
SDN-Cockpit Manual

April 20, 2021

Contents

1 Introduction 1

2 Setup 3
2.1 Linux . 3
2.2 macOS . 3
2.3 Windows . 4
2.4 Common . 4

3 Quick Start 4

4 Workflow 6
4.1 mininet . 6
4.2 Application Development . 6

4.2.1 The set flow Function 7
4.2.2 The send pkt Function 8
4.2.3 Events . 9
4.2.4 Concurrency . 10

4.3 Traffic Generator . 11
4.4 The tmux Terminal Multiplexer 11

1 Introduction

This document contains the manual for the SDN-Cockpit, an open-source SDN
teaching framework developed by the Institute of Telematics (Karlsruhe Insi-
tute of Technology). The main goal of the tool is to provide an easy-to-use
environment for fast pace SDN application development with special support
for executing automated evaluation scenarios. It builds on the mininet em-
ulator and the Ryu controller software and uses Vagrant to allow easy setup
and reproducibility. Figure 1 highlights the general architecture and workflow.
The tool consists of two separate views. The first view – denoted Editor-View
in the figure – is a simple text editor that shows the code of one or multiple
SDN applications. The second view (Output-View) contains all visual outputs

1

Change/Edit
the SDN

Application

User

Observe the
effects of your
changes

SDNLab
Tool

Detect
file

changes

Restart
environment

View into the controller,
the virtualized network

and the traffic generator

2 1

3 4

Editor
View

Output
View

Figure 1: SDN-Cockpit Tool: High Level View

of a running SDN environment in a compressed form. This includes, for exam-
ple, status messages sent by the SDN controller or the SDN application, debug
information about the topology or details about the traffic that is generated.

For the best results, we suggest to provide a dual-monitor setup where the
user can interact with both views at the same time. In the following, we briefly
describe the high level workflow of the tool (visualized as the blue circles in the
figure).

1. The user can interact with the Output-View in multiple ways. She gets
a brief description about the currently loaded scenario and a short task
description with a summary of the features for the to-be-developed SDN
application. She also can directly interact with the virtualized network via
the mininet command line interface, e.g., to start an iperf session between
two virtual hosts. The Output-View further displays run-time information
about the SDN application (such as print/echo commands) and the results
of the automatic evaluation (if applicable). Currently, the Output-View
is realized with tmux (see Section 4.4 for more details).

2. The information of the Output-View is used as a starting point for ap-
plication development in the Editor View. The framework provides the
user with several Python files that contain empty SDN applications (Ryu

2

controller applications). These files can be edited with any text-editor,
e.g., gedit.

3. As soon as the user makes some changes to the application and saves the
modified file, the framwork automatically detects the changes (Step 3) and
restarts the SDN environment (Step 4). This includes a complete reset of
the virtual network (mininet) and the traffic generation processes. The
evaluation process is also restarted.

For a quick introduction of the main functions, please refer to Section 3.

2 Setup

The SDN-Cockpit tool can be installed on all major operating systems. The
following sections show the installation process for Linux (section 2.1), macOS
(section 2.2) and Windows (section 2.3). The SDN-Cockpit tool depends on git,
vagrant (2.0.0) and virtualbox (v5.1).

2.1 Linux

VirtualBox can be obtained either from your distribution’s packet repository
or from the VirtualBox download page (https://www.virtualbox.org/wiki/
Downloads). We recommend the latter as the packet repository may contain
an outdated version of VirtualBox. Select the entry corresponding to your
distribution and install the package with your packet manager.

Vagrant can also be obtained with either method, but even Vagrant them-
selves recommend downloading directly from them (https://www.vagrantup.
com/downloads.html), as packet managers often carry severely outdated ver-
sions of vagrant or miss dependencies for it.

Open a new terminal session and continue with section 2.4.

2.2 macOS

First, install the Command Line Tools provided by Apple. For this, open a
new terminal session by executing the Terminal-Application. It can be found
under Applications/Utilities/Terminal. Enter xcode-select --install

into the session. Confirm the installation by pressing Install. Then wait for
the installation to complete.

