement.

Oracle Database 11g: PL/SQL Fundamentals 4 - 22

SQL Cursor (continued)
Types of Cursors (continued)

• Explicit: As a programmer, you may want to retrieve multiple rows from a database table,
have a pointer to each row that is retrieved, and work on the rows one at a time. In such
cases, you can declare cursors explicitly depending on your business requirements. A
cursor that is declared by programmers is called an explicit cursor. You declare such a
cursor in the declarative section of a PL/SQL block.

Oracle Database 11g: PL/SQL Fundamentals 4 - 23

Copyright © 2009, Oracle. All rights reserved.4 - 23

SQL Cursor Attributes for Implicit Cursors

Using SQL cursor attributes, you can test the outcome of your
SQL statements.

Boolean attribute that evaluates to TRUE if
the most recent SQL statement did not affect
even one row

SQL%NOTFOUND

Boolean attribute that evaluates to TRUE if the
most recent SQL statement affected at least one
row

SQL%FOUND

An integer value that represents the number of
rows affected by the most recent SQL statement

SQL%ROWCOUNT

SQL Cursor Attributes for Implicit Cursors
SQL cursor attributes enable you to evaluate what happened when an implicit cursor was last
used. Use these attributes in PL/SQL statements but not in SQL statements.
You can test the SQL%ROWCOUNT, SQL%FOUND, and SQL%NOTFOUND attributes in the
executable section of a block to gather information after the appropriate DML command
executes. PL/SQL does not return an error if a DML statement does not affect rows in the
underlying table. However, if a SELECT statement does not retrieve any rows, PL/SQL returns
an exception.
Observe that the attributes are prefixed with SQL. These cursor attributes are used with implicit
cursors that are automatically created by PL/SQL and for which you do not know the names.
Therefore, you use SQL instead of the cursor name.
The SQL%NOTFOUND attribute is the opposite of SQL%FOUND. This attribute may be used as
the exit condition in a loop. It is useful in UPDATE and DELETE statements when no rows are
changed because exceptions are not returned in these cases.
You learn about explicit cursor attributes in the lesson titled “Using Explicit Cursors.”

Oracle Database 11g: PL/SQL Fundamentals 4 - 24

Copyright © 2009, Oracle. All rights reserved.4 - 24

SQL Cursor Attributes for Implicit Cursors

Delete rows that have the specified employee ID from the
employees table. Print the number of rows deleted.
Example:

DECLARE
v_rows_deleted VARCHAR2(30)
v_empno employees.employee_id%TYPE := 176;

BEGIN
DELETE FROM employees
WHERE employee_id = v_empno;
v_rows_deleted := (SQL%ROWCOUNT ||

' row deleted.');
DBMS_OUTPUT.PUT_LINE (v_rows_deleted);

END;

SQL Cursor Attributes for Implicit Cursors (continued)
The example in the slide deletes a row with employee_id 176 from the employees table.
Using the SQL%ROWCOUNT attribute, you can print the number of rows deleted.

Oracle Database 11g: PL/SQL Fundamentals 4 - 25

Copyright © 2009, Oracle. All rights reserved.4 - 25

Quiz

When using the SELECT statement in PL/SQL, the INTO clause
is required and queries can return one or more row.
1. True
2. False

Answer: 2
INTO Clause
The INTO clause is mandatory and occurs between the SELECT and FROM clauses. It is used to
specify the names of variables that hold the values that SQL returns from the SELECT clause.
You must specify one variable for each item selected, and the order of the variables must
correspond with the items selected.
Use the INTO clause to populate either PL/SQL variables or host variables.
Queries Must Return Only One Row
SELECT statements within a PL/SQL block fall into the ANSI classification of embedded SQL,
for which the following rule applies: Queries must return only one row. A query that returns
more than one row or no row generates an error.
PL/SQL manages these errors by raising standard exceptions, which you can handle in the
exception section of the block with the NO_DATA_FOUND and TOO_MANY_ROWS exceptions.
Include a WHERE condition in the SQL statement so that the statement returns a single row. You
learn about exception handling later in the course.

Oracle Database 11g: PL/SQL Fundamentals 4 - 26

Copyright © 2009, Oracle. All rights reserved.4 - 26

Summary

In this lesson, you should have learned how to:
• Embed DML statements, transaction control statements,

and DDL statements in PL/SQL
• Use the INTO clause, which is mandatory for all SELECT

statements in PL/SQL
• Differentiate between implicit cursors and explicit cursors
• Use SQL cursor attributes to determine the outcome of

SQL statements

Summary
DML commands and transaction control statements can be used in PL/SQL programs without
restriction. However, the DDL commands cannot be used directly.
A SELECT statement in a PL/SQL block can return only one row. It is mandatory to use the
INTO clause to hold the values retrieved by the SELECT statement.
A cursor is a pointer to the memory area. There are two types of cursors. Implicit cursors are
created and managed internally by the Oracle Server to execute SQL statements. You can use
SQL cursor attributes with these cursors to determine the outcome of the SQL statement.
Explicit cursors are declared by programmers.

Oracle Database 11g: PL/SQL Fundamentals 4 - 27

Copyright © 2009, Oracle. All rights reserved.4 - 27

Practice 4: Overview

This practice covers the following topics:
• Selecting data from a table
• Inserting data into a table
• Updating data in a table
• Deleting a record from a table

Copyright © 2009, Oracle. All rights reserved.

Writing Control Structures

Oracle Database 11g: PL/SQL Fundamentals 5 - 2

Copyright © 2009, Oracle. All rights reserved.5 - 2

Objectives

After completing this lesson, you should be able to do the
following:
• Identify the uses and types of control structures
• Construct an IF statement
• Use CASE statements and CASE expressions
• Construct and identify loop statements
• Use guidelines when using conditional control structures

Objectives
You have learned to write PL/SQL blocks containing declarative and executable sections. You
have also learned to include expressions and SQL statements in the executable block.
In this lesson, you learn how to use control structures such as IF statements, CASE expressions,
and LOOP structures in a PL/SQL block.

Oracle Database 11g: PL/SQL Fundamentals 5 - 3

Copyright © 2009, Oracle. All rights reserved.5 - 3

Controlling Flow of Execution

for
loop

while

Controlling Flow of Execution
You can change the logical flow of statements within the PL/SQL block with a number of
control structures. This lesson addresses four types of PL/SQL control structures: conditional
constructs with the IF statement, CASE expressions, LOOP control structures, and the
CONTINUE statement.

Oracle Database 11g: PL/SQL Fundamentals 5 - 4

Copyright © 2009, Oracle. All rights reserved.5 - 4

Agenda

• Using IF statements
• Using CASE statements and CASE expressions
• Constructing and identifying loop statements

Oracle Database 11g: PL/SQL Fundamentals 5 - 5

Copyright © 2009, Oracle. All rights reserved.5 - 5

IF Statement

Syntax:

IF condition THEN
statements;

[ELSIF condition THEN
statements;]

[ELSE
statements;]

END IF;

IF Statement
The structure of the PL/SQL IF statement is similar to the structure of IF statements in other
procedural languages. It allows PL/SQL to perform actions selectively based on conditions.
In the syntax:

Can be one or more PL/SQL or SQL statements. (They may
include additional IF statements containing several nested
IF, ELSE, and ELSIF statements.) The statements in the
THEN clause are executed only if the condition in the
associated IF clause evaluates to TRUE.

statements

Introduces a clause that associates the Boolean expression
with the sequence of statements that follows it

THEN

Is a Boolean variable or expression that returns TRUE,
FALSE, or NULL

condition

Oracle Database 11g: PL/SQL Fundamentals 5 - 6

IF Statement (continued)
In the syntax:

Note: ELSIF and ELSE are optional in an IF statement. You can have any number of ELSIF
keywords but only one ELSE keyword in your IF statement. END IF marks the end of an IF
statement and must be terminated by a semicolon.

Marks the end of an IF statementEND IF

Introduces the default clause that is executed if and only if none of the
earlier predicates (introduced by IF and ELSIF) are TRUE. The
tests are executed in sequence so that a later predicate that might be
true is preempted by an earlier predicate that is true.

ELSE

Is a keyword that introduces a Boolean expression (If the first
condition yields FALSE or NULL, the ELSIF keyword introduces
additional conditions.)

ELSIF

Oracle Database 11g: PL/SQL Fundamentals 5 - 7

Copyright © 2009, Oracle. All rights reserved.5 - 7

Simple IF Statement

DECLARE
v_myage number:=31;

BEGIN
IF v_myage < 11
THEN

DBMS_OUTPUT.PUT_LINE(' I am a child ');
END IF;

END;
/

Simple IF Statement
Simple IF Example
The slide shows an example of a simple IF statement with the THEN clause.

• The v_myage variable is initialized to 31.
• The condition for the IF statement returns FALSE because v_myage is not less than 11.
• Therefore, the control never reaches the THEN clause.

Adding Conditional Expressions
An IF statement can have multiple conditional expressions related with logical operators such
as AND, OR, and NOT.
For example:

IF (myfirstname='Christopher' AND v_myage <11)
…

The condition uses the AND operator and therefore, evaluates to TRUE only if both conditions
are evaluated as TRUE. There is no limitation on the number of conditional expressions.
However, these statements must be related with appropriate logical operators.

Oracle Database 11g: PL/SQL Fundamentals 5 - 8

Copyright © 2009, Oracle. All rights reserved.5 - 8

IF THEN ELSE Statement

DECLARE
v_myage number:=31;

BEGIN
IF v_myage < 11
THEN

DBMS_OUTPUT.PUT_LINE(' I am a child ');
ELSE
DBMS_OUTPUT.PUT_LINE(' I am not a child ');
END IF;

END;
/

IF THEN ELSE Statement
An ELSE clause is added to the code in the previous slide. The condition has not changed and,
therefore, still evaluates to FALSE. Recall that the statements in the THEN clause are executed
only if the condition returns TRUE. In this case, the condition returns FALSE and the control
moves to the ELSE statement.
The output of the block is shown below the code.

Oracle Database 11g: PL/SQL Fundamentals 5 - 9

Copyright © 2009, Oracle. All rights reserved.5 - 9

IF ELSIF ELSE Clause

DECLARE
v_myage number:=31;

BEGIN
IF v_myage < 11 THEN

DBMS_OUTPUT.PUT_LINE(' I am a child ');
ELSIF v_myage < 20 THEN

DBMS_OUTPUT.PUT_LINE(' I am young ');
ELSIF v_myage < 30 THEN

DBMS_OUTPUT.PUT_LINE(' I am in my twenties');
ELSIF v_myage < 40 THEN

DBMS_OUTPUT.PUT_LINE(' I am in my thirties');
ELSE

DBMS_OUTPUT.PUT_LINE(' I am always young ');
END IF;

END;
/

IF ELSIF ELSE Clause
The IF clause may contain multiple ELSIF clauses and an ELSE clause. The example
illustrates the following characteristics of these clauses:

• The ELSIF clauses can have conditions, unlike the ELSE clause.
• The condition for ELSIF should be followed by the THEN clause, which is executed if the

condition for ELSIF returns TRUE.
• When you have multiple ELSIF clauses, if the first condition is FALSE or NULL, the

control shifts to the next ELSIF clause.
• Conditions are evaluated one by one from the top.
• If all conditions are FALSE or NULL, the statements in the ELSE clause are executed.
• The final ELSE clause is optional.

In the example, the output of the block is shown below the code.

Oracle Database 11g: PL/SQL Fundamentals 5 - 10

Copyright © 2009, Oracle. All rights reserved.5 - 10

NULL Value in IF Statement

DECLARE
v_myage number;

BEGIN
IF v_myage < 11 THEN

DBMS_OUTPUT.PUT_LINE(' I am a child ');
ELSE

DBMS_OUTPUT.PUT_LINE(' I am not a child ');
END IF;

END;
/

NULL Value in IF Statement
In the example shown in the slide, the variable v_myage is declared but not initialized. The
condition in the IF statement returns NULL rather than TRUE or FALSE. In such a case, the
control goes to the ELSE statement.
Guidelines

• You can perform actions selectively based on conditions that are being met.
• When you write code, remember the spelling of the keywords:

– ELSIF is one word.
– END IF is two words.

• If the controlling Boolean condition is TRUE, the associated sequence of statements is
executed; if the controlling Boolean condition is FALSE or NULL, the associated sequence
of statements is passed over. Any number of ELSIF clauses is permitted.

• Indent the conditionally executed statements for clarity.

Oracle Database 11g: PL/SQL Fundamentals 5 - 11

Copyright © 2009, Oracle. All rights reserved.5 - 11

Agenda

• Using IF statements
• Using CASE statements and CASE expressions
• Constructing and identifying loop statements

Oracle Database 11g: PL/SQL Fundamentals 5 - 12

Copyright © 2009, Oracle. All rights reserved.5 - 12

CASE Expressions

• A CASE expression selects a result and returns it.
• To select the result, the CASE expression uses

expressions. The value returned by these expressions is
used to select one of several alternatives.

CASE selector
WHEN expression1 THEN result1
WHEN expression2 THEN result2
...
WHEN expressionN THEN resultN
[ELSE resultN+1]

END;

CASE Expressions
A CASE expression returns a result based on one or more alternatives. To return the result, the
CASE expression uses a selector, which is an expression whose value is used to return one of
several alternatives. The selector is followed by one or more WHEN clauses that are checked
sequentially. The value of the selector determines which result is returned. If the value of the
selector equals the value of a WHEN clause expression, that WHEN clause is executed and that
result is returned.
PL/SQL also provides a searched CASE expression, which has the form:

CASE
WHEN search_condition1 THEN result1
WHEN search_condition2 THEN result2
...
WHEN search_conditionN THEN resultN
[ELSE resultN+1]

END;
A searched CASE expression has no selector. Furthermore, the WHEN clauses in CASE
expressions contain search conditions that yield a Boolean value rather than expressions that can
yield a value of any type.

Oracle Database 11g: PL/SQL Fundamentals 5 - 13

Copyright © 2009, Oracle. All rights reserved.5 - 13

CASE Expressions: Example

SET VERIFY OFF
DECLARE

v_grade CHAR(1) := UPPER('&grade');
v_appraisal VARCHAR2(20);

BEGIN
v_appraisal := CASE v_grade

WHEN 'A' THEN 'Excellent'
WHEN 'B' THEN 'Very Good'
WHEN 'C' THEN 'Good'
ELSE 'No such grade'

END;
DBMS_OUTPUT.PUT_LINE ('Grade: '|| v_grade || '

Appraisal ' || v_appraisal);
END;
/

CASE Expressions: Example
In the example in the slide, the CASE expression uses the value in the v_grade variable as the
expression. This value is accepted from the user by using a substitution variable. Based on the
value entered by the user, the CASE expression returns the value of the v_appraisal variable
based on the value of the v_grade value.
Result
When you enter a or A for v_grade, as shown in the Substitution Variable window, the output
of the example is as follows:

Oracle Database 11g: PL/SQL Fundamentals 5 - 14

Copyright © 2009, Oracle. All rights reserved.5 - 14

Searched CASE Expressions

DECLARE
v_grade CHAR(1) := UPPER('&grade');
v_appraisal VARCHAR2(20);

BEGIN
v_appraisal := CASE

WHEN v_grade = 'A' THEN 'Excellent'
WHEN v_grade IN ('B','C') THEN 'Good'
ELSE 'No such grade'

END;
DBMS_OUTPUT.PUT_LINE ('Grade: '|| v_grade || '

Appraisal ' || v_appraisal);
END;
/

Searched CASE Expressions
In the previous example, you saw a single test expression, the v_grade variable.
The WHEN clause compared a value against this test expression.
In searched CASE statements, you do not have a test expression. Instead, the WHEN clause
contains an expression that results in a Boolean value. The same example is rewritten in this
slide to show searched CASE statements.
Result
The output of the example is as follows when you enter b or B for v_grade:

Oracle Database 11g: PL/SQL Fundamentals 5 - 15

Copyright © 2009, Oracle. All rights reserved.5 - 15

CASE Statement
DECLARE

v_deptid NUMBER;
v_deptname VARCHAR2(20);
v_emps NUMBER;
v_mngid NUMBER:= 108;

BEGIN
CASE v_mngid
WHEN 108 THEN
SELECT department_id, department_name
INTO v_deptid, v_deptname FROM departments
WHERE manager_id=108;

SELECT count(*) INTO v_emps FROM employees
WHERE department_id=v_deptid;

WHEN 200 THEN
...

END CASE;
DBMS_OUTPUT.PUT_LINE ('You are working in the '|| v_deptname||
' department. There are '||v_emps ||' employees in this
department');
END;
/

CASE Statement
Recall the use of the IF statement. You may include n number of PL/SQL statements in the
THEN clause and also in the ELSE clause. Similarly, you can include statements in the CASE
statement, which is more readable compared to multiple IF and ELSIF statements.
How a CASE Expression Differs from a CASE Statement
A CASE expression evaluates the condition and returns a value, whereas a CASE statement
evaluates the condition and performs an action. A CASE statement can be a complete PL/SQL
block.

• CASE statements end with END CASE;
• CASE expressions end with END;

The output of the slide code example is as follows:

Note: Whereas an IF statement is able to do nothing (the conditions could be all false and the
ELSE clause is not mandatory), a CASE statement must execute some PL/SQL statement.

Oracle Database 11g: PL/SQL Fundamentals 5 - 16

Copyright © 2009, Oracle. All rights reserved.5 - 16

Handling Nulls

When you are working with nulls, you can avoid some common
mistakes by keeping in mind the following rules:
• Simple comparisons involving nulls always yield NULL.
• Applying the logical operator NOT to a null yields NULL.
• If the condition yields NULL in conditional control

statements, its associated sequence of statements is not
executed.

Handling Nulls
Consider the following example:

x := 5;
y := NULL;
...
IF x != y THEN -- yields NULL, not TRUE

-- sequence_of_statements that are not executed
END IF;

You may expect the sequence of statements to execute because x and y seem unequal. But nulls
are indeterminate. Whether or not x is equal to y is unknown. Therefore, the IF condition yields
NULL and the sequence of statements is bypassed.

a := NULL;
b := NULL;
...
IF a = b THEN -- yields NULL, not TRUE

-- sequence_of_statements that are not executed
END IF;

In the second example, you may expect the sequence of statements to execute because a and b
seem equal. But, again, equality is unknown, so the IF condition yields NULL and the sequence
of statements is bypassed.

Oracle Database 11g: PL/SQL Fundamentals 5 - 17

Copyright © 2009, Oracle. All rights reserved.5 - 17

Logic Tables

Build a simple Boolean condition with a comparison operator.

AND

TRUE

FALSE

NULL

TRUE FALSE NULL

TRUE

NULL NULL

NULL

FALSE FALSE

FALSE

FALSE

FALSE

NOT

TRUE

FALSE

NULL

FALSE

TRUE

NULL

TRUE

NULL

OR TRUE FALSE NULL

TRUE

TRUE

TRUE

TRUETRUE

FALSE

NULL NULL

NULLFALSE

Logic Tables
You can build a simple Boolean condition by combining number, character, and date
expressions with comparison operators.
You can build a complex Boolean condition by combining simple Boolean conditions with the
logical operators AND, OR, and NOT. The logical operators are used to check the Boolean
variable values and return TRUE, FALSE, or NULL. In the logic tables shown in the slide:
• FALSE takes precedence in an AND condition, and TRUE takes precedence in an OR

condition
• AND returns TRUE only if both of its operands are TRUE
• OR returns FALSE only if both of its operands are FALSE
• NULL AND TRUE always evaluates to NULL because it is not known whether the second

operand evaluates to TRUE
Note: The negation of NULL (NOT NULL) results in a null value because null values are
indeterminate.

Oracle Database 11g: PL/SQL Fundamentals 5 - 18

Copyright © 2009, Oracle. All rights reserved.5 - 18

Boolean Expressions or Logical Expression?

What is the value of flag in each case?

flag := reorder_flag AND available_flag;

? (3)TRUENULL

NULL

TRUE

TRUE

REORDER_FLAG

? (1)TRUE

? (4)FALSE

? (2)

FLAG

FALSE

AVAILABLE_FLAG

Boolean Expressions or Logical Expression?
The AND logic table can help you to evaluate the possibilities for the Boolean condition in the
slide.
Answers

1. TRUE
2. FALSE
3. NULL
4. FALSE

Oracle Database 11g: PL/SQL Fundamentals 5 - 19

Copyright © 2009, Oracle. All rights reserved.5 - 19

Agenda

• Using IF statements
• Using CASE statements and CASE expressions
• Constructing and identifying loop statements

Oracle Database 11g: PL/SQL Fundamentals 5 - 20

Copyright © 2009, Oracle. All rights reserved.5 - 20

Iterative Control: LOOP Statements

• Loops repeat a statement (or a sequence of statements)
multiple times.

• There are three loop types:
– Basic loop
– FOR loop
– WHILE loop

Iterative Control: LOOP Statements
PL/SQL provides several facilities to structure loops to repeat a statement or sequence of
statements multiple times. Loops are mainly used to execute statements repeatedly until an exit
condition is reached. It is mandatory to have an exit condition in a loop; otherwise, the loop is
infinite.
Looping constructs are the third type of control structures. PL/SQL provides the following types
of loops:

• Basic loop that performs repetitive actions without overall conditions
• FOR loops that perform iterative actions based on a count
• WHILE loops that perform iterative actions based on a condition

Note: An EXIT statement can be used to terminate loops. A basic loop must have an EXIT. The
cursor FOR loop (which is another type of FOR loop) is discussed in the lesson titled “Using
Explicit Cursors.”

Oracle Database 11g: PL/SQL Fundamentals 5 - 21

Copyright © 2009, Oracle. All rights reserved.5 - 21

Basic Loops

Syntax:

LOOP
statement1;
. . .
EXIT [WHEN condition];

END LOOP;

Basic Loops
The simplest form of a LOOP statement is the basic loop, which encloses a sequence of
statements between the LOOP and END LOOP keywords. Each time the flow of execution
reaches the END LOOP statement, control is returned to the corresponding LOOP statement
above it. A basic loop allows execution of its statements at least once, even if the EXIT
condition is already met upon entering the loop. Without the EXIT statement, the loop would be
infinite.
EXIT Statement
You can use the EXIT statement to terminate a loop. Control passes to the next statement after
the END LOOP statement. You can issue EXIT either as an action within an IF statement or as a
stand-alone statement within the loop. The EXIT statement must be placed inside a loop. In the
latter case, you can attach a WHEN clause to enable conditional termination of the loop. When
the EXIT statement is encountered, the condition in the WHEN clause is evaluated. If the
condition yields TRUE, the loop ends and control passes to the next statement after the loop.
A basic loop can contain multiple EXIT statements, but it is recommended that you have only
one EXIT point.

Oracle Database 11g: PL/SQL Fundamentals 5 - 22

Copyright © 2009, Oracle. All rights reserved.5 - 22

DECLARE
v_countryid locations.country_id%TYPE := 'CA';
v_loc_id locations.location_id%TYPE;
v_counter NUMBER(2) := 1;
v_new_city locations.city%TYPE := 'Montreal';

BEGIN
SELECT MAX(location_id) INTO v_loc_id FROM locations
WHERE country_id = v_countryid;
LOOP

INSERT INTO locations(location_id, city, country_id)
VALUES((v_loc_id + v_counter), v_new_city, v_countryid);
v_counter := v_counter + 1;
EXIT WHEN v_counter > 3;

END LOOP;
END;
/

Basic Loop: Example

Basic Loop: Example
The basic loop example shown in the slide is defined as follows: “Insert three new location IDs
for the CA country code and the city of Montreal.”
Note

• A basic loop allows execution of its statements until the EXIT WHEN condition is met.
• If the condition is placed in the loop such that it is not checked until after the loop

statements execute, the loop executes at least once.
• However, if the exit condition is placed at the top of the loop (before any of the other

executable statements) and if that condition is true, the loop exits and the statements never
execute.

Results
To view the output, run the code example: code_05_22_s.sql.

Oracle Database 11g: PL/SQL Fundamentals 5 - 23

Copyright © 2009, Oracle. All rights reserved.5 - 23

WHILE Loops

Syntax:

Use the WHILE loop to repeat statements while a condition is
TRUE.

WHILE condition LOOP
statement1;
statement2;
. . .

END LOOP;

WHILE Loops
You can use the WHILE loop to repeat a sequence of statements until the controlling condition is
no longer TRUE. The condition is evaluated at the start of each iteration. The loop terminates
when the condition is FALSE or NULL. If the condition is FALSE or NULL at the start of the
loop, no further iterations are performed. Thus, it is possible that none of the statements inside
the loop are executed.
In the syntax:

condition Is a Boolean variable or expression (TRUE, FALSE, or NULL)
statement Can be one or more PL/SQL or SQL statements

If the variables involved in the conditions do not change during the body of the loop, the
condition remains TRUE and the loop does not terminate.
Note: If the condition yields NULL, the loop is bypassed and control passes to the next
statement.

Oracle Database 11g: PL/SQL Fundamentals 5 - 24

Copyright © 2009, Oracle. All rights reserved.5 - 24

WHILE Loops: Example

DECLARE
v_countryid locations.country_id%TYPE := 'CA';
v_loc_id locations.location_id%TYPE;
v_new_city locations.city%TYPE := 'Montreal';
v_counter NUMBER := 1;

BEGIN
SELECT MAX(location_id) INTO v_loc_id FROM locations
WHERE country_id = v_countryid;
WHILE v_counter <= 3 LOOP

INSERT INTO locations(location_id, city, country_id)
VALUES((v_loc_id + v_counter), v_new_city, v_countryid);
v_counter := v_counter + 1;

END LOOP;
END;
/

WHILE Loops: Example
In the example in the slide, three new location IDs for the CA country code and the city of
Montreal are added.

• With each iteration through the WHILE loop, a counter (v_counter) is incremented.
• If the number of iterations is less than or equal to the number 3, the code within the loop is

executed and a row is inserted into the locations table.
• After v_counter exceeds the number of new locations for this city and country, the

condition that controls the loop evaluates to FALSE and the loop terminates.
Results
To view the output, run the code example: code_05_24_s.sql.

Oracle Database 11g: PL/SQL Fundamentals 5 - 25

Copyright © 2009, Oracle. All rights reserved.5 - 25

FOR Loops

• Use a FOR loop to shortcut the test for the number of
iterations.

• Do not declare the counter; it is declared implicitly.

FOR counter IN [REVERSE]
lower_bound..upper_bound LOOP

statement1;
statement2;
. . .

END LOOP;

FOR Loops
FOR loops have the same general structure as the basic loop. In addition, they have a control
statement before the LOOP keyword to set the number of iterations that the PL/SQL performs.
In the syntax:

Do not declare the counter. It is declared implicitly as an integer.

Specifies the lower bound for the range of counter values
Specifies the upper bound for the range of counter values

lower_bound
upper_bound

Causes the counter to decrement with each iteration from the upper
bound to the lower bound
Note: The lower bound is still referenced first.

REVERSE

Is an implicitly declared integer whose value automatically
increases or decreases (decreases if the REVERSE keyword is used)
by 1 on each iteration of the loop until the upper or lower bound is
reached

counter

Oracle Database 11g: PL/SQL Fundamentals 5 - 26

FOR Loops (continued)
Note: The sequence of statements is executed each time the counter is incremented, as
determined by the two bounds. The lower bound and upper bound of the loop range can be
literals, variables, or expressions, but they must evaluate to integers. The bounds are rounded to
integers; that is, 11/3 and 8/5 are valid upper or lower bounds. The lower bound and upper
bound are inclusive in the loop range. If the lower bound of the loop range evaluates to a larger
integer than the upper bound, the sequence of statements is not executed.
For example, the following statement is executed only once:

FOR i IN 3..3
LOOP
statement1;

END LOOP;

Oracle Database 11g: PL/SQL Fundamentals 5 - 27

Copyright © 2009, Oracle. All rights reserved.5 - 27

FOR Loops: Example

DECLARE
v_countryid locations.country_id%TYPE := 'CA';
v_loc_id locations.location_id%TYPE;
v_new_city locations.city%TYPE := 'Montreal';

BEGIN
SELECT MAX(location_id) INTO v_loc_id

FROM locations
WHERE country_id = v_countryid;

FOR i IN 1..3 LOOP
INSERT INTO locations(location_id, city, country_id)
VALUES((v_loc_id + i), v_new_city, v_countryid);

END LOOP;
END;
/

FOR Loops: Example
You have already learned how to insert three new locations for the CA country code and the city
of Montreal by using the basic loop and the WHILE loop. The example in this slide shows how
to achieve the same by using the FOR loop.
Results
To view the output, run the code example code_05_27_s.sql.

Oracle Database 11g: PL/SQL Fundamentals 5 - 28

Copyright © 2009, Oracle. All rights reserved.5 - 28

FOR Loop Rules

• Reference the counter only within the loop; it is undefined
outside the loop.

• Do not reference the counter as the target of an
assignment.

• Neither loop bound should be NULL.

FOR Loop Rules
The slide lists the guidelines to follow when writing a FOR loop.
Note: The lower and upper bounds of a LOOP statement do not need to be numeric literals. They
can be expressions that convert to numeric values.
Example:

DECLARE
v_lower NUMBER := 1;
v_upper NUMBER := 100;

BEGIN
FOR i IN v_lower..v_upper LOOP
...
END LOOP;

END;
/

Oracle Database 11g: PL/SQL Fundamentals 5 - 29

Copyright © 2009, Oracle. All rights reserved.5 - 29

Suggested Use of Loops

• Use the basic loop when the statements inside the loop
must execute at least once.

• Use the WHILE loop if the condition must be evaluated at
the start of each iteration.

• Use a FOR loop if the number of iterations is known.

Suggested Use of Loops
A basic loop allows the execution of its statement at least once, even if the condition is already
met upon entering the loop. Without the EXIT statement, the loop would be infinite.
You can use the WHILE loop to repeat a sequence of statements until the controlling condition is
no longer TRUE. The condition is evaluated at the start of each iteration. The loop terminates
when the condition is FALSE. If the condition is FALSE at the start of the loop, no further
iterations are performed.
FOR loops have a control statement before the LOOP keyword to determine the number of
iterations that the PL/SQL performs. Use a FOR loop if the number of iterations is
predetermined.

Oracle Database 11g: PL/SQL Fundamentals 5 - 30

Copyright © 2009, Oracle. All rights reserved.5 - 30

Nested Loops and Labels

• You can nest loops to multiple levels.
• Use labels to distinguish between blocks and loops.
• Exit the outer loop with the EXIT statement that references

the label.

Nested Loops and Labels
You can nest the FOR, WHILE, and basic loops within one another. The termination of a nested
loop does not terminate the enclosing loop unless an exception is raised. However, you can label
loops and exit the outer loop with the EXIT statement.
Label names follow the same rules as the other identifiers. A label is placed before a statement,
either on the same line or on a separate line. White space is insignificant in all PL/SQL parsing
except inside literals. Label basic loops by placing the label before the word LOOP within label
delimiters (<<label>>). In FOR and WHILE loops, place the label before FOR or WHILE.
If the loop is labeled, the label name can be included (optionally) after the END LOOP statement
for clarity.

Oracle Database 11g: PL/SQL Fundamentals 5 - 31

Copyright © 2009, Oracle. All rights reserved.5 - 31

Nested Loops and Labels: Example

...
BEGIN

<<Outer_loop>>
LOOP

v_counter := v_counter+1;
EXIT WHEN v_counter>10;

<<Inner_loop>>
LOOP

...
EXIT Outer_loop WHEN total_done = 'YES';
-- Leave both loops
EXIT WHEN inner_done = 'YES';
-- Leave inner loop only
...

END LOOP Inner_loop;
...

END LOOP Outer_loop;
END;
/

Nested Loops and Labels: Example
In the example in the slide, there are two loops. The outer loop is identified by the label
<<Outer_Loop>> and the inner loop is identified by the label <<Inner_Loop>>.
The identifiers are placed before the word LOOP within label delimiters (<<label>>). The inner
loop is nested within the outer loop. The label names are included after the END LOOP
statements for clarity.

