
Mycodo

Environmental monitoring and regulation system

Version 8.13.0

Kyle T. Gabriel

Copyright © 2022

Table of contents

41. Home

41.1 Mycodo Environmental Monitoring and Regulation System

52. About

52.1 Web User Interface

52.2 Languages

63. Frequently Asked Questions

74. Usage

74.1 Data Viewing

94.2 Inputs

144.3 Outputs

234.4 Functions

394.5 Actions

404.6 Calibration

414.7 Methods

434.8 Alerts

444.9 Notes

454.10 Camera

464.11 Energy Usage

474.12 Python Code

495. Supported Devices

505.1 Inputs Sorted by Measurement

675.2 Supported Inputs

1775.3 Supported Outputs

2065.4 Supported Functions

2425.5 Supported Actions

2555.6 Supported Widgets

2575.7 I2C Multiplexers

2585.8 Analog-To-Digital Converters

2595.9 Interfaces

2605.10 Dependencies

2615.11 Device Notes

2686. System

2686.1 System Information

2696.2 System Configuration

2756.3 Upgrade/Backup/Restore

Table of contents

- 2/287 - Copyright © 2022

2766.4 Export/Import

2776.5 Error Codes

2786.6 Mycodo Client

2796.7 API

2867. Troubleshooting

2867.1 Daemon Not Running

2867.2 Incorrect Database Version

2867.3 More

2878. Translations

Table of contents

- 3/287 - Copyright © 2022

1. Home

1.1 Mycodo Environmental Monitoring and Regulation System

Mycodo is open source software for the Raspberry Pi that couples inputs and outputs in interesting ways to sense and

manipulate the environment.

1.1.1 Information

See the README for features, projects using Mycodo, screenshots, and other information.

This manual is also available as a PDF for offline reading.

1.1.2 Prerequisites

Raspberry Pi single-board computer (any version: Zero, 1, 2, 3, or 4)

Raspberry Pi Operating System installed

An active internet connection

1.1.3 Install

Once you have the Raspberry Pi booted into the Raspberry Pi OS with an internet connection, run the following command in a

terminal to initiate the Mycodo install:

If the install is successful, open a web browser to the Raspberry Pi's IP address and you will be greeted with a screen to create

an Admin user and password.

1.1.4 Support

Mycodo on GitHub

Mycodo Wiki

Mycodo API

Mycodo Forum

Mycodo Support (Android App)

1.1.5 Donate

Become a Sponsor: github.com/sponsors/kizniche

Other methods: KyleGabriel.com/donate

•

•

•

curl -L https://kizniche.github.io/Mycodo/install | bash

https://127.0.0.1

•

•

•

•

•

1. Home

- 4/287 - Copyright © 2022

https://en.wikipedia.org/wiki/Raspberry_Pi
https://github.com/kizniche/Mycodo#uses
https://kizniche.github.io/Mycodo/mycodo-manual.pdf
https://www.raspberrypi.org/
https://www.raspberrypi.org/downloads/raspbian/
https://github.com/kizniche/Mycodo
https://github.com/kizniche/Mycodo/wiki
https://kizniche.github.io/Mycodo/mycodo-api.html
https://forum.radicaldiy.com
https://play.google.com/store/apps/details?id=com.mycodo.mycododocs
https://github.com/sponsors/kizniche
https://kylegabriel.com/donate

2. About

Mycodo is an open-source environmental monitoring and regulation system that was built to run on the Raspberry Pi.

Originally developed for cultivating edible mushrooms, Mycodo has grown to do much more. The system consists of two parts: a

backend (daemon) and a frontend (web server). The backend performs tasks such as acquiring measurements from sensors and

devices and coordinating a diverse set of responses to those measurements, including the ability to modulate outputs (switch

relays, generate PWM signals, operate pumps, switch wireless outlets, publish/subscribe to MQTT, among others), regulate

environmental conditions with PID control, schedule timers, capture photos and stream video, trigger actions when

measurements meet certain conditions, and more. The frontend hosts a web interface that enables viewing and configuration

from any browser-enabled device.

There are a number of different uses for Mycodo. Some users simply store sensor measurements to monitor conditions remotely,

others regulate the environmental conditions of a physical space, while others capture motion-activated or time-lapse

photography, among other uses.

Input controllers acquire measurements and store them in the InfluxDB time series database. Measurements typically come from

sensors, but may also be configured to use the return value of linux or Python commands, or math equations, making a very

powerful system for acquiring and generating data.

Output controllers produce changes to the general input/output (GPIO) pins or may be configured to execute linux or Python

commands, enabling a large number of potential uses. There are a few different types of outputs: simple switching of GPIO pins

(HIGH/LOW), generating pulse-width modulated (PWM) signals, switching 315/433 MHz wireless outlets, controlling Atlas

Scientific peristaltic pumps, as well as executing linux and Python commands. The most common output is using a relay to switch

electrical devices on and off.

When Inputs and Outputs are combined, PID controllers may be used to create a feedback loop that uses the Output device to

modulate an environmental condition the Input measures. Certain Inputs may be coupled with certain Outputs to create a variety

of different control and regulation applications. Beyond simple regulation, Methods may be used to create a changing setpoint

over time, enabling such things as thermal cyclers, reflow ovens, environmental simulation for terrariums, food and beverage

fermentation or curing, and cooking food (sous-vide), to name a few.

Triggers can be set to activate events based on specific dates and times, according to durations of time, or the sunrise/sunset at a

specific latitude and longitude. Conditionals are used to activates certain events based on the truth of custom user conditional

statements (e.g. "Sensor1 > 23 and 10 < Sensor2 < 30").

2.1 Web User Interface

The main frontend of Mycodo is a web user interface that allows any device with a web browser to view collected data and

configure the backend, or the daemon, of the system. The web interface supports an authentication system with user/password

credentials, user roles that grant/deny access to parts of the system, and SSL for encrypted browsing.

An SSL certificate with an expiration of 10 years will be generated and stored in ~/Mycodo/mycodo/mycodo_flask/ssl_certs/ during the

install process to allow SSL to be used to securely connect to the web interface. If you want to use your own SSL certificates,

replace them with your own.

If using the auto-generated certificate from the install, be aware that it will not be verified when visiting the web interface in

your browser. You may continually receive a warning message about the security of your site unless you add the certificate to

your browser's trusted list.

2.2 Languages

The Mycodo user interface has been translated from English to Dutch, German, French, Italian, Norwegian, Polish, Portuguese,

Russian, Serbian, Spanish, Swedish, and Chinese. If the default language for your web browser is one of these languages, it will

be automatically selected. Otherwise, you can manually set the language from the Configuration menu.

2. About

- 5/287 - Copyright © 2022

https://en.wikipedia.org/wiki/Raspberry_Pi
https://en.wikipedia.org/wiki/Time_series_database
https://en.wikipedia.org/wiki/Sous-vide

3. Frequently Asked Questions

Frequently asked questions can be found here

3. Frequently Asked Questions

- 6/287 - Copyright © 2022

https://forum.radicaldiy.com/docs?category=23&tags=mycodo

4. Usage

4.1 Data Viewing

There are several ways to visualize collected data.

4.1.1 Live Measurements

Page: Data -> Live Measurements

The Live Measurements page is the first page a user sees after logging in to Mycodo. It will display the current measurements being

acquired from Input and Function controllers. If there is nothing displayed on the Live page, ensure an Input or Function

controller is both configured correctly and activated. Data will be automatically updated on the page from the measurement

database.

4.1.2 Asynchronous Graphs

Page: Data -> Asynchronous Graphs

A graphical data display that is useful for viewing data sets spanning relatively long periods of time (weeks/months/years), which

could be very data- and processor-intensive to view as a Synchronous Graph. Select a time frame and data will be loaded from

that time span, if it exists. The first view will be of the entire selected data set. For every view/zoom, 700 data points will be

loaded. If there are more than 700 data points recorded for the time span selected, 700 points will be created from an averaging

of the points in that time span. This enables much less data to be used to navigate a large data set. For instance, 4 months of

data may be 10 megabytes if all of it were downloaded. However, when viewing a 4 month span, it's not possible to see every

data point of that 10 megabytes, and aggregating of points is inevitable. With asynchronous loading of data, you only download

what you see. So, instead of downloading 10 megabytes every graph load, only ~50kb will be downloaded until a new zoom level

is selected, at which time only another ~50kb is downloaded.

4.1.3 Dashboard

Page: Data -> Dashboards

The dashboard can be used for both viewing data and manipulating the system, thanks to the numerous dashboard widgets

available. Multiple dashboards can be created as well as locked to prevent changing the arrangement.

4.1.4 Widgets

Widgets are elements on the Dashboard that have a number of uses, such as viewing data (charts, indicators, gauges, etc.) or

interacting with the system (manipulate outputs, change PWM duty cycle, querying or modifying a database, etc.). Widgets can

be easily rearranged and resized by dragging and dropping. For a full list of supported Widgets, see Supported Widgets.

Custom Widgets

There is a Custom Widget import system in Mycodo that allows user-created Widgets to be used in the Mycodo system. Custom

Widgets can be uploaded on the [Gear Icon] -> Configure -> Custom Widgets page. After import, they will be available to use on the

Setup -> Widget page.

Graphs require measurements, therefore at least one Input/Output/Function/etc. needs to be added and activated in order to display

data.

Note

4. Usage

- 7/287 - Copyright © 2022

If you develop a working Widget module, please consider creating a new GitHub issue or pull request, and it may be included in

the built-in set.

Open any of the built-in modules located in the directory Mycodo/mycodo/widgets for examples of the proper formatting.

There are also example Custom Widgets in the directory Mycodo/mycodo/widgets/examples

Additionally, I have another github repository devoted to Custom Modules that are not included in the built-in set, at kizniche/

Mycodo-custom.

Creating a custom widget module often requires specific placement and execution of Javascript. Several variables were created

in each module to address this, and follow the following brief structure of the dashboard page that would be generated with

multiple widgets being displayed.

<html>

<head>

 <title>Title</title>

 <script>

 {{ widget_1_dashboard_head }}

 {{ widget_2_dashboard_head }}

 </script>

</head>

<body>

<div id="widget_1">

 <div id="widget_1_titlebar">{{ widget_dashboard_title_bar }}</div>

 {{ widget_1_dashboard_body }}

 <script>

 $(document).ready(function() {

 {{ widget_1_dashboard_js_ready_end }}

 });

 </script>

</div>

<div id="widget_2">

 <div id="widget_2_titlebar">{{ widget_dashboard_title_bar }}</div>

 {{ widget_2_dashboard_body }}

 <script>

 $(document).ready(function() {

 {{ widget_2_dashboard_js_ready_end }}

 });

 </script>

</div>

<script>

 {{ widget_1_dashboard_js }}

 {{ widget_2_dashboard_js }}

 $(document).ready(function() {

 {{ widget_1_dashboard_js_ready }}

 {{ widget_2_dashboard_js_ready }}

 });

</script>

</body>

</html>

4.1.4 Widgets

- 8/287 - Copyright © 2022

https://github.com/kizniche/Mycodo/issues/new?assignees=&labels=&template=feature-request.md&title=New-20Module
https://github.com/kizniche/Mycodo/tree/master/mycodo/widgets/
https://github.com/kizniche/Mycodo/tree/master/mycodo/widgets/examples
https://github.com/kizniche/Mycodo-custom
https://github.com/kizniche/Mycodo-custom

4.2 Inputs

Page: Setup -> Input

For a full list of supported Inputs, see Supported Input Devices.

Inputs, such as sensors, ADC signals, or even a response from a command, enable measuring conditions in the environment or

elsewhere, which will be stored in a time-series database (InfluxDB). This database will provide measurements for Dashboard

Widgets, Functions, and other parts of Mycodo to operate from. Add, configure, and activate inputs to begin recording

measurements to the database and allow them to be used throughout Mycodo.

Custom Inputs

See Building a Custom Input Module Wiki page.

There is a Custom Input import system in Mycodo that allows user-created Inputs to be created an used in the Mycodo system.

Custom Inputs can be uploaded and imported from the [Gear Icon] -> Configure -> Custom Inputs page. After import, they will be

available to use on the Setup -> Input page.

If you develop a working Input module, please consider creating a new GitHub issue or pull request, and it may be included in

the built-in set.

Open any of the built-in modules located in the directory Mycodo/mycodo/inputs for examples of the proper formatting.

There are also example Custom Inputs in the directory Mycodo/mycodo/inputs/examples

Additionally, I have another github repository devoted to Custom Modules that are not included in the built-in set, at kizniche/

Mycodo-custom.

Input Commands

Input Commands are functions within the Input module that can be executed from the Web UI. This is useful for things such as

calibration or other functionality specific to the input. By default, there is at least one action, Acquire Measurements Now, which

will cause the input to acquire measurements rather than waiting until the next Period has elapsed.

Input Actions

Every Period the Input will acquire measurements and store then in the time-series database. Following measurement

acquisition, one or more Actions can be executed to enhance the functionality of Inputs. For example, the MQTT Publish Action

can be used to publish measurements to an MQTT server.

Actions can only be executed while the Input is active.

Note

4.2 Inputs

- 9/287 - Copyright © 2022

https://github.com/kizniche/Mycodo/wiki/Building-a-Custom-Input-Module
https://github.com/kizniche/Mycodo/issues/new?assignees=&labels=&template=feature-request.md&title=New-20Module
https://github.com/kizniche/Mycodo/tree/master/mycodo/inputs/
https://github.com/kizniche/Mycodo/tree/master/mycodo/inputs/examples
https://github.com/kizniche/Mycodo-custom
https://github.com/kizniche/Mycodo-custom

Input Options

4.2 Inputs

- 10/287 - Copyright © 2022

Setting Description

Activate After the sensor has been properly configured, activation begins acquiring measurements from the

sensor. Any activated conditional statements will now being operating.

Deactivate Deactivation stops measurements from being acquired from the sensor. All associated conditional

statements will cease to operate.

Save Save the current configuration entered into the input boxes for a particular sensor.

Delete Delete a particular sensor.

Acquire

Measurements

Now

Force the input to conduct measurements and them in the database.

Up/Down Move a particular sensor up or down in the order displayed.

Power Output Select a output that powers the sensor. This enables powering cycling (turn off then on) when the sensor

returns 3 consecutive errors to attempt to fix the issue. Transistors may also be used instead of a relay

(note: NPN transistors are preferred over PNP for powering sensors).

Location Depending on what sensor is being used, you will need to either select a serial number (DS18B20

temperature sensor), a GPIO pin (in the case of sensors read by a GPIO), or an I2C address. or other.

I2C Bus The bus to be used to communicate with the I2C address.

Period (seconds) After the sensor is successfully read and a database entry is made, this is the duration of time waited

until the sensor is measured again.

Measurement

Unit

Select the unit to save the measurement as (only available for select measurements).

Pre Output If you require a output to be activated before a measurement is made (for instance, if you have a pump

that extracts air to a chamber where the sensor resides), this is the output number that will be

activated. The output will be activated for a duration defined by the Pre Duration, then once the output

turns off, a measurement by the sensor is made.

Pre Output

Duration

(seconds)

This is the duration of time that the Pre Output runs for before the sensor measurement is obtained.

Pre Output

During

Measurement

If enabled, the Pre Output stays on during the acquisition of a measurement. If disabled, the Pre Output

is turned off directly before acquiring a measurement.

Command A linux command (executed as the user 'root') that the return value becomes the measurement

Command

Measurement

The measured condition (e.g. temperature, humidity, etc.) from the linux command

Command Units The units of the measurement condition from the linux command

Edge Edge sensors only: Select whether the Rising or Falling (or both) edges of a changing voltage are

detected. A number of devices to do this when in-line with a circuit supplying a 3.3-volt input signal to a

GPIO, such as simple mechanical switch, a button, a magnet (reed/hall) sensor, a PIR motion detector,

and more.

Bounce Time

(ms)

Edge sensors only: This is the number of milliseconds to bounce the input signal. This is commonly

called debouncing a signal [1] and may be necessary if using a mechanical circuit.

Reset Period

(seconds)

Edge sensors only: This is the period of time after an edge detection that another edge will not be

recorded. This enables devices such as PIR motion sensors that may stay activated for longer periods of

time.

4.2 Inputs

- 11/287 - Copyright © 2022

Debouncing a signal

Setting Description

Measurement Analog-to-digital converter only: The type of measurement being acquired by the ADC. For instance, if

the resistance of a photocell is being measured through a voltage divider, this measurement would be

"light".

Units Analog-to-digital converter only: This is the unit of the measurement. With the above example of "light"

as the measurement, the unit may be "lux" or "intensity".

BT Adapter The Bluetooth adapter to communicate with the input.

Clock Pin The GPIO (using BCM numbering) connected to the Clock pin of the ADC

CS Pin The GPIO (using BCM numbering) connected to the CS pin of the ADC

MISO Pin The GPIO (using BCM numbering) connected to the MISO pin of the ADC

MOSI Pin The GPIO (using BCM numbering) connected to the MOSI pin of the ADC

RTD Probe Type Select to measure from a PT100 or PT1000 probe.

Resistor

Reference (Ohm)

If your reference resistor is not the default (400 Ohm for PT100, 4000 Ohm for PT1000), you can

manually set this value. Several manufacturers now use 430 Ohm resistors on their circuit boards,

therefore it's recommended to verify the accuracy of your measurements and adjust this value if

necessary.

Channel Analog-to-digital converter only: This is the channel to obtain the voltage measurement from the ADC.

Gain Analog-to-digital converter only: set the gain when acquiring the measurement.

Sample Speed Analog-to-digital converter only: set the sample speed (typically samples per second).

Volts Min Analog-to-digital converter only: What is the minimum voltage to use when scaling to produce the unit

value for the database. For instance, if your ADC is not expected to measure below 0.2 volts for your

particular circuit, set this to "0.2".

Volts Max Analog-to-digital converter only: This is similar to the Min option above, however it is setting the ceiling

to the voltage range. Units Min Analog-to-digital converter only: This value will be the lower value of a

range that will use the Min and Max Voltages, above, to produce a unit output. For instance, if your

voltage range is 0.0 -1.0 volts, and the unit range is 1 -60, and a voltage of 0.5 is measured, in addition

to 0.5 being stored in the database, 30 will be stored as well. This enables creating calibrated scales to

use with your particular circuit.

Units Max Analog-to-digital converter only: This is similar to the Min option above, however it is setting the ceiling

to the unit range.

Weighting The This is a number between 0 and 1 and indicates how much the old reading affects the new reading.

It defaults to 0 which means the old reading has no effect. This may be used to smooth the data.

Pulses Per Rev The number of pulses for a complete revolution.

Port The server port to be queried (Server Port Open input).

Times to Check The number of times to attempt to ping a server (Server Ping input).

Deadline

(seconds)

The maximum amount of time to wait for each ping attempt, after which 0 (offline) will be returned

(Server Ping input).

Number of

Measurement

The number of unique measurements to store data for this input.

Application ID The Application ID on The Things Network.

App API Key The Application API Key on The Things Network.

Device ID The Device ID of the Application on The Things Network.

1.

4.2 Inputs

- 12/287 - Copyright © 2022

https://kylegabriel.com/projects/2016/02/morse-code-translator.html#debouncing

The Things Network

The Things Network (TTN, v2 and v3) Input module enables downloading of data from TTN if the Data Storage Integration is

enabled in your TTN Application. The Data Storage Integration will store data for up to 7 days. Mycodo will download this data

periodically and store the measurements locally.

The payload on TTN must be properly decoded to variables that correspond to the "Variable Name" option under "Channel

Options", in the lower section of the Input options. For instance, in your TTN Application, if a custom Payload Format is selected,

the decoder code may look like this:

This will decode the 2-byte payload into a temperature float value with the name "temperature". Set "Number of Measurements"

to "1", then set the "Variable Name" for the first channel (CH0) to "temperature" and the "Measurement Unit" to "Temperature:

Celsius (°C)".

Upon activation of the Input, data will be downloaded for the past 7 days. The latest data timestamp will be stored so any

subsequent activation of the Input will only download new data (since the last known timestamp).

This Input also allows multiple measurements to be stored. You merely have to change "Number of Measurements" to a number

larger than 1, save, and there will now be multiple variable names and measurement units to set.

There are several example Input modules that, in addition to storing the measurements of a sensor in the influx database, will

write the measurements to a serial device. This is useful of you have a LoRaWAN transmitter connected via serial to receive

measurement information from Mycodo and transmit it to a LoRaWAN gateway (and subsequently to The Things Network). The

data on TTN can then be downloaded elsewhere with the TTN Input. These example Input modules are located in the following

locations:

~/Mycodo/mycodo/inputs/examples/bme280_ttn.py

~/Mycodo/mycodo/inputs/examples/k30_ttn.py

For example, the following excerpt from bme_280.py will write a set of comma-separated strings to the user-specified serial device

with the first string (the letter "B") used to denote the sensor/measurements, followed by the actual measurements (humidity,

pressure, and temperature, in this case).

This is useful if multiple data strings are to be sent to the same serial device (e.g. if both bme280_ttn.py and k30_ttn.py are being

used at the same time), allowing the serial device to distinguish what data is being received.

The full code used to decode both bme280_ttn.py and k30_ttn.py , with informative comments, is located at

~/Mycodo/mycodo/inputs/examples/ttn_data_storage_decoder_example.js .

These example Input modules may be modified to suit your needs and imported into Mycodo through the

[Gear Icon] -> Configure -> Custom Inputs page. After import, they will be available to use on the Setup -> Input page.

function Decoder(bytes, port) {

 var decoded = {};

 var rawTemp = bytes[0] + bytes[1] * 256;

 decoded.temperature = sflt162f(rawTemp) * 100;

 return decoded;

}

function sflt162f(rawSflt16) {

 rawSflt16 &= 0xFFFF;

 if (rawSflt16 === 0x8000)

 return -0.0;

 var sSign = ((rawSflt16 & 0x8000) !== 0) ? -1 : 1;

 var exp1 = (rawSflt16 >> 11) & 0xF;

 var mant1 = (rawSflt16 & 0x7FF) / 2048.0;

 return sSign * mant1 * Math.pow(2, exp1 - 15);

}

string_send = 'B,{},{},{}'.format(

 return_dict[1]['value'],

 return_dict[2]['value'],

 return_dict[0]['value'])

self.serial_send = self.serial.Serial(self.serial_device, 9600)

self.serial_send.write(string_send.encode())

4.2 Inputs

- 13/287 - Copyright © 2022

https://www.thethingsnetwork.org/

4.3 Outputs

Page: Setup -> Output

For a full list of supported Outputs, see Supported Outputs Devices.

Outputs are various signals that can be generated that operate devices. An output can be a HIGH/LOW signal on a GPIO pin, a

pulse-width modulated (PWM) signal, a 315/433 MHz signal to switch a radio frequency-operated relay, driving of pumps and

motors, or an execution of a linux or Python command, to name a few.

4.3.1 Custom Outputs

There is a Custom Output import system in Mycodo that allows user-created Outputs to be created an used in the Mycodo

system. Custom Outputs can be uploaded and imported from the [Gear Icon] -> Configure -> Custom Outputs page. After import, they

will be available to use on the Setup -> Output page.

If you develop a working Output module, please consider creating a new GitHub issue or pull request, and it may be included in

the built-in set.

Open any of the built-in modules located in the directory Mycodo/mycodo/outputs for examples of the proper formatting.

There are also example Custom Outputs in the directory Mycodo/mycodo/outputs/examples

Additionally, I have another github repository devoted to Custom Modules that are not included in the built-in set, at kizniche/

Mycodo-custom.

For Outputs that require new measurements/units, they can be added on the [Gear Icon] -> Configure -> Measurements page.

4.3 Outputs

- 14/287 - Copyright © 2022

https://github.com/kizniche/Mycodo/issues/new?assignees=&labels=&template=feature-request.md&title=New-20Module
https://github.com/kizniche/Mycodo/tree/master/mycodo/outputs/
https://github.com/kizniche/Mycodo/tree/master/mycodo/outputs/examples
https://github.com/kizniche/Mycodo-custom
https://github.com/kizniche/Mycodo-custom

4.3.2 Output Options

4.3.2 Output Options

- 15/287 - Copyright © 2022

Setting Description

Pin (GPIO) This is the GPIO that will be the signal to the output, using BCM numbering.

WiringPi Pin This is the GPIO that will be the signal to the output, using WiringPi numbering.

On State This is the state of the GPIO to signal the output to turn the device on. HIGH will send a 3.3-volt signal and

LOW will send a 0-volt signal. If you output completes the circuit (and the device powers on) when a 3.3-volt

signal is sent, then set this to HIGH. If the device powers when a 0-volt signal is sent, set this to LOW.

Protocol This is the protocol to use to transmit via 315/433 MHz. Default is 1, but if this doesn't work, increment the

number.

UART Device The UART device connected to the device.

Baud Rate The baud rate of the UART device.

I2C Address The I2C address of the device.

I2C Bus The I2C bus the device is connected to.

Output Mode The Output mode, if supported.

Flow Rate The flow rate to dispense the volume (ml/min).

Pulse Length This is the pulse length to transmit via 315/433 MHz. Default is 189 ms.

Bit Length This is the bit length to transmit via 315/433 MHz. Default is 24-bit.

Execute as

User

Select which user executes Linux Commands.

On

Command

This is the command used to turn the output on. For wireless relays, this is the numerical command to be

transmitted, and for command outputs this is the command to be executed. Commands may be for the linux

terminal or Python 3 (depending on which output type selected).

Off

Command

This is the command used to turn the output off. For wireless relays, this is the numerical command to be

transmitted, and for command outputs this is the command to be executed. Commands may be for the linux

terminal or Python 3 (depending on which output type selected).

Force

Command

If an Output is already on, enabling this option will allow the On command to be executed rather than

returning "Output is already On".

PWM

Command

This is the command used to set the duty cycle. The string "((duty_cycle))" in the command will be replaced

with the actual duty cycle before the command is executed. Ensure "((duty_cycle))" is included in your

command for this feature to work correctly. Commands may be for the linux terminal or Python 3 (depending

on which output type selected).

Current

Draw (amps)

The is the amount of current the device powered by the output draws. Note: this value should be calculated

based on the voltage set in the Energy Usage Settings.

Startup

State

This specifies whether the output should be ON or OFF when mycodo initially starts. Some outputs have an

additional options.

Startup

Value

If the Startup State is set to User Set Value (such as for PWM Outputs), then this value will be set when

Mycodo starts up.

Shutdown

State

This specifies whether the output should be ON or OFF when mycodo initially shuts down. Some outputs

have an additional options.

Shutdown

Value

If the Shutdown State is set to User Set Value (such as for PWM Outputs), then this value will be set when

Mycodo shuts down.

Trigger at

Startup

Select to enable triggering Functions (such as Output Triggers) when Mycodo starts and if Start State is set

to ON.

Seconds to

turn On

This is a way to turn a output on for a specific duration of time. This can be useful for testing the outputs and

powered devices or the measured effects a device may have on an environmental condition.

4.3.2 Output Options

- 16/287 - Copyright © 2022

4.3.3 On/Off (GPIO)

The On/Off (GPIO) output merely turns a GPIO pin High (3.3 volts) or Low (0 volts). This is useful for controlling things like

electromechanical switches, such as relays, to turn electrical devices on and off.

Relays are electromechanical or solid-state devices that enable a small voltage signal (such as from a microprocessor) to activate

a much larger voltage, without exposing the low-voltage system to the dangers of the higher voltage.

Add and configure outputs in the Output tab. Outputs must be properly set up before they can be used in the rest of the system.

To set up a wired relay, set the "GPIO Pin" (using BCM numbering) to the pin you would like to switch High (5 volts) and Low (0

volts), which can be used to activate relays and other devices. On Trigger should be set to the signal state (High or Low) that

induces the device to turn on. For example, if your relay activates when the potential across the coil is 0-volts, set On Trigger to

"Low", otherwise if your relay activates when the potential across the coil is 5 volts, set it to "High".

4.3.4 Pulse-Width Modulation (PWM)

Pulse-width modulation (PWM) is a modulation technique used to encode a message into a pulsing signal, at a specific frequency

in Hertz (Hz). The average value of voltage (and current) fed to the load is controlled by turning the switch between supply and

load on and off at a fast rate. The longer the switch is on compared to the off periods, the higher the total power supplied to the

load.

The PWM switching frequency has to be much higher than what would affect the load (the device that uses the power), which is

to say that the resultant waveform perceived by the load must be as smooth as possible. The rate (or frequency) at which the

power supply must switch can vary greatly depending on load and application, for example

The term duty cycle describes the proportion of 'on' time to the regular interval or 'period' of time; a low duty cycle corresponds

to low power, because the power is off for most of the time. Duty cycle is expressed in percent, with 0% being always off, 50%

being off for half of the time and on for half of the time, and 100% being always on.

4.3.5 Pulse-Width Modulation (PWM) Options

Non-hardware PWM Pins

When using non-hardware PWM pins, there are only certain frequencies that can be used. These frequencies in Hertz are 40000,

20000, 10000, 8000, 5000, 4000, 2500, 2000, 1600, 1250, 1000, 800, 500, 400, 250, 200, 100, and 50 Hz. If you attempt to set a

frequency that is not listed here, the nearest frequency from this list will be used.

Switching has to be done several times a minute in an electric stove; 120 Hz in a lamp dimmer; between a few kilohertz (kHz) to tens

of kHz for a motor drive; and well into the tens or hundreds of kHz in audio amplifiers and computer power supplies.

Quote

Setting Description

Library Select the method for producing the PWM signal. Hardware pins can produce up to a 30 MHz PWM signal,

while any other (non-hardware PWM) pin can produce up to a 40 kHz PWM signal. See the table, below, for

the hardware pins on various Pi boards.

Pin (GPIO) This is the GPIO pin that will output the PWM signal, using BCM numbering.

Frequency

(Hertz)

This is frequency of the PWM signal.

Invert Signal Send an inverted duty cycle to the output controller.

Duty Cycle This is the proportion of the time on to the time off, expressed in percent (0 -100).

4.3.3 On/Off (GPIO)

- 17/287 - Copyright © 2022

Hardware PWM Pins

The exact frequency may be set when using hardware PWM pins. The same PWM channel is available on multiple GPIO. The

latest frequency and duty cycle setting will be used by all GPIO pins which share a PWM channel.

Schematics for DC Fan Control

Below are hardware schematics that enable controlling direct current (DC) fans from the PWM output from Mycodo.

PWM output controlling a 12-volt DC fan (such as a PC fan)

Schematics for AC Modulation

Below are hardware schematics that enable the modulation of alternating current (AC) from the PWM output from Mycodo.

PWM output modulating alternating current (AC) at 1% duty cycle

BCM Pin PWM Channel Raspberry Pi Version

12 0 All models except A and B

13 1 All models except A and B

18 0 All models

19 1 All models except A and B

40 0 Compute module only

41 1 Compute module only

45 1 Compute module only

52 0 Compute module only

53 1 Compute module only

4.3.5 Pulse-Width Modulation (PWM) Options

- 18/287 - Copyright © 2022

PWM output modulating alternating current (AC) at 50% duty cycle

4.3.5 Pulse-Width Modulation (PWM) Options

- 19/287 - Copyright © 2022

PWM output modulating alternating current (AC) at 99% duty cycle

4.3.5 Pulse-Width Modulation (PWM) Options

- 20/287 - Copyright © 2022

4.3.6 Peristaltic Pump

There are two peristaltic pump Output modules that Mycodo supports, a generic peristaltic pump Output, and the Atlas Scientific

EZO-PMP peristaltic pump.

Generic Peristaltic Pump

Any peristaltic pump can be used with the Generic Peristaltic Pump Output to dispense liquids. The most basic dispensing

abilities are to start dispensing, stop dispensing, or dispense for a duration of time. If the pump rate has been measured, this

value can be entered into the Fastest Rate (ml/min) setting and the Output controller will then be able to dispense specific

volumes rather than merely for durations of time. In oder to dispense specific volumes, the Output Mode will also need to be set

in addition to the Desired Flow Rate (ml/min), if the Output Mode has been set to Specify Flow Rate.

To determine your pump's flow rate, first purge all air from your pump's hose. Next, instruct the pump to dispense for 60 seconds

and collect the liquid it dispenses. Once finished, measure the amount of liquid and enter this value, in milliliters into the Fastest

Rate (ml/min) setting. Once your pump's flow rate is set, you can now start dispensing specific volumes rather than durations.

This Output module relies on switching a GPIO pin High and Low to switch the peristaltic pump on and off. This is most easily

accomplished with the use of a relay in-line with your pump's power supply or using the GPIO as an input signal directly to the

pump (if supported). When using a relay, it's important to develop your circuit to provide the fastest possible switching of the

pump. Since the volume dispensed by the pump is dependent on time, the faster the pump switching can occur, the more

accurate the dispensing will be. Many peristaltic pumps operate on DC voltage and require an AC-DC converter. These

converters can take a significant amount of time to energize once power is applied as well as de-energize once power is removed,

causing significant delays that can impact dispensing accuracy. To alleviate this issue, the DC power should be switched, rather

than the AC power, which will remove this potential delay.

4.3.6 Peristaltic Pump

- 21/287 - Copyright © 2022

Atlas Scientific Peristaltic Pump

The Atlas Scientific peristaltic pump is a peristaltic pump and microcontroller combined that allows it to be communicated with

via I2C or Serial and can accurately dispense specific volumes of fluid. There are several commands the pump can accept,

including commands to calibrate, turn on, turn off, and dispense at a specific rate, among others. Atlas Scientific peristaltic

pumps are good options, but are more expensive than generic peristaltic pumps.

Peristaltic Pump Options

4.3.7 Wireless 315/433 MHz

Certain 315/433 MHz wireless relays may be used, however you will need to set the pin of the transmitter (using BCM

numbering), pulse length, bit length, protocol, on command, and off command. To determine your On and Off commands, connect

a 315/433 MHz receiver to your Pi, then run the receiver script, below, replacing 17 with the pin your receiver is connected to

(using BCM numbering), and press one of the buttons on your remote (either on or off) to detect the numeric code associated

with that button.

433 MHz wireless relays have been successfully tested with SMAKN 433MHz RF Transmitters/Receivers and Etekcity Wireless

Remote Control Electrical Outlets (see Issue 88 for more information). If you have a 315/433 MHz transmitter/receiver and a

wireless relay that does not work with the current code, submit a new issue with details of your hardware.

4.3.8 Linux Command

Another option for output control is to execute a terminal command when the output is turned on, off, or a duty cycle is set.

Commands will be executed as the user 'root'. When a Linux Command output is created, example code is provided to

demonstrate how to use the output.

4.3.9 Python Command

The Python Command output operates similarly to the Linux Command output, however Python 3 code is being executed. When a

Python Command output is created, example code is provided to demonstrate how to use the output.

4.3.10 Output Notes

Wireless and Command (Linux/Python) Outputs: Since the wireless protocol only allows 1-way communication to 315/433 MHz

devices, wireless relays are assumed to be off until they are turned on, and therefore will appear red (off) when added. If a

wireless relay is turned off or on outside Mycodo (by a remote, for instance), Mycodo will *not* be able to determine the state of

the relay and will indicate whichever state the relay was last. This is, if Mycodo turns the wireless relay on, and a remote is used

to turn the relay off, Mycodo will still assume the relay is on.

Setting Description

Output Mode "Fastest low Rate" will pump liquid at the fastest rate the pump can perform. "Specify Flow Rate" will

pump liquid at the rate set by the "Flow Rate (ml/min)" option.

Flow Rate (ml/

min)

This is how fast liquid will be pumped if the "Specify Flow Rate" option is selected for the Output Mode

option.

Fastest Rate

(ml/min)

This is the rate at which the pump dispenses liquid, in ml/min.

Minimum On

(sec/min)

This is the minimum duration (seconds) the pump should be turned on for every 60 second period of

pumping. This option is only used when Specify Flow Rate is selected as the output Mode.

sudo ~/Mycodo/env/bin/python ~/Mycodo/mycodo/devices/wireless_rpi_rf.py -d 2 -g 17

4.3.7 Wireless 315/433 MHz

- 22/287 - Copyright © 2022

https://www.atlas-scientific.com/files/EZO_PMP_Datasheet.pdf
https://github.com/kizniche/Mycodo/issues/88
https://github.com/kizniche/Mycodo/issues/new

4.4 Functions

Page: Setup -> Function

For a full list of supported Functions, see Supported Functions.

Function controllers perform tasks that often involve the use of Inputs and Outputs.

4.4.1 Custom Functions

There is a Custom Function import system in Mycodo that allows user-created Functions to be used in the Mycodo system.

Custom Functions can be uploaded on the [Gear Icon] -> Configure -> Custom Functions page. After import, they will be available to use

on the Setup -> Function page.

If you develop a working Function module, please consider creating a new GitHub issue or pull request, and it may be included in

the built-in set.

Open any of the built-in modules located in the directory Mycodo/mycodo/functions for examples of the proper formatting.

There are also example Custom Functions in the directory Mycodo/mycodo/functions/examples

Additionally, I have another github repository devoted to Custom Modules that are not included in the built-in set, at kizniche/

Mycodo-custom.

For Functions that require new measurements/units, they can be added on the [Gear Icon] -> Configure -> Measurements page.

4.4.2 PID Controller

A proportional-derivative-integral (PID) controller is a control loop feedback mechanism used throughout industry for controlling

systems. It efficiently brings a measurable condition, such as the temperature, to a desired state and maintains it there with little

overshoot and oscillation. A well-tuned PID controller will raise to the setpoint quickly, have minimal overshoot, and maintain the

setpoint with little oscillation.

PID settings may be changed while the PID is activated and the new settings will take effect immediately. If settings are changed

while the controller is paused, the values will be used once the controller resumes operation.

"Last" means the Function will only acquire the last (latest) measurement in the database. "Past" means the Function will acquire all

measurements from the present until the "Max Age (seconds)" that's been set (e.g. if measurements are acquired every 10 seconds,

and a Max Age is set to 60 seconds, there will on average be 6 measurements returned to the Function to operate with).

Note

4.4 Functions

- 23/287 - Copyright © 2022

https://github.com/kizniche/Mycodo/issues/new?assignees=&labels=&template=feature-request.md&title=New-20Module
https://github.com/kizniche/Mycodo/tree/master/mycodo/functions/
https://github.com/kizniche/Mycodo/tree/master/mycodo/functions/examples
https://github.com/kizniche/Mycodo-custom
https://github.com/kizniche/Mycodo-custom
https://en.wikipedia.org/wiki/PID_controller

PID Controller Options

4.4.2 PID Controller

- 24/287 - Copyright © 2022

Setting Description

Activate/

Deactivate

Turn a particular PID controller on or off.

Pause When paused, the control variable will not be updated and the PID will not turn on the associated

outputs. Settings can be changed without losing current PID output values.

Hold When held, the control variable will not be updated but the PID will turn on the associated outputs,

Settings can be changed without losing current PID output values.

Resume Resume a PID controller from being held or paused.

Direction This is the direction that you wish to regulate. For example, if you only require the temperature to be

raised, set this to "Up," but if you require regulation up and down, set this to "Both."

Period This is the duration between when the PID acquires a measurement, the PID is updated, and the output

is modulated.

Start Offset

(seconds)

Wait this duration before attempting the first calculation/measurement.

Max Age The time (in seconds) that the sensor measurement age is required to be less than. If the measurement

is not younger than this age, the measurement is thrown out and the PID will not actuate the output.

This is a safety measure to ensure the PID is only using recent measurements.

Setpoint This is the specific point you would like the environment to be regulated at. For example, if you would

like the humidity regulated to 60%, enter 60.

Band (+/-

Setpoint)

Hysteresis option. If set to a non-0 value, the setpoint will become a band, which will be between the

band_max=setpoint+band and band_min=setpoint-band. If Raising, the PID will raise above band_max,

then wait until the condition falls below band_min to resume regulation. If Lowering, the PID will lower

below band_min, then wait until the condition rises above band_max to resume regulating. If set to Both,

regulation will only occur to the outside min and max of the band, and cease when within the band. Set

to 0 to disable Hysteresis.

Store Lower as

Negative

Checking this will store all output variables (PID and output duration/duty cycle) as a negative values in

the measurement database. This is useful for displaying graphs that indicate whether the PID is

currently lowering or raising. Disable this if you desire all positive values to be stored in the

measurement database.

K
P

 Gain Proportional coefficient (non-negative). Accounts for present values of the error. For example, if the

error is large and positive, the control output will also be large and positive.

K
I
 Gain Integral coefficient (non-negative). Accounts for past values of the error. For example, if the current

output is not sufficiently strong, the integral of the error will accumulate over time, and the controller

will respond by applying a stronger action.

K
D

 Gain Derivative coefficient (non-negative). Accounts for predicted future values of the error, based on its

current rate of change.

Integrator Min The minimum allowed integrator value, for calculating Ki_total: (Ki_total = Ki * integrator; and PID

output = Kp_total + Ki_total + Kd_total)

Integrator Max The maximum allowed integrator value, for calculating Ki_total: (Ki_total = Ki * integrator; and PID

output = Kp_total + Ki_total + Kd_total)

Output (Raise/

Lower)

This is the output that will cause the particular environmental condition to rise or lower. In the case of

raising the temperature, this may be a heating pad or coil.

Min On Duration,

Duty Cycle, or

Amount (Raise/

Lower)

This is the minimum value that the PID output must be before Output (Lower) turns on. If the PID output

is less than this value, Duration Outputs will not turn on, and PWM Outputs will be turned off unless

Always Min is enabled.

4.4.2 PID Controller

- 25/287 - Copyright © 2022

PID Output Calculation

PID Controllers can control a number of different output types (e.g. duration, volume, or PWM duty cycle). For most output types,

the PID output (Control Variable) will be proportional (i.e. Output Duration = PID Control Variable). However, when outputting a duty

cycle, it will be calculated as Duty Cycle = (Control Variable / Period) * 100 .

PID Tuning

PID tuning can be a complex process, depending on the output device(s) used and the environment or system under control. A

system with large perturbations will be more difficult to control than one that is stable. Similarly, output devices that are

unsuitable may make PID tuning difficult or impossible. Learning how PID controllers operate and the theory behind their tuning

will not only better prepare you to operate a PID controller, but also in the development of your system and selection and

implementation of the output devices used to regulate your system.

PID TUNING RESOURCES

Sous Vide PID Tuning and the Unexpected Electrical Fire

PID CONTROL THEORY

The PID controller is the most common regulatory controller found in industrial settings, for it"s ability to handle both simple and

complex regulation. The PID controller has three paths, the proportional, integral, and derivative.

The Proportional takes the error and multiplies it by the constant K
P
, to yield an output value. When the error is large, there will

be a large proportional output.

The Integral takes the error and multiplies it by K
I
, then integrates it (K

I
 · 1/s). As the error changes over time, the integral will

continually sum it and multiply it by the constant K
I
. The integral is used to remove perpetual error in the control system. If

using K
P
 alone produces an output that produces a perpetual error (i.e. if the sensor measurement never reaches the Set Point),

the integral will increase the output until the error decreases and the Set Point is reached.

The Derivative multiplies the error by K
D

, then differentiates it (K
D

 · s). When the error rate changes over time, the output

signal will change. The faster the change in error, the larger the derivative path becomes, decreasing the output rate of change.

This has the effect of dampening overshoot and undershoot (oscillation) of the Set Point.

Setting Description

Max On

Duration, Duty

Cycle, or Amount

(Raise/Lower)

This is the maximum duration, volume, or duty cycle the Output (Raise) can be set to. If the PID output

is greater than this value, the Max value set here will be used.

Min Off Duration

(Raise/Lower)

For On/Off (Duration) Outputs, this is the minimum amount of time the Output must have been off for

before it is allowed to turn back on. Ths is useful for devices that can be damaged by rapid power

cycling (e.g. fridges).

Always Min

(Raise/Lower)

For PWM Outputs only. If enabled, the duty cycle will never be set below the Min value.

Setpoint

Tracking Method

Set a method to change the setpoint over time.

Control Variable = P Output + I Output + D Output. Duty cycle is limited within the 0 - 100 % range and the set Min Duty Cycle and

Max Duty Cycle. An output duration is limited by the set Min On Duration and Max On Duration, and output volume similarly.

Note

•

4.4.2 PID Controller

- 26/287 - Copyright © 2022

https://hackaday.io/project/11997-mycodo-environmental-regulation-system/log/45733-sous-vide-pid-tuning-and-the-unexpected-electrical-fire

The K
P
, K

I
, and K

D
 gains determine how much each of the P, I, and D variables influence the final PID output value. For instance,

the greater the value of the gain, the more influence that variable has on the output.

