
Assignment #4
CPEN 442

Kaibo Ma (32400129)
Department of Electrical and Computer Engineering

University of British Columbia
Vancouver, Canada

I. PROBLEM #1
mypwd:co5916
where co is the salt.

10^4 = 10,000
2^13 = 8192
2^14 = 1684

It is about 13~14 bits of entropy. I used john the ripper for

this assignment. I was able to retrieve the first password in
mere seconds running with 32 different forks. I found that ‘co’
is the salt.

Fig 1. Result of JTR for Question 1.

II. PROBLEM #2
mypwd:Dkqk&UvR
where Dk in the beginning is the salt
79^6 = 243,087,455,521
2^38 = 274,877,906,944

It is about 38 bits of entropy. Used the same program as

question with 32 different forks and ran in mask mode. This
specified the length and keyspace to narrow down the search. It
took about 2 hours and 30 mins to complete on my Macbook.
This would have been faster running off a GPU or a faster
CPU.

Fig 2. Result of JTR for Question 2.

III. PROBLEM #3
mypwd:5Wo-u3ozhz8q1M^d

79^16 = 2.3016191^30
2^101 = 2.5353012^3

a) It is about 101 bits of entropy. I obtained the password

by looking at the main function assembly code. I realized that
it checks if your input string is the same length as a hard coded
length of 10h which is 16.

Fig 3. The string length comparison check

Then the code will check with a hard coded randomized
string inside .rdata. It will compare a certain offset and
match your input string with that string.

Fig 4. The offset for comparison string

Fig 5. The whole comparison string where my password
resides.

I used a script I created to help me find my password inside
the string (attached findpw.py).

b) I noticed in the assembly that there is a “test” opcode

followed by a “jz”. I knew that it would either pass or fail.
Hence I made the “jz” opcode to “nop” which would skip the
jump and proceed with logging in successfully.

Fig 6. The checking condition for pass or fail

This is the .dif file I created with IDA:

This difference file has been created by IDA
32400129.program1.exe
0000482E: 74 90

IV. PROBLEM #4
mypwd:U3H$ki
79^6 = 243,087,455,521
2^38 = 274,877,906,944
It is about 38 bits of entropy.

This is the .dif file I created with IDA:
This difference file has been created by IDA

32400129.program2.exe
00004859: 74 90

a) Unlike Question 3 this programs password is

encrypted with SHA-1. I noticed from the assembly that it will
check byte by byte in a lookup table imported by libeay32.dll.
The password starts at the address referenced by
‘byte_41F234’ at address 41F234. Then in a counter loop of
20 times (this gave away that it was SHA1as it takes 20 bytes).
In the following diagram, this is my SHA1 hashed password in
the .rdata.

Fig 7. The hashed password value.

Once obtaining this value and copying it over to a .txt file I ran
john the ripper on 32 forks. As a result, I obtained my
password: U3H$ki which tested perfectly into the program
provided. The brute force search took about5 hours and 25
minutes to complete.

Fig 8. The resulting brute force search on the password.

b) Similar to question 3, the same ‘test’ and ‘jz’ functions
are called. This allowed me to just take ‘jz’ written in 74h and
change to 90h which is ‘nop’.

c) To write a patch file to make our .exe file accept and
password we desire. I created a python script that seeks out the
correct address offset of the beginning of where the SHA1
password is stored. Then it will take the arguments you run
with the python script and hash that value and overwrite the
address location that contains the previous values. Image
below shows how I run my script with argument ‘qwerty’ that
patches the .exe file and use the new ‘qwerty’ password as
input to .exe. The .exe accepts the new password:

Fig 9. Successful usage of q4.py script that patches the .exe

Fig 10. My python script that patches the program to any
password you want.

I have also attached q4.py along with the email.