Oracle Database 11g: PL/SQL Fundamentals 5 - 32

Copyright © 2009, Oracle. All rights reserved.5 - 32

PL/SQL CONTINUE Statement

• Definition
– Adds the functionality to begin the next loop iteration
– Provides programmers with the ability to transfer control to

the next iteration of a loop
– Uses parallel structure and semantics to the EXIT statement

• Benefits
– Eases the programming process
– May provide a small performance improvement over the

previous programming workarounds to simulate the
CONTINUE statement

PL/SQL CONTINUE Statement
The CONTINUE statement enables you to transfer control within a loop back to a new iteration
or to leave the loop. Many other programming languages have this functionality. With the
Oracle Database 11g release, PL/SQL also offers this functionality. Before the Oracle Database
11g release, you could code a workaround by using Boolean variables and conditional
statements to simulate the CONTINUE programmatic functionality. In some cases, the
workarounds are less efficient.
The CONTINUE statement offers you a simplified means to control loop iterations. It may be
more efficient than the previous coding workarounds.
The CONTINUE statement is commonly used to filter data within a loop body before the main
processing begins.

Oracle Database 11g: PL/SQL Fundamentals 5 - 33

Copyright © 2009, Oracle. All rights reserved.5 - 33

PL/SQL CONTINUE Statement: Example 1

DECLARE
v_total SIMPLE_INTEGER := 0;

BEGIN
FOR i IN 1..10 LOOP

v_total := v_total + i;
dbms_output.put_line
('Total is: '|| v_total);

CONTINUE WHEN i > 5;
v_total := v_total + i;
dbms_output.put_line
('Out of Loop Total is:
'|| v_total);

END LOOP;
END;
/

1

2

PL/SQL CONTINUE Statement: Example 1
In the example, there are two assignments using the v_total variable:

1. The first assignment is executed for each of the 10 iterations of the loop.
2 The second assignment is executed for the first five iterations of the loop. The CONTINUE

statement transfers control within a loop back to a new iteration, so for the last five
iterations of the loop, the second TOTAL assignment is not executed.

The end result of the TOTAL variable is 70.

Oracle Database 11g: PL/SQL Fundamentals 5 - 34

Copyright © 2009, Oracle. All rights reserved.5 - 34

PL/SQL CONTINUE Statement: Example 2
DECLARE
v_total NUMBER := 0;

BEGIN
<<BeforeTopLoop>>
FOR i IN 1..10 LOOP

v_total := v_total + 1;
dbms_output.put_line

('Total is: ' || v_total);
FOR j IN 1..10 LOOP

CONTINUE BeforeTopLoop WHEN i + j > 5;
v_total := v_total + 1;

END LOOP;
END LOOP;

END two_loop;

PL/SQL CONTINUE Statement: Example 2
You can use the CONTINUE statement to jump to the next iteration of an outer loop. To do this,
provide the outer loop a label to identify where the CONTINUE statement should go.
The CONTINUE statement in the innermost loop terminates that loop whenever the WHEN
condition is true (just like the EXIT keyword). After the innermost loop is terminated by the
CONTINUE statement, control transfers to the next iteration of the outermost loop labeled
BeforeTopLoop in this example.
When this pair of loops completes, the value of the TOTAL variable is 20.
You can also use the CONTINUE statement within an inner block of code, which does not
contain a loop as long as the block is nested inside an appropriate outer loop.
Restrictions

• The CONTINUE statement cannot appear outside a loop at all—this generates a compiler
error.

• You cannot use the CONTINUE statement to pass through a procedure, function, or method
boundary—this generates a compiler error.

Oracle Database 11g: PL/SQL Fundamentals 5 - 35

Copyright © 2009, Oracle. All rights reserved.5 - 35

Quiz

There are three types of loops: basic, FOR, and WHILE.
1. True
2. False

Answer: 1
Loop Types
PL/SQL provides the following types of loops:

• Basic loops that perform repetitive actions without overall conditions
• FOR loops that perform iterative actions based on a count
• WHILE loops that perform iterative actions based on a condition

Oracle Database 11g: PL/SQL Fundamentals 5 - 36

Copyright © 2009, Oracle. All rights reserved.5 - 36

Summary

In this lesson, you should have learned to change the logical
flow of statements by using the following control structures:
• Conditional (IF statement)
• CASE expressions and CASE statements
• Loops:

– Basic loop
– FOR loop
– WHILE loop

• EXIT statement
• CONTINUE statement

Summary
A language can be called a programming language only if it provides control structures for the
implementation of business logic. These control structures are also used to control the flow of
the program. PL/SQL is a programming language that integrates programming constructs with
SQL.
A conditional control construct checks for the validity of a condition and performs an action
accordingly. You use the IF construct to perform a conditional execution of statements.
An iterative control construct executes a sequence of statements repeatedly, as long as a
specified condition holds TRUE. You use the various loop constructs to perform iterative
operations.

Oracle Database 11g: PL/SQL Fundamentals 5 - 37

Copyright © 2009, Oracle. All rights reserved.5 - 37

Practice 5: Overview

This practice covers the following topics:
• Performing conditional actions by using IF statements
• Performing iterative steps by using LOOP structures

Practice 5: Overview
In this practice, you create the PL/SQL blocks that incorporate loops and conditional control
structures. The exercises test your understanding of writing various IF statements and LOOP
constructs.

Copyright © 2009, Oracle. All rights reserved.

Working with
Composite Data Types

Oracle Database 11g: PL/SQL Fundamentals 6 - 2

Copyright © 2009, Oracle. All rights reserved.6 - 2

Objectives

After completing this lesson, you should be able to do the
following:
• Describe PL/SQL collections and records
• Create user-defined PL/SQL records
• Create a PL/SQL record with the %ROWTYPE attribute
• Create associative arrays

– INDEX BY table
– INDEX BY table of records

Objectives
You have already been introduced to composite data types. In this lesson, you learn more about
composite data types and their uses.

Oracle Database 11g: PL/SQL Fundamentals 6 - 3

Copyright © 2009, Oracle. All rights reserved.6 - 3

Agenda

• Introducing composite data types
• Using PL/SQL records

– Manipulating data with PL/SQL records
– Advantages of the %ROWTYPE attribute

• Using PL/SQL collections
– Examining associative arrays
– Introducing nested tables
– Introducing VARRAY

Oracle Database 11g: PL/SQL Fundamentals 6 - 4

Copyright © 2009, Oracle. All rights reserved.6 - 4

Composite Data Types

• Can hold multiple values (unlike scalar types)
• Are of two types:

– PL/SQL records
– PL/SQL collections

— Associative array (INDEX BY table)
— Nested table
— VARRAY

Composite Data Types
You learned that variables of the scalar data type can hold only one value, whereas a variable
of the composite data type can hold multiple values of the scalar data type or the composite
data type. There are two types of composite data types:

• PL/SQL records: Records are used to treat related but dissimilar data as a logical unit. A
PL/SQL record can have variables of different types. For example, you can define a
record to hold employee details. This involves storing an employee number as NUMBER,
a first name and last name as VARCHAR2, and so on. By creating a record to store
employee details, you create a logical collective unit. This makes data access and
manipulation easier.

• PL/SQL collections: Collections are used to treat data as a single unit. Collections are of
three types:

- Associative array
- Nested table
- VARRAY

Why Use Composite Data Types?
You have all the related data as a single unit. You can easily access and modify data. Data is
easier to manage, relate, and transport if it is composite. An analogy is having a single bag for
all your laptop components rather than a separate bag for each component.

Oracle Database 11g: PL/SQL Fundamentals 6 - 5

Copyright © 2009, Oracle. All rights reserved.6 - 5

PL/SQL Records or Collections?

• Use PL/SQL records when you want to store values of
different data types but only one occurrence at a time.

• Use PL/SQL collections when you want to store values of
the same data type.

TRUE 23-DEC-98 ATLANTA

1 SMITH
2 JONES
3 BENNETT
4 KRAMER

PL/SQL Record:

PL/SQL Collection:

PLS_INTEGER
VARCHAR2

PL/SQL Records or Collections?
If both PL/SQL records and PL/SQL collections are composite types, how do you choose
which one to use?

• Use PL/SQL records when you want to store values of different data types that are
logically related. For example, you can create a PL/SQL record to hold employee details
and indicate that all the values stored are related because they provide information about
a particular employee.

• Use PL/SQL collections when you want to store values of the same data type. Note that
this data type can also be of the composite type (such as records). You can define a
collection to hold the first names of all employees. You may have stored n names in the
collection; however, name 1 is not related to name 2. The relation between these names is
only that they are employee names. These collections are similar to arrays in
programming languages such as C, C++, and Java.

Oracle Database 11g: PL/SQL Fundamentals 6 - 6

Copyright © 2009, Oracle. All rights reserved.6 - 6

Agenda

• Examining composite data types
• Using PL/SQL records

– Manipulating data with PL/SQL records
– Advantages of the %ROWTYPE attribute

• Using PL/SQL collections
– Examining associative arrays
– Introducing nested tables
– Introducing VARRAY

Oracle Database 11g: PL/SQL Fundamentals 6 - 7

Copyright © 2009, Oracle. All rights reserved.6 - 7

PL/SQL Records

• Must contain one or more components (called fields) of
any scalar, RECORD, or INDEX BY table data type

• Are similar to structures in most third-generation
languages (including C and C++)

• Are user-defined and can be a subset of a row in a table
• Treat a collection of fields as a logical unit
• Are convenient for fetching a row of data from a table for

processing

PL/SQL Records
A record is a group of related data items stored in fields, each with its own name and data type.

• Each record defined can have as many fields as necessary.
• Records can be assigned initial values and can be defined as NOT NULL.
• Fields without initial values are initialized to NULL.
• The DEFAULT keyword as well as := can be used in initializing fields.
• You can define RECORD types and declare user-defined records in the declarative part of

any block, subprogram, or package.
• You can declare and reference nested records. One record can be the component of

another record.

Oracle Database 11g: PL/SQL Fundamentals 6 - 8

Copyright © 2009, Oracle. All rights reserved.6 - 8

Creating a PL/SQL Record

Syntax:

TYPE type_name IS RECORD
(field_declaration[, field_declaration]…);

field_name {field_type | variable%TYPE
| table.column%TYPE | table%ROWTYPE}
[[NOT NULL] {:= | DEFAULT} expr]

identifier type_name;

field_declaration:

1

2

Creating a PL/SQL Record
PL/SQL records are user-defined composite types. To use them, perform the following steps:

1. Define the record in the declarative section of a PL/SQL block. The syntax for defining
the record is shown in the slide.

2. Declare (and optionally initialize) the internal components of this record type.
In the syntax:
type_name Is the name of the RECORD type (This identifier is used to declare

records.)
field_name Is the name of a field within the record
field_type Is the data type of the field (It represents any PL/SQL data type except

REF CURSOR. You can use the %TYPE and %ROWTYPE attributes.)
expr Is the field_type or an initial value

The NOT NULL constraint prevents assigning of nulls to the specified fields. Be sure to
initialize the NOT NULL fields.

Oracle Database 11g: PL/SQL Fundamentals 6 - 9

Copyright © 2009, Oracle. All rights reserved.6 - 9

PL/SQL Record Structure

Example:

100 King AD_PRES

employee_id number(6) last_name varchar2(25) job_id varchar2(10)
Field2 (data type) Field3 (data type)Field1 (data type)

Field2 (data type) Field3 (data type)Field1 (data type)

Field declarations:

PL/SQL Record Structure
Fields in a record are accessed with the name of the record. To reference or initialize an
individual field, use the dot notation:

record_name.field_name
For example, you reference the job_id field in the emp_record record as follows:

emp_record.job_id
You can then assign a value to the record field:

emp_record.job_id := 'ST_CLERK';
In a block or subprogram, user-defined records are instantiated when you enter the block or
subprogram. They cease to exist when you exit the block or subprogram.

Oracle Database 11g: PL/SQL Fundamentals 6 - 10

Copyright © 2009, Oracle. All rights reserved.6 - 10

%ROWTYPE Attribute

• Declare a variable according to a collection of columns in a
database table or view.

• Prefix %ROWTYPE with the database table or view.
• Fields in the record take their names and data types from

the columns of the table or view.
Syntax:

DECLARE
identifier reference%ROWTYPE;

%ROWTYPE Attribute
You learned that %TYPE is used to declare a variable of the column type. The variable has the
same data type and size as the table column. The benefit of %TYPE is that you do not have to
change the variable if the column is altered. Also, if the variable is a number and is used in any
calculations, you need not worry about its precision.
The %ROWTYPE attribute is used to declare a record that can hold an entire row of a table or
view. The fields in the record take their names and data types from the columns of the table or
view. The record can also store an entire row of data fetched from a cursor or cursor variable.
The slide shows the syntax for declaring a record. In the syntax:

In the following example, a record is declared using %ROWTYPE as a data type specifier:
DECLARE
emp_record employees%ROWTYPE;
...

Is the name of the table, view, cursor, or cursor variable on
which the record is to be based (The table or view must exist
for this reference to be valid.)

reference

Is the name chosen for the record as a wholeidentifier

Oracle Database 11g: PL/SQL Fundamentals 6 - 11

%ROWTYPE Attribute (continued)
The emp_record record has a structure consisting of the following fields, each representing
a column in the employees table.
Note: This is not code, but simply the structure of the composite variable.

(employee_id NUMBER(6),
first_name VARCHAR2(20),
last_name VARCHAR2(20),
email VARCHAR2(20),
phone_number VARCHAR2(20),
hire_date DATE,
salary NUMBER(8,2),
commission_pct NUMBER(2,2),
manager_id NUMBER(6),
department_id NUMBER(4))

To reference an individual field, use the dot notation:
record_name.field_name

For example, you reference the commission_pct field in the emp_record record as
follows:

emp_record.commission_pct
You can then assign a value to the record field:

emp_record.commission_pct:= .35;
Assigning Values to Records
You can assign a list of common values to a record by using the SELECT or FETCH
statement. Make sure that the column names appear in the same order as the fields in your
record. You can also assign one record to another if both have the same corresponding data
types. A record of type employees%ROWTYPE and a user-defined record type having
analogous fields of the employees table will have the same data type. Therefore, if a user-
defined record contains fields similar to the fields of a %ROWTYPE record, you can assign that
user-defined record to the %ROWTYPE record.

Oracle Database 11g: PL/SQL Fundamentals 6 - 12

Copyright © 2009, Oracle. All rights reserved.6 - 12

Creating a PL/SQL Record: Example

DECLARE
TYPE t_rec IS RECORD

(v_sal number(8),
v_minsal number(8) default 1000,
v_hire_date employees.hire_date%type,
v_rec1 employees%rowtype);

v_myrec t_rec;
BEGIN
v_myrec.v_sal := v_myrec.v_minsal + 500;
v_myrec.v_hire_date := sysdate;
SELECT * INTO v_myrec.v_rec1

FROM employees WHERE employee_id = 100;
DBMS_OUTPUT.PUT_LINE(v_myrec.v_rec1.last_name ||' '||
to_char(v_myrec.v_hire_date) ||' '|| to_char(v_myrec.v_sal));

END;

Creating a PL/SQL Record: Example
The field declarations used in defining a record are like variable declarations. Each field has a
unique name and a specific data type. There are no predefined data types for PL/SQL records,
as there are for scalar variables. Therefore, you must create the record type first, and then
declare an identifier using that type.
In the example in the slide, a PL/SQL record is created using the required two-step process:

1. A record type (t_rec) is defined
2. A record (v_myrec) of the t_rec type is declared

Note
• The record contains four fields: v_sal, v_minsal, v_hire_date, and v_rec1.
• v_rec1 is defined using the %ROWTYPE attribute, which is similar to the %TYPE

attribute. With %TYPE, a field inherits the data type of a specified column. With
%ROWTYPE, a field inherits the column names and data types of all columns in the
referenced table.

• PL/SQL record fields are referenced using the <record>.<field> notation, or the
<record>.<field>.<column> notation for fields that are defined with the
%ROWTYPE attribute.

• You can add the NOT NULL constraint to any field declaration to prevent assigning nulls
to that field. Remember that fields that are declared as NOT NULL must be initialized.

Oracle Database 11g: PL/SQL Fundamentals 6 - 13

Copyright © 2009, Oracle. All rights reserved.6 - 13

Advantages of Using the %ROWTYPE Attribute

• The number and data types of the underlying database
columns need not be known—and, in fact, might change at
run time.

• The %ROWTYPE attribute is useful when you want to
retrieve a row with:
– The SELECT * statement
– Row-level INSERT and UPDATE statements

Advantages of Using %ROWTYPE
The advantages of using the %ROWTYPE attribute are listed in the slide. Use the %ROWTYPE
attribute when you are not sure about the structure of the underlying database table.
The main advantage of using %ROWTYPE is that it simplifies maintenance. Using %ROWTYPE
ensures that the data types of the variables declared with this attribute change dynamically
when the underlying table is altered. If a DDL statement changes the columns in a table, the
PL/SQL program unit is invalidated. When the program is recompiled, it automatically reflects
the new table format.
The %ROWTYPE attribute is particularly useful when you want to retrieve an entire row from a
table. In the absence of this attribute, you would be forced to declare a variable for each of the
columns retrieved by the SELECT statement.

Oracle Database 11g: PL/SQL Fundamentals 6 - 14

Copyright © 2009, Oracle. All rights reserved.6 - 14

Another %ROWTYPE Attribute Example
DECLARE
v_employee_number number:= 124;
v_emp_rec employees%ROWTYPE;

BEGIN
SELECT * INTO v_emp_rec FROM employees
WHERE employee_id = v_employee_number;
INSERT INTO retired_emps(empno, ename, job, mgr,

hiredate, leavedate, sal, comm, deptno)
VALUES (v_emp_rec.employee_id, v_emp_rec.last_name,

v_emp_rec.job_id, v_emp_rec.manager_id,
v_emp_rec.hire_date, SYSDATE,
v_emp_rec.salary, v_emp_rec.commission_pct,
v_emp_rec.department_id);

END;
/

Another %ROWTYPE Attribute Example
Another example of the %ROWTYPE attribute is shown in the slide. If an employee is retiring,
information about that employee is added to a table that holds information about retired
employees. The user supplies the employee number. The record of the employee specified by
the user is retrieved from the employees table and stored in the emp_rec variable, which is
declared using the %ROWTYPE attribute.
The CREATE statement that creates the retired_emps table is:

CREATE TABLE retired_emps
(EMPNO NUMBER(4), ENAME VARCHAR2(10),
JOB VARCHAR2(9),MGR NUMBER(4),
HIREDATE DATE, LEAVEDATE DATE,
SAL NUMBER(7,2), COMM NUMBER(7,2),
DEPTNO NUMBER(2))

Note
• The record that is inserted into the retired_emps table is shown in the slide.
• To see the output shown in the slide, place your cursor on the SELECT statement at the

bottom of the code example in SQL Developer and press F9.
• The complete code example is found in code_6_14_n-s.sql.

Oracle Database 11g: PL/SQL Fundamentals 6 - 15

Copyright © 2009, Oracle. All rights reserved.6 - 15

Inserting a Record by Using %ROWTYPE
...
DECLARE
v_employee_number number:= 124;
v_emp_rec retired_emps%ROWTYPE;

BEGIN
SELECT employee_id, last_name, job_id, manager_id,
hire_date, hire_date, salary, commission_pct,
department_id INTO v_emp_rec FROM employees
WHERE employee_id = v_employee_number;
INSERT INTO retired_emps VALUES v_emp_rec;
END;
/
SELECT * FROM retired_emps;

Inserting a Record by Using %ROWTYPE
Compare the INSERT statement in the previous slide with the INSERT statement in this slide.
The emp_rec record is of type retired_emps. The number of fields in the record must be
equal to the number of field names in the INTO clause. You can use this record to insert values
into a table. This makes the code more readable.
Examine the SELECT statement in the slide. You select hire_date twice and insert the
hire_date value in the leavedate field of retired_emps. No employee retires on the
hire date. The inserted record is shown in the slide. (You will see how to update this in the next
slide.)
Note: To see the output shown in the slide, place your cursor on the SELECT statement at the
bottom of the code example in SQL Developer and press F9.

Oracle Database 11g: PL/SQL Fundamentals 6 - 16

Copyright © 2009, Oracle. All rights reserved.6 - 16

Updating a Row in a Table
by Using a Record

SET VERIFY OFF
DECLARE
v_employee_number number:= 124;
v_emp_rec retired_emps%ROWTYPE;

BEGIN
SELECT * INTO v_emp_rec FROM retired_emps;
v_emp_rec.leavedate:=CURRENT_DATE;
UPDATE retired_emps SET ROW = v_emp_rec WHERE
empno=v_employee_number;

END;
/
SELECT * FROM retired_emps;

Updating a Row in a Table by Using a Record
You learned to insert a row by using a record. This slide shows you how to update a row by
using a record.

• The ROW keyword is used to represent the entire row.
• The code shown in the slide updates the leavedate of the employee.
• The record is updated as shown in the slide.

Note: To see the output shown in the slide, place your cursor on the SELECT statement at the
bottom of the code example in SQL Developer and press F9.

Oracle Database 11g: PL/SQL Fundamentals 6 - 17

Copyright © 2009, Oracle. All rights reserved.6 - 17

Agenda

• Examining composite data types
• Using PL/SQL records

– Manipulating data with PL/SQL records
– Advantages of the %ROWTYPE attribute

• Using PL/SQL collections
– Examining associative arrays
– Introducing nested tables
– Introducing VARRAY

Agenda
As stated previously, PL/SQL collections are used when you want to store values of the same
data type. This data type can also be of the composite type (such as records).
Therefore, collections are used to treat data as a single unit. Collections are of three types:

• Associative array
• Nested table
• VARRAY

Note: Of these three collections, the associative array is the focus of this lesson. The Nested
table and VARRARY are introduced only for comparative purposes. These two collections are
covered in detail in the course Oracle Database 11g: Advanced PL/SQL.

Oracle Database 11g: PL/SQL Fundamentals 6 - 18

Copyright © 2009, Oracle. All rights reserved.6 - 18

Associative Arrays (INDEX BY Tables)

An associative array is a PL/SQL collection with two columns:
• Primary key of integer or string data type
• Column of scalar or record data type

1 JONES
2 HARDEY
3 MADURO
4 KRAMER

Key Values

Associative Arrays (INDEX BY Tables)
An associative array is a type of PL/SQL collection. It is a composite data type, and is user
defined. Associative arrays are sets of key-value pairs. They can store data using a primary key
value as the index, where the key values are not necessarily sequential. Associative arrays are
also known as INDEX BY tables.
Associative arrays have only two columns, neither of which can be named:

• The first column, of integer or string type, acts as the primary key.
• The second column, of scalar or record data type, holds values.

Oracle Database 11g: PL/SQL Fundamentals 6 - 19

Copyright © 2009, Oracle. All rights reserved.6 - 19

Associative Array Structure

Unique key ---- Values column ----
column

... ... <or> ...

1 Jones 110 ADMIN Jones
5 Smith 103 ADMIN Smith
3 Maduro 176 IT_PROG Maduro

...

PLS_INTEGER Scalar Record

1 2

Associative Array Structure
As previously mentioned, associative arrays have two columns. The second column either
holds one value per row, or multiple values.
Unique Key Column: The data type of the key column can be:

• Numeric, either BINARY_INTEGER or PLS_INTEGER. These two numeric data types
require less storage than NUMBER, and arithmetic operations on these data types are
faster than the NUMBER arithmetic.

• VARCHAR2 or one of its subtypes
“Value” Column: The value column can be either a scalar data type or a record data type. A
column with scalar data type can hold only one value per row, whereas a column with record
data type can hold multiple values per row.
Other Characteristics

• An associative array is not populated at the time of declaration. It contains no keys or
values, and you cannot initialize an associative array in its declaration.

• An explicit executable statement is required to populate the associative array.
• Like the size of a database table, the size of an associative array is unconstrained. That is,

the number of rows can increase dynamically so that your associative array grows as new
rows are added. Note that the keys do not have to be sequential, and can be both positive
and negative.

Oracle Database 11g: PL/SQL Fundamentals 6 - 20

Copyright © 2009, Oracle. All rights reserved.6 - 20

Steps to Create an Associative Array

Syntax:

Example:

TYPE type_name IS TABLE OF
{column_type | variable%TYPE
| table.column%TYPE} [NOT NULL]
| table%ROWTYPE
| INDEX BY PLS_INTEGER | BINARY_INTEGER
| VARCHAR2(<size>);

identifier type_name;

...
TYPE ename_table_type IS TABLE OF
employees.last_name%TYPE
INDEX BY PLS_INTEGER;...
ename_table ename_table_type;

2

1

Steps to Create an Associative Array
There are two steps involved in creating an associative array:

1. Declare a TABLE data type using the INDEX BY option.
2. Declare a variable of that data type.

Syntax

Note: The NOT NULL constraint prevents nulls from being assigned to the associative array.
Example
In the example, an associative array with the variable name ename_table is declared to
store the last names of employees.

type_name

Is the name of the TABLE type (This name is used in the subsequent
declaration of the array identifier.)

column_type Is any scalar or composite data type such as VARCHAR2, DATE,
NUMBER, or %TYPE (You can use the %TYPE attribute to provide
the column data type.)

identifier Is the name of the identifier that represents an entire associative array

Oracle Database 11g: PL/SQL Fundamentals 6 - 21

Copyright © 2009, Oracle. All rights reserved.6 - 21

Creating and Accessing Associative Arrays
...
DECLARE
TYPE ename_table_type IS TABLE OF

employees.last_name%TYPE
INDEX BY PLS_INTEGER;

TYPE hiredate_table_type IS TABLE OF DATE
INDEX BY PLS_INTEGER;

ename_table ename_table_type;
hiredate_table hiredate_table_type;

BEGIN
ename_table(1) := 'CAMERON';
hiredate_table(8) := SYSDATE + 7;

IF ename_table.EXISTS(1) THEN
INSERT INTO ...
...

END;
/
...

Creating and Accessing Associative Arrays
The example in the slide creates two associative arrays, with the identifiers ename_table and
hiredate_table.
The key of each associative array is used to access an element in the array, by using the
following syntax:

identifier(index)
In both arrays, the index value belongs to the PLS_INTEGER type.

• To reference the first row in the ename_table associative array, specify:
ename_table(1)

• To reference the eighth row in the hiredate_table associative array, specify:
hiredate_table(8)

Note
• The magnitude range of a PLS_INTEGER is –2,147,483,647 through 2,147,483,647, so

the primary key value can be negative. Indexing does not need to start with 1.
• The exists(i)method returns TRUE if a row with index i is returned. Use the

exists method to prevent an error that is raised in reference to a nonexistent table
element.

• The complete code example is found in code_6_21_s.sql.

Oracle Database 11g: PL/SQL Fundamentals 6 - 22

Copyright © 2009, Oracle. All rights reserved.6 - 22

Using INDEX BY Table Methods

The following methods make associative arrays easier to use:
• EXISTS
• COUNT
• FIRST
• LAST

• PRIOR
• NEXT
• DELETE

Using INDEX BY Table Methods
An INDEX BY table method is a built-in procedure or function that operates on an associative
array and is called by using the dot notation.
Syntax: table_name.method_name[(parameters)]

Method Description
EXISTS(n) Returns TRUE if the nth element in an associative array exists
COUNT Returns the number of elements that an associative array currently

contains
FIRST • Returns the first (smallest) index number in an associative array

• Returns NULL if the associative array is empty
LAST • Returns the last (largest) index number in an associative array

• Returns NULL if the associative array is empty
PRIOR(n) Returns the index number that precedes index n in an associative array
NEXT(n) Returns the index number that succeeds index n in an associative array
DELETE • DELETE removes all elements from an associative array.

• DELETE(n) removes the nth element from an associative array.
• DELETE(m, n) removes all elements in the range m ... n from an

associative array.

Oracle Database 11g: PL/SQL Fundamentals 6 - 23

Copyright © 2009, Oracle. All rights reserved.6 - 23

INDEX BY Table of Records Option

Define an associative array to hold an entire row from a table.

DECLARE
TYPE dept_table_type IS TABLE OF

departments%ROWTYPE INDEX PLS_INTEGER;
dept_table dept_table_type;
-- Each element of dept_table is a record

Begin
SELECT * INTO dept_table(1) FROM departments

WHERE department_id = 10;
DBMS_OUTPUT.PUT_LINE(dept_table(1).department_id || ||
dept_table(1).department_name || ||
dept_table(1).manager_id);

END;
/

INDEX BY Table of Records Option
As previously discussed, an associative array that is declared as a table of scalar data type can
store the details of only one column in a database table. However, there is often a need to store
all the columns retrieved by a query. The INDEX BY table of records option enables one array
definition to hold information about all the fields of a database table.
Creating and Referencing a Table of Records
As shown in the associative array example in the slide, you can:

• Use the %ROWTYPE attribute to declare a record that represents a row in a database table
• Refer to fields within the dept_table array because each element of the array is a

record
The differences between the %ROWTYPE attribute and the composite data type PL/SQL record
are as follows:

• PL/SQL record types can be user-defined, whereas %ROWTYPE implicitly defines the
record.

• PL/SQL records enable you to specify the fields and their data types while declaring
them. When you use %ROWTYPE, you cannot specify the fields. The %ROWTYPE
attribute represents a table row with all the fields based on the definition of that table.

• User-defined records are static, but %ROWTYPE records are dynamic—they are based on
a table structure. If the table structure changes, the record structure also picks up the
change.

Oracle Database 11g: PL/SQL Fundamentals 6 - 24

Copyright © 2009, Oracle. All rights reserved.6 - 24

INDEX BY Table of Records Option: Example 2

DECLARE
TYPE emp_table_type IS TABLE OF

employees%ROWTYPE INDEX BY PLS_INTEGER;
my_emp_table emp_table_type;
max_count NUMBER(3):= 104;

BEGIN
FOR i IN 100..max_count
LOOP
SELECT * INTO my_emp_table(i) FROM employees
WHERE employee_id = i;

END LOOP;
FOR i IN my_emp_table.FIRST..my_emp_table.LAST
LOOP

DBMS_OUTPUT.PUT_LINE(my_emp_table(i).last_name);
END LOOP;

END;
/

INDEX BY Table of Records: Example 2
The example in the slide declares an associative array, using the INDEX BY table of records
option, to temporarily store the details of employees whose employee IDs are between 100 and
104. The variable name for the array is emp_table_type.
Using a loop, the information of the employees from the EMPLOYEES table is retrieved and
stored in the array. Another loop is used to print the last names from the array. Note the use of
the first and last methods in the example.
Note: The slide demonstrates one way to work with an associative array that uses the INDEX
BY table of records method. However, you can do the same more efficiently using cursors.
Cursors are explained in the lesson titled “Using Explicit Cursors.”
The results of the code example is as follows:

Oracle Database 11g: PL/SQL Fundamentals 6 - 25

Copyright © 2009, Oracle. All rights reserved.6 - 25

Nested Tables

2 GB max.

1
2
3
4
..

Bombay
Sydney
Oxford
London
....

Nested Tables
The functionality of nested tables is similar to that of associative arrays; however, there are
differences in the nested table implementation.

• The nested table is a valid data type in a schema-level table, but an associative array is
not. Therefore, unlike associative arrays, nested tables can be stored in the database.

• The size of a nested table can increase dynamically, although the maximum size is 2 GB.
• The “key” cannot be a negative value (unlike in the associative array). Though reference

is made to the first column as key, there is no key in a nested table. There is a column
with numbers.

• Elements can be deleted from anywhere in a nested table, leaving a sparse table with
nonsequential “keys.” The rows of a nested table are not in any particular order.

• When you retrieve values from a nested table, the rows are given consecutive subscripts
starting from 1.