The output from the PID controller can be used in a number of ways. A simple use is to use this value as the number of seconds

an output is turned on during a periodic interval (Period). For instance, if the Period is set to 30 seconds, the PID equation has

the desired measurement and the actual measurement used to calculate the PID output every 30 seconds. The more the output is

on during this period, the more it will affect the system. For example, an output on for 15 seconds every 30 seconds is at a 50 %

duty cycle, and would affect the system roughly half as much as when the output is on for 30 seconds every 30 seconds, or at at

100 % duty cycle. The PID controller will calculate the output based on the amount of error (how far the actual measurement is

from the desired measurement). If the error increases or persists, the output increases, causing the output to turn on for a longer

duration within the Period, which usually in term causes the measured condition to change and the error to reduce. When the

error reduces, the control variable decreases, meaning the output is turned on for a shorter duration of time. The ultimate goal

of a well-tuned PID controller is to bring the actual measurement to the desired measurement quickly, with little overshoot, and

maintain the setpoint with minimal oscillation.

Using temperature as an example, the Process Variable (PV) is the measured temperature, the Setpoint (SP) is the desired

temperature, and the Error (e) is the distance between the measured temperature and the desired temperature (indicating if the

actual temperature is too hot or too cold and to what degree). The error is manipulated by each of the three PID components,

producing an output, called the Manipulated Variable (MV) or Control Variable (CV). To allow control of how much each path

contributes to the output value, each path is multiplied by a gain (represented by K
P
, K

I
, and K

D
). By adjusting the gains, the

sensitivity of the system to each path is affected. When all three paths are summed, the PID output is produced. If a gain is set to

0, that path does not contribute to the output and that path is essentially turned off.

The output can be used a number of ways, however this controller was designed to use the output to affect the measured value

(PV). This feedback loop, with a properly tuned PID controller, can achieve a set point in a short period of time, maintain

regulation with little oscillation, and respond quickly to disturbance.

Therefor, if one would be regulating temperature, the sensor would be a temperature sensor and the feedback device(s) would be

able to heat and cool. If the temperature is lower than the Set Point, the output value would be positive and a heater would

4.4.2 PID Controller

- 27/287 - Copyright © 2022

activate. The temperature would rise toward the desired temperature, causing the error to decrease and a lower output to be

produced. This feedback loop would continue until the error reaches 0 (at which point the output would be 0). If the temperature

continues to rise past the Set Point (this is may be acceptable, depending on the degree), the PID would produce a negative

output, which could be used by the cooling device to bring the temperature back down, to reduce the error. If the temperature

would normally lower without the aid of a cooling device, then the system can be simplified by omitting a cooler and allowing it

to lower on its own.

Implementing a controller that effectively utilizes K
P
, K

I
, and K

D
 can be challenging. Furthermore, it is often unnecessary. For

instance, the K
I
 and K

D
 can be set to 0, effectively turning them off and producing the very popular and simple P controller. Also

popular is the PI controller. It is recommended to start with only K
P
 activated, then experiment with K

P
 and K

I
, before finally

using all three. Because systems will vary (e.g. airspace volume, degree of insulation, and the degree of impact from the

connected device, etc.), each path will need to be adjusted through experimentation to produce an effective output.

QUICK SETUP EXAMPLES

These example setups are meant to illustrate how to configure regulation in particular directions, and not to achieve ideal values

to configure your K
P
, K

I
, and K

D
 gains. There are a number of online resources that discuss techniques and methods that have

been developed to determine ideal PID values (such as here, here, here, here, and here) and since there are no universal values

that will work for every system, it is recommended to conduct your own research to understand the variables and essential to

conduct your own experiments to effectively implement them.

Provided merely as an example of the variance of PID values, one of my setups had temperature PID values (up regulation) of K
P

= 30, K
I
 = 1.0, and K

D
 = 0.5, and humidity PID values (up regulation) of K

P
 = 1.0, K

I
 = 0.2, and K

D
 = 0.5. Furthermore, these

values may not have been optimal but they worked well for the conditions of my environmental chamber.

EXACT TEMPERATURE REGULATION

This will set up the system to raise and lower the temperature to a certain level with two regulatory devices (one that heats and

one that cools).

Add a sensor, then save the proper device and pin/address for each sensor and activate the sensor.

Add two outputs, then save each GPIO and On Trigger state.

Add a PID, then select the newly-created sensor. Change Setpoint to the desired temperature, Regulate Direction to "Both". Set

Raise Output to the relay attached to the heating device and the Lower Relay to the relay attached to the cooling device.

Set K
P
 = 1, K

I
 = 0, and K

D
 = 0, then activate the PID.

If the temperature is lower than the Set Point, the heater should activate at some interval determined by the PID controller until

the temperature rises to the set point. If the temperature goes higher than the Set Point (or Set Point + Buffer), the cooling

device will activate until the temperature returns to the set point. If the temperature is not reaching the Set Point after a

reasonable amount of time, increase the K
P
 value and see how that affects the system. Experiment with different configurations

involving only Read Interval and K
P
 to achieve a good regulation. Avoid changing the K

I
 and K

D
 from 0 until a working

regulation is achieved with K
P
 alone.

View graphs in the 6 to 12 hour time span to identify how well the temperature is regulated to the Setpoint. What is meant by

well-regulated will vary, depending on your specific application and tolerances. Most applications of a PID controller would like

to see the proper temperature attained within a reasonable amount of time and with little oscillation around the Setpoint.

Once regulation is achieved, experiment by reducing K
P
 slightly (~25%) and increasing K

I
 by a low amount to start, such as 0.1

(or lower, 0.01), then start the PID and observe how well the controller regulates. Slowly increase K
I
 until regulation becomes

both quick and with little oscillation. At this point, you should be fairly familiar with experimenting with the system and the K
D

value can be experimented with once both K
P
 and K

I
 have been tuned.

HIGH TEMPERATURE REGULATION

Often the system can be simplified if two-way regulation is not needed. For instance, if cooling is unnecessary, this can be

removed from the system and only up-regulation can be used.

4.4.2 PID Controller

- 28/287 - Copyright © 2022

http://robotics.stackexchange.com/questions/167/what-are-good-strategies-for-tuning-pid-loops
http://innovativecontrols.com/blog/basics-tuning-pid-loops
https://hennulat.wordpress.com/2011/01/12/pid-loop-tuning-101/
http://eas.uccs.edu/wang/ECE4330F12/PID-without-a-PhD.pdf
http://www.atmel.com/Images/doc2558.pdf

Use the same configuration as the Exact Temperature Regulation example, except change Regulate Direction to "Raise" and do

not touch the "Down Relay" section.

4.4.3 PID Autotune

The Autotune function is a standalone controller that is useful for determining appropriate Kp, Ki, and Kd gains for use in the a

PID controller. The autotuner will manipulate an output and analyze the measured response in a particular environment/system.

It will take several cycles of perturbing the system with the chosen output before enough data is available to calculate the PID

gains. In order to use this feature, select a Measurement and an Output that can module the specific condition being measured.

Then, configure the Noise Band and Outstep and activate the function. Log lines of the autotuner will appear in the daemon log

([Gear Icon] -> Mycodo Logs -> Daemon Log). While the autotune is being performed, it is recommended to create a dashboard graph that

includes the Measurement and Output in order to see what the PID Autotuner is doing and to notice any potential issues with the

autotune settings that have been configured. If the autotune is taking a long time to complete, there may not be enough stability

in the system being manipulated to calculate a reliable set of PID gains. This may be because there are too many perturbations to

the system, or conditions are changing too rapidly to acquire consistent measurement oscillations. If this is the case, try

modifying your system to increase stability and yield consistent measurement oscillations. Once the autotune successfully

completes, perturbations may be reintroduced in order to further tune the PID controller to handle them.

Typical graph output will look like this:

This is an experimental feature. It is best not used until you are familiar with the theory, operation, and tuning of a PID.

Warning

Setting Description

Measurement This is the Input or Function measurement that is measuring the specific condition that the Output will

affect. For instance, this could be a temperature measurement and the output could be a heater.

Output This is the Output that will affect the measurement when it's activated. The autotune function will

periodically turn this output on in order to raise the measurement beyond the setpoint.

Period This is the period of time between the Output being turned on. This should be set to the same Period you

wish to use for your PID controller. A different Period can significantly affect the PID gains that the

autotune produces.

Setpoint This is the desired measurement condition value. For instance, if temperature is being measured, this

should be set a several degrees higher than the current temperature so the output, when activated, will

cause the temperature to rise beyond the setpoint.

Noise Band This is the amount above the setpoint the measured condition must reach before the output turns off. This

is also how much below the setpoint the measured condition must fall before the output turns back on.

Outstep This is how many seconds the output will turn on every PID Period. For instance, to autotune with 50%

power, ensure the Outstep is half the value of the PID Period.

Direction This is the direction for which the Output will push the Measurement. For instance, a heater will raise

temperature, whereas a cooler will lower temperature.

4.4.3 PID Autotune

- 29/287 - Copyright © 2022

And typical Daemon Log output will look like this:

2018-08-04 23:32:20,876 - mycodo.pid_3b533dff - INFO - Activated in 187.2 ms

2018-08-04 23:32:20,877 - mycodo.pid_autotune - INFO - PID Autotune started

2018-08-04 23:33:50,823 - mycodo.pid_autotune - INFO -

2018-08-04 23:33:50,830 - mycodo.pid_autotune - INFO - Cycle: 19

2018-08-04 23:33:50,831 - mycodo.pid_autotune - INFO - switched state: relay step down

2018-08-04 23:33:50,832 - mycodo.pid_autotune - INFO - input: 32.52

2018-08-04 23:36:00,854 - mycodo.pid_autotune - INFO -

2018-08-04 23:36:00,860 - mycodo.pid_autotune - INFO - Cycle: 45

2018-08-04 23:36:00,862 - mycodo.pid_autotune - INFO - found peak: 34.03

2018-08-04 23:36:00,863 - mycodo.pid_autotune - INFO - peak count: 1

2018-08-04 23:37:20,802 - mycodo.pid_autotune - INFO -

2018-08-04 23:37:20,809 - mycodo.pid_autotune - INFO - Cycle: 61

2018-08-04 23:37:20,810 - mycodo.pid_autotune - INFO - switched state: relay step up

2018-08-04 23:37:20,811 - mycodo.pid_autotune - INFO - input: 31.28

2018-08-04 23:38:30,867 - mycodo.pid_autotune - INFO -

2018-08-04 23:38:30,874 - mycodo.pid_autotune - INFO - Cycle: 75

2018-08-04 23:38:30,876 - mycodo.pid_autotune - INFO - found peak: 32.17

2018-08-04 23:38:30,878 - mycodo.pid_autotune - INFO - peak count: 2

2018-08-04 23:38:40,852 - mycodo.pid_autotune - INFO -

2018-08-04 23:38:40,858 - mycodo.pid_autotune - INFO - Cycle: 77

2018-08-04 23:38:40,860 - mycodo.pid_autotune - INFO - switched state: relay step down

2018-08-04 23:38:40,861 - mycodo.pid_autotune - INFO - input: 32.85

2018-08-04 23:40:50,834 - mycodo.pid_autotune - INFO -

2018-08-04 23:40:50,835 - mycodo.pid_autotune - INFO - Cycle: 103

2018-08-04 23:40:50,836 - mycodo.pid_autotune - INFO - found peak: 33.93

2018-08-04 23:40:50,836 - mycodo.pid_autotune - INFO - peak count: 3

2018-08-04 23:42:05,799 - mycodo.pid_autotune - INFO -

2018-08-04 23:42:05,805 - mycodo.pid_autotune - INFO - Cycle: 118

2018-08-04 23:42:05,806 - mycodo.pid_autotune - INFO - switched state: relay step up

2018-08-04 23:42:05,807 - mycodo.pid_autotune - INFO - input: 31.27

2018-08-04 23:43:15,816 - mycodo.pid_autotune - INFO -

2018-08-04 23:43:15,822 - mycodo.pid_autotune - INFO - Cycle: 132

2018-08-04 23:43:15,824 - mycodo.pid_autotune - INFO - found peak: 32.09

2018-08-04 23:43:15,825 - mycodo.pid_autotune - INFO - peak count: 4

2018-08-04 23:43:25,790 - mycodo.pid_autotune - INFO -

2018-08-04 23:43:25,796 - mycodo.pid_autotune - INFO - Cycle: 134

2018-08-04 23:43:25,797 - mycodo.pid_autotune - INFO - switched state: relay step down

2018-08-04 23:43:25,798 - mycodo.pid_autotune - INFO - input: 32.76

2018-08-04 23:45:30,802 - mycodo.pid_autotune - INFO -

2018-08-04 23:45:30,808 - mycodo.pid_autotune - INFO - Cycle: 159

2018-08-04 23:45:30,810 - mycodo.pid_autotune - INFO - found peak: 33.98

2018-08-04 23:45:30,811 - mycodo.pid_autotune - INFO - peak count: 5

2018-08-04 23:45:30,812 - mycodo.pid_autotune - INFO -

2018-08-04 23:45:30,814 - mycodo.pid_autotune - INFO - amplitude: 0.9099999999999989

2018-08-04 23:45:30,815 - mycodo.pid_autotune - INFO - amplitude deviation: 0.06593406593406595

2018-08-04 23:46:40,851 - mycodo.pid_autotune - INFO -

2018-08-04 23:46:40,857 - mycodo.pid_autotune - INFO - Cycle: 173

2018-08-04 23:46:40,858 - mycodo.pid_autotune - INFO - switched state: relay step up

2018-08-04 23:46:40,859 - mycodo.pid_autotune - INFO - input: 31.37

2018-08-04 23:47:55,860 - mycodo.pid_autotune - INFO -

2018-08-04 23:47:55,866 - mycodo.pid_autotune - INFO - Cycle: 188

2018-08-04 23:47:55,868 - mycodo.pid_autotune - INFO - found peak: 32.36

2018-08-04 23:47:55,869 - mycodo.pid_autotune - INFO - peak count: 6

2018-08-04 23:47:55,870 - mycodo.pid_autotune - INFO -

2018-08-04 23:47:55,871 - mycodo.pid_autotune - INFO - amplitude: 0.9149999999999979

2018-08-04 23:47:55,872 - mycodo.pid_autotune - INFO - amplitude deviation: 0.032786885245900406

2018-08-04 23:47:55,873 - mycodo.pid_3b533dff - INFO - time: 16 min

2018-08-04 23:47:55,874 - mycodo.pid_3b533dff - INFO - state: succeeded

2018-08-04 23:47:55,874 - mycodo.pid_3b533dff - INFO -

2018-08-04 23:47:55,875 - mycodo.pid_3b533dff - INFO - rule: ziegler-nichols

2018-08-04 23:47:55,876 - mycodo.pid_3b533dff - INFO - Kp: 0.40927018474290117

2018-08-04 23:47:55,877 - mycodo.pid_3b533dff - INFO - Ki: 0.05846588600007114

2018-08-04 23:47:55,879 - mycodo.pid_3b533dff - INFO - Kd: 0.7162385434443115

2018-08-04 23:47:55,880 - mycodo.pid_3b533dff - INFO -

2018-08-04 23:47:55,881 - mycodo.pid_3b533dff - INFO - rule: tyreus-luyben

4.4.3 PID Autotune

- 30/287 - Copyright © 2022

4.4.4 Conditional

Conditional controllers are used to perform certain Actions based a user-generated Conditional Statement.

Conditional Options

2018-08-04 23:47:55,887 - mycodo.pid_3b533dff - INFO - Kp: 0.3162542336649691

2018-08-04 23:47:55,889 - mycodo.pid_3b533dff - INFO - Ki: 0.010165091543194185

2018-08-04 23:47:55,890 - mycodo.pid_3b533dff - INFO - Kd: 0.7028026111719073

2018-08-04 23:47:55,891 - mycodo.pid_3b533dff - INFO -

2018-08-04 23:47:55,892 - mycodo.pid_3b533dff - INFO - rule: ciancone-marlin

2018-08-04 23:47:55,892 - mycodo.pid_3b533dff - INFO - Kp: 0.21083615577664605

2018-08-04 23:47:55,893 - mycodo.pid_3b533dff - INFO - Ki: 0.06626133746674728

2018-08-04 23:47:55,893 - mycodo.pid_3b533dff - INFO - Kd: 0.3644161687558038

2018-08-04 23:47:55,894 - mycodo.pid_3b533dff - INFO -

2018-08-04 23:47:55,894 - mycodo.pid_3b533dff - INFO - rule: pessen-integral

2018-08-04 23:47:55,895 - mycodo.pid_3b533dff - INFO - Kp: 0.49697093861638

2018-08-04 23:47:55,895 - mycodo.pid_3b533dff - INFO - Ki: 0.0887428626786794

2018-08-04 23:47:55,896 - mycodo.pid_3b533dff - INFO - Kd: 1.04627757151908

2018-08-04 23:47:55,896 - mycodo.pid_3b533dff - INFO -

2018-08-04 23:47:55,897 - mycodo.pid_3b533dff - INFO - rule: some-overshoot

2018-08-04 23:47:55,898 - mycodo.pid_3b533dff - INFO - Kp: 0.23191977135431066

2018-08-04 23:47:55,898 - mycodo.pid_3b533dff - INFO - Ki: 0.03313066873337365

2018-08-04 23:47:55,899 - mycodo.pid_3b533dff - INFO - Kd: 1.0823160212047374

2018-08-04 23:47:55,899 - mycodo.pid_3b533dff - INFO -

2018-08-04 23:47:55,900 - mycodo.pid_3b533dff - INFO - rule: no-overshoot

2018-08-04 23:47:55,900 - mycodo.pid_3b533dff - INFO - Kp: 0.1391518628125864

2018-08-04 23:47:55,901 - mycodo.pid_3b533dff - INFO - Ki: 0.01987840124002419

2018-08-04 23:47:55,901 - mycodo.pid_3b533dff - INFO - Kd: 0.6493896127228425

2018-08-04 23:47:55,902 - mycodo.pid_3b533dff - INFO -

2018-08-04 23:47:55,902 - mycodo.pid_3b533dff - INFO - rule: brewing

2018-08-04 23:47:55,903 - mycodo.pid_3b533dff - INFO - Kp: 5.566074512503456

2018-08-04 23:47:55,904 - mycodo.pid_3b533dff - INFO - Ki: 0.11927040744014512

2018-08-04 23:47:55,904 - mycodo.pid_3b533dff - INFO - Kd: 4.101408080354794

Setting Description

Conditional

Statement

User-created Python 3 code that will be executed.

Conditional

Status

A dictionary can be returned that allows information to be passed to other controllers and widgets. For

example, the Function Status Widget will display this information on the Dashboard. This code can be

removed if you do not want to return any information.

Period

(seconds)

The period (seconds) that the Conditional Statement will be executed.

Start Offset

(seconds)

The duration (seconds) to wait before executing the Conditional for the first after it is activated.

Log Level:

Debug

Show debug lines in the daemon log.

Message

Includes Code

Include the Conditional Statement code in the message (self.message) that is passed to Actions.

4.4.4 Conditional

- 31/287 - Copyright © 2022

Conditions are functions that can be used within the Conditional Statement, and return specific information.

Conditional Setup Guide

Python 3 is the environment that these conditionals will be executed. The following functions can be used within your Conditional

Statement code.

There are additional functions that can be used, but these must use the full UUID (not an abridged version as the functions

above). See /home/pi/Mycodo/mycodo/mycodo_client.py for the functions available for use. These may be accessed via the

'control' object. An example, below, will return how long the output has been on (or 0 if it's currently off):

Condition Description

Measurement

(Single, Last)

Acquires the latest measurement from an Input or device. Set Max Age (seconds) to restrict how long

to accept values. If the latest value is older than this duration, "None" is returned.

Measurement

(Single, Past,

Average)

Acquires the past measurements from an Input or device, then averages them. Set Max Age

(seconds) to restrict how long to accept values. If all values are older than this duration, "None" is

returned.

Measurement

(Single, Past, Sum)

Acquires the past measurements from an Input or device, then sums them. Set Max Age (seconds) to

restrict how long to accept values. If all values are older than this duration, "None" is returned.

Measurement

(Multiple, Past)

Acquires the past measurements from an Input or device. Set Max Age (seconds) to restrict how long

to accept values. If no values are found in this duration, "None" is returned. This differs from the

"Measurement (Single)" Condition because it returns a list of dictionaries with 'time' and 'value' key

pairs.

GPIO State Acquires the current GPIO state and returns 1 if HIGH or 0 if LOW. If the latest value is older than

this duration, "None" is returned.

Output State Returns 'on' if the output is currently on, and 'off' if it's currently off.

Output Duration On Returns how long the output has currently been on, in seconds. Returns 0 if off.

Controller Running Returns True if the controller is active, False if inactive.

Max Age (seconds) The minimum age (seconds) the measurement can be. If the last measurement is older than this,

"None" will be returned instead of a measurement.

Python code indentations must use 4 spaces (not 2 spaces, tabs, or anything else).

Note

Function Description

self.condition("{ID}") Returns a measurement for the Condition with ID.

self.condition_dict("{ID}") Returns a dictionary of measurement for the Condition with ID.

self.run_action("{ID}") Executes the Action with ID.

self.run_all_actions() Executes all actions.

self.logger.info() Writes a log line to the Daemon log. "info" may also be changed to "warning", "error" or

"debug". Debug log lines will only appear in the Daemon log when Logging Level:

Debug is enabled for the Input.

self.set_custom_option("option",

value)

Writes the value to the database for retrieval later. The option argument should be a

string, and value can be a string, integer, float, list, or dictionary.

self.get_custom_option("option") Reads the value from the database that was previously written with

self.set_custom_option(). Returns None if the option is not found or there is no value.

4.4.4 Conditional

- 32/287 - Copyright © 2022

output_on_seconds = control.output_sec_currently_on("1b6ada50-1e69-403a-9fa6-ec748b16dc23")

Since the Python code contained in the Conditional Statement must be formatted properly, it's best to familiarize yourself with

the basics of Python.

To create a basic conditional, follow these steps, using the numbers in the screenshots, below, that correspond to the numbers in

parentheses:

Navigate to the Setup -> Function page.

Select "Controller: Conditional", then click Add .

Under Conditions (1), select a condition option, then click Add Condition .

Configure the newly-added Condition then click Save .

Under Actions (2), select an action option, then click Add Action .

Configure the newly-added Action then click Save .

Notice that each Condition and each Action has its own ID (underlined).

The default Conditional Statement (3) contains placeholder IDs that need to be changed to your Condition and Action IDs.

Change the ID in self.condition("{asdf1234}") to your Condition ID. Change the ID in self.run_action("{qwer5678}",

message=message) to your Action ID. Click Save at the top of the Conditional.

The logic used in the Conditional Statement will need to be adjusted to suit your particular needs. Additionally, you may add

more Conditions or Actions. See the Advanced Conditional Statement examples , below, for usage examples.

If your Conditional Statement has been formatted correctly, your Conditional will save and it will be ready to activate. If an error is

returned, your options will not have been saved. Inspect the error for which line is causing the issue and read the error message

itself to try to understand what the problem is and how to fix it. There are an unfathomable number of ways to configure a

Conditional, but this should hopefully get you started to developing one that suits your needs.

There are two different IDs in use here, one set of IDs are found under the Conditions section of the Conditional Controller, and one

set of IDs are found under the Actions section of the Conditional Controller. Read all of this section, including the examples, below, to

fully understand how to properly set up a Conditional Controller.

Note

If a measurement hasn't been acquired within the set Max Age , "None" will be returned when self.condition("{ID}") is called in the

code. It is very important that you account for this. All examples below incorporate a test for the measurement being None, and this

should not be removed. If an error occurs (such as if the statement resolves to comparing None to a numerical value, such as "if

None < 23"), then the code will stop there and an error will be logged in the daemon log. Accounting for None is useful for

determining if an Input is no longer acquiring measurements (e.g. dead sensor, malfunction, etc.).

Info

•

•

•

•

•

•

•

•

•

Mycodo is constantly changing, so the screenshots below may not match what you see exactly. Be sure to read this entire section of

the manual to understand how to use Conditional Controllers.

Note

4.4.4 Conditional

- 33/287 - Copyright © 2022

https://realpython.com/python-conditional-statements/

Beginner Conditional Statement examples:

Each self.condition("{ID}") will return the most recent measurement obtained from that particular measurement under the

Conditions section of the Conditional Controller, as long as it's within the set Max Age.

Example 1, no measurement (i.e. None) returned

useful with the Email Notify Action to email when an Input stops working

if self.condition("{asdf1234}") is None:

 self.run_all_actions() # Execute all configured actions

Example 2, test two measurement conditions

measure_1 = self.condition("{asdf1234}")

measure_2 = self.condition("{hjkl5678}")

if None not in [measure_1, measure_2]:

 # If neither measurement is None (both are working)

 if measure_1 < 20 and measure_2 > 10:

 # If measure_1 is less than 20 and measure_2 is greater than 10

 self.run_all_actions() # Execute all configured actions

Example 3, test two measurements and sum of measurements

measure_1 = self.condition("{asdf1234}")

measure_2 = self.condition("{hjkl5678}")

if None not in [measure_1, measure_2]:

 sum_ = measure_1 + measure_2

 if measure_1 > 2 and 10 < measure_2 < 23 and sum_ < 30.5:

 self.run_all_actions()

4.4.4 Conditional

- 34/287 - Copyright © 2022

The "Measurement (Multiple)" Condition is useful if you desire to check if a particular value has been stored in any of the past

measurements (within the set Max Age), not just the last measurement. This is useful if you have an alert system that each

numerical value represents a different alert that you need to check each past value if it occurred. Here is an example that

retrieves all measurements from the past 30 minutes and checks if any of the measurements in the returned list is equal to "119".

If "119" exists, the Actions are executed and break is used to exit the for loop.

Advanced Conditional Statement examples:

These examples expand on the beginner examples, above, by activating specific actions. The following examples will reference

actions with IDs that can be found under the Actions section of the Conditional Controller. Two example action IDs will be used:

"qwer1234" and "uiop5678". Additionally, self.run_all_actions() is used here, which will run all actions in the order in which they

were created.

Example 4, combine into one conditional

measurement = self.condition("{asdf1234}")

if measurement is not None and 20 < measurement < 30: # combine conditions

 self.run_all_actions()

Example 5, test two measurements

convert Edge Input from 0 or 1 to True or False

measure_1 = self.condition("{asdf1234}")

measure_2 = self.condition("{hjkl5678}")

if None not in [measure_1, measure_2]:

 if bool(measure_1) and measure_2 > 10:

 self.run_all_actions()

Example 6, test measurement with "or" and a rounded measurement

measure_1 = self.condition("{asdf1234}")

measure_2 = self.condition("{hjkl5678}")

if None not in [measure_1, measure_2]:

 if measure_1 > 20 or int(round(measure_2)) in [20, 21, 22]:

 self.run_all_actions()

Example 7, use self to store variables across multiple executions

measurement = self.condition("{asdf1234}")

if not hasattr(self, "stored_measurement"): # Initialize variable

 self.stored_measurement = measurement

if measurement is not None:

 if abs(measurement - self.stored_measurement) > 10:

 self.run_all_actions() # if difference is greater than 10

 self.stored_measurement = measurement # Store measurement

Example 1, find a measurement in the past 30 minutes (Max Age: 1800 seconds)

measurements = self.condition_dict("{asdf1234}")

if measurements: # If the list is not empty

 for each_measure in measurements: # Loop through each measurement in the list

 if each_measure['value'] == 119:

 self.logger.info("Alert 119 found at timestamp {time}".format(

 time=each_measure['time']))

 self.run_all_actions()

 break # Exit the for loop

Example 1

measurement = self.condition("{asdf1234}")

if measurement is None:

 self.run_action("{qwer1234}")

elif measurement > 23:

 self.run_action("{uiop5678}")

else:

 self.run_all_actions()

Example 2, test two measurements

measure_1 = self.condition("{asdf1234}")

measure_2 = self.condition("{hjkl5678}")

if None not in [measure_1, measure_2]:

 if measure_1 < 20 and measure_2 > 10:

 self.run_action("{qwer1234}")

 self.run_action("{uiop5678}")

Example 3, test two measurements and sum of measurements

measure_1 = self.condition("{asdf1234}")

measure_2 = self.condition("{hjkl5678}")

if None not in [measure_1, measure_2]:

 sum_ = measure_1 + measure_2

 if measure_1 > 2 and 10 < measure_2 < 23 and sum_ < 30.5:

 self.run_action("{qwer1234}")

 else:

 self.run_action("{uiop5678}")

Example 4, combine into one conditional

measurement = self.condition("{asdf1234}")

if measurement is not None and 20 < measurement < 30:

 self.run_action("{uiop5678}")

Example 5, test two measurements, convert Edge Input from 0/1 to True/False

4.4.4 Conditional

- 35/287 - Copyright © 2022

If your Action is a type that receives a message (E-Mail or Note), you can modify this message to include extra information before

it is passed to the function (so the new information is passed to the Note, E-Mail, etc.). To do this, append a string to the variable

self.message and add this to the message parameter of self.run_action() or self.run_all_actions(). Below are some examples. Note the

use of "+=" instead of "=", which appends the string to the variable self.message instead of overwriting it.

Logging can also be used to log messages to the daemon log using self.logger . Logging levels include "info", "warning", "error"

and "debug". Debug log lines will only appear in the Daemon log when Logging Level: Debug is enabled for the Input.

Before activating any conditionals, it's advised to thoroughly explore all possible scenarios and plan a configuration that

eliminates conflicts. Some devices or outputs may respond atypically or fail when switched on and off in rapid succession.

Therefore, trial run your configuration before connecting devices to any outputs.

4.4.5 Trigger

A Trigger Controller will execute actions when events are triggered, such as an output turning on or off, a GPIO pin changing it's

voltage state (Edge detection, rising or falling), timed events that include various timers (duration, time period, time point, etc),

or the sunrise/sunset time at a specific latitude and longitude. Once the trigger is configured, add any number of Actions to be

executed when that event is triggered.

Output (On/Off) Options

Monitor the state of an output.

measure_1 = self.condition("{asdf1234}")

measure_2 = self.condition("{hjkl5678}")

if None not in [measure_1, measure_2]:

 if bool(measure_1) and measure_2 > 10:

 self.run_all_actions()

Example 6, test measurement with "or" and a rounded measurement

measure_1 = self.measure("{asdf1234}")

measure_2 = self.measure("{hjkl5678}")

if None not in [measure_1, measure_2]:

 if measure_1 > 20 or int(round(measure_2)) in [20, 21, 22]:

 self.run_action("{qwer1234}")

 if measure_1 > 30:

 self.run_action("{uiop5678}")

Example 1

measurement = self.measure("{asdf1234}")

if measurement is None and measurement > 23:

 self.message += "Measurement was {}".format(measurement)

 self.run_action("{uiop5678}", message=self.message)

Example 2

measure_1 = self.measure("{asdf1234}")

measure_2 = self.measure("{hjkl5678}")

if None not in [measure_1, measure_2]:

 if measure_1 < 20 and measure_2 > 10:

 self.message += "Measurement 1: {m1}, Measurement 2: {m2}".format(

 m1=measure_1, m2=measure_2)

 self.run_all_actions(message=self.message)

Example 1

measurement = self.measure("{asdf1234}")

if measurement is None and measurement > 23:

 self.logging.error("Warning, measurement was {}".format(measurement))

 self.message += "Measurement was {}".format(measurement)

 self.run_action("{uiop5678}", message=self.message)

Setting Description

If Output The Output to monitor for a change of state.

If State If the state of the output changes to On or Off the conditional will trigger. If "On (any duration) is selected, th

trigger will occur no matter how long the output turns on for, whereas if only "On" is selected, the

conditional will trigger only when the output turns on for a duration of time equal to the set "Duration

(seconds)".

If Duration

(seconds)

If "On" is selected, an optional duration (seconds) may be set that will trigger the conditional only if the

Output is turned on for this specific duration.

4.4.5 Trigger

- 36/287 - Copyright © 2022

Output (PWM) Options

Monitor the state of a PWM output.

Edge Options

Monitor the state of a pin for a rising and/or falling edge.

Run PWM Method Options

Select a Duration Method and this will set the selected PWM Output to the duty cycle specified by the method.

Sunrise/Sunset Options

Trigger events at sunrise or sunset (or a time offset of those), based on latitude and longitude.

Setting Description

If Output The Output to monitor for a change of state.

If State If the duty cycle of the output is greater than,less than, or equal to the set value, trigger the Conditional

Actions.

If Duty Cycle

(%)

The duty cycle for the Output to be checked against.

Setting Description

If Edge

Detected

The conditional will be triggered if a change in state is detected, either Rising when the state changes from

LOW (0 volts) to HIGH (3.5 volts) or Falling when the state changes from HIGH (3.3 volts) to LOW (0 volts),

or Both (Rising and Falling).

Setting Description

Duration Method Select which Method to use.

PWM Output Select which PWM Output to use.

Period (seconds) Select the interval of time to calculate the duty cycle, then apply to the PWM Output.

Trigger Every Period Trigger Conditional Actions every period.

Trigger when Activated Trigger Conditional Actions when the Conditional is activated.

Setting Description

Rise or Set Select which to trigger the conditional, at sunrise or sunset.

Latitude (decimal) Latitude of the sunrise/sunset, using decimal format.

Longitude (decimal) Longitude of the sunrise/sunset, using decimal format.

Zenith The Zenith angle of the sun.

Date Offset (days) Set a sunrise/sunset offset in days (positive or negative).

Time Offset (minutes) Set a sunrise/sunset offset in minutes (positive or negative).

4.4.5 Trigger

- 37/287 - Copyright © 2022

Timer (Duration) Options

Run a timer that triggers Conditional Actions every period.

Timer (Daily Time Point) Options

Run a timer that triggers Conditional Actions at a specific time every day.

Timer (Daily Time Span) Options

Run a timer that triggers Conditional Actions at a specific period if it's between the set start and end times. For example, if the

Start Time is set to 10:00 and End Time set to 11:00 and Period set to 120 seconds, the Conditional Actions will trigger every 120

seconds when the time is between 10 AM and 11 AM.

This may be useful, for instance, if you desire an Output to remain on during a particular time period and you want to prevent

power outages from interrupting the cycle (which a simple Time Point Timer could not prevent against because it only triggers

once at the Start Time). By setting an Output to turn the lights on every few minutes during the Start -> End period, it ensured

the Output remains on during this period.

Setting Description

Period (seconds) The period of time between triggering Conditional Actions.

Start Offset (seconds) Set this to start the first trigger a number of seconds after the Conditional is activated.

Setting Description

Start Time

(HH:MM)

Set the time to trigger Conditional Actions, in the format "HH:MM", with HH denoting hours, and MM

denoting minutes. Time is in 24-hour format.

Setting Description

Start Time

(HH:MM)

Set the start time to trigger Conditional Actions, in the format "HH:MM", with HH denoting hours, and

MM denoting minutes. Time is in 24-hour format.

End Time

(HH:MM)

Set the end time to trigger Conditional Actions, in the format "HH:MM", with HH denoting hours, and

MM denoting minutes. Time is in 24-hour format.

Period (seconds) The period of time between triggering Conditional Actions.

4.4.5 Trigger

- 38/287 - Copyright © 2022

4.5 Actions

These are the actions that can be added to Controllers (i.e. Input, Conditional, and Trigger Controllers) to provide a way to add

additional functionality or interact with other parts of Mycodo. Actions may work with one or more controller type, depending on

how the Action has been designed.

For a full list of supported Actions, see Supported Actions.

4.5.1 Custom Actions

There is a Custom Action import system in Mycodo that allows user-created Actions to be used in the Mycodo system. Custom

Actions can be uploaded on the [Gear Icon] -> Configure -> Custom Actions page. After import, they will be available to use on the

Setup -> Function page.

If you develop a working Action module, please consider creating a new GitHub issue or pull request, and it may be included in

the built-in set.

Open any of the built-in modules located in the directory Mycodo/mycodo/actions for examples of the proper formatting.

There are also example Custom Actions in the directory Mycodo/mycodo/actions/examples

Additionally, I have another github repository devoted to Custom Modules that are not included in the built-in set, at kizniche/

Mycodo-custom.

4.5 Actions

- 39/287 - Copyright © 2022

https://github.com/kizniche/Mycodo/issues/new?assignees=&labels=&template=feature-request.md&title=New-20Module
https://github.com/kizniche/Mycodo/tree/master/mycodo/actions/
https://github.com/kizniche/Mycodo/tree/master/mycodo/actions/examples
https://github.com/kizniche/Mycodo-custom
https://github.com/kizniche/Mycodo-custom

4.6 Calibration

Calibration can be performed for any Input, Output, or Function if that functionality has been built in to the module. Some

common modules that have calibration are several of the Atlas Scientific, MH-Z19, and DS-type Inputs and many of the

peristaltic pump Outputs. Calibration actions can be found on the options page for the particular device. Refer to the calibration

instructions at this location for how to perform a successful calibration.

4.6 Calibration

- 40/287 - Copyright © 2022

4.7 Methods

Page: Setup -> Method

Methods enable Setpoint Tracking in PIDs and time-based duty cycle changes in timers. Normally, a PID controller will regulate

an environmental condition to a specific setpoint. If you would like the setpoint to change over time, this is called setpoint

tracking. Setpoint Tracking is useful for applications such as reflow ovens, thermal cyclers (DNA replication), mimicking natural

daily cycles, and more. Methods may also be used to change a duty cycle over time when used with a Run PWM Method

Conditional.

4.7.1 Method Options

These options are shared with several method types.

4.7.2 Time/Date Method

A time/date method allows a specific time/date span to dictate the setpoint. This is useful for long-running methods, that may

take place over the period of days, weeks, or months.

4.7.3 Duration Method

A Duration Method allows a Setpoint (for PIDs) or Duty Cycle (for Conditional) to be set after specific durations of time. Each

new duration added will stack, meaning it will come after the previous duration, meaning a newly-added Start Setpoint will

begin after the previous entry's End Setpoint.

If the "Repeat Method" option is used, this will cause the method to repeat once it has reached the end. If this option is used, no

more durations may be added to the method. If the repeat option is deleted then more durations may be added. For instance, if

your method is 200 seconds total, if the Repeat Duration is set to 600 seconds, the method will repeat 3 times and then

automatically turn off the PID or Conditional.

4.7.4 Daily (Time-Based) Method

The daily time-based method is similar to the time/date method, however it will repeat every day. Therefore, it is essential that

only the span of one day be set in this method. Begin with the start time at 00:00:00 and end at 23:59:59 (or 00:00:00, which

would be 24 hours from the start). The start time must be equal or greater than the previous end time.

4.7.5 Daily (Sine Wave) Method

The daily sine wave method defines the setpoint over the day based on a sinusoidal wave. The sine wave is defined by y = [A *

sin(B * x + C)] + D, where A is amplitude, B is frequency, C is the angle shift, and D is the y-axis shift. This method will repeat

daily.

4.7.6 Daily (Bezier Curve) Method

A daily Bezier curve method define the setpoint over the day based on a cubic Bezier curve. If unfamiliar with a Bezier curve, it is

recommended you use the graphical Bezier curve generator and use the 8 variables it creates for 4 points (each a set of x and y).

Setting Description

Start Time/Date This is the start time of a range of time.

End Time/Date This is the end time of a range of time.

Start Setpoint This is the start setpoint of a range of setpoints.

End Setpoint This is the end setpoint of a range of setpoints.

4.7 Methods

- 41/287 - Copyright © 2022

https://www.desmos.com/calculator/cahqdxeshd

The x-axis start (x3) and end (x0) will be automatically stretched or skewed to fit within a 24-hour period and this method will

repeat daily.

4.7.7 Cascade Method

This method combines multiple methods and outputs the average of the methods. For examples, let's combine a Duration method

set to 100 for 60 seconds and 0 for 60 seconds (and set to repeat forever) with a Daily Method that rises from 0 at 00:00:00 to 50

at 12:00:00, and falls back to 0 at 23:59:59. At 00:00:00, the combined methods would produce an output that oscillates from 0

((0 / 100) * (0 / 100) = 0) to 0 ((100 / 100) * (0 / 100) = 0) every 60 seconds, and gradually increase until at 12:00:00 the output

would be oscillating from 0 ((0 / 100) * (50 / 100)) to 50 ((100 / 100) * (50 / 100)) every 60 seconds. This is a simple example, but

combinations can become very complex.

4.7.7 Cascade Method

- 42/287 - Copyright © 2022

4.8 Alerts

Alerts can be used to notify users about the state of the system. For things like sensor monitoring, this could be a threshold that

indicates something needs attention. E-Mail notifications are built-in to Mycodo in a number of places, however there are several

places (Inputs, Outputs, Controllers) that allow custom Python code to be used, enabling many other notification options to be

built.

See Alert Settings for more information about setting up Alerts.

4.8 Alerts

- 43/287 - Copyright © 2022

4.9 Notes

Page: More -> Notes

Notes may be created that can then be displayed on graphs or referenced at a later time. All notes are timestamped with the

date/time of creation or may be created with a custom date/time. Each note must have at least one tag selected. Tags are what

are selected to be displayed on a graph and all notes with that tag will appear in the time frame selected on the graph.

4.9.1 Tag Options

4.9.2 Note Options

Setting Description

Name A name for the tag. Must not contain spaces.

Rename Rename the tag.

Setting Description

Name A name for the note.

Use Custom Date/Time Check to enter a custom date/time for the note.

Custom Date/Time Store the note with this custom date/time.

Attached Files Attach one or more files to the note.

Tags Associate the note with at least one tag.

Note The text body of the note. The text will appear monospaced, so code will format properly.

4.9 Notes

- 44/287 - Copyright © 2022

4.10 Camera

Page: More -> Camera

Cameras can be used to capture still images, create time-lapses, and stream video. Cameras may also be used by Functions to

trigger a camera image or video capture.

There are several libraries that may be used to access your camera, which includes picamera (Raspberry Pi Camera), fswebcam,

opencv, urllib, and requests (among potentially others). These libraries enable images to be acquired from the Raspberry Pi

camera, USB cameras and webcams, and IP cameras that are accessible by a URL. Furthermore, using the urllib and request

libraries, any image URL can be used to acquire images.

4.10 Camera

- 45/287 - Copyright © 2022

4.11 Energy Usage

Page: More -> Energy Usage

There are two methods for calculating energy usage. The first relies on determining how long Outputs have been on. Based on

this, if the number of Amps the output draws has been set in the output Settings, then the kWh and cost can be calculated.

Discovering the number of amps the device draws can be accomplished by calculating this from the output typically given as

watts on the device label, or with the use of a current clamp while the device is operating. The limitation of this method is PWM

Outputs are not currently used to calculate these figures due to the difficulty determining the current consumption of devices

driven by PWM signals.

The second method for calculating energy consumption is more accurate and is the recommended method if you desire the most

accurate estimation of energy consumption and cost. This method relies on an Input or Function measuring Amps. One way to do

this is with the used of an analog-to-digital converter (ADC) that converts the voltage output from a transformer into current

(Amps). One wire from the AC line that powers your device(s) passes thorough the transformer and the device converts the

current that passes through that wire into a voltage that corresponds to the amperage. For instance, the below sensor converts 0

-50 amps input to 0 - 5 volts output. An ADC receives this output as its input. One would set this conversion range in Mycodo and

the calculated amperage will be stored. On the Energy Usage page, add this ADC Input measurement and a report summary will

be generated. Keep in mind that for a particular period (for example, the past week) to be accurate, there needs to be a constant

measurement of amps at a periodic rate. The faster the rate the more accurate the calculation will be. This is due to the

amperage measurements being averaged for this period prior to calculating kWh and cost. If there is any time turing this period

where amp measurements aren't being acquired when in fact there are devices consuming current, the calculation is likely to not

be accurate.

Greystone CS-650-50 AC Solid Core Current Sensor (Transformer)

The following settings are for calculating energy usage from an amp measurement. For calculating based on Output duration, see

Energy Usage Settings.

Setting Description

Select Amp Measurement This is a measurement with the amp (A) units that will be used to calculate energy usage.

4.11 Energy Usage

- 46/287 - Copyright © 2022

https://shop.greystoneenergy.com/shop/cs-sensor-series-ac-solid-core-current-sensor

4.12 Python Code

There are numerous places where Python 3 code can be used within Mycodo, including the Python Code Input, the Python Code

Output, and Conditional Controller Functions.

Here are a few example that demonstrates some useful ways to interact with Mycodo with Python 3 code.

In all the Mycodo environments where your code will be executed, the DaemonControl() Class of mycodo/mycodo_client.py is

available to communicate with the daemon using the object "control".