Now install VirtualBox. Go to the VirtualBox download page (https:
//www.virtualbox.org/wiki/Downloads) and select VirtualBox in its latest
version for OS X hosts. Open the downloaded image and follow the installation
instructions.

Lastly, download Vagrant by going to its corresponding download page
(https://www.vagrantup.com/downloads.html) and select Mac OS X 64-bit.
Open the downloaded image and follow the installation instructions.

Open a new terminal session and continue with section 2.4.

3

2.3 Windows

First, download Git for Windows from the git download page (https://git-
scm.com/downloads). Execute the installer and follow the installation instruc-
tions. Note that all options can be kept in their default configuration.

Then, install VirtualBox. Go to the VirtualBox download page (https:
//www.virtualbox.org/wiki/Downloads) and select VirtualBox in its latest
version for Windows hosts (x86/AMD64). Open the downloaded executable
and follow the installation instructions.

Lastly, download Vagrant by going to its corresponding download page
(https://www.vagrantup.com/downloads.html) and select Windows 64-bit.
Open the downloaded executable and follow the installation instructions.

Additionally, we recommend to use notepad++ for editing the assignments
as it handles UNIX-style line endings. It can be downloaded from (https:
//notepad-plus-plus.org/download).

Open a new git bash session and continue with section 2.4.

2.4 Common

Change into the folder where SDN-Cockpit should reside by typing cd <path>

where <path> is the path to this folder. Now clone the SDN-Cockpit repository
by typing git clone https://github.com/kit-tm/sdn-cockpit.git.

Enter the repository by typing cd sdn-cockpit and create the virtual ma-
chine by typing vagrant up and wait for the command to complete (It might
take a few minutes). The virtual machine is now running. Enter the virtual
machine by typing vagrant ssh.

3 Quick Start

After entering the virtual machine with the ssh command, you can start the
framework by executing the run.sh script:

home@pc:$ vagrant ssh

ubuntu@ubuntu -xenial :/ vagrant_data$ bash run.sh

Note that the working directory is automatically changed during login. The
folder /vagrant data should contain the project folder (i.e., the folder that was
cloned from the git repository). Vagrant is configured to synchronize this folder
with the corresponding one outside of the VM. Any change to either one of the
folders will be automatically performed on the counterpart.

Figure 2 shows the Output View of the framework. This view consists of
four different panes:

Top left: This pane displays the output of the SDN controller. The
controller is restarted whenever the application is saved in the Editor
View to ensure that the latest changes to the application source code will
take effect.

4

SDN Controller

Traffic Generator

Mininet
Terminal

Additional
Information

Figure 2: Output-View of the framework

Top right: This pane shows additional information about the current
task. Similar to the SDN controller view, the current task and the con-
tents of this pane are updated, as soon as a task file (e.g., task21.py) is
changed/saved.

Bottom left: This pane shows information about the scenario and the
traffic generation process. It displays the time-behaviour of the various
traffic flows that are injected into the network.

Bottom right: This pane gives the user access to the mininet terminal.
Via the mininet terminal, it is possible to execute every command that is
supported by the mininet CLI. For example, a user may use this console to
manually test the connectivity between all hosts connected to the network
with the pingall command. Section 4.1 provides a more detailed overview
of commands available in the mininet network emulator.

The four panes of the Output View are realized as a tmux session (tmux
is a terminal multiplexer). After starting the framework, the mininet terminal
(center-right) is automatically selected as active pane. This means, that all
inputs are directed to mininet. You can change the active pane by entering
into the control mode (press CTRL + b) followed by one of the arrow keys. To
scroll up inside a terminal, switch to control mode (again, CTRL + b) and press
Page-UP/DOWN (in the right above the arrow keys). If you want to quit, press
STRG+b followed by d.