Syntax
TYPE type_name IS TABLE OF
{column_type | variable%TYPE
| table.column%TYPE} [NOT NULL]
| table.%ROWTYPE

Oracle Database 11g: PL/SQL Fundamentals 6 - 26

Nested Tables (continued)
Example:

TYPE location_type IS TABLE OF locations.city%TYPE;
offices location_type;

If you do not initialize a nested table, it is automatically initialized to NULL. You can initialize
the offices nested table by using a constructor:

offices := location_type('Bombay', 'Tokyo','Singapore',
'Oxford');

The complete code example and output is as follows:

SET SERVEROUTPUT ON;

DECLARE
TYPE location_type IS TABLE OF locations.city%TYPE;
offices location_type;
table_count NUMBER;

BEGIN
offices := location_type('Bombay', 'Tokyo','Singapore',
'Oxford');

FOR i in 1.. offices.count() LOOP
DBMS_OUTPUT.PUT_LINE(offices(i));

END LOOP;
END;
/

Oracle Database 11g: PL/SQL Fundamentals 6 - 27

Copyright © 2009, Oracle. All rights reserved.6 - 27

VARRAY

Bombay
Sydney
Oxford
London
....
Tokyo

1
2
3
4
..

10

VARRAY
A variable-size array (VARRAY) is similar to an associative array, except that a VARRAY is
constrained in size.

• A VARRAY is valid in a schema-level table.
• Items of VARRAY type are called VARRAYs.
• VARRAYs have a fixed upper bound. You have to specify the upper bound when you

declare them. This is similar to arrays in C language. The maximum size of a VARRAY is
2 GB, as in nested tables.

• The distinction between a nested table and a VARRAY is the physical storage mode. The
elements of a VARRAY are stored inline with the table’s data unless the size of the
VARRAY is greater than 4 KB. Contrast that with nested tables, which are always stored
out-of-line.

• You can create a VARRAY type in the database by using SQL.
Example:

TYPE location_type IS VARRAY(3) OF locations.city%TYPE;
offices location_type;

The size of this VARRAY is restricted to 3. You can initialize a VARRAY by using constructors.
If you try to initialize the VARRAY with more than three elements, a “Subscript outside of
limit” error message is displayed.

Oracle Database 11g: PL/SQL Fundamentals 6 - 28

Copyright © 2009, Oracle. All rights reserved.6 - 28

Summary of Collection Types

Nested table Varray

Associative array

1 2 3 4 5 6 a f i o t w

Index by
PLS_INTEGER

Index by
VARCHAR2

Summary of Collection Types
Associative Arrays
Associative arrays are sets of key-value pairs, where each key is unique and is used to locate a
corresponding value in the array. The key can be either integer- or character-based. The array
value may be of the scalar data type (single value) or the record data type (multiple values).
Because associative arrays are intended for storing temporary data, you cannot use them with
SQL statements such as INSERT and SELECT INTO.
Nested Tables
A nested table holds a set of values. In other words, it is a table within a table. Nested tables
are unbounded; that is, the size of the table can increase dynamically. Nested tables are
available in both PL/SQL and the database. Within PL/SQL, nested tables are like one-
dimensional arrays whose size can increase dynamically.
Varrays
Variable-size arrays, or varrays, are also collections of homogeneous elements that hold a fixed
number of elements (although you can change the number of elements at run time). They use
sequential numbers as subscripts. You can define equivalent SQL types, thereby allowing
varrays to be stored in database tables.

Oracle Database 11g: PL/SQL Fundamentals 6 - 29

Copyright © 2009, Oracle. All rights reserved.6 - 29

Quiz

Identify situations in which you can use the %ROWTYPE attribute.
1. When you are not sure about the structure of the

underlying database table
2. When you want to retrieve an entire row from a table
3. When you want to declare a variable according to another

previously declared variable or database column

Answer: 1, 2
Advantages of Using the %ROWTYPE Attribute
Use the %ROWTYPE attribute when you are not sure about the structure of the underlying
database table.
The main advantage of using %ROWTYPE is that it simplifies maintenance. Using %ROWTYPE
ensures that the data types of the variables declared with this attribute change dynamically
when the underlying table is altered. If a DDL statement changes the columns in a table, the
PL/SQL program unit is invalidated. When the program is recompiled, it automatically reflects
the new table format.
The %ROWTYPE attribute is particularly useful when you want to retrieve an entire row from a
table. In the absence of this attribute, you would be forced to declare a variable for each of the
columns retrieved by the SELECT statement.

Oracle Database 11g: PL/SQL Fundamentals 6 - 30

Copyright © 2009, Oracle. All rights reserved.6 - 30

Summary

In this lesson, you should have learned to:
• Define and reference PL/SQL variables of composite data

types
– PL/SQL record
– Associative array

— INDEX BY table
— INDEX BY table of records

• Define a PL/SQL record by using the %ROWTYPE attribute
• Compare and contrast the three PL/SQL collection types:

– Associative array
– Nested table
– VARRAY

Summary
A PL/SQL record is a collection of individual fields that represent a row in a table. By using
records, you can group the data into one structure, and then manipulate this structure as one
entity or logical unit. This helps reduce coding and keeps the code easy to maintain and
understand.
Like PL/SQL records, a PL/SQL collection is another composite data type. PL/SQL collections
include:

• Associative arrays (also known as INDEX BY tables). They are objects of TABLE type
and look similar to database tables, but with a slight difference. The so-called INDEX BY
tables use a primary key to give you array-like access to rows. The size of an associative
array is unconstrained.

• Nested tables. The key for nested tables cannot have a negative value, unlike INDEX BY
tables. The key must also be in a sequence.

• Variable-size arrays (VARRAY). A VARRAY is similar to associative arrays, except that a
VARRAY is constrained in size.

Oracle Database 11g: PL/SQL Fundamentals 6 - 31

Copyright © 2009, Oracle. All rights reserved.6 - 31

Practice 6: Overview

This practice covers the following topics:
• Declaring associative arrays
• Processing data by using associative arrays
• Declaring a PL/SQL record
• Processing data by using a PL/SQL record

Practice 6: Overview
In this practice, you define, create, and use associative arrays and PL/SQL records.

Copyright © 2009, Oracle. All rights reserved.

Using Explicit Cursors

Oracle Database 11g: PL/SQL Fundamentals 7 - 2

Copyright © 2009, Oracle. All rights reserved.7 - 2

Objectives

After completing this lesson, you should be able to do the
following:
• Distinguish between implicit and explicit cursors
• Discuss the reasons for using explicit cursors
• Declare and control explicit cursors
• Use simple loops and cursor FOR loops to fetch data
• Declare and use cursors with parameters
• Lock rows with the FOR UPDATE clause
• Reference the current row with the WHERE CURRENT OF

clause

Objectives
You have learned about implicit cursors that are automatically created by PL/SQL when you
execute a SQL SELECT or DML statement. In this lesson, you learn about explicit cursors. You
learn to differentiate between implicit and explicit cursors. You also learn to declare and control
simple cursors, as well as cursors with parameters.

Oracle Database 11g: PL/SQL Fundamentals 7 - 3

Copyright © 2009, Oracle. All rights reserved.7 - 3

Agenda

• What are explicit cursors?
• Using explicit cursors
• Using cursors with parameters
• Locking rows and referencing the current row

Oracle Database 11g: PL/SQL Fundamentals 7 - 4

Copyright © 2009, Oracle. All rights reserved.7 - 4

Cursors

Every SQL statement that is executed by the Oracle Server has
an associated individual cursor:
• Implicit cursors: declared and managed by PL/SQL for all

DML and PL/SQL SELECT statements
• Explicit cursors: declared and managed by the

programmer

Implicit cursor Explicit cursor

Cursors
The Oracle Server uses work areas (called private SQL areas) to execute SQL statements and to
store processing information. You can use explicit cursors to name a private SQL area and to
access its stored information.

The Oracle Server implicitly opens a cursor to process each SQL statement that is not associated
with an explicitly declared cursor. Using PL/SQL, you can refer to the most recent implicit
cursor as the SQL cursor.

Cursor Type Description

Implicit Implicit cursors are declared by PL/SQL implicitly for all
DML and PL/SQL SELECT statements.

Explicit For queries that return multiple rows, explicit cursors are
declared and managed by the programmer, and manipulated
through specific statements in the block’s executable actions.

Oracle Database 11g: PL/SQL Fundamentals 7 - 5

Copyright © 2009, Oracle. All rights reserved.7 - 5

Explicit Cursor Operations

Table

100 King AD_PRES
101 Kochhar AD_VP
102 De Haan AD_VP
. . .
. . .
. . .
139 Seo ST_CLERK
140 Patel ST_CLERK
. . .

Active set

Explicit Cursor Operations
You declare explicit cursors in PL/SQL when you have a SELECT statement that returns
multiple rows. You can process each row returned by the SELECT statement.
The set of rows returned by a multiple-row query is called the active set. Its size is the number of
rows that meet your search criteria. The diagram in the slide shows how an explicit cursor
“points” to the current row in the active set. This enables your program to process the rows one
at a time.
Explicit cursor functions:

• Can perform row-by-row processing beyond the first row returned by a query
• Keep track of the row that is currently being processed
• Enable the programmer to manually control explicit cursors in the PL/SQL block

Oracle Database 11g: PL/SQL Fundamentals 7 - 6

Copyright © 2009, Oracle. All rights reserved.7 - 6

Controlling Explicit Cursors

• Load the
current
row into
variables.

• Test for
existing
rows.

• Return to
FETCH if
rows are
found.

• Release the
active set.

• Create a
named
SQL area.

• Identify the
active set.

FETCH EMPTY?

No

CLOSEYesDECLARE OPEN

Controlling Explicit Cursors
Now that you have a conceptual understanding of cursors, review the steps to use them.

1. In the declarative section of a PL/SQL block, declare the cursor by naming it and defining
the structure of the query to be associated with it.

2. Open the cursor.
The OPEN statement executes the query and binds any variables that are referenced. Rows
identified by the query are called the active set and are now available for fetching.

3. Fetch data from the cursor.
In the flow diagram shown in the slide, after each fetch, you test the cursor for any existing
row. If there are no more rows to process, you must close the cursor.

4. Close the cursor.
The CLOSE statement releases the active set of rows. It is now possible to reopen the
cursor to establish a fresh active set.

Oracle Database 11g: PL/SQL Fundamentals 7 - 7

Copyright © 2009, Oracle. All rights reserved.7 - 7

Controlling Explicit Cursors

Cursor
pointer

Open the cursor.

Close the cursor.
Cursor
pointer

Fetch a row.
Cursor
pointer

1

2

3

Controlling Explicit Cursors (continued)
A PL/SQL program opens a cursor, processes rows returned by a query, and then closes the
cursor. The cursor marks the current position in the active set.

1. The OPEN statement executes the query associated with the cursor, identifies the active set,
and positions the cursor at the first row.

2. The FETCH statement retrieves the current row and advances the cursor to the next
row until there are no more rows or a specified condition is met.

3. The CLOSE statement releases the cursor.

Oracle Database 11g: PL/SQL Fundamentals 7 - 8

Copyright © 2009, Oracle. All rights reserved.7 - 8

Agenda

• What are explicit cursors?
• Using explicit cursors
• Using cursors with parameters
• Locking rows and referencing the current row

Oracle Database 11g: PL/SQL Fundamentals 7 - 9

Copyright © 2009, Oracle. All rights reserved.7 - 9

Declaring the Cursor

Syntax:

Examples:

CURSOR cursor_name IS
select_statement;

DECLARE
CURSOR c_emp_cursor IS
SELECT employee_id, last_name FROM employees
WHERE department_id =30;

DECLARE
v_locid NUMBER:= 1700;
CURSOR c_dept_cursor IS
SELECT * FROM departments
WHERE location_id = v_locid;

...

Declaring the Cursor
The syntax to declare a cursor is shown in the slide. In the syntax:
cursor_name Is a PL/SQL identifier
select_statement Is a SELECT statement without an INTO clause
The active set of a cursor is determined by the SELECT statement in the cursor declaration. It is
mandatory to have an INTO clause for a SELECT statement in PL/SQL. However, note that the
SELECT statement in the cursor declaration cannot have an INTO clause. That is because you
are only defining a cursor in the declarative section and not retrieving any rows into the cursor.
Note

• Do not include the INTO clause in the cursor declaration because it appears later in the
FETCH statement.

• If you want the rows to be processed in a specific sequence, use the ORDER BY clause in
the query.

• The cursor can be any valid SELECT statement, including joins, subqueries, and so on.

Oracle Database 11g: PL/SQL Fundamentals 7 - 10

Declaring the Cursor (continued)
The c_emp_cursor cursor is declared to retrieve the employee_id and last_name
columns for those employees working in the department with department_id 30.
The c_dept_cursor cursor is declared to retrieve all the details for the department with the
location_id 1700. Note that a variable is used while declaring the cursor. These variables
are considered bind variables, which must be visible when you are declaring the cursor. These
variables are examined only once at the time the cursor opens. You have learned that explicit
cursors are used when you have to retrieve and operate on multiple rows in PL/SQL. However,
this example shows that you can use the explicit cursor even if your SELECT statement returns
only one row.

Oracle Database 11g: PL/SQL Fundamentals 7 - 11

Copyright © 2009, Oracle. All rights reserved.7 - 11

Opening the Cursor

DECLARE
CURSOR c_emp_cursor IS
SELECT employee_id, last_name FROM employees
WHERE department_id =30;

...
BEGIN

OPEN c_emp_cursor;

Opening the Cursor
The OPEN statement executes the query associated with the cursor, identifies the active set, and
positions the cursor pointer at the first row. The OPEN statement is included in the executable
section of the PL/SQL block.
OPEN is an executable statement that performs the following operations:

1. Dynamically allocates memory for a context area
2. Parses the SELECT statement
3. Binds the input variables (sets the values for the input variables by obtaining their memory

addresses)
4. Identifies the active set (the set of rows that satisfy the search criteria). Rows in the active

set are not retrieved into variables when the OPEN statement is executed. Rather, the
FETCH statement retrieves the rows from the cursor to the variables.

5. Positions the pointer to the first row in the active set
Note: If a query returns no rows when the cursor is opened, PL/SQL does not raise an exception.
You can find out the number of rows returned with an explicit cursor by using the
<cursor_name>%ROWCOUNT attribute.

Oracle Database 11g: PL/SQL Fundamentals 7 - 12

Copyright © 2009, Oracle. All rights reserved.7 - 12

Fetching Data from the Cursor

DECLARE
CURSOR c_emp_cursor IS
SELECT employee_id, last_name FROM employees
WHERE department_id =30;
v_empno employees.employee_id%TYPE;
v_lname employees.last_name%TYPE;

BEGIN
OPEN c_emp_cursor;
FETCH c_emp_cursor INTO v_empno, v_lname;
DBMS_OUTPUT.PUT_LINE(v_empno ||' '||v_lname);

END;
/

Fetching Data from the Cursor
The FETCH statement retrieves the rows from the cursor one at a time. After each fetch, the
cursor advances to the next row in the active set. You can use the %NOTFOUND attribute to
determine whether the entire active set has been retrieved.
Consider the example shown in the slide. Two variables, empno and lname, are declared to
hold the fetched values from the cursor. Examine the FETCH statement.
You have successfully fetched the values from the cursor to the variables. However, there are six
employees in department 30, but only one row was fetched. To fetch all rows, you must use
loops. In the next slide, you see how a loop is used to fetch all the rows.
The FETCH statement performs the following operations:

1. Reads the data for the current row into the output PL/SQL variables
2. Advances the pointer to the next row in the active set

Oracle Database 11g: PL/SQL Fundamentals 7 - 13

Fetching Data from the Cursor (continued)
You can include the same number of variables in the INTO clause of the FETCH statement as
there are columns in the SELECT statement; be sure that the data types are compatible. Match
each variable to correspond to the columns positionally. Alternatively, you can also define a
record for the cursor and reference the record in the FETCH INTO clause. Finally, test to see
whether the cursor contains rows. If a fetch acquires no values, there are no rows left to process
in the active set and no error is recorded.

Oracle Database 11g: PL/SQL Fundamentals 7 - 14

Copyright © 2009, Oracle. All rights reserved.7 - 14

Fetching Data from the Cursor

DECLARE
CURSOR c_emp_cursor IS
SELECT employee_id, last_name FROM employees
WHERE department_id =30;
v_empno employees.employee_id%TYPE;
v_lname employees.last_name%TYPE;

BEGIN
OPEN c_emp_cursor;
LOOP

FETCH c_emp_cursor INTO v_empno, v_lname;
EXIT WHEN c_emp_cursor%NOTFOUND;
DBMS_OUTPUT.PUT_LINE(v_empno ||' '||v_lname);

END LOOP;
END;
/

Fetching Data from the Cursor (continued)
Observe that a simple LOOP is used to fetch all the rows. Also, the cursor attribute %NOTFOUND
is used to test for the exit condition. The output of the PL/SQL block is:

Oracle Database 11g: PL/SQL Fundamentals 7 - 15

Copyright © 2009, Oracle. All rights reserved.7 - 15

Closing the Cursor

...
LOOP

FETCH c_emp_cursor INTO empno, lname;
EXIT WHEN c_emp_cursor%NOTFOUND;
DBMS_OUTPUT.PUT_LINE(v_empno ||' '||v_lname);

END LOOP;
CLOSE c_emp_cursor;
END;
/

Closing the Cursor
The CLOSE statement disables the cursor, releases the context area, and “undefines” the active
set. Close the cursor after completing the processing of the FETCH statement. You can reopen
the cursor if required. A cursor can be reopened only if it is closed. If you attempt to fetch data
from a cursor after it is closed, an INVALID_CURSOR exception is raised.
Note: Although it is possible to terminate the PL/SQL block without closing cursors, you should
make it a habit to close any cursor that you declare explicitly to free resources.
There is a maximum limit on the number of open cursors per session, which is determined by the
OPEN_CURSORS parameter in the database parameter file. (OPEN_CURSORS = 50 by default.)

Oracle Database 11g: PL/SQL Fundamentals 7 - 16

Copyright © 2009, Oracle. All rights reserved.7 - 16

Cursors and Records

Process the rows of the active set by fetching values into a
PL/SQL record.
DECLARE

CURSOR c_emp_cursor IS
SELECT employee_id, last_name FROM employees
WHERE department_id =30;
v_emp_record c_emp_cursor%ROWTYPE;

BEGIN
OPEN c_emp_cursor;
LOOP

FETCH c_emp_cursor INTO v_emp_record;
EXIT WHEN c_emp_cursor%NOTFOUND;
DBMS_OUTPUT.PUT_LINE(v_emp_record.employee_id

||' '||v_emp_record.last_name);
END LOOP;
CLOSE c_emp_cursor;

END;

Cursors and Records
You have already seen that you can define records that have the structure of columns in a table.
You can also define a record based on the selected list of columns in an explicit cursor. This is
convenient for processing the rows of the active set, because you can simply fetch into the
record. Therefore, the values of the rows are loaded directly into the corresponding fields of the
record.

Oracle Database 11g: PL/SQL Fundamentals 7 - 17

Copyright © 2009, Oracle. All rights reserved.7 - 17

Cursor FOR Loops

Syntax:

• The cursor FOR loop is a shortcut to process explicit
cursors.

• Implicit open, fetch, exit, and close occur.
• The record is implicitly declared.

FOR record_name IN cursor_name LOOP
statement1;
statement2;
. . .

END LOOP;

Cursor FOR Loops
You learned to fetch data from cursors by using simple loops. You now learn to use a cursor
FOR loop, which processes rows in an explicit cursor. It is a shortcut because the cursor is
opened, a row is fetched once for each iteration in the loop, the loop exits when the last row is
processed, and the cursor is closed automatically. The loop itself is terminated automatically at
the end of the iteration where the last row is fetched.
In the syntax:

record_name Is the name of the implicitly declared record
cursor_name Is a PL/SQL identifier for the previously declared cursor

Guidelines
• Do not declare the record that controls the loop; it is declared implicitly.
• Test the cursor attributes during the loop if required.
• Supply the parameters for a cursor, if required, in parentheses following the cursor name in

the FOR statement.

Oracle Database 11g: PL/SQL Fundamentals 7 - 18

Copyright © 2009, Oracle. All rights reserved.7 - 18

Cursor FOR Loops

DECLARE
CURSOR c_emp_cursor IS
SELECT employee_id, last_name FROM employees
WHERE department_id =30;

BEGIN
FOR emp_record IN c_emp_cursor
LOOP
DBMS_OUTPUT.PUT_LINE(emp_record.employee_id
||' ' ||emp_record.last_name);
END LOOP;

END;
/

Cursor FOR Loops (continued)
The example that was used to demonstrate the usage of a simple loop to fetch data from cursors
is rewritten to use the cursor FOR loop.
emp_record is the record that is implicitly declared. You can access the fetched data with this
implicit record (as shown in the slide). Observe that no variables are declared to hold the fetched
data using the INTO clause. The code does not have the OPEN and CLOSE statements to open
and close the cursor, respectively.

Oracle Database 11g: PL/SQL Fundamentals 7 - 19

Copyright © 2009, Oracle. All rights reserved.7 - 19

Explicit Cursor Attributes

Use explicit cursor attributes to obtain status information about
a cursor.

Evaluates to the total number of rows returned
so far

Number%ROWCOUNT

%FOUND

%NOTFOUND

%ISOPEN

Attribute

Evaluates to TRUE if the cursor is openBoolean

Evaluates to TRUE if the most recent fetch
returns a row; complement of %NOTFOUND

Boolean

Evaluates to TRUE if the most recent fetch
does not return a row

Description

Boolean

Type

Explicit Cursor Attributes
As with implicit cursors, there are four attributes for obtaining the status information of a cursor.
When appended to the cursor variable name, these attributes return useful information about the
execution of a cursor manipulation statement.
Note: You cannot reference cursor attributes directly in a SQL statement.

Oracle Database 11g: PL/SQL Fundamentals 7 - 20

Copyright © 2009, Oracle. All rights reserved.7 - 20

%ISOPEN Attribute

• You can fetch rows only when the cursor is open.
• Use the %ISOPEN cursor attribute before performing a

fetch to test whether the cursor is open.
Example:

IF NOT c_emp_cursor%ISOPEN THEN
OPEN c_emp_cursor;

END IF;
LOOP

FETCH c_emp_cursor...

%ISOPEN Attribute
• You can fetch rows only when the cursor is open. Use the %ISOPEN cursor attribute to

determine whether the cursor is open.
• Fetch rows in a loop. Use cursor attributes to determine when to exit the loop.
• Use the %ROWCOUNT cursor attribute to do the following:

- Process an exact number of rows.
- Fetch the rows in a loop and determine when to exit the loop.

Note: %ISOPEN returns the status of the cursor: TRUE if open and FALSE if not.

Oracle Database 11g: PL/SQL Fundamentals 7 - 21

Copyright © 2009, Oracle. All rights reserved.7 - 21

%ROWCOUNT and %NOTFOUND: Example
DECLARE
CURSOR c_emp_cursor IS SELECT employee_id,

last_name FROM employees;
v_emp_record c_emp_cursor%ROWTYPE;

BEGIN
OPEN c_emp_cursor;
LOOP
FETCH c_emp_cursor INTO v_emp_record;
EXIT WHEN c_emp_cursor%ROWCOUNT > 10 OR

c_emp_cursor%NOTFOUND;
DBMS_OUTPUT.PUT_LINE(v_emp_record.employee_id

||' '||v_emp_record.last_name);
END LOOP;
CLOSE c_emp_cursor;

END ; /

%ROWCOUNT and %NOTFOUND: Example
The example in the slide retrieves the first 10 employees one by one. This example shows how
the %ROWCOUNT and %NOTFOUND attributes can be used for exit conditions in a loop.

Oracle Database 11g: PL/SQL Fundamentals 7 - 22

Copyright © 2009, Oracle. All rights reserved.7 - 22

Cursor FOR Loops Using Subqueries

There is no need to declare the cursor.

BEGIN
FOR emp_record IN (SELECT employee_id, last_name
FROM employees WHERE department_id =30)
LOOP
DBMS_OUTPUT.PUT_LINE(emp_record.employee_id
||' '||emp_record.last_name);
END LOOP;

END;
/

Cursor FOR Loops Using Subqueries
Note that there is no declarative section in this PL/SQL block. The difference between the cursor
FOR loops using subqueries and the cursor FOR loop lies in the cursor declaration. If you are
writing cursor FOR loops using subqueries, you need not declare the cursor in the declarative
section. You have to provide the SELECT statement that determines the active set in the loop
itself.
The example that was used to illustrate a cursor FOR loop is rewritten to illustrate a cursor FOR
loop using subqueries.
Note: You cannot reference explicit cursor attributes if you use a subquery in a cursor FOR loop
because you cannot give the cursor an explicit name.

Oracle Database 11g: PL/SQL Fundamentals 7 - 23

Copyright © 2009, Oracle. All rights reserved.7 - 23

Agenda

• What are explicit cursors?
• Using explicit cursors
• Using cursors with parameters
• Locking rows and referencing the current row

Oracle Database 11g: PL/SQL Fundamentals 7 - 24

Copyright © 2009, Oracle. All rights reserved.7 - 24

Cursors with Parameters

Syntax:

• Pass parameter values to a cursor when the cursor is
opened and the query is executed.

• Open an explicit cursor several times with a different active
set each time.

CURSOR cursor_name
[(parameter_name datatype, ...)]

IS
select_statement;

OPEN cursor_name(parameter_value,.....) ;

Cursors with Parameters
You can pass parameters to a cursor. This means that you can open and close an explicit cursor
several times in a block, returning a different active set on each occasion. For each execution,
the previous cursor is closed and reopened with a new set of parameters.
Each formal parameter in the cursor declaration must have a corresponding actual parameter
in the OPEN statement. Parameter data types are the same as those for scalar variables, but
you do not give them sizes. The parameter names are for reference in the query expression of the
cursor.
In the syntax:

The parameter notation does not offer greater functionality; it simply allows you to specify input
values easily and clearly. This is particularly useful when the same cursor is referenced
repeatedly.

Is a SELECT statement without the INTO clauseselect_statement
Is the scalar data type of the parameterdatatype
Is the name of a parameterparameter_name
Is a PL/SQL identifier for the declared cursorcursor_name

Oracle Database 11g: PL/SQL Fundamentals 7 - 25

Copyright © 2009, Oracle. All rights reserved.7 - 25

Cursors with Parameters

DECLARE
CURSOR c_emp_cursor (deptno NUMBER) IS
SELECT employee_id, last_name
FROM employees
WHERE department_id = deptno;
...

BEGIN
OPEN c_emp_cursor (10);
...
CLOSE c_emp_cursor;
OPEN c_emp_cursor (20);
...

Cursors with Parameters (continued)
Parameter data types are the same as those for scalar variables, but you do not give them sizes.
The parameter names are for reference in the cursor’s query. In the following example, a cursor
is declared and is defined with one parameter:

DECLARE
CURSOR c_emp_cursor(deptno NUMBER) IS SELECT ...

The following statements open the cursor and return different active sets:
OPEN c_emp_cursor(10);
OPEN c_emp_cursor(20);

You can pass parameters to the cursor that is used in a cursor FOR loop:
DECLARE
CURSOR c_emp_cursor(p_deptno NUMBER, p_job VARCHAR2)IS

SELECT ...
BEGIN

FOR emp_record IN c_emp_cursor(10, 'Sales') LOOP ...

Oracle Database 11g: PL/SQL Fundamentals 7 - 26

Copyright © 2009, Oracle. All rights reserved.7 - 26

Agenda

• What are explicit cursors?
• Using explicit cursors
• Using cursors with parameters
• Locking rows and referencing the current row

Oracle Database 11g: PL/SQL Fundamentals 7 - 27

Copyright © 2009, Oracle. All rights reserved.7 - 27

FOR UPDATE Clause

Syntax:

• Use explicit locking to deny access to other sessions for
the duration of a transaction.

• Lock the rows before the update or delete.

SELECT ...
FROM ...
FOR UPDATE [OF column_reference][NOWAIT | WAIT n];

FOR UPDATE Clause
If there are multiple sessions for a single database, there is the possibility that the rows of a
particular table were updated after you opened your cursor. You see the updated data only when
you reopen the cursor. Therefore, it is better to have locks on the rows before you update or
delete rows. You can lock the rows with the FOR UPDATE clause in the cursor query.
In the syntax:

The FOR UPDATE clause is the last clause in a SELECT statement, even after ORDER BY (if it
exists). When you want to query multiple tables, you can use the FOR UPDATE clause to confine
row locking to particular tables. FOR UPDATE OF col_name(s) locks rows only in tables
that contain col_name(s).

Returns an Oracle Server error if the rows are
locked by another session

NOWAIT

Is a column in the table against which the query is
performed (A list of columns may also be used.)

column_reference

Oracle Database 11g: PL/SQL Fundamentals 7 - 28

FOR UPDATE Clause (continued)
The SELECT ... FOR UPDATE statement identifies the rows that are to be updated or deleted,
and then locks each row in the result set. This is useful when you want to base an update on the
existing values in a row. In that case, you must make sure that the row is not changed by another
session before the update.
The optional NOWAIT keyword tells the Oracle Server not to wait if the requested rows have
been locked by another user. Control is immediately returned to your program so that it can do
other work before trying again to acquire the lock. If you omit the NOWAIT keyword, the Oracle
Server waits until the rows are available.
Example:

DECLARE
CURSOR c_emp_cursor IS
SELECT employee_id, last_name, FROM employees
WHERE department_id = 80 FOR UPDATE OF salary NOWAIT;
...

If the Oracle Server cannot acquire the locks on the rows it needs in a SELECT FOR UPDATE
operation, it waits indefinitely. Use NOWAIT to handle such situations. If the rows are locked by
another session and you have specified NOWAIT, opening the cursor results in an error. You can
try to open the cursor later. You can use WAIT instead of NOWAIT, specify the number of
seconds to wait, and then determine whether the rows are unlocked. If the rows are still locked
after n seconds, an error is returned.
It is not mandatory for the FOR UPDATE OF clause to refer to a column, but it is
recommended for better readability and maintenance.

Oracle Database 11g: PL/SQL Fundamentals 7 - 29

Copyright © 2009, Oracle. All rights reserved.7 - 29

WHERE CURRENT OF Clause

Syntax:

• Use cursors to update or delete the current row.
• Include the FOR UPDATE clause in the cursor query to first

lock the rows.
• Use the WHERE CURRENT OF clause to reference the

current row from an explicit cursor.

WHERE CURRENT OF cursor ;

UPDATE employees
SET salary = ...
WHERE CURRENT OF c_emp_cursor;

WHERE CURRENT OF Clause
The WHERE CURRENT OF clause is used in conjunction with the FOR UPDATE clause to refer
to the current row in an explicit cursor. The WHERE CURRENT OF clause is used in the UPDATE
or DELETE statement, whereas the FOR UPDATE clause is specified in the cursor declaration.
You can use the combination for updating and deleting the current row from the corresponding
database table. This enables you to apply updates and deletes to the row currently being
addressed, without the need to explicitly reference the row ID. You must include the FOR
UPDATE clause in the cursor query so that the rows are locked on OPEN.
In the syntax:

cursor Is the name of a declared cursor (The cursor must have been declared with the FOR
UPDATE clause.)

Oracle Database 11g: PL/SQL Fundamentals 7 - 30

Copyright © 2009, Oracle. All rights reserved.7 - 30

Quiz

Implicit cursors are declared by PL/SQL implicitly for all DML
and PL/SQL SELECT statements. The Oracle Server implicitly
opens a cursor to process each SQL statement that is not
associated with an explicitly declared cursor.
1. True
2. False

Answer: 1

Oracle Database 11g: PL/SQL Fundamentals 7 - 31

Copyright © 2009, Oracle. All rights reserved.7 - 31

Summary

In this lesson, you should have learned to:
• Distinguish cursor types:

– Implicit cursors are used for all DML statements and single-
row queries.

– Explicit cursors are used for queries of zero, one, or more
rows.