4.12.1 Outputs

PWM Fan with a Minimum Duty Cycle to Spin

Some PWM-controlled fans do not start spinning until a minimum duty cycle is set. Once the fan is spinning, the duty cycle can

be set much lower and the fan will continue to spin. Because of this, there needs to be a "charging" step if the fan is turning on

from a duty cycle of 0. This code detects if the requested duty cycle will need to execute the charging step prior to setting the

duty cycle. For this, you will need A GPIO PWM Output and a Python Code PWM Output. The GPIO PWM Output will be

configured for the fan, and the Python Code PWM Output will be configured with the following code:

import time

Set the variables the first time the code is executed

if not hasattr(self, "output_id_gpio_pwm"):

 self.logger.debug("Initializing")

 self.output_id_gpio_pwm = "a3dade60-091a-49d7-9c79-cd2adf41bc23" # UUID of GPIO PWM Output

 self.fan_spinning = False # saves the state of the fan

 self.fan_min_duty_cycle = 2 # The lowest duty cycle that will keep the fan spinning

 self.fan_spin_duty_cycle = 25 # The minimum duty cycle to get the fan spinning if it's been off

 self.fan_charge_duty_cycle = 45 # The charging duty cycle to get the fan initially spinning

 self.fan_spin_duration_sec = 1.5 # The duration to run the fan at the charge duty cycle

Charge the fan if it's not spinning and the desired duty cycle is too low

if duty_cycle and not self.fan_spinning and duty_cycle < self.fan_spin_duty_cycle:

 self.logger.debug("Duty cycle too low and fan is off. Charging.")

 self.logger.debug("Setting duty cycle of {} %".format(self.fan_charge_duty_cycle))

 control.output_on(self.output_id_gpio_pwm,

 output_type='pwm',

 amount=self.fan_charge_duty_cycle,

 output_channel=0)

 time.sleep(self.fan_spin_duration_sec)

 self.fan_spinning = True

if duty_cycle == 0:

 self.logger.debug("Fan turned off")

 self.fan_spinning = False

elif duty_cycle > self.fan_spin_duty_cycle:

 self.fan_spinning = True

self.logger.debug("Setting duty cycle of {} %".format(duty_cycle))

control.output_on(self.output_id_gpio_pwm,

 output_type='pwm',

 amount=duty_cycle,

 output_channel=0)

4.12 Python Code

- 47/287 - Copyright © 2022

4.12.1 Outputs

- 48/287 - Copyright © 2022

5. Supported Devices

5. Supported Devices

- 49/287 - Copyright © 2022

5.1 Inputs Sorted by Measurement

Measurements

5.1 Inputs Sorted by Measurement

- 50/287 - Copyright © 2022

Acceleration

Acceleration (X)

Acceleration (Y)

Acceleration (Z)

ADC

Altitude

Angle

Battery

Boolean

CO2

Color (Y)

Color (Blue)

Color (Green)

Color (Red)

Color (x)

Color (y)

CPU Load (15 min)

CPU Load (1 min)

CPU Load (5 min)

Dewpoint

Direction

Disk

Dissolved Oxygen

Duration

Duty Cycle

GPIO Edge

Electrical Conductivity

Electrical Current

Electrical Potential

Energy

Frequency

GPIO State

Humidity

Ion Concentration

Length

Light

Magnetic Flux Density

Moisture

Oxidation Reduction Potential

PM10

PM1

PM2.5

Power

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

5.1 Inputs Sorted by Measurement

- 51/287 - Copyright © 2022

Apparent Power

Power Factor

Reactive Power

Pressure

Pulse Width

Volume Flow Rate

Resistance

Revolutions

Salinity

Specific Gravity

Speed

Temperature

Total Dissolved Solids

Vapor Pressure Deficit

Version

VOC

Volume

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

5.1 Inputs Sorted by Measurement

- 52/287 - Copyright © 2022

5.1.1 Acceleration

Ruuvi: RuuviTag

5.1.2 Acceleration (X)

Analog Devices: ADXL34x (343, 344, 345, 346)

Raspberry Pi Foundation: Sense HAT

Ruuvi: RuuviTag

5.1.3 Acceleration (Y)

Analog Devices: ADXL34x (343, 344, 345, 346)

Raspberry Pi Foundation: Sense HAT

Ruuvi: RuuviTag

5.1.4 Acceleration (Z)

Analog Devices: ADXL34x (343, 344, 345, 346)

Raspberry Pi Foundation: Sense HAT

Ruuvi: RuuviTag

5.1.5 ADC

AMS: AS7262

5.1.6 Altitude

BOSCH: BME280

BOSCH: BME280

BOSCH: BME280

BOSCH: BME680

BOSCH: BME680

BOSCH: BMP180

BOSCH: BMP280

BOSCH: BMP280

5.1.1 Acceleration

- 53/287 - Copyright © 2022

/Mycodo/Supported-Inputs/#ruuvi-ruuvitag
/Mycodo/Supported-Inputs/#analog-devices-adxl34x-343-344-345-346
/Mycodo/Supported-Inputs/#raspberry-pi-foundation-sense-hat
/Mycodo/Supported-Inputs/#ruuvi-ruuvitag
/Mycodo/Supported-Inputs/#analog-devices-adxl34x-343-344-345-346
/Mycodo/Supported-Inputs/#raspberry-pi-foundation-sense-hat
/Mycodo/Supported-Inputs/#ruuvi-ruuvitag
/Mycodo/Supported-Inputs/#analog-devices-adxl34x-343-344-345-346
/Mycodo/Supported-Inputs/#raspberry-pi-foundation-sense-hat
/Mycodo/Supported-Inputs/#ruuvi-ruuvitag
/Mycodo/Supported-Inputs/#ams-as7262
/Mycodo/Supported-Inputs/#bosch-bme280
/Mycodo/Supported-Inputs/#bosch-bme280
/Mycodo/Supported-Inputs/#bosch-bme280
/Mycodo/Supported-Inputs/#bosch-bme680
/Mycodo/Supported-Inputs/#bosch-bme680
/Mycodo/Supported-Inputs/#bosch-bmp180
/Mycodo/Supported-Inputs/#bosch-bmp280
/Mycodo/Supported-Inputs/#bosch-bmp280

5.1.7 Angle

Raspberry Pi Foundation: Sense HAT

5.1.8 Battery

Ruuvi: RuuviTag

Sensorion: SHT31 Smart Gadget

Xiaomi: Miflora

Xiaomi: Mijia LYWSD03MMC (ATC and non-ATC modes)

5.1.9 Boolean

Mycodo: Server Ping

Mycodo: Server Port Open

5.1.10 CO2

AMS: CCS811 (with Temperature)

AMS: CCS811 (without Temperature)

Atlas Scientific: Atlas CO2

CO2Meter: K30

Cozir: Cozir CO2

Sensirion: SCD-4x (SCD-40, SCD-41)

Sensirion: SCD30

Sensirion: SCD30

Winsen: MH-Z16

Winsen: MH-Z19

Winsen: MH-Z19B

5.1.11 Color (Y)

Atlas Scientific: Atlas Color

5.1.12 Color (Blue)

5.1.7 Angle

- 54/287 - Copyright © 2022

/Mycodo/Supported-Inputs/#raspberry-pi-foundation-sense-hat
/Mycodo/Supported-Inputs/#ruuvi-ruuvitag
/Mycodo/Supported-Inputs/#sensorion-sht31-smart-gadget
/Mycodo/Supported-Inputs/#xiaomi-miflora
/Mycodo/Supported-Inputs/#xiaomi-mijia-lywsd03mmc-atc-and-non-atc-modes
/Mycodo/Supported-Inputs/#mycodo-server-ping
/Mycodo/Supported-Inputs/#mycodo-server-port-open
/Mycodo/Supported-Inputs/#ams-ccs811-with-temperature
/Mycodo/Supported-Inputs/#ams-ccs811-without-temperature
/Mycodo/Supported-Inputs/#atlas-scientific-atlas-co2
/Mycodo/Supported-Inputs/#co2meter-k30
/Mycodo/Supported-Inputs/#cozir-cozir-co2
/Mycodo/Supported-Inputs/#sensirion-scd-4x-scd-40-scd-41
/Mycodo/Supported-Inputs/#sensirion-scd30
/Mycodo/Supported-Inputs/#sensirion-scd30
/Mycodo/Supported-Inputs/#winsen-mh-z16
/Mycodo/Supported-Inputs/#winsen-mh-z19
/Mycodo/Supported-Inputs/#winsen-mh-z19b
/Mycodo/Supported-Inputs/#atlas-scientific-atlas-color

Atlas Scientific: Atlas Color

5.1.13 Color (Green)

Atlas Scientific: Atlas Color

5.1.14 Color (Red)

Atlas Scientific: Atlas Color

5.1.15 Color (x)

Atlas Scientific: Atlas Color

5.1.16 Color (y)

Atlas Scientific: Atlas Color

5.1.17 CPU Load (15 min)

Mycodo: CPU Load

5.1.18 CPU Load (1 min)

Mycodo: CPU Load

5.1.19 CPU Load (5 min)

Mycodo: CPU Load

5.1.20 Dewpoint

AOSONG: AM2315/AM2320

AOSONG: DHT11

AOSONG: DHT22

Atlas Scientific: Atlas Humidity

BOSCH: BME280

BOSCH: BME280

BOSCH: BME280

BOSCH: BME680

BOSCH: BME680

Cozir: Cozir CO2

5.1.13 Color (Green)

- 55/287 - Copyright © 2022

/Mycodo/Supported-Inputs/#atlas-scientific-atlas-color
/Mycodo/Supported-Inputs/#atlas-scientific-atlas-color
/Mycodo/Supported-Inputs/#atlas-scientific-atlas-color
/Mycodo/Supported-Inputs/#atlas-scientific-atlas-color
/Mycodo/Supported-Inputs/#atlas-scientific-atlas-color
/Mycodo/Supported-Inputs/#mycodo-cpu-load
/Mycodo/Supported-Inputs/#mycodo-cpu-load
/Mycodo/Supported-Inputs/#mycodo-cpu-load
/Mycodo/Supported-Inputs/#aosong-am2315-am2320
/Mycodo/Supported-Inputs/#aosong-dht11
/Mycodo/Supported-Inputs/#aosong-dht22
/Mycodo/Supported-Inputs/#atlas-scientific-atlas-humidity
/Mycodo/Supported-Inputs/#bosch-bme280
/Mycodo/Supported-Inputs/#bosch-bme280
/Mycodo/Supported-Inputs/#bosch-bme280
/Mycodo/Supported-Inputs/#bosch-bme680
/Mycodo/Supported-Inputs/#bosch-bme680
/Mycodo/Supported-Inputs/#cozir-cozir-co2

Ruuvi: RuuviTag

Seeedstudio: DHT11/22

Sensirion: SCD-4x (SCD-40, SCD-41)

Sensirion: SCD30

Sensirion: SCD30

Sensirion: SHT1x/7x

Sensirion: SHT2x

Sensirion: SHT2x

Sensirion: SHT31-D

Sensirion: SHT3x (30, 31, 35)

Sensirion: SHT4X

Sensirion: SHTC3

Sensorion: SHT31 Smart Gadget

Silicon Labs: Si7021

Sonoff: TH16/10 (Tasmota firmware) with AM2301/Si7021

Sonoff: TH16/10 (Tasmota firmware) with AM2301

TE Connectivity: HTU21D

TE Connectivity: HTU21D

Texas Instruments: HDC1000

Weather: OpenWeatherMap (City, Current)

Weather: OpenWeatherMap (Lat/Lon, Current/Future)

5.1.21 Direction

Raspberry Pi Foundation: Sense HAT

Weather: OpenWeatherMap (City, Current)

5.1.21 Direction

- 56/287 - Copyright © 2022

/Mycodo/Supported-Inputs/#ruuvi-ruuvitag
/Mycodo/Supported-Inputs/#seeedstudio-dht11-22
/Mycodo/Supported-Inputs/#sensirion-scd-4x-scd-40-scd-41
/Mycodo/Supported-Inputs/#sensirion-scd30
/Mycodo/Supported-Inputs/#sensirion-scd30
/Mycodo/Supported-Inputs/#sensirion-sht1x-7x
/Mycodo/Supported-Inputs/#sensirion-sht2x
/Mycodo/Supported-Inputs/#sensirion-sht2x
/Mycodo/Supported-Inputs/#sensirion-sht31-d
/Mycodo/Supported-Inputs/#sensirion-sht3x-30-31-35
/Mycodo/Supported-Inputs/#sensirion-sht4x
/Mycodo/Supported-Inputs/#sensirion-shtc3
/Mycodo/Supported-Inputs/#sensorion-sht31-smart-gadget
/Mycodo/Supported-Inputs/#silicon-labs-si7021
/Mycodo/Supported-Inputs/#sonoff-th16-10-tasmota-firmware-with-am2301-si7021
/Mycodo/Supported-Inputs/#sonoff-th16-10-tasmota-firmware-with-am2301
/Mycodo/Supported-Inputs/#te-connectivity-htu21d
/Mycodo/Supported-Inputs/#te-connectivity-htu21d
/Mycodo/Supported-Inputs/#texas-instruments-hdc1000
/Mycodo/Supported-Inputs/#weather-openweathermap-city-current
/Mycodo/Supported-Inputs/#weather-openweathermap-lat-lon-current-future
/Mycodo/Supported-Inputs/#raspberry-pi-foundation-sense-hat
/Mycodo/Supported-Inputs/#weather-openweathermap-city-current

Weather: OpenWeatherMap (Lat/Lon, Current/Future)

5.1.22 Disk

Mycodo: Free Space

Mycodo: Mycodo RAM

5.1.23 Dissolved Oxygen

Atlas Scientific: Atlas DO

5.1.24 Duration

Weather: OpenWeatherMap (Lat/Lon, Current/Future)

5.1.25 Duty Cycle

Raspberry Pi: Signal (PWM)

5.1.26 GPIO Edge

Raspberry Pi: Edge Detection

5.1.27 Electrical Conductivity

AnyLeaf: AnyLeaf EC

Atlas Scientific: Atlas EC

Texas Instruments: ADS1115: Generic Analog pH/EC

Texas Instruments: ADS1256: Generic Analog pH/EC

Xiaomi: Miflora

5.1.28 Electrical Current

Tasmota: Tasmota Outlet Energy Monitor (HTTP)

Texas Instruments: INA219x

5.1.29 Electrical Potential

Microchip: MCP3008

Microchip: MCP342x (x=2,3,4,6,7,8)

Tasmota: Tasmota Outlet Energy Monitor (HTTP)

Texas Instruments: ADS1015

5.1.22 Disk

- 57/287 - Copyright © 2022

/Mycodo/Supported-Inputs/#weather-openweathermap-lat-lon-current-future
/Mycodo/Supported-Inputs/#mycodo-free-space
/Mycodo/Supported-Inputs/#mycodo-mycodo-ram
/Mycodo/Supported-Inputs/#atlas-scientific-atlas-do
/Mycodo/Supported-Inputs/#weather-openweathermap-lat-lon-current-future
/Mycodo/Supported-Inputs/#raspberry-pi-signal-pwm
/Mycodo/Supported-Inputs/#raspberry-pi-edge-detection
/Mycodo/Supported-Inputs/#anyleaf-anyleaf-ec
/Mycodo/Supported-Inputs/#atlas-scientific-atlas-ec
/Mycodo/Supported-Inputs/#texas-instruments-ads1115-generic-analog-ph-ec
/Mycodo/Supported-Inputs/#texas-instruments-ads1256-generic-analog-ph-ec
/Mycodo/Supported-Inputs/#xiaomi-miflora
/Mycodo/Supported-Inputs/#tasmota-tasmota-outlet-energy-monitor-http
/Mycodo/Supported-Inputs/#texas-instruments-ina219x
/Mycodo/Supported-Inputs/#microchip-mcp3008
/Mycodo/Supported-Inputs/#microchip-mcp342x-x=2-3-4-6-7-8
/Mycodo/Supported-Inputs/#tasmota-tasmota-outlet-energy-monitor-http
/Mycodo/Supported-Inputs/#texas-instruments-ads1015

Texas Instruments: ADS1115

Texas Instruments: ADS1256: Generic Analog pH/EC

Texas Instruments: ADS1256

Texas Instruments: ADS1x15

Texas Instruments: INA219x

5.1.30 Energy

Tasmota: Tasmota Outlet Energy Monitor (HTTP)

5.1.31 Frequency

Raspberry Pi: Signal (PWM)

5.1.32 GPIO State

Raspberry Pi: GPIO State

5.1.33 Humidity

AOSONG: AM2315/AM2320

AOSONG: DHT11

AOSONG: DHT22

ASAIR: AHTx0

Atlas Scientific: Atlas Humidity

BOSCH: BME280

BOSCH: BME280

BOSCH: BME280

BOSCH: BME680

BOSCH: BME680

Cozir: Cozir CO2

Raspberry Pi Foundation: Sense HAT

Ruuvi: RuuviTag

5.1.30 Energy

- 58/287 - Copyright © 2022

/Mycodo/Supported-Inputs/#texas-instruments-ads1115
/Mycodo/Supported-Inputs/#texas-instruments-ads1256-generic-analog-ph-ec
/Mycodo/Supported-Inputs/#texas-instruments-ads1256
/Mycodo/Supported-Inputs/#texas-instruments-ads1x15
/Mycodo/Supported-Inputs/#texas-instruments-ina219x
/Mycodo/Supported-Inputs/#tasmota-tasmota-outlet-energy-monitor-http
/Mycodo/Supported-Inputs/#raspberry-pi-signal-pwm
/Mycodo/Supported-Inputs/#raspberry-pi-gpio-state
/Mycodo/Supported-Inputs/#aosong-am2315-am2320
/Mycodo/Supported-Inputs/#aosong-dht11
/Mycodo/Supported-Inputs/#aosong-dht22
/Mycodo/Supported-Inputs/#asair-ahtx0
/Mycodo/Supported-Inputs/#atlas-scientific-atlas-humidity
/Mycodo/Supported-Inputs/#bosch-bme280
/Mycodo/Supported-Inputs/#bosch-bme280
/Mycodo/Supported-Inputs/#bosch-bme280
/Mycodo/Supported-Inputs/#bosch-bme680
/Mycodo/Supported-Inputs/#bosch-bme680
/Mycodo/Supported-Inputs/#cozir-cozir-co2
/Mycodo/Supported-Inputs/#raspberry-pi-foundation-sense-hat
/Mycodo/Supported-Inputs/#ruuvi-ruuvitag

Seeedstudio: DHT11/22

Sensirion: SCD-4x (SCD-40, SCD-41)

Sensirion: SCD30

Sensirion: SCD30

Sensirion: SHT1x/7x

Sensirion: SHT2x

Sensirion: SHT2x

Sensirion: SHT31-D

Sensirion: SHT3x (30, 31, 35)

Sensirion: SHT4X

Sensirion: SHTC3

Sensorion: SHT31 Smart Gadget

Silicon Labs: Si7021

Sonoff: TH16/10 (Tasmota firmware) with AM2301/Si7021

Sonoff: TH16/10 (Tasmota firmware) with AM2301

TE Connectivity: HTU21D

TE Connectivity: HTU21D

Texas Instruments: HDC1000

Weather: OpenWeatherMap (City, Current)

Weather: OpenWeatherMap (Lat/Lon, Current/Future)

Xiaomi: Mijia LYWSD03MMC (ATC and non-ATC modes)

5.1.34 Ion Concentration

AnyLeaf: AnyLeaf pH

Atlas Scientific: Atlas pH

5.1.34 Ion Concentration

- 59/287 - Copyright © 2022

/Mycodo/Supported-Inputs/#seeedstudio-dht11-22
/Mycodo/Supported-Inputs/#sensirion-scd-4x-scd-40-scd-41
/Mycodo/Supported-Inputs/#sensirion-scd30
/Mycodo/Supported-Inputs/#sensirion-scd30
/Mycodo/Supported-Inputs/#sensirion-sht1x-7x
/Mycodo/Supported-Inputs/#sensirion-sht2x
/Mycodo/Supported-Inputs/#sensirion-sht2x
/Mycodo/Supported-Inputs/#sensirion-sht31-d
/Mycodo/Supported-Inputs/#sensirion-sht3x-30-31-35
/Mycodo/Supported-Inputs/#sensirion-sht4x
/Mycodo/Supported-Inputs/#sensirion-shtc3
/Mycodo/Supported-Inputs/#sensorion-sht31-smart-gadget
/Mycodo/Supported-Inputs/#silicon-labs-si7021
/Mycodo/Supported-Inputs/#sonoff-th16-10-tasmota-firmware-with-am2301-si7021
/Mycodo/Supported-Inputs/#sonoff-th16-10-tasmota-firmware-with-am2301
/Mycodo/Supported-Inputs/#te-connectivity-htu21d
/Mycodo/Supported-Inputs/#te-connectivity-htu21d
/Mycodo/Supported-Inputs/#texas-instruments-hdc1000
/Mycodo/Supported-Inputs/#weather-openweathermap-city-current
/Mycodo/Supported-Inputs/#weather-openweathermap-lat-lon-current-future
/Mycodo/Supported-Inputs/#xiaomi-mijia-lywsd03mmc-atc-and-non-atc-modes
/Mycodo/Supported-Inputs/#anyleaf-anyleaf-ph
/Mycodo/Supported-Inputs/#atlas-scientific-atlas-ph

Texas Instruments: ADS1115: Generic Analog pH/EC

Texas Instruments: ADS1256: Generic Analog pH/EC

5.1.35 Length

Atlas Scientific: Atlas Color

Multiple Manufacturers: HC-SR04

STMicroelectronics: VL53L0X

STMicroelectronics: VL53L1X

Silicon Labs: SI1145

5.1.36 Light

AMS: TSL2561

AMS: TSL2591

Atlas Scientific: Atlas Color

Catnip Electronics: Chirp

ROHM: BH1750

Silicon Labs: SI1145

Xiaomi: Miflora

5.1.37 Magnetic Flux Density

Melexis: MLX90393

Raspberry Pi Foundation: Sense HAT

5.1.38 Moisture

Adafruit: I2C Capacitive Moisture Sensor

Catnip Electronics: Chirp

Xiaomi: Miflora

5.1.39 Oxidation Reduction Potential

AnyLeaf: AnyLeaf ORP

5.1.35 Length

- 60/287 - Copyright © 2022

/Mycodo/Supported-Inputs/#texas-instruments-ads1115-generic-analog-ph-ec
/Mycodo/Supported-Inputs/#texas-instruments-ads1256-generic-analog-ph-ec
/Mycodo/Supported-Inputs/#atlas-scientific-atlas-color
/Mycodo/Supported-Inputs/#multiple-manufacturers-hc-sr04
/Mycodo/Supported-Inputs/#stmicroelectronics-vl53l0x
/Mycodo/Supported-Inputs/#stmicroelectronics-vl53l1x
/Mycodo/Supported-Inputs/#silicon-labs-si1145
/Mycodo/Supported-Inputs/#ams-tsl2561
/Mycodo/Supported-Inputs/#ams-tsl2591
/Mycodo/Supported-Inputs/#atlas-scientific-atlas-color
/Mycodo/Supported-Inputs/#catnip-electronics-chirp
/Mycodo/Supported-Inputs/#rohm-bh1750
/Mycodo/Supported-Inputs/#silicon-labs-si1145
/Mycodo/Supported-Inputs/#xiaomi-miflora
/Mycodo/Supported-Inputs/#melexis-mlx90393
/Mycodo/Supported-Inputs/#raspberry-pi-foundation-sense-hat
/Mycodo/Supported-Inputs/#adafruit-i2c-capacitive-moisture-sensor
/Mycodo/Supported-Inputs/#catnip-electronics-chirp
/Mycodo/Supported-Inputs/#xiaomi-miflora
/Mycodo/Supported-Inputs/#anyleaf-anyleaf-orp

Atlas Scientific: Atlas ORP

5.1.40 PM10

Winsen: ZH03B

5.1.41 PM1

Winsen: ZH03B

5.1.42 PM2.5

Winsen: ZH03B

5.1.43 Power

Tasmota: Tasmota Outlet Energy Monitor (HTTP)

5.1.44 Apparent Power

Tasmota: Tasmota Outlet Energy Monitor (HTTP)

5.1.45 Power Factor

Tasmota: Tasmota Outlet Energy Monitor (HTTP)

5.1.46 Reactive Power

Tasmota: Tasmota Outlet Energy Monitor (HTTP)

5.1.47 Pressure

Atlas Scientific: Atlas Pressure

BOSCH: BME280

BOSCH: BME280

BOSCH: BME280

BOSCH: BME680

BOSCH: BME680

BOSCH: BMP180

BOSCH: BMP280

BOSCH: BMP280

Infineon: DPS310

5.1.40 PM10

- 61/287 - Copyright © 2022

/Mycodo/Supported-Inputs/#atlas-scientific-atlas-orp
/Mycodo/Supported-Inputs/#winsen-zh03b
/Mycodo/Supported-Inputs/#winsen-zh03b
/Mycodo/Supported-Inputs/#winsen-zh03b
/Mycodo/Supported-Inputs/#tasmota-tasmota-outlet-energy-monitor-http
/Mycodo/Supported-Inputs/#tasmota-tasmota-outlet-energy-monitor-http
/Mycodo/Supported-Inputs/#tasmota-tasmota-outlet-energy-monitor-http
/Mycodo/Supported-Inputs/#tasmota-tasmota-outlet-energy-monitor-http
/Mycodo/Supported-Inputs/#atlas-scientific-atlas-pressure
/Mycodo/Supported-Inputs/#bosch-bme280
/Mycodo/Supported-Inputs/#bosch-bme280
/Mycodo/Supported-Inputs/#bosch-bme280
/Mycodo/Supported-Inputs/#bosch-bme680
/Mycodo/Supported-Inputs/#bosch-bme680
/Mycodo/Supported-Inputs/#bosch-bmp180
/Mycodo/Supported-Inputs/#bosch-bmp280
/Mycodo/Supported-Inputs/#bosch-bmp280
/Mycodo/Supported-Inputs/#infineon-dps310

Raspberry Pi Foundation: Sense HAT

Ruuvi: RuuviTag

Weather: OpenWeatherMap (City, Current)

Weather: OpenWeatherMap (Lat/Lon, Current/Future)

5.1.48 Pulse Width

Raspberry Pi: Signal (PWM)

5.1.49 Volume Flow Rate

Atlas Scientific: Atlas Flow Meter

Generic: Hall Flow Meter

5.1.50 Resistance

BOSCH: BME680

BOSCH: BME680

5.1.51 Revolutions

Raspberry Pi: Signal (Revolutions)

5.1.52 Salinity

Atlas Scientific: Atlas EC

5.1.53 Specific Gravity

Atlas Scientific: Atlas EC

5.1.54 Speed

Weather: OpenWeatherMap (City, Current)

Weather: OpenWeatherMap (Lat/Lon, Current/Future)

5.1.55 Temperature

AMS: CCS811 (with Temperature)

AOSONG: AM2315/AM2320

AOSONG: DHT11

AOSONG: DHT22

5.1.48 Pulse Width

- 62/287 - Copyright © 2022

/Mycodo/Supported-Inputs/#raspberry-pi-foundation-sense-hat
/Mycodo/Supported-Inputs/#ruuvi-ruuvitag
/Mycodo/Supported-Inputs/#weather-openweathermap-city-current
/Mycodo/Supported-Inputs/#weather-openweathermap-lat-lon-current-future
/Mycodo/Supported-Inputs/#raspberry-pi-signal-pwm
/Mycodo/Supported-Inputs/#atlas-scientific-atlas-flow-meter
/Mycodo/Supported-Inputs/#generic-hall-flow-meter
/Mycodo/Supported-Inputs/#bosch-bme680
/Mycodo/Supported-Inputs/#bosch-bme680
/Mycodo/Supported-Inputs/#raspberry-pi-signal-revolutions
/Mycodo/Supported-Inputs/#atlas-scientific-atlas-ec
/Mycodo/Supported-Inputs/#atlas-scientific-atlas-ec
/Mycodo/Supported-Inputs/#weather-openweathermap-city-current
/Mycodo/Supported-Inputs/#weather-openweathermap-lat-lon-current-future
/Mycodo/Supported-Inputs/#ams-ccs811-with-temperature
/Mycodo/Supported-Inputs/#aosong-am2315-am2320
/Mycodo/Supported-Inputs/#aosong-dht11
/Mycodo/Supported-Inputs/#aosong-dht22

ASAIR: AHTx0

Adafruit: I2C Capacitive Moisture Sensor

Analog Devices: ADT7410

Atlas Scientific: Atlas Humidity

Atlas Scientific: Atlas PT-1000

BOSCH: BME280

BOSCH: BME280

BOSCH: BME280

BOSCH: BME680

BOSCH: BME680

BOSCH: BMP180

BOSCH: BMP280

BOSCH: BMP280

Catnip Electronics: Chirp

Cozir: Cozir CO2

Infineon: DPS310

MAXIM: DS1822

MAXIM: DS1825

MAXIM: DS18B20

MAXIM: DS18B20

MAXIM: DS18S20

MAXIM: DS28EA00

MAXIM: MAX31850K

MAXIM: MAX31855

5.1.55 Temperature

- 63/287 - Copyright © 2022

/Mycodo/Supported-Inputs/#asair-ahtx0
/Mycodo/Supported-Inputs/#adafruit-i2c-capacitive-moisture-sensor
/Mycodo/Supported-Inputs/#analog-devices-adt7410
/Mycodo/Supported-Inputs/#atlas-scientific-atlas-humidity
/Mycodo/Supported-Inputs/#atlas-scientific-atlas-pt-1000
/Mycodo/Supported-Inputs/#bosch-bme280
/Mycodo/Supported-Inputs/#bosch-bme280
/Mycodo/Supported-Inputs/#bosch-bme280
/Mycodo/Supported-Inputs/#bosch-bme680
/Mycodo/Supported-Inputs/#bosch-bme680
/Mycodo/Supported-Inputs/#bosch-bmp180
/Mycodo/Supported-Inputs/#bosch-bmp280
/Mycodo/Supported-Inputs/#bosch-bmp280
/Mycodo/Supported-Inputs/#catnip-electronics-chirp
/Mycodo/Supported-Inputs/#cozir-cozir-co2
/Mycodo/Supported-Inputs/#infineon-dps310
/Mycodo/Supported-Inputs/#maxim-ds1822
/Mycodo/Supported-Inputs/#maxim-ds1825
/Mycodo/Supported-Inputs/#maxim-ds18b20
/Mycodo/Supported-Inputs/#maxim-ds18b20
/Mycodo/Supported-Inputs/#maxim-ds18s20
/Mycodo/Supported-Inputs/#maxim-ds28ea00
/Mycodo/Supported-Inputs/#maxim-max31850k
/Mycodo/Supported-Inputs/#maxim-max31855

MAXIM: MAX31856

MAXIM: MAX31865

MAXIM: MAX31865

Melexis: MLX90614

Microchip: MCP9808

Panasonic: AMG8833

Raspberry Pi Foundation: Sense HAT

Raspberry Pi: CPU/GPU Temperature

Ruuvi: RuuviTag

Seeedstudio: DHT11/22

Sensirion: SCD-4x (SCD-40, SCD-41)

Sensirion: SCD30

Sensirion: SCD30

Sensirion: SHT1x/7x

Sensirion: SHT2x

Sensirion: SHT2x

Sensirion: SHT31-D

Sensirion: SHT3x (30, 31, 35)

Sensirion: SHT4X

Sensirion: SHTC3

Sensorion: SHT31 Smart Gadget

Silicon Labs: Si7021

Sonoff: TH16/10 (Tasmota firmware) with AM2301/Si7021

Sonoff: TH16/10 (Tasmota firmware) with AM2301

5.1.55 Temperature

- 64/287 - Copyright © 2022

/Mycodo/Supported-Inputs/#maxim-max31856
/Mycodo/Supported-Inputs/#maxim-max31865
/Mycodo/Supported-Inputs/#maxim-max31865
/Mycodo/Supported-Inputs/#melexis-mlx90614
/Mycodo/Supported-Inputs/#microchip-mcp9808
/Mycodo/Supported-Inputs/#panasonic-amg8833
/Mycodo/Supported-Inputs/#raspberry-pi-foundation-sense-hat
/Mycodo/Supported-Inputs/#raspberry-pi-cpu-gpu-temperature
/Mycodo/Supported-Inputs/#ruuvi-ruuvitag
/Mycodo/Supported-Inputs/#seeedstudio-dht11-22
/Mycodo/Supported-Inputs/#sensirion-scd-4x-scd-40-scd-41
/Mycodo/Supported-Inputs/#sensirion-scd30
/Mycodo/Supported-Inputs/#sensirion-scd30
/Mycodo/Supported-Inputs/#sensirion-sht1x-7x
/Mycodo/Supported-Inputs/#sensirion-sht2x
/Mycodo/Supported-Inputs/#sensirion-sht2x
/Mycodo/Supported-Inputs/#sensirion-sht31-d
/Mycodo/Supported-Inputs/#sensirion-sht3x-30-31-35
/Mycodo/Supported-Inputs/#sensirion-sht4x
/Mycodo/Supported-Inputs/#sensirion-shtc3
/Mycodo/Supported-Inputs/#sensorion-sht31-smart-gadget
/Mycodo/Supported-Inputs/#silicon-labs-si7021
/Mycodo/Supported-Inputs/#sonoff-th16-10-tasmota-firmware-with-am2301-si7021
/Mycodo/Supported-Inputs/#sonoff-th16-10-tasmota-firmware-with-am2301

Sonoff: TH16/10 (Tasmota firmware) with DS18B20

TE Connectivity: HTU21D

TE Connectivity: HTU21D

Texas Instruments: HDC1000

Texas Instruments: TMP006

Weather: OpenWeatherMap (City, Current)

Weather: OpenWeatherMap (Lat/Lon, Current/Future)

Xiaomi: Miflora

Xiaomi: Mijia LYWSD03MMC (ATC and non-ATC modes)

5.1.56 Total Dissolved Solids

Atlas Scientific: Atlas EC

5.1.57 Vapor Pressure Deficit

AOSONG: AM2315/AM2320

AOSONG: DHT11

AOSONG: DHT22

BOSCH: BME280

BOSCH: BME280

BOSCH: BME280

BOSCH: BME680

BOSCH: BME680

Ruuvi: RuuviTag

Seeedstudio: DHT11/22

Sensirion: SCD-4x (SCD-40, SCD-41)

Sensirion: SCD30

5.1.56 Total Dissolved Solids

- 65/287 - Copyright © 2022

/Mycodo/Supported-Inputs/#sonoff-th16-10-tasmota-firmware-with-ds18b20
/Mycodo/Supported-Inputs/#te-connectivity-htu21d
/Mycodo/Supported-Inputs/#te-connectivity-htu21d
/Mycodo/Supported-Inputs/#texas-instruments-hdc1000
/Mycodo/Supported-Inputs/#texas-instruments-tmp006
/Mycodo/Supported-Inputs/#weather-openweathermap-city-current
/Mycodo/Supported-Inputs/#weather-openweathermap-lat-lon-current-future
/Mycodo/Supported-Inputs/#xiaomi-miflora
/Mycodo/Supported-Inputs/#xiaomi-mijia-lywsd03mmc-atc-and-non-atc-modes
/Mycodo/Supported-Inputs/#atlas-scientific-atlas-ec
/Mycodo/Supported-Inputs/#aosong-am2315-am2320
/Mycodo/Supported-Inputs/#aosong-dht11
/Mycodo/Supported-Inputs/#aosong-dht22
/Mycodo/Supported-Inputs/#bosch-bme280
/Mycodo/Supported-Inputs/#bosch-bme280
/Mycodo/Supported-Inputs/#bosch-bme280
/Mycodo/Supported-Inputs/#bosch-bme680
/Mycodo/Supported-Inputs/#bosch-bme680
/Mycodo/Supported-Inputs/#ruuvi-ruuvitag
/Mycodo/Supported-Inputs/#seeedstudio-dht11-22
/Mycodo/Supported-Inputs/#sensirion-scd-4x-scd-40-scd-41
/Mycodo/Supported-Inputs/#sensirion-scd30

Sensirion: SCD30

Sensirion: SHT1x/7x

Sensirion: SHT2x

Sensirion: SHT2x

Sensirion: SHT31-D

Sensirion: SHT3x (30, 31, 35)

Sensirion: SHT4X

Sensirion: SHTC3

Sensorion: SHT31 Smart Gadget

Silicon Labs: Si7021

Sonoff: TH16/10 (Tasmota firmware) with AM2301/Si7021

Sonoff: TH16/10 (Tasmota firmware) with AM2301

TE Connectivity: HTU21D

TE Connectivity: HTU21D

Texas Instruments: HDC1000

5.1.58 Version

Mycodo: Mycodo Version

5.1.59 VOC

AMS: CCS811 (with Temperature)

AMS: CCS811 (without Temperature)

5.1.60 Volume

Atlas Scientific: Atlas Flow Meter

Generic: Hall Flow Meter

5.1.58 Version

- 66/287 - Copyright © 2022

/Mycodo/Supported-Inputs/#sensirion-scd30
/Mycodo/Supported-Inputs/#sensirion-sht1x-7x
/Mycodo/Supported-Inputs/#sensirion-sht2x
/Mycodo/Supported-Inputs/#sensirion-sht2x
/Mycodo/Supported-Inputs/#sensirion-sht31-d
/Mycodo/Supported-Inputs/#sensirion-sht3x-30-31-35
/Mycodo/Supported-Inputs/#sensirion-sht4x
/Mycodo/Supported-Inputs/#sensirion-shtc3
/Mycodo/Supported-Inputs/#sensorion-sht31-smart-gadget
/Mycodo/Supported-Inputs/#silicon-labs-si7021
/Mycodo/Supported-Inputs/#sonoff-th16-10-tasmota-firmware-with-am2301-si7021
/Mycodo/Supported-Inputs/#sonoff-th16-10-tasmota-firmware-with-am2301
/Mycodo/Supported-Inputs/#te-connectivity-htu21d
/Mycodo/Supported-Inputs/#te-connectivity-htu21d
/Mycodo/Supported-Inputs/#texas-instruments-hdc1000
/Mycodo/Supported-Inputs/#mycodo-mycodo-version
/Mycodo/Supported-Inputs/#ams-ccs811-with-temperature
/Mycodo/Supported-Inputs/#ams-ccs811-without-temperature
/Mycodo/Supported-Inputs/#atlas-scientific-atlas-flow-meter
/Mycodo/Supported-Inputs/#generic-hall-flow-meter

5.2 Supported Inputs

Supported Inputs are listed below.

5.2.1 Built-In Inputs (System)

Linux: Bash Command

Manufacturer: Linux

Measurements: Return Value

Interfaces: Mycodo

This Input will execute a command in the shell and store the output as a float value. Perform any unit conversions within your

script or command. A measurement/unit is required to be selected.

OPTIONS

Period (seconds)

Type: Decimal

Description: The duration (seconds) between measurements or actions

Pre Output

Type: Select

Description: Turn the selected output on before taking every measurement

Pre Out Duration

Type: Decimal

Description: If a Pre Output is selected, set the duration (seconds) to turn the Pre Output on for before every measurement

is acquired.

Pre During Measure

Type: Boolean

Description: Check to turn the output off after (opposed to before) the measurement is complete

Command Timeout

Type: Integer

Default Value: 60

Description: How long to wait for the command to finish before killing the process.

User

Type: Text

Default Value: mycodo

Description: The user to execute the command

Current Working Directory

Type: Text

Default Value: /home/pi

Description: The current working directory of the shell environment.

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

5.2 Supported Inputs

- 67/287 - Copyright © 2022

Linux: Python 3 Code

Manufacturer: Linux

Measurements: Store Value(s)

Interfaces: Mycodo

Dependencies: pylint

All channels require a Measurement Unit to be selected and saved in order to store values to the database.

OPTIONS

Measurements Enabled

Type: Multi-Select

Description: The measurements to record

Period (seconds)

Type: Decimal

Description: The duration (seconds) between measurements or actions

Pre Output

Type: Select

Description: Turn the selected output on before taking every measurement

Pre Out Duration

Type: Decimal

Description: If a Pre Output is selected, set the duration (seconds) to turn the Pre Output on for before every measurement

is acquired.

Pre During Measure

Type: Boolean

Description: Check to turn the output off after (opposed to before) the measurement is complete

Mycodo: CPU Load

Manufacturer: Mycodo

Measurements: CPULoad

Libraries: os.getloadavg()

OPTIONS

Measurements Enabled

Type: Multi-Select

Description: The measurements to record

Period (seconds)

Type: Decimal

Description: The duration (seconds) between measurements or actions

Mycodo: Free Space

Manufacturer: Mycodo

Measurements: Unallocated Disk Space

Libraries: os.statvfs()

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

5.2.1 Built-In Inputs (System)

- 68/287 - Copyright © 2022

https://pypi.org/project/pylint

OPTIONS

Period (seconds)

Type: Decimal

Description: The duration (seconds) between measurements or actions

Mycodo: Mycodo RAM

Manufacturer: Mycodo

Measurements: Daemon RAM Allocation

Libraries: resource.getrusage()

OPTIONS

Period (seconds)

Type: Decimal

Description: The duration (seconds) between measurements or actions

Mycodo: Mycodo Version

Manufacturer: Mycodo

Measurements: Version as Major.Minor.Revision

OPTIONS

Measurements Enabled

Type: Multi-Select

Description: The measurements to record

Period (seconds)

Type: Decimal

Description: The duration (seconds) between measurements or actions

Mycodo: Server Ping

Manufacturer: Mycodo

Measurements: Boolean

Libraries: ping

This Input executes the bash command "ping -c [times] -w [deadline] [host]" to determine if the host can be pinged.

OPTIONS

Period (seconds)

Type: Decimal

Description: The duration (seconds) between measurements or actions

Pre Output

Type: Select

Description: Turn the selected output on before taking every measurement

Pre Out Duration

Type: Decimal

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

5.2.1 Built-In Inputs (System)

- 69/287 - Copyright © 2022

Description: If a Pre Output is selected, set the duration (seconds) to turn the Pre Output on for before every measurement

is acquired.

Pre During Measure

Type: Boolean

Description: Check to turn the output off after (opposed to before) the measurement is complete

Mycodo: Server Port Open

Manufacturer: Mycodo

Measurements: Boolean

Libraries: nc

This Input executes the bash command "nc -zv [host] [port]" to determine if the host at a particular port is accessible.

OPTIONS

Period (seconds)

Type: Decimal

Description: The duration (seconds) between measurements or actions

Pre Output

Type: Select

Description: Turn the selected output on before taking every measurement

Pre Out Duration

Type: Decimal

Description: If a Pre Output is selected, set the duration (seconds) to turn the Pre Output on for before every measurement

is acquired.

Pre During Measure

Type: Boolean

Description: Check to turn the output off after (opposed to before) the measurement is complete

Mycodo: Spacer

Manufacturer: Mycodo

A spacer to organize Inputs.

OPTIONS

Color

Type: Text

Default Value: #000000

Description: The color of the name text

Raspberry Pi: CPU/GPU Temperature

Manufacturer: Raspberry Pi

Measurements: Temperature

Interfaces: RPi

The internal CPU and GPU temperature of the Raspberry Pi.

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

5.2.1 Built-In Inputs (System)

- 70/287 - Copyright © 2022

OPTIONS

Measurements Enabled

Type: Multi-Select

Description: The measurements to record

Period (seconds)

Type: Decimal

Description: The duration (seconds) between measurements or actions

Path for CPU Temperature

Type: Text

Default Value: /sys/class/thermal/thermal_zone0/temp

Description: Reads the CPU temperature from this file

Path to vcgencmd

Type: Text

Default Value: /usr/bin/vcgencmd

Description: Reads the GPU from vcgencmd

Raspberry Pi: Edge Detection

Manufacturer: Raspberry Pi

Measurements: Rising/Falling Edge

Interfaces: GPIO

Libraries: RPi.GPIO

Dependencies: RPi.GPIO

OPTIONS

Pre Output

Type: Select

Description: Turn the selected output on before taking every measurement

Pre Out Duration

Type: Decimal

Description: If a Pre Output is selected, set the duration (seconds) to turn the Pre Output on for before every measurement

is acquired.

Pre During Measure

Type: Boolean

Description: Check to turn the output off after (opposed to before) the measurement is complete

Pin Mode

Type: Select

Options: [Floating | Pull Down | Pull Up] (Default in bold)

Description: Enables or disables the pull-up or pull-down resistor

Raspberry Pi: GPIO State

Manufacturer: Raspberry Pi

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

5.2.1 Built-In Inputs (System)

- 71/287 - Copyright © 2022

https://pypi.org/project/RPi.GPIO

Measurements: GPIO State

Interfaces: GPIO

Libraries: RPi.GPIO

Dependencies: RPi.GPIO

Measures the state of a GPIO pin, returning either 0 (low) or 1 (high).