5

4 Workflow

4.1 mininet

To provide an authentic look and feel, we built SDN-Cockpit on top of the
mininet network emulator. This emulator is responsible for building a virtual
network topology which consists of hosts, SDN-switches as well as the links
interconnecting the various network elements. mininet offers a command line
interface for direct interaction with the network which is accessible from the
SDN-Cockpit tool in the center-right pane. Here we present an overview of the
relevant commands available in the mininet console.

Pairwise connectivity between all hosts can be tested with the pingall com-
mand. For every host it executes a ping request to every other host. This is
useful to test basic reachability of all hosts and thus to detect potential bugs
with the application. pingall prints a tabular view. Each row represents a
sending host and each column a receiving host. A successfull ping request is
denoted by the name of the receiving host. If the request was not successfull,
“X” will be printed.

Furthermore, commands can be executed in the context of a host. This is
achieved by prepending the host name to the command in question. Sending a
ping request from host h1 to host h2 therefore translates to h1 ping h2.

The directional bandwidth between two hosts can be tested with iperf.
Create an iperf server on one host with <shost> iperf -s where <shost>

is the name of this host. Then create an iperf client on another host with
<chost> iperf -c <rhost> where <chost> is the name of this host. Data will
be transmitted from <chost> to <shost> in order to estimate available band-
width. When the transmission ends, a summary of the estimated bandwidth
will be printed. Please note, that hosts in the SDN-Cockpit are currently named
according to the autonomous systems which they represent, i.e., AS1, AS2022,
. . .

If you wish to inspect forwarding rules, which are currently active within
your network, you can use the dpctl dump-flows command directly from the
mininet console. This should help you verify that the forwarding rules, which
you program into the network, are applied as expected.

4.2 Application Development

Throughout the lab we use the SDN controller implementation ryu, which is
executed in the background, and refreshed whenever you save changes in your
controller application. A comprehensive online documentation of the ryu API
is available at this location: http://ryu.readthedocs.io/en/latest/api_

ref.html. Applications use this API to interact with the network in vari-
ous ways. Since ryu uses a Python-based programming interface some famil-
iarity with this programming language is naturally required. As a straight-
forward approach to familiarize yourself with the Python programming lan-
guage we advise you to take a look at the comprehensive tutorial offered by

6

the Python community: https://docs.python.org/3/tutorial/. You may
want to pay special attention to classes, inheritance and instance variables,
if you are unfamiliar with object oriented programming in Python. For a
quick reference you may find the more aspect-oriented approach to Python at
https://www.tutorialspoint.com/python/index.htm more convenient.

The Interaction with the ryu controller is already simplified since we pro-
vide you with an abstraction class called SDNApplication. To get started on
a new SDN application first navigate to the sync/local/apps/src folder in
the SDN-Cockpit directory structure and have your controller class extend the
SDNApplication located in controller.py through inheritance. This class of-
fers you the two functions set flow and send pkt as convenience functions to
simplify interactions with an SDN switch.

4.2.1 The set flow Function

The set flow function is used to install a new flow, i.e., a rule that determines
how packets should be processed, on a switch. This function has the following
signature:

def set_flow(self, datapath , match , actions ,

priority = 0, hard_timeout = 600, idle_timeout = 60)

ryu uses the term datapath to refer to the connection between a controller
and a switch. The datapaths you will need to use are usually identified by
OpenFlow events, which the controller receives whenever the configuration of a
switch changes or packets are forwarded from a switch to the controller (see the
packet in handler function below). You can use these to identify the switch
on which you need to install new flows.

The match parameter determines which packets should be handled by a flow.
It expects an OFPMatch object as argument, which can be constructed in the
following way:

match = parser.OFPMatch(

eth_type = ether_types.ETH_TYPE_IP ,

ipv4_src = (’10.0.0.1 ’, ’255.255.255.0 ’)

)

The constructor of a match object accepts numerous parameters, which rep-
resent the diffent matches that are supported by an OpenFlow switch. The
following table lists some of the more commonly occurring matches that are
supported by the OpenFlow protocol:

Argument Type Description
in port 32bit integer Switch input port
eth src MAC address Ethernet source address
eth dst MAC address Ethernet destination address
eth type 16bit integer Ethernet source address
ip src IP address IP source address
ip dst IP address IP destination address