• Create and handle explicit cursors
• Use simple loops and cursor FOR loops to handle multiple

rows in the cursors
• Evaluate cursor status by using cursor attributes
• Use the FOR UPDATE and WHERE CURRENT OF clauses to

update or delete the current fetched row

Summary
The Oracle Server uses work areas to execute SQL statements and store processing information.
You can use a PL/SQL construct called a cursor to name a work area and access its stored
information. There are two kinds of cursors: implicit and explicit. PL/SQL implicitly declares a
cursor for all SQL data manipulation statements, including queries that return only one row. For
queries that return multiple rows, you must explicitly declare a cursor to process the rows
individually.
Every explicit cursor and cursor variable has four attributes: %FOUND, %ISOPEN, %NOTFOUND,
and %ROWCOUNT. When appended to the cursor variable name, these attributes return useful
information about the execution of a SQL statement. You can use cursor attributes in procedural
statements but not in SQL statements.
Use simple loops or cursor FOR loops to operate on the multiple rows fetched by the cursor. If
you are using simple loops, you have to open, fetch, and close the cursor; however, cursor FOR
loops do this implicitly. If you are updating or deleting rows, lock the rows by using a FOR
UPDATE clause. This ensures that the data you are using is not updated by another session after
you open the cursor. Use a WHERE CURRENT OF clause in conjunction with the FOR UPDATE
clause to reference the current row fetched by the cursor.

Oracle Database 11g: PL/SQL Fundamentals 7 - 32

Copyright © 2009, Oracle. All rights reserved.7 - 32

Practice 7: Overview

This practice covers the following topics:
• Declaring and using explicit cursors to query rows of a

table
• Using a cursor FOR loop
• Applying cursor attributes to test the cursor status
• Declaring and using cursors with parameters
• Using the FOR UPDATE and WHERE CURRENT OF clauses

Practice 7: Overview
In this practice, you apply your knowledge of cursors to process a number of rows from a table
and populate another table with the results using a cursor FOR loop. You also write a cursor with
parameters.

Copyright © 2009, Oracle. All rights reserved.

Handling Exceptions

Oracle Database 11g: PL/SQL Fundamentals 8 - 2

Copyright © 2009, Oracle. All rights reserved.8 - 2

Objectives

After completing this lesson, you should be able to do the
following:
• Define PL/SQL exceptions
• Recognize unhandled exceptions
• List and use different types of PL/SQL exception handlers
• Trap unanticipated errors
• Describe the effect of exception propagation in nested

blocks
• Customize PL/SQL exception messages

Objectives
You learned to write PL/SQL blocks with a declarative section and an executable section. All
the SQL and PL/SQL code that must be executed is written in the executable block.
So far it has been assumed that the code works satisfactorily if you take care of compile-time
errors. However, the code may cause some unanticipated errors at run time. In this lesson, you
learn how to deal with such errors in the PL/SQL block.

Oracle Database 11g: PL/SQL Fundamentals 8 - 3

Copyright © 2009, Oracle. All rights reserved.8 - 3

Agenda

• Understanding PL/SQL exceptions
• Trapping exceptions

Oracle Database 11g: PL/SQL Fundamentals 8 - 4

Copyright © 2009, Oracle. All rights reserved.8 - 4

What Is an Exception?
DECLARE
v_lname VARCHAR2(15);

BEGIN
SELECT last_name INTO v_lname
FROM employees
WHERE first_name='John';
DBMS_OUTPUT.PUT_LINE ('John''s last name is :' ||v_lname);

END;

What Is an Exception?
Consider the example shown in the slide. There are no syntax errors in the code, which means
that you must be able to successfully execute the anonymous block. The SELECT statement in
the block retrieves the last name of John.
However, you see the following error report when you execute the code:

The code does not work as expected. You expected the SELECT statement to retrieve only one
row; however, it retrieves multiple rows. Such errors that occur at run time are called exceptions.
When an exception occurs, the PL/SQL block is terminated. You can handle such exceptions in
your PL/SQL block.

Oracle Database 11g: PL/SQL Fundamentals 8 - 5

Copyright © 2009, Oracle. All rights reserved.8 - 5

Handling the Exception: An Example
DECLARE
v_lname VARCHAR2(15);

BEGIN
SELECT last_name INTO v_lname
FROM employees
WHERE first_name='John';
DBMS_OUTPUT.PUT_LINE ('John''s last name is :' ||v_lname);

EXCEPTION
WHEN TOO_MANY_ROWS THEN
DBMS_OUTPUT.PUT_LINE (' Your select statement retrieved
multiple rows. Consider using a cursor.');

END;
/

Handling the Exception: An Example
You have previously learned how to write PL/SQL blocks with a declarative section (beginning
with the DECLARE keyword) and an executable section (beginning and ending with the BEGIN
and END keywords, respectively).
For exception handling, you include another optional section called the exception section.

• This section begins with the EXCEPTION keyword.
• If present, this must be the last section in a PL/SQL block.

Example
In the example in the slide, the code from the previous slide is rewritten to handle the exception
that occurred. The output of the code is shown in the slide as well.
By adding the EXCEPTION section of the code, the PL/SQL program does not terminate
abruptly. When the exception is raised, the control shifts to the exception section and all the
statements in the exception section are executed. The PL/SQL block terminates with normal,
successful completion

Oracle Database 11g: PL/SQL Fundamentals 8 - 6

Copyright © 2009, Oracle. All rights reserved.8 - 6

Understanding Exceptions with PL/SQL

• An exception is a PL/SQL error that is raised during
program execution.

• An exception can be raised:
– Implicitly by the Oracle Server
– Explicitly by the program

• An exception can be handled:
– By trapping it with a handler
– By propagating it to the calling environment

Understanding Exceptions with PL/SQL
An exception is an error in PL/SQL that is raised during the execution of a block. A block
always terminates when PL/SQL raises an exception, but you can specify an exception handler
to perform final actions before the block ends.
Two Methods for Raising an Exception

• An Oracle error occurs and the associated exception is raised automatically. For example,
if the ORA-01403 error occurs when no rows are retrieved from the database in a
SELECT statement, PL/SQL raises the NO_DATA_FOUND exception. These errors are
converted into predefined exceptions.

• Depending on the business functionality your program implements, you may have to
explicitly raise an exception. You raise an exception explicitly by issuing the RAISE
statement in the block. The raised exception may be either user-defined or predefined.
There are also some non-predefined Oracle errors. These errors are any standard Oracle
errors that are not predefined. You can explicitly declare exceptions and associate them
with the non-predefined Oracle errors.

Oracle Database 11g: PL/SQL Fundamentals 8 - 7

Copyright © 2009, Oracle. All rights reserved.8 - 7

Handling Exceptions

Exception
is raised.

Is the
exception
trapped?

Yes

Execute statements
in the EXCEPTION

section.

Terminate
gracefully.

No
Terminate
abruptly.

Propagate the
exception.

Handling Exceptions
Trapping an Exception
Include an EXCEPTION section in your PL/SQL program to trap exceptions. If the exception is
raised in the executable section of the block, processing branches to the corresponding exception
handler in the exception section of the block. If PL/SQL successfully handles the exception, the
exception does not propagate to the enclosing block or to the calling environment. The PL/SQL
block terminates successfully.
Propagating an Exception
If the exception is raised in the executable section of the block and there is no corresponding
exception handler, the PL/SQL block terminates with failure and the exception is propagated to
an enclosing block or to the calling environment. The calling environment can be any
application (such as SQL*Plus that invokes the PL/SQL program).

Oracle Database 11g: PL/SQL Fundamentals 8 - 8

Copyright © 2009, Oracle. All rights reserved.8 - 8

Exception Types

• Predefined Oracle Server
• Non-predefined Oracle Server

• User-defined

} Implicitly raised

Explicitly raised

Exception Types
There are three types of exceptions.

Note: Some application tools with client-side PL/SQL (such as Oracle Developer Forms) have
their own exceptions.

Exception Description Directions for Handling
Predefined Oracle
Server error

One of approximately 20
errors that occur most
often in PL/SQL code

You need not declare these
exceptions. They are predefined by
the Oracle server and are raised
implicitly.

Non-predefined
Oracle Server error

Any other standard
Oracle Server error

You need to declare these within the
declarative section; the Oracle server
raises the error implicitly, and you
can catch the error in the exception
handler.

User-defined error A condition that the
developer determines is
abnormal

You need to declare in the
declarative section and raise
explicitly.

Oracle Database 11g: PL/SQL Fundamentals 8 - 9

Copyright © 2009, Oracle. All rights reserved.8 - 9

Agenda

• Understanding PL/SQL exceptions
• Trapping exceptions

Oracle Database 11g: PL/SQL Fundamentals 8 - 10

Copyright © 2009, Oracle. All rights reserved.8 - 10

Syntax to Trap Exceptions

EXCEPTION
WHEN exception1 [OR exception2 . . .] THEN

statement1;
statement2;
. . .

[WHEN exception3 [OR exception4 . . .] THEN
statement1;
statement2;
. . .]

[WHEN OTHERS THEN
statement1;
statement2;
. . .]

Syntax to Trap Exceptions
You can trap any error by including a corresponding handler within the exception-handling
section of the PL/SQL block. Each handler consists of a WHEN clause, which specifies an
exception name, followed by a sequence of statements to be executed when that exception is
raised.
You can include any number of handlers within an EXCEPTION section to handle specific
exceptions. However, you cannot have multiple handlers for a single exception.
Exception trapping syntax includes the following elements:

exception Is the standard name of a predefined exception or the name of a user-
defined exception declared within the declarative section
 statement Is one or more PL/SQL or SQL statements
 OTHERS Is an optional exception-handling clause that traps any exceptions
that have not been explicitly handled

Oracle Database 11g: PL/SQL Fundamentals 8 - 11

Exception Trapping Syntax (continued)
WHEN OTHERS Exception Handler
As stated previously, the exception-handling section traps only those exceptions that are
specified.
To trap any exceptions that are not specified, you use the OTHERS exception handler. This
option traps any exception not yet handled. For this reason, if the OTHERS handler is used, it
must be the last exception handler that is defined.
For example:

WHEN NO_DATA_FOUND THEN
statement1;
...

WHEN TOO_MANY_ROWS THEN
statement1;
...

WHEN OTHERS THEN
statement1;

Example
Consider the preceding example. If the NO_DATA_FOUND exception is raised by the program,
the statements in the corresponding handler are executed. If the TOO_MANY_ROWS exception is
raised, the statements in the corresponding handler are executed. However, if some other
exception is raised, the statements in the OTHERS exception handler are executed.
The OTHERS handler traps all the exceptions that are not already trapped. Some Oracle tools
have their own predefined exceptions that you can raise to cause events in the application. The
OTHERS handler also traps these exceptions.

Oracle Database 11g: PL/SQL Fundamentals 8 - 12

Copyright © 2009, Oracle. All rights reserved.8 - 12

Guidelines for Trapping Exceptions

• The EXCEPTION keyword starts the exception-handling
section.

• Several exception handlers are allowed.
• Only one handler is processed before leaving the block.
• WHEN OTHERS is the last clause.

Guidelines for Trapping Exceptions
• Begin the exception-handling section of the block with the EXCEPTION keyword.
• Define several exception handlers, each with its own set of actions, for the block.
• When an exception occurs, PL/SQL processes only one handler before leaving the block.
• Place the OTHERS clause after all other exception-handling clauses.
• You can have only one OTHERS clause.
• Exceptions cannot appear in assignment statements or SQL statements.

Oracle Database 11g: PL/SQL Fundamentals 8 - 13

Copyright © 2009, Oracle. All rights reserved.8 - 13

Trapping Predefined Oracle Server Errors

• Reference the predefined name in the exception-handling
routine.

• Sample predefined exceptions:
– NO_DATA_FOUND
– TOO_MANY_ROWS
– INVALID_CURSOR
– ZERO_DIVIDE
– DUP_VAL_ON_INDEX

Trapping Predefined Oracle Server Errors
Trap a predefined Oracle Server error by referencing its predefined name within the
corresponding exception-handling routine.
For a complete list of predefined exceptions, see the PL/SQL User’s Guide and Reference.
Note: PL/SQL declares predefined exceptions in the STANDARD package.

Oracle Database 11g: PL/SQL Fundamentals 8 - 14

Predefined Exceptions

Exception Name Oracle
Server
Error
Number

Description

ACCESS_INTO_NULL ORA-
06530

Attempted to assign values to the
attributes of an uninitialized object

CASE_NOT_FOUND ORA-
06592

None of the choices in the WHEN clauses
of a CASE statement are selected, and
there is no ELSE clause.

COLLECTION_IS_NULL ORA-
06531

Attempted to apply collection methods
other than EXISTS to an uninitialized
nested table or VARRAY

CURSOR_ALREADY_OPEN ORA-
06511

Attempted to open an already open cursor

DUP_VAL_ON_INDEX ORA-
00001

Attempted to insert a duplicate value

INVALID_CURSOR ORA-
01001

Illegal cursor operation occurred.

INVALID_NUMBER ORA-
01722

Conversion of character string to number
failed.

LOGIN_DENIED ORA-
01017

Logging on to the Oracle server with an
invalid username or password

NO_DATA_FOUND ORA-
01403

Single row SELECT returned no data.

NOT_LOGGED_ON ORA-
01012

The PL/SQL program issues a database
call without being connected to the Oracle
server.

PROGRAM_ERROR ORA-
06501

PL/SQL has an internal problem.

ROWTYPE_MISMATCH ORA-
06504

The host cursor variable and PL/SQL
cursor variable involved in an assignment
have incompatible return types.

Oracle Database 11g: PL/SQL Fundamentals 8 - 15

Predefined Exceptions (continued)

Exception Name Oracle
Server
Error
Number

Description

STORAGE_ERROR ORA-
06500

PL/SQL ran out of memory, or memory is
corrupted.

SUBSCRIPT_BEYOND_COUNT ORA-
06533

Referenced a nested table or VARRAY element
by using an index number larger than the
number of elements in the collection

SUBSCRIPT_OUTSIDE_LIMIT ORA-
06532

Referenced a nested table or VARRAY element
by using an index number that is outside the
legal range (for example, –1)

SYS_INVALID_ROWID ORA-
01410

The conversion of a character string into a
universal ROWID fails because the character
string does not represent a valid ROWID.

TIMEOUT_ON_RESOURCE ORA-
00051

Time-out occurred while the Oracle server was
waiting for a resource.

TOO_MANY_ROWS ORA-
01422

Single-row SELECT returned multiple rows.

VALUE_ERROR ORA-
06502

Arithmetic, conversion, truncation, or size-
constraint error occurred.

ZERO_DIVIDE ORA-
01476

Attempted to divide by zero

Oracle Database 11g: PL/SQL Fundamentals 8 - 16

Copyright © 2009, Oracle. All rights reserved.8 - 16

Trapping Non-Predefined
Oracle Server Errors

Declarative section

Declare

Name the
exception.

Use PRAGMA
EXCEPTION_INIT.

EXCEPTION section

Handle the raised
exception.

Associate Reference

Trapping Non-Predefined Oracle Server Errors
Non-predefined exceptions are similar to predefined exceptions; however, they are not defined
as PL/SQL exceptions in the Oracle Server. They are standard Oracle errors. You create
exceptions with standard Oracle errors by using the PRAGMA EXCEPTION_INIT function.
Such exceptions are called non-predefined exceptions.
You can trap a non-predefined Oracle Server error by declaring it first. The declared exception is
raised implicitly. In PL/SQL, PRAGMA EXCEPTION_INIT tells the compiler to associate an
exception name with an Oracle error number. This enables you to refer to any internal exception
by name and to write a specific handler for it.
Note: PRAGMA (also called pseudoinstructions) is the keyword that signifies that the statement
is a compiler directive, which is not processed when the PL/SQL block is executed. Rather, it
directs the PL/SQL compiler to interpret all occurrences of the exception name within the block
as the associated Oracle Server error number.

Oracle Database 11g: PL/SQL Fundamentals 8 - 17

Copyright © 2009, Oracle. All rights reserved.8 - 17

Non-Predefined Error Trapping: Example
To trap Oracle Server error 01400 (“cannot insert NULL”):
DECLARE
e_insert_excep EXCEPTION;
PRAGMA EXCEPTION_INIT(e_insert_excep, -01400);
BEGIN
INSERT INTO departments
(department_id, department_name) VALUES (280, NULL);
EXCEPTION
WHEN e_insert_excep THEN

DBMS_OUTPUT.PUT_LINE('INSERT OPERATION FAILED');
DBMS_OUTPUT.PUT_LINE(SQLERRM);

END;
/

1
2

3

Non-Predefined Error Trapping: Example
The example illustrates the three steps associated with trapping a non-predefined error:

1. Declare the name of the exception in the declarative section, using the syntax:
exception EXCEPTION;

In the syntax, exception is the name of the exception.
2. Associate the declared exception with the standard Oracle Server error number by using

the PRAGMA EXCEPTION_INIT function. Use the following syntax:
PRAGMA EXCEPTION_INIT(exception, error_number);

In the syntax, exception is the previously declared exception and error_number is a
standard Oracle Server error number.

3. Reference the declared exception within the corresponding exception-handling routine.
Example
The example in the slide tries to insert the NULL value for the department_name column of
the departments table. However, the operation is not successful because
department_name is a NOT NULL column. Note the following line in the example:

DBMS_OUTPUT.PUT_LINE(SQLERRM);
The SQLERRM function is used to retrieve the error message. You learn more about SQLERRM
in the next few slides.

Oracle Database 11g: PL/SQL Fundamentals 8 - 18

Copyright © 2009, Oracle. All rights reserved.8 - 18

Functions for Trapping Exceptions

• SQLCODE: Returns the numeric value for the error code
• SQLERRM: Returns the message associated with the error

number

Functions for Trapping Exceptions
When an exception occurs, you can identify the associated error code or error message by using
two functions. Based on the values of the code or the message, you can decide which subsequent
actions to take.
SQLCODE returns the Oracle error number for internal exceptions. SQLERRM returns the
message associated with the error number.

SQLCODE Values: Examples

Function Description

SQLCODE Returns the numeric value for the error code (You can assign it to a
NUMBER variable.)

SQLERRM Returns character data containing the message associated with the error
number

SQLCODE Value Description
0 No exception encountered
1 User-defined exception
+100 NO_DATA_FOUND exception
negative number Another Oracle server error number

Oracle Database 11g: PL/SQL Fundamentals 8 - 19

Copyright © 2009, Oracle. All rights reserved.8 - 19

Functions for Trapping Exceptions

DECLARE
error_code NUMBER;
error_message VARCHAR2(255);

BEGIN
...
EXCEPTION
...
WHEN OTHERS THEN

ROLLBACK;
error_code := SQLCODE ;
error_message := SQLERRM ;
INSERT INTO errors (e_user, e_date, error_code,
error_message) VALUES(USER,SYSDATE,error_code,
error_message);

END;
/

Functions for Trapping Exceptions (continued)
When an exception is trapped in the WHEN OTHERS exception handler, you can use a set of
generic functions to identify those errors. The example in the slide illustrates the values of
SQLCODE and SQLERRM assigned to variables, and then those variables being used in a SQL
statement.
You cannot use SQLCODE or SQLERRM directly in a SQL statement. Instead, you must assign
their values to local variables, and then use the variables in the SQL statement, as shown in the
following example:

DECLARE
err_num NUMBER;
err_msg VARCHAR2(100);

BEGIN
...

EXCEPTION
...
WHEN OTHERS THEN

err_num := SQLCODE;
err_msg := SUBSTR(SQLERRM, 1, 100);
INSERT INTO errors VALUES (err_num, err_msg);

END;
/

Oracle Database 11g: PL/SQL Fundamentals 8 - 20

Copyright © 2009, Oracle. All rights reserved.8 - 20

Trapping User-Defined Exceptions

Declarative
section

Name the
exception.

Executable
section

Explicitly raise
the exception by
using the RAISE

statement.

Exception-handling
section

Handle the raised
exception.

Raise ReferenceDeclare

Trapping User-Defined Exceptions
PL/SQL enables you to define your own exceptions depending on the requirements of your
application. For example, you may prompt the user to enter a department number.
Define an exception to deal with error conditions in the input data. Check whether the
department number exists. If it does not, you may have to raise the user-defined exception.
PL/SQL exceptions must be:

• Declared in the declarative section of a PL/SQL block
• Raised explicitly with RAISE statements
• Handled in the EXCEPTION section

Oracle Database 11g: PL/SQL Fundamentals 8 - 21

Copyright © 2009, Oracle. All rights reserved.8 - 21

Trapping User-Defined Exceptions
DECLARE
v_deptno NUMBER := 500;
v_name VARCHAR2(20) := 'Testing';
e_invalid_department EXCEPTION;

BEGIN
UPDATE departments
SET department_name = v_name
WHERE department_id = v_deptno;
IF SQL%NOTFOUND THEN

RAISE e_invalid_department;
END IF;
COMMIT;

EXCEPTION
WHEN e_invalid_department THEN
DBMS_OUTPUT.PUT_LINE('No such department id.');

END;
/

1

2

3

Trapping User-Defined Exceptions (continued)
You trap a user-defined exception by declaring it and raising it explicitly.

1. Declare the name of the user-defined exception within the declarative section.
Syntax:

exception EXCEPTION;
In the syntax, exception is the name of the exception.

2. Use the RAISE statement to raise the exception explicitly within the executable section.
Syntax:

RAISE exception;
In the syntax, exception is the previously declared exception.

3. Reference the declared exception within the corresponding exception-handling routine.
Example
The block shown in the slide updates the department_name of a department. The user
supplies the department number and the new name. If the supplied department number does not
exist, no rows are updated in the departments table. An exception is raised and a message is
printed for the user that an invalid department number was entered.
Note: Use the RAISE statement by itself within an exception handler to raise the same
exception again and propagate it back to the calling environment.

Oracle Database 11g: PL/SQL Fundamentals 8 - 22

Copyright © 2009, Oracle. All rights reserved.8 - 22

Propagating Exceptions in a Subblock

DECLARE
. . .
e_no_rows exception;
e_integrity exception;
PRAGMA EXCEPTION_INIT (e_integrity, -2292);

BEGIN
FOR c_record IN emp_cursor LOOP

BEGIN
SELECT ...
UPDATE ...
IF SQL%NOTFOUND THEN

RAISE e_no_rows;
END IF;

END;
END LOOP;

EXCEPTION
WHEN e_integrity THEN ...
WHEN e_no_rows THEN ...

END;
/

Subblocks can handle
an exception or pass
the exception to the
enclosing block.

Propagating Exceptions in a Subblock
When a subblock handles an exception, it terminates normally. Control resumes in the enclosing
block immediately after the subblock’s END statement.
However, if a PL/SQL raises an exception and the current block does not have a handler for that
exception, the exception propagates to successive enclosing blocks until it finds a handler. If
none of these blocks handles the exception, an unhandled exception in the host environment
results.
When the exception propagates to an enclosing block, the remaining executable actions in that
block are bypassed.
One advantage of this behavior is that you can enclose statements that require their own
exclusive error handling in their own block, while leaving more general exception handling to
the enclosing block.
Note in the example that the exceptions (no_rows and integrity) are declared in the outer
block. In the inner block, when the no_rows exception is raised, PL/SQL looks for the
exception to be handled in the subblock. Because the exception is not handled in the subblock,
the exception propagates to the outer block, where PL/SQL finds the handler.

Oracle Database 11g: PL/SQL Fundamentals 8 - 23

Copyright © 2009, Oracle. All rights reserved.8 - 23

RAISE_APPLICATION_ERROR Procedure

Syntax:

• You can use this procedure to issue user-defined error
messages from stored subprograms.

• You can report errors to your application and avoid
returning unhandled exceptions.

raise_application_error (error_number,
message[, {TRUE | FALSE}]);

RAISE_APPLICATION_ERROR Procedure
Use the RAISE_APPLICATION_ERROR procedure to communicate a predefined exception
interactively by returning a nonstandard error code and error message. With
RAISE_APPLICATION_ERROR, you can report errors to your application and avoid returning
unhandled exceptions.
In the syntax:

error_number

Is a user-specified number for the exception between –20,000
and –20,999

message

Is the user-specified message for the exception; is a character string
up to 2,048 bytes long

TRUE | FALSE

Is an optional Boolean parameter (If TRUE, the error is placed
on the stack of previous errors. If FALSE, which is the default, the
error replaces all previous errors.)

Oracle Database 11g: PL/SQL Fundamentals 8 - 24

Copyright © 2009, Oracle. All rights reserved.8 - 24

RAISE_APPLICATION_ERROR Procedure

• Is used in two different places:
– Executable section
– Exception section

• Returns error conditions to the user in a manner consistent
with other Oracle Server errors

RAISE_APPLICATION_ERROR Procedure (continued)
The RAISE_APPLICATION_ERROR procedure can be used in either the executable section or
the exception section of a PL/SQL program, or both. The returned error is consistent with how
the Oracle Server produces a predefined, non-predefined, or user-defined error. The error
number and message are displayed to the user.

Oracle Database 11g: PL/SQL Fundamentals 8 - 25

Copyright © 2009, Oracle. All rights reserved.8 - 25

RAISE_APPLICATION_ERROR Procedure

Executable section:

Exception section:

BEGIN
...
DELETE FROM employees

WHERE manager_id = v_mgr;
IF SQL%NOTFOUND THEN

RAISE_APPLICATION_ERROR(-20202,
'This is not a valid manager');

END IF;
...

...
EXCEPTION

WHEN NO_DATA_FOUND THEN
RAISE_APPLICATION_ERROR (-20201,

'Manager is not a valid employee.');
END;/

RAISE_APPLICATION_ERROR Procedure (continued)
The slide shows that the RAISE_APPLICATION_ERROR procedure can be used in both the
executable and the exception sections of a PL/SQL program.
Here is another example of using the RAISE_APPLICATION_ERROR procedure:

DECLARE
e_name EXCEPTION;
BEGIN
...
DELETE FROM employees
WHERE last_name = 'Higgins';
IF SQL%NOTFOUND THEN RAISE e_name;
END IF;

EXCEPTION
WHEN e_name THEN
RAISE_APPLICATION_ERROR (-20999, 'This is not a valid

last name'); ...
END;
/

Oracle Database 11g: PL/SQL Fundamentals 8 - 26

Copyright © 2009, Oracle. All rights reserved.8 - 26

Quiz

You can trap any error by including a corresponding handler
within the exception-handling section of the PL/SQL block.
1. True
2. False

Answer: 1
You can trap any error by including a corresponding handler within the exception-handling
section of the PL/SQL block. Each handler consists of a WHEN clause, which specifies an
exception name, followed by a sequence of statements to be executed when that exception is
raised. You can include any number of handlers within an EXCEPTION section to handle
specific exceptions. However, you cannot have multiple handlers for a single exception.

Oracle Database 11g: PL/SQL Fundamentals 8 - 27

Copyright © 2009, Oracle. All rights reserved.8 - 27

Summary

In this lesson, you should have learned to:
• Define PL/SQL exceptions
• Add an EXCEPTION section to the PL/SQL block to deal

with exceptions at run time
• Handle different types of exceptions:

– Predefined exceptions
– Non-predefined exceptions
– User-defined exceptions

• Propagate exceptions in nested blocks and call
applications

Summary
In this lesson, you learned how to deal with different types of exceptions. In PL/SQL, a warning
or error condition at run time is called an exception. Predefined exceptions are error conditions
that are defined by the Oracle Server. Non-predefined exceptions can be any standard Oracle
Server errors. User-defined exceptions are exceptions specific to your application. The PRAGMA
EXCEPTION_INIT function can be used to associate a declared exception name with an
Oracle Server error.
You can define exceptions of your own in the declarative section of any PL/SQL block. For
example, you can define an exception named INSUFFICIENT_FUNDS to flag overdrawn bank
accounts.
When an error occurs, an exception is raised. Normal execution stops and transfers control to the
exception-handling section of your PL/SQL block. Internal exceptions are raised implicitly
(automatically) by the run-time system; however, user-defined exceptions must be raised
explicitly. To handle raised exceptions, you write separate routines called exception handlers.

Oracle Database 11g: PL/SQL Fundamentals 8 - 28

Copyright © 2009, Oracle. All rights reserved.8 - 28

Practice 8: Overview

This practice covers the following topics:
• Creating and invoking user-defined exceptions
• Handling named Oracle Server exceptions

Practice 8: Overview
In these practices, you create exception handlers for a predefined exception and a standard
Oracle Server exception.

Copyright © 2009, Oracle. All rights reserved.

Introducing Stored Procedures and Functions

Oracle Database 11g: PL/SQL Fundamentals 9 - 2

Copyright © 2009, Oracle. All rights reserved.9 - 2

Objectives

After completing this lesson, you should be able to do the
following:
• Differentiate between anonymous blocks and subprograms
• Create a simple procedure and invoke it from an

anonymous block
• Create a simple function
• Create a simple function that accepts a parameter
• Differentiate between procedures and functions

Objectives
You learned about anonymous blocks. This lesson introduces you to named blocks, which are
also called subprograms. Procedures and functions are PL/SQL subprograms. In the lesson, you
learn to differentiate between anonymous blocks and subprograms.

Oracle Database 11g: PL/SQL Fundamentals 9 - 3

Copyright © 2009, Oracle. All rights reserved.9 - 3

Agenda

• Introducing procedures and functions
• Previewing procedures
• Previewing functions

Oracle Database 11g: PL/SQL Fundamentals 9 - 4

Copyright © 2009, Oracle. All rights reserved.9 - 4

Procedures and Functions

• Are named PL/SQL blocks
• Are called PL/SQL subprograms
• Have block structures similar to anonymous blocks:

– Optional declarative section (without the DECLARE keyword)
– Mandatory executable section
– Optional section to handle exceptions

Procedures and Functions
Up to this point, anonymous blocks were the only examples of PL/SQL code covered in this
course. As the name indicates, anonymous blocks are unnamed executable PL/SQL blocks.
Because they are unnamed, they can be neither reused nor stored for later use.
Procedures and functions are named PL/SQL blocks that are also known as subprograms. These
subprograms are compiled and stored in the database. The block structure of the subprograms is
similar to the structure of anonymous blocks. Subprograms can be declared not only at the
schema level but also within any other PL/SQL block. A subprogram contains the following
sections:

• Declarative section: Subprograms can have an optional declarative section. However,
unlike anonymous blocks, the declarative section of a subprogram does not start with the
DECLARE keyword. The optional declarative section follows the IS or AS keyword in the
subprogram declaration.

• Executable section: This is the mandatory section of the subprogram, which contains the
implementation of the business logic. Looking at the code in this section, you can easily
determine the business functionality of the subprogram. This section begins and ends with
the BEGIN and END keywords, respectively.

• Exception section: This is an optional section that is included to handle exceptions.

Oracle Database 11g: PL/SQL Fundamentals 9 - 5

Copyright © 2009, Oracle. All rights reserved.9 - 5

Differences Between Anonymous
Blocks and Subprograms

Can take parametersCannot take parameters

If functions, must return valuesDo not return values

Named and, therefore, can be invoked by
other applications

Cannot be invoked by other
applications

Stored in the databaseNot stored in the database

Compiled only onceCompiled every time

Named PL/SQL blocksUnnamed PL/SQL blocks

SubprogramsAnonymous Blocks

Differences Between Anonymous Blocks and Subprograms
The table in the slide not only shows the differences between anonymous blocks and
subprograms, but also highlights the general benefits of subprograms.
Anonymous blocks are not persistent database objects. They are compiled every time they are to
be executed. They are not stored in the database for reuse. If you want to reuse them, you must
rerun the script that creates the anonymous block, which causes recompilation and execution.
Procedures and functions are compiled and stored in the database in a compiled form. They are
recompiled only when they are modified. Because they are stored in the database, any
application can make use of these subprograms based on appropriate permissions. The calling
application can pass parameters to the procedures if the procedure is designed to accept
parameters. Similarly, a calling application can retrieve a value if it invokes a function or a
procedure.