OPTIONS

Period (seconds)

Type: Decimal

Description: The duration (seconds) between measurements or actions

Pre Output

Type: Select

Description: Turn the selected output on before taking every measurement

Pre Out Duration

Type: Decimal

Description: If a Pre Output is selected, set the duration (seconds) to turn the Pre Output on for before every measurement

is acquired.

Pre During Measure

Type: Boolean

Description: Check to turn the output off after (opposed to before) the measurement is complete

Pin Mode

Type: Select

Options: [Floating | Pull Down | Pull Up] (Default in bold)

Description: Enables or disables the pull-up or pull-down resistor

Raspberry Pi: Signal (PWM)

Manufacturer: Raspberry Pi

Measurements: Frequency/Pulse Width/Duty Cycle

Interfaces: GPIO

Libraries: pigpio

Dependencies: pigpio, pigpio

OPTIONS

Measurements Enabled

Type: Multi-Select

Description: The measurements to record

Period (seconds)

Type: Decimal

Description: The duration (seconds) between measurements or actions

Pre Output

Type: Select

Description: Turn the selected output on before taking every measurement

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

5.2.1 Built-In Inputs (System)

- 72/287 - Copyright © 2022

https://pypi.org/project/RPi.GPIO
https://pypi.org/project/pigpio

Pre Out Duration

Type: Decimal

Description: If a Pre Output is selected, set the duration (seconds) to turn the Pre Output on for before every measurement

is acquired.

Pre During Measure

Type: Boolean

Description: Check to turn the output off after (opposed to before) the measurement is complete

Raspberry Pi: Signal (Revolutions)

Manufacturer: Raspberry Pi

Measurements: RPM

Interfaces: GPIO

Libraries: pigpio

Dependencies: pigpio, pigpio

OPTIONS

Period (seconds)

Type: Decimal

Description: The duration (seconds) between measurements or actions

Pre Output

Type: Select

Description: Turn the selected output on before taking every measurement

Pre Out Duration

Type: Decimal

Description: If a Pre Output is selected, set the duration (seconds) to turn the Pre Output on for before every measurement

is acquired.

Pre During Measure

Type: Boolean

Description: Check to turn the output off after (opposed to before) the measurement is complete

5.2.2 Built-In Inputs (Devices)

AMS: AS7262

Manufacturer: AMS

Measurements: Light at 450, 500, 550, 570, 600, 650 nm

Interfaces: I
2
C

Libraries: as7262

Dependencies: as7262

Manufacturer URL: Link

Datasheet URL: Link

Product URL: Link

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

5.2.2 Built-In Inputs (Devices)

- 73/287 - Copyright © 2022

https://pypi.org/project/pigpio
https://pypi.org/project/as7262
https://ams.com/as7262
https://ams.com/documents/20143/36005/AS7262_DS000486_2-00.pdf/0031f605-5629-e030-73b2-f365fd36a43b
https://www.sparkfun.com/products/14347

OPTIONS

Period (seconds)

Type: Decimal

Description: The duration (seconds) between measurements or actions

Pre Output

Type: Select

Description: Turn the selected output on before taking every measurement

Pre Out Duration

Type: Decimal

Description: If a Pre Output is selected, set the duration (seconds) to turn the Pre Output on for before every measurement

is acquired.

Pre During Measure

Type: Boolean

Description: Check to turn the output off after (opposed to before) the measurement is complete

Gain

Type: Select

Options: [1x | 3.7x | 16x | 64x] (Default in bold)

Description: Set the sensor gain

Illumination LED Current

Type: Select

Options: [12.5 mA | 25 mA | 50 mA | 100 mA] (Default in bold)

Description: Set the illumination LED current (milliamps)

Illumination LED Mode

Type: Select

Options: [On | Off] (Default in bold)

Description: Turn the illumination LED on or off during a measurement

Indicator LED Current

Type: Select

Options: [1 mA | 2 mA | 4 mA | 8 mA] (Default in bold)

Description: Set the indicator LED current (milliamps)

Indicator LED Mode

Type: Select

Options: [On | Off] (Default in bold)

Description: Turn the indicator LED on or off during a measurement

Integration Time

Type: Decimal

Default Value: 15.0

Description: The integration time (0 - ~91 ms)

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

5.2.2 Built-In Inputs (Devices)

- 74/287 - Copyright © 2022

AMS: CCS811 (with Temperature)

Manufacturer: AMS

Measurements: CO2/VOC/Temperature

Interfaces: I
2
C

Libraries: Adafruit_CCS811

Dependencies: Adafruit_CCS811, Adafruit-GPIO

Manufacturer URL: Link

Datasheet URL: Link

Product URLs: Link 1, Link 2

OPTIONS

I2C Address

Type: Text

Description: The I2C address of the device

I2C Bus

Type: Integer

Description: The I2C bus the device is connected to

Measurements Enabled

Type: Multi-Select

Description: The measurements to record

Period (seconds)

Type: Decimal

Description: The duration (seconds) between measurements or actions

Pre Output

Type: Select

Description: Turn the selected output on before taking every measurement

Pre Out Duration

Type: Decimal

Description: If a Pre Output is selected, set the duration (seconds) to turn the Pre Output on for before every measurement

is acquired.

Pre During Measure

Type: Boolean

Description: Check to turn the output off after (opposed to before) the measurement is complete

AMS: CCS811 (without Temperature)

Manufacturer: AMS

Measurements: CO2/VOC

Interfaces: I
2
C

Libraries: Adafruit_CircuitPython_CCS811

Dependencies: pyusb, Adafruit-extended-bus, adafruit-circuitpython-ccs811

Manufacturer URL: Link

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

5.2.2 Built-In Inputs (Devices)

- 75/287 - Copyright © 2022

https://pypi.org/project/Adafruit_CCS811
https://pypi.org/project/Adafruit-GPIO
https://www.sciosense.com/products/environmental-sensors/ccs811-gas-sensor-solution/
https://www.sciosense.com/wp-content/uploads/2020/01/CCS811-Datasheet.pdf
https://www.adafruit.com/product/3566
https://www.sparkfun.com/products/14193
https://pypi.org/project/pyusb
https://pypi.org/project/Adafruit-extended-bus
https://pypi.org/project/adafruit-circuitpython-ccs811
https://www.sciosense.com/products/environmental-sensors/ccs811-gas-sensor-solution/

Datasheet URL: Link

Product URL: Link

Additional URL: Link

OPTIONS

I2C Address

Type: Text

Description: The I2C address of the device

I2C Bus

Type: Integer

Description: The I2C bus the device is connected to

Measurements Enabled

Type: Multi-Select

Description: The measurements to record

Period (seconds)

Type: Decimal

Description: The duration (seconds) between measurements or actions

Pre Output

Type: Select

Description: Turn the selected output on before taking every measurement

Pre Out Duration

Type: Decimal

Description: If a Pre Output is selected, set the duration (seconds) to turn the Pre Output on for before every measurement

is acquired.

Pre During Measure

Type: Boolean

Description: Check to turn the output off after (opposed to before) the measurement is complete

AMS: TSL2561

Manufacturer: AMS

Measurements: Light

Interfaces: I
2
C

Libraries: tsl2561

Dependencies: Adafruit-GPIO, Adafruit-PureIO, tsl2561

Manufacturer URL: Link

Datasheet URL: Link

Product URL: Link

OPTIONS

I2C Address

Type: Text

Description: The I2C address of the device

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

5.2.2 Built-In Inputs (Devices)

- 76/287 - Copyright © 2022

https://www.sciosense.com/wp-content/uploads/2020/01/CCS811-Datasheet.pdf
https://www.adafruit.com/product/3566
https://learn.adafruit.com/adafruit-ccs811-air-quality-sensor
https://pypi.org/project/Adafruit-GPIO
https://pypi.org/project/Adafruit-PureIO
https://pypi.org/project/tsl2561
https://ams.com/tsl2561
https://ams.com/documents/20143/36005/TSL2561_DS000110_3-00.pdf/18a41097-2035-4333-c70e-bfa544c0a98b
https://www.adafruit.com/product/439

I2C Bus

Type: Integer

Description: The I2C bus the device is connected to

Measurements Enabled

Type: Multi-Select

Description: The measurements to record

Period (seconds)

Type: Decimal

Description: The duration (seconds) between measurements or actions

Pre Output

Type: Select

Description: Turn the selected output on before taking every measurement

Pre Out Duration

Type: Decimal

Description: If a Pre Output is selected, set the duration (seconds) to turn the Pre Output on for before every measurement

is acquired.

Pre During Measure

Type: Boolean

Description: Check to turn the output off after (opposed to before) the measurement is complete

AMS: TSL2591

Manufacturer: AMS

Measurements: Light

Interfaces: I
2
C

Libraries: maxlklaxl/python-tsl2591

Dependencies: tsl2591

Manufacturer URL: Link

Datasheet URL: Link

Product URL: Link

OPTIONS

I2C Address

Type: Text

Description: The I2C address of the device

I2C Bus

Type: Integer

Description: The I2C bus the device is connected to

Measurements Enabled

Type: Multi-Select

Description: The measurements to record

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

5.2.2 Built-In Inputs (Devices)

- 77/287 - Copyright © 2022

https://github.com/maxlklaxl/python-tsl2591
https://ams.com/tsl25911
https://ams.com/documents/20143/36005/TSL2591_DS000338_6-00.pdf/090eb50d-bb18-5b45-4938-9b3672f86b80
https://www.adafruit.com/product/1980

Period (seconds)

Type: Decimal

Description: The duration (seconds) between measurements or actions

Pre Output

Type: Select

Description: Turn the selected output on before taking every measurement

Pre Out Duration

Type: Decimal

Description: If a Pre Output is selected, set the duration (seconds) to turn the Pre Output on for before every measurement

is acquired.

Pre During Measure

Type: Boolean

Description: Check to turn the output off after (opposed to before) the measurement is complete

AOSONG: AM2315/AM2320

Manufacturer: AOSONG

Measurements: Humidity/Temperature

Interfaces: I
2
C

Libraries: quick2wire-api

Dependencies: quick2wire-api

Datasheet URL: Link

Product URL: Link

OPTIONS

Measurements Enabled

Type: Multi-Select

Description: The measurements to record

Period (seconds)

Type: Decimal

Description: The duration (seconds) between measurements or actions

Pre Output

Type: Select

Description: Turn the selected output on before taking every measurement

Pre Out Duration

Type: Decimal

Description: If a Pre Output is selected, set the duration (seconds) to turn the Pre Output on for before every measurement

is acquired.

Pre During Measure

Type: Boolean

Description: Check to turn the output off after (opposed to before) the measurement is complete

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

5.2.2 Built-In Inputs (Devices)

- 78/287 - Copyright © 2022

https://pypi.org/project/quick2wire-api
https://cdn-shop.adafruit.com/datasheets/AM2315.pdf
https://www.adafruit.com/product/1293

AOSONG: DHT11

Manufacturer: AOSONG

Measurements: Humidity/Temperature

Interfaces: GPIO

Libraries: pigpio

Dependencies: pigpio, pigpio

Datasheet URL: Link

Product URL: Link

OPTIONS

Measurements Enabled

Type: Multi-Select

Description: The measurements to record

Period (seconds)

Type: Decimal

Description: The duration (seconds) between measurements or actions

Pre Output

Type: Select

Description: Turn the selected output on before taking every measurement

Pre Out Duration

Type: Decimal

Description: If a Pre Output is selected, set the duration (seconds) to turn the Pre Output on for before every measurement

is acquired.

Pre During Measure

Type: Boolean

Description: Check to turn the output off after (opposed to before) the measurement is complete

AOSONG: DHT22

Manufacturer: AOSONG

Measurements: Humidity/Temperature

Interfaces: GPIO

Libraries: pigpio

Dependencies: pigpio, pigpio

Datasheet URL: Link

Product URL: Link

OPTIONS

Measurements Enabled

Type: Multi-Select

Description: The measurements to record

Period (seconds)

Type: Decimal

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

5.2.2 Built-In Inputs (Devices)

- 79/287 - Copyright © 2022

https://pypi.org/project/pigpio
http://www.adafruit.com/datasheets/DHT11-chinese.pdf
https://www.adafruit.com/product/386
https://pypi.org/project/pigpio
http://www.adafruit.com/datasheets/DHT22.pdf
https://www.adafruit.com/product/385

Description: The duration (seconds) between measurements or actions

Pre Output

Type: Select

Description: Turn the selected output on before taking every measurement

Pre Out Duration

Type: Decimal

Description: If a Pre Output is selected, set the duration (seconds) to turn the Pre Output on for before every measurement

is acquired.

Pre During Measure

Type: Boolean

Description: Check to turn the output off after (opposed to before) the measurement is complete

ASAIR: AHTx0

Manufacturer: ASAIR

Measurements: Temperature/Humidity

Interfaces: I
2
C

Libraries: Adafruit-CircuitPython-AHTx0

Dependencies: pyusb, Adafruit-extended-bus, adafruit-circuitpython-ahtx0

Manufacturer URL: Link

Datasheet URL: Link

OPTIONS

I2C Address

Type: Text

Description: The I2C address of the device

I2C Bus

Type: Integer

Description: The I2C bus the device is connected to

Period (seconds)

Type: Decimal

Description: The duration (seconds) between measurements or actions

Pre Output

Type: Select

Description: Turn the selected output on before taking every measurement

Pre Out Duration

Type: Decimal

Description: If a Pre Output is selected, set the duration (seconds) to turn the Pre Output on for before every measurement

is acquired.

Pre During Measure

Type: Boolean

Description: Check to turn the output off after (opposed to before) the measurement is complete

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

5.2.2 Built-In Inputs (Devices)

- 80/287 - Copyright © 2022

https://pypi.org/project/pyusb
https://pypi.org/project/Adafruit-extended-bus
https://pypi.org/project/adafruit-circuitpython-ahtx0
http://www.aosong.com/en/products-40.html
https://server4.eca.ir/eshop/AHT10/Aosong_AHT10_en_draft_0c.pdf

Adafruit: I2C Capacitive Moisture Sensor

Manufacturer: Adafruit

Measurements: Moisture/Temperature

Interfaces: I
2
C

Libraries: adafruit_seesaw

Dependencies: pyusb, Adafruit-extended-bus, adafruit-circuitpython-seesaw

Manufacturer URL: Link

Product URL: Link

OPTIONS

I2C Address

Type: Text

Description: The I2C address of the device

I2C Bus

Type: Integer

Description: The I2C bus the device is connected to

Measurements Enabled

Type: Multi-Select

Description: The measurements to record

Period (seconds)

Type: Decimal

Description: The duration (seconds) between measurements or actions

Pre Output

Type: Select

Description: Turn the selected output on before taking every measurement

Pre Out Duration

Type: Decimal

Description: If a Pre Output is selected, set the duration (seconds) to turn the Pre Output on for before every measurement

is acquired.

Pre During Measure

Type: Boolean

Description: Check to turn the output off after (opposed to before) the measurement is complete

Analog Devices: ADT7410

Manufacturer: Analog Devices

Measurements: Temperature

Interfaces: I
2
C

Libraries: Adafruit_CircuitPython

Dependencies: pyusb, Adafruit-extended-bus, adafruit-circuitpython-adt7410

Datasheet URL: Link

Product URL: Link

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

5.2.2 Built-In Inputs (Devices)

- 81/287 - Copyright © 2022

https://pypi.org/project/pyusb
https://pypi.org/project/Adafruit-extended-bus
https://pypi.org/project/adafruit-circuitpython-seesaw
https://learn.adafruit.com/adafruit-stemma-soil-sensor-i2c-capacitive-moisture-sensor
https://www.adafruit.com/product/4026
https://pypi.org/project/pyusb
https://pypi.org/project/Adafruit-extended-bus
https://pypi.org/project/adafruit-circuitpython-adt7410
https://www.analog.com/media/en/technical-documentation/data-sheets/ADT7410.pdf
https://www.analog.com/en/products/adt7410.html

OPTIONS

I2C Address

Type: Text

Description: The I2C address of the device

I2C Bus

Type: Integer

Description: The I2C bus the device is connected to

Measurements Enabled

Type: Multi-Select

Description: The measurements to record

Period (seconds)

Type: Decimal

Description: The duration (seconds) between measurements or actions

Pre Output

Type: Select

Description: Turn the selected output on before taking every measurement

Pre Out Duration

Type: Decimal

Description: If a Pre Output is selected, set the duration (seconds) to turn the Pre Output on for before every measurement

is acquired.

Pre During Measure

Type: Boolean

Description: Check to turn the output off after (opposed to before) the measurement is complete

Analog Devices: ADXL34x (343, 344, 345, 346)

Manufacturer: Analog Devices

Measurements: Acceleration

Interfaces: I
2
C

Libraries: Adafruit_CircuitPython

Dependencies: pyusb, Adafruit-extended-bus, adafruit-circuitpython-adxl34x

Datasheet URLs: Link 1, Link 2, Link 3, Link 4

Product URLs: Link 1, Link 2, Link 3, Link 4

OPTIONS

I2C Address

Type: Text

Description: The I2C address of the device

I2C Bus

Type: Integer

Description: The I2C bus the device is connected to

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

5.2.2 Built-In Inputs (Devices)

- 82/287 - Copyright © 2022

https://pypi.org/project/pyusb
https://pypi.org/project/Adafruit-extended-bus
https://pypi.org/project/adafruit-circuitpython-adxl34x
https://www.analog.com/media/en/technical-documentation/data-sheets/ADXL343.pdf
https://www.analog.com/media/en/technical-documentation/data-sheets/ADXL344.pdf
https://www.analog.com/media/en/technical-documentation/data-sheets/ADXL345.pdf
https://www.analog.com/media/en/technical-documentation/data-sheets/ADXL346.pdf
https://www.analog.com/en/products/adxl343.html
https://www.analog.com/en/products/adxl344.html
https://www.analog.com/en/products/adxl345.html
https://www.analog.com/en/products/adxl346.html

Measurements Enabled

Type: Multi-Select

Description: The measurements to record

Period (seconds)

Type: Decimal

Description: The duration (seconds) between measurements or actions

Pre Output

Type: Select

Description: Turn the selected output on before taking every measurement

Pre Out Duration

Type: Decimal

Description: If a Pre Output is selected, set the duration (seconds) to turn the Pre Output on for before every measurement

is acquired.

Pre During Measure

Type: Boolean

Description: Check to turn the output off after (opposed to before) the measurement is complete

Range

Type: Select

Options: [±2 g (±19.6 m/s/s) | ±4 g (±39.2 m/s/s) | ±8 g (±78.4 m/s/s) | ±16 g (±156.9 m/s/s)] (Default in bold)

Description: Set the measurement range

AnyLeaf: AnyLeaf EC

Manufacturer: AnyLeaf

Measurements: Electrical Conductivity

Interfaces: UART

Libraries: anyleaf

Dependencies: libjpeg-dev, zlib1g-dev, Pillow, scipy, pyusb, Adafruit-extended-bus, anyleaf

Manufacturer URL: Link

Datasheet URL: Link

OPTIONS

UART Device

Type: Text

Description: The UART device location (e.g. /dev/ttyUSB1)

Period (seconds)

Type: Decimal

Description: The duration (seconds) between measurements or actions

Conductivity Constant

Type: Decimal

Default Value: 1.0

Description: Conductivity constant K

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

5.2.2 Built-In Inputs (Devices)

- 83/287 - Copyright © 2022

https://packages.debian.org/buster/libjpeg-dev
https://packages.debian.org/buster/zlib1g-dev
https://pypi.org/project/Pillow
https://pypi.org/project/scipy
https://pypi.org/project/pyusb
https://pypi.org/project/Adafruit-extended-bus
https://pypi.org/project/anyleaf
https://www.anyleaf.org/ec-module
https://www.anyleaf.org/static/ec-module-datasheet.pdf

AnyLeaf: AnyLeaf ORP

Manufacturer: AnyLeaf

Measurements: Oxidation Reduction Potential

Interfaces: I
2
C

Libraries: anyleaf

Dependencies: libjpeg-dev, zlib1g-dev, Pillow, scipy, pyusb, Adafruit-extended-bus, anyleaf

Manufacturer URL: Link

Datasheet URL: Link

OPTIONS

I2C Address

Type: Text

Description: The I2C address of the device

I2C Bus

Type: Integer

Description: The I2C bus the device is connected to

Period (seconds)

Type: Decimal

Description: The duration (seconds) between measurements or actions

Calibrate: Voltage (Internal)

Type: Decimal

Default Value: 0.4

Description: Calibration data: internal voltage

Calibrate: ORP (Internal)

Type: Decimal

Default Value: 400.0

Description: Calibration data: internal ORP

COMMANDS

Calibrate: Buffer ORP (mV)

Type: Decimal

Default Value: 400.0

Description: This is the nominal ORP of the calibration buffer in mV, usually labelled on the bottle.

Calibrate

Type: Button

Clear Calibration Slots

Type: Button

AnyLeaf: AnyLeaf pH

Manufacturer: AnyLeaf

Measurements: Ion concentration

Interfaces: I
2
C

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

5.2.2 Built-In Inputs (Devices)

- 84/287 - Copyright © 2022

https://packages.debian.org/buster/libjpeg-dev
https://packages.debian.org/buster/zlib1g-dev
https://pypi.org/project/Pillow
https://pypi.org/project/scipy
https://pypi.org/project/pyusb
https://pypi.org/project/Adafruit-extended-bus
https://pypi.org/project/anyleaf
https://anyleaf.org/ph-module
https://anyleaf.org/static/ph-module-datasheet.pdf

Libraries: anyleaf

Dependencies: libjpeg-dev, zlib1g-dev, Pillow, scipy, pyusb, Adafruit-extended-bus, anyleaf

Manufacturer URL: Link

Datasheet URL: Link

OPTIONS

I2C Address

Type: Text

Description: The I2C address of the device

I2C Bus

Type: Integer

Description: The I2C bus the device is connected to

Period (seconds)

Type: Decimal

Description: The duration (seconds) between measurements or actions

Temperature Compensation: Measurement

Type: Select Measurement

Selections: Input, Function

Description: Select a measurement for temperature compensation

Temperature Compensation: Max Age

Type: Integer

Default Value: 120

Description: The maximum age (seconds) of the measurement to use

Cal data: V1 (internal)

Type: Decimal

Description: Calibration data: Voltage

Cal data: pH1 (internal)

Type: Decimal

Default Value: 7.0

Description: Calibration data: pH

Cal data: T1 (internal)

Type: Decimal

Default Value: 23.0

Description: Calibration data: Temperature

Cal data: V2 (internal)

Type: Decimal

Default Value: 0.17

Description: Calibration data: Voltage

Cal data: pH2 (internal)

Type: Decimal

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

5.2.2 Built-In Inputs (Devices)

- 85/287 - Copyright © 2022

https://packages.debian.org/buster/libjpeg-dev
https://packages.debian.org/buster/zlib1g-dev
https://pypi.org/project/Pillow
https://pypi.org/project/scipy
https://pypi.org/project/pyusb
https://pypi.org/project/Adafruit-extended-bus
https://pypi.org/project/anyleaf
https://anyleaf.org/ph-module
https://anyleaf.org/static/ph-module-datasheet.pdf

Default Value: 4.0

Description: Calibration data: pH

Cal data: T2 (internal)

Type: Decimal

Default Value: 23.0

Description: Calibration data: Temperature

Cal data: V3 (internal)

Type: Decimal

Description: Calibration data: Voltage

Cal data: pH3 (internal)

Type: Decimal

Description: Calibration data: pH

Cal data: T3 (internal)

Type: Decimal

Description: Calibration data: Temperature

COMMANDS

Calibration buffer pH

Type: Decimal

Default Value: 7.0

Description: This is the nominal pH of the calibration buffer, usually labelled on the bottle.

Calibrate, slot 1

Type: Button

Calibrate, slot 2

Type: Button

Calibrate, slot 3

Type: Button

Clear Calibration Slots

Type: Button

Atlas Scientific: Atlas CO2

Manufacturer: Atlas Scientific

Measurements: CO2

Interfaces: I
2
C, UART, FTDI

Libraries: pylibftdi/fcntl/io/serial

Dependencies: pylibftdi

Manufacturer URL: Link

Datasheet URL: Link

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

5.2.2 Built-In Inputs (Devices)

- 86/287 - Copyright © 2022

https://pypi.org/project/pylibftdi
https://atlas-scientific.com/co2/
https://atlas-scientific.com/files/EZO_CO2_Datasheet.pdf

OPTIONS

I2C Address

Type: Text

Description: The I2C address of the device

I2C Bus

Type: Integer

Description: The I2C bus the device is connected to

FTDI Device

Type: Text

Description: The FTDI device connected to the input/output/etc.

UART Device

Type: Text

Description: The UART device location (e.g. /dev/ttyUSB1)

Period (seconds)

Type: Decimal

Description: The duration (seconds) between measurements or actions

Pre Output

Type: Select

Description: Turn the selected output on before taking every measurement

Pre Out Duration

Type: Decimal

Description: If a Pre Output is selected, set the duration (seconds) to turn the Pre Output on for before every measurement

is acquired.

Pre During Measure

Type: Boolean

Description: Check to turn the output off after (opposed to before) the measurement is complete

COMMANDS

A one- or two-point calibration can be performed. After exposing the probe to a concentration of CO2 between 3,000 and 5,000 ppmv until readings stabilize, press Calibrate (High).

You can place the probe in a 0 CO2 environment until readings stabilize, then press Calibrate (Zero). You can also clear the currently-saved calibration by pressing Clear

Calibration, returning to the factory-set calibration. Status messages will be set to the Daemon Log, accessible from Config -> Mycodo Logs -> Daemon Log.

High Point CO2

Type: Integer

Default Value: 3000

Description: The high CO2 calibration point (3000 - 5000 ppmv)

Calibrate (High)

Type: Button

Calibrate (Zero)

Type: Button

Clear Calibration

Type: Button

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

5.2.2 Built-In Inputs (Devices)

- 87/287 - Copyright © 2022

The I2C address can be changed. Enter a new address in the 0xYY format (e.g. 0x22, 0x50), then press Set I2C Address. Remember to deactivate and change the I2C address

option after setting the new address.

New I2C Address

Type: Text

Default Value: 0x69

Description: The new I2C to set the device to

Set I2C Address

Type: Button

Atlas Scientific: Atlas Color

Manufacturer: Atlas Scientific

Measurements: RGB, CIE, LUX, Proximity

Interfaces: I
2
C, UART, FTDI

Libraries: pylibftdi/fcntl/io/serial

Dependencies: pylibftdi

Manufacturer URL: Link

Datasheet URL: Link

OPTIONS

I2C Address

Type: Text

Description: The I2C address of the device

I2C Bus

Type: Integer

Description: The I2C bus the device is connected to

FTDI Device

Type: Text

Description: The FTDI device connected to the input/output/etc.

UART Device

Type: Text

Description: The UART device location (e.g. /dev/ttyUSB1)

Measurements Enabled

Type: Multi-Select

Description: The measurements to record

Period (seconds)

Type: Decimal

Description: The duration (seconds) between measurements or actions

Pre Output

Type: Select

Description: Turn the selected output on before taking every measurement

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

5.2.2 Built-In Inputs (Devices)

- 88/287 - Copyright © 2022

https://pypi.org/project/pylibftdi
https://www.atlas-scientific.com/ezo-rgb/
https://www.atlas-scientific.com/files/EZO_RGB_Datasheet.pdf

Pre Out Duration

Type: Decimal

Description: If a Pre Output is selected, set the duration (seconds) to turn the Pre Output on for before every measurement

is acquired.

Pre During Measure

Type: Boolean

Description: Check to turn the output off after (opposed to before) the measurement is complete

LED Only For Measure

Type: Boolean

Default Value: True

Description: Turn the LED on only during the measurement

LED Percentage

Type: Integer

Default Value: 30

Description: What percentage of power to supply to the LEDs during measurement

Gamma Correction

Type: Decimal

Default Value: 1.0

Description: Gamma correction between 0.01 and 4.99 (default is 1.0)

COMMANDS

The EZO-RGB color sensor is designed to be calibrated to a white object at the maximum brightness the object will be viewed under. In order to get the best results, Atlas

Scientific strongly recommends that the sensor is mounted into a fixed location. Holding the sensor in your hand during calibration will decrease performance.

1. Embed the EZO-RGB color sensor into its intended use location.

2. Set LED brightness to the desired level.

3. Place a white object in front of the target object and press the Calibration button.

4. A single color reading will be taken and the device will be fully calibrated.

Calibrate

Type: Button

The I2C address can be changed. Enter a new address in the 0xYY format (e.g. 0x22, 0x50), then press Set I2C Address. Remember to deactivate and change the I2C address

option after setting the new address.

New I2C Address

Type: Text

Default Value: 0x70

Description: The new I2C to set the device to

Set I2C Address

Type: Button

Atlas Scientific: Atlas DO

Manufacturer: Atlas Scientific

Measurements: Dissolved Oxygen

Interfaces: I
2
C, UART, FTDI

Libraries: pylibftdi/fcntl/io/serial

Dependencies: pylibftdi

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

5.2.2 Built-In Inputs (Devices)

- 89/287 - Copyright © 2022

https://pypi.org/project/pylibftdi

Manufacturer URL: Link

Datasheet URL: Link

OPTIONS

I2C Address

Type: Text

Description: The I2C address of the device

I2C Bus

Type: Integer

Description: The I2C bus the device is connected to

FTDI Device

Type: Text

Description: The FTDI device connected to the input/output/etc.

UART Device

Type: Text

Description: The UART device location (e.g. /dev/ttyUSB1)

Period (seconds)

Type: Decimal

Description: The duration (seconds) between measurements or actions

Pre Output

Type: Select

Description: Turn the selected output on before taking every measurement

Pre Out Duration

Type: Decimal

Description: If a Pre Output is selected, set the duration (seconds) to turn the Pre Output on for before every measurement

is acquired.

Pre During Measure

Type: Boolean

Description: Check to turn the output off after (opposed to before) the measurement is complete

Temperature Compensation: Measurement

Type: Select Measurement

Selections: Input, Function

Description: Select a measurement for temperature compensation

Temperature Compensation: Max Age

Type: Integer

Default Value: 120

Description: The maximum age (seconds) of the measurement to use

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

5.2.2 Built-In Inputs (Devices)

- 90/287 - Copyright © 2022

https://www.atlas-scientific.com/dissolved-oxygen.html
https://www.atlas-scientific.com/files/DO_EZO_Datasheet.pdf

COMMANDS

A one- or two-point calibration can be performed. After exposing the probe to air for 30 seconds until readings stabilize, press Calibrate (Air). If you require accuracy below 1.0 mg/

L, you can place the probe in a 0 mg/L solution for 30 to 90 seconds until readings stabilize, then press Calibrate (0 mg/L). You can also clear the currently-saved calibration by

pressing Clear Calibration. Status messages will be set to the Daemon Log, accessible from Config -> Mycodo Logs -> Daemon Log.

Calibrate (Air)

Type: Button

Calibrate (0 mg/L)

Type: Button

Clear Calibration

Type: Button

The I2C address can be changed. Enter a new address in the 0xYY format (e.g. 0x22, 0x50), then press Set I2C Address. Remember to deactivate and change the I2C address

option after setting the new address.

New I2C Address

Type: Text

Default Value: 0x66

Description: The new I2C to set the device to

Set I2C Address

Type: Button

Atlas Scientific: Atlas EC

Manufacturer: Atlas Scientific

Measurements: Electrical Conductivity

Interfaces: I
2
C, UART, FTDI

Libraries: pylibftdi/fcntl/io/serial

Dependencies: pylibftdi

Manufacturer URL: Link

Datasheet URL: Link

OPTIONS

I2C Address

Type: Text

Description: The I2C address of the device

I2C Bus

Type: Integer

Description: The I2C bus the device is connected to

FTDI Device

Type: Text

Description: The FTDI device connected to the input/output/etc.

UART Device

Type: Text

Description: The UART device location (e.g. /dev/ttyUSB1)

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

5.2.2 Built-In Inputs (Devices)

- 91/287 - Copyright © 2022

https://pypi.org/project/pylibftdi
https://www.atlas-scientific.com/conductivity/
https://www.atlas-scientific.com/files/EC_EZO_Datasheet.pdf

Measurements Enabled

Type: Multi-Select

Description: The measurements to record

Period (seconds)

Type: Decimal

Description: The duration (seconds) between measurements or actions

Pre Output

Type: Select

Description: Turn the selected output on before taking every measurement

Pre Out Duration

Type: Decimal

Description: If a Pre Output is selected, set the duration (seconds) to turn the Pre Output on for before every measurement

is acquired.

Pre During Measure

Type: Boolean

Description: Check to turn the output off after (opposed to before) the measurement is complete

Temperature Compensation: Measurement

Type: Select Measurement

Selections: Input, Function

Description: Select a measurement for temperature compensation

Temperature Compensation: Max Age

Type: Integer

Default Value: 120

Description: The maximum age (seconds) of the measurement to use

COMMANDS

Calibration: a one- or two-point calibration can be performed. It's a good idea to clear the calibration before calibrating. Always perform a dry calibration with the probe in the air

(not in any fluid). Then perform either a one- or two-point calibration with calibrated solutions. If performing a one-point calibration, use the Single Point Calibration field and

button. If performing a two-point calibration, use the Low and High Point Calibration fields and buttons. Allow a minute or two after submerging your probe in a calibration solution

for the measurements to equilibrate before calibrating to that solution. The EZO EC circuit default temperature compensation is set to 25 °C. If the temperature of the calibration

solution is +/- 2 °C from 25 °C, consider setting the temperature compensation first. Note that at no point should you change the temperature compensation value during

calibration. Therefore, if you have previously enabled temperature compensation, allow at least one measurement to occur (to set the compensation value), then disable the

temperature compensation measurement while you calibrate. Status messages will be set to the Daemon Log, accessible from Config -> Mycodo Logs -> Daemon Log.

Clear Calibration

Type: Button

Calibrate Dry

Type: Button

Single Point EC (µS)

Type: Integer

Default Value: 84

Description: The EC (µS) of the single point calibration solution

Calibrate Single Point

Type: Button

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

5.2.2 Built-In Inputs (Devices)

- 92/287 - Copyright © 2022

Low Point EC (µS)

Type: Integer

Default Value: 12880

Description: The EC (µS) of the low point calibration solution

Calibrate Low Point

Type: Button

High Point EC (µS)

Type: Integer

Default Value: 80000

Description: The EC (µS) of the high point calibration solution

Calibrate High Point

Type: Button

The I2C address can be changed. Enter a new address in the 0xYY format (e.g. 0x22, 0x50), then press Set I2C Address. Remember to deactivate and change the I2C address

option after setting the new address.

New I2C Address

Type: Text

Default Value: 0x64

Description: The new I2C to set the device to

Set I2C Address

Type: Button

Atlas Scientific: Atlas Flow Meter

Manufacturer: Atlas Scientific

Measurements: Total Volume, Flow Rate

Interfaces: I
2
C, UART, FTDI

Libraries: pylibftdi/fcntl/io/serial

Dependencies: pylibftdi

Manufacturer URL: Link

Datasheet URL: Link

Set the Measurement Time Base to a value most appropriate for your anticipated flow (it will affect accuracy). This flow rate time

base that is set and returned from the sensor will be converted to liters per minute, which is the default unit for this input

module. If you desire a different rate to be stored in the database (such as liters per second or hour), then use the Convert to

Unit option.

OPTIONS

I2C Address

Type: Text

Description: The I2C address of the device

I2C Bus

Type: Integer

Description: The I2C bus the device is connected to

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

5.2.2 Built-In Inputs (Devices)

- 93/287 - Copyright © 2022

https://pypi.org/project/pylibftdi
https://www.atlas-scientific.com/flow/
https://www.atlas-scientific.com/files/flow_EZO_Datasheet.pdf

FTDI Device

Type: Text

Description: The FTDI device connected to the input/output/etc.

UART Device

Type: Text

Description: The UART device location (e.g. /dev/ttyUSB1)

Measurements Enabled

Type: Multi-Select

Description: The measurements to record

Period (seconds)

Type: Decimal

Description: The duration (seconds) between measurements or actions

Pre Output

Type: Select

Description: Turn the selected output on before taking every measurement

Pre Out Duration

Type: Decimal

Description: If a Pre Output is selected, set the duration (seconds) to turn the Pre Output on for before every measurement

is acquired.

Pre During Measure

Type: Boolean

Description: Check to turn the output off after (opposed to before) the measurement is complete

Flow Meter Type

Type: Select

Options: [Atlas Scientific 3/8" Flow Meter | Atlas Scientific 1/4" Flow Meter | Atlas Scientific 1/2" Flow Meter | Atlas

Scientific 3/4" Flow Meter | Non-Atlas Scientific Flow Meter] (Default in bold)

Description: Set the type of flow meter used

Atlas Meter Time Base

Type: Select

Options: [Liters per Second | Liters per Minute | Liters per Hour] (Default in bold)

Description: If using an Atlas Scientific flow meter, set the flow rate/time base

Internal Resistor

Type: Select

Options: [Use Atlas Scientific Flow Meter | Disable Internal Resistor | 1 K Ω Pull-Up | 1 K Ω Pull-Down | 10 K Ω Pull-Up |

10 K Ω Pull-Down | 100 K Ω Pull-Up | 100 K Ω Pull-Down] (Default in bold)

Description: Set an internal resistor for the flow meter

Custom K Value(s)

Type: Text

Description: If using a non-Atlas Scientific flow meter, enter the meter's K value(s). For a single K value, enter '[volume per

pulse],[number of pulses]'. For multiple K values (up to 16), enter '[volume at frequency],[frequency in Hz];[volume at

frequency],[frequency in Hz];...'. Leave blank to disable.

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

5.2.2 Built-In Inputs (Devices)

- 94/287 - Copyright © 2022

K Value Time Base

Type: Select

Options: [Use Atlas Scientific Flow Meter | Liters per Second | Liters per Minute | Liters per Hour] (Default in bold)

Description: If using a non-Atlas Scientific flow meter, set the flow rate/time base for the custom K values entered.

COMMANDS

The total volume can be cleared with the following button or with the Clear Total Volume Function Action.

Clear Total Volume

Type: Button

The I2C address can be changed. Enter a new address in the 0xYY format (e.g. 0x22, 0x50), then press Set I2C Address. Remember to deactivate and change the I2C address

option after setting the new address.

New I2C Address

Type: Text

Default Value: 0x68

Description: The new I2C to set the device to

Set I2C Address

Type: Button

Atlas Scientific: Atlas Humidity

Manufacturer: Atlas Scientific

Measurements: Humidity/Temperature

Interfaces: I
2
C, UART, FTDI

Libraries: pylibftdi/fcntl/io/serial

Dependencies: pylibftdi

Manufacturer URL: Link

Datasheet URL: Link

OPTIONS

I2C Address

Type: Text

Description: The I2C address of the device

I2C Bus

Type: Integer

Description: The I2C bus the device is connected to

FTDI Device

Type: Text

Description: The FTDI device connected to the input/output/etc.

UART Device

Type: Text

Description: The UART device location (e.g. /dev/ttyUSB1)

Measurements Enabled

Type: Multi-Select

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

5.2.2 Built-In Inputs (Devices)

- 95/287 - Copyright © 2022

https://pypi.org/project/pylibftdi
https://atlas-scientific.com/probes/humidity-sensor/
https://atlas-scientific.com/files/EZO-HUM-Datasheet.pdf

Description: The measurements to record

Period (seconds)

Type: Decimal

Description: The duration (seconds) between measurements or actions

Pre Output

Type: Select

Description: Turn the selected output on before taking every measurement

Pre Out Duration

Type: Decimal

Description: If a Pre Output is selected, set the duration (seconds) to turn the Pre Output on for before every measurement

is acquired.

Pre During Measure

Type: Boolean

Description: Check to turn the output off after (opposed to before) the measurement is complete

LED Mode

Type: Select

Options: [Always On | Always Off | Only On During Measure] (Default in bold)

Description: When to turn the LED on

COMMANDS

New I2C Address

Type: Text

Default Value: 0x6f

Description: The new I2C to set the device to

Set I2C Address

Type: Button

Atlas Scientific: Atlas ORP

Manufacturer: Atlas Scientific

Measurements: Oxidation Reduction Potential

Interfaces: I
2
C, UART, FTDI

Libraries: pylibftdi/fcntl/io/serial

Dependencies: pylibftdi

Manufacturer URL: Link

Datasheet URL: Link

OPTIONS

I2C Address

Type: Text

Description: The I2C address of the device

I2C Bus

Type: Integer

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

5.2.2 Built-In Inputs (Devices)

- 96/287 - Copyright © 2022

https://pypi.org/project/pylibftdi
https://www.atlas-scientific.com/orp/
https://www.atlas-scientific.com/files/ORP_EZO_Datasheet.pdf

Description: The I2C bus the device is connected to

FTDI Device

Type: Text

Description: The FTDI device connected to the input/output/etc.

UART Device

Type: Text

Description: The UART device location (e.g. /dev/ttyUSB1)

Period (seconds)

Type: Decimal

Description: The duration (seconds) between measurements or actions

Pre Output

Type: Select

Description: Turn the selected output on before taking every measurement

Pre Out Duration

Type: Decimal

Description: If a Pre Output is selected, set the duration (seconds) to turn the Pre Output on for before every measurement

is acquired.

Pre During Measure

Type: Boolean

Description: Check to turn the output off after (opposed to before) the measurement is complete

Temperature Compensation: Measurement

Type: Select Measurement

Selections: Input, Function

Description: Select a measurement for temperature compensation

Temperature Compensation: Max Age

Type: Integer

Default Value: 120

Description: The maximum age (seconds) of the measurement to use

COMMANDS

A one-point calibration can be performed. Enter the solution's mV, set the probe in the solution, then press Calibrate. You can also clear the currently-saved calibration by

pressing Clear Calibration. Status messages will be set to the Daemon Log, accessible from Config -> Mycodo Logs -> Daemon Log.

Calibration Solution mV

Type: Integer

Default Value: 225

Description: The value of the calibration solution, in mV

Calibrate

Type: Button

Clear Calibration

Type: Button

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

5.2.2 Built-In Inputs (Devices)

- 97/287 - Copyright © 2022

The I2C address can be changed. Enter a new address in the 0xYY format (e.g. 0x22, 0x50), then press Set I2C Address. Remember to deactivate and change the I2C address

option after setting the new address.

New I2C Address

Type: Text

Default Value: 0x62

Description: The new I2C to set the device to

Set I2C Address

Type: Button

Atlas Scientific: Atlas PT-1000

Manufacturer: Atlas Scientific

Measurements: Temperature

Interfaces: I
2
C, UART, FTDI

Libraries: pylibftdi/fcntl/io/serial

Dependencies: pylibftdi

Manufacturer URL: Link

Datasheet URL: Link

OPTIONS

I2C Address

Type: Text

Description: The I2C address of the device

I2C Bus

Type: Integer

Description: The I2C bus the device is connected to

FTDI Device

Type: Text

Description: The FTDI device connected to the input/output/etc.

UART Device

Type: Text

Description: The UART device location (e.g. /dev/ttyUSB1)

Period (seconds)

Type: Decimal

Description: The duration (seconds) between measurements or actions

Pre Output

Type: Select

Description: Turn the selected output on before taking every measurement

Pre Out Duration

Type: Decimal

Description: If a Pre Output is selected, set the duration (seconds) to turn the Pre Output on for before every measurement

is acquired.

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

5.2.2 Built-In Inputs (Devices)

- 98/287 - Copyright © 2022

https://pypi.org/project/pylibftdi
https://www.atlas-scientific.com/temperature/
https://www.atlas-scientific.com/files/EZO_RTD_Datasheet.pdf

Pre During Measure

Type: Boolean

Description: Check to turn the output off after (opposed to before) the measurement is complete

COMMANDS

New I2C Address

Type: Text

Default Value: 0x66

Description: The new I2C to set the device to

Set I2C Address

Type: Button

Atlas Scientific: Atlas Pressure

Manufacturer: Atlas Scientific

Measurements: Pressure

Interfaces: I
2
C, UART, FTDI

Libraries: pylibftdi/fcntl/io/serial

Dependencies: pylibftdi

Manufacturer URL: Link

Datasheet URL: Link

OPTIONS

I2C Address

Type: Text

Description: The I2C address of the device

I2C Bus

Type: Integer

Description: The I2C bus the device is connected to

FTDI Device

Type: Text

Description: The FTDI device connected to the input/output/etc.