7

Please note, that certain parameters actually accept a range of values in the
form of a combination of a fixed base-value and a mask. This is for example
required when you want a flow to match on an entire IPv4 subnet. Param-
eters like these are usually provided as tuples, as it is shown in the previ-
ous matching example for the IPv4 source address 10.0.0.1 and the subnet
mask 255.255.255.0. For a full list of available parameters please consult the
ryu documentation under http://ryu.readthedocs.io/en/latest/ofproto_
v1_3_ref.html?highlight=OFPMatch#flow-match-structure. There is one
caveat with ryu that you should keep in mind: ryu will silently discard any new
flow rule if you fail to include a match on underlying protocol types. This is why
in the previous example an explicit match on the Ethernet type is necessary to
ensure that the match on the IPv4 source address will actually be performed.

The actions parameter of the set flow function expects a list of OpenFlow
actions. Normally you will just want to drop packets or output them on a specific
port. This can easily be achieved by passing a list of actions like this, with the
variable out port set to the number of the output port:

[parser.OFPActionOutput(out_port)] # Output packet

[] # Drop packet

The parameter priority will determine the relative precedence of installed
flow rules. You should always use a priority greater than 0 to allow the default
flow rule to forward packets to the SDN controller when they do not match any
of the flows in a flowtable. (This default flow rule is automatically installed with
priority 0 by the SDN controller.) Finally, the hard timeout and idle timeout

parameters determine the maximum lifetime, and the lifetime after a flow rule
was last invoked in seconds (with their default values set to 60 and 600 seconds
respectively).

4.2.2 The send pkt Function

The second function provided by the SDNApplication class is send pkt, which
lets you send packets from the controller via a specific port of an SDN switch.
You can use this function to retransmit packets, which were delivered to the
controller.

def send_pkt(self, datapath , data ,

port = ofproto.OFPP_FLOOD)

Like the set flow function, the datapath parameter determines the switch
the controller wishes to interact with. The parameter data contains the actual
packet data, which is to be transmitted. This is usually the entire packet as
it was received by a controller (see below on how to obtain these messages).
Finally, the port parameter determines the output port, over which that packet
will be sent. As indicated in the example, a special OFPP FLOOD port can be
specified to send a packet over all ports of an SDN switch. The specifc OpenFlow
protocol ofproto (and its version) used in the interaction with a switch can be
obtained from the OpenFlow messages received by a controller (see below).

8

4.2.3 Events

To allow reactive flow programming the ryu controller generates an event when-
ever a new packet arrives at the controller. Furthermore, it offers a way to
designate a function to handle these events. You can implement the following
function to add any specific packet handling logic you wish to perform:

@set_ev_cls(ofp_event.EventOFPPacketIn , MAIN_DISPATCHER)

def packet_in_handler(self, ev)

You can take a look at the demo.py application provided in the SDN-
Cockpit folder sync/local/apps/src for an implementation example. Note,
that through the ev parameter the application receives an event containing the
available information on a packet that has been forwarded to the controller. For
example the datapath, which connects the controller to a switch is a property
of ev and can be used for subsequent flow processing as described above:

datapath = ev.msg.datapath

It also contains the contents of the packet that has been forwarded to a
controller. This data is accessible through the following property:

data = ev.msg.data

To make sure you interact with a switch through the correct OpenFlow
protocol version the reveived event ev also contains this information when a
packet arrives at the controller. You can obtain it by accessing the following
property:

ofproto = ev.msg.datapath.ofproto

It is for example useful, when you want to specify an OFPOutputAction in
a flow to forward packets over a specific port.

Finally, if you wish to perform any actions ahead of time and before individ-
ual messages are handled by the SDN controller, you can implement a handler
for this specific purpose:

@set_ev_cls(ofp_event.EventOFPSwitchFeatures ,

CONFIG_DISPATCHER)

def switch_features_handler(self, ev)

This will register the function switch features handler to ryu in such a
way, that it will be invoked once a new switch has been detected and fully
configured. You can use this function to install proactive flow rules. The im-
plementation corresponds to the packet in handler function, except that no
packet data will be available.