Oracle Database 11g: PL/SQL Fundamentals 9 - 6

Copyright © 2009, Oracle. All rights reserved.9 - 6

Agenda

• Introducing procedures and functions
• Previewing procedures
• Previewing functions

Oracle Database 11g: PL/SQL Fundamentals 9 - 7

Copyright © 2009, Oracle. All rights reserved.9 - 7

Procedure: Syntax

CREATE [OR REPLACE] PROCEDURE procedure_name
[(argument1 [mode1] datatype1,
argument2 [mode2] datatype2,
. . .)]

IS|AS
procedure_body;

Procedure: Syntax
The slide shows the syntax for creating procedures. In the syntax:

The argument list is optional in a procedure declaration. You learn about procedures in detail in
the course titled Oracle Database 11g: Develop PL/SQL Program Units.

procedure_name Is the name of the procedure to be created

argument

Is the name given to the procedure parameter. Every argument is
associated with a mode and data type. You can have any number of
arguments separated by commas.

mode Mode of argument:
IN (default)
OUT
IN OUT

datatype Is the data type of the associated parameter. The data type of
parameters cannot have explicit size; instead, use %TYPE.

Procedure_body Is the PL/SQL block that makes up the code

Oracle Database 11g: PL/SQL Fundamentals 9 - 8

Copyright © 2009, Oracle. All rights reserved.9 - 8

Creating a Procedure

...
CREATE TABLE dept AS SELECT * FROM departments;
CREATE PROCEDURE add_dept IS
v_dept_id dept.department_id%TYPE;
v_dept_name dept.department_name%TYPE;
BEGIN
v_dept_id:=280;
v_dept_name:='ST-Curriculum';
INSERT INTO dept(department_id,department_name)
VALUES(v_dept_id,v_dept_name);
DBMS_OUTPUT.PUT_LINE(' Inserted '|| SQL%ROWCOUNT
||' row ');
END;

Creating a Procedure
In the code example, the add_dept procedure inserts a new department with department ID
280 and department name ST-Curriculum.
In addition, the example shows the following:

• The declarative section of a procedure starts immediately after the procedure declaration
and does not begin with the DECLARE keyword.

• The procedure declares two variables, dept_id and dept_name.
• The procedure uses the implicit cursor attribute or the SQL%ROWCOUNT SQL attribute to

verify that the row was successfully inserted. A value of 1 should be returned in this case.
Note: See the following page for more notes on the example.

Oracle Database 11g: PL/SQL Fundamentals 9 - 9

Procedure: Example
Note

• When you create any object, the entries are made to the user_objects table. When the
code in the slide is executed successfully, you can check the user_objects table for
the new objects by issuing the following command:

SELECT object_name,object_type FROM user_objects;

• The source of the procedure is stored in the user_source table. You can check the
source for the procedure by issuing the following command:

SELECT * FROM user_source WHERE name='ADD_DEPT';

Oracle Database 11g: PL/SQL Fundamentals 9 - 10

Copyright © 2009, Oracle. All rights reserved.9 - 10

Invoking a Procedure

...
BEGIN
add_dept;
END;
/
SELECT department_id, department_name FROM dept
WHERE department_id=280;

Invoking the Procedure
The slide shows how to invoke a procedure from an anonymous block. You must include the call
to the procedure in the executable section of the anonymous block. Similarly, you can invoke the
procedure from any application, such as a Forms application or a Java application. The SELECT
statement in the code checks to see whether the row was successfully inserted.
You can also invoke a procedure with the SQL statement CALL <procedure_name>.

Oracle Database 11g: PL/SQL Fundamentals 9 - 11

Copyright © 2009, Oracle. All rights reserved.9 - 11

Agenda

• Introducing procedures and functions
• Previewing procedures
• Previewing functions

Oracle Database 11g: PL/SQL Fundamentals 9 - 12

Copyright © 2009, Oracle. All rights reserved.9 - 12

Function: Syntax

CREATE [OR REPLACE] FUNCTION function_name
[(argument1 [mode1] datatype1,
argument2 [mode2] datatype2,
. . .)]

RETURN datatype
IS|AS
function_body;

Function: Syntax
The slide shows the syntax for creating a function. In the syntax:

The argument list is optional in the function declaration. The difference between a procedure
and a function is that a function must return a value to the calling program. Therefore, the syntax
contains return_type, which specifies the data type of the value that the function returns. A
procedure may return a value via an OUT or IN OUT parameter.

function_name Is the name of the function to be created

argument

Is the name given to the function parameter (Every argument is
associated with a mode and data type. You can have any number
of arguments separated by a comma. You pass the argument when
you invoke the function.)

mode Is the type of parameter (Only IN parameters should be declared.)

datatype Is the data type of the associated parameter

RETURN datatype Is the data type of the value returned by the function

function_body Is the PL/SQL block that makes up the function code

Oracle Database 11g: PL/SQL Fundamentals 9 - 13

Copyright © 2009, Oracle. All rights reserved.9 - 13

Creating a Function
CREATE FUNCTION check_sal RETURN Boolean IS
v_dept_id employees.department_id%TYPE;
v_empno employees.employee_id%TYPE;
v_sal employees.salary%TYPE;
v_avg_sal employees.salary%TYPE;
BEGIN
v_empno:=205;
SELECT salary,department_id INTO v_sal,v_dept_id FROM
employees
WHERE employee_id= v_empno;
SELECT avg(salary) INTO v_avg_sal FROM employees WHERE
department_id=v_dept_id;
IF v_sal > v_avg_sal THEN
RETURN TRUE;
ELSE
RETURN FALSE;
END IF;
EXCEPTION
WHEN NO_DATA_FOUND THEN
RETURN NULL;

END;

Function: Example
The check_sal function is written to determine whether the salary of a particular employee is
greater than or less than the average salary of all employees working in the same department.
The function returns TRUE if the salary of the employee is greater than the average salary of the
employees in the department; if not, it returns FALSE. The function returns NULL if a
NO_DATA_FOUND exception is thrown.
Note that the function checks for the employee with the employee ID 205. The function is hard-
coded to check only for this employee ID. If you want to check for any other employees, you
must modify the function itself. You can solve this problem by declaring the function such that it
accepts an argument. You can then pass the employee ID as parameter.

Oracle Database 11g: PL/SQL Fundamentals 9 - 14

Copyright © 2009, Oracle. All rights reserved.9 - 14

Invoking a Function

BEGIN
IF (check_sal IS NULL) THEN
DBMS_OUTPUT.PUT_LINE('The function returned
NULL due to exception');

ELSIF (check_sal) THEN
DBMS_OUTPUT.PUT_LINE('Salary > average');
ELSE
DBMS_OUTPUT.PUT_LINE('Salary < average');
END IF;
END;
/

Invoking the Function
You include the call to the function in the executable section of the anonymous block.
The function is invoked as a part of a statement. Remember that the check_sal function
returns Boolean or NULL. Thus the call to the function is included as the conditional
expression for the IF block.
Note: You can use the DESCRIBE command to check the arguments and return type of the
function, as in the following example:

DESCRIBE check_sal;

Oracle Database 11g: PL/SQL Fundamentals 9 - 15

Copyright © 2009, Oracle. All rights reserved.9 - 15

Passing a Parameter to the Function

DROP FUNCTION check_sal;
CREATE FUNCTION check_sal(p_empno employees.employee_id%TYPE)
RETURN Boolean IS
v_dept_id employees.department_id%TYPE;
v_sal employees.salary%TYPE;
v_avg_sal employees.salary%TYPE;
BEGIN
SELECT salary,department_id INTO v_sal,v_dept_id FROM employees

WHERE employee_id=p_empno;
SELECT avg(salary) INTO v_avg_sal FROM employees

WHERE department_id=v_dept_id;
IF v_sal > v_avg_sal THEN
RETURN TRUE;
ELSE
RETURN FALSE;
END IF;
EXCEPTION
...

Passing a Parameter to the Function
Remember that the function was hard-coded to check the salary of the employee with employee
ID 205. The code shown in the slide removes that constraint because it is rewritten to accept the
employee number as a parameter. You can now pass different employee numbers and check for
the employee’s salary.
You learn more about functions in the course titled Oracle Database 11g: Develop PL/SQL
Program Units.
The output of the code example in the slide is as follows:

Oracle Database 11g: PL/SQL Fundamentals 9 - 16

Copyright © 2009, Oracle. All rights reserved.9 - 16

Invoking the Function with a Parameter

BEGIN
DBMS_OUTPUT.PUT_LINE('Checking for employee with id 205');
IF (check_sal(205) IS NULL) THEN
DBMS_OUTPUT.PUT_LINE('The function returned
NULL due to exception');
ELSIF (check_sal(205)) THEN
DBMS_OUTPUT.PUT_LINE('Salary > average');
ELSE
DBMS_OUTPUT.PUT_LINE('Salary < average');
END IF;
DBMS_OUTPUT.PUT_LINE('Checking for employee with id 70');
IF (check_sal(70) IS NULL) THEN
DBMS_OUTPUT.PUT_LINE('The function returned
NULL due to exception');
ELSIF (check_sal(70)) THEN
...
END IF;
END;
/

Invoking the Function with a Parameter
The code in the slide invokes the function twice by passing parameters. The output of the code is
as follows:

Oracle Database 11g: PL/SQL Fundamentals 9 - 17

Copyright © 2009, Oracle. All rights reserved.9 - 17

Quiz

Subprograms:
1. Are named PL/SQL blocks and can be invoked by other

applications
2. Are compiled only once
3. Are stored in the database
4. Do not have to return values if they are functions
5. Can take parameters

Answer: 1, 2, 3, 5

Oracle Database 11g: PL/SQL Fundamentals 9 - 18

Copyright © 2009, Oracle. All rights reserved.9 - 18

Summary

In this lesson, you should have learned to:
• Create a simple procedure
• Invoke the procedure from an anonymous block
• Create a simple function
• Create a simple function that accepts parameters
• Invoke the function from an anonymous block

Summary
You can use anonymous blocks to design any functionality in PL/SQL. However, the major
constraint with anonymous blocks is that they are not stored and, therefore, cannot be reused.
Instead of creating anonymous blocks, you can create PL/SQL subprograms. Procedures and
functions are called subprograms, which are named PL/SQL blocks. Subprograms express
reusable logic by virtue of parameterization. The structure of a procedure or function is similar
to the structure of an anonymous block. These subprograms are stored in the database and are,
therefore, reusable.

Oracle Database 11g: PL/SQL Fundamentals 9 - 19

Copyright © 2009, Oracle. All rights reserved.9 - 19

Practice 9: Overview

This practice covers the following topics:
• Converting an existing anonymous block to a procedure
• Modifying the procedure to accept a parameter
• Writing an anonymous block to invoke the procedure

Appendix A
Practices and Solutions

Oracle Database 11g: PL/SQL Fundamentals A - 2

Table of Contents

Practices and Solutions for Lesson I... 3
Practice I-1: Accessing SQL Developer Resources.. 3
Practice I-2: Getting Started.. 3
Solution I-1: Accessing SQL Developer Resources ... 6
Solution I-2: Getting Started... 7

Practices and Solutions for Lesson 1 .. 14
Practice 1: Introduction to PL/SQL .. 14
Solution 1: Introduction to PL/SQL.. 15

Practices and Solutions for Lesson 2 .. 16
Practice 2: Declaring PL/SQL Variables .. 16
Solution 2: Declaring PL/SQL Variables ... 18

Practices and Solutions for Lesson 3 .. 21
Practice 3: Writing Executable Statements... 21
Solution 3: Writing Executable Statements .. 24

Practices and Solutions for Lesson 4 .. 28
Practice 4: Interacting with the Oracle Server .. 28
Solution 4: Interacting with the Oracle Server ... 30

Practices and Solutions for Lesson 5 .. 33
Practice 5: Writing Control Structures.. 33
Solution 5: Writing Control Structures ... 35

Practices and Solutions for Lesson 6 .. 38
Practice 6: Working with Composite Data Types... 38
Solution 6: Working with Composite Data Types.. 40

Practices and Solutions for Lesson 7 .. 45
Practice 7-1: Using Explicit Cursors... 45
Practice 7-2: Using Explicit Cursors � Optional... 48
Solution 7-1: Using Explicit Cursors.. 49
Solution 7-2: Using Explicit Cursors � Optional.. 54

Practices and Solutions for Lesson 8 .. 56
Practice 8-1: Handling Predefined Exceptions ... 56
Practice 8-2: Handling Standard Oracle Server Exceptions ... 58
Solution 8-1: Handling Predefined Exceptions... 59
Solution 8-2: Handling Standard Oracle Server Exceptions... 61

Practices and Solutions for Lesson 9 .. 62
Practice 9: Creating and Using Stored Procedures ... 62
Solution 9: Creating and Using Stored Procedures... 64

Oracle Database 11g: PL/SQL Fundamentals A - 3

Practices and Solutions for Lesson I

In these practices, you identify information resources for SQL Developer, execute SQL
statements using SQL Developer, and examine data in the class schema. Specifically,
you:

 Start SQL Developer
 Create a new database connection
 Browse the schema tables
 Set a SQL Developer preference

Note: All written practices use SQL Developer as the development environment.
Although it is recommended that you use SQL Developer, you can also use the SQL*Plus
or JDeveloper environments that are available in this course.

Practice I-1: Accessing SQL Developer Resources
In this practice, you navigate to the SQL Developer home page and browse helpful
information on the tool.
1) Access the SQL Developer home page.

a) Access the online SQL Developer Home Page, which is available at:
http://www.oracle.com/technology/products/database/sql_developer/index.html

b) Bookmark the page for easier access in future.
2) Access the SQL Developer tutorial, which is available online at http://st-

curriculum.oracle.com/tutorial/SQLDeveloper/index.htm. Then review the following
sections and associated demonstrations:

a) What to Do First
b) Working with Database Objects
c) Accessing Data

Practice I-2: Getting Started

1) Start SQL Developer.

2) Create a database connection by using the following information (Hint: Select the
Save Password check box):
a) Connection Name: MyConnection
b) Username: ±®¿ìï
c) Password: ±®¿ìï
d) Hostname: localhost
e) Port: 1521

http://www.oracle.com/technology/products/database/sql_developer/index.html

Practice I-2: Getting Started (continued)

Oracle Database 11g: PL/SQL Fundamentals A - 4

f) SID: ±®½´

3) Test the new connection. If the Status is Success, connect to the database using this

new connection.
a) In the Database Connection window, click the Test button.

Note: The connection status appears in the lower-left corner of the window.
b) If the status is Success, click the Connect button.

4) Browse the structure of the ÛÓÐÔÑÇÛÛÍ table and display its data.
a) Expand the MyConnection connection by clicking the plus symbol next to it.
b) Expand the Tables icon by clicking the plus symbol next to it.
c) Display the structure of the ÛÓÐÔÑÇÛÛÍ table.

5) Use the EMPLOYEES tab to view data in the ÛÓÐÔÑÇÛÛÍ table.

6) Use the SQL Worksheet to select the last names and salaries of all employees whose
annual salary is greater than $10,000. Use both the Execute Statement (F9) and the
Run Script (F5) icons to execute the ÍÛÔÛÝÌ statement. Review the results of both
methods of executing the ÍÛÔÛÝÌ statements on the appropriate tabs.
Note: Take a few minutes to familiarize yourself with the data, or consult Appendix
B, which provides the description and data for all the tables in the HR schema that
you will use in this course.

7) From the SQL Developer menu, select Tools > Preferences. The Preferences window
appears.

8) Select Database > Worksheet Parameters. In the �Select default path to look for
scripts� text box, use the Browse button to select the ñ¸±³»ñ±®¿½´»ñ´¿¾­ñ°´­º
folder. This folder contains the code example scripts, lab scripts, and practice solution
scripts that are used in this course. Then, in the Preferences window, click OK to save
the Worksheet Parameter setting.

9) Familiarize yourself with the structure of the ñ¸±³»ñ±®¿½´»ñ´¿¾­ñ°´­º folder.

a) Select File > Open. The Open window automatically selects the �ñ°´­º folder
as your starting location. This folder contains three subfolders:

 The ñ½±¼»Á»¨ folder contains the code examples found in the course
materials. Each ò­¯´ script is associated with a particular page in the
lesson.

 The ñ´¿¾­ folder contains the code that is used in certain lesson
practices. You are instructed to run the required script in the appropriate
practice.

 The ñ­±´² folder contains the solutions for each practice. Each ò­¯´
script is numbered with the associated practice_exercise reference.

Practice I-2: Getting Started (continued)

Oracle Database 11g: PL/SQL Fundamentals A - 5

b) You can also use the Files tab to navigate through folders to open the script files.
c) Using the Open window, and the Files tab, navigate through the folders and open

a script file without executing the code.
d) Close the SQL Worksheet.

Oracle Database 11g: PL/SQL Fundamentals A - 6

Solution I-1: Accessing SQL Developer Resources

1) Access the SQL Developer home page.

a) Access the online SQL Developer Home Page, which is available at:
http://www.oracle.com/technology/products/database/sql_developer/index.html

The SQL Developer home page is displayed as follows:

b) Bookmark the page for easier access in future.

2) Access the SQL Developer tutorial, which is available online at http://st-

curriculum.oracle.com/tutorial/SQLDeveloper/index.htm. Then review the following
sections and associated demos:

a) What to Do First
b) Working with Database Objects
c) Accessing Data

http://www.oracle.com/technology/products/database/sql_developer/index.html

Oracle Database 11g: PL/SQL Fundamentals A - 7

Solution I-2: Getting Started

1) Start SQL Developer.
Click the SQL Developer icon on your desktop.

2) Create a database connection by using the following information (Hint: Select the

Save Password check box):
a) Connection Name: MyConnection
b) Username: ±®¿ìï
c) Password: ±®¿ìï
d) Hostname: localhost
e) Port: 1521
f) SID: ±®½´

Right-click the Connections node on the Connections tabbed page and select
New Database Connection from the shortcut menu. Result: The New/Select
Database Connection window appears.
Use the preceding information to create the new database connection. In
addition, select the Save Password check box. For example:

Solution I-2: Getting Started (continued)

Oracle Database 11g: PL/SQL Fundamentals A - 8

3) Test the new connection. If the Status is Success, connect to the database using this
new connection.
a) In the Database Connection window, click the Test button.

Note: The connection status appears in the lower-left corner of the window.
b) If the status is Success, click the Connect button.

Note: To display the properties of an existing connection, right-click the connection
name on the Connections tab and select Properties from the shortcut menu.

4) Browse the structure of the ÛÓÐÔÑÇÛÛÍ table and display its data.
a) Expand the MyConnection connection by clicking the plus symbol next to it.
b) Expand Tables by clicking the plus symbol next to it.
c) Display the structure of the ÛÓÐÔÑÇÛÛÍ table.

Drill down on the ÛÓÐÔÑÇÛÛÍ table by clicking the plus symbol next to it.

Click the ÛÓÐÔÑÇÛÛÍ table.

Result: The Columns tab displays the columns in the ÛÓÐÔÑÇÛÛÍ table as
follows:

Solution I-2: Getting Started (continued)

Oracle Database 11g: PL/SQL Fundamentals A - 9

5) Use the EMPLOYEES tab to view the data in the ÛÓÐÔÑÇÛÛÍ table.

To display employees� data, click the Data tab.
Result: The ÛÓÐÔÑÇÛÛÍ table data is displayed as follows:

Solution I-2: Getting Started (continued)

Oracle Database 11g: PL/SQL Fundamentals A - 10

6) Use the SQL Worksheet to select the last names and salaries of all employees whose
annual salary is greater than $10,000. Use both the Execute Statement (F9) and Run
Script (F5) icons to execute the ÍÛÔÛÝÌ statement. Review the results of both
methods of executing the ÍÛÔÛÝÌ statements on the appropriate tabs.
Note: Take a few minutes to familiarize yourself with the data, or consult Appendix
B, which provides the description and data for all the tables in the HR schema that
you will use in this course.

To display the SQL Worksheet, click the MyConnection tab.
Note: This tab was opened previously when you drilled down on your database
connection.

Enter the appropriate ÍÛÔÛÝÌ statement. Press F9 to execute the query and F5 to
execute the query using the Run Script method.

For example, when you press F9, the results appear similar to the following:

Solution I-2: Getting Started (continued)

Oracle Database 11g: PL/SQL Fundamentals A - 11

7) From the SQL Developer menu, select Tools > Preferences. The Preferences window
appears.

8) Select Database > Worksheet Parameters. In the �Select default path to look for

scripts� text box, use the Browse button to select the ñ¸±³»ñ±®¿½´»ñ´¿¾­ñ°´­º
folder.

This folder contains the code example scripts, lab scripts, and practice solution scripts
that are used in this course.
Click Open to select the folder.

Solution I-2: Getting Started (continued)

Oracle Database 11g: PL/SQL Fundamentals A - 12

Then, in the Preferences window, click OK to save the Worksheet Parameter setting.

9) Familiarize yourself with the structure of the ñ¸±³»ñ±®¿½´»ñ´¿¾­ñ°´­º folder.

a) Select File > Open. The Open window automatically selects the �ñ°´­º folder
as your starting location. This folder contains three subfolders:

 The ñ½±¼»Á»¨ folder contains the code examples found in the course

materials. Each ò­¯´ script is associated with a particular page in the
lesson.

 The ñ´¿¾­ folder contains the code that is used in certain lesson
practices. You are instructed to run the required script in the appropriate
practice.

Solution I-2: Getting Started (continued)

Oracle Database 11g: PL/SQL Fundamentals A - 13

 The ñ­±´² folder contains the solutions for each practice. Each ò­¯´
script is numbered with the associated practice_exercise reference.

b) You can also use the Files tab to navigate through folders to open script files.

c) Using the Open window, and the Files tab, navigate through the folders and open
a script file without executing the code.

d) Close the SQL Worksheet.
To close any SQL Worksheet tab, click X on the tab, as shown here:

Oracle Database 11g: PL/SQL Fundamentals A - 14

Practices and Solutions for Lesson 1

The ñ¸±³»ñ±®¿½´»ñ´¿¾­ folder is the working directory where you save the scripts
that you create.
The solutions for all the practices are in the ñ¸±³»ñ±®¿½´»ñ´¿¾­ñ°´­ºñ­±´²
folder.

Practice 1: Introduction to PL/SQL

1) Which of the following PL/SQL blocks execute successfully?

a) ÞÛÙ×Ò
ÛÒÜå

b) ÜÛÝÔßÎÛ
ªÁ¿³±«²¬ ×ÒÌÛÙÛÎøïð÷å
ÛÒÜå

c) ÜÛÝÔßÎÛ
ÞÛÙ×Ò
ÛÒÜå

d) ÜÛÝÔßÎÛ
ªÁ¿³±«²¬ ×ÒÌÛÙÛÎøïð÷å
ÞÛÙ×Ò
ÜÞÓÍÁÑËÌÐËÌòÐËÌÁÔ×ÒÛø¿³±«²¬÷å
ÛÒÜå

2) Create and execute a simple anonymous block that outputs �Hello World.� Execute
and save this script as ´¿¾ÁðïÁðîÁ­±´²ò­¯´.

Oracle Database 11g: PL/SQL Fundamentals A - 15

Solution 1: Introduction to PL/SQL

1) Which of the following PL/SQL blocks execute successfully?

a) ÞÛÙ×Ò
ÛÒÜå

b) ÜÛÝÔßÎÛ
ªÁ¿³±«²¬ ×ÒÌÛÙÛÎøïð÷å
ÛÒÜå

c) ÜÛÝÔßÎÛ
ÞÛÙ×Ò
ÛÒÜå

d) ÜÛÝÔßÎÛ
ªÁ¿³±«²¬ ×ÒÌÛÙÛÎøïð÷å
ÞÛÙ×Ò
ÜÞÓÍÁÑËÌÐËÌòÐËÌÁÔ×ÒÛø¿³±«²¬÷å
ÛÒÜå

The block in a does not execute. It has no executable statements.
The block in b does not have the mandatory executable section that starts with
the ÞÛÙ×Ò keyword.
The block in c has all the necessary parts, but no executable statements.
The block in d executes succesfully.

2) Create and execute a simple anonymous block that outputs �Hello World.� Execute
and save this script as ´¿¾ÁðïÁðîÁ­±´²ò­¯´.

Enter the following code in the workspace, and then press F5.

ÍÛÌ ÍÛÎÊÛÎÑËÌÐËÌ ÑÒ
ÞÛÙ×Ò
ÜÞÓÍÁÑËÌÐËÌòÐËÌÁÔ×ÒÛøù Ø»´´± É±®´¼ ù÷å
ÛÒÜå

You should see the following output on the Script Output tab:

Click the Save button. Select the folder in which you want to save the file. Enter
´¿¾ÁðïÁðîÁ­±´²ò­¯´ as the file name and click Save.

Oracle Database 11g: PL/SQL Fundamentals A - 16

Practices and Solutions for Lesson 2

Practice 2: Declaring PL/SQL Variables
In this practice, you declare PL/SQL variables.

1) Identify valid and invalid identifiers:

a) ¬±¼¿§
b) ´¿­¬Á²¿³»
c) ¬±¼¿§�­Á¼¿¬»
d) Ò«³¾»®Á±ºÁ¼¿§­Á·²ÁÚ»¾®«¿®§Á¬¸·­Á§»¿®
e) ×­´»¿°ü§»¿®
f) ý²«³¾»®
g) ÒËÓÞÛÎý
h) ²«³¾»®ï¬±é

2) Identify valid and invalid variable declaration and initialization:

a) ²«³¾»®Á±ºÁ½±°·»­ ÐÔÍÁ×ÒÌÛÙÛÎ;
b) ÐÎ×ÒÌÛÎÁÒßÓÛ constant ÊßÎÝØßÎîøïð÷;
c) ¼»´·ª»®Á¬± ÊßÎÝØßÎîøïð÷:=Johnson;
d) ¾§Á©¸»² ÜßÌÛ:= ÝËÎÎÛÒÌÁÜßÌÛ+1;

3) Examine the following anonymous block, and then select a statement from the
following that is true.

ÜÛÝÔßÎÛ
 ªÁº²¿³» ÊßÎÝØßÎîøîð÷å
 ªÁ´²¿³» ÊßÎÝØßÎîøïë÷ ÜÛÚßËÔÌ ùº»®²¿²¼»¦ùå
ÞÛÙ×Ò
 ÜÞÓÍÁÑËÌÐËÌòÐËÌÁÔ×ÒÛøªÁº²¿³» ¤¤ù ù ¤¤ªÁ´²¿³»÷å
ÛÒÜå

a) The block executes successfully and prints �fernandez.�
b) The block produces an error because the º²¿³» variable is used without

initializing.
c) The block executes successfully and prints �null fernandez.�
d) The block produces an error because you cannot use the ÜÛÚßËÔÌ keyword to

initialize a variable of type ÊßÎÝØßÎî.
e) The block produces an error because the ªÁº²¿³» variable is not declared.

Practice 2: Declaring PL/SQL Variables (continued)

Oracle Database 11g: PL/SQL Fundamentals A - 17

4) Modify an existing anonymous block and save it as a new script.

a) Open the ´¿¾ÁðïÁðîÁ­±´²ò­¯´ script, which you created in Practice 1.

b) In this PL/SQL block, declare the following variables:

1. ªÁ¬±¼¿§ of type ÜßÌÛ. Initialize ¬±¼¿§ with ÍÇÍÜßÌÛ.
2. ªÁ¬±³±®®±© of type ¬±¼¿§. Use the ûÌÇÐÛ attribute to declare this

variable.
c) In the executable section:

1. Initialize the ªÁ¬±³±®®±© variable with an expression, which calculates
tomorrow�s date (add one to the value in ¬±¼¿§)

2. Print the value of ªÁ¬±¼¿§ and ¬±³±®®±© after printing �Hello World�

d) Save your script as ´¿¾ÁðîÁðìÁ­±´²ò­¯´, and then execute.

The sample output is as follows (the values of ªÁ¬±¼¿§ and ªÁ¬±³±®®±© will
be different to reflect your current today�s and tomorrow�s date):

5) Edit the ´¿¾ÁðîÁðìÁ­±´²ò­¯´ script.

a) Add code to create two bind variables, named ¾Á¾¿­·½Á°»®½»²¬ and
¾Á°ºÁ°»®½»²¬. Both bind variables are of type ÒËÓÞÛÎ.

b) In the executable section of the PL/SQL block, assign the values 45 and 12 to
¾Á¾¿­·½Á°»®½»²¬ and ¾Á°ºÁ°»®½»²¬, respectively.

c) Terminate the PL/SQL block with �ñ� and display the value of the bind variables
by using the ÐÎ×ÒÌ command.

d) Execute and save your script as ´¿¾ÁðîÁðëÁ­±´²ò­¯´. The sample output is
as follows:

Oracle Database 11g: PL/SQL Fundamentals A - 18

Solution 2: Declaring PL/SQL Variables

1) Identify valid and invalid identifiers:

a) ¬±¼¿§ Valid
b) ´¿­¬Á²¿³» Valid
c) ¬±¼¿§�­Á¼¿¬» Invalid � character ��� not allowed
d) Ò«³¾»®Á±ºÁ¼¿§­Á·²ÁÚ»¾®«¿®§Á¬¸·­Á§»¿® Invalid � Too long
e) ×­´»¿°ü§»¿® Valid
f) ý²«³¾»® Invalid � Cannot start with �ý�
g) ÒËÓÞÛÎý Valid
h) ²«³¾»®ï¬±é Valid

2) Identify valid and invalid variable declaration and initialization:

a) ²«³¾»®Á±ºÁ½±°·»­ ÐÔÍÁ×ÒÌÛÙÛÎ; Valid
b) ÐÎ×ÒÌÛÎÁÒßÓÛ constant ÊßÎÝØßÎîøïð÷; Invalid
c) ¼»´·ª»®Á¬± ÊßÎÝØßÎîøïð÷:=Johnson; Invalid
d) ¾§Á©¸»² ÜßÌÛ:= ÝËÎÎÛÒÌÁÜßÌÛ+1; Valid

The declaration in b is invalid because constant variables must be initialized during
declaration.
The declaration in c is invalid because string literals should be enclosed within single
quotation marks.

3) Examine the following anonymous block, and then select a statement from the
following that is true.

ÜÛÝÔßÎÛ
 ªÁº²¿³» ÊßÎÝØßÎîøîð÷å
 ªÁ´²¿³» ÊßÎÝØßÎîøïë÷ ÜÛÚßËÔÌ ùº»®²¿²¼»¦ùå
ÞÛÙ×Ò
 ÜÞÓÍÁÑËÌÐËÌòÐËÌÁÔ×ÒÛøªÁº²¿³» ¤¤ù ù ¤¤ªÁ´²¿³»÷å
ÛÒÜå

a) The block executes successfully and prints �fernandez.�
b) The block produces an error because the º²¿³» variable is used without

initializing.
c) The block executes successfully and prints �null fernandez.�
d) The block produces an error because you cannot use the ÜÛÚßËÔÌ keyword to

initialize a variable of type ÊßÎÝØßÎî.
e) The block produces an error because the ªÁº²¿³» variable is not declared.

a. The block will execute successfully and print �fernandez.�

Solution 2: Declaring PL/SQL Variables (continued)

Oracle Database 11g: PL/SQL Fundamentals A - 19

4) Modify an existing anonymous block and save it as a new script.

a) Open the ´¿¾ÁðïÁðîÁ­±´²ò­¯´ script, which you created in Practice 1.

b) In the PL/SQL block, declare the following variables:

1. Variable ªÁ¬±¼¿§ of type ÜßÌÛ. Initialize ¬±¼¿§ with ÍÇÍÜßÌÛ.

ÜÛÝÔßÎÛ
 ªÁ¬±¼¿§ ÜßÌÛæãÍÇÍÜßÌÛå

2. Variable ªÁ¬±³±®®±© of type ¬±¼¿§. Use the ûÌÇÐÛ attribute to declare
this variable.

 ªÁ¬±³±®®±© ªÁ¬±¼¿§ûÌÇÐÛå

c) In the executable section:
1. Initialize the ªÁ¬±³±®®±© variable with an expression, which calculates

tomorrow�s date (add one to the value in ªÁ¬±¼¿§)
2. Print the value of ªÁ¬±¼¿§ and ªÁ¬±³±®®±© after printing �Hello World�

ÞÛÙ×Ò
 ªÁ¬±³±®®±©æãªÁ¬±¼¿§ õïå
 ÜÞÓÍÁÑËÌÐËÌòÐËÌÁÔ×ÒÛøù Ø»´´± É±®´¼ ù÷å
 ÜÞÓÍÁÑËÌÐËÌòÐËÌÁÔ×ÒÛøùÌÑÜßÇ ×Í æ ù¤¤ ªÁ¬±¼¿§÷å
 ÜÞÓÍÁÑËÌÐËÌòÐËÌÁÔ×ÒÛøùÌÑÓÑÎÎÑÉ ×Í æ ù ¤¤ ªÁ¬±³±®®±©÷å
ÛÒÜå

d) Save your script as ´¿¾ÁðîÁðìÁ­±´²ò­¯´, and then execute.