UART Device

Type: Text

Description: The UART device location (e.g. /dev/ttyUSB1)

Period (seconds)

Type: Decimal

Description: The duration (seconds) between measurements or actions

Pre Output

Type: Select

Description: Turn the selected output on before taking every measurement

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

5.2.2 Built-In Inputs (Devices)

- 99/287 - Copyright © 2022

https://pypi.org/project/pylibftdi
https://www.atlas-scientific.com/pressure/
https://www.atlas-scientific.com/files/EZO-PRS-Datasheet.pdf

Pre Out Duration

Type: Decimal

Description: If a Pre Output is selected, set the duration (seconds) to turn the Pre Output on for before every measurement

is acquired.

Pre During Measure

Type: Boolean

Description: Check to turn the output off after (opposed to before) the measurement is complete

LED Mode

Type: Select

Options: [Always On | Always Off | Only On During Measure] (Default in bold)

Description: When to turn the LED on

COMMANDS

New I2C Address

Type: Text

Default Value: 0x6a

Description: The new I2C to set the device to

Set I2C Address

Type: Button

Atlas Scientific: Atlas pH

Manufacturer: Atlas Scientific

Measurements: Ion Concentration

Interfaces: I
2
C, UART, FTDI

Libraries: pylibftdi/fcntl/io/serial

Dependencies: pylibftdi

Manufacturer URL: Link

Datasheet URL: Link

Calibration Measurement is an optional setting that provides a temperature measurement (in Celsius) of the water that the pH is

being measured from.

OPTIONS

I2C Address

Type: Text

Description: The I2C address of the device

I2C Bus

Type: Integer

Description: The I2C bus the device is connected to

FTDI Device

Type: Text

Description: The FTDI device connected to the input/output/etc.

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

5.2.2 Built-In Inputs (Devices)

- 100/287 - Copyright © 2022

https://pypi.org/project/pylibftdi
https://www.atlas-scientific.com/ph/
https://www.atlas-scientific.com/files/pH_EZO_Datasheet.pdf

UART Device

Type: Text

Description: The UART device location (e.g. /dev/ttyUSB1)

Period (seconds)

Type: Decimal

Description: The duration (seconds) between measurements or actions

Pre Output

Type: Select

Description: Turn the selected output on before taking every measurement

Pre Out Duration

Type: Decimal

Description: If a Pre Output is selected, set the duration (seconds) to turn the Pre Output on for before every measurement

is acquired.

Pre During Measure

Type: Boolean

Description: Check to turn the output off after (opposed to before) the measurement is complete

Temperature Compensation: Measurement

Type: Select Measurement

Selections: Input, Function

Description: Select a measurement for temperature compensation

Temperature Compensation: Max Age

Type: Integer

Default Value: 120

Description: The maximum age (seconds) of the measurement to use

COMMANDS

Calibration: a one-, two- or three-point calibration can be performed. It's a good idea to clear the calibration before calibrating. The first calibration must be the Mid point. The

second must be the Low point. And the third must be the High point. You can perform a one-, two- or three-point calibration, but they must be performed in this order. Allow a

minute or two after submerging your probe in a calibration solution for the measurements to equilibrate before calibrating to that solution. The EZO pH circuit default temperature

compensation is set to 25 °C. If the temperature of the calibration solution is +/- 2 °C from 25 °C, consider setting the temperature compensation first. Note that if you have a

Temperature Compensation Measurement selected from the Options, this will overwrite the manual Temperature Compensation set here, so be sure to disable this option if you

would like to specify the temperature to compensate with. Status messages will be set to the Daemon Log, accessible from Config -> Mycodo Logs -> Daemon Log.

Compensation Temperature (°C)

Type: Decimal

Default Value: 25.0

Description: The temperature of the calibration solutions

Set Temperature Compensation

Type: Button

Clear Calibration

Type: Button

Mid Point pH

Type: Decimal

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

5.2.2 Built-In Inputs (Devices)

- 101/287 - Copyright © 2022

Default Value: 7.0

Description: The pH of the mid point calibration solution

Calibrate Mid

Type: Button

Low Point pH

Type: Decimal

Default Value: 4.0

Description: The pH of the low point calibration solution

Calibrate Low

Type: Button

High Point pH

Type: Decimal

Default Value: 10.0

Description: The pH of the high point calibration solution

Calibrate High

Type: Button

Calibration Export/Import: Export calibration to a series of strings. These can later be imported to restore the calibration. Watch the Daemon Log for the output.

Export Calibration

Type: Button

Calibration String

Type: Text

Description: The calibration string to import

Import Calibration

Type: Button

The I2C address can be changed. Enter a new address in the 0xYY format (e.g. 0x22, 0x50), then press Set I2C Address. Remember to deactivate and change the I2C address

option after setting the new address.

New I2C Address

Type: Text

Default Value: 0x63

Description: The new I2C to set the device to

Set I2C Address

Type: Button

BOSCH: BME280

Manufacturer: BOSCH

Measurements: Pressure/Humidity/Temperature

Interfaces: I
2
C

Libraries: Adafruit_BME280

Dependencies: Adafruit-GPIO, Adafruit_BME280

Manufacturer URL: Link

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

5.2.2 Built-In Inputs (Devices)

- 102/287 - Copyright © 2022

https://pypi.org/project/Adafruit-GPIO
https://github.com/adafruit/Adafruit_Python_BME280
https://www.bosch-sensortec.com/bst/products/all_products/bme280

Datasheet URL: Link

Product URLs: Link 1, Link 2

OPTIONS

I2C Address

Type: Text

Description: The I2C address of the device

I2C Bus

Type: Integer

Description: The I2C bus the device is connected to

Measurements Enabled

Type: Multi-Select

Description: The measurements to record

Period (seconds)

Type: Decimal

Description: The duration (seconds) between measurements or actions

Pre Output

Type: Select

Description: Turn the selected output on before taking every measurement

Pre Out Duration

Type: Decimal

Description: If a Pre Output is selected, set the duration (seconds) to turn the Pre Output on for before every measurement

is acquired.

Pre During Measure

Type: Boolean

Description: Check to turn the output off after (opposed to before) the measurement is complete

BOSCH: BME280

Manufacturer: BOSCH

Measurements: Pressure/Humidity/Temperature

Interfaces: I
2
C

Libraries: Adafruit_CircuitPython_BME280

Dependencies: pyusb, Adafruit-extended-bus, adafruit-circuitpython-bme280

Manufacturer URL: Link

Datasheet URL: Link

Product URLs: Link 1, Link 2

OPTIONS

I2C Address

Type: Text

Description: The I2C address of the device

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

5.2.2 Built-In Inputs (Devices)

- 103/287 - Copyright © 2022

https://www.bosch-sensortec.com/media/boschsensortec/downloads/datasheets/bst-bme280-ds002.pdf
https://www.adafruit.com/product/2652
https://www.sparkfun.com/products/13676
https://pypi.org/project/pyusb
https://pypi.org/project/Adafruit-extended-bus
https://pypi.org/project/adafruit-circuitpython-bme280
https://www.bosch-sensortec.com/bst/products/all_products/bme280
https://www.bosch-sensortec.com/media/boschsensortec/downloads/datasheets/bst-bme280-ds002.pdf
https://www.adafruit.com/product/2652
https://www.sparkfun.com/products/13676

I2C Bus

Type: Integer

Description: The I2C bus the device is connected to

Measurements Enabled

Type: Multi-Select

Description: The measurements to record

Period (seconds)

Type: Decimal

Description: The duration (seconds) between measurements or actions

Pre Output

Type: Select

Description: Turn the selected output on before taking every measurement

Pre Out Duration

Type: Decimal

Description: If a Pre Output is selected, set the duration (seconds) to turn the Pre Output on for before every measurement

is acquired.

Pre During Measure

Type: Boolean

Description: Check to turn the output off after (opposed to before) the measurement is complete

BOSCH: BME280

Manufacturer: BOSCH

Measurements: Pressure/Humidity/Temperature

Interfaces: I
2
C

Libraries: RPi.bme280

Dependencies: RPi.bme280

Manufacturer URL: Link

Datasheet URL: Link

Product URLs: Link 1, Link 2

OPTIONS

I2C Address

Type: Text

Description: The I2C address of the device

I2C Bus

Type: Integer

Description: The I2C bus the device is connected to

Measurements Enabled

Type: Multi-Select

Description: The measurements to record

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

5.2.2 Built-In Inputs (Devices)

- 104/287 - Copyright © 2022

https://pypi.org/project/RPi.bme280
https://www.bosch-sensortec.com/bst/products/all_products/bme280
https://www.bosch-sensortec.com/media/boschsensortec/downloads/datasheets/bst-bme280-ds002.pdf
https://www.adafruit.com/product/2652
https://www.sparkfun.com/products/13676

Period (seconds)

Type: Decimal

Description: The duration (seconds) between measurements or actions

Pre Output

Type: Select

Description: Turn the selected output on before taking every measurement

Pre Out Duration

Type: Decimal

Description: If a Pre Output is selected, set the duration (seconds) to turn the Pre Output on for before every measurement

is acquired.

Pre During Measure

Type: Boolean

Description: Check to turn the output off after (opposed to before) the measurement is complete

BOSCH: BME680

Manufacturer: BOSCH

Measurements: Temperature/Humidity/Pressure/Gas

Interfaces: I
2
C

Libraries: Adafruit_CircuitPython_BME680

Dependencies: pyusb, Adafruit-extended-bus, adafruit-circuitpython-bme680

Manufacturer URL: Link

Datasheet URL: Link

Product URLs: Link 1, Link 2

OPTIONS

I2C Address

Type: Text

Description: The I2C address of the device

I2C Bus

Type: Integer

Description: The I2C bus the device is connected to

Measurements Enabled

Type: Multi-Select

Description: The measurements to record

Period (seconds)

Type: Decimal

Description: The duration (seconds) between measurements or actions

Pre Output

Type: Select

Description: Turn the selected output on before taking every measurement

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

5.2.2 Built-In Inputs (Devices)

- 105/287 - Copyright © 2022

https://pypi.org/project/pyusb
https://pypi.org/project/Adafruit-extended-bus
https://pypi.org/project/adafruit-circuitpython-bme680
https://www.bosch-sensortec.com/products/environmental-sensors/gas-sensors-bme680/
https://www.bosch-sensortec.com/media/boschsensortec/downloads/datasheets/bst-bme680-ds001.pdf
https://www.adafruit.com/product/3660
https://www.sparkfun.com/products/16466

Pre Out Duration

Type: Decimal

Description: If a Pre Output is selected, set the duration (seconds) to turn the Pre Output on for before every measurement

is acquired.

Pre During Measure

Type: Boolean

Description: Check to turn the output off after (opposed to before) the measurement is complete

Humidity Oversampling

Type: Select

Options: [NONE | 1X | 2X | 4X | 8X | 16X] (Default in bold)

Description: A higher oversampling value means more stable readings with less noise and jitter. However each step of

oversampling adds ~2 ms latency, causing a slower response time to fast transients.

Temperature Oversampling

Type: Select

Options: [NONE | 1X | 2X | 4X | 8X | 16X] (Default in bold)

Description: A higher oversampling value means more stable readings with less noise and jitter. However each step of

oversampling adds ~2 ms latency, causing a slower response time to fast transients.

Pressure Oversampling

Type: Select

Options: [NONE | 1X | 2X | 4X | 8X | 16X] (Default in bold)

Description: A higher oversampling value means more stable readings with less noise and jitter. However each step of

oversampling adds ~2 ms latency, causing a slower response time to fast transients.

IIR Filter Size

Type: Select

Options: [0 | 1 | 3 | 7 | 15 | 31 | 63 | 127] (Default in bold)

Description: Optionally remove short term fluctuations from the temperature and pressure readings, increasing their

resolution but reducing their bandwidth.

Temperature Offset

Type: Decimal

Description: The amount to offset the temperature, either negative or positive

Sea Level Pressure (ha)

Type: Decimal

Default Value: 1013.25

Description: The pressure at sea level for the sensor location

BOSCH: BME680

Manufacturer: BOSCH

Measurements: Temperature/Humidity/Pressure/Gas

Interfaces: I
2
C

Libraries: bme680

Dependencies: bme680, smbus2

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

5.2.2 Built-In Inputs (Devices)

- 106/287 - Copyright © 2022

https://pypi.org/project/bme680
https://pypi.org/project/smbus2

Manufacturer URL: Link

Datasheet URL: Link

Product URLs: Link 1, Link 2

OPTIONS

I2C Address

Type: Text

Description: The I2C address of the device

I2C Bus

Type: Integer

Description: The I2C bus the device is connected to

Measurements Enabled

Type: Multi-Select

Description: The measurements to record

Period (seconds)

Type: Decimal

Description: The duration (seconds) between measurements or actions

Pre Output

Type: Select

Description: Turn the selected output on before taking every measurement

Pre Out Duration

Type: Decimal

Description: If a Pre Output is selected, set the duration (seconds) to turn the Pre Output on for before every measurement

is acquired.

Pre During Measure

Type: Boolean

Description: Check to turn the output off after (opposed to before) the measurement is complete

Humidity Oversampling

Type: Select

Options: [NONE | 1X | 2X | 4X | 8X | 16X] (Default in bold)

Description: A higher oversampling value means more stable readings with less noise and jitter. However each step of

oversampling adds ~2 ms latency, causing a slower response time to fast transients.

Temperature Oversampling

Type: Select

Options: [NONE | 1X | 2X | 4X | 8X | 16X] (Default in bold)

Description: A higher oversampling value means more stable readings with less noise and jitter. However each step of

oversampling adds ~2 ms latency, causing a slower response time to fast transients.

Pressure Oversampling

Type: Select

Options: [NONE | 1X | 2X | 4X | 8X | 16X] (Default in bold)

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

5.2.2 Built-In Inputs (Devices)

- 107/287 - Copyright © 2022

https://www.bosch-sensortec.com/products/environmental-sensors/gas-sensors-bme680/
https://www.bosch-sensortec.com/media/boschsensortec/downloads/datasheets/bst-bme680-ds001.pdf
https://www.adafruit.com/product/3660
https://www.sparkfun.com/products/16466

Description: A higher oversampling value means more stable readings with less noise and jitter. However each step of

oversampling adds ~2 ms latency, causing a slower response time to fast transients.

IIR Filter Size

Type: Select

Options: [0 | 1 | 3 | 7 | 15 | 31 | 63 | 127] (Default in bold)

Description: Optionally remove short term fluctuations from the temperature and pressure readings, increasing their

resolution but reducing their bandwidth.

Gas Heater Temperature (°C)

Type: Integer

Default Value: 320

Description: What temperature to set

Gas Heater Duration (ms)

Type: Integer

Default Value: 150

Description: How long of a duration to heat. 20-30 ms are necessary for the heater to reach the intended target

temperature.

Gas Heater Profile

Type: Select

Description: Select one of the 10 configured heating durations/set points

Temperature Offset

Type: Decimal

Description: The amount to offset the temperature, either negative or positive

BOSCH: BMP180

Manufacturer: BOSCH

Measurements: Pressure/Temperature

Interfaces: I
2
C

Libraries: Adafruit_BMP

Dependencies: Adafruit-BMP, Adafruit-GPIO

Datasheet URL: Link

OPTIONS

Measurements Enabled

Type: Multi-Select

Description: The measurements to record

Period (seconds)

Type: Decimal

Description: The duration (seconds) between measurements or actions

Pre Output

Type: Select

Description: Turn the selected output on before taking every measurement

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

5.2.2 Built-In Inputs (Devices)

- 108/287 - Copyright © 2022

https://pypi.org/project/Adafruit-BMP
https://pypi.org/project/Adafruit-GPIO
https://ae-bst.resource.bosch.com/media/_tech/media/product_flyer/BST-BMP180-FL000.pdf

Pre Out Duration

Type: Decimal

Description: If a Pre Output is selected, set the duration (seconds) to turn the Pre Output on for before every measurement

is acquired.

Pre During Measure

Type: Boolean

Description: Check to turn the output off after (opposed to before) the measurement is complete

BOSCH: BMP280

Manufacturer: BOSCH

Measurements: Pressure/Temperature

Interfaces: I
2
C

Libraries: Adafruit_GPIO

Dependencies: Adafruit-GPIO

Manufacturer URL: Link

Datasheet URL: Link

Product URL: Link

OPTIONS

I2C Address

Type: Text

Description: The I2C address of the device

I2C Bus

Type: Integer

Description: The I2C bus the device is connected to

Measurements Enabled

Type: Multi-Select

Description: The measurements to record

Period (seconds)

Type: Decimal

Description: The duration (seconds) between measurements or actions

Pre Output

Type: Select

Description: Turn the selected output on before taking every measurement

Pre Out Duration

Type: Decimal

Description: If a Pre Output is selected, set the duration (seconds) to turn the Pre Output on for before every measurement

is acquired.

Pre During Measure

Type: Boolean

Description: Check to turn the output off after (opposed to before) the measurement is complete

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

5.2.2 Built-In Inputs (Devices)

- 109/287 - Copyright © 2022

https://pypi.org/project/Adafruit-GPIO
https://www.bosch-sensortec.com/products/environmental-sensors/pressure-sensors/pressure-sensors-bmp280-1.html
https://www.bosch-sensortec.com/media/boschsensortec/downloads/datasheets/bst-bmp280-ds001.pdf
https://www.adafruit.com/product/2651

BOSCH: BMP280

Manufacturer: BOSCH

Measurements: Pressure/Temperature

Interfaces: I
2
C

Libraries: bmp280-python

Dependencies: smbus2, bmp280

Manufacturer URL: Link

Datasheet URL: Link

Product URL: Link

This is similar to the other BMP280 Input, except it uses a different library, whcih includes the ability to set forced mode.

OPTIONS

I2C Address

Type: Text

Description: The I2C address of the device

I2C Bus

Type: Integer

Description: The I2C bus the device is connected to

Measurements Enabled

Type: Multi-Select

Description: The measurements to record

Period (seconds)

Type: Decimal

Description: The duration (seconds) between measurements or actions

Pre Output

Type: Select

Description: Turn the selected output on before taking every measurement

Pre Out Duration

Type: Decimal

Description: If a Pre Output is selected, set the duration (seconds) to turn the Pre Output on for before every measurement

is acquired.

Pre During Measure

Type: Boolean

Description: Check to turn the output off after (opposed to before) the measurement is complete

Enable Forced Mode

Type: Boolean

Description: Enable heater to evaporate condensation. Turn on heater x seconds every y measurements.

CO2Meter: K30

Manufacturer: CO2Meter

Measurements: CO2

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

5.2.2 Built-In Inputs (Devices)

- 110/287 - Copyright © 2022

https://pypi.org/project/smbus2
https://pypi.org/project/bmp280
https://www.bosch-sensortec.com/products/environmental-sensors/pressure-sensors/pressure-sensors-bmp280-1.html
https://www.bosch-sensortec.com/media/boschsensortec/downloads/datasheets/bst-bmp280-ds001.pdf
https://www.adafruit.com/product/2651

Interfaces: UART

Libraries: serial

Manufacturer URL: Link

Datasheet URL: Link

OPTIONS

UART Device

Type: Text

Description: The UART device location (e.g. /dev/ttyUSB1)

Period (seconds)

Type: Decimal

Description: The duration (seconds) between measurements or actions

Pre Output

Type: Select

Description: Turn the selected output on before taking every measurement

Pre Out Duration

Type: Decimal

Description: If a Pre Output is selected, set the duration (seconds) to turn the Pre Output on for before every measurement

is acquired.

Pre During Measure

Type: Boolean

Description: Check to turn the output off after (opposed to before) the measurement is complete

Catnip Electronics: Chirp

Manufacturer: Catnip Electronics

Measurements: Light/Moisture/Temperature

Interfaces: I
2
C

Libraries: smbus2

Dependencies: smbus2

Manufacturer URL: Link

Product URL: Link

OPTIONS

I2C Address

Type: Text

Description: The I2C address of the device

I2C Bus

Type: Integer

Description: The I2C bus the device is connected to

Measurements Enabled

Type: Multi-Select

Description: The measurements to record

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

5.2.2 Built-In Inputs (Devices)

- 111/287 - Copyright © 2022

https://www.co2meter.com/products/k-30-co2-sensor-module
http://co2meters.com/Documentation/Datasheets/DS_SE_0118_CM_0024_Revised9-20(1).pdf
https://pypi.org/project/smbus2
https://wemakethings.net/chirp/
https://www.tindie.com/products/miceuz/chirp-plant-watering-alarm/

Period (seconds)

Type: Decimal

Description: The duration (seconds) between measurements or actions

Pre Output

Type: Select

Description: Turn the selected output on before taking every measurement

Pre Out Duration

Type: Decimal

Description: If a Pre Output is selected, set the duration (seconds) to turn the Pre Output on for before every measurement

is acquired.

Pre During Measure

Type: Boolean

Description: Check to turn the output off after (opposed to before) the measurement is complete

Cozir: Cozir CO2

Manufacturer: Cozir

Measurements: CO2/Humidity/Temperature

Interfaces: UART

Libraries: pierre-haessig/pycozir

Dependencies: cozir

Manufacturer URL: Link

Datasheet URL: Link

OPTIONS

UART Device

Type: Text

Description: The UART device location (e.g. /dev/ttyUSB1)

Measurements Enabled

Type: Multi-Select

Description: The measurements to record

Period (seconds)

Type: Decimal

Description: The duration (seconds) between measurements or actions

Pre Output

Type: Select

Description: Turn the selected output on before taking every measurement

Pre Out Duration

Type: Decimal

Description: If a Pre Output is selected, set the duration (seconds) to turn the Pre Output on for before every measurement

is acquired.

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

5.2.2 Built-In Inputs (Devices)

- 112/287 - Copyright © 2022

https://github.com/pierre-haessig/pycozir
https://www.co2meter.com/products/cozir-2000-ppm-co2-sensor
https://cdn.shopify.com/s/files/1/0019/5952/files/Datasheet_COZIR_A_CO2Meter_4_15.pdf

Pre During Measure

Type: Boolean

Description: Check to turn the output off after (opposed to before) the measurement is complete

Generic: Hall Flow Meter

Manufacturer: Generic

Measurements: Flow Rate, Total Volume

Interfaces: GPIO

Libraries: pigpio

Dependencies: pigpio, pigpio

OPTIONS

Period (seconds)

Type: Decimal

Description: The duration (seconds) between measurements or actions

Pre Output

Type: Select

Description: Turn the selected output on before taking every measurement

Pre Out Duration

Type: Decimal

Description: If a Pre Output is selected, set the duration (seconds) to turn the Pre Output on for before every measurement

is acquired.

Pre During Measure

Type: Boolean

Description: Check to turn the output off after (opposed to before) the measurement is complete

Pulses per Liter

Type: Decimal

Default Value: 1.0

Description: Enter the conversion factor for this meter (pulses to Liter).

COMMANDS

Clear Total Volume

Type: Button

Infineon: DPS310

Manufacturer: Infineon

Measurements: Pressure/Temperature

Interfaces: I
2
C

Libraries: Adafruit-CircuitPython-DPS310

Dependencies: Adafruit-extended-bus, adafruit-circuitpython-dps310

Manufacturer URL: Link

Datasheet URL: Link

Product URLs: Link 1, Link 2, Link 3

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

5.2.2 Built-In Inputs (Devices)

- 113/287 - Copyright © 2022

https://pypi.org/project/pigpio
https://pypi.org/project/Adafruit-extended-bus
https://pypi.org/project/adafruit-circuitpython-dps310
https://www.infineon.com/cms/en/product/sensor/pressure-sensors/pressure-sensors-for-iot/dps310/
https://www.infineon.com/dgdl/Infineon-DPS310-DataSheet-v01_02-EN.pdf?fileId=5546d462576f34750157750826c42242
https://www.adafruit.com/product/4494
https://shop.pimoroni.com/products/adafruit-dps310-precision-barometric-pressure-altitude-sensor-stemma-qt-qwiic
https://www.berrybase.de/sensoren-module/luftdruck-wasserdruck/adafruit-dps310-pr-228-zisions-barometrischer-druck-und-h-246-hen-sensor

OPTIONS

I2C Address

Type: Text

Description: The I2C address of the device

I2C Bus

Type: Integer

Description: The I2C bus the device is connected to

Period (seconds)

Type: Decimal

Description: The duration (seconds) between measurements or actions

Pre Output

Type: Select

Description: Turn the selected output on before taking every measurement

Pre Out Duration

Type: Decimal

Description: If a Pre Output is selected, set the duration (seconds) to turn the Pre Output on for before every measurement

is acquired.

Pre During Measure

Type: Boolean

Description: Check to turn the output off after (opposed to before) the measurement is complete

MAXIM: DS1822

Manufacturer: MAXIM

Measurements: Temperature

Interfaces: 1-Wire

Libraries: w1thermsensor

Dependencies: w1thermsensor

Manufacturer URL: Link

Datasheet URL: Link

OPTIONS

Period (seconds)

Type: Decimal

Description: The duration (seconds) between measurements or actions

Pre Output

Type: Select

Description: Turn the selected output on before taking every measurement

Pre Out Duration

Type: Decimal

Description: If a Pre Output is selected, set the duration (seconds) to turn the Pre Output on for before every measurement

is acquired.

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

5.2.2 Built-In Inputs (Devices)

- 114/287 - Copyright © 2022

https://pypi.org/project/w1thermsensor
https://www.maximintegrated.com/en/products/sensors/DS1822.html
https://datasheets.maximintegrated.com/en/ds/DS1822.pdf

Pre During Measure

Type: Boolean

Description: Check to turn the output off after (opposed to before) the measurement is complete

COMMANDS

Set the resolution, precision, and response time for the sensor. This setting will be written to the EEPROM to allow persistence after power loss. The EEPROM has a limited

amount of writes (>50k).

Resolution

Type: Select

Description: Select the resolution for the sensor

Set Resolution

Type: Button

MAXIM: DS1825

Manufacturer: MAXIM

Measurements: Temperature

Interfaces: 1-Wire

Libraries: w1thermsensor

Dependencies: w1thermsensor

Manufacturer URL: Link

Datasheet URL: Link

OPTIONS

Period (seconds)

Type: Decimal

Description: The duration (seconds) between measurements or actions

Pre Output

Type: Select

Description: Turn the selected output on before taking every measurement

Pre Out Duration

Type: Decimal

Description: If a Pre Output is selected, set the duration (seconds) to turn the Pre Output on for before every measurement

is acquired.

Pre During Measure

Type: Boolean

Description: Check to turn the output off after (opposed to before) the measurement is complete

COMMANDS

Set the resolution, precision, and response time for the sensor. This setting will be written to the EEPROM to allow persistence after power loss. The EEPROM has a limited

amount of writes (>50k).

Resolution

Type: Select

Description: Select the resolution for the sensor

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

5.2.2 Built-In Inputs (Devices)

- 115/287 - Copyright © 2022

https://pypi.org/project/w1thermsensor
https://www.maximintegrated.com/en/products/sensors/DS1825.html
https://datasheets.maximintegrated.com/en/ds/DS1825.pdf

Set Resolution

Type: Button

MAXIM: DS18B20

Manufacturer: MAXIM

Measurements: Temperature

Interfaces: 1-Wire

Libraries: ow-shell

Dependencies: ow-shell, owfs

Manufacturer URL: Link

Datasheet URL: Link

Product URLs: Link 1, Link 2, Link 3

Additional URL: Link

Warning: Counterfeit DS18B20 sensors are common and can cause a host of issues. Review the Additional URL for more

information about how to determine if your sensor is authentic.

OPTIONS

Period (seconds)

Type: Decimal

Description: The duration (seconds) between measurements or actions

Pre Output

Type: Select

Description: Turn the selected output on before taking every measurement

Pre Out Duration

Type: Decimal

Description: If a Pre Output is selected, set the duration (seconds) to turn the Pre Output on for before every measurement

is acquired.

Pre During Measure

Type: Boolean

Description: Check to turn the output off after (opposed to before) the measurement is complete

MAXIM: DS18B20

Manufacturer: MAXIM

Measurements: Temperature

Interfaces: 1-Wire

Libraries: w1thermsensor

Dependencies: w1thermsensor

Manufacturer URL: Link

Datasheet URL: Link

Product URLs: Link 1, Link 2, Link 3

Additional URL: Link

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

5.2.2 Built-In Inputs (Devices)

- 116/287 - Copyright © 2022

https://packages.debian.org/buster/ow-shell
https://packages.debian.org/buster/owfs
https://www.maximintegrated.com/en/products/sensors/DS18B20.html
https://datasheets.maximintegrated.com/en/ds/DS18B20.pdf
https://www.adafruit.com/product/374
https://www.adafruit.com/product/381
https://www.sparkfun.com/products/245
https://github.com/cpetrich/counterfeit_DS18B20
https://pypi.org/project/w1thermsensor
https://www.maximintegrated.com/en/products/sensors/DS18B20.html
https://datasheets.maximintegrated.com/en/ds/DS18B20.pdf
https://www.adafruit.com/product/374
https://www.adafruit.com/product/381
https://www.sparkfun.com/products/245
https://github.com/cpetrich/counterfeit_DS18B20

Warning: Counterfeit DS18B20 sensors are common and can cause a host of issues. Review the Additional URL for more

information about how to determine if your sensor is authentic.

OPTIONS

Period (seconds)

Type: Decimal

Description: The duration (seconds) between measurements or actions

Pre Output

Type: Select

Description: Turn the selected output on before taking every measurement

Pre Out Duration

Type: Decimal

Description: If a Pre Output is selected, set the duration (seconds) to turn the Pre Output on for before every measurement

is acquired.

Pre During Measure

Type: Boolean

Description: Check to turn the output off after (opposed to before) the measurement is complete

COMMANDS

Set the resolution, precision, and response time for the sensor. This setting will be written to the EEPROM to allow persistence after power loss. The EEPROM has a limited

amount of writes (>50k).

Resolution

Type: Select

Description: Select the resolution for the sensor

Set Resolution

Type: Button

MAXIM: DS18S20

Manufacturer: MAXIM

Measurements: Temperature

Interfaces: 1-Wire

Libraries: w1thermsensor

Dependencies: w1thermsensor

Manufacturer URL: Link

Datasheet URL: Link

OPTIONS

Period (seconds)

Type: Decimal

Description: The duration (seconds) between measurements or actions

Pre Output

Type: Select

Description: Turn the selected output on before taking every measurement

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

5.2.2 Built-In Inputs (Devices)

- 117/287 - Copyright © 2022

https://pypi.org/project/w1thermsensor
https://www.maximintegrated.com/en/products/sensors/DS18S20.html
https://datasheets.maximintegrated.com/en/ds/DS18S20.pdf

Pre Out Duration

Type: Decimal

Description: If a Pre Output is selected, set the duration (seconds) to turn the Pre Output on for before every measurement

is acquired.

Pre During Measure

Type: Boolean

Description: Check to turn the output off after (opposed to before) the measurement is complete

COMMANDS

Set the resolution, precision, and response time for the sensor. This setting will be written to the EEPROM to allow persistence after power loss. The EEPROM has a limited

amount of writes (>50k).

Resolution

Type: Select

Description: Select the resolution for the sensor

Set Resolution

Type: Button

MAXIM: DS28EA00

Manufacturer: MAXIM

Measurements: Temperature

Interfaces: 1-Wire

Libraries: w1thermsensor

Dependencies: w1thermsensor

Manufacturer URL: Link

Datasheet URL: Link

OPTIONS

Period (seconds)

Type: Decimal

Description: The duration (seconds) between measurements or actions

Pre Output

Type: Select

Description: Turn the selected output on before taking every measurement

Pre Out Duration

Type: Decimal

Description: If a Pre Output is selected, set the duration (seconds) to turn the Pre Output on for before every measurement

is acquired.

Pre During Measure

Type: Boolean

Description: Check to turn the output off after (opposed to before) the measurement is complete

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

5.2.2 Built-In Inputs (Devices)

- 118/287 - Copyright © 2022

https://pypi.org/project/w1thermsensor
https://www.maximintegrated.com/en/products/interface/sensor-interface/DS28EA00.html
https://datasheets.maximintegrated.com/en/ds/DS28EA00.pdf

COMMANDS

Set the resolution, precision, and response time for the sensor. This setting will be written to the EEPROM to allow persistence after power loss. The EEPROM has a limited

amount of writes (>50k).

Resolution

Type: Select

Description: Select the resolution for the sensor

Set Resolution

Type: Button

MAXIM: MAX31850K

Manufacturer: MAXIM

Measurements: Temperature

Interfaces: 1-Wire

Libraries: w1thermsensor

Dependencies: w1thermsensor

Manufacturer URL: Link

Datasheet URL: Link

Product URL: Link

OPTIONS

Period (seconds)

Type: Decimal

Description: The duration (seconds) between measurements or actions

Pre Output

Type: Select

Description: Turn the selected output on before taking every measurement

Pre Out Duration

Type: Decimal

Description: If a Pre Output is selected, set the duration (seconds) to turn the Pre Output on for before every measurement

is acquired.

Pre During Measure

Type: Boolean

Description: Check to turn the output off after (opposed to before) the measurement is complete

COMMANDS

Set the resolution, precision, and response time for the sensor. This setting will be written to the EEPROM to allow persistence after power loss. The EEPROM has a limited

amount of writes (>50k).

Resolution

Type: Select

Description: Select the resolution for the sensor

Set Resolution

Type: Button

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

5.2.2 Built-In Inputs (Devices)

- 119/287 - Copyright © 2022

https://pypi.org/project/w1thermsensor
https://www.maximintegrated.com/en/products/sensors/MAX31850EVKIT.html
https://datasheets.maximintegrated.com/en/ds/MAX31850-MAX31851.pdf
https://www.adafruit.com/product/1727

MAXIM: MAX31855

Manufacturer: MAXIM

Measurements: Temperature (Object/Die)

Interfaces: UART

Libraries: Adafruit_MAX31855

Dependencies: Adafruit_MAX31855, Adafruit-GPIO

Manufacturer URL: Link

Datasheet URL: Link

Product URL: Link

OPTIONS

CS Pin

Type: Integer

Description: The GPIO (using BCM numbering) connected to the Cable Select pin

Measurements Enabled

Type: Multi-Select

Description: The measurements to record

Period (seconds)

Type: Decimal

Description: The duration (seconds) between measurements or actions

Pre Output

Type: Select

Description: Turn the selected output on before taking every measurement

Pre Out Duration

Type: Decimal

Description: If a Pre Output is selected, set the duration (seconds) to turn the Pre Output on for before every measurement

is acquired.

Pre During Measure

Type: Boolean

Description: Check to turn the output off after (opposed to before) the measurement is complete

MAXIM: MAX31856

Manufacturer: MAXIM

Measurements: Temperature (Object/Die)

Interfaces: UART

Libraries: RPi.GPIO

Dependencies: RPi.GPIO

Manufacturer URL: Link

Datasheet URL: Link

Product URL: Link

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

5.2.2 Built-In Inputs (Devices)

- 120/287 - Copyright © 2022

https://github.com/adafruit/Adafruit_Python_MAX31855
https://pypi.org/project/Adafruit-GPIO
https://www.maximintegrated.com/en/products/interface/sensor-interface/MAX31855.html
https://datasheets.maximintegrated.com/en/ds/MAX31855.pdf
https://www.adafruit.com/product/269
https://pypi.org/project/RPi.GPIO
https://www.maximintegrated.com/en/products/sensors/MAX31856.html
https://datasheets.maximintegrated.com/en/ds/MAX31856.pdf
https://www.adafruit.com/product/3263

OPTIONS

CS Pin

Type: Integer

Description: The GPIO (using BCM numbering) connected to the Cable Select pin

Measurements Enabled

Type: Multi-Select

Description: The measurements to record

Period (seconds)

Type: Decimal

Description: The duration (seconds) between measurements or actions

Pre Output

Type: Select

Description: Turn the selected output on before taking every measurement

Pre Out Duration

Type: Decimal

Description: If a Pre Output is selected, set the duration (seconds) to turn the Pre Output on for before every measurement

is acquired.

Pre During Measure

Type: Boolean

Description: Check to turn the output off after (opposed to before) the measurement is complete

MAXIM: MAX31865

Manufacturer: MAXIM

Measurements: Temperature

Interfaces: SPI

Libraries: Adafruit-CircuitPython-MAX31865

Dependencies: adafruit-circuitpython-max31865

Manufacturer URL: Link

Datasheet URL: Link

Product URL: Link

This module was added to allow support for multiple sensors to be connected at the same time, which the original MAX31865

module was not designed for.

OPTIONS

Period (seconds)

Type: Decimal

Description: The duration (seconds) between measurements or actions

Pre Output

Type: Select

Description: Turn the selected output on before taking every measurement

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

5.2.2 Built-In Inputs (Devices)

- 121/287 - Copyright © 2022

https://pypi.org/project/adafruit-circuitpython-max31865
https://www.maximintegrated.com/en/products/interface/sensor-interface/MAX31865.html
https://datasheets.maximintegrated.com/en/ds/MAX31865.pdf
https://www.adafruit.com/product/3328

Pre Out Duration

Type: Decimal

Description: If a Pre Output is selected, set the duration (seconds) to turn the Pre Output on for before every measurement

is acquired.

Pre During Measure

Type: Boolean

Description: Check to turn the output off after (opposed to before) the measurement is complete

Chip Select Pin

Type: Integer

Default Value: 8

Description: Enter the GPIO Chip Select Pin for your device.

Number of wires

Type: Select

Options: [2 Wires | 3 Wires | 4 Wires] (Default in bold)

Description: Select the number of wires your thermocouple has.

MAXIM: MAX31865

Manufacturer: MAXIM

Measurements: Temperature

Interfaces: UART

Libraries: RPi.GPIO

Dependencies: RPi.GPIO

Manufacturer URL: Link

Datasheet URL: Link

Product URL: Link

Note: This module does not allow for multiple sensors to be connected at the same time. For multi-sensor support, use the

MAX31865 CircuitPython Input.

OPTIONS

CS Pin

Type: Integer

Description: The GPIO (using BCM numbering) connected to the Cable Select pin

Period (seconds)

Type: Decimal

Description: The duration (seconds) between measurements or actions

Pre Output

Type: Select

Description: Turn the selected output on before taking every measurement

Pre Out Duration

Type: Decimal

Description: If a Pre Output is selected, set the duration (seconds) to turn the Pre Output on for before every measurement

is acquired.

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

5.2.2 Built-In Inputs (Devices)

- 122/287 - Copyright © 2022

https://pypi.org/project/RPi.GPIO
https://www.maximintegrated.com/en/products/interface/sensor-interface/MAX31865.html
https://datasheets.maximintegrated.com/en/ds/MAX31865.pdf
https://www.adafruit.com/product/3328

Pre During Measure

Type: Boolean

Description: Check to turn the output off after (opposed to before) the measurement is complete

MQTT: MQTT Subscribe (JSON payload)

Manufacturer: MQTT

Measurements: Variable measurements

Interfaces: Mycodo

Libraries: paho-mqtt, jmespath

Dependencies: paho-mqtt, jmespath

A single topic is subscribed to and the returned JSON payload contains one or more key/value pairs. The given JSON Key is used

as a JMESPATH expression to find the corresponding value that will be stored for that channel. Be sure you select and save the

Measurement Unit for each channel. Once the unit has been saved, you can convert to other units in the Convert Measurement

section. Example expressions for jmespath (https://jmespath.org) include temperature, sensors[0].temperature, and

bathroom.temperature which refer to the temperature as a direct key within the first entry of sensors or as a subkey of

bathroom, respectively. Jmespath elements and keys that contain special characters have to be enclosed in double quotes, e.g.

"sensor-1".temperature. Warning: If using multiple MQTT Inputs or Functions, ensure the Client IDs are unique.

OPTIONS

Measurements Enabled

Type: Multi-Select

Description: The measurements to record

Host

Type: Text

Default Value: localhost

Description: Host address or IP

Port

Type: Integer

Default Value: 1883

Description: Host port number

Topic

Type: Text

Default Value: mqtt/test/input

Description: The topic to subscribe to

Keep Alive

Type: Integer

Default Value: 60

Description: Maximum amount of time between received signals. Set to 0 to disable.

Client ID

Type: Text

Default Value: client_bZCtOuMT

Description: Unique client ID for connecting to the server

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

5.2.2 Built-In Inputs (Devices)

- 123/287 - Copyright © 2022

https://pypi.org/project/paho-mqtt
https://pypi.org/project/jmespath

Use Login

Type: Boolean

Description: Send login credentials

Use TLS

Type: Boolean

Description: Send login credentials using TLS

Username

Type: Text

Default Value: user

Description: Username for connecting to the server

Password

Type: Text

Description: Password for connecting to the server. Leave blank to disable.

CHANNEL OPTIONS

Name

Type: Text

Description: A name to distinguish this from others

JSON Key

Type: Text

Description: JMES Path expression to find value in JSON response

MQTT: MQTT Subscribe (Value payload)

Manufacturer: MQTT

Measurements: Variable measurements

Interfaces: Mycodo

Libraries: paho-mqtt

Dependencies: paho-mqtt

A topic is subscribed to for each channel Subscription Topic and the returned payload value will be stored for that channel. Be

sure you select and save the Measurement Unit for each of the channels. Once the unit has been saved, you can convert to other

units in the Convert Measurement section. Warning: If using multiple MQTT Inputs or Functions, ensure the Client IDs are

unique.

OPTIONS

Measurements Enabled

Type: Multi-Select

Description: The measurements to record

Host

Type: Text

Default Value: localhost

Description: Host address or IP

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

5.2.2 Built-In Inputs (Devices)

- 124/287 - Copyright © 2022

https://pypi.org/project/paho-mqtt

Port

Type: Integer

Default Value: 1883

Description: Host port number

Keep Alive

Type: Integer

Default Value: 60

Description: Maximum amount of time between received signals. Set to 0 to disable.

Client ID

Type: Text

Default Value: client_JBFze0AI

Description: Unique client ID for connecting to the server

Use Login

Type: Boolean

Description: Send login credentials

Use TLS

Type: Boolean

Description: Send login credentials using TLS

Username

Type: Text

Default Value: user

Description: Username for connecting to the server

Password

Type: Text

Description: Password for connecting to the server. Leave blank to disable.

CHANNEL OPTIONS

Name

Type: Text

Description: A name to distinguish this from others

Subscription Topic

Type: Text

Description: The MQTT topic to subscribe to

Melexis: MLX90393

Manufacturer: Melexis

Measurements: Magnetic Flux

Interfaces: I
2
C

Libraries: Adafruit-CircuitPython-MLX90393

Dependencies: Adafruit-extended-bus, adafruit-circuitpython-mlx90393

Manufacturer URL: Link

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

5.2.2 Built-In Inputs (Devices)

- 125/287 - Copyright © 2022

https://pypi.org/project/Adafruit-extended-bus
https://pypi.org/project/adafruit-circuitpython-mlx90393
https://www.melexis.com/en/product/MLX90393/Triaxis-Micropower-Magnetometer

Datasheet URL: Link

Product URLs: Link 1, Link 2, Link 3

OPTIONS

I2C Address

Type: Text

Description: The I2C address of the device

I2C Bus

Type: Integer

Description: The I2C bus the device is connected to

Period (seconds)

Type: Decimal

Description: The duration (seconds) between measurements or actions

Pre Output

Type: Select

Description: Turn the selected output on before taking every measurement

Pre Out Duration

Type: Decimal

Description: If a Pre Output is selected, set the duration (seconds) to turn the Pre Output on for before every measurement

is acquired.

Pre During Measure

Type: Boolean

Description: Check to turn the output off after (opposed to before) the measurement is complete

Melexis: MLX90614

Manufacturer: Melexis

Measurements: Temperature (Ambient/Object)

Interfaces: I
2
C

Libraries: smbus2

Dependencies: smbus2

Manufacturer URL: Link

Datasheet URL: Link

Product URL: Link

OPTIONS

I2C Address

Type: Text

Description: The I2C address of the device

I2C Bus

Type: Integer

Description: The I2C bus the device is connected to

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

5.2.2 Built-In Inputs (Devices)

- 126/287 - Copyright © 2022

https://cdn-learn.adafruit.com/assets/assets/000/069/600/original/MLX90393-Datasheet-Melexis.pdf
https://www.adafruit.com/product/4022
https://shop.pimoroni.com/products/adafruit-wide-range-triple-axis-magnetometer-mlx90393
https://www.berrybase.de/sensoren-module/bewegung-distanz/adafruit-wide-range-drei-achsen-magnetometer-mlx90393
https://pypi.org/project/smbus2
https://www.melexis.com/en/product/MLX90614/Digital-Plug-Play-Infrared-Thermometer-TO-Can
https://www.melexis.com/-/media/files/documents/datasheets/mlx90614-datasheet-melexis.pdf
https://www.sparkfun.com/products/9570

Measurements Enabled

Type: Multi-Select

Description: The measurements to record

Period (seconds)

Type: Decimal

Description: The duration (seconds) between measurements or actions

Pre Output

Type: Select

Description: Turn the selected output on before taking every measurement

Pre Out Duration

Type: Decimal

Description: If a Pre Output is selected, set the duration (seconds) to turn the Pre Output on for before every measurement

is acquired.