For more details on controller application programming see the demo.py

application in the sync/local/apps/src folder of the SDN-Cockpit directory
tree and the online ryu documentation.

9

4.2.4 Concurrency

If you should find a need to execute concurrent tasks within your controller
application (e.g., polling flow rule statistics), you can use the ryu switching hub
module. A switching hub allows to register a handler routine, which is executed
in a concurrent fashion1. This handler routine can then perform periodic tasks.
The following gives an example of a simple monitoring solution, which polls
switch statistics in an interval of 10 seconds:

from ryu.lib import hub

class Monitoring(SDNApplication):

def __init__(self, *args , ** kwargs):

Spawn a new hub instance

self.monitor_thread = hub.spawn(self.monitor)

def monitor(self):

datapath = # obtain a datapath reference ...

while True:

Poll all switches for statistics ...

datapath.send_msg(

parser.OFPFlowStatsRequest(datapath)

)

hub.sleep (10)

@set_ev_cls(ofp_event.EventOFPFlowStatsReply ,

MAIN_DISPATCHER)

def handle_flow_stats(self, ev):

Stat processing logic

First of all the new handler routine monitor is registered via the hub.spawn

function during the execution of the constructor init . This handler will
be executed immediately. The monitor function then proceeds to sending
OFPFlowStatsRequest messages to a switch, thereby instructing a switch to
send its collected statistics to the controller. The hub.sleep function limits
the execution of this step to every 10 seconds. When the switch has sent the
collected statistics, the ryu controller generates an EventOFPFlowStatsReply

event. We can designate a function to handle exactly this type of events, so
we can ensure, we are only dealing with flow stats within that method. You
can see how to register such a function in the example above: take a look
at the handle flow stats function. This function finally serves to process
the collected statistics. You can find a more elaborate example at https:

//osrg.github.io/ryu-book/en/html/traffic_monitor.html.

1Using the standard Python concurrency features instead of the ryu switching hub may
lead to problems.

10

4.3 Traffic Generator

In some of the tasks you will have to steer traffic streams in accordance with
some given routing policy. These traffic streams will be automatically generated
whenever you save changes to your application. You can confirm that your
application performs routing as required by the routing policy by observing
the output of the SDN-Cockpit tool. Whenever the traffic deviates from the
expected behaviour you will be informed about how many packets were expected
at a host and how many unexpected packets were recieved. This is displayed
in the lower left window of the output view. If you accomplised a correct
programming of the SDN application success will be indicated.

4.4 The tmux Terminal Multiplexer

tmux is a terminal multiplexer for the command line. SDN-Cockpit uses it to
arrange the output of the various tools integrated into the development environ-
ment in an clear and compact fashion. By default only the mininet terminal is
directly accessible, but tmux allows you to navigate through the multiple win-
dows that are displayed on your screen. For your convenience a quick reference
to the commands available in tmux is included in the follwing. Please note that
the session handling commands must be executed from a command line.

11

Window Handling
create a new window Ctrl-b c

rename a window Ctrl-b ,

move to next window Ctrl-b n

move to previous window Ctrl-b p

jump to a window by number Ctrl-b [number of window]

find a window by name Ctrl-b f

display menu of all windows Ctrl-b w

close a window Ctrl-b &

Working with Panes
split window vertically Ctrl-b %

split window horizontally Ctrl-b ¨

cycle through panes Ctrl-b o

move to upper pane Ctrl-b [Up]

move to lower pane Ctrl-b [Down]

move to left pane Ctrl-b [Left]

move to right pane Ctrl-b [Right]

cycle through layouts Ctrl-b [Space]

Resize panes
enlarge left pane Ctrl-b Alt-[Right]

enlarge right pane Ctrl-b Alt-[Left]

enlarge upper pane Ctrl-b Alt-[Down]

enlarge lower pane Ctrl-b Alt-[Up]

close active pane Ctrl-b x

12