The sample output is as follows (the values of ªÁ¬±¼¿§ and ªÁ¬±³±®®±© will
be different to reflect your current today�s and tomorrow�s date):

Solution 2: Declaring PL/SQL Variables (continued)

Oracle Database 11g: PL/SQL Fundamentals A - 20

5) Edit the ´¿¾ÁðîÁðìÁ­±´²ò­¯´ script.

a) Add the code to create two bind variables, named ¾Á¾¿­·½Á°»®½»²¬ and
¾Á°ºÁ°»®½»²¬. Both bind variables are of type ÒËÓÞÛÎ.

ÊßÎ×ßÞÔÛ ¾Á¾¿­·½Á°»®½»²¬ ÒËÓÞÛÎ
ÊßÎ×ßÞÔÛ ¾Á°ºÁ°»®½»²¬ ÒËÓÞÛÎ

b) In the executable section of the PL/SQL block, assign the values ìë and ïî to
¾Á¾¿­·½Á°»®½»²¬ and ¾Á°ºÁ°»®½»²¬, respectively.

 æ¾Á¾¿­·½Á°»®½»²¬æãìëå
 æ¾Á°ºÁ°»®½»²¬æãïîå

c) Terminate the PL/SQL block with �ñ� and display the value of the bind variables
by using the ÐÎ×ÒÌ command.

ñ
ÐÎ×ÒÌ ¾Á¾¿­·½Á°»®½»²¬
ÐÎ×ÒÌ ¾Á°ºÁ°»®½»²¬

OR

ÐÎ×ÒÌ

d) Execute and save your script as ´¿¾ÁðîÁðëÁ­±´²ò­¯´. The sample output is
as follows:

Oracle Database 11g: PL/SQL Fundamentals A - 21

Practices and Solutions for Lesson 3

Practice 3: Writing Executable Statements
In this practice, you examine and write executable statements.

ÜÛÝÔßÎÛ
 ªÁ©»·¹¸¬ ÒËÓÞÛÎøí÷ æã êððå
 ªÁ³»­­¿¹» ÊßÎÝØßÎîøîëë÷ æã ùÐ®±¼«½¬ ïððïîùå
ÞÛÙ×Ò
 ÜÛÝÔßÎÛ
 ªÁ©»·¹¸¬ ÒËÓÞÛÎøí÷ æã ïå
 ªÁ³»­­¿¹» ÊßÎÝØßÎîøîëë÷ æã ùÐ®±¼«½¬ ïïððïùå
 ªÁ²»©Á´±½² ÊßÎÝØßÎîøëð÷ æã ùÛ«®±°»ùå
 ÞÛÙ×Ò
 ªÁ©»·¹¸¬ æã ªÁ©»·¹¸¬ õ ïå
 ªÁ²»©Á´±½² æã ùÉ»­¬»®² ù ¤¤ ªÁ²»©Á´±½²å

 ÛÒÜå
 ªÁ©»·¹¸¬ æã ªÁ©»·¹¸¬ õ ïå
 ªÁ³»­­¿¹» æã ªÁ³»­­¿¹» ¤¤ ù ·­ ·² ­¬±½µùå
 ªÁ²»©Á´±½² æã ùÉ»­¬»®² ù ¤¤ ªÁ²»©Á´±½²å

ÛÒÜå
ñ

1) Evaluate the preceding PL/SQL block and determine the data type and value of each
of the following variables, according to the rules of scoping.

a) The value of ªÁ©»·¹¸¬ at position 1 is:

b) The value of ªÁ²»©Á´±½² at position 1 is:

c) The value of ªÁ©»·¹¸¬ at position 2 is:

d) The value of ªÁ³»­­¿¹» at position 2 is:

e) The value of ªÁ²»©Á´±½² at position 2 is:

1

2

Practice 3: Writing Executable Statements (continued)

Oracle Database 11g: PL/SQL Fundamentals A - 22

ÜÛÝÔßÎÛ
 ªÁ½«­¬±³»® ÊßÎÝØßÎîøëð÷ æã ùÉ±³¿²­°±®¬ùå
 ªÁ½®»¼·¬Á®¿¬·²¹ ÊßÎÝØßÎîøëð÷ æã ùÛÈÝÛÔÔÛÒÌùå
ÞÛÙ×Ò
 ÜÛÝÔßÎÛ
 ªÁ½«­¬±³»® ÒËÓÞÛÎøé÷ æã îðïå
 ªÁ²¿³» ÊßÎÝØßÎîøîë÷ æã ùË²·­°±®¬­ùå
 ÞÛÙ×Ò
 ªÁ½®»¼·¬Á®¿¬·²¹ æãùÙÑÑÜùå
 �
 ÛÒÜå
 �
ÛÒÜå

2) In the preceding PL/SQL block, determine the values and data types for each of the
following cases:

a) The value of ªÁ½«­¬±³»® in the nested block is:

b) The value of ªÁ²¿³» in the nested block is:

c) The value of ªÁ½®»¼·¬Á®¿¬·²¹ in the nested block is:

d) The value of ªÁ½«­¬±³»® in the main block is:

e) The value of ªÁ²¿³» in the main block is:

f) The value of ªÁ½®»¼·¬Á®¿¬·²¹ in the main block is:

3) Use the same session that you used to execute the practices in the lesson titled
�Declaring PL/SQL Variables.� If you have opened a new session, execute
´¿¾ÁðîÁðëÁ­±´²ò­¯´. Then, edit ´¿¾ÁðîÁðëÁ­±´²ò­¯´ as follows:

a) Use single-line comment syntax to comment the lines that create the bind
variables, and turn on ÍÛÎÊÛÎÑËÌÐËÌ.

b) Use multiple-line comments in the executable section to comment the lines that
assign values to the bind variables.

c) In the declaration section:
1. Declare and initialize two temporary variables to replace the commented

out bind variables
2. Declare two additional variables: ªÁº²¿³» of type ÊßÎÝØßÎî and size

15, and ªÁ»³°Á­¿´ of type ÒËÓÞÛÎ and size 10

Practice 3: Writing Executable Statements (continued)

Oracle Database 11g: PL/SQL Fundamentals A - 23

¼÷ Include the following SQL statement in the executable section:

 ÍÛÔÛÝÌ º·®­¬Á²¿³»ô ­¿´¿®§ ×ÒÌÑ ªÁº²¿³»ô ªÁ»³°Á­¿´
 ÚÎÑÓ »³°´±§»»­ ÉØÛÎÛ »³°´±§»»Á·¼ãïïðå

e) Change the line that prints �Hello World� to print �Hello� and the first name.
Then, comment the lines that display the dates and print the bind variables.

f) Calculate the contribution of the employee towards provident fund (PF).
PF is 12% of the basic salary, and the basic salary is 45% of the salary. Use local
variables for the calculation. Try to use only one expression to calculate the PF.
Print the employee�s salary and his or her contribution toward PF.

¹÷ Execute and save your script as ´¿¾ÁðíÁðíÁ­±´²ò­¯´. The sample output is
as follows:

Oracle Database 11g: PL/SQL Fundamentals A - 24

Solution 3: Writing Executable Statements
In this practice, you examine and write executable statements.

ÜÛÝÔßÎÛ
 ªÁ©»·¹¸¬ ÒËÓÞÛÎøí÷ æã êððå
 ªÁ³»­­¿¹» ÊßÎÝØßÎîøîëë÷ æã ùÐ®±¼«½¬ ïððïîùå
ÞÛÙ×Ò
 ÜÛÝÔßÎÛ
 ªÁ©»·¹¸¬ ÒËÓÞÛÎøí÷ æã ïå
 ªÁ³»­­¿¹» ÊßÎÝØßÎîøîëë÷ æã ùÐ®±¼«½¬ ïïððïùå
 ªÁ²»©Á´±½² ÊßÎÝØßÎîøëð÷ æã ùÛ«®±°»ùå
 ÞÛÙ×Ò
 ªÁ©»·¹¸¬ æã ªÁ©»·¹¸¬ õ ïå
 ªÁ²»©Á´±½² æã ùÉ»­¬»®² ù ¤¤ ªÁ²»©Á´±½²å

 ÛÒÜå
 ªÁ©»·¹¸¬ æã ªÁ©»·¹¸¬ õ ïå
 ªÁ³»­­¿¹» æã ªÁ³»­­¿¹» ¤¤ ù ·­ ·² ­¬±½µùå
 ªÁ²»©Á´±½² æã ùÉ»­¬»®² ù ¤¤ ªÁ²»©Á´±½²å

ÛÒÜå
ñ

1) Evaluate the preceding PL/SQL block and determine the data type and value of each
of the following variables, according to the rules of scoping.

a) The value of ªÁ©»·¹¸¬ at position 1 is:
2
The data type is ÒËÓÞÛÎ.

b) The value of ªÁ²»©Á´±½² at position 1 is:
Western Europe
The data type is ÊßÎÝØßÎî.

c) The value of ªÁ©»·¹¸¬ at position 2 is:
601
The data type is ÒËÓÞÛÎ.

d) The value of ªÁ³»­­¿¹» at position 2 is:
Product 10012 is in stock
The data type is ÊßÎÝØßÎî.

e) The value of ªÁ²»©Á´±½² at position 2 is:
Illegal because ªÁ²»©Á´±½² is not visible outside the subblock

1

2

Solution 3: Writing Executable Statements (continued)

Oracle Database 11g: PL/SQL Fundamentals A - 25

ÜÛÝÔßÎÛ
 ªÁ½«­¬±³»® ÊßÎÝØßÎîøëð÷ æã ùÉ±³¿²­°±®¬ùå
 ªÁ½®»¼·¬Á®¿¬·²¹ ÊßÎÝØßÎîøëð÷ æã ùÛÈÝÛÔÔÛÒÌùå
ÞÛÙ×Ò
 ÜÛÝÔßÎÛ
 ªÁ½«­¬±³»® ÒËÓÞÛÎøé÷ æã îðïå
 ªÁ²¿³» ÊßÎÝØßÎîøîë÷ æã ùË²·­°±®¬­ùå
 ÞÛÙ×Ò
 ªÁ½®»¼·¬Á®¿¬·²¹ æãùÙÑÑÜùå
 �
 ÛÒÜå
 �
ÛÒÜå

2) In the preceding PL/SQL block, determine the values and data types for each of the
following cases:

a) The value of ªÁ½«­¬±³»® in the nested block is:
201
The data type is ÒËÓÞÛÎ.

b) The value of ªÁ²¿³» in the nested block is:
Unisports
The data type is ÊßÎÝØßÎî.

c) The value of ªÁ½®»¼·¬Á®¿¬·²¹ in the nested block is:
GOOD
The data type is ÊßÎÝØßÎî.

d) The value of ªÁ½«­¬±³»® in the main block is:
Womansport
The data type is ÊßÎÝØßÎî.

e) The value of ªÁ²¿³» in the main block is:
Null. ²¿³» is not visible in the main block and you would see an error.

f) The value of ªÁ½®»¼·¬Á®¿¬·²¹ in the main block is:
EXCELLENT
The data type is ÊßÎÝØßÎî.

3) Use the same session that you used to execute the practices in the lesson titled
�Declaring PL/SQL Variables.� If you have opened a new session, execute
´¿¾ÁðîÁðëÁ­±´²ò­¯´. Then, edit ´¿¾ÁðîÁðëÁ­±´²ò­¯´ as follows:

a) Use single-line comment syntax to comment the lines that create the bind
variables, and turn on ÍÛÎÊÛÎÑËÌÐËÌ.

óó ÊßÎ×ßÞÔÛ ¾Á¾¿­·½Á°»®½»²¬ ÒËÓÞÛÎ
óó ÊßÎ×ßÞÔÛ ¾Á°ºÁ°»®½»²¬ ÒËÓÞÛÎ
ÍÛÌ ÍÛÎÊÛÎÑËÌÐËÌ ÑÒ

Solution 3: Writing Executable Statements (continued)

Oracle Database 11g: PL/SQL Fundamentals A - 26

b) Use multiple-line comments in the executable section to comment the lines that
assign values to the bind variables.

 ñöæ¾Á¾¿­·½Á°»®½»²¬æãìëå
 æ¾Á°ºÁ°»®½»²¬æãïîåöñ

c) In the declaration section:
1. Declare and initialize two temporary variables to replace the commented

out bind variables
2. Declare two additional variables: ªÁº²¿³» of type ÊßÎÝØßÎî and size

15, and ªÁ»³°Á­¿´ of type ÒËÓÞÛÎ and size 10

ÜÛÝÔßÎÛ
 ªÁ¾¿­·½Á°»®½»²¬ ÒËÓÞÛÎæãìëå
 ªÁ°ºÁ°»®½»²¬ ÒËÓÞÛÎæãïîå
 ªÁº²¿³» ÊßÎÝØßÎîøïë÷å
 ªÁ»³°Á­¿´ ÒËÓÞÛÎøïð÷å

¼÷ Include the following SQL statement in the executable section:

 ÍÛÔÛÝÌ º·®­¬Á²¿³»ô ­¿´¿®§ ×ÒÌÑ ªÁº²¿³»ô ªÁ»³°Á­¿´
 ÚÎÑÓ »³°´±§»»­ ÉØÛÎÛ »³°´±§»»Á·¼ãïïðå

»÷ Change the line that prints �Hello World� to print �Hello� and the first name.
Then, comment the lines that display the dates and print the bind variables.

ÜÞÓÍÁÑËÌÐËÌòÐËÌÁÔ×ÒÛøù Ø»´´± ù¤¤ ªÁº²¿³»÷å
ñö ÜÞÓÍÁÑËÌÐËÌòÐËÌÁÔ×ÒÛøùÌÑÜßÇ ×Í æ ù¤¤ ªÁ¬±¼¿§÷å
ÜÞÓÍÁÑËÌÐËÌòÐËÌÁÔ×ÒÛøùÌÑÓÑÎÎÑÉ ×Í æ ù ¤¤ ªÁ¬±³±®®±©÷åöñ
òòò
òòò

ñ
óóÐÎ×ÒÌ ¾Á¾¿­·½Á°»®½»²¬
óóÐÎ×ÒÌ ¾Á¾¿­·½Á°»®½»²¬

f) Calculate the contribution of the employee towards provident fund (PF).
PF is 12% of the basic salary, and the basic salary is 45% of the salary. Use local
variables for the calculation. Try to use only one expression to calculate the PF.
Print the employee�s salary and his or her contribution toward PF.

 ÜÞÓÍÁÑËÌÐËÌòÐËÌÁÔ×ÒÛøùÇÑËÎ ÍßÔßÎÇ ×Í æ ù¤¤ªÁ»³°Á­¿´÷å
 ÜÞÓÍÁÑËÌÐËÌòÐËÌÁÔ×ÒÛøùÇÑËÎ ÝÑÒÌÎ×ÞËÌ×ÑÒ ÌÑÉßÎÜÍ ÐÚæ
 ù¤¤ªÁ»³°Á­¿´öªÁ¾¿­·½Á°»®½»²¬ñïððöªÁ°ºÁ°»®½»²¬ñïðð÷å
ÛÒÜå

Solution 3: Writing Executable Statements (continued)

Oracle Database 11g: PL/SQL Fundamentals A - 27

¹÷ Execute and save your script as ´¿¾ÁðíÁðíÁ­±´²ò­¯´. The sample output is
as follows:

Oracle Database 11g: PL/SQL Fundamentals A - 28

Practices and Solutions for Lesson 4

Practice 4: Interacting with the Oracle Server
In this practice, you use PL/SQL code to interact with the Oracle Server.

1) Create a PL/SQL block that selects the maximum department ID in the
¼»°¿®¬³»²¬­ table and stores it in the ªÁ³¿¨Á¼»°¬²± variable. Display the
maximum department ID.

a) Declare a variable ªÁ³¿¨Á¼»°¬²± of type ÒËÓÞÛÎ in the declarative section.

b) Start the executable section with the ÞÛÙ×Ò keyword and include a ÍÛÔÛÝÌ
statement to retrieve the maximum ¼»°¿®¬³»²¬Á·¼ from the ¼»°¿®¬³»²¬­
table.

c) Display ªÁ³¿¨Á¼»°¬²± and end the executable block.

d) Execute and save your script as ´¿¾ÁðìÁðïÁ­±´²ò­¯´. The sample output is
as follows:

2) Modify the PL/SQL block that you created in step 1 to insert a new department into
the ¼»°¿®¬³»²¬­ table.

a) Load the ´¿¾ÁðìÁðïÁ­±´²ò­¯´ script. Declare two variables:
ªÁ¼»°¬Á²¿³» of type ¼»°¿®¬³»²¬­ò¼»°¿®¬³»²¬Á²¿³» and
ªÁ¼»°¬Á·¼ of type ÒËÓÞÛÎ
Assign 'Education' to ªÁ¼»°¬Á²¿³» in the declarative section.

b) You have already retrieved the current maximum department number from the
¼»°¿®¬³»²¬­ table. Add 10 to it and assign the result to ªÁ¼»°¬Á·¼.

c) Include an ×ÒÍÛÎÌ statement to insert data into the ¼»°¿®¬³»²¬Á²¿³»,
¼»°¿®¬³»²¬Á·¼, and ´±½¿¬·±²Á·¼ columns of the ¼»°¿®¬³»²¬­ table.
Use values in ¼»°¬Á²¿³» and ¼»°¬Á·¼ for ¼»°¿®¬³»²¬Á²¿³» and
¼»°¿®¬³»²¬Á·¼, respectively, and use ÒËÔÔ for ´±½¿¬·±²Á·¼.

d) Use the SQL attribute ÍÏÔûÎÑÉÝÑËÒÌ to display the number of rows that are
affected.

e) Execute a ÍÛÔÛÝÌ statement to check whether the new department is inserted.
You can terminate the PL/SQL block with �/� and include the ÍÛÔÛÝÌ statement
in your script.

f) Execute and save your script as ´¿¾ÁðìÁðîÁ­±´²ò­¯´. The sample output is
as follows:

Practice 4: Interacting with the Oracle Server (continued)

Oracle Database 11g: PL/SQL Fundamentals A - 29

3) In step 2, you set ´±½¿¬·±²Á·¼ to ÒËÔÔ. Create a PL/SQL block that updates the
´±½¿¬·±²Á·¼ to íððð for the new department.
Note: If you successfully completed step 2, continue with step 3a. If not, first execute
the solution script ñ­±´²ñ­±´ÁðìÁðîò­¯´.

a) Start the executable block with the ÞÛÙ×Ò keyword. Include the ËÐÜßÌÛ
statement to set the ´±½¿¬·±²Á·¼ to íððð for the new department (¼»°¬Á·¼
=280).

b) End the executable block with the ÛÒÜ keyword. Terminate the PL/SQL block
with �/� and include a ÍÛÔÛÝÌ statement to display the department that you
updated.

c) Include a ÜÛÔÛÌÛ statement to delete the department that you added.

d) Execute and save your script as ´¿¾ÁðìÁðíÁ­±´²ò­¯´. The sample output is
as follows:

Oracle Database 11g: PL/SQL Fundamentals A - 30

Solution 4: Interacting with the Oracle Server
In this practice, you use PL/SQL code to interact with the Oracle Server.

1) Create a PL/SQL block that selects the maximum department ID in the
¼»°¿®¬³»²¬­ table and stores it in the ªÁ³¿¨Á¼»°¬²± variable. Display the
maximum department ID.

a) Declare a variable ªÁ³¿¨Á¼»°¬²± of type ÒËÓÞÛÎ in the declarative section.

ÜÛÝÔßÎÛ
 ªÁ³¿¨Á¼»°¬²± ÒËÓÞÛÎå

b) Start the executable section with the ÞÛÙ×Ò keyword and include a ÍÛÔÛÝÌ
statement to retrieve the maximum ¼»°¿®¬³»²¬Á·¼ from the ¼»°¿®¬³»²¬­
table.

ÞÛÙ×Ò
 ÍÛÔÛÝÌ ÓßÈø¼»°¿®¬³»²¬Á·¼÷ ×ÒÌÑ ªÁ³¿¨Á¼»°¬²± ÚÎÑÓ
 ¼»°¿®¬³»²¬­å

c) Display ªÁ³¿¨Á¼»°¬²± and end the executable block.

ÜÞÓÍÁÑËÌÐËÌòÐËÌÁÔ×ÒÛøùÌ¸» ³¿¨·³«³ ¼»°¿®¬³»²¬Á·¼ ·­ æ ù ¤¤
ªÁ³¿¨Á¼»°¬²±÷å
ÛÒÜå

d) Execute and save your script as ´¿¾ÁðìÁðïÁ­±´²ò­¯´. The sample output is
as follows:

2) Modify the PL/SQL block that you created in step 1 to insert a new department into
the ¼»°¿®¬³»²¬­ table.

a) Load the ´¿¾ÁðìÁðïÁ­±´²ò­¯´ script. Declare two variables:
ªÁ¼»°¬Á²¿³» of type ¼»°¿®¬³»²¬­ò¼»°¿®¬³»²¬Á²¿³» and
ªÁ¼»°¬Á·¼ of type ÒËÓÞÛÎ
Assign �Education� to ªÁ¼»°¬Á²¿³» in the declarative section.

 ªÁ¼»°¬Á²¿³» ¼»°¿®¬³»²¬­ò¼»°¿®¬³»²¬Á²¿³»ûÌÇÐÛæã ùÛ¼«½¿¬·±²ùå
 ªÁ¼»°¬Á·¼ ÒËÓÞÛÎå

Solution 4: Interacting with the Oracle Server (continued)

Oracle Database 11g: PL/SQL Fundamentals A - 31

b) You have already retrieved the current maximum department number from the
¼»°¿®¬³»²¬­ table. Add 10 to it and assign the result to ªÁ¼»°¬Á·¼.

ªÁ¼»°¬Á·¼ æã ïð õ ªÁ³¿¨Á¼»°¬²±å

c) Include an ×ÒÍÛÎÌ statement to insert data into the ¼»°¿®¬³»²¬Á²¿³»,

¼»°¿®¬³»²¬Á·¼, and ´±½¿¬·±²Á·¼ columns of the ¼»°¿®¬³»²¬­ table.
Use values in ¼»°¬Á²¿³» and ¼»°¬Á·¼ for ¼»°¿®¬³»²¬Á²¿³» and
¼»°¿®¬³»²¬Á·¼, respectively, and use ÒËÔÔ for ´±½¿¬·±²Á·¼.

�
×ÒÍÛÎÌ ×ÒÌÑ ¼»°¿®¬³»²¬­ ø¼»°¿®¬³»²¬Á·¼ô ¼»°¿®¬³»²¬Á²¿³»ô
´±½¿¬·±²Á·¼÷
ÊßÔËÛÍ øªÁ¼»°¬Á·¼ô ªÁ¼»°¬Á²¿³»ô ÒËÔÔ÷å

d) Use the SQL attribute ÍÏÔûÎÑÉÝÑËÒÌ to display the number of rows that are
affected.

ÜÞÓÍÁÑËÌÐËÌòÐËÌÁÔ×ÒÛ øù ÍÏÔûÎÑÉÝÑËÒÌ ¹·ª»­ ù ¤¤ ÍÏÔûÎÑÉÝÑËÒÌ÷å
�

e) Execute a ÍÛÔÛÝÌ statement to check whether the new department is inserted.
You can terminate the PL/SQL block with �/� and include the ÍÛÔÛÝÌ statement
in your script.

�
ñ
ÍÛÔÛÝÌ ö ÚÎÑÓ ¼»°¿®¬³»²¬­ ÉØÛÎÛ ¼»°¿®¬³»²¬Á·¼ã îèðå

f) Execute and save your script as ´¿¾ÁðìÁðîÁ­±´²ò­¯´. The sample output is
as follows:

Solution 4: Interacting with the Oracle Server (continued)

Oracle Database 11g: PL/SQL Fundamentals A - 32

3) In step 2, you set ´±½¿¬·±²Á·¼ to ÒËÔÔ. Create a PL/SQL block that updates the
´±½¿¬·±²Á·¼ to íððð for the new department.
Note: If you successfully completed step 2, continue with step 3a. If not, first execute
the solution script ñ­±´²ñ­±´ÁðìÁðîò­¯´.

a) Start the executable block with the ÞÛÙ×Ò keyword. Include the ËÐÜßÌÛ
statement to set ´±½¿¬·±²Á·¼ to íððð for the new department (¼»°¬Á·¼
=280).

ÞÛÙ×Ò
ËÐÜßÌÛ ¼»°¿®¬³»²¬­ ÍÛÌ ´±½¿¬·±²Á·¼ãíððð ÉØÛÎÛ
¼»°¿®¬³»²¬Á·¼ãîèðå

b) End the executable block with the ÛÒÜ keyword. Terminate the PL/SQL block
with �/� and include a ÍÛÔÛÝÌ statement to display the department that you
updated.

ÛÒÜå
ñ
ÍÛÔÛÝÌ ö ÚÎÑÓ ¼»°¿®¬³»²¬­ ÉØÛÎÛ ¼»°¿®¬³»²¬Á·¼ãîèðå

c) Include a ÜÛÔÛÌÛ statement to delete the department that you added.

ÜÛÔÛÌÛ ÚÎÑÓ ¼»°¿®¬³»²¬­ ÉØÛÎÛ ¼»°¿®¬³»²¬Á·¼ãîèðå

d) Execute and save your script as ´¿¾ÁðìÁðíÁ­±´²ò­¯´. The sample output is
as follows:

Oracle Database 11g: PL/SQL Fundamentals A - 33

Practices and Solutions for Lesson 5

Practice 5: Writing Control Structures
In this practice, you create PL/SQL blocks that incorporate loops and conditional control
structures. This practice tests your understanding of various ×Ú statements and ÔÑÑÐ
constructs.

1) Execute the command in the ´¿¾ÁðëÁðïò­¯´ file to create the ³»­­¿¹»­ table.
Write a PL/SQL block to insert numbers into the ³»­­¿¹»­ table.

a) Insert the numbers 1 through 10, excluding 6 and 8.

b) Commit before the end of the block.
c) Execute a ÍÛÔÛÝÌ statement to verify that your PL/SQL block worked.

Result: You should see the following output:

2) Execute the ´¿¾ÁðëÁðîò­¯´ script. This script creates an »³° table that is a
replica of the »³°´±§»»­ table. It alters the »³° table to add a new column,
­¬¿®­, of ÊßÎÝØßÎî data type and size 50. Create a PL/SQL block that inserts an
asterisk in the ­¬¿®­ column for every üïððð of an employee�s salary. Save your
script as ´¿¾ÁðëÁðîÁ­±´²ò­¯´.

a) In the declarative section of the block, declare a variable ªÁ»³°²± of type
»³°ò»³°´±§»»Á·¼ and initialize it to 176. Declare a variable ªÁ¿­¬»®·­µ
of type »³°ò­¬¿®­ and initialize it to ÒËÔÔ. Create a variable ªÁ­¿´ of type
»³°ò­¿´¿®§.

b) In the executable section, write logic to append an asterisk (ö) to the string for
every $1,000 of the salary. For example, if the employee earns $8,000, the string

Practice 5: Writing Control Structures (continued)

Oracle Database 11g: PL/SQL Fundamentals A - 34

of asterisks should contain eight asterisks. If the employee earns $12,500, the
string of asterisks should contain 13 asterisks.

c) Update the ­¬¿®­ column for the employee with the string of asterisks. Commit
before the end of the block.

d) Display the row from the »³° table to verify whether your PL/SQL block has
executed successfully.

e) Execute and save your script as ´¿¾ÁðëÁðîÁ­±´²ò­¯´. The output is as
follows:

Oracle Database 11g: PL/SQL Fundamentals A - 35

Solution 5: Writing Control Structures

1) Execute the command in the ´¿¾ÁðëÁðïò­¯´ file to create the ³»­­¿¹»­ table.
Write a PL/SQL block to insert numbers into the ³»­­¿¹»­ table.

a) Insert the numbers 1 through 10, excluding 6 and 8.

b) Commit before the end of the block.

ÞÛÙ×Ò
ÚÑÎ · ·² ïòòïð ÔÑÑÐ
 ×Ú · ã ê ±® · ã è ÌØÛÒ
 ²«´´å
 ÛÔÍÛ
 ×ÒÍÛÎÌ ×ÒÌÑ ³»­­¿¹»­ø®»­«´¬­÷
 ÊßÔËÛÍ ø·÷å
 ÛÒÜ ×Úå
ÛÒÜ ÔÑÑÐå
ÝÑÓÓ×Ìå
ÛÒÜå
ñ

c) Execute a ÍÛÔÛÝÌ statement to verify that your PL/SQL block worked.

ÍÛÔÛÝÌ ö ÚÎÑÓ ³»­­¿¹»­å

Result: You should see the following output:

Solution 5: Writing Control Structures (continued)

Oracle Database 11g: PL/SQL Fundamentals A - 36

2) Execute the ´¿¾ÁðëÁðîò­¯´ script. This script creates an »³° table that is a
replica of the »³°´±§»»­ table. It alters the »³° table to add a new column,
­¬¿®­, of ÊßÎÝØßÎî data type and size ëð. Create a PL/SQL block that inserts an
asterisk in the ­¬¿®­ column for every üïððð of the employee�s salary. Save your
script as ´¿¾ÁðëÁðîÁ­±´²ò­¯´.

a) In the declarative section of the block, declare a variable ªÁ»³°²± of type
»³°ò»³°´±§»»Á·¼ and initialize it to 176. Declare a variable ªÁ¿­¬»®·­µ
of type »³°ò­¬¿®­ and initialize it to ÒËÔÔ. Create a variable ªÁ­¿´ of type
»³°ò­¿´¿®§.

ÜÛÝÔßÎÛ
 ªÁ»³°²± »³°ò»³°´±§»»Á·¼ûÌÇÐÛ æã ïéêå
 ªÁ¿­¬»®·­µ »³°ò­¬¿®­ûÌÇÐÛ æã ÒËÔÔå
 ªÁ­¿´ »³°ò­¿´¿®§ûÌÇÐÛå

b) In the executable section, write logic to append an asterisk (ö) to the string for
every $1,000 of the salary. For example, if the employee earns $8,000, the string
of asterisks should contain eight asterisks. If the employee earns $12,500, the
string of asterisks should contain 13 asterisks.

ÞÛÙ×Ò
 ÍÛÔÛÝÌ ÒÊÔøÎÑËÒÜø­¿´¿®§ñïððð÷ô ð÷ ×ÒÌÑ ªÁ­¿´
 ÚÎÑÓ »³° ÉØÛÎÛ »³°´±§»»Á·¼ ã ªÁ»³°²±å

 ÚÑÎ · ×Ò ïòòªÁ­¿´
 ÔÑÑÐ
 ªÁ¿­¬»®·­µ æã ªÁ¿­¬»®·­µ ¤¤ùöùå
 ÛÒÜ ÔÑÑÐå

c) Update the ­¬¿®­ column for the employee with the string of asterisks. Commit
before the end of the block.