Pre During Measure

Type: Boolean

Description: Check to turn the output off after (opposed to before) the measurement is complete

Microchip: MCP3008

Manufacturer: Microchip

Measurements: Voltage (Analog-to-Digital Converter)

Interfaces: UART

Libraries: Adafruit_MCP3008

Dependencies: Adafruit-MCP3008

Manufacturer URL: Link

Datasheet URL: Link

Product URL: Link

OPTIONS

CS Pin

Type: Integer

Description: The GPIO (using BCM numbering) connected to the Cable Select pin

Measurements Enabled

Type: Multi-Select

Description: The measurements to record

Period (seconds)

Type: Decimal

Description: The duration (seconds) between measurements or actions

Pre Output

Type: Select

Description: Turn the selected output on before taking every measurement

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

5.2.2 Built-In Inputs (Devices)

- 127/287 - Copyright © 2022

https://pypi.org/project/Adafruit-MCP3008
https://www.microchip.com/wwwproducts/en/en010530
http://ww1.microchip.com/downloads/en/DeviceDoc/21295d.pdf
https://www.adafruit.com/product/856

Pre Out Duration

Type: Decimal

Description: If a Pre Output is selected, set the duration (seconds) to turn the Pre Output on for before every measurement

is acquired.

Pre During Measure

Type: Boolean

Description: Check to turn the output off after (opposed to before) the measurement is complete

VREF (volts)

Type: Decimal

Default Value: 3.3

Description: Set the VREF voltage

Microchip: MCP342x (x=2,3,4,6,7,8)

Manufacturer: Microchip

Measurements: Voltage (Analog-to-Digital Converter)

Interfaces: I
2
C

Libraries: MCP342x

Dependencies: smbus2, MCP342x

Manufacturer URLs: Link 1, Link 2, Link 3, Link 4, Link 5

Datasheet URLs: Link 1, Link 2

OPTIONS

I2C Address

Type: Text

Description: The I2C address of the device

I2C Bus

Type: Integer

Description: The I2C bus the device is connected to

Measurements Enabled

Type: Multi-Select

Description: The measurements to record

Period (seconds)

Type: Decimal

Description: The duration (seconds) between measurements or actions

Pre Output

Type: Select

Description: Turn the selected output on before taking every measurement

Pre Out Duration

Type: Decimal

Description: If a Pre Output is selected, set the duration (seconds) to turn the Pre Output on for before every measurement

is acquired.

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

5.2.2 Built-In Inputs (Devices)

- 128/287 - Copyright © 2022

https://pypi.org/project/smbus2
https://pypi.org/project/MCP342x
https://www.microchip.com/wwwproducts/en/MCP3422
https://www.microchip.com/wwwproducts/en/MCP3423
https://www.microchip.com/wwwproducts/en/MCP3424
https://www.microchip.com/wwwproducts/en/MCP3426https://www.microchip.com/wwwproducts/en/MCP3427
https://www.microchip.com/wwwproducts/en/MCP3428
http://ww1.microchip.com/downloads/en/DeviceDoc/22088c.pdf
http://ww1.microchip.com/downloads/en/DeviceDoc/22226a.pdf

Pre During Measure

Type: Boolean

Description: Check to turn the output off after (opposed to before) the measurement is complete

Microchip: MCP9808

Manufacturer: Microchip

Measurements: Temperature

Interfaces: I
2
C

Libraries: Adafruit_MCP9808

Dependencies: Adafruit-GPIO, Adafruit_MCP9808

Manufacturer URL: Link

Datasheet URL: Link

Product URL: Link

OPTIONS

I2C Address

Type: Text

Description: The I2C address of the device

I2C Bus

Type: Integer

Description: The I2C bus the device is connected to

Period (seconds)

Type: Decimal

Description: The duration (seconds) between measurements or actions

Pre Output

Type: Select

Description: Turn the selected output on before taking every measurement

Pre Out Duration

Type: Decimal

Description: If a Pre Output is selected, set the duration (seconds) to turn the Pre Output on for before every measurement

is acquired.

Pre During Measure

Type: Boolean

Description: Check to turn the output off after (opposed to before) the measurement is complete

Multiple Manufacturers: HC-SR04

Manufacturer: Multiple Manufacturers

Measurements: Ultrasonic Distance

Interfaces: GPIO

Libraries: Adafruit-CircuitPython-HCSR04

Dependencies: libgpiod-dev, pyusb, adafruit-circuitpython-hcsr04

Manufacturer URL: Link

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

5.2.2 Built-In Inputs (Devices)

- 129/287 - Copyright © 2022

https://pypi.org/project/Adafruit-GPIO
https://github.com/adafruit/Adafruit_Python_MCP9808
https://www.microchip.com/wwwproducts/en/en556182
http://ww1.microchip.com/downloads/en/DeviceDoc/MCP9808-0.5C-Maximum-Accuracy-Digital-Temperature-Sensor-Data-Sheet-DS20005095B.pdf
https://www.adafruit.com/product/1782
https://packages.debian.org/buster/libgpiod-dev
https://pypi.org/project/pyusb
https://pypi.org/project/adafruit-circuitpython-hcsr04
https://www.cytron.io/p-5v-hc-sr04-ultrasonic-sensor

Datasheet URL: Link

Product URL: Link

Additional URL: Link

OPTIONS

Period (seconds)

Type: Decimal

Description: The duration (seconds) between measurements or actions

Pre Output

Type: Select

Description: Turn the selected output on before taking every measurement

Pre Out Duration

Type: Decimal

Description: If a Pre Output is selected, set the duration (seconds) to turn the Pre Output on for before every measurement

is acquired.

Pre During Measure

Type: Boolean

Description: Check to turn the output off after (opposed to before) the measurement is complete

Trigger Pin

Type: Integer

Description: Enter the GPIO Trigger Pin for your device (BCM numbering).

Echo Pin

Type: Integer

Description: Enter the GPIO Echo Pin for your device (BCM numbering).

Panasonic: AMG8833

Manufacturer: Panasonic

Measurements: 8x8 Temperature Grid

Interfaces: I
2
C

Libraries: Adafruit_AMG88xx/Pillow/colour

Dependencies: libjpeg-dev, zlib1g-dev, colour, Pillow, Adafruit_AMG88xx

OPTIONS

I2C Address

Type: Text

Description: The I2C address of the device

I2C Bus

Type: Integer

Description: The I2C bus the device is connected to

Measurements Enabled

Type: Multi-Select

Description: The measurements to record

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

5.2.2 Built-In Inputs (Devices)

- 130/287 - Copyright © 2022

http://web.eece.maine.edu/~zhu/book/lab/HC-SR04-20User-20Manual.pdf
https://www.adafruit.com/product/3942
https://learn.adafruit.com/ultrasonic-sonar-distance-sensors/python-circuitpython
https://packages.debian.org/buster/libjpeg-dev
https://packages.debian.org/buster/zlib1g-dev
https://pypi.org/project/colour
https://pypi.org/project/Pillow
https://github.com/adafruit/Adafruit_AMG88xx_python

Period (seconds)

Type: Decimal

Description: The duration (seconds) between measurements or actions

Pre Output

Type: Select

Description: Turn the selected output on before taking every measurement

Pre Out Duration

Type: Decimal

Description: If a Pre Output is selected, set the duration (seconds) to turn the Pre Output on for before every measurement

is acquired.

Pre During Measure

Type: Boolean

Description: Check to turn the output off after (opposed to before) the measurement is complete

ROHM: BH1750

Manufacturer: ROHM

Measurements: Light

Interfaces: I
2
C

Libraries: smbus2

Dependencies: smbus2

Datasheet URL: Link

Product URL: Link

OPTIONS

I2C Address

Type: Text

Description: The I2C address of the device

I2C Bus

Type: Integer

Description: The I2C bus the device is connected to

Period (seconds)

Type: Decimal

Description: The duration (seconds) between measurements or actions

Pre Output

Type: Select

Description: Turn the selected output on before taking every measurement

Pre Out Duration

Type: Decimal

Description: If a Pre Output is selected, set the duration (seconds) to turn the Pre Output on for before every measurement

is acquired.

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

5.2.2 Built-In Inputs (Devices)

- 131/287 - Copyright © 2022

https://pypi.org/project/smbus2
http://rohmfs.rohm.com/en/products/databook/datasheet/ic/sensor/light/bh1721fvc-e.pdf
https://www.dfrobot.com/product-531.html

Pre During Measure

Type: Boolean

Description: Check to turn the output off after (opposed to before) the measurement is complete

Raspberry Pi Foundation: Sense HAT

Manufacturer: Raspberry Pi Foundation

Measurements: hum/temp/press/compass/magnet/accel/gyro

Interfaces: I
2
C

Libraries: sense-hat

Dependencies: sense-hat

Manufacturer URL: Link

This module acquires measurements from the Raspberry Pi Sense HAT sensors, which include the LPS25H, LSM9DS1, and

HTS221.

OPTIONS

Measurements Enabled

Type: Multi-Select

Description: The measurements to record

Period (seconds)

Type: Decimal

Description: The duration (seconds) between measurements or actions

Pre Output

Type: Select

Description: Turn the selected output on before taking every measurement

Pre Out Duration

Type: Decimal

Description: If a Pre Output is selected, set the duration (seconds) to turn the Pre Output on for before every measurement

is acquired.

Pre During Measure

Type: Boolean

Description: Check to turn the output off after (opposed to before) the measurement is complete

Ruuvi: RuuviTag

Manufacturer: Ruuvi

Measurements: Acceleration/Humidity/Pressure/Temperature

Interfaces: BT

Libraries: ruuvitag_sensor

Dependencies: psutil, bluez, bluez-hcidump, ruuvitag-sensor

Manufacturer URL: Link

Datasheet URL: Link

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

5.2.2 Built-In Inputs (Devices)

- 132/287 - Copyright © 2022

https://pypi.org/project/sense-hat
https://www.raspberrypi.org/products/sense-hat/
https://pypi.org/project/psutil
https://packages.debian.org/buster/bluez
https://packages.debian.org/buster/bluez-hcidump
https://pypi.org/project/ruuvitag-sensor
https://ruuvi.com/
https://ruuvi.com/files/ruuvitag-tech-spec-2019-7.pdf

OPTIONS

MAC (XX:XX:XX:XX:XX:XX)

Type: Text

Description: The MAC address of the Bluetooth device

BT Adapter (hci[X])

Type: Integer

Description: The adapter of the Bluetooth device

Measurements Enabled

Type: Multi-Select

Description: The measurements to record

Period (seconds)

Type: Decimal

Description: The duration (seconds) between measurements or actions

Pre Output

Type: Select

Description: Turn the selected output on before taking every measurement

Pre Out Duration

Type: Decimal

Description: If a Pre Output is selected, set the duration (seconds) to turn the Pre Output on for before every measurement

is acquired.

Pre During Measure

Type: Boolean

Description: Check to turn the output off after (opposed to before) the measurement is complete

STMicroelectronics: VL53L0X

Manufacturer: STMicroelectronics

Measurements: Millimeter (Time-of-Flight Distance)

Interfaces: I
2
C

Libraries: VL53L0X_rasp_python

Dependencies: VL53L0X

Manufacturer URL: Link

Datasheet URL: Link

Product URLs: Link 1, Link 2

OPTIONS

I2C Address

Type: Text

Description: The I2C address of the device

I2C Bus

Type: Integer

Description: The I2C bus the device is connected to

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

5.2.2 Built-In Inputs (Devices)

- 133/287 - Copyright © 2022

https://github.com/grantramsay/VL53L0X_rasp_python
https://www.st.com/en/imaging-and-photonics-solutions/vl53l0x.html
https://www.st.com/resource/en/datasheet/vl53l0x.pdf
https://www.adafruit.com/product/3317
https://www.pololu.com/product/2490

Measurements Enabled

Type: Multi-Select

Description: The measurements to record

Period (seconds)

Type: Decimal

Description: The duration (seconds) between measurements or actions

Pre Output

Type: Select

Description: Turn the selected output on before taking every measurement

Pre Out Duration

Type: Decimal

Description: If a Pre Output is selected, set the duration (seconds) to turn the Pre Output on for before every measurement

is acquired.

Pre During Measure

Type: Boolean

Description: Check to turn the output off after (opposed to before) the measurement is complete

Accuracy

Type: Select

Options: [Good Accuracy (33 ms, 1.2 m range) | Better Accuracy (66 ms, 1.2 m range) | Best Accuracy (200 ms, 1.2 m

range) | Long Range (33 ms, 2 m) | High Speed, Low Accuracy (20 ms, 1.2 m)] (Default in bold)

Description: Set the accuracy. A longer measurement duration yields a more accurate measurement

COMMANDS

New I2C Address

Type: Text

Default Value: 0x52

Description: The new I2C to set the device to

Set I2C Address

Type: Button

STMicroelectronics: VL53L1X

Manufacturer: STMicroelectronics

Measurements: Millimeter (Time-of-Flight Distance)

Interfaces: I
2
C

Libraries: VL53L1X

Dependencies: smbus2, vl53l1x

Manufacturer URL: Link

Datasheet URL: Link

Product URLs: Link 1, Link 2

Notes when setting a custom timing budget: A higher timing budget results in greater measurement accuracy, but also a higher

power consumption. The inter measurement period must be >= the timing budget, otherwise it will be double the expected

value.

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

5.2.2 Built-In Inputs (Devices)

- 134/287 - Copyright © 2022

https://pypi.org/project/smbus2
https://pypi.org/project/vl53l1x
https://www.st.com/en/imaging-and-photonics-solutions/vl53l1x.html
https://www.st.com/resource/en/datasheet/vl53l1x.pdf
https://www.pololu.com/product/3415
https://www.sparkfun.com/products/14722

OPTIONS

I2C Address

Type: Text

Description: The I2C address of the device

I2C Bus

Type: Integer

Description: The I2C bus the device is connected to

Measurements Enabled

Type: Multi-Select

Description: The measurements to record

Period (seconds)

Type: Decimal

Description: The duration (seconds) between measurements or actions

Pre Output

Type: Select

Description: Turn the selected output on before taking every measurement

Pre Out Duration

Type: Decimal

Description: If a Pre Output is selected, set the duration (seconds) to turn the Pre Output on for before every measurement

is acquired.

Pre During Measure

Type: Boolean

Description: Check to turn the output off after (opposed to before) the measurement is complete

Range

Type: Select

Options: [Short Range | Medium Range | Long Range | Custom Timing Budget] (Default in bold)

Description: Select a range or select to set a custom Timing Budget and Inter Measurement Period.

Timing Budget (microseconds)

Type: Integer

Default Value: 66000

Description: Set the timing budget. Must be less than or equal to the Inter Measurement Period.

Inter Measurement Period (milliseconds)

Type: Integer

Default Value: 70

Description: Set the Inter Measurement Period

Seeedstudio: DHT11/22

Manufacturer: Seeedstudio

Measurements: Humidity/Temperature

Interfaces: GROVE

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

5.2.2 Built-In Inputs (Devices)

- 135/287 - Copyright © 2022

Libraries: grovepi

Dependencies: libatlas-base-dev, grovepi

Manufacturer URLs: Link 1, Link 2

Enter the Grove Pi+ GPIO pin connected to the sensor and select the sensor type.

OPTIONS

Measurements Enabled

Type: Multi-Select

Description: The measurements to record

Period (seconds)

Type: Decimal

Description: The duration (seconds) between measurements or actions

Sensor Type

Type: Select

Options: [DHT11 (Blue) | DHT22 (White)] (Default in bold)

Description: Sensor type

Sensirion: SCD-4x (SCD-40, SCD-41)

Manufacturer: Sensirion

Measurements: CO2/Temperature/Humidity

Interfaces: I
2
C

Libraries: Adafruit-CircuitPython-SCD4x

Dependencies: pyusb, Adafruit-extended-bus, adafruit-circuitpython-scd4x

Manufacturer URL: Link

OPTIONS

I2C Address

Type: Text

Description: The I2C address of the device

I2C Bus

Type: Integer

Description: The I2C bus the device is connected to

Measurements Enabled

Type: Multi-Select

Description: The measurements to record

Period (seconds)

Type: Decimal

Description: The duration (seconds) between measurements or actions

Pre Output

Type: Select

Description: Turn the selected output on before taking every measurement

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

5.2.2 Built-In Inputs (Devices)

- 136/287 - Copyright © 2022

https://packages.debian.org/buster/libatlas-base-dev
https://pypi.org/project/grovepi
https://wiki.seeedstudio.com/Grove-Temperature_and_Humidity_Sensor_Pro/
https://wiki.seeedstudio.com/Grove-TemperatureAndHumidity_Sensor/
https://pypi.org/project/pyusb
https://pypi.org/project/Adafruit-extended-bus
https://pypi.org/project/adafruit-circuitpython-scd4x
https://www.sensirion.com/en/environmental-sensors/carbon-dioxide-sensors/carbon-dioxide-sensor-scd4x/

Pre Out Duration

Type: Decimal

Description: If a Pre Output is selected, set the duration (seconds) to turn the Pre Output on for before every measurement

is acquired.

Pre During Measure

Type: Boolean

Description: Check to turn the output off after (opposed to before) the measurement is complete

Temperature Offset

Type: Decimal

Default Value: 4.0

Description: Set the sensor temperature offset

Altitude (m)

Type: Integer

Description: Set the sensor altitude (meters)

Automatic Self-Calibration

Type: Boolean

Description: Set the sensor automatic self-calibration

Persist Settings

Type: Boolean

Default Value: True

Description: Settings will persist after powering off

COMMANDS

You can force the CO2 calibration for a specific CO2 concentration value (in ppmv).

CO2 Concentration (ppmv)

Type: Decimal

Default Value: 400.0

Description: Calibrate to this CO2 concentration that the sensor is being exposed to (in ppmv)

Calibrate CO2

Type: Button

Sensirion: SCD30

Manufacturer: Sensirion

Measurements: CO2/Humidity/Temperature

Interfaces: I
2
C

Libraries: Adafruit-CircuitPython-SCD30

Dependencies: pyusb, Adafruit-extended-bus, adafruit-circuitPython-scd30

Manufacturer URL: Link

Datasheet URL: Link

Product URLs: Link 1, Link 2

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

5.2.2 Built-In Inputs (Devices)

- 137/287 - Copyright © 2022

https://pypi.org/project/pyusb
https://pypi.org/project/Adafruit-extended-bus
https://pypi.org/project/adafruit-circuitPython-scd30
https://www.sensirion.com/en/environmental-sensors/carbon-dioxide-sensors/carbon-dioxide-sensors-co2/
https://www.sensirion.com/fileadmin/user_upload/customers/sensirion/Dokumente/9.5_CO2/Sensirion_CO2_Sensors_SCD30_Datasheet.pdf
https://www.sparkfun.com/products/15112
https://www.futureelectronics.com/p/4115766

OPTIONS

I2C Address

Type: Text

Description: The I2C address of the device

I2C Bus

Type: Integer

Description: The I2C bus the device is connected to

Measurements Enabled

Type: Multi-Select

Description: The measurements to record

Period (seconds)

Type: Decimal

Description: The duration (seconds) between measurements or actions

Pre Output

Type: Select

Description: Turn the selected output on before taking every measurement

Pre Out Duration

Type: Decimal

Description: If a Pre Output is selected, set the duration (seconds) to turn the Pre Output on for before every measurement

is acquired.

Pre During Measure

Type: Boolean

Description: Check to turn the output off after (opposed to before) the measurement is complete

I2C Frequency: The SCD-30 has temperamental I2C with clock stretching. The datasheet recommends starting at 50,000 Hz.

I2C Frequency (Hz)

Type: Integer

Default Value: 50000

Automatic Self Ccalibration (ASC): To work correctly, the sensor must be on and active for 7 days after enabling ASC, and exposed to fresh air for at least 1 hour per day. Consult

the manufacturer’s documentation for more information.

Enable Automatic Self Calibration

Type: Boolean

Temperature Offset: Specifies the offset to be added to the reported measurements to account for a bias in the measured signal. Value is in degrees Celsius with a resolution of

0.01 degrees and a maximum value of 655.35 C.

Temperature Offset

Type: Decimal

Ambient Air Pressure (mBar): Specify the ambient air pressure at the measurement location in mBar. Setting this value adjusts the CO2 measurement calculations to account for

the air pressure’s effect on readings. Values must be in mBar, from 700 to 1200 mBar.

Ambient Air Pressure (mBar)

Type: Integer

Default Value: 1200

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

5.2.2 Built-In Inputs (Devices)

- 138/287 - Copyright © 2022

Altitude: Specifies the altitude at the measurement location in meters above sea level. Setting this value adjusts the CO2 measurement calculations to account for the air

pressure’s effect on readings.

Altitude (m)

Type: Integer

Default Value: 100

COMMANDS

A soft reset restores factory default values.

Soft Reset

Type: Button

Forced Re-Calibration: The SCD-30 is placed in an environment with a known CO2 concentration, this concentration value is entered in the CO2 Concentration (ppmv) field, then

the Foce Calibration button is pressed. But how do you come up with that known value? That is a caveat of this approach and Sensirion suggests three approaches: 1. Using a

separate secondary calibrated CO2 sensor to provide the value. 2. Exposing the SCD-30 to a controlled environment with a known value. 3. Exposing the SCD-30 to fresh outside

air and using a value of 400 ppm.

CO2 Concentration (ppmv)

Type: Integer

Default Value: 800

Description: The CO2 concentration of the sensor environment when forcing calibration

Force Recalibration

Type: Button

Sensirion: SCD30

Manufacturer: Sensirion

Measurements: CO2/Humidity/Temperature

Interfaces: I
2
C

Libraries: scd30_i2c

Dependencies: scd30-i2c

Manufacturer URL: Link

Datasheet URL: Link

Product URLs: Link 1, Link 2

OPTIONS

I2C Address

Type: Text

Description: The I2C address of the device

I2C Bus

Type: Integer

Description: The I2C bus the device is connected to

Measurements Enabled

Type: Multi-Select

Description: The measurements to record

Period (seconds)

Type: Decimal

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

5.2.2 Built-In Inputs (Devices)

- 139/287 - Copyright © 2022

https://pypi.org/project/scd30-i2c
https://www.sensirion.com/en/environmental-sensors/carbon-dioxide-sensors/carbon-dioxide-sensors-co2/
https://www.sensirion.com/fileadmin/user_upload/customers/sensirion/Dokumente/9.5_CO2/Sensirion_CO2_Sensors_SCD30_Datasheet.pdf
https://www.sparkfun.com/products/15112
https://www.futureelectronics.com/p/4115766

Description: The duration (seconds) between measurements or actions

Pre Output

Type: Select

Description: Turn the selected output on before taking every measurement

Pre Out Duration

Type: Decimal

Description: If a Pre Output is selected, set the duration (seconds) to turn the Pre Output on for before every measurement

is acquired.

Pre During Measure

Type: Boolean

Description: Check to turn the output off after (opposed to before) the measurement is complete

Automatic Self Ccalibration (ASC): To work correctly, the sensor must be on and active for 7 days after enabling ASC, and exposed to fresh air for at least 1 hour per day. Consult

the manufacturer’s documentation for more information.

Enable Automatic Self Calibration

Type: Boolean

COMMANDS

A soft reset restores factory default values.

Soft Reset

Type: Button

Sensirion: SHT1x/7x

Manufacturer: Sensirion

Measurements: Humidity/Temperature

Interfaces: GPIO

Libraries: sht_sensor

Dependencies: sht-sensor

Manufacturer URLs: Link 1, Link 2

OPTIONS

Measurements Enabled

Type: Multi-Select

Description: The measurements to record

Period (seconds)

Type: Decimal

Description: The duration (seconds) between measurements or actions

Pre Output

Type: Select

Description: Turn the selected output on before taking every measurement

Pre Out Duration

Type: Decimal

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

5.2.2 Built-In Inputs (Devices)

- 140/287 - Copyright © 2022

https://pypi.org/project/sht-sensor
https://www.sensirion.com/en/environmental-sensors/humidity-sensors/digital-humidity-sensors-for-accurate-measurements/
https://www.sensirion.com/en/environmental-sensors/humidity-sensors/pintype-digital-humidity-sensors/

Description: If a Pre Output is selected, set the duration (seconds) to turn the Pre Output on for before every measurement

is acquired.

Pre During Measure

Type: Boolean

Description: Check to turn the output off after (opposed to before) the measurement is complete

Sensirion: SHT2x

Manufacturer: Sensirion

Measurements: Humidity/Temperature

Interfaces: I
2
C

Libraries: sht20

Dependencies: sht20

Manufacturer URL: Link

OPTIONS

Measurements Enabled

Type: Multi-Select

Description: The measurements to record

Period (seconds)

Type: Decimal

Description: The duration (seconds) between measurements or actions

Pre Output

Type: Select

Description: Turn the selected output on before taking every measurement

Pre Out Duration

Type: Decimal

Description: If a Pre Output is selected, set the duration (seconds) to turn the Pre Output on for before every measurement

is acquired.

Pre During Measure

Type: Boolean

Description: Check to turn the output off after (opposed to before) the measurement is complete

Temperature Resolution

Type: Select

Options: [11-bit | 12-bit | 13-bit | 14-bit] (Default in bold)

Description: The resolution of the temperature measurement

Sensirion: SHT2x

Manufacturer: Sensirion

Measurements: Humidity/Temperature

Interfaces: I
2
C

Libraries: smbus2

Dependencies: smbus2

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

5.2.2 Built-In Inputs (Devices)

- 141/287 - Copyright © 2022

https://pypi.org/project/sht20
https://www.sensirion.com/en/environmental-sensors/humidity-sensors/humidity-temperature-sensor-sht2x-digital-i2c-accurate/
https://pypi.org/project/smbus2

Manufacturer URL: Link

OPTIONS

Measurements Enabled

Type: Multi-Select

Description: The measurements to record

Period (seconds)

Type: Decimal

Description: The duration (seconds) between measurements or actions

Pre Output

Type: Select

Description: Turn the selected output on before taking every measurement

Pre Out Duration

Type: Decimal

Description: If a Pre Output is selected, set the duration (seconds) to turn the Pre Output on for before every measurement

is acquired.

Pre During Measure

Type: Boolean

Description: Check to turn the output off after (opposed to before) the measurement is complete

Sensirion: SHT31-D

Manufacturer: Sensirion

Measurements: Humidity/Temperature

Interfaces: I
2
C

Libraries: Adafruit_CircuitPython_SHT31

Dependencies: pyusb, Adafruit-extended-bus, adafruit-circuitpython-sht31d

Manufacturer URL: Link

OPTIONS

I2C Address

Type: Text

Description: The I2C address of the device

I2C Bus

Type: Integer

Description: The I2C bus the device is connected to

Measurements Enabled

Type: Multi-Select

Description: The measurements to record

Period (seconds)

Type: Decimal

Description: The duration (seconds) between measurements or actions

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

5.2.2 Built-In Inputs (Devices)

- 142/287 - Copyright © 2022

https://www.sensirion.com/en/environmental-sensors/humidity-sensors/humidity-temperature-sensor-sht2x-digital-i2c-accurate/
https://pypi.org/project/pyusb
https://pypi.org/project/Adafruit-extended-bus
https://pypi.org/project/adafruit-circuitpython-sht31d
https://www.sensirion.com/en/environmental-sensors/humidity-sensors/digital-humidity-sensors-for-various-applications/

Pre Output

Type: Select

Description: Turn the selected output on before taking every measurement

Pre Out Duration

Type: Decimal

Description: If a Pre Output is selected, set the duration (seconds) to turn the Pre Output on for before every measurement

is acquired.

Pre During Measure

Type: Boolean

Description: Check to turn the output off after (opposed to before) the measurement is complete

Sensirion: SHT3x (30, 31, 35)

Manufacturer: Sensirion

Measurements: Humidity/Temperature

Interfaces: I
2
C

Libraries: Adafruit_SHT31

Dependencies: Adafruit-GPIO, Adafruit-SHT31

Manufacturer URL: Link

OPTIONS

I2C Address

Type: Text

Description: The I2C address of the device

I2C Bus

Type: Integer

Description: The I2C bus the device is connected to

Measurements Enabled

Type: Multi-Select

Description: The measurements to record

Period (seconds)

Type: Decimal

Description: The duration (seconds) between measurements or actions

Pre Output

Type: Select

Description: Turn the selected output on before taking every measurement

Pre Out Duration

Type: Decimal

Description: If a Pre Output is selected, set the duration (seconds) to turn the Pre Output on for before every measurement

is acquired.

Pre During Measure

Type: Boolean

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

5.2.2 Built-In Inputs (Devices)

- 143/287 - Copyright © 2022

https://pypi.org/project/Adafruit-GPIO
https://pypi.org/project/Adafruit-SHT31
https://www.sensirion.com/en/environmental-sensors/humidity-sensors/digital-humidity-sensors-for-various-applications/

Description: Check to turn the output off after (opposed to before) the measurement is complete

Enable Heater

Type: Boolean

Description: Enable heater to evaporate condensation. Turn on heater x seconds every y measurements.

Heater On Seconds

Type: Decimal

Default Value: 1.0

Description: How long to turn the heater on (seconds).

Heater On Period

Type: Integer

Default Value: 10

Description: After how many measurements to turn the heater on. This will repeat.

Sensirion: SHT4X

Manufacturer: Sensirion

Measurements: Humidity/Temperature

Interfaces: I
2
C

Libraries: Adafruit_CircuitPython_SHT4X

Dependencies: pyusb, Adafruit-extended-bus, adafruit_circuitpython_sht4x

Manufacturer URL: Link

OPTIONS

I2C Address

Type: Text

Description: The I2C address of the device

I2C Bus

Type: Integer

Description: The I2C bus the device is connected to

Measurements Enabled

Type: Multi-Select

Description: The measurements to record

Period (seconds)

Type: Decimal

Description: The duration (seconds) between measurements or actions

Pre Output

Type: Select

Description: Turn the selected output on before taking every measurement

Pre Out Duration

Type: Decimal

Description: If a Pre Output is selected, set the duration (seconds) to turn the Pre Output on for before every measurement

is acquired.

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

5.2.2 Built-In Inputs (Devices)

- 144/287 - Copyright © 2022

https://pypi.org/project/pyusb
https://pypi.org/project/Adafruit-extended-bus
https://pypi.org/project/adafruit_circuitpython_sht4x
https://www.sensirion.com/en/environmental-sensors/humidity-sensors/digital-humidity-sensors-for-various-applications/

Pre During Measure

Type: Boolean

Description: Check to turn the output off after (opposed to before) the measurement is complete

Sensirion: SHTC3

Manufacturer: Sensirion

Measurements: Humidity/Temperature

Interfaces: I
2
C

Libraries: Adafruit_CircuitPython_SHT3C

Dependencies: pyusb, Adafruit-extended-bus, adafruit_circuitpython_shtc3

Manufacturer URL: Link

OPTIONS

I2C Address

Type: Text

Description: The I2C address of the device

I2C Bus

Type: Integer

Description: The I2C bus the device is connected to

Measurements Enabled

Type: Multi-Select

Description: The measurements to record

Period (seconds)

Type: Decimal

Description: The duration (seconds) between measurements or actions

Pre Output

Type: Select

Description: Turn the selected output on before taking every measurement

Pre Out Duration

Type: Decimal

Description: If a Pre Output is selected, set the duration (seconds) to turn the Pre Output on for before every measurement

is acquired.

Pre During Measure

Type: Boolean

Description: Check to turn the output off after (opposed to before) the measurement is complete

Sensorion: SHT31 Smart Gadget

Manufacturer: Sensorion

Measurements: Humidity/Temperature

Interfaces: BT

Libraries: bluepy

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

5.2.2 Built-In Inputs (Devices)

- 145/287 - Copyright © 2022

https://pypi.org/project/pyusb
https://pypi.org/project/Adafruit-extended-bus
https://pypi.org/project/adafruit_circuitpython_shtc3
https://www.sensirion.com/en/environmental-sensors/humidity-sensors/digital-humidity-sensors-for-various-applications/

Dependencies: pi-bluetooth, libglib2.0-dev, bluepy

Manufacturer URL: Link

OPTIONS

MAC (XX:XX:XX:XX:XX:XX)

Type: Text

Description: The MAC address of the Bluetooth device

BT Adapter (hci[X])

Type: Integer

Description: The adapter of the Bluetooth device

Measurements Enabled

Type: Multi-Select

Description: The measurements to record

Period (seconds)

Type: Decimal

Description: The duration (seconds) between measurements or actions

Pre Output

Type: Select

Description: Turn the selected output on before taking every measurement

Pre Out Duration

Type: Decimal

Description: If a Pre Output is selected, set the duration (seconds) to turn the Pre Output on for before every measurement

is acquired.

Pre During Measure

Type: Boolean

Description: Check to turn the output off after (opposed to before) the measurement is complete

Download Stored Data

Type: Boolean

Default Value: True

Description: Download the data logged to the device.

Set Logging Interval

Type: Integer

Default Value: 600

Description: Set the logging interval (seconds) the device will store measurements on its internal memory.

Silicon Labs: SI1145

Manufacturer: Silicon Labs

Measurements: Light (UV/Visible/IR), Proximity (cm)

Interfaces: I
2
C

Libraries: si1145

Dependencies: SI1145

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

5.2.2 Built-In Inputs (Devices)

- 146/287 - Copyright © 2022

https://packages.debian.org/buster/pi-bluetooth
https://packages.debian.org/buster/libglib2.0-dev
https://pypi.org/project/bluepy
https://www.sensirion.com/en/environmental-sensors/humidity-sensors/development-kit/
https://pypi.org/project/SI1145

Manufacturer URL: Link

Datasheet URL: Link

Product URL: Link

OPTIONS

I2C Address

Type: Text

Description: The I2C address of the device

I2C Bus

Type: Integer

Description: The I2C bus the device is connected to

Measurements Enabled

Type: Multi-Select

Description: The measurements to record

Period (seconds)

Type: Decimal

Description: The duration (seconds) between measurements or actions

Pre Output

Type: Select

Description: Turn the selected output on before taking every measurement

Pre Out Duration

Type: Decimal

Description: If a Pre Output is selected, set the duration (seconds) to turn the Pre Output on for before every measurement

is acquired.

Pre During Measure

Type: Boolean

Description: Check to turn the output off after (opposed to before) the measurement is complete

Silicon Labs: Si7021

Manufacturer: Silicon Labs

Measurements: Temperature/Humidity

Interfaces: I
2
C

Libraries: Adafruit-CircuitPython-Si7021

Dependencies: pyusb, Adafruit-extended-bus, adafruit-circuitpython-si7021

Datasheet URL: Link

OPTIONS

I2C Address

Type: Text

Description: The I2C address of the device

I2C Bus

Type: Integer

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

5.2.2 Built-In Inputs (Devices)

- 147/287 - Copyright © 2022

https://learn.adafruit.com/adafruit-si1145-breakout-board-uv-ir-visible-sensor
https://www.silabs.com/support/resources.p-sensors_optical-sensors_si114x
https://www.adafruit.com/product/1777
https://pypi.org/project/pyusb
https://pypi.org/project/Adafruit-extended-bus
https://pypi.org/project/adafruit-circuitpython-si7021
https://www.silabs.com/documents/public/data-sheets/Si7021-A20.pdf

Description: The I2C bus the device is connected to

Period (seconds)

Type: Decimal

Description: The duration (seconds) between measurements or actions

Pre Output

Type: Select

Description: Turn the selected output on before taking every measurement

Pre Out Duration

Type: Decimal

Description: If a Pre Output is selected, set the duration (seconds) to turn the Pre Output on for before every measurement

is acquired.

Pre During Measure

Type: Boolean

Description: Check to turn the output off after (opposed to before) the measurement is complete

Sonoff: TH16/10 (Tasmota firmware) with AM2301/Si7021

Manufacturer: Sonoff

Measurements: Humidity/Temperature

Libraries: requests

Dependencies: requests

Manufacturer URL: Link

This Input module allows the use of any temperature/huidity sensor with the TH10/TH16. Changing the Sensor Name option

changes the key that's queried from the returned dictionary of measurements. If you would like to use this module with a version

of this device that uses the AM2301, change Sensor Name to AM2301.

OPTIONS

Measurements Enabled

Type: Multi-Select

Description: The measurements to record

Period (seconds)

Type: Decimal

Description: The duration (seconds) between measurements or actions

Pre Output

Type: Select

Description: Turn the selected output on before taking every measurement

Pre Out Duration

Type: Decimal

Description: If a Pre Output is selected, set the duration (seconds) to turn the Pre Output on for before every measurement

is acquired.

Pre During Measure

Type: Boolean

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

5.2.2 Built-In Inputs (Devices)

- 148/287 - Copyright © 2022

https://pypi.org/project/requests
https://sonoff.tech/product/wifi-diy-smart-switches/th10-th16

Description: Check to turn the output off after (opposed to before) the measurement is complete

IP Address

Type: Text

Default Value: 192.168.0.100

Description: The IP address of the device

Sensor Name

Type: Text

Default Value: SI7021

Description: The name of the sensor connected to the device (specific key name in the returned dictionary)

Sonoff: TH16/10 (Tasmota firmware) with AM2301

Manufacturer: Sonoff

Measurements: Humidity/Temperature

Libraries: requests

Dependencies: requests

Manufacturer URL: Link

OPTIONS

Measurements Enabled

Type: Multi-Select

Description: The measurements to record

Period (seconds)

Type: Decimal

Description: The duration (seconds) between measurements or actions

Pre Output

Type: Select

Description: Turn the selected output on before taking every measurement

Pre Out Duration

Type: Decimal

Description: If a Pre Output is selected, set the duration (seconds) to turn the Pre Output on for before every measurement

is acquired.

Pre During Measure

Type: Boolean

Description: Check to turn the output off after (opposed to before) the measurement is complete

IP Address

Type: Text

Default Value: 192.168.0.100

Description: The IP address of the device

Sonoff: TH16/10 (Tasmota firmware) with DS18B20

Manufacturer: Sonoff

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

5.2.2 Built-In Inputs (Devices)

- 149/287 - Copyright © 2022

https://pypi.org/project/requests
https://sonoff.tech/product/wifi-diy-smart-switches/th10-th16

Measurements: Temperature

Libraries: requests

Dependencies: requests

Manufacturer URL: Link

OPTIONS

Measurements Enabled

Type: Multi-Select

Description: The measurements to record

Period (seconds)

Type: Decimal

Description: The duration (seconds) between measurements or actions

Pre Output

Type: Select

Description: Turn the selected output on before taking every measurement

Pre Out Duration

Type: Decimal

Description: If a Pre Output is selected, set the duration (seconds) to turn the Pre Output on for before every measurement

is acquired.

Pre During Measure

Type: Boolean

Description: Check to turn the output off after (opposed to before) the measurement is complete

IP Address

Type: Text

Default Value: 192.168.0.100

Description: The IP address of the device

TE Connectivity: HTU21D

Manufacturer: TE Connectivity

Measurements: Humidity/Temperature

Interfaces: I
2
C

Libraries: Adafruit-CircuitPython-HTU21D

Dependencies: Adafruit-extended-bus, adafruit-circuitpython-HTU21D

Manufacturer URL: Link

Datasheet URL: Link

Product URL: Link

OPTIONS

I2C Address

Type: Text

Description: The I2C address of the device

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

5.2.2 Built-In Inputs (Devices)

- 150/287 - Copyright © 2022

https://pypi.org/project/requests
https://sonoff.tech/product/wifi-diy-smart-switches/th10-th16
https://pypi.org/project/Adafruit-extended-bus
https://pypi.org/project/adafruit-circuitpython-HTU21D
https://www.te.com/usa-en/product-CAT-HSC0004.html
https://www.te.com/commerce/DocumentDelivery/DDEController?Action=showdoc&DocId=Data+Sheet-7FHPC199_6-7FA6-7Fpdf-7FEnglish-7FENG_DS_HPC199_6_A6.pdf-7FCAT-HSC0004
https://www.adafruit.com/product/1899

I2C Bus

Type: Integer

Description: The I2C bus the device is connected to

Measurements Enabled

Type: Multi-Select

Description: The measurements to record

Period (seconds)

Type: Decimal

Description: The duration (seconds) between measurements or actions

Pre Output

Type: Select

Description: Turn the selected output on before taking every measurement

Pre Out Duration

Type: Decimal

Description: If a Pre Output is selected, set the duration (seconds) to turn the Pre Output on for before every measurement

is acquired.

Pre During Measure

Type: Boolean

Description: Check to turn the output off after (opposed to before) the measurement is complete

TE Connectivity: HTU21D

Manufacturer: TE Connectivity

Measurements: Humidity/Temperature

Interfaces: I
2
C

Libraries: pigpio

Dependencies: pigpio, pigpio

Manufacturer URL: Link

Datasheet URL: Link

Product URL: Link

OPTIONS

I2C Address

Type: Text

Description: The I2C address of the device

I2C Bus

Type: Integer

Description: The I2C bus the device is connected to

Measurements Enabled

Type: Multi-Select

Description: The measurements to record

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

5.2.2 Built-In Inputs (Devices)

- 151/287 - Copyright © 2022

https://pypi.org/project/pigpio
https://www.te.com/usa-en/product-CAT-HSC0004.html
https://www.te.com/commerce/DocumentDelivery/DDEController?Action=showdoc&DocId=Data+Sheet-7FHPC199_6-7FA6-7Fpdf-7FEnglish-7FENG_DS_HPC199_6_A6.pdf-7FCAT-HSC0004
https://www.adafruit.com/product/1899

Period (seconds)

Type: Decimal

Description: The duration (seconds) between measurements or actions

Pre Output

Type: Select

Description: Turn the selected output on before taking every measurement

Pre Out Duration

Type: Decimal

Description: If a Pre Output is selected, set the duration (seconds) to turn the Pre Output on for before every measurement

is acquired.

Pre During Measure

Type: Boolean

Description: Check to turn the output off after (opposed to before) the measurement is complete

Tasmota: Tasmota Outlet Energy Monitor (HTTP)

Manufacturer: Tasmota

Measurements: Total Energy, Amps, Watts

Interfaces: HTTP

Libraries: requests

Manufacturer URL: Link

Product URL: Link

This input queries the energy usage information from a WiFi outlet that is running the tasmota firmware. There are many WiFi

outlets that support tasmota, and many of of those have energy monitoring capabilities. When used with an MQTT Output, you

can both control your tasmota outlets as well as mionitor their energy usage.

OPTIONS

Measurements Enabled

Type: Multi-Select

Description: The measurements to record

Period (seconds)

Type: Decimal

Description: The duration (seconds) between measurements or actions

Pre Output

Type: Select

Description: Turn the selected output on before taking every measurement

Pre Out Duration

Type: Decimal

Description: If a Pre Output is selected, set the duration (seconds) to turn the Pre Output on for before every measurement

is acquired.

Pre During Measure

Type: Boolean

Description: Check to turn the output off after (opposed to before) the measurement is complete

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

5.2.2 Built-In Inputs (Devices)

- 152/287 - Copyright © 2022

https://tasmota.github.io
https://templates.blakadder.com/plug.html

Host

Type: Text

Default Value: 192.168.0.50

Description: Host address or IP

Texas Instruments: ADS1015

Manufacturer: Texas Instruments

Measurements: Voltage (Analog-to-Digital Converter)

Interfaces: I
2
C

Libraries: Adafruit_CircuitPython

Dependencies: pyusb, Adafruit-extended-bus, adafruit-circuitpython-ads1x15

OPTIONS

I2C Address

Type: Text

Description: The I2C address of the device

I2C Bus

Type: Integer

Description: The I2C bus the device is connected to

Measurements Enabled

Type: Multi-Select

Description: The measurements to record

Period (seconds)

Type: Decimal

Description: The duration (seconds) between measurements or actions

Pre Output

Type: Select

Description: Turn the selected output on before taking every measurement

Pre Out Duration

Type: Decimal

Description: If a Pre Output is selected, set the duration (seconds) to turn the Pre Output on for before every measurement

is acquired.

Pre During Measure

Type: Boolean

Description: Check to turn the output off after (opposed to before) the measurement is complete

Measurements to Average

Type: Integer

Default Value: 5

Description: The number of times to measure each channel. An average of the measurements will be stored.

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

5.2.2 Built-In Inputs (Devices)

- 153/287 - Copyright © 2022

https://pypi.org/project/pyusb
https://pypi.org/project/Adafruit-extended-bus
https://pypi.org/project/adafruit-circuitpython-ads1x15

Texas Instruments: ADS1115: Generic Analog pH/EC

Manufacturer: Texas Instruments

Measurements: Ion Concentration/Electrical Conductivity

Interfaces: I
2
C

Libraries: Adafruit_CircuitPython_ADS1x15

Dependencies: pyusb, Adafruit-extended-bus, adafruit-circuitpython-ads1x15

This input relies on an ADS1115 analog-to-digital converter (ADC) to measure pH and/or electrical conductivity (EC) from analog

sensors. You can enable or disable either measurement if you want to only connect a pH sensor or an EC sensor by selecting

which measurements you want to under Measurements Enabled. Select which channel each sensor is connected to on the ADC.

There are default calibration values initially set for the Input. There are also functions to allow you to easily calibrate your

sensors with calibration solutions. If you use the Calibrate Slot actions, these values will be calculated and will replace the

currently-set values. You can use the Clear Calibration action to delete the database values and return to using the default

values. If you delete the Input or create a new Input to use your ADC/sensors with, you will need to recalibrate in order to store

new calibration data.

OPTIONS

I2C Address

Type: Text

Description: The I2C address of the device

I2C Bus

Type: Integer

Description: The I2C bus the device is connected to

Measurements Enabled

Type: Multi-Select

Description: The measurements to record

Period (seconds)

Type: Decimal

Description: The duration (seconds) between measurements or actions

Pre Output

Type: Select

Description: Turn the selected output on before taking every measurement

Pre Out Duration

Type: Decimal

Description: If a Pre Output is selected, set the duration (seconds) to turn the Pre Output on for before every measurement

is acquired.

Pre During Measure

Type: Boolean

Description: Check to turn the output off after (opposed to before) the measurement is complete

ADC Channel: pH

Type: Select

Options: [Channel 0 | Channel 1 | Channel 2 | Channel 3] (Default in bold)

Description: The ADC channel the pH sensor is connected

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

5.2.2 Built-In Inputs (Devices)

- 154/287 - Copyright © 2022

https://pypi.org/project/pyusb
https://pypi.org/project/Adafruit-extended-bus
https://pypi.org/project/adafruit-circuitpython-ads1x15

ADC Channel: EC

Type: Select

Options: [Channel 0 | Channel 1 | Channel 2 | Channel 3] (Default in bold)

Description: The ADC channel the EC sensor is connected

Temperature Compensation

Temperature Compensation: Measurement

Type: Select Measurement

Selections: Input, Function

Description: Select a measurement for temperature compensation

Temperature Compensation: Max Age

Type: Integer

Default Value: 120

Description: The maximum age (seconds) of the measurement to use

pH Calibration Data

Cal data: V1 (internal)

Type: Decimal

Default Value: 1.5

Description: Calibration data: Voltage

Cal data: pH1 (internal)

Type: Decimal

Default Value: 7.0

Description: Calibration data: pH

Cal data: T1 (internal)

Type: Decimal

Default Value: 25.0

Description: Calibration data: Temperature

Cal data: V2 (internal)

Type: Decimal

Default Value: 2.032

Description: Calibration data: Voltage

Cal data: pH2 (internal)

Type: Decimal

Default Value: 4.0

Description: Calibration data: pH

Cal data: T2 (internal)

Type: Decimal

Default Value: 25.0

Description: Calibration data: Temperature

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

5.2.2 Built-In Inputs (Devices)

- 155/287 - Copyright © 2022

EC Calibration Data

EC cal data: V1 (internal)

Type: Decimal

Default Value: 0.232

Description: EC calibration data: Voltage

EC cal data: EC1 (internal)

Type: Decimal

Default Value: 1413.0

Description: EC calibration data: EC

EC cal data: T1 (internal)

Type: Decimal

Default Value: 25.0

Description: EC calibration data: EC

EC cal data: V2 (internal)

Type: Decimal

Default Value: 2.112

Description: EC calibration data: Voltage

EC cal data: EC2 (internal)

Type: Decimal

Default Value: 12880.0

Description: EC calibration data: EC

EC cal data: T2 (internal)

Type: Decimal

Default Value: 25.0

Description: EC calibration data: EC

COMMANDS

pH Calibration Actions: Place your probe in a solution of known pH.

Calibration buffer pH

Type: Decimal

Default Value: 7.0

Description: This is the nominal pH of the calibration buffer, usually labelled on the bottle.

Calibrate pH, slot 1

Type: Button

Calibrate pH, slot 2

Type: Button

Clear pH Calibration Slots

Type: Button

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

 Set the known pH value in the "Calibration buffer pH" field, and press "Calibrate pH, slot 1".

 Repeat with a second buffer, and press "Calibrate pH, slot 2".

 You don't need to change the values under "Custom Options".

•

•

•

•

•

•

5.2.2 Built-In Inputs (Devices)

- 156/287 - Copyright © 2022

EC Calibration Actions: Place your probe in a solution of known EC.

Calibration standard EC

Type: Decimal

Default Value: 1413.0

Description: This is the nominal EC of the calibration standard, usually labelled on the bottle.

Calibrate EC, slot 1

Type: Button

Calibrate EC, slot 2

Type: Button

Clear EC Calibration Slots

Type: Button

Texas Instruments: ADS1115

Manufacturer: Texas Instruments

Measurements: Voltage (Analog-to-Digital Converter)

Interfaces: I
2
C

Libraries: Adafruit_CircuitPython_ADS1x15

Dependencies: pyusb, Adafruit-extended-bus, adafruit-circuitpython-ads1x15

OPTIONS

I2C Address

Type: Text

Description: The I2C address of the device

I2C Bus

Type: Integer

Description: The I2C bus the device is connected to

Measurements Enabled

Type: Multi-Select

Description: The measurements to record

Period (seconds)

Type: Decimal

Description: The duration (seconds) between measurements or actions

Pre Output

Type: Select

Description: Turn the selected output on before taking every measurement

Pre Out Duration

Type: Decimal

 Set the known EC value in the "Calibration standard EC" field, and press "Calibrate EC, slot 1".

 Repeat with a second standard, and press "Calibrate EC, slot 2".

 You don't need to change the values under "Custom Options".

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

5.2.2 Built-In Inputs (Devices)

- 157/287 - Copyright © 2022

https://pypi.org/project/pyusb
https://pypi.org/project/Adafruit-extended-bus
https://pypi.org/project/adafruit-circuitpython-ads1x15

Description: If a Pre Output is selected, set the duration (seconds) to turn the Pre Output on for before every measurement

is acquired.

Pre During Measure

Type: Boolean

Description: Check to turn the output off after (opposed to before) the measurement is complete

Measurements to Average

Type: Integer

Default Value: 5

Description: The number of times to measure each channel. An average of the measurements will be stored.

Texas Instruments: ADS1256: Generic Analog pH/EC

Manufacturer: Texas Instruments

Measurements: Ion Concentration/Electrical Conductivity

Interfaces: UART

Libraries: wiringpi, kizniche/PiPyADC-py3

Dependencies: wiringpi, pipyadc_py3

This input relies on an ADS1256 analog-to-digital converter (ADC) to measure pH and/or electrical conductivity (EC) from analog

sensors. You can enable or disable either measurement if you want to only connect a pH sensor or an EC sensor by selecting

which measurements you want to under Measurements Enabled. Select which channel each sensor is connected to on the ADC.

There are default calibration values initially set for the Input. There are also functions to allow you to easily calibrate your

sensors with calibration solutions. If you use the Calibrate Slot actions, these values will be calculated and will replace the

currently-set values. You can use the Clear Calibration action to delete the database values and return to using the default

values. If you delete the Input or create a new Input to use your ADC/sensors with, you will need to recalibrate in order to store

new calibration data.

OPTIONS

Measurements Enabled

Type: Multi-Select

Description: The measurements to record

Period (seconds)

Type: Decimal

Description: The duration (seconds) between measurements or actions

Pre Output

Type: Select

Description: Turn the selected output on before taking every measurement

Pre Out Duration

Type: Decimal

Description: If a Pre Output is selected, set the duration (seconds) to turn the Pre Output on for before every measurement

is acquired.

Pre During Measure

Type: Boolean

Description: Check to turn the output off after (opposed to before) the measurement is complete

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

5.2.2 Built-In Inputs (Devices)

- 158/287 - Copyright © 2022

https://pypi.org/project/wiringpi
https://github.com/kizniche/PiPyADC-py3

ADC Channel: pH

Type: Select

Options: [Not Connected | Channel 0 | Channel 1 | Channel 2 | Channel 3 | Channel 4 | Channel 5 | Channel 6 | Channel 7]

(Default in bold)

Description: The ADC channel the pH sensor is connected

ADC Channel: EC

Type: Select

Options: [Not Connected | Channel 0 | Channel 1 | Channel 2 | Channel 3 | Channel 4 | Channel 5 | Channel 6 | Channel 7]

(Default in bold)

Description: The ADC channel the EC sensor is connected

Temperature Compensation

Temperature Compensation: Measurement

Type: Select Measurement

Selections: Input, Function

Description: Select a measurement for temperature compensation

Temperature Compensation: Max Age

Type: Integer

Default Value: 120

Description: The maximum age (seconds) of the measurement to use

pH Calibration Data

Cal data: V1 (internal)

Type: Decimal

Default Value: 1.5

Description: Calibration data: Voltage

Cal data: pH1 (internal)

Type: Decimal

Default Value: 7.0

Description: Calibration data: pH

Cal data: T1 (internal)

Type: Decimal

Default Value: 25.0

Description: Calibration data: Temperature

Cal data: V2 (internal)

Type: Decimal

Default Value: 2.032

Description: Calibration data: Voltage

Cal data: pH2 (internal)

Type: Decimal

Default Value: 4.0

Description: Calibration data: pH

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

5.2.2 Built-In Inputs (Devices)

- 159/287 - Copyright © 2022

Cal data: T2 (internal)

Type: Decimal

Default Value: 25.0

Description: Calibration data: Temperature

EC Calibration Data

EC cal data: V1 (internal)

Type: Decimal

Default Value: 0.232

Description: EC calibration data: Voltage

EC cal data: EC1 (internal)

Type: Decimal

Default Value: 1413.0

Description: EC calibration data: EC

EC cal data: T1 (internal)

Type: Decimal

Default Value: 25.0

Description: EC calibration data: EC

EC cal data: V2 (internal)

Type: Decimal

Default Value: 2.112

Description: EC calibration data: Voltage

EC cal data: EC2 (internal)

Type: Decimal

Default Value: 12880.0

Description: EC calibration data: EC

EC cal data: T2 (internal)

Type: Decimal

Default Value: 25.0

Description: EC calibration data: EC

Calibration

Type: Select

Description: Set the calibration method to perform during Input activation

COMMANDS

pH Calibration Actions: Place your probe in a solution of known pH.

Calibration buffer pH

Type: Decimal

Default Value: 7.0

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

 Set the known pH value in the `Calibration buffer pH` field, and press `Calibrate pH, slot 1`.

 Repeat with a second buffer, and press `Calibrate pH, slot 2`.

 You don't need to change the values under `Custom Options`.

•

•

5.2.2 Built-In Inputs (Devices)

- 160/287 - Copyright © 2022

Description: This is the nominal pH of the calibration buffer, usually labelled on the bottle.

Calibrate pH, slot 1

Type: Button

Calibrate pH, slot 2

Type: Button

Clear pH Calibration Slots

Type: Button

EC Calibration Actions: Place your probe in a solution of known EC.

Calibration standard EC

Type: Decimal

Default Value: 1413.0

Description: This is the nominal EC of the calibration standard, usually labelled on the bottle.

Calibrate EC, slot 1

Type: Button

Calibrate EC, slot 2

Type: Button

Clear EC Calibration Slots

Type: Button

Texas Instruments: ADS1256

Manufacturer: Texas Instruments

Measurements: Voltage (Waveshare, Analog-to-Digital Converter)

Interfaces: UART

Libraries: wiringpi, kizniche/PiPyADC-py3

Dependencies: wiringpi, pipyadc_py3

OPTIONS

Measurements Enabled

Type: Multi-Select

Description: The measurements to record

Period (seconds)

Type: Decimal

Description: The duration (seconds) between measurements or actions

Pre Output

Type: Select

Description: Turn the selected output on before taking every measurement

Pre Out Duration

Type: Decimal

•

•

•

•

 Set the known EC value in the `Calibration standard EC` field, and press `Calibrate EC, slot 1`.

 Repeat with a second standard, and press `Calibrate EC, slot 2`.

 You don't need to change the values under `Custom Options`.

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

5.2.2 Built-In Inputs (Devices)

- 161/287 - Copyright © 2022

https://pypi.org/project/wiringpi
https://github.com/kizniche/PiPyADC-py3

Description: If a Pre Output is selected, set the duration (seconds) to turn the Pre Output on for before every measurement

is acquired.

Pre During Measure

Type: Boolean

Description: Check to turn the output off after (opposed to before) the measurement is complete

Calibration

Type: Select

Description: Set the calibration method to perform during Input activation

Texas Instruments: ADS1x15

Manufacturer: Texas Instruments

Measurements: Voltage (Analog-to-Digital Converter)

Interfaces: I
2
C

Libraries: Adafruit_ADS1x15 [DEPRECATED]

Dependencies: Adafruit-GPIO, Adafruit-ADS1x15

The Adafruit_ADS1x15 is deprecated. It's advised to use The Circuit Python ADS1x15 Input.

OPTIONS

I2C Address

Type: Text

Description: The I2C address of the device

I2C Bus

Type: Integer

Description: The I2C bus the device is connected to

Measurements Enabled

Type: Multi-Select

Description: The measurements to record

Period (seconds)

Type: Decimal

Description: The duration (seconds) between measurements or actions

Pre Output

Type: Select

Description: Turn the selected output on before taking every measurement

Pre Out Duration

Type: Decimal

Description: If a Pre Output is selected, set the duration (seconds) to turn the Pre Output on for before every measurement

is acquired.

Pre During Measure

Type: Boolean

Description: Check to turn the output off after (opposed to before) the measurement is complete

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

5.2.2 Built-In Inputs (Devices)

- 162/287 - Copyright © 2022

https://pypi.org/project/Adafruit-GPIO
https://pypi.org/project/Adafruit-ADS1x15

Measurements to Average

Type: Integer

Default Value: 5

Description: The number of times to measure each channel. An average of the measurements will be stored.

Texas Instruments: HDC1000

Manufacturer: Texas Instruments

Measurements: Humidity/Temperature

Interfaces: I
2
C

Libraries: fcntl/io

Manufacturer URL: Link

Datasheet URL: Link

OPTIONS

I2C Address

Type: Text

Description: The I2C address of the device

I2C Bus

Type: Integer

Description: The I2C bus the device is connected to

Measurements Enabled

Type: Multi-Select

Description: The measurements to record

Period (seconds)

Type: Decimal

Description: The duration (seconds) between measurements or actions

Pre Output

Type: Select

Description: Turn the selected output on before taking every measurement

Pre Out Duration

Type: Decimal

Description: If a Pre Output is selected, set the duration (seconds) to turn the Pre Output on for before every measurement

is acquired.

Pre During Measure

Type: Boolean

Description: Check to turn the output off after (opposed to before) the measurement is complete

Texas Instruments: INA219x

Manufacturer: Texas Instruments

Measurements: Electrical Current (DC)

Interfaces: I
2
C

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

5.2.2 Built-In Inputs (Devices)

- 163/287 - Copyright © 2022

https://www.ti.com/product/HDC1000
https://www.ti.com/lit/ds/symlink/hdc1000.pdf

Libraries: Adafruit_CircuitPython

Dependencies: adafruit-circuitpython-ina219, Adafruit-extended-bus

Manufacturer URL: Link

Datasheet URL: Link

OPTIONS

I2C Address

Type: Text

Description: The I2C address of the device

I2C Bus

Type: Integer

Description: The I2C bus the device is connected to

Measurements Enabled

Type: Multi-Select

Description: The measurements to record

Period (seconds)

Type: Decimal

Description: The duration (seconds) between measurements or actions

Pre Output

Type: Select

Description: Turn the selected output on before taking every measurement

Pre Out Duration

Type: Decimal

Description: If a Pre Output is selected, set the duration (seconds) to turn the Pre Output on for before every measurement

is acquired.

Pre During Measure

Type: Boolean

Description: Check to turn the output off after (opposed to before) the measurement is complete

Measurements to Average

Type: Integer

Default Value: 5

Description: The number of times to measure each channel. An average of the measurements will be stored.

Calibration Range

Type: Select

Options: [32V @ 2A max (default) | 32V @ 1A max | 16V @ 400mA max | 16V @ 5A max] (Default in bold)

Description: Set the device calibration range

Bus Voltage Range

Type: Select

Options: [(0x00) - 16V | (0x01) - 32V (default)] (Default in bold)

Description: Set the bus voltage range

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

5.2.2 Built-In Inputs (Devices)

- 164/287 - Copyright © 2022

https://pypi.org/project/adafruit-circuitpython-ina219
https://pypi.org/project/Adafruit-extended-bus
https://www.ti.com/product/INA219
https://www.ti.com/lit/gpn/ina219

Bus ADC Resolution

Type: Select

Options: [(0x00) - 9 Bit / 1 Sample | (0x01) - 10 Bit / 1 Sample | (0x02) - 11 Bit / 1 Sample | (0x03) - 12 Bit / 1 Sample

(default) | (0x09) - 12 Bit / 2 Samples | (0x0A) - 12 Bit / 4 Samples | (0x0B) - 12 Bit / 8 Samples | (0x0C) - 12 Bit / 16

Samples | (0x0D) - 12 Bit / 32 Samples | (0x0E) - 12 Bit / 64 Samples | (0x0F) - 12 Bit / 128 Samples] (Default in bold)

Description: Set the Bus ADC Resolution.

Shunt ADC Resolution

Type: Select

Options: [(0x00) - 9 Bit / 1 Sample | (0x01) - 10 Bit / 1 Sample | (0x02) - 11 Bit / 1 Sample | (0x03) - 12 Bit / 1 Sample

(default) | (0x09) - 12 Bit / 2 Samples | (0x0A) - 12 Bit / 4 Samples | (0x0B) - 12 Bit / 8 Samples | (0x0C) - 12 Bit / 16

Samples | (0x0D) - 12 Bit / 32 Samples | (0x0E) - 12 Bit / 64 Samples | (0x0F) - 12 Bit / 128 Samples] (Default in bold)

Description: Set the Shunt ADC Resolution.

Texas Instruments: TMP006

Manufacturer: Texas Instruments

Measurements: Temperature (Object/Die)

Interfaces: I
2
C

Libraries: Adafruit_TMP

Dependencies: Adafruit-TMP

Datasheet URL: Link

Product URL: Link

OPTIONS

I2C Address

Type: Text

Description: The I2C address of the device

I2C Bus

Type: Integer

Description: The I2C bus the device is connected to

Measurements Enabled

Type: Multi-Select

Description: The measurements to record

Period (seconds)

Type: Decimal

Description: The duration (seconds) between measurements or actions

Pre Output

Type: Select

Description: Turn the selected output on before taking every measurement

Pre Out Duration

Type: Decimal

Description: If a Pre Output is selected, set the duration (seconds) to turn the Pre Output on for before every measurement

is acquired.

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

5.2.2 Built-In Inputs (Devices)

- 165/287 - Copyright © 2022

https://pypi.org/project/Adafruit-TMP
http://www.adafruit.com/datasheets/tmp006.pdf
https://www.adafruit.com/product/1296

Pre During Measure

Type: Boolean

Description: Check to turn the output off after (opposed to before) the measurement is complete

The Things Network: TTN Integration: Data Storage (TTN v2)

Manufacturer: The Things Network

Measurements: Variable measurements

Libraries: requests

Dependencies: requests

This Input receives and stores measurements from the Data Storage Integration on The Things Network.

OPTIONS

Measurements Enabled

Type: Multi-Select

Description: The measurements to record

Period (seconds)

Type: Decimal

Description: The duration (seconds) between measurements or actions

Start Offset (seconds)

Type: Integer

Description: The duration (seconds) to wait before the first operation

Pre Output

Type: Select

Description: Turn the selected output on before taking every measurement

Pre Out Duration

Type: Decimal

Description: If a Pre Output is selected, set the duration (seconds) to turn the Pre Output on for before every measurement

is acquired.

Pre During Measure

Type: Boolean

Description: Check to turn the output off after (opposed to before) the measurement is complete

Application ID

Type: Text

Description: The Things Network Application ID

App API Key

Type: Text

Description: The Things Network Application API Key

Device ID

Type: Text

Description: The Things Network Device ID

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

5.2.2 Built-In Inputs (Devices)

- 166/287 - Copyright © 2022

https://pypi.org/project/requests

CHANNEL OPTIONS

Name

Type: Text

Description: A name to distinguish this from others

Variable Name

Type: Text

Description: The TTN variable name

The Things Network: TTN Integration: Data Storage (TTN v3, Payload Key)

Manufacturer: The Things Network

Measurements: Variable measurements

Libraries: requests

Dependencies: requests

This Input receives and stores measurements from the Data Storage Integration on The Things Network. If you have key/value

pairs as your payload, enter the key name in Variable Name and the corresponding value for that key will be stored in the

measurement database.

OPTIONS

Measurements Enabled

Type: Multi-Select

Description: The measurements to record

Period (seconds)

Type: Decimal

Description: The duration (seconds) between measurements or actions

Start Offset (seconds)

Type: Integer

Description: The duration (seconds) to wait before the first operation

Pre Output

Type: Select

Description: Turn the selected output on before taking every measurement

Pre Out Duration

Type: Decimal

Description: If a Pre Output is selected, set the duration (seconds) to turn the Pre Output on for before every measurement

is acquired.

Pre During Measure

Type: Boolean

Description: Check to turn the output off after (opposed to before) the measurement is complete

Application ID

Type: Text

Description: The Things Network Application ID

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

5.2.2 Built-In Inputs (Devices)

- 167/287 - Copyright © 2022

https://pypi.org/project/requests

App API Key

Type: Text

Description: The Things Network Application API Key

Device ID

Type: Text

Description: The Things Network Device ID

CHANNEL OPTIONS

Name

Type: Text

Description: A name to distinguish this from others

Variable Name

Type: Text

Description: The TTN variable name

The Things Network: TTN Integration: Data Storage (TTN v3, Payload jmespath Expression)

Manufacturer: The Things Network

Measurements: Variable measurements

Libraries: requests, jmespath

Dependencies: requests, jmespath

This Input receives and stores measurements from the Data Storage Integration on The Things Network. The given Payload

jmespath Expression is used as a JMESPATH expression to find the corresponding value that will be stored for that channel. Be

sure you select and save the Measurement Unit for each channel. Once the unit has been saved, you can convert to other units in

the Convert Measurement section. Example expressions for jmespath (https://jmespath.org) include temperature,

sensors[0].temperature, and bathroom.temperature which refer to the temperature as a direct key within the first entry of

sensors or as a subkey of bathroom, respectively. Jmespath elements and keys that contain special characters have to be

enclosed in double quotes, e.g. "sensor-1".temperature.

OPTIONS

Measurements Enabled

Type: Multi-Select

Description: The measurements to record

Period (seconds)

Type: Decimal

Description: The duration (seconds) between measurements or actions

Start Offset (seconds)

Type: Integer

Description: The duration (seconds) to wait before the first operation

Pre Output

Type: Select

Description: Turn the selected output on before taking every measurement

Pre Out Duration

Type: Decimal

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

5.2.2 Built-In Inputs (Devices)

- 168/287 - Copyright © 2022

https://pypi.org/project/requests
https://pypi.org/project/jmespath

Description: If a Pre Output is selected, set the duration (seconds) to turn the Pre Output on for before every measurement

is acquired.

Pre During Measure

Type: Boolean

Description: Check to turn the output off after (opposed to before) the measurement is complete

Application ID

Type: Text

Description: The Things Network Application ID

App API Key

Type: Text

Description: The Things Network Application API Key

Device ID

Type: Text

Description: The Things Network Device ID

CHANNEL OPTIONS

Name

Type: Text

Description: A name to distinguish this from others

Payload jmespath Expression

Type: Text

Description: The TTN jmespath expression to return the value to store

Weather: OpenWeatherMap (City, Current)

Manufacturer: Weather

Measurements: Humidity/Temperature/Pressure/Wind

Additional URL: Link

Obtain a free API key at openweathermap.org. If the city you enter does not return measurements, try another city. Note: the

free API subscription is limited to 60 calls per minute

OPTIONS

Measurements Enabled

Type: Multi-Select

Description: The measurements to record

Period (seconds)

Type: Decimal

Description: The duration (seconds) between measurements or actions

Pre Output

Type: Select

Description: Turn the selected output on before taking every measurement

Pre Out Duration

Type: Decimal

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

5.2.2 Built-In Inputs (Devices)

- 169/287 - Copyright © 2022

https://openweathermap.org

Description: If a Pre Output is selected, set the duration (seconds) to turn the Pre Output on for before every measurement

is acquired.

Pre During Measure

Type: Boolean

Description: Check to turn the output off after (opposed to before) the measurement is complete

API Key

Type: Text

Description: The API Key for this service's API

City

Type: Text

Description: The city to acquire the weather data

Weather: OpenWeatherMap (Lat/Lon, Current/Future)

Manufacturer: Weather

Measurements: Humidity/Temperature/Pressure/Wind

Interfaces: Mycodo

Additional URL: Link

Obtain a free API key at openweathermap.org. Notes: The free API subscription is limited to 60 calls per minute. If a Day

(Future) time is selected, Minimum and Maximum temperatures are available as measurements.

OPTIONS

Measurements Enabled

Type: Multi-Select

Description: The measurements to record

Period (seconds)

Type: Decimal

Description: The duration (seconds) between measurements or actions

Pre Output

Type: Select

Description: Turn the selected output on before taking every measurement

Pre Out Duration

Type: Decimal

Description: If a Pre Output is selected, set the duration (seconds) to turn the Pre Output on for before every measurement

is acquired.

Pre During Measure

Type: Boolean

Description: Check to turn the output off after (opposed to before) the measurement is complete

API Key

Type: Text

Description: The API Key for this service's API

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

5.2.2 Built-In Inputs (Devices)

- 170/287 - Copyright © 2022

https://openweathermap.org

Latitude (decimal)

Type: Decimal

Default Value: 33.441792

Description: The latitude to acquire weather data

Longitude (decimal)

Type: Decimal

Default Value: -94.037689

Description: The longitude to acquire weather data

Time

Type: Select

Options: [Current (Present) | 1 Day (Future) | 2 Day (Future) | 3 Day (Future) | 4 Day (Future) | 5 Day (Future) | 6 Day

(Future) | 7 Day (Future) | 1 Hour (Future) | 2 Hours (Future) | 3 Hours (Future) | 4 Hours (Future) | 5 Hours (Future) | 6

Hours (Future) | 7 Hours (Future) | 8 Hours (Future) | 9 Hours (Future) | 10 Hours (Future) | 11 Hours (Future) | 12 Hours

(Future) | 13 Hours (Future) | 14 Hours (Future) | 15 Hours (Future) | 16 Hours (Future) | 17 Hours (Future) | 18 Hours

(Future) | 19 Hours (Future) | 20 Hours (Future) | 21 Hours (Future) | 22 Hours (Future) | 23 Hours (Future) | 24 Hours

(Future) | 25 Hours (Future) | 26 Hours (Future) | 27 Hours (Future) | 28 Hours (Future) | 29 Hours (Future) | 30 Hours

(Future) | 31 Hours (Future) | 32 Hours (Future) | 33 Hours (Future) | 34 Hours (Future) | 35 Hours (Future) | 36 Hours

(Future) | 37 Hours (Future) | 38 Hours (Future) | 39 Hours (Future) | 40 Hours (Future) | 41 Hours (Future) | 42 Hours

(Future) | 43 Hours (Future) | 44 Hours (Future) | 45 Hours (Future) | 46 Hours (Future) | 47 Hours (Future) | 48 Hours

(Future)] (Default in bold)

Description: Select the time for the current or forecast weather

Winsen: MH-Z16

Manufacturer: Winsen

Measurements: CO2

Interfaces: UART, I
2
C

Libraries: smbus2/serial

Dependencies: smbus2

Manufacturer URL: Link

Datasheet URL: Link

OPTIONS

I2C Address

Type: Text

Description: The I2C address of the device

I2C Bus

Type: Integer

Description: The I2C bus the device is connected to

UART Device

Type: Text

Description: The UART device location (e.g. /dev/ttyUSB1)

Period (seconds)

Type: Decimal

Description: The duration (seconds) between measurements or actions

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

5.2.2 Built-In Inputs (Devices)

- 171/287 - Copyright © 2022

https://pypi.org/project/smbus2
https://www.winsen-sensor.com/sensors/co2-sensor/mh-z16.html
https://www.winsen-sensor.com/d/files/MH-Z16.pdf

Pre Output

Type: Select

Description: Turn the selected output on before taking every measurement

Pre Out Duration

Type: Decimal

Description: If a Pre Output is selected, set the duration (seconds) to turn the Pre Output on for before every measurement

is acquired.

Pre During Measure

Type: Boolean

Description: Check to turn the output off after (opposed to before) the measurement is complete

Winsen: MH-Z19

Manufacturer: Winsen

Measurements: CO2

Interfaces: UART

Libraries: serial

Datasheet URL: Link

This is the version of the sensor that does not include the ability to conduct automatic baseline correction (ABC). See the B

version of the sensor if you wish to use ABC.

OPTIONS

UART Device

Type: Text

Description: The UART device location (e.g. /dev/ttyUSB1)

Period (seconds)

Type: Decimal

Description: The duration (seconds) between measurements or actions

Pre Output

Type: Select

Description: Turn the selected output on before taking every measurement

Pre Out Duration

Type: Decimal

Description: If a Pre Output is selected, set the duration (seconds) to turn the Pre Output on for before every measurement

is acquired.

Pre During Measure

Type: Boolean

Description: Check to turn the output off after (opposed to before) the measurement is complete

Measurement Range

Type: Select

Options: [0 - 1000 ppmv | 0 - 2000 ppmv | 0 - 3000 ppmv | 0 - 5000 ppmv] (Default in bold)

Description: Set the measuring range of the sensor

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

5.2.2 Built-In Inputs (Devices)

- 172/287 - Copyright © 2022

https://www.winsen-sensor.com/d/files/PDF/Infrared-20Gas-20Sensor/NDIR-20CO2-20SENSOR/MH-Z19-20CO2-20Ver1.0.pdf

COMMANDS

Calibrate Zero Point

Type: Button

Span Point (ppmv)

Type: Integer

Default Value: 2000

Description: The ppmv concentration for a span point calibration

Calibrate Span Point

Type: Button

Winsen: MH-Z19B

Manufacturer: Winsen

Measurements: CO2

Interfaces: UART

Libraries: serial

Manufacturer URL: Link

Datasheet URL: Link

This is the B version of the sensor that includes the ability to conduct automatic baseline correction (ABC).

OPTIONS

UART Device

Type: Text

Description: The UART device location (e.g. /dev/ttyUSB1)

Period (seconds)

Type: Decimal

Description: The duration (seconds) between measurements or actions

Pre Output

Type: Select

Description: Turn the selected output on before taking every measurement

Pre Out Duration

Type: Decimal

Description: If a Pre Output is selected, set the duration (seconds) to turn the Pre Output on for before every measurement

is acquired.

Pre During Measure

Type: Boolean

Description: Check to turn the output off after (opposed to before) the measurement is complete

Automatic Baseline Correction

Type: Boolean

Description: Enable automatic baseline correction (ABC)

Measurement Range

Type: Select

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

5.2.2 Built-In Inputs (Devices)

- 173/287 - Copyright © 2022

https://www.winsen-sensor.com/sensors/co2-sensor/mh-z19b.html
https://www.winsen-sensor.com/d/files/MH-Z19B.pdf

Options: [0 - 1000 ppmv | 0 - 2000 ppmv | 0 - 3000 ppmv | 0 - 5000 ppmv | 0 - 10000 ppmv] (Default in bold)

Description: Set the measuring range of the sensor

COMMANDS

Calibrate Zero Point

Type: Button

Span Point (ppmv)

Type: Integer

Default Value: 2000

Description: The ppmv concentration for a span point calibration

Calibrate Span Point

Type: Button

Winsen: ZH03B

Manufacturer: Winsen

Measurements: Particulates

Interfaces: UART

Libraries: serial

Manufacturer URL: Link

Datasheet URL: Link

OPTIONS

UART Device

Type: Text

Description: The UART device location (e.g. /dev/ttyUSB1)

Measurements Enabled

Type: Multi-Select

Description: The measurements to record

Period (seconds)

Type: Decimal

Description: The duration (seconds) between measurements or actions

Pre Output

Type: Select

Description: Turn the selected output on before taking every measurement

Pre Out Duration

Type: Decimal

Description: If a Pre Output is selected, set the duration (seconds) to turn the Pre Output on for before every measurement

is acquired.

Pre During Measure

Type: Boolean

Description: Check to turn the output off after (opposed to before) the measurement is complete

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

5.2.2 Built-In Inputs (Devices)

- 174/287 - Copyright © 2022

https://www.winsen-sensor.com/sensors/dust-sensor/zh3b.html
https://www.winsen-sensor.com/d/files/ZH03B.pdf

Fan Off After Measure

Type: Boolean

Description: Turn the fan on only during the measurement

Fan On Duration

Type: Decimal

Default Value: 50.0

Description: How long to turn the fan on (seconds) before acquiring measurements

Number of Measurements

Type: Integer

Default Value: 3

Description: How many measurements to acquire. If more than 1 are acquired that are less than 1001, the average of the

measurements will be stored.

Xiaomi: Miflora

Manufacturer: Xiaomi

Measurements: EC/Light/Moisture/Temperature

Interfaces: BT

Libraries: miflora

Dependencies: libglib2.0-dev, miflora, bluepy

OPTIONS

MAC (XX:XX:XX:XX:XX:XX)

Type: Text

Description: The MAC address of the Bluetooth device

BT Adapter (hci[X])

Type: Integer

Description: The adapter of the Bluetooth device

Measurements Enabled

Type: Multi-Select

Description: The measurements to record

Period (seconds)

Type: Decimal

Description: The duration (seconds) between measurements or actions

Pre Output

Type: Select

Description: Turn the selected output on before taking every measurement

Pre Out Duration

Type: Decimal

Description: If a Pre Output is selected, set the duration (seconds) to turn the Pre Output on for before every measurement

is acquired.

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

5.2.2 Built-In Inputs (Devices)

- 175/287 - Copyright © 2022

https://packages.debian.org/buster/libglib2.0-dev
https://pypi.org/project/miflora
https://pypi.org/project/bluepy

Pre During Measure

Type: Boolean

Description: Check to turn the output off after (opposed to before) the measurement is complete

Xiaomi: Mijia LYWSD03MMC (ATC and non-ATC modes)

Manufacturer: Xiaomi

Measurements: Battery/Humidity/Temperature

Interfaces: BT

Libraries: bluepy/bluez

Dependencies: bluez, bluetooth, libbluetooth-dev, bluepy, pybluez

More information about ATC mode can be found at https://github.com/JsBergbau/MiTemperature2

OPTIONS

MAC (XX:XX:XX:XX:XX:XX)

Type: Text

Description: The MAC address of the Bluetooth device

BT Adapter (hci[X])

Type: Integer

Description: The adapter of the Bluetooth device

Measurements Enabled

Type: Multi-Select

Description: The measurements to record

Period (seconds)

Type: Decimal

Description: The duration (seconds) between measurements or actions

Pre Output

Type: Select

Description: Turn the selected output on before taking every measurement

Pre Out Duration

Type: Decimal

Description: If a Pre Output is selected, set the duration (seconds) to turn the Pre Output on for before every measurement

is acquired.

Pre During Measure

Type: Boolean

Description: Check to turn the output off after (opposed to before) the measurement is complete

Enable ATC Mode

Type: Boolean

Description: Enable sensor ATC mode

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

5.2.2 Built-In Inputs (Devices)

- 176/287 - Copyright © 2022

https://packages.debian.org/buster/bluez
https://packages.debian.org/buster/bluetooth
https://packages.debian.org/buster/libbluetooth-dev
https://pypi.org/project/bluepy
https://pypi.org/project/pybluez

5.3 Supported Outputs

Supported Outputs are listed below.

5.3.1 Built-In Outputs (System)

On/Off: MQTT Publish

Manufacturer: Mycodo

Interfaces: IP

Output Types: On/Off

Libraries: paho-mqtt

Dependencies: paho-mqtt

Additional URL: Link

Publish "on" or "off" (or any other strings of your choosing) to an MQTT server.

OPTIONS

CHANNEL OPTIONS

Hostname

Type: Text

Default Value: localhost

Description: The hostname of the MQTT server

Port

Type: Integer

Default Value: 1883

Description: The port of the MQTT server

Topic

Type: Text

Default Value: paho/test/single

Description: The topic to publish with

Keep Alive

Type: Integer

Default Value: 60

Description: The keepalive timeout value for the client. Set to 0 to disable.

Client ID

Type: Text

Default Value: client_9cletQYK

Description: Unique client ID for connecting to the MQTT server

On Payload

Type: Text

Default Value: on

Description: The payload to send when turned on

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

5.3 Supported Outputs

- 177/287 - Copyright © 2022

https://pypi.org/project/paho-mqtt
http://www.eclipse.org/paho/

Off Payload

Type: Text

Default Value: off

Description: The payload to send when turned off

Startup State

Type: Select

Description: Set the state when Mycodo starts

Shutdown State

Type: Select

Description: Set the state when Mycodo shuts down

Force Command

Type: Boolean

Description: Always send the command if instructed, regardless of the current state

Current (Amps)

Type: Decimal

Description: The current draw of the device being controlled

Use Login

Type: Boolean

Description: Send login credentials

Username

Type: Text

Default Value: user

Description: Username for connecting to the server

Password

Type: Text

Description: Password for connecting to the server. Leave blank to disable.

Value: MQTT Publish

Manufacturer: Mycodo

Output Types: Value

Libraries: paho-mqtt

Dependencies: paho-mqtt

Additional URL: Link

Publish a value to an MQTT server.

OPTIONS

CHANNEL OPTIONS

Hostname

Type: Text

Default Value: localhost

Description: The hostname of the MQTT server

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

5.3.1 Built-In Outputs (System)

- 178/287 - Copyright © 2022

https://pypi.org/project/paho-mqtt
http://www.eclipse.org/paho/

Port

Type: Integer

Default Value: 1883

Description: The port of the MQTT server

Topic

Type: Text

Default Value: paho/test/single

Description: The topic to publish with

Keep Alive

Type: Integer

Default Value: 60

Description: The keepalive timeout value for the client. Set to 0 to disable.

Client ID

Type: Text

Default Value: client_kx19LPFB

Description: Unique client ID for connecting to the MQTT server

Off Value

Type: Integer

Description: The value to send when an Off command is given

Use Login

Type: Boolean

Description: Send login credentials

Username

Type: Text

Default Value: user

Description: Username for connecting to the server

Password

Type: Text

Description: Password for connecting to the server.

5.3.2 Built-In Outputs (Devices)

Digital Potentiometer: DS3502

Manufacturer: Maxim Integrated

Interfaces: I
2
C

Output Types: Value

Dependencies: pyusb, Adafruit_Extended_Bus, adafruit-circuitpython-ds3502

Manufacturer URL: Link

Datasheet URL: Link

Product URL: Link

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

5.3.2 Built-In Outputs (Devices)

- 179/287 - Copyright © 2022

https://pypi.org/project/pyusb
https://pypi.org/project/Adafruit_Extended_Bus
https://pypi.org/project/adafruit-circuitpython-ds3502
https://www.maximintegrated.com/en/products/analog/data-converters/digital-potentiometers/DS3502.html
https://datasheets.maximintegrated.com/en/ds/DS3502.pdf
https://www.adafruit.com/product/4286

The DS3502 can generate a 0 - 10k Ohm resistance with 7-bit precision. This equates to 128 possible steps. A value, in Ohms, is

passed to this output controller and the step value is calculated and passed to the device. Select whether to round up or down to

the nearest step.

OPTIONS

I2C Address

Type: Text

Description: The I2C address of the device

I2C Bus

Type: Integer

Description: The I2C bus the device is connected to

Round Step

Type: Select

Options: [Up | Down] (Default in bold)

Description: Round direction to the nearest step value

Digital-to-Analog Converter: MCP4728

Manufacturer: MICROCHIP

Interfaces: I
2
C

Output Types: Value

Dependencies: pyusb, Adafruit-extended-bus, adafruit-circuitpython-mcp4728

Manufacturer URL: Link

Datasheet URL: Link

Product URL: Link

OPTIONS

I2C Address

Type: Text

Description: The I2C address of the device

I2C Bus

Type: Integer

Description: The I2C bus the device is connected to

VREF (volts)

Type: Decimal

Default Value: 4.096

Description: Set the VREF voltage

CHANNEL OPTIONS

Name

Type: Text

Description: A name to distinguish this from others

VREF

Type: Select

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

5.3.2 Built-In Outputs (Devices)

- 180/287 - Copyright © 2022

https://pypi.org/project/pyusb
https://pypi.org/project/Adafruit-extended-bus
https://pypi.org/project/adafruit-circuitpython-mcp4728
https://www.microchip.com/wwwproducts/en/en541737
https://ww1.microchip.com/downloads/en/DeviceDoc/22187E.pdf
https://www.adafruit.com/product/4470

Options: [Internal | VDD] (Default in bold)

Description: Select the channel VREF

Gain

Type: Select

Options: [1X | 2X] (Default in bold)

Description: Select the channel Gain

Start State

Type: Select

Options: [Previously-Saved State | Specified Value] (Default in bold)

Description: Select the channel start state

Start Value (volts)

Type: Decimal

Description: If Specified Value is selected, set the start state value

Shutdown State

Type: Select

Options: [Previously-Saved Value | Specified Value] (Default in bold)

Description: Select the channel shutdown state

Shutdown Value (volts)

Type: Decimal

Description: If Specified Value is selected, set the shutdown state value

Motor: Grove I2C Motor Driver (Board v1.3)

Manufacturer: Grove

Interfaces: I
2
C

Output Types: Volume, On/Off

Libraries: smbus2

Dependencies: smbus2

Manufacturer URL: Link

Controls the Grove I2C Motor Driver Board (v1.3). Both motors will turn at the same time. This output can also dispense volumes

of fluid if the motors are attached to peristaltic pumps.

OPTIONS

I2C Address

Type: Text

Description: The I2C address of the device

I2C Bus

Type: Integer

Description: The I2C bus the device is connected to

CHANNEL OPTIONS

Name

Type: Text

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

5.3.2 Built-In Outputs (Devices)

- 181/287 - Copyright © 2022

https://pypi.org/project/smbus2
https://wiki.seeedstudio.com/Grove-I2C_Motor_Driver_V1.3

Description: A name to distinguish this from others

Motor Speed (0 - 100)

Type: Integer

Default Value: 100

Description: The motor output that determines the speed

Flow Rate Method

Type: Select

Options: [Fastest Flow Rate | Specify Flow Rate] (Default in bold)

Description: The flow rate to use when pumping a volume

Desired Flow Rate (ml/min)

Type: Decimal

Default Value: 10.0

Description: Desired flow rate in ml/minute when Specify Flow Rate set

Fastest Rate (ml/min)

Type: Decimal

Default Value: 100.0

Description: The fastest rate that the pump can dispense (ml/min)

Motor: Grove I2C Motor Driver (TB6612FNG, Board v1.0)

Manufacturer: Grove

Interfaces: I
2
C

Output Types: Volume, On/Off

Libraries: smbus2

Dependencies: smbus2

Manufacturer URL: Link

Controls the Grove I2C Motor Driver Board (v1.3). Both motors will turn at the same time. This output can also dispense volumes

of fluid if the motors are attached to peristaltic pumps.

OPTIONS

I2C Address

Type: Text

Description: The I2C address of the device

I2C Bus

Type: Integer

Description: The I2C bus the device is connected to

CHANNEL OPTIONS

Name

Type: Text

Description: A name to distinguish this from others

Motor Speed (0 - 255)

Type: Integer

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

5.3.2 Built-In Outputs (Devices)

- 182/287 - Copyright © 2022

https://pypi.org/project/smbus2
https://wiki.seeedstudio.com/Grove-I2C_Motor_Driver-TB6612FNG

Default Value: 255

Description: The motor output that determines the speed

Flow Rate Method

Type: Select

Options: [Fastest Flow Rate | Specify Flow Rate] (Default in bold)

Description: The flow rate to use when pumping a volume

Desired Flow Rate (ml/min)

Type: Decimal

Default Value: 10.0

Description: Desired flow rate in ml/minute when Specify Flow Rate set

Fastest Rate (ml/min)

Type: Decimal

Default Value: 100.0

Description: The fastest rate that the pump can dispense (ml/min)

Minimum On (sec/min)

Type: Decimal

Default Value: 1.0

Description: The minimum duration (seconds) the pump turns on for every 60 second period (only used for Specify Flow

Rate mode).