 ËÐÜßÌÛ »³° ÍÛÌ ­¬¿®­ ã ªÁ¿­¬»®·­µ
 ÉØÛÎÛ »³°´±§»»Á·¼ ã ªÁ»³°²±å
 ÝÑÓÓ×Ìå
ÛÒÜå
ñ

d) Display the row from the »³° table to verify whether your PL/SQL block has
executed successfully.

ÍÛÔÛÝÌ »³°´±§»»Á·¼ô­¿´¿®§ô ­¬¿®­
ÚÎÑÓ »³° ÉØÛÎÛ »³°´±§»»Á·¼ ãïéêå

Solution 5: Writing Control Structures (continued)

Oracle Database 11g: PL/SQL Fundamentals A - 37

e) Execute and save your script as ´¿¾ÁðëÁðîÁ­±´²ò­¯´. The output is as
follows:

Oracle Database 11g: PL/SQL Fundamentals A - 38

Practices and Solutions for Lesson 6

Practice 6: Working with Composite Data Types

1) Write a PL/SQL block to print information about a given country.

a) Declare a PL/SQL record based on the structure of the ½±«²¬®·»­ table.
b) Declare a variable ªÁ½±«²¬®§·¼. Assign Ýß to ªÁ½±«²¬®§·¼.
c) In the declarative section, use the ûÎÑÉÌÇÐÛ attribute and declare the

ªÁ½±«²¬®§Á®»½±®¼ variable of type ½±«²¬®·»­.
d) In the executable section, get all the information from the ½±«²¬®·»­ table by

using ªÁ½±«²¬®§·¼. Display selected information about the country. The
sample output is as follows:

e) You may want to execute and test the PL/SQL block for countries with the IDs
DE, UK, and US.

2) Create a PL/SQL block to retrieve the names of some departments from the
¼»°¿®¬³»²¬­ table and print each department name on the screen, incorporating an
associative array. Save the script as ´¿¾ÁðêÁðîÁ­±´²ò­¯´.

a) Declare an ×ÒÜÛÈ ÞÇ table ¼»°¬Á¬¿¾´»Á¬§°» of type
¼»°¿®¬³»²¬­ò¼»°¿®¬³»²¬Á²¿³». Declare a variable ³§Á¼»°¬Á¬¿¾´»
of type ¼»°¬Á¬¿¾´»Á¬§°» to temporarily store the names of the departments.

b) Declare two variables: ºÁ´±±°Á½±«²¬ and ªÁ¼»°¬²± of type ÒËÓÞÛÎ.
Assign 10 to ºÁ´±±°Á½±«²¬ and 0 to ªÁ¼»°¬²±.

c) Using a loop, retrieve the names of 10 departments and store the names in the
associative array. Start with ¼»°¿®¬³»²¬Á·¼ 10. Increase ªÁ¼»°¬²± by 10
for every loop iteration. The following table shows the ¼»°¿®¬³»²¬Á·¼ for
which you should retrieve the ¼»°¿®¬³»²¬Á²¿³».

ÜÛÐßÎÌÓÛÒÌÁ×Ü ÜÛÐßÎÌÓÛÒÌÁÒßÓÛ

ïð ß¼³·²·­¬®¿¬·±²
îð Ó¿®µ»¬·²¹
íð Ð«®½¸¿­·²¹
ìð Ø«³¿² Î»­±«®½»­
ëð Í¸·°°·²¹
êð ×Ì
éð Ð«¾´·½ Î»´¿¬·±²­
èð Í¿´»­
çð Û¨»½«¬·ª»
ïðð Ú·²¿²½»

Practice 6: Working with Composite Data Types (continued)

Oracle Database 11g: PL/SQL Fundamentals A - 39

d) Using another loop, retrieve the department names from the associative array and
display them.

e) Execute and save your script as ´¿¾ÁðêÁðîÁ­±´²ò­¯´. The output is as
follows:

3) Modify the block that you created in Practice 2 to retrieve all information about each
department from the ¼»°¿®¬³»²¬­ table and display the information. Use an
associative array with the ×ÒÜÛÈ ÞÇ table of records method.

a) Load the ´¿¾ÁðêÁðîÁ­±´²ò­¯´ script.
b) You have declared the associative array to be of type

¼»°¿®¬³»²¬­ò¼»°¿®¬³»²¬Á²¿³». Modify the declaration of the
associative array to temporarily store the number, name, and location of all the
departments. Use the ûÎÑÉÌÇÐÛ attribute.

c) Modify the ÍÛÔÛÝÌ statement to retrieve all department information currently in
the ¼»°¿®¬³»²¬­ table and store it in the associative array.

d) Using another loop, retrieve the department information from the associative
array and display the information.

The sample output is as follows:

Oracle Database 11g: PL/SQL Fundamentals A - 40

Solution 6: Working with Composite Data Types

1) Write a PL/SQL block to print information about a given country.

a) Declare a PL/SQL record based on the structure of the ½±«²¬®·»­ table.
b) Declare a variable ªÁ½±«²¬®§·¼. Assign Ýß to ªÁ½±«²¬®§·¼.

ÍÛÌ ÍÛÎÊÛÎÑËÌÐËÌ ÑÒ

ÍÛÌ ÊÛÎ×ÚÇ ÑÚÚ
ÜÛÝÔßÎÛ
 ªÁ½±«²¬®§·¼ ª¿®½¸¿®îøîð÷æã ùÝßùå

c) In the declarative section, use the ûÎÑÉÌÇÐÛ attribute and declare the
ªÁ½±«²¬®§Á®»½±®¼ variable of type ½±«²¬®·»­.

 ªÁ½±«²¬®§Á®»½±®¼ ½±«²¬®·»­ûÎÑÉÌÇÐÛå

d) In the executable section, get all the information from the ½±«²¬®·»­ table by
using ªÁ½±«²¬®§·¼. Display selected information about the country. The
sample output is as follows:

ÞÛÙ×Ò
 ÍÛÔÛÝÌ ö
 ×ÒÌÑ ªÁ½±«²¬®§Á®»½±®¼
 ÚÎÑÓ ½±«²¬®·»­
 ÉØÛÎÛ ½±«²¬®§Á·¼ ã ËÐÐÛÎøªÁ½±«²¬®§·¼÷å

 ÜÞÓÍÁÑËÌÐËÌòÐËÌÁÔ×ÒÛ øùÝ±«²¬®§ ×¼æ ù ¤¤

 ªÁ½±«²¬®§Á®»½±®¼ò½±«²¬®§Á·¼ ¤¤
 ù Ý±«²¬®§ Ò¿³»æ ù ¤¤ ªÁ½±«²¬®§Á®»½±®¼ò½±«²¬®§Á²¿³»
 ¤¤ ù Î»¹·±²æ ù ¤¤ ªÁ½±«²¬®§Á®»½±®¼ò®»¹·±²Á·¼÷å

ÛÒÜå

e) You may want to execute and test the PL/SQL block for countries with the IDs
DE, UK, and US.

Solution 6: Working with Composite Data Types (continued)

Oracle Database 11g: PL/SQL Fundamentals A - 41

2) Create a PL/SQL block to retrieve the names of some departments from the
¼»°¿®¬³»²¬­ table and print each department name on the screen, incorporating an
associative array. Save the script as ´¿¾ÁðêÁðîÁ­±´²ò­¯´.

a) Declare an ×ÒÜÛÈ ÞÇ table ¼»°¬Á¬¿¾´»Á¬§°» of type
¼»°¿®¬³»²¬­ò¼»°¿®¬³»²¬Á²¿³». Declare a variable ³§Á¼»°¬Á¬¿¾´»
of type ¼»°¬Á¬¿¾´»Á¬§°» to temporarily store the names of the departments.

ÍÛÌ ÍÛÎÊÛÎÑËÌÐËÌ ÑÒ

ÜÛÝÔßÎÛ
 ÌÇÐÛ ¼»°¬Á¬¿¾´»Á¬§°» ·­ ¬¿¾´» ±º

 ¼»°¿®¬³»²¬­ò¼»°¿®¬³»²¬Á²¿³»ûÌÇÐÛ
 ×ÒÜÛÈ ÞÇ ÐÔÍÁ×ÒÌÛÙÛÎå
 ³§Á¼»°¬Á¬¿¾´» ¼»°¬Á¬¿¾´»Á¬§°»å

b) Declare two variables: ºÁ´±±°Á½±«²¬ and ªÁ¼»°¬²± of type ÒËÓÞÛÎ.
Assign 10 to ºÁ´±±°Á½±«²¬ and 0 to ªÁ¼»°¬²±.

 ´±±°Á½±«²¬ ÒËÓÞÛÎ øî÷æãïðå
 ¼»°¬²± ÒËÓÞÛÎ øì÷æãðå

c) Using a loop, retrieve the names of 10 departments and store the names in the
associative array. Start with ¼»°¿®¬³»²¬Á·¼ 10. Increase ªÁ¼»°¬²± by 10
for every iteration of the loop. The following table shows the ¼»°¿®¬³»²¬Á·¼
for which you should retrieve the ¼»°¿®¬³»²¬Á²¿³» and store in the
associative array.

ÜÛÐßÎÌÓÛÒÌÁ×Ü ÜÛÐßÎÌÓÛÒÌÁÒßÓÛ

ïð ß¼³·²·­¬®¿¬·±²
îð Ó¿®µ»¬·²¹
íð Ð«®½¸¿­·²¹
ìð Ø«³¿² Î»­±«®½»­
ëð Í¸·°°·²¹
êð ×Ì
éð Ð«¾´·½ Î»´¿¬·±²­
èð Í¿´»­
çð Û¨»½«¬·ª»
ïðð Ú·²¿²½»

Solution 6: Working with Composite Data Types (continued)

Oracle Database 11g: PL/SQL Fundamentals A - 42

ÞÛÙ×Ò
 ÚÑÎ · ×Ò ïòòºÁ´±±°Á½±«²¬
 ÔÑÑÐ
 ªÁ¼»°¬²±æãªÁ¼»°¬²±õïðå
 ÍÛÔÛÝÌ ¼»°¿®¬³»²¬Á²¿³»
 ×ÒÌÑ ³§Á¼»°¬Á¬¿¾´»ø·÷
 ÚÎÑÓ ¼»°¿®¬³»²¬­
 ÉØÛÎÛ ¼»°¿®¬³»²¬Á·¼ ã ªÁ¼»°¬²±å
 ÛÒÜ ÔÑÑÐå

d) Using another loop, retrieve the department names from the associative array and
display them.

ÚÑÎ · ×Ò ïòòºÁ´±±°Á½±«²¬
 ÔÑÑÐ
 ÜÞÓÍÁÑËÌÐËÌòÐËÌÁÔ×ÒÛ ø³§Á¼»°¬Á¬¿¾´»ø·÷÷å
 ÛÒÜ ÔÑÑÐå
ÛÒÜå

e) Execute and save your script as ´¿¾ÁðêÁðîÁ­±´²ò­¯´. The output is as
follows:

3) Modify the block that you created in Practice 2 to retrieve all information about each
department from the ¼»°¿®¬³»²¬­ table and display the information. Use an
associative array with the ×ÒÜÛÈ ÞÇ table of records method.

a) Load the ´¿¾ÁðêÁðîÁ­±´²ò­¯´ script.

b) You have declared the associative array to be of the
¼»°¿®¬³»²¬­ò¼»°¿®¬³»²¬Á²¿³» type. Modify the declaration of the
associative array to temporarily store the number, name, and location of all the
departments. Use the ûÎÑÉÌÇÐÛ attribute.

Solution 6: Working with Composite Data Types (continued)

Oracle Database 11g: PL/SQL Fundamentals A - 43

ÍÛÌ ÍÛÎÊÛÎÑËÌÐËÌ ÑÒ

ÜÛÝÔßÎÛ

ÌÇÐÛ ¼»°¬Á¬¿¾´»Á¬§°» ·­ ¬¿¾´» ±º ¼»°¿®¬³»²¬­ûÎÑÉÌÇÐÛ
 ×ÒÜÛÈ ÞÇ ÐÔÍÁ×ÒÌÛÙÛÎå
 ³§Á¼»°¬Á¬¿¾´» ¼»°¬Á¬¿¾´»Á¬§°»å
 ºÁ´±±°Á½±«²¬ ÒËÓÞÛÎ øî÷æãïðå
 ªÁ¼»°¬²± ÒËÓÞÛÎ øì÷æãðå

c) Modify the ÍÛÔÛÝÌ statement to retrieve all department information currently in
the ¼»°¿®¬³»²¬­ table and store it in the associative array.

ÞÛÙ×Ò
 ÚÑÎ · ×Ò ïòòºÁ´±±°Á½±«²¬
 ÔÑÑÐ
 ªÁ¼»°¬²± æã ªÁ¼»°¬²± õ ïðå
 ÍÛÔÛÝÌ ö
 ×ÒÌÑ ³§Á¼»°¬Á¬¿¾´»ø·÷
 ÚÎÑÓ ¼»°¿®¬³»²¬­
 ÉØÛÎÛ ¼»°¿®¬³»²¬Á·¼ ã ªÁ¼»°¬²±å
 ÛÒÜ ÔÑÑÐå

d) Using another loop, retrieve the department information from the associative
array and display the information.

ÚÑÎ · ×Ò ïòòºÁ´±±°Á½±«²¬
 ÔÑÑÐ
 ÜÞÓÍÁÑËÌÐËÌòÐËÌÁÔ×ÒÛ øùÜ»°¿®¬³»²¬ Ò«³¾»®æ ù ¤¤
³§Á¼»°¬Á¬¿¾´»ø·÷ò¼»°¿®¬³»²¬Á·¼
 ¤¤ ù Ü»°¿®¬³»²¬ Ò¿³»æ ù ¤¤
³§Á¼»°¬Á¬¿¾´»ø·÷ò¼»°¿®¬³»²¬Á²¿³»
 ¤¤ ù Ó¿²¿¹»® ×¼æ ù¤¤ ³§Á¼»°¬Á¬¿¾´»ø·÷ò³¿²¿¹»®Á·¼
 ¤¤ ù Ô±½¿¬·±² ×¼æ ù ¤¤ ³§Á¼»°¬Á¬¿¾´»ø·÷ò´±½¿¬·±²Á·¼÷å
 ÛÒÜ ÔÑÑÐå
ÛÒÜå

Solution 6: Working with Composite Data Types (continued)

Oracle Database 11g: PL/SQL Fundamentals A - 44

The sample output is as follows:

Oracle Database 11g: PL/SQL Fundamentals A - 45

Practices and Solutions for Lesson 7

Practice 7-1: Using Explicit Cursors
In this practice, you perform two exercises:
 First, you use an explicit cursor to process a number of rows from a table and

populate another table with the results using a cursor ÚÑÎ loop.
 Second, you write a PL/SQL block that processes information with two cursors,

including one that uses a parameter.

1) Create a PL/SQL block to perform the following:

a) In the declarative section, declare and initialize a variable named ªÁ¼»°¬²± of
type ÒËÓÞÛÎ. Assign a valid department ID value (see table in step d for values).

b) Declare a cursor named ½_»³°Á½«®­±®, which retrieves the ´¿­¬Á²¿³»,
­¿´¿®§, and ³¿²¿¹»®Á·¼ of employees working in the department specified
in ªÁ¼»°¬²±.

c) In the executable section, use the cursor ÚÑÎ loop to operate on the data retrieved.

If the salary of the employee is less than 5,000 and if the manager ID is either 101
or 124, display the message �<<last_name>> Due for a raise.� Otherwise, display
the message �<<last_name>> Not Due for a raise.�

d) Test the PL/SQL block for the following cases:

Department ID Message
ïð É¸¿´»² Ü«» º±® ¿ ®¿·­»

îð Ø¿®¬­¬»·² Ò±¬ Ü«» º±® ¿ ®¿·­»
Ú¿§ Ò±¬ Ü«» º±® ¿ ®¿·­»

ëð É»·­­ Ò±¬ Ü«» º±® ¿ ®¿·­»
Ú®·°° Ò±¬ Ü«» º±® ¿ ®¿·­»
Õ¿«º´·²¹ Ò±¬ Ü«» º±® ¿ ®¿·­»
Ê±´´³¿² Ò±¬ Ü«» º±® ¿ ®¿·­»ò ò ò
ò ò ò
ÑÝ±²²»´´ Ü«» º±® ¿ ®¿·­»
Ù®¿²¬ Ü«» º±® ¿ ®¿·­»

èð Î«­­»´´ Ò±¬ Ü«» º±® ¿ ®¿·­»
Ð¿®¬²»®­ Ò±¬ Ü«» º±® ¿ ®¿·­»
Û®®¿¦«®·¦ Ò±¬ Ü«» º±® ¿ ®¿·­»
Ý¿³¾®¿«´¬ Ò±¬ Ü«» º±® ¿ ®¿·­»
ò ò ò
Ô·ª·²¹­¬±² Ò±¬ Ü«» º±® ¿ ®¿·­»
Ö±¸²­±² Ò±¬ Ü«» º±® ¿ ®¿·­»

Practice 7-1: Using Explicit Cursors (continued)

Oracle Database 11g: PL/SQL Fundamentals A - 46

2) Next, write a PL/SQL block that declares and uses two cursors�one without a
parameter and one with a parameter. The first cursor retrieves the department number
and the department name from the ¼»°¿®¬³»²¬­ table for all departments whose
ID number is less than 100. The second cursor receives the department number as a
parameter, and retrieves employee details for those who work in that department and
whose »³°´±§»»Á·¼ is less than 120.

a) Declare a cursor ½Á¼»°¬Á½«®­±® to retrieve ¼»°¿®¬³»²¬Á·¼ and

¼»°¿®¬³»²¬Á²¿³» for those departments with ¼»°¿®¬³»²¬Á·¼ less than
100. Order by ¼»°¿®¬³»²¬Á·¼.

b) Declare another cursor ½_»³°Á½«®­±® that takes the department number as
parameter and retrieves the following data from the »³°´±§»»­ table:
´¿­¬Á²¿³», ¶±¾Á·¼, ¸·®»Á¼¿¬», and ­¿´¿®§ of those employees who
work in that department, with »³°´±§»»Á·¼ less than 120.

c) Declare variables to hold the values retrieved from each cursor. Use the ûÌÇÐÛ
attribute while declaring variables.

d) Open ½Á¼»°¬Á½«®­±® and use a simple loop to fetch values into the variables
declared. Display the department number and department name. Use the
appropriate cursor attribute to exit the loop.

e) Open ½Á»³°Á½«®­±® by passing the current department number as a parameter.
Start another loop and fetch the values of »³°Á½«®­±® into variables, and print
all the details retrieved from the »³°´±§»»­ table.

Note
 Check whether ½Á»³°Á½«®­±® is already open before opening the cursor.
 Use the appropriate cursor attribute for the exit condition.
 When the loop completes, print a line after you have displayed the details of

each department, and close ½Á»³°Á½«®­±®.

f) End the first loop and close ½Á¼»°¬Á½«®­±®. Then end the executable section.

g) Execute the script. The sample output is as follows:

Practice 7-1: Using Explicit Cursors (continued)

Oracle Database 11g: PL/SQL Fundamentals A - 47

Oracle Database 11g: PL/SQL Fundamentals A - 48

Practice 7-2: Using Explicit Cursors � Optional
If you have time, complete the following optional practice. Here, create a PL/SQL block
that uses an explicit cursor to determine the top n salaries of employees.

1) Run the ´¿¾Áðéóîò­¯´ script to create the ¬±°Á­¿´¿®·»­ table for storing the
salaries of the employees.

2) In the declarative section, declare the ªÁ²«³ variable of the ÒËÓÞÛÎ type that holds
a number ², representing the number of top n earners from the »³°´±§»»­ table.
For example, to view the top five salaries, enter ë. Declare another variable ­¿´ of
type »³°´±§»»­.­¿´¿®§. Declare a cursor, ½Á»³°Á½«®­±®, which retrieves the
salaries of employees in descending order. Remember that the salaries should not be
duplicated.

3) In the executable section, open the loop and fetch the top n salaries, and then insert
them into the ¬±°Á­¿´¿®·»­ table. You can use a simple loop to operate on the
data. Also, try and use the ûÎÑÉÝÑËÒÌ and ûÚÑËÒÜ attributes for the exit condition.

Note: Make sure that you add an exit condition to avoid having an infinite loop.

4) After inserting data into the ¬±°Á­¿´¿®·»­ table, display the rows with a ÍÛÔÛÝÌ
statement. The output shown represents the five highest salaries in the »³°´±§»»­
table.

5) Test a variety of special cases such as ªÁ²«³ ã ð or where ªÁ²«³ is greater than the

number of employees in the »³°´±§»»­ table. Empty the ¬±°Á­¿´¿®·»­ table
after each test.

Oracle Database 11g: PL/SQL Fundamentals A - 49

Solution 7-1: Using Explicit Cursors
In this practice, you perform two exercises:
 First, you use an explicit cursor to process a number of rows from a table and

populate another table with the results using a cursor ÚÑÎ loop.
 Second, you write a PL/SQL block that processes information with two cursors,

including one that uses a parameter.

1) Create a PL/SQL block to perform the following:

a) In the declarative section, declare and initialize a variable named ªÁ¼»°¬²± of
the ÒËÓÞÛÎ type. Assign a valid department ID value (see table in step d for
values).

ÜÛÝÔßÎÛ
ªÁ¼»°¬²± ÒËÓÞÛÎ æã ïðå

b) Declare a cursor named ½_»³°Á½«®­±®, which retrieves the ´¿­¬Á²¿³»,
­¿´¿®§, and ³¿²¿¹»®Á·¼ of employees working in the department specified
in ªÁ¼»°¬²±.

ÝËÎÍÑÎ ½Á»³°Á½«®­±® ×Í
 ÍÛÔÛÝÌ ´¿­¬Á²¿³»ô ­¿´¿®§ô³¿²¿¹»®Á·¼
 ÚÎÑÓ »³°´±§»»­
 ÉØÛÎÛ ¼»°¿®¬³»²¬Á·¼ ã ªÁ¼»°¬²±å

c) In the executable section, use the cursor ÚÑÎ loop to operate on the data retrieved.
If the salary of the employee is less than 5,000 and if the manager ID is either 101
or 124, display the message �<<last_name>> Due for a raise.� Otherwise, display
the message �<<last_name>> Not Due for a raise.�

ÞÛÙ×Ò
 ÚÑÎ »³°Á®»½±®¼ ×Ò ½Á»³°Á½«®­±®
 ÔÑÑÐ
 ×Ú »³°Á®»½±®¼ò­¿´¿®§ ä ëððð ßÒÜ ø»³°Á®»½±®¼ò³¿²¿¹»®Á·¼ãïðï
ÑÎ »³°Á®»½±®¼ò³¿²¿¹»®Á·¼ãïîì÷ ÌØÛÒ
 ÜÞÓÍÁÑËÌÐËÌòÐËÌÁÔ×ÒÛ ø»³°Á®»½±®¼ò´¿­¬Á²¿³» ¤¤ ù Ü«» º±®
¿ ®¿·­»ù÷å
 ÛÔÍÛ
 ÜÞÓÍÁÑËÌÐËÌòÐËÌÁÔ×ÒÛ ø»³°Á®»½±®¼ò´¿­¬Á²¿³» ¤¤ ù Ò±¬ Ü«»
º±® ¿ ®¿·­»ù÷å
 ÛÒÜ ×Úå
 ÛÒÜ ÔÑÑÐå
ÛÒÜå

d) Test the PL/SQL block for the following cases:

Solution 7-1: Using Explicit Cursors (continued)

Oracle Database 11g: PL/SQL Fundamentals A - 50

2) Next, write a PL/SQL block that declares and uses two cursors�one without a
parameter and one with a parameter. The first cursor retrieves the department number
and the department name from the ¼»°¿®¬³»²¬­ table for all departments whose
ID number is less than 100. The second cursor receives the department number as a
parameter, and retrieves employee details for those who work in that department and
whose »³°´±§»»Á·¼ is less than 120.

a) Declare a cursor ½Á¼»°¬Á½«®­±® to retrieve ¼»°¿®¬³»²¬Á·¼ and
¼»°¿®¬³»²¬Á²¿³» for those departments with ¼»°¿®¬³»²¬Á·¼ less than
100. Order by ¼»°¿®¬³»²¬Á·¼.

ÜÛÝÔßÎÛ
 ÝËÎÍÑÎ ½Á¼»°¬Á½«®­±® ×Í
 ÍÛÔÛÝÌ ¼»°¿®¬³»²¬Á·¼ô¼»°¿®¬³»²¬Á²¿³»
 ÚÎÑÓ ¼»°¿®¬³»²¬­
 ÉØÛÎÛ ¼»°¿®¬³»²¬Á·¼ ä ïðð
 ÑÎÜÛÎ ÞÇ ¼»°¿®¬³»²¬Á·¼å

Department ID Message
ïð É¸¿´»² Ü«» º±® ¿ ®¿·­»

îð Ø¿®¬­¬»·² Ò±¬ Ü«» º±® ¿ ®¿·­»
Ú¿§ Ò±¬ Ü«» º±® ¿ ®¿·­»

ëð É»·­­ Ò±¬ Ü«» º±® ¿ ®¿·­»
Ú®·°° Ò±¬ Ü«» º±® ¿ ®¿·­»
Õ¿«º´·²¹ Ò±¬ Ü«» º±® ¿ ®¿·­»
Ê±´´³¿² Ò±¬ Ü«» º±® ¿ ®¿·­»ò ò ò
ò ò ò
ÑÝ±²²»´´ Ü«» º±® ¿ ®¿·­»
Ù®¿²¬ Ü«» º±® ¿ ®¿·­»

èð Î«­­»´´ Ò±¬ Ü«» º±® ¿ ®¿·­»
Ð¿®¬²»®­ Ò±¬ Ü«» º±® ¿ ®¿·­»
Û®®¿¦«®·¦ Ò±¬ Ü«» º±® ¿ ®¿·­»
Ý¿³¾®¿«´¬ Ò±¬ Ü«» º±® ¿ ®¿·­»
ò ò ò
Ô·ª·²¹­¬±² Ò±¬ Ü«» º±® ¿ ®¿·­»
Ö±¸²­±² Ò±¬ Ü«» º±® ¿ ®¿·­»

Solution 7-1: Using Explicit Cursors (continued)

Oracle Database 11g: PL/SQL Fundamentals A - 51

b) Declare another cursor ½_»³°Á½«®­±® that takes the department number as
parameter and retrieves the following data from the »³°´±§»»­ table:
´¿­¬Á²¿³», ¶±¾Á·¼, ¸·®»Á¼¿¬», and ­¿´¿®§ of those employees who
work in that department, with »³°´±§»»Á·¼ less than 120.

ÝËÎÍÑÎ ½Á»³°Á½«®­±®øªÁ¼»°¬²± ÒËÓÞÛÎ÷ ×Í
 ÍÛÔÛÝÌ ´¿­¬Á²¿³»ô¶±¾Á·¼ô¸·®»Á¼¿¬»ô­¿´¿®§
 ÚÎÑÓ »³°´±§»»­
 ÉØÛÎÛ ¼»°¿®¬³»²¬Á·¼ ã ªÁ¼»°¬²±
 ßÒÜ »³°´±§»»Á·¼ ä ïîðå

c) Declare variables to hold the values retrieved from each cursor. Use the ûÌÇÐÛ
attribute while declaring variables.

 ªÁ½«®®»²¬Á¼»°¬²± ¼»°¿®¬³»²¬­ò¼»°¿®¬³»²¬Á·¼ûÌÇÐÛå
 ªÁ½«®®»²¬Á¼²¿³» ¼»°¿®¬³»²¬­ò¼»°¿®¬³»²¬Á²¿³»ûÌÇÐÛå
 ªÁ»²¿³» »³°´±§»»­ò´¿­¬Á²¿³»ûÌÇÐÛå
 ªÁ¶±¾ »³°´±§»»­ò¶±¾Á·¼ûÌÇÐÛå
 ªÁ¸·®»¼¿¬» »³°´±§»»­ò¸·®»Á¼¿¬»ûÌÇÐÛå
 ªÁ­¿´ »³°´±§»»­ò­¿´¿®§ûÌÇÐÛå

d) Open ½Á¼»°¬Á½«®­±® and use a simple loop to fetch values into the variables
declared. Display the department number and department name. Use the
appropriate cursor attribute to exit the loop.

ÞÛÙ×Ò
 ÑÐÛÒ ½Á¼»°¬Á½«®­±®å
 ÔÑÑÐ
 ÚÛÌÝØ ½Á¼»°¬Á½«®­±® ×ÒÌÑ ªÁ½«®®»²¬Á¼»°¬²±ô

 ªÁ½«®®»²¬Á¼²¿³»å
 ÛÈ×Ì ÉØÛÒ ½Á¼»°¬Á½«®­±®ûÒÑÌÚÑËÒÜå
 ÜÞÓÍÁÑËÌÐËÌòÐËÌÁÔ×ÒÛ øùÜ»°¿®¬³»²¬ Ò«³¾»® æ ù ¤¤
 ªÁ½«®®»²¬Á¼»°¬²± ¤¤ ù Ü»°¿®¬³»²¬ Ò¿³» æ ù ¤¤
 ªÁ½«®®»²¬Á¼²¿³»÷å

Solution 7-1: Using Explicit Cursors (continued)

Oracle Database 11g: PL/SQL Fundamentals A - 52

e) Open ½Á»³°Á½«®­±® by passing the current department number as a parameter.
Start another loop and fetch the values of »³°Á½«®­±® into variables, and print
all the details retrieved from the »³°´±§»»­ table.

Note
 Check whether ½Á»³°Á½«®­±® is already open before opening the cursor.
 Use the appropriate cursor attribute for the exit condition.
 When the loop completes, print a line after you have displayed the details of

each department, and close ½Á»³°Á½«®­±®.

×Ú ½Á»³°Á½«®­±®û×ÍÑÐÛÒ ÌØÛÒ
 ÝÔÑÍÛ ½Á»³°Á½«®­±®å
ÛÒÜ ×Úå
ÑÐÛÒ ½Á»³°Á½«®­±® øªÁ½«®®»²¬Á¼»°¬²±÷å
 ÔÑÑÐ
 ÚÛÌÝØ ½Á»³°Á½«®­±® ×ÒÌÑ ªÁ»²¿³»ôªÁ¶±¾ôªÁ¸·®»¼¿¬»ôªÁ­¿´å
 ÛÈ×Ì ÉØÛÒ ½Á»³°Á½«®­±®ûÒÑÌÚÑËÒÜå
 ÜÞÓÍÁÑËÌÐËÌòÐËÌÁÔ×ÒÛ øªÁ»²¿³» ¤¤ ù ù ¤¤ ªÁ¶±¾
 ¤¤ ù ù ¤¤ ªÁ¸·®»¼¿¬» ¤¤ ù ù ¤¤
ªÁ­¿´÷å
 ÛÒÜ ÔÑÑÐå
 ÜÞÓÍÁÑËÌÐËÌòÐËÌÁÔ×ÒÛøùóóóóóóóóóóóóóóóóóóóóóóóóóóóóóóóóóóóóóó
óóù÷å
 ÝÔÑÍÛ ½Á»³°Á½«®­±®å

f) End the first loop and close ½Á¼»°¬Á½«®­±®. Then end the executable section.

 ÛÒÜ ÔÑÑÐå
 ÝÔÑÍÛ ½Á¼»°¬Á½«®­±®å
ÛÒÜå

g) Execute the script. The sample output is as follows:

Solution 7-1: Using Explicit Cursors (continued)

Oracle Database 11g: PL/SQL Fundamentals A - 53

Oracle Database 11g: PL/SQL Fundamentals A - 54

Solution 7-2: Using Explicit Cursors � Optional
If you have time, complete the following optional exercise. Here, create a PL/SQL block
that uses an explicit cursor to determine the top n salaries of employees.

1) Execute the ´¿¾Áðéóðîò­¯´ script to create a new table, ¬±°Á­¿´¿®·»­, for

storing the salaries of the employees.

2) In the declarative section, declare a variable ªÁ²«³ of type ÒËÓÞÛÎ that holds a
number ², representing the number of top n earners from the »³°´±§»»­ table. For
example, to view the top five salaries, enter ë. Declare another variable ­¿´ of type
»³°´±§»»­.­¿´¿®§. Declare a cursor, ½Á»³°Á½«®­±®, which retrieves the
salaries of employees in descending order. Remember that the salaries should not be
duplicated.

ÜÛÝÔßÎÛ
 ªÁ²«³ ÒËÓÞÛÎøí÷ æã ëå
 ªÁ­¿´ »³°´±§»»­ò­¿´¿®§ûÌÇÐÛå
 ÝËÎÍÑÎ ½Á»³°Á½«®­±® ×Í
 ÍÛÔÛÝÌ ­¿´¿®§
 ÚÎÑÓ »³°´±§»»­
 ÑÎÜÛÎ ÞÇ ­¿´¿®§ ÜÛÍÝå

3) In the executable section, open the loop and fetch the top n salaries, and then insert
them into the ¬±°Á­¿´¿®·»­ table. You can use a simple loop to operate on the
data. Also, try and use the ûÎÑÉÝÑËÒÌ and ûÚÑËÒÜ attributes for the exit condition.
Note: Make sure that you add an exit condition to avoid having an infinite loop.

ÞÛÙ×Ò
 ÑÐÛÒ ½Á»³°Á½«®­±®å
 ÚÛÌÝØ ½Á»³°Á½«®­±® ×ÒÌÑ ªÁ­¿´å
 ÉØ×ÔÛ ½Á»³°Á½«®­±®ûÎÑÉÝÑËÒÌ äã ªÁ²«³ ßÒÜ ½Á»³°Á½«®­±®ûÚÑËÒÜ
ÔÑÑÐ
 ×ÒÍÛÎÌ ×ÒÌÑ ¬±°Á­¿´¿®·»­ ø­¿´¿®§÷
 ÊßÔËÛÍ øªÁ­¿´÷å
 ÚÛÌÝØ ½Á»³°Á½«®­±® ×ÒÌÑ ªÁ­¿´å
 ÛÒÜ ÔÑÑÐå
 ÝÔÑÍÛ ½Á»³°Á½«®­±®å
ÛÒÜå

Solution 7-2: Using Explicit Cursors � Optional (continued)

Oracle Database 11g: PL/SQL Fundamentals A - 55

4) After inserting data into the ¬±°Á­¿´¿®·»­ table, display the rows with a ÍÛÔÛÝÌ
statement. The output shown represents the five highest salaries in the »³°´±§»»­
table.

ñ
ÍÛÔÛÝÌ ö ÚÎÑÓ ¬±°Á­¿´¿®·»­å

The sample output is as follows:

5) Test a variety of special cases such as ªÁ²«³ ã ð or where ªÁ²«³ is greater than the

number of employees in the »³°´±§»»­ table. Empty the ¬±°Á­¿´¿®·»­ table
after each test.

Oracle Database 11g: PL/SQL Fundamentals A - 56

Practices and Solutions for Lesson 8

Practice 8-1: Handling Predefined Exceptions

In this practice, you write a PL/SQL block that applies a predefined exception in order to
process only one record at a time. The PL/SQL block selects the name of the employee
with a given salary value.

1) Execute the command in the ´¿¾ÁðëÁðïò­¯´ file to re-create the ³»­­¿¹»­
table.

2) In the declarative section, declare two variables: ªÁ»²¿³» of type

»³°´±§»»­ò´¿­¬Á²¿³» and ªÁ»³°Á­¿´ of type »³°´±§»»­ò­¿´¿®§.
Initialize the latter to 6000.

3) In the executable section, retrieve the last names of employees whose salaries are
equal to the value in ªÁ»³°Á­¿´. If the salary entered returns only one row, insert
into the ³»­­¿¹»­ table the employee�s name and the salary amount.
Note: Do not use explicit cursors.

4) If the salary entered does not return any rows, handle the exception with an
appropriate exception handler and insert into the ³»­­¿¹»­ table the message �No
employee with a salary of <salary>.�

5) If the salary entered returns multiple rows, handle the exception with an appropriate
exception handler and insert into the ³»­­¿¹»­ table the message �More than one
employee with a salary of <salary>.�

6) Handle any other exception with an appropriate exception handler and insert into the
³»­­¿¹»­ table the message �Some other error occurred.�

7) Display the rows from the ³»­­¿¹»­ table to check whether the PL/SQL block has

executed successfully. The output is as follows:

8) Change the initialized value of ªÁ»³°Á­¿´ to 2000 and re-execute. Output is as
follows:

Practice 8-1: Handling Predefined Exceptions (continued)

Oracle Database 11g: PL/SQL Fundamentals A - 57

Oracle Database 11g: PL/SQL Fundamentals A - 58

Practice 8-2: Handling Standard Oracle Server Exceptions

In this practice, you write a PL/SQL block that declares an exception for the Oracle
Server error ÑÎßóðîîçî ø·²¬»¹®·¬§ ½±²­¬®¿·²¬ ª·±´¿¬»¼ � ½¸·´¼
®»½±®¼ º±«²¼÷. The block tests for the exception and outputs the error message.

1) In the declarative section, declare an exception »Á½¸·´¼®»½±®¼Á»¨·­¬­.
Associate the declared exception with the standard Oracle Server error �ðîîçî.

2) In the executable section, display �Deleting department 40....� Include a ÜÛÔÛÌÛ
statement to delete the department with the ¼»°¿®¬³»²¬Á·¼ 40.

3) Include an exception section to handle the »Á½¸·´¼®»½±®¼Á»¨·­¬­ exception
and display the appropriate message.

The sample output is as follows:

Oracle Database 11g: PL/SQL Fundamentals A - 59

Solution 8-1: Handling Predefined Exceptions
In this practice, you write a PL/SQL block that applies a predefined exception in order to
process only one record at a time. The PL/SQL block selects the name of the employee
with a given salary value.

1) Execute the command in the ´¿¾ÁðëÁðïò­¯´ file to recreate the ³»­­¿¹»­ table.

2) In the declarative section, declare two variables: ªÁ»²¿³» of type
»³°´±§»»­ò´¿­¬Á²¿³» and ªÁ»³°Á­¿´ of type »³°´±§»»­ò­¿´¿®§.
Initialize the latter to 6000.

ÜÛÝÔßÎÛ
 ªÁ»²¿³» »³°´±§»»­ò´¿­¬Á²¿³»ûÌÇÐÛå
 ªÁ»³°Á­¿´ »³°´±§»»­ò­¿´¿®§ûÌÇÐÛ æã êðððå

3) In the executable section, retrieve the last names of employees whose salaries are
equal to the value in ªÁ»³°Á­¿´. If the salary entered returns only one row, insert
into the ³»­­¿¹»­ table the employee�s name and the salary amount.
Note: Do not use explicit cursors.

ÞÛÙ×Ò
 ÍÛÔÛÝÌ ́¿­¬Á²¿³»
 ×ÒÌÑ ªÁ»²¿³»
 ÚÎÑÓ »³°´±§»»­
 ÉØÛÎÛ ­¿´¿®§ ã ªÁ»³°Á­¿´å
 ×ÒÍÛÎÌ ×ÒÌÑ ³»­­¿¹»­ ø®»­«´¬­÷
 ÊßÔËÛÍ øªÁ»²¿³» ¤¤ ù ó ù ¤¤ ªÁ»³°Á­¿´÷å

4) If the salary entered does not return any rows, handle the exception with an
appropriate exception handler and insert into the ³»­­¿¹»­ table the message �No
employee with a salary of <salary>.�

ÛÈÝÛÐÌ×ÑÒ
 ÉØÛÒ ²±Á¼¿¬¿Áº±«²¼ ÌØÛÒ
 ×ÒÍÛÎÌ ×ÒÌÑ ³»­­¿¹»­ ø®»­«´¬­÷
 ÊßÔËÛÍ øùÒ± »³°´±§»» ©·¬¸ ¿ ­¿´¿®§ ±º ù¤¤
 ÌÑÁÝØßÎøªÁ»³°Á­¿´÷÷å

Solution 8-1: Handling Predefined Exceptions (continued)

Oracle Database 11g: PL/SQL Fundamentals A - 60

5) If the salary entered returns multiple rows, handle the exception with an appropriate
exception handler and insert into the ³»­­¿¹»­ table the message �More than one
employee with a salary of <salary>.�

ÉØÛÒ ¬±±Á³¿²§Á®±©­ ÌØÛÒ
 ×ÒÍÛÎÌ ×ÒÌÑ ³»­­¿¹»­ ø®»­«´¬­÷
 ÊßÔËÛÍ øùÓ±®» ¬¸¿² ±²» »³°´±§»» ©·¬¸ ¿ ­¿´¿®§ ±º ù¤¤
 ÌÑÁÝØßÎøªÁ»³°Á­¿´÷÷å

6) Handle any other exception with an appropriate exception handler and insert into the
³»­­¿¹»­ table the message �Some other error occurred.�

ÉØÛÒ ±¬¸»®­ ÌØÛÒ
 ×ÒÍÛÎÌ ×ÒÌÑ ³»­­¿¹»­ ø®»­«´¬­÷
 ÊßÔËÛÍ øùÍ±³» ±¬¸»® »®®±® ±½½«®®»¼òù÷å
ÛÒÜå

7) Display the rows from the ³»­­¿¹»­ table to check whether the PL/SQL block has
executed successfully.

ñ
ÍÛÔÛÝÌ ö ÚÎÑÓ ³»­­¿¹»­å

The output is as follows:

8) Change the initialized value of ªÁ»³°Á­¿´ to 2000 and re-execute. The output is as
follows:

Oracle Database 11g: PL/SQL Fundamentals A - 61

Solution 8-2: Handling Standard Oracle Server Exceptions

In this practice, you write a PL/SQL block that declares an exception for the Oracle
Server error ÑÎßóðîîçî ø·²¬»¹®·¬§ ½±²­¬®¿·²¬ ª·±´¿¬»¼ � ½¸·´¼
®»½±®¼ º±«²¼÷. The block tests for the exception and outputs the error message.

1) In the declarative section, declare an exception »Á½¸·´¼®»½±®¼Á»¨·­¬­.
Associate the declared exception with the standard Oracle Server error �ðîîçî.

ÍÛÌ ÍÛÎÊÛÎÑËÌÐËÌ ÑÒ
ÜÛÝÔßÎÛ
 »Á½¸·´¼®»½±®¼Á»¨·­¬­ ÛÈÝÛÐÌ×ÑÒå
 ÐÎßÙÓß ÛÈÝÛÐÌ×ÑÒÁ×Ò×Ìø»Á½¸·´¼®»½±®¼Á»¨·­¬­ô óðîîçî÷å

2) In the executable section, display �Deleting department 40....� Include a ÜÛÔÛÌÛ
statement to delete the department with ¼»°¿®¬³»²¬Á·¼ 40.

ÞÛÙ×Ò
 ÜÞÓÍÁÑËÌÐËÌòÐËÌÁÔ×ÒÛøù Ü»´»¬·²¹ ¼»°¿®¬³»²¬ ìðòòòòòòòòù÷å
 ¼»´»¬» º®±³ ¼»°¿®¬³»²¬­ ©¸»®» ¼»°¿®¬³»²¬Á·¼ãìðå

3) Include an exception section to handle the »Á½¸·´¼®»½±®¼Á»¨·­¬­ exception
and display the appropriate message.

ÛÈÝÛÐÌ×ÑÒ
 ÉØÛÒ »Á½¸·´¼®»½±®¼Á»¨·­¬­ ÌØÛÒ
 ÜÞÓÍÁÑËÌÐËÌòÐËÌÁÔ×ÒÛøù Ý¿²²±¬ ¼»´»¬» ¬¸·­ ¼»°¿®¬³»²¬ò Ì¸»®»
¿®» »³°´±§»»­ ·² ¬¸·­ ¼»°¿®¬³»²¬ ø½¸·´¼ ®»½±®¼­ »¨·­¬ò÷ ù÷å
ÛÒÜå

The sample output is as follows:

Oracle Database 11g: PL/SQL Fundamentals A - 62

Practices and Solutions for Lesson 9

Practice 9: Creating and Using Stored Procedures
In this practice, you modify existing scripts to create and use stored procedures.

1) Load the ­±´ÁðîÁðìò­¯´ script from the /home/oracle/plsf/soln/ folder.

a) Modify the script to convert the anonymous block to a procedure called ¹®»»¬.
(Hint: Also remove the ÍÛÌ ÍÛÎÊÛÎÑËÌÐËÌ ÑÒ command.)

b) Execute the script to create the procedure. The output results should be as follows:

c) Save this script as ´¿¾ÁðçÁðïÁ­±´²ò­¯´.

d) Click the Clear button to clear the workspace.

e) Create and execute an anonymous block to invoke the ¹®»»¬ procedure. (Hint:
Ensure that you enable ÍÛÎÊÛÎÑËÌÐËÌ at the beginning of the block.)

The output should be similar to the following:

2) Modify the ´¿¾ÁðçÁðïÁ­±´²ò­¯´ script as follows:

a) Drop the ¹®»»¬ procedure by issuing the following command:

ÜÎÑÐ ÐÎÑÝÛÜËÎÛ ¹®»»¬å

b) Modify the procedure to accept an argument of type ÊßÎÝØßÎî. Call the
argument °Á²¿³».

c) Print Ø»´´± ä²¿³»â (that is, the contents of the argument) instead of printing
Ø»´´± É±®´¼.

d) Save your script as ´¿¾ÁðçÁðîÁ­±´²ò­¯´.

e) Execute the script to create the procedure. The output results should be as follows:

Practice 9: Creating and Using Stored Procedures (continued)

Oracle Database 11g: PL/SQL Fundamentals A - 63

f) Create and execute an anonymous block to invoke the ¹®»»¬ procedure with a

parameter value. The block should also produce the output.

The sample output should be similar to the following:

Oracle Database 11g: PL/SQL Fundamentals A - 64

Solution 9: Creating and Using Stored Procedures
In this practice, you modify existing scripts to create and use stored procedures.

1) Load the ­±´ÁðîÁðìò­¯´ script from the /home/oracle/plsf/soln/ folder.

a) Modify the script to convert the anonymous block to a procedure called ¹®»»¬.
(Hint: Also remove the ÍÛÌ ÍÛÎÊÛÎÑËÌÐËÌ ÑÒ command.)

ÝÎÛßÌÛ ÐÎÑÝÛÜËÎÛ ¹®»»¬ ×Í
 ÊÁ¬±¼¿§ ÜßÌÛæãÍÇÍÜßÌÛå
 ÊÁ¬±³±®®±© ¬±¼¿§ûÌÇÐÛå
òòò

b) Execute the script to create the procedure. The output results should be as follows:

c) Save this script as ´¿¾ÁðçÁðïÁ­±´²ò­¯´.
d) Click the Clear button to clear the workspace.
e) Create and execute an anonymous block to invoke the ¹®»»¬ procedure. (Hint:

Ensure that you enable ÍÛÎÊÛÎÑËÌÐËÌ at the beginning of the block.)

ÍÛÌ ÍÛÎÊÛÎÑËÌÐËÌ ÑÒ

ÞÛÙ×Ò
 ¹®»»¬å
ÛÒÜå

The output should be similar to the following:

Solution 9: Creating and Using Stored Procedures (continued)

Oracle Database 11g: PL/SQL Fundamentals A - 65

2) Modify the ´¿¾ÁðçÁðïÁ­±´²ò­¯´ script as follows:

a) Drop the ¹®»»¬ procedure by issuing the following command:

ÜÎÑÐ ÐÎÑÝÛÜËÎÛ ¹®»»¬å

b) Modify the procedure to accept an argument of type ÊßÎÝØßÎî. Call the
argument °Á²¿³».

ÝÎÛßÌÛ ÐÎÑÝÛÜËÎÛ ¹®»»¬ø°Á²¿³» ÊßÎÝØßÎî÷ ×Í
 ÊÁ¬±¼¿§ ÜßÌÛæãÍÇÍÜßÌÛå
 ÊÁ¬±³±®®±© ¬±¼¿§ûÌÇÐÛå

c) Print Ø»´´± ä²¿³»â instead of printing Ø»´´± É±®´¼.

ÞÛÙ×Ò
 ÊÁ¬±³±®®±©æãªÁ¬±¼¿§ õïå
 ÜÞÓÍÁÑËÌÐËÌòÐËÌÁÔ×ÒÛøù Ø»´´± ù¤¤ °Á²¿³»÷å
òòò

d) Save your script as ´¿¾ÁðçÁðîÁ­±´²ò­¯´.
e) Execute the script to create the procedure. The output results should be as follows:

f) Create and execute an anonymous block to invoke the ¹®»»¬ procedure with a

parameter value. The block should also produce the output.

ÍÛÌ ÍÛÎÊÛÎÑËÌÐËÌ ÑÒå
ÞÛÙ×Ò
 ¹®»»¬øùÒ¿²½§ù÷å
ÛÒÜå

The sample output should be similar to the following:

B
Table Descriptions

and Data

Oracle Database 11g: PL/SQL Fundamentals B - 2

ENTITY RELATIONSHIP DIAGRAM

Oracle Database 11g: PL/SQL Fundamentals B - 3

Tables in the Schema
SELECT * FROM tab;

Oracle Database 11g: PL/SQL Fundamentals B - 4

regions Table
DESCRIBE regions

SELECT * FROM regions;

Oracle Database 11g: PL/SQL Fundamentals B - 5

countries Table
DESCRIBE countries

SELECT * FROM countries;

Oracle Database 11g: PL/SQL Fundamentals B - 6

locations Table
DESCRIBE locations;

SELECT * FROM locations;

Oracle Database 11g: PL/SQL Fundamentals B - 7

departments Table
DESCRIBE departments

SELECT * FROM departments;

Oracle Database 11g: PL/SQL Fundamentals B - 8

jobs Table
DESCRIBE jobs

SELECT * FROM jobs;

Oracle Database 11g: PL/SQL Fundamentals B - 9

employees Table
DESCRIBE employees

Oracle Database 11g: PL/SQL Fundamentals B - 10

employees Table (continued)
The headings for the commission_pct, manager_id, and department_id columns
are set to comm, mgrid, and deptid, respectively, in the following screenshot to fit the
table values across the page.
SELECT * FROM employees;

Oracle Database 11g: PL/SQL Fundamentals B - 11

employees Table (continued)

Oracle Database 11g: PL/SQL Fundamentals B - 12

employees Table (continued)

Oracle Database 11g: PL/SQL Fundamentals B - 13

job_history Table
DESCRIBE job_history

SELECT * FROM job_history;

Copyright © 2009, Oracle. All rights reserved.

REF Cursors

Oracle Database 11g: PL/SQL Fundamentals F - 2

Copyright © 2009, Oracle. All rights reserved.F - 2

Cursor Variables

• Cursor variables are like C or Pascal pointers, which hold
the memory location (address) of an item instead of the
item itself.

• In PL/SQL, a pointer is declared as REF X, where REF is
short for REFERENCE and X stands for a class of objects.

• A cursor variable has the data type REF CURSOR.
• A cursor is static, but a cursor variable is dynamic.
• Cursor variables give you more flexibility.

Cursor Variables
Cursor variables are like C or Pascal pointers, which hold the memory location (address) of an
item instead of the item itself. Thus, declaring a cursor variable creates a pointer, not an item. In
PL/SQL, a pointer has the data type REF X, where REF is short for REFERENCE and X stands for
a class of objects. A cursor variable has the REF CURSOR data type.
Like a cursor, a cursor variable points to the current row in the result set of a multirow query.
However, cursors differ from cursor variables the way constants differ from variables. A cursor
is static, but a cursor variable is dynamic because it is not tied to a specific query. You can open
a cursor variable for any type-compatible query. This gives you more flexibility.
Cursor variables are available to every PL/SQL client. For example, you can declare a cursor
variable in a PL/SQL host environment such as an OCI or Pro*C program, and then pass it as an
input host variable (bind variable) to PL/SQL. Moreover, application development tools such as
Oracle Forms and Oracle Reports, which have a PL/SQL engine, can use cursor variables
entirely on the client side. The Oracle Server also has a PL/SQL engine. You can pass cursor
variables back and forth between an application and server through remote procedure calls
(RPCs).

Oracle Database 11g: PL/SQL Fundamentals F - 3

Copyright © 2009, Oracle. All rights reserved.F - 3

Using Cursor Variables

• You can use cursor variables to pass query result sets
between PL/SQL stored subprograms and various clients.

• PL/SQL can share a pointer to the query work area in
which the result set is stored.

• You can pass the value of a cursor variable freely from one
scope to another.

• You can reduce network traffic by having a PL/SQL block
open (or close) several host cursor variables in a single
roundtrip.

Using Cursor Variables
You use cursor variables to pass query result sets between PL/SQL stored subprograms and
various clients. Neither PL/SQL nor any of its clients owns a result set; they simply share a
pointer to the query work area in which the result set is stored. For example, an OCI client, an
Oracle Forms application, and the Oracle Server can all refer to the same work area.
A query work area remains accessible as long as any cursor variable points to it. Therefore, you
can pass the value of a cursor variable freely from one scope to another. For example, if you
pass a host cursor variable to a PL/SQL block that is embedded in a Pro*C program, the work
area to which the cursor variable points remains accessible after the block completes.
If you have a PL/SQL engine on the client side, calls from the client to the server impose no
restrictions. For example, you can declare a cursor variable on the client side, open and fetch
from it on the server side, and then continue to fetch from it back on the client side. Also, you
can reduce network traffic by having a PL/SQL block open (or close) several host cursor
variables in a single roundtrip.
A cursor variable holds a reference to the cursor work area in the Program Global Area (PGA)
instead of addressing it with a static name. Because you address this area by a reference, you
gain the flexibility of a variable.

Oracle Database 11g: PL/SQL Fundamentals F - 4

Copyright © 2009, Oracle. All rights reserved.F - 4

Defining REF CURSOR Types

Define a REF CURSOR type:

Declare a cursor variable of that type:

Example:

Define a REF CURSOR type
TYPE ref_type_name IS REF CURSOR [RETURN return_type];

ref_cv ref_type_name;

DECLARE
TYPE DeptCurTyp IS REF CURSOR RETURN
departments%ROWTYPE;
dept_cv DeptCurTyp;

Defining REF CURSOR Types
To define a REF CURSOR, you perform two steps. First, you define a REF CURSOR type, and then
you declare cursor variables of that type. You can define REF CURSOR types in any PL/SQL
block, subprogram, or package using the following syntax:
TYPE ref_type_name IS REF CURSOR [RETURN return_type];
where:
ref_type_name Is a type specifier used in subsequent declarations of cursor

variables
return_type Represents a record or a row in a database table

In this example, you specify a return type that represents a row in the database table
DEPARTMENT.
REF CURSOR types can be strong (restrictive) or weak (nonrestrictive). As the next example
shows, a strong REF CURSOR type definition specifies a return type, but a weak definition does
not:
DECLARE

TYPE EmpCurTyp IS REF CURSOR RETURN employees%ROWTYPE; --
strong

TYPE GenericCurTyp IS REF CURSOR; -- weak

Oracle Database 11g: PL/SQL Fundamentals F - 5

Defining REF CURSOR Types (continued)
Strong REF CURSOR types are less error prone because the PL/SQL compiler lets you associate a
strongly typed cursor variable only with type-compatible queries. However, weak REF CURSOR
types are more flexible because the compiler lets you associate a weakly typed cursor variable
with any query.

Declaring Cursor Variables
After you define a REF CURSOR type, you can declare cursor variables of that type in any
PL/SQL block or subprogram. In the following example, you declare the cursor variable
DEPT_CV:
DECLARE

TYPE DeptCurTyp IS REF CURSOR RETURN departments%ROWTYPE;
dept_cv DeptCurTyp; -- declare cursor variable

Note: You cannot declare cursor variables in a package. Unlike packaged variables, cursor
variables do not have persistent states. Remember, declaring a cursor variable creates a pointer,
not an item. Cursor variables cannot be saved in the database; they follow the usual scoping and
instantiation rules.
In the RETURN clause of a REF CURSOR type definition, you can use %ROWTYPE to specify a
record type that represents a row returned by a strongly (not weakly) typed cursor variable, as
follows:
DECLARE

TYPE TmpCurTyp IS REF CURSOR RETURN employees%ROWTYPE;
tmp_cv TmpCurTyp; -- declare cursor variable
TYPE EmpCurTyp IS REF CURSOR RETURN tmp_cv%ROWTYPE;
emp_cv EmpCurTyp; -- declare cursor variable

Similarly, you can use %TYPE to provide the data type of a record variable, as the following
example shows:
DECLARE

dept_rec departments%ROWTYPE; -- declare record variable
TYPE DeptCurTyp IS REF CURSOR RETURN dept_rec%TYPE;
dept_cv DeptCurTyp; -- declare cursor variable

In the final example, you specify a user-defined RECORD type in the RETURN clause:
DECLARE

TYPE EmpRecTyp IS RECORD (
empno NUMBER(4),
ename VARCHAR2(1O),
sal NUMBER(7,2));

TYPE EmpCurTyp IS REF CURSOR RETURN EmpRecTyp;
emp_cv EmpCurTyp; -- declare cursor variable

Oracle Database 11g: PL/SQL Fundamentals F - 6

Cursor Variables as Parameters
You can declare cursor variables as the formal parameters of functions and procedures. In the
following example, you define the REF CURSOR type EmpCurTyp, and then declare a cursor
variable of that type as the formal parameter of a procedure:
DECLARE

TYPE EmpCurTyp IS REF CURSOR RETURN emp%ROWTYPE;
PROCEDURE open_emp_cv (emp_cv IN OUT EmpCurTyp) IS ...

Oracle Database 11g: PL/SQL Fundamentals F - 7

Copyright © 2009, Oracle. All rights reserved.F - 7

Using the OPEN-FOR, FETCH,
and CLOSE Statements

• The OPEN-FOR statement associates a cursor variable
with a multirow query, executes the query, identifies the
result set, and positions the cursor to point to the first row
of the result set.

• The FETCH statement returns a row from the result set of a
multirow query, assigns the values of the select-list items
to the corresponding variables or fields in the INTO clause,
increments the count kept by %ROWCOUNT, and advances
the cursor to the next row.

• The CLOSE statement disables a cursor variable.

Using the OPEN-FOR, FETCH, and CLOSE Statements
You use three statements to process a dynamic multirow query: OPEN-FOR, FETCH, and
CLOSE. First, you “open” a cursor variable “for” a multirow query. Then you “fetch” rows from
the result set one at a time. When all the rows are processed, you “close” the cursor variable.
Opening the Cursor Variable
The OPEN-FOR statement associates a cursor variable with a multirow query, executes the
query, identifies the result set, positions the cursor to point to the first row of the results set, and
then sets the rows-processed count kept by %ROWCOUNT to zero. Unlike the static form of
OPEN-FOR, the dynamic form has an optional USING clause. At run time, bind arguments in
the USING clause replace corresponding placeholders in the dynamic SELECT statement. The
syntax is:

OPEN {cursor_variable | :host_cursor_variable} FOR
dynamic_string

[USING bind_argument[, bind_argument]...];
where CURSOR_VARIABLE is a weakly typed cursor variable (one without a return type),
HOST_CURSOR_VARIABLE is a cursor variable declared in a PL/SQL host environment such
as an OCI program, and dynamic_string is a string expression that represents a multirow
query.

Oracle Database 11g: PL/SQL Fundamentals F - 8

Using the OPEN-FOR, FETCH, and CLOSE Statements (continued)
In the following example, the syntax declares a cursor variable, and then associates it with a
dynamic SELECT statement that returns rows from the employees table:
DECLARE
TYPE EmpCurTyp IS REF CURSOR; -- define weak REF CURSOR

type
emp_cv EmpCurTyp; -- declare cursor variable
my_ename VARCHAR2(15);
my_sal NUMBER := 1000;
BEGIN
OPEN emp_cv FOR -- open cursor variable

'SELECT last_name, salary FROM employees WHERE salary >
:s'

USING my_sal;
...
END;

Any bind arguments in the query are evaluated only when the cursor variable is opened. Thus, to
fetch rows from the cursor using different bind values, you must reopen the cursor variable with
the bind arguments set to their new values each time.
Fetching from the Cursor Variable
The FETCH statement returns a row from the result set of a multirow query, assigns the values
of the select-list items to the corresponding variables or fields in the INTO clause, increments
the count kept by %ROWCOUNT, and advances the cursor to the next row. Use the following
syntax:
FETCH {cursor_variable | :host_cursor_variable}
INTO {define_variable[, define_variable]... | record};

Continuing the example, fetch rows from the cursor variable emp_cv into the define variables
MY_ENAME and MY_SAL:
LOOP
FETCH emp_cv INTO my_ename, my_sal; -- fetch next row
EXIT WHEN emp_cv%NOTFOUND; -- exit loop when last row is

fetched
-- process row
END LOOP;

For each column value returned by the query associated with the cursor variable, there must be a
corresponding, type-compatible variable or field in the INTO clause. You can use a different
INTO clause on separate fetches with the same cursor variable. Each fetch retrieves another row
from the same result set. If you try to fetch from a closed or never-opened cursor variable,
PL/SQL raises the predefined exception INVALID_CURSOR.

Oracle Database 11g: PL/SQL Fundamentals F - 9

Using the OPEN-FOR, FETCH, and CLOSE Statements (continued)
Closing the Cursor Variable
The CLOSE statement disables a cursor variable. After that, the associated result set is
undefined. Use the following syntax:
CLOSE {cursor_variable | :host_cursor_variable};

In this example, when the last row is processed, close the emp_cv cursor variable:
LOOP
FETCH emp_cv INTO my_ename, my_sal;
EXIT WHEN emp_cv%NOTFOUND;
-- process row
END LOOP;
CLOSE emp_cv; -- close cursor variable

If you try to close an already-closed or never-opened cursor variable, PL/SQL raises
INVALID_CURSOR.

Oracle Database 11g: PL/SQL Fundamentals F - 10

Copyright © 2009, Oracle. All rights reserved.F - 10

Example of Fetching

DECLARE
TYPE EmpCurTyp IS REF CURSOR;
emp_cv EmpCurTyp;
emp_rec employees%ROWTYPE;
sql_stmt VARCHAR2(200);
my_job VARCHAR2(10) := 'ST_CLERK';

BEGIN
sql_stmt := 'SELECT * FROM employees

WHERE job_id = :j';
OPEN emp_cv FOR sql_stmt USING my_job;
LOOP

FETCH emp_cv INTO emp_rec;
EXIT WHEN emp_cv%NOTFOUND;
-- process record

END LOOP;
CLOSE emp_cv;

END;
/

Example of Fetching
The example in the slide shows that you can fetch rows from the result set of a dynamic
multirow query into a record. You must first define a REF CURSOR type, EmpCurTyp. You
then define a cursor variable emp_cv, of the type EmpcurTyp. In the executable section of the
PL/SQL block, the OPEN-FOR statement associates the cursor variable emp_cv with the
multirow query, sql_stmt. The FETCH statement returns a row from the result set of a
multirow query and assigns the values of the select-list items to EMP_REC in the INTO clause.
When the last row is processed, close the emp_cv cursor variable.

	I: Introduction

	1: Introduction to PL/SQL

	2: Declaring PL/SQL Variables

	3: Writing Executable Statements

	4: SQL Statements in PL/SQL Programs
	5: Writing Control Structures

	6: Working with
Composite Data Types

	7: Using Explicit Cursors

	8: Handling Exceptions

	9: Introducing Stored Procedures and Functions

	A: Practices and Solutions

	B: Table Descriptions
and Data

	F: REF Cursors