COMMANDS

New I2C Address

Type: Text

Default Value: 0x14

Description: The new I2C to set the sensor to

Set I2C Address

Type: Button

Motor: L298N DC Motor Controller

Manufacturer: STMicroelectronics

Interfaces: GPIO

Output Types: Volume, On/Off

Libraries: RPi.GPIO

Dependencies: RPi.GPIO

Additional URL: Link

The L298N can control 2 DC motors. If these motors control peristaltic pumps, set the Flow Rate and the output can can be

instructed to dispense volumes accurately in addition to being turned on for durations.

OPTIONS

CHANNEL OPTIONS

Name

Type: Text

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

5.3.2 Built-In Outputs (Devices)

- 183/287 - Copyright © 2022

https://pypi.org/project/RPi.GPIO
https://www.electronicshub.org/raspberry-pi-l298n-interface-tutorial-control-dc-motor-l298n-raspberry-pi/

Description: A name to distinguish this from others

Input Pin 1

Type: Integer

Description: The Input Pin 1 of the controller (BCM numbering)

Input Pin 2

Type: Integer

Description: The Input Pin 2 of the controller (BCM numbering)

Use Enable Pin

Type: Boolean

Default Value: True

Description: Enable the use of the Enable Pin

Enable Pin

Type: Integer

Description: The Enable pin of the controller (BCM numbering)

Enable Pin Duty Cycle

Type: Integer

Default Value: 50

Description: The duty cycle to apply to the Enable Pin (percent, 1 - 100)

Direction

Type: Select

Options: [Forward | Backward] (Default in bold)

Description: The direction to turn the motor

Volume Rate (ml/min)

Type: Decimal

Default Value: 150.0

Description: If a pump, the measured flow rate (ml/min) at the set Duty Cycle

Motor: Stepper Motor, Bipolar (Generic)

Interfaces: GPIO

Output Types: Value

Dependencies: RPi.GPIO

Manufacturer URLs: Link 1, Link 2

Datasheet URLs: Link 1, Link 2

Product URLs: Link 1, Link 2

This is a generic module for bipolar stepper motor drivers such as the DRV8825, A4988, and others. The value passed to the

output is the number of steps. A positive value turns clockwise and a negative value turns counter-clockwise.

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

5.3.2 Built-In Outputs (Devices)

- 184/287 - Copyright © 2022

https://pypi.org/project/RPi.GPIO
https://www.ti.com/product/DRV8825
https://www.allegromicro.com/en/products/motor-drivers/brush-dc-motor-drivers/a4988
https://www.ti.com/lit/ds/symlink/drv8825.pdf
https://www.allegromicro.com/-/media/files/datasheets/a4988-datasheet.ashx
https://www.pololu.com/product/2133
https://www.pololu.com/product/1182

OPTIONS

CHANNEL OPTIONS

If the Direction or Enable pins are not used, make sure you pull the appropriate pins on your driver high or low to set the proper direction and enable the stepper motor to be

energized. Note: For Enable Mode, always having the motor energized will use more energy and produce more heat.

Step Pin

Type: Integer

Description: The Step pin of the controller (BCM numbering)

Full Step Delay

Type: Decimal

Default Value: 0.005

Description: The Full Step Delay of the controller

Direction Pin

Type: Integer

Description: The Direction pin of the controller (BCM numbering). Set to None to disable.

Enable Pin

Type: Integer

Description: The Enable pin of the controller (BCM numbering). Set to None to disable.

Enable Mode

Type: Select

Options: [Only When Turning | Always] (Default in bold)

Description: Choose when to pull the enable pin high to energize the motor.

Enable at Shutdown

Type: Select

Options: [Enable | Disable] (Default in bold)

Description: Choose whether the enable pin in pulled high (Enable) or low (Disable) when Mycodo shuts down.

If using a Step Resolution other than Full, and all three Mode Pins are set, they will be set high (1) or how (0) according to the values in parentheses to the right of the selected Step

Resolution, e.g. (Mode Pin 1, Mode Pin 2, Mode Pin 3).

Step Resolution

Type: Select

Options: [Full (modes 0, 0, 0) | Half (modes 1, 0, 0) | 1/4 (modes 0, 1, 0) | 1/8 (modes 1, 1, 0) | 1/16 (modes 0, 0, 1) | 1/32

(modes 1, 0, 1)] (Default in bold)

Description: The Step Resolution of the controller

Mode Pin 1

Type: Integer

Description: The Mode Pin 1 of the controller (BCM numbering). Set to None to disable.

Mode Pin 2

Type: Integer

Description: The Mode Pin 2 of the controller (BCM numbering). Set to None to disable.

Mode Pin 3

Type: Integer

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

5.3.2 Built-In Outputs (Devices)

- 185/287 - Copyright © 2022

Description: The Mode Pin 3 of the controller (BCM numbering). Set to None to disable.

Motor: ULN2003 Stepper Motor, Unipolar

Manufacturer: STMicroelectronics

Interfaces: GPIO

Output Types: Value

Dependencies: RPi.GPIO, rpimotorlib

Manufacturer URL: Link

Datasheet URLs: Link 1, Link 2

This is a module for the ULN2003 driver.

OPTIONS

CHANNEL OPTIONS

Notes about connecting the ULN2003...

Pin IN1

Type: Integer

Default Value: 18

Description: The pin (BCM numbering) connected to IN1 of the ULN2003

Pin IN2

Type: Integer

Default Value: 23

Description: The pin (BCM numbering) connected to IN2 of the ULN2003

Pin IN3

Type: Integer

Default Value: 24

Description: The pin (BCM numbering) connected to IN3 of the ULN2003

Pin IN4

Type: Integer

Default Value: 25

Description: The pin (BCM numbering) connected to IN4 of the ULN2003

Step Delay

Type: Decimal

Default Value: 0.001

Description: The Step Delay of the controller

Notes about step resolution...

Step Resolution

Type: Select

Options: [Full | Half | Wave] (Default in bold)

Description: The Step Resolution of the controller

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

5.3.2 Built-In Outputs (Devices)

- 186/287 - Copyright © 2022

https://pypi.org/project/RPi.GPIO
https://pypi.org/project/rpimotorlib
https://www.ti.com/product/ULN2003A
https://www.electronicoscaldas.com/datasheet/ULN2003A-PCB.pdf
https://www.ti.com/lit/ds/symlink/uln2003a.pdf?ts=1617254568263&ref_url=https-3A-2F-2Fwww.ti.com-2Fproduct-2FULN2003A

On/Off: GPIO

Interfaces: GPIO

Output Types: On/Off

Libraries: RPi.GPIO

Dependencies: RPi.GPIO

The specified GPIO pin will be set HIGH (3.3 volts) or LOW (0 volts) when turned on or off, depending on the On State option.

OPTIONS

CHANNEL OPTIONS

GPIO Pin (BCM)

Type: Integer

Description: The pin to control the state of

Startup State

Type: Select

Description: Set the state when Mycodo starts

Shutdown State

Type: Select

Description: Set the state when Mycodo shuts down

On State

Type: Select

Options: [HIGH | LOW] (Default in bold)

Description: The state of the GPIO that corresponds to an On state

Trigger Functions at Startup

Type: Boolean

Description: Whether to trigger functions when the output switches at startup

Current (Amps)

Type: Decimal

Description: The current draw of the device being controlled

On/Off: Grove Multichannel Relay (4- or 8-Channel board)

Manufacturer: Grove

Interfaces: I
2
C

Output Types: On/Off

Libraries: smbus2

Dependencies: smbus2

Manufacturer URL: Link

Datasheet URL: Link

Product URL: Link

Controls the 4 or 8 channel Grove multichannel relay board.

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

5.3.2 Built-In Outputs (Devices)

- 187/287 - Copyright © 2022

https://pypi.org/project/RPi.GPIO
https://pypi.org/project/smbus2
https://www.seeedstudio.com/Grove-4-Channel-SPDT-Relay-p-3119.html
http://wiki.seeedstudio.com/Grove-4-Channel_SPDT_Relay/
https://www.seeedstudio.com/Grove-4-Channel-SPDT-Relay-p-3119.html

OPTIONS

I2C Address

Type: Text

Description: The I2C address of the device

I2C Bus

Type: Integer

Description: The I2C bus the device is connected to

CHANNEL OPTIONS

Name

Type: Text

Description: A name to distinguish this from others

Startup State

Type: Select

Description: Set the state of the relay when Mycodo starts

Shutdown State

Type: Select

Description: Set the state of the relay when Mycodo shuts down

On State

Type: Select

Options: [HIGH | LOW] (Default in bold)

Description: The state of the GPIO that corresponds to an On state

Trigger Functions at Startup

Type: Boolean

Description: Whether to trigger functions when the output switches at startup

Current (Amps)

Type: Decimal

Description: The current draw of the device being controlled

On/Off: HS300 Kasa Smart WiFi Power Strip

Manufacturer: TP-Link

Interfaces: IP

Output Types: On/Off

Dependencies: python-kasa

Manufacturer URL: Link

This output controls the 6 outlets of the Kasa HS300 Smart WiFi Power Strip.

OPTIONS

Host

Type: Text

Default Value: 192.168.0.50

Description: Host address or IP

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

5.3.2 Built-In Outputs (Devices)

- 188/287 - Copyright © 2022

https://pypi.org/project/python-kasa
https://www.kasasmart.com/us/products/smart-plugs/kasa-smart-wi-fi-power-strip-hs300

Status Update (Sec)

Type: Integer

Default Value: 60

Description: The period (seconds) between checking if connected and output states.

CHANNEL OPTIONS

Name

Type: Text

Default Value: Outlet Name

Description: A name to distinguish this from others

Startup State

Type: Select

Description: Set the state when Mycodo starts

Shutdown State

Type: Select

Description: Set the state when Mycodo shuts down

Trigger Functions at Startup

Type: Boolean

Description: Whether to trigger functions when the output switches at startup

Force Command

Type: Boolean

Description: Always send the command if instructed, regardless of the current state

Current (Amps)

Type: Decimal

Description: The current draw of the device being controlled

On/Off: KP303 Kasa Smart WiFi Power Strip

Manufacturer: TP-Link

Interfaces: IP

Output Types: On/Off

Dependencies: python-kasa

Manufacturer URL: Link

This output controls the 3 outlets of the Kasa KP303 Smart WiFi Power Strip.

OPTIONS

Host

Type: Text

Default Value: 192.168.0.50

Description: Host address or IP

Status Update (Sec)

Type: Integer

Default Value: 60

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

5.3.2 Built-In Outputs (Devices)

- 189/287 - Copyright © 2022

https://pypi.org/project/python-kasa
https://www.tp-link.com/au/home-networking/smart-plug/kp303/

Description: The period (seconds) between checking if connected and output states.

CHANNEL OPTIONS

Name

Type: Text

Default Value: Outlet Name

Description: A name to distinguish this from others

Startup State

Type: Select

Description: Set the state when Mycodo starts

Shutdown State

Type: Select

Description: Set the state when Mycodo shuts down

Trigger Functions at Startup

Type: Boolean

Description: Whether to trigger functions when the output switches at startup

Force Command

Type: Boolean

Description: Always send the command if instructed, regardless of the current state

Current (Amps)

Type: Decimal

Description: The current draw of the device being controlled

On/Off: MCP23017 16-Channel I/O Expander

Manufacturer: MICROCHIP

Interfaces: I
2
C

Output Types: On/Off

Dependencies: pyusb, Adafruit-extended-bus, adafruit-circuitpython-mcp230xx

Manufacturer URL: Link

Datasheet URL: Link

Product URL: Link

Controls the 16 channels of the MCP23017.

OPTIONS

I2C Address

Type: Text

Description: The I2C address of the device

I2C Bus

Type: Integer

Description: The I2C bus the device is connected to

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

5.3.2 Built-In Outputs (Devices)

- 190/287 - Copyright © 2022

https://pypi.org/project/pyusb
https://pypi.org/project/Adafruit-extended-bus
https://pypi.org/project/adafruit-circuitpython-mcp230xx
https://www.microchip.com/wwwproducts/en/MCP23017
https://ww1.microchip.com/downloads/en/devicedoc/20001952c.pdf
https://www.amazon.com/Waveshare-MCP23017-Expansion-Interface-Expands/dp/B07P2H1NZG

CHANNEL OPTIONS

Name

Type: Text

Description: A name to distinguish this from others

Startup State

Type: Select

Description: Set the state of the GPIO when Mycodo starts

Shutdown State

Type: Select

Description: Set the state of the GPIO when Mycodo shuts down

On State

Type: Select

Options: [HIGH | LOW] (Default in bold)

Description: The state of the GPIO that corresponds to an On state

Trigger Functions at Startup

Type: Boolean

Description: Whether to trigger functions when the output switches at startup

Current (Amps)

Type: Decimal

Description: The current draw of the device being controlled

On/Off: PCF8574 8-Channel {lazy_gettext('I/O Expander')}

Manufacturer: Texas Instruments

Interfaces: I
2
C

Output Types: On/Off

Libraries: smbus2

Dependencies: smbus2

Manufacturer URL: Link

Datasheet URL: Link

Product URL: Link

Controls the 8 channels of the PCF8574.

OPTIONS

I2C Address

Type: Text

Description: The I2C address of the device

I2C Bus

Type: Integer

Description: The I2C bus the device is connected to

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

5.3.2 Built-In Outputs (Devices)

- 191/287 - Copyright © 2022

https://pypi.org/project/smbus2
https://www.ti.com/product/PCF8574
https://www.ti.com/lit/ds/symlink/pcf8574.pdf
https://www.amazon.com/gp/product/B07JGSNWFF

CHANNEL OPTIONS

Name

Type: Text

Description: A name to distinguish this from others

Startup State

Type: Select

Description: Set the state of the GPIO when Mycodo starts

Shutdown State

Type: Select

Description: Set the state of the GPIO when Mycodo shuts down

On State

Type: Select

Options: [HIGH | LOW] (Default in bold)

Description: The state of the GPIO that corresponds to an On state

Trigger Functions at Startup

Type: Boolean

Description: Whether to trigger functions when the output switches at startup

Current (Amps)

Type: Decimal

Description: The current draw of the device being controlled

On/Off: Python Code

Interfaces: Python

Output Types: On/Off

Dependencies: pylint

Python 3 code will be executed when this output is turned on or off.

OPTIONS

CHANNEL OPTIONS

On Command

Description: Python code to execute when the output is instructed to turn on

Off Command

Description: Python code to execute when the output is instructed to turn off

Startup State

Type: Select

Description: Set the state when Mycodo starts

Shutdown State

Type: Select

Description: Set the state when Mycodo shuts down

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

5.3.2 Built-In Outputs (Devices)

- 192/287 - Copyright © 2022

https://pypi.org/project/pylint

Trigger Functions at Startup

Type: Boolean

Description: Whether to trigger functions when the output switches at startup

Force Command

Type: Boolean

Description: Always send the command if instructed, regardless of the current state

Current (Amps)

Type: Decimal

Description: The current draw of the device being controlled

On/Off: Shell Script

Output Types: On/Off

Libraries: subprocess.Popen

Commands will be executed in the Linux shell by the specified user when this output is turned on or off.

OPTIONS

CHANNEL OPTIONS

On Command

Type: Text

Default Value: /home/pi/script_on_off.sh on

Description: Command to execute when the output is instructed to turn on

Off Command

Type: Text

Default Value: /home/pi/script_on_off.sh off

Description: Command to execute when the output is instructed to turn off

User

Type: Text

Default Value: mycodo

Description: The user to execute the command

Startup State

Type: Select

Description: Set the state when Mycodo starts

Shutdown State

Type: Select

Description: Set the state when Mycodo shuts down

Trigger Functions at Startup

Type: Boolean

Description: Whether to trigger functions when the output switches at startup

Force Command

Type: Boolean

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

5.3.2 Built-In Outputs (Devices)

- 193/287 - Copyright © 2022

Description: Always send the command if instructed, regardless of the current state

Current (Amps)

Type: Decimal

Description: The current draw of the device being controlled

On/Off: Wireless 315/433 MHz

Interfaces: GPIO

Output Types: On/Off

Libraries: rpi-rf

Dependencies: RPi.GPIO, rpi_rf

This output uses a 315 or 433 MHz transmitter to turn wireless power outlets on or off. Run ~/Mycodo/mycodo/devices/

wireless_rpi_rf.py with a receiver to discover the codes produced from your remote.

OPTIONS

CHANNEL OPTIONS

GPIO Pin (BCM)

Type: Integer

Description: The pin to control the state of

On Command

Type: Text

Default Value: 22559

Description: Command to execute when the output is instructed to turn on

Off Command

Type: Text

Default Value: 22558

Description: Command to execute when the output is instructed to turn off

Protocol

Type: Select

Options: [1 | 2 | 3 | 4 | 5] (Default in bold)

Description: Wireless protocol

Pulse Length

Type: Integer

Default Value: 189

Description: Wireless pulse length

Startup State

Type: Select

Description: Set the state when Mycodo starts

Shutdown State

Type: Select

Description: Set the state when Mycodo shuts down

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

5.3.2 Built-In Outputs (Devices)

- 194/287 - Copyright © 2022

https://pypi.org/project/RPi.GPIO
https://pypi.org/project/rpi_rf

Trigger Functions at Startup

Type: Boolean

Description: Whether to trigger functions when the output switches at startup

Force Command

Type: Boolean

Description: Always send the commad if instructed, regardless of the current state

Current (Amps)

Type: Decimal

Description: The current draw of the device being controlled

PWM: GPIO

Interfaces: GPIO

Output Types: PWM

Libraries: pigpio

Dependencies: pigpio, pigpio

See the PWM section of the manual for PWM information and determining which pins may be used for each library option.

CHANNEL OPTIONS

GPIO Pin (BCM)

Type: Integer

Description: The pin to control the state of

Startup State

Type: Select

Description: Set the state when Mycodo starts

Startup Value

Type: Decimal

Description: The value when Mycodo starts

Shutdown State

Type: Select

Description: Set the state when Mycodo shuts down

Shutdown Value

Type: Decimal

Description: The value when Mycodo shuts down

Library

Type: Select

Options: [Any Pin, <= 40 kHz | Hardware Pin, <= 30 MHz] (Default in bold)

Description: Which method to produce the PWM signal (hardware pins can produce higher frequencies)

Frequency (Hertz)

Type: Integer

Default Value: 22000

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

5.3.2 Built-In Outputs (Devices)

- 195/287 - Copyright © 2022

https://pypi.org/project/pigpio

Description: The Herts to output the PWM signal (0 - 70,000)

Invert Signal

Type: Boolean

Description: Invert the PWM signal

Invert Stored Signal

Type: Boolean

Description: Invert the value that is saved to the measurement database

Trigger Functions at Startup

Type: Boolean

Description: Whether to trigger functions when the output switches at startup

Current (Amps)

Type: Decimal

Description: The current draw of the device being controlled

COMMANDS

Set the Duty Cycle.

Duty Cycle

Type: Decimal

Description: The duty cycle to set

Set Duty Cycle

Type: Button

PWM: PCA9685 16-Channel LED Controller

Manufacturer: NXP Semiconductors

Interfaces: I
2
C

Output Types: PWM

Libraries: adafruit-pca9685

Dependencies: adafruit-pca9685

Manufacturer URL: Link

Datasheet URL: Link

Product URL: Link

The PCA9685 can output a PWM signal to 16 channels at a frequency between 40 and 1600 Hz.

OPTIONS

I2C Address

Type: Text

Description: The I2C address of the device

I2C Bus

Type: Integer

Description: The I2C bus the device is connected to

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

5.3.2 Built-In Outputs (Devices)

- 196/287 - Copyright © 2022

https://pypi.org/project/adafruit-pca9685
https://www.nxp.com/products/power-management/lighting-driver-and-controller-ics/ic-led-controllers/16-channel-12-bit-pwm-fm-plus-ic-bus-led-controller:PCA9685
https://www.nxp.com/docs/en/data-sheet/PCA9685.pdf
https://www.adafruit.com/product/815

Frequency (Hertz)

Type: Integer

Default Value: 1600

Description: The Herts to output the PWM signal (40 - 1600)

CHANNEL OPTIONS

Name

Type: Text

Description: A name to distinguish this from others

Startup State

Type: Select

Description: Set the state when Mycodo starts

Startup Value

Type: Decimal

Description: The value when Mycodo starts

Shutdown State

Type: Select

Description: Set the state when Mycodo shuts down

Shutdown Value

Type: Decimal

Description: The value when Mycodo shuts down

Invert Signal

Type: Boolean

Description: Invert the PWM signal

Invert Stored Signal

Type: Boolean

Description: Invert the value that is saved to the measurement database

Trigger Functions at Startup

Type: Boolean

Description: Whether to trigger functions when the output switches at startup

Current (Amps)

Type: Decimal

Description: The current draw of the device being controlled

PWM: Python 3 Code

Interfaces: Python

Output Types: PWM

Dependencies: pylint

Python 3 code will be executed when this output is turned on or off. The "duty_cycle" object is a float value that represents the

duty cycle that has been set.

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

5.3.2 Built-In Outputs (Devices)

- 197/287 - Copyright © 2022

https://pypi.org/project/pylint

CHANNEL OPTIONS

Python 3 Code

Description: Python code to execute to set the PWM duty cycle (%)

User

Type: Text

Default Value: mycodo

Description: The user to execute the command

Startup State

Type: Select

Description: Set the state when Mycodo starts

Startup Value

Type: Decimal

Description: The value when Mycodo starts

Shutdown State

Type: Select

Description: Set the state when Mycodo shuts down

Shutdown Value

Type: Decimal

Description: The value when Mycodo shuts down

Invert Signal

Type: Boolean

Description: Invert the PWM signal

Invert Stored Signal

Type: Boolean

Description: Invert the value that is saved to the measurement database

Trigger Functions at Startup

Type: Boolean

Description: Whether to trigger functions when the output switches at startup

Force Command

Type: Boolean

Description: Always send the command if instructed, regardless of the current state

Current (Amps)

Type: Decimal

Description: The current draw of the device being controlled

COMMANDS

Set the Duty Cycle.

Duty Cycle

Type: Decimal

Description: The duty cycle to set

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

5.3.2 Built-In Outputs (Devices)

- 198/287 - Copyright © 2022

Set Duty Cycle

Type: Button

PWM: Shell Script

Interfaces: Shell

Output Types: PWM

Libraries: subprocess.Popen

Commands will be executed in the Linux shell by the specified user when the duty cycle is set for this output. The string

"((duty_cycle))" in the command will be replaced with the duty cycle being set prior to execution.

OPTIONS

CHANNEL OPTIONS

Bash Command

Type: Text

Default Value: /home/pi/script_pwm.sh ((duty_cycle))

Description: Command to execute to set the PWM duty cycle (%)

User

Type: Text

Default Value: mycodo

Description: The user to execute the command

Startup State

Type: Select

Description: Set the state when Mycodo starts

Startup Value

Type: Decimal

Description: The value when Mycodo starts

Shutdown State

Type: Select

Description: Set the state when Mycodo shuts down

Shutdown Value

Type: Decimal

Description: The value when Mycodo shuts down

Invert Signal

Type: Boolean

Description: Invert the PWM signal

Invert Stored Signal

Type: Boolean

Description: Invert the value that is saved to the measurement database

Trigger Functions at Startup

Type: Boolean

Description: Whether to trigger functions when the output switches at startup

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

5.3.2 Built-In Outputs (Devices)

- 199/287 - Copyright © 2022

Force Command

Type: Boolean

Description: Always send the commad if instructed, regardless of the current state

Current (Amps)

Type: Decimal

Description: The current draw of the device being controlled

Peristaltic Pump: Atlas Scientific

Manufacturer: Atlas Scientific

Interfaces: I
2
C, UART, FTDI

Output Types: Volume, On/Off

Dependencies: pylibftdi

Manufacturer URL: Link

Datasheet URL: Link

Product URL: Link

Atlas Scientific peristaltic pumps can be set to dispense at their maximum rate or a rate can be specified. Their minimum flow

rate is 0.5 ml/min and their maximum is 105 ml/min.

OPTIONS

I2C Address

Type: Text

Description: The I2C address of the device

I2C Bus

Type: Integer

Description: The I2C bus the device is connected to

FTDI Device

Type: Text

Description: The FTDI device connected to the input/output/etc.

UART Device

Type: Text

Description: The UART device location (e.g. /dev/ttyUSB1)

CHANNEL OPTIONS

Flow Rate Method

Type: Select

Options: [Fastest Flow Rate | Specify Flow Rate] (Default in bold)

Description: The flow rate to use when pumping a volume

Desired Flow Rate (ml/min)

Type: Decimal

Default Value: 10.0

Description: Desired flow rate in ml/minute when Specify Flow Rate set

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

5.3.2 Built-In Outputs (Devices)

- 200/287 - Copyright © 2022

https://pypi.org/project/pylibftdi
https://atlas-scientific.com/peristaltic/
https://www.atlas-scientific.com/files/EZO_PMP_Datasheet.pdf
https://atlas-scientific.com/peristaltic/ezo-pmp/

Current (Amps)

Type: Decimal

Description: The current draw of the device being controlled

COMMANDS

Calibration: a calibration can be performed to increase the accuracy of the pump. It's a good idea to clear the calibration before calibrating. First, remove all air from the line by

pumping the fluid you would like to calibrate to through the pump hose. Next, press Dispense Amount and the pump will be instructed to dispense 10 ml (unless you changed the

default value). Measure how much fluid was actually dispensed, enter this value in the Actual Volume Dispensed (ml) field, and press Calibrate to Dispensed Amount. Now any

further pump volumes dispensed should be accurate.

Clear Calibration

Type: Button

Volume to Dispense (ml)

Type: Decimal

Default Value: 10.0

Description: The volume (ml) that is instructed to be dispensed

Dispense Amount

Type: Button

Actual Volume Dispensed (ml)

Type: Decimal

Default Value: 10.0

Description: The actual volume (ml) that was dispensed

Calibrate to Dispensed Amount

Type: Button

The I2C address can be changed. Enter a new address in the 0xYY format (e.g. 0x22, 0x50), then press Set I2C Address. Remember to deactivate and change the I2C address

option after setting the new address.

New I2C Address

Type: Text

Default Value: 0x67

Description: The new I2C to set the device to

Set I2C Address

Type: Button

Peristaltic Pump: GPIO

Interfaces: GPIO

Output Types: Volume, On/Off

Libraries: RPi.GPIO

Dependencies: RPi.GPIO

This output turns a GPIO pin HIGH and LOW to control power to a generic peristaltic pump. The peristaltic pump can then be

turned on for a duration or, after determining the pump's maximum flow rate, instructed to dispense a specific volume at the

maximum rate or at a specified rate.

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

5.3.2 Built-In Outputs (Devices)

- 201/287 - Copyright © 2022

https://pypi.org/project/RPi.GPIO

OPTIONS

CHANNEL OPTIONS

GPIO Pin (BCM)

Type: Integer

Description: The pin to control the state of

On State

Type: Select

Options: [HIGH | LOW] (Default in bold)

Description: The state of the GPIO that corresponds to an On state

Fastest Rate (ml/min)

Type: Decimal

Default Value: 150.0

Description: The fastest rate that the pump can dispense (ml/min)

Minimum On (sec/min)

Type: Decimal

Default Value: 1.0

Description: The minimum duration (seconds) the pump should be turned on for every 60 second period

Flow Rate Method

Type: Select

Options: [Fastest Flow Rate | Specify Flow Rate] (Default in bold)

Description: The flow rate to use when pumping a volume

Desired Flow Rate (ml/min)

Type: Decimal

Default Value: 10.0

Description: Desired flow rate in ml/minute when Specify Flow Rate set

Current (Amps)

Type: Decimal

Description: The current draw of the device being controlled

Peristaltic Pump: MCP23017 16-Channel I/O Expander

Manufacturer: MICROCHIP

Interfaces: I
2
C

Output Types: Volume, On/Off

Dependencies: pyusb, Adafruit-extended-bus, adafruit-circuitpython-mcp230xx

Manufacturer URL: Link

Datasheet URL: Link

Product URL: Link

Controls the 16 channels of the MCP23017 with a relay and peristaltic pump connected to each channel.

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

5.3.2 Built-In Outputs (Devices)

- 202/287 - Copyright © 2022

https://pypi.org/project/pyusb
https://pypi.org/project/Adafruit-extended-bus
https://pypi.org/project/adafruit-circuitpython-mcp230xx
https://www.microchip.com/wwwproducts/en/MCP23017
https://ww1.microchip.com/downloads/en/devicedoc/20001952c.pdf
https://www.amazon.com/Waveshare-MCP23017-Expansion-Interface-Expands/dp/B07P2H1NZG

OPTIONS

I2C Address

Type: Text

Description: The I2C address of the device

I2C Bus

Type: Integer

Description: The I2C bus the device is connected to

CHANNEL OPTIONS

On State

Type: Select

Options: [HIGH | LOW] (Default in bold)

Description: The state of the output channel that corresponds to the pump being on

Fastest Rate (ml/min)

Type: Decimal

Default Value: 150.0

Description: The fastest rate that the pump can dispense (ml/min)

Minimum On (sec/min)

Type: Decimal

Default Value: 1.0

Description: The minimum duration (seconds) the pump should be turned on for every 60 second period

Flow Rate Method

Type: Select

Options: [Fastest Flow Rate | Specify Flow Rate] (Default in bold)

Description: The flow rate to use when pumping a volume

Desired Flow Rate (ml/min)

Type: Decimal

Default Value: 10.0

Description: Desired flow rate in ml/minute when Specify Flow Rate set

Current (Amps)

Type: Decimal

Description: The current draw of the device being controlled

Peristaltic Pump: PCF8574 8-Channel I/O Expander

Manufacturer: Texas Instruments

Interfaces: I
2
C

Output Types: Volume, On/Off

Libraries: smbus2

Dependencies: smbus2

Manufacturer URL: Link

Datasheet URL: Link

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

5.3.2 Built-In Outputs (Devices)

- 203/287 - Copyright © 2022

https://pypi.org/project/smbus2
https://www.ti.com/product/PCF8574
https://www.ti.com/lit/ds/symlink/pcf8574.pdf

Product URL: Link

Controls the 8 channels of the PCF8574 with a relay and peristaltic pump connected to each channel.

OPTIONS

I2C Address

Type: Text

Description: The I2C address of the device

I2C Bus

Type: Integer

Description: The I2C bus the device is connected to

CHANNEL OPTIONS

On State

Type: Select

Options: [HIGH | LOW] (Default in bold)

Description: The state of the output channel that corresponds to the pump being on

Fastest Rate (ml/min)

Type: Decimal

Default Value: 150.0

Description: The fastest rate that the pump can dispense (ml/min)

Minimum On (sec/min)

Type: Decimal

Default Value: 1.0

Description: The minimum duration (seconds) the pump should be turned on for every 60 second period

Flow Rate Method

Type: Select

Options: [Fastest Flow Rate | Specify Flow Rate] (Default in bold)

Description: The flow rate to use when pumping a volume

Desired Flow Rate (ml/min)

Type: Decimal

Default Value: 10.0

Description: Desired flow rate in ml/minute when Specify Flow Rate set

Current (Amps)

Type: Decimal

Description: The current draw of the device being controlled

Spacer

A spacer to organize Outputs.

OPTIONS

Color

Type: Text

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

5.3.2 Built-In Outputs (Devices)

- 204/287 - Copyright © 2022

https://www.amazon.com/gp/product/B07JGSNWFF

Default Value: #000000

Description: The color of the name text

•

•

5.3.2 Built-In Outputs (Devices)

- 205/287 - Copyright © 2022

5.4 Supported Functions

Supported Functions are listed below.

5.4.1 Built-In Functions

Average (Last, Multiple)

This function acquires the last measurement of those that are selected, averages them, then stores the resulting value as the

selected measurement and unit.

OPTIONS

Period (seconds)

Type: Decimal

Default Value: 60

Description: The duration (seconds) between measurements or actions

Start Offset

Type: Integer

Default Value: 10

Description: The duration (seconds) to wait before the first operation

Max Age

Type: Integer

Default Value: 360

Description: The maximum age (seconds) of the measurement to use

Measurement

Description: Measurement to replace "x" in the equation

Average (Past, Single)

This function acquires the past measurements (within Max Age) for the selected measurement, averages them, then stores the

resulting value as the selected measurement and unit.

OPTIONS

Period (seconds)

Type: Decimal

Default Value: 60

Description: The duration (seconds) between measurements or actions

Start Offset

Type: Integer

Default Value: 10

Description: The duration (seconds) to wait before the first operation

Measurement

Type: Select Measurement

Selections: Input, Function

Description: Measurement to replace "x" in the equation

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

5.4 Supported Functions

- 206/287 - Copyright © 2022

Max Age

Type: Integer

Default Value: 360

Description: The maximum age (seconds) of the measurement to use

Backup to Remote Host (rsync)

Dependencies: rsync

This function will use rsync to back up assets on this system to a remote system. Your remote system needs to have an SSH

server running and rsync installed. This system will need rsync installed and be able to access your remote system via SSH

keyfile (login without a password). You can do this by creating an SSH key on this system running Mycodo with "ssh-keygen"

(leave the password field empty), then run "ssh-copy-id -i ~/.ssh/id_rsa.pub pi@REMOTE_HOST_IP" to transfer your public SSH

key to your remote system (changing pi and REMOTE_HOST_IP to the appropriate user and host of your remote system). You can

test if this worked by trying to connect to your remote system with "ssh pi@REMOTE_HOST_IP" and you should log in without

being asked for a password. Be careful not to set the Period too low, which could cause the function to begin running before the

previous operation(s) complete. Therefore, it is recommended to set a relatively long Period (greater than 10 minutes). The

default Period is 15 days. Note that the Period will reset if the system or the Mycodo daemon restarts and the Function will run,

generating new settings and measurement archives that will be synced. There are two common ways to use this Function: 1) A

short period (1 hour), only have Backup Camera Directories enabled, and use the Backup Settings Now and Backup

Measurements Now buttons manually to perform a backup, and 2) A long period (15 days), only have Backup Settings and

Backup Measurements enabled. You can even create two of these Functions with one set up to perform long-Period settings and

measurement backups and the other set up to perform short-Period camera backups.

OPTIONS

Period (seconds)

Type: Decimal

Default Value: 1296000

Description: The duration (seconds) between measurements or actions

Start Offset

Type: Integer

Default Value: 300

Description: The duration (seconds) to wait before the first operation

Local User

Type: Text

Default Value: pi

Description: The user on this system that will run rsync

Remote User

Type: Text

Default Value: pi

Description: The user to log in to the remote host

Remote Host

Type: Text

Default Value: 192.168.0.50

Description: The IP or host address to send the backup to

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

5.4.1 Built-In Functions

- 207/287 - Copyright © 2022

https://packages.debian.org/buster/rsync

Remote Backup Path

Type: Text

Default Value: /home/pi/backup_mycodo

Description: The path to backup to on the remote host

Rsync Timeout

Type: Integer

Default Value: 3600

Description: How long to allow rsync to complete (seconds)

Backup Settings Export File

Type: Boolean

Default Value: True

Description: Create and backup exported settings file

Remove Local Settings Backups

Type: Boolean

Description: Remove local settings backups after successful transfer to remote host

Backup Measurements

Type: Boolean

Default Value: True

Description: Backup all influxdb measurements

Remove Local Measurements Backups

Type: Boolean

Description: Remove local measurements backups after successful transfer to remote host

Backup Camera Directories

Type: Boolean

Default Value: True

Description: Backup all camera directories

Remove Local Camera Images

Type: Boolean

Description: Remove local camera images after successful transfer to remote host

SSH Port

Type: Integer

Default Value: 22

Description: Specify a nonstandard SSH port

COMMANDS

Backup of settings are only created if the Mycodo version or database versions change. This is due to this Function running periodically- if it created a new backup every Period,

there would soon be many identical backups. Therefore, if you want to induce the backup of settings, measurements, or camera directories and sync them to your remote system,

use the buttons below.

Backup Settings Now

Type: Button

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

5.4.1 Built-In Functions

- 208/287 - Copyright © 2022

Backup Measurements Now

Type: Button

Backup Camera Directories Now

Type: Button

Bang-Bang Hysteretic (On/Off) (Raise/Lower)

A simple bang-bang control for controlling one output from one input. Select an input, an output, enter a setpoint and a

hysteresis, and select a direction. The output will turn on when the input is below (lower = setpoint - hysteresis) and turn off

when the input is above (higher = setpoint + hysteresis). This is the behavior when Raise is selected, such as when heating.

Lower direction has the opposite behavior - it will try to turn the output on in order to drive the input lower.

OPTIONS

Measurement

Type: Select Measurement

Selections: Input, Function

Description: Select a measurement the selected output will affect

Output

Type: Select Device, Measurement, and Channel

Selections: Output

Description: Select an output to control that will affect the measurement

Setpoint

Type: Decimal

Default Value: 50

Description: The desired setpoint

Hysteresis

Type: Decimal

Default Value: 1

Description: The amount above and below the setpoint that defines the control band

Direction

Type: Select

Options: [Raise | Lower] (Default in bold)

Description: Raise means the measurement will increase when the control is on (heating). Lower means the measurement

will decrease when the output is on (cooling)

Period (seconds)

Type: Decimal

Default Value: 5

Description: The duration (seconds) between measurements or actions

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

5.4.1 Built-In Functions

- 209/287 - Copyright © 2022

Bang-Bang Hysteretic (On/Off) (Raise/Lower/Both)

A simple bang-bang control for controlling one or two outputs from one input. Select an input, a raise and/or lower output, enter

a setpoint and a hysteresis, and select a direction. The output will turn on when the input is below (lower = setpoint - hysteresis)

and turn off when the input is above (higher = setpoint + hysteresis). This is the behavior when Raise is selected, such as when

heating. Lower direction has the opposite behavior - it will try to turn the output on in order to drive the input lower. The Both

option will raise and lower. Note: This output will only work with On/Off Outputs.

OPTIONS

Measurement

Type: Select Measurement

Selections: Input, Function

Description: Select a measurement the selected output will affect

Output (Raise)

Type: Select Device, Measurement, and Channel

Selections: Output

Description: Select an output to control that will raise the measurement

Output (Lower)

Type: Select Device, Measurement, and Channel

Selections: Output

Description: Select an output to control that will lower the measurement

Setpoint

Type: Decimal

Default Value: 50

Description: The desired setpoint

Hysteresis

Type: Decimal

Default Value: 1

Description: The amount above and below the setpoint that defines the control band

Direction

Type: Select

Options: [Raise | Lower | Both] (Default in bold)

Description: Raise means the measurement will increase when the control is on (heating). Lower means the measurement

will decrease when the output is on (cooling)

Period (seconds)

Type: Decimal

Default Value: 5

Description: The duration (seconds) between measurements or actions

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

5.4.1 Built-In Functions

- 210/287 - Copyright © 2022

Bang-Bang Hysteretic (PWM) (Raise/Lower/Both)

A simple bang-bang control for controlling one PWM output from one input. Select an input, a PWM output, enter a setpoint and

a hysteresis, and select a direction. The output will turn on when the input is below below (lower = setpoint - hysteresis) and

turn off when the input is above (higher = setpoint + hysteresis). This is the behavior when Raise is selected, such as when

heating. Lower direction has the opposite behavior - it will try to turn the output on in order to drive the input lower. The Both

option will raise and lower. Note: This output will only work with PWM Outputs.

OPTIONS

Measurement

Type: Select Measurement

Selections: Input, Function

Description: Select a measurement the selected output will affect

Output

Type: Select Device, Measurement, and Channel

Selections: Output

Description: Select an output to control that will affect the measurement

Setpoint

Type: Decimal

Default Value: 50

Description: The desired setpoint

Hysteresis

Type: Decimal

Default Value: 1

Description: The amount above and below the setpoint that defines the control band

Direction

Type: Select

Options: [Raise | Lower | Both] (Default in bold)

Description: Raise means the measurement will increase when the control is on (heating). Lower means the measurement

will decrease when the output is on (cooling)

Period (seconds)

Type: Decimal

Default Value: 5

Description: The duration (seconds) between measurements or actions

Duty Cycle (increase)

Type: Decimal

Default Value: 90

Description: The duty cycle to increase the measurement

Duty Cycle (maintain)

Type: Decimal

Default Value: 55

Description: The duty cycle to maintain the measurement

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

5.4.1 Built-In Functions

- 211/287 - Copyright © 2022

Duty Cycle (decrease)

Type: Decimal

Default Value: 20

Description: The duty cycle to decrease the measurement

Duty Cycle (shutdown)

Type: Decimal

Description: The duty cycle to set when the function shuts down

Difference

This function acquires 2 measurements, calculates the difference, and stores the resulting value as the selected measurement

and unit.

OPTIONS

Period (seconds)

Type: Decimal

Default Value: 60

Description: The duration (seconds) between measurements or actions

Measurement A

Type: Select Measurement

Selections: Input, Function

Description:

Measurement A Max Age

Type: Integer

Default Value: 360

Description: The maximum age (seconds) of the measurement to use

Measurement B

Type: Select Measurement

Selections: Input, Function

Description:

Measurement B Max Age

Type: Integer

Default Value: 360

Description: The maximum age (seconds) of the measurement to use

Reverse Order

Type: Boolean

Description: Reverse the order in the calculation

Absolute Difference

Type: Boolean

Description: Return the absolute value of the difference

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

5.4.1 Built-In Functions

- 212/287 - Copyright © 2022

Display: Generic LCD 16x2 (I2C)

This Function outputs to a generic 16x2 LCD display via I2C. Since this display can show 2 lines at a time, channels are added in

sets of 2 when Number of Line Sets is modified. Every Period, the LCD will refresh and display the next set of lines. Therefore,

the first 2 lines that are displayed are channels 0 and 1, then 2 and 3, and so on. After all channels have been displayed, it will

cycle back to the beginning.

OPTIONS

Period (seconds)

Type: Decimal

Default Value: 10

Description: The duration (seconds) between measurements or actions

I2C Address

Type: Text

Default Value: 0x20

Description: The I2C address of the device

I2C Bus

Type: Integer

Default Value: 1

Description: The I2C bus the device is connected to

Number of Line Sets

Type: Integer

Default Value: 1

Description: How many sets of lines to cycle on the LCD

CHANNEL OPTIONS

Line Display Type

Type: Select

Description: What to display on the line

Measurement

Type: Select Measurement

Selections: Input, Function, Output, PID

Description: Measurement to display on the line

Measurement Max Age

Type: Decimal

Default Value: 360

Description: The maximum age (seconds) of the measurement to use

Measurement Label

Type: Text

Description: Set to overwrite the default measurement label

Measurement Decimal

Type: Integer

Default Value: 1

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

5.4.1 Built-In Functions

- 213/287 - Copyright © 2022

Description: The number of digits after the decimal

Text

Type: Text

Default Value: Text

Description: Text to display

Display Unit

Type: Boolean

Default Value: True

Description: Display the measurement unit (if available)

COMMANDS

Backlight On

Type: Button

Backlight Off

Type: Button

Backlight Flashing On

Type: Button

Backlight Flashing Off

Type: Button

Display: Generic LCD 20x4 (I2C)

This Function outputs to a generic 20x4 LCD display via I2C. Since this display can show 4 lines at a time, channels are added in

sets of 4 when Number of Line Sets is modified. Every Period, the LCD will refresh and display the next set of lines. Therefore,

the first 4 lines that are displayed are channels 0, 1, 2, and 3, then 4, 5, 6, and 7, and so on. After all channels have been

displayed, it will cycle back to the beginning.

OPTIONS

Period (seconds)

Type: Decimal

Default Value: 10

Description: The duration (seconds) between measurements or actions

I2C Address

Type: Text

Default Value: 0x20

Description: The I2C address of the device

I2C Bus

Type: Integer

Default Value: 1

Description: The I2C bus the device is connected to

Number of Line Sets

Type: Integer

Default Value: 1

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

5.4.1 Built-In Functions

- 214/287 - Copyright © 2022

Description: How many sets of lines to cycle on the LCD

CHANNEL OPTIONS

Line Display Type

Type: Select

Description: What to display on the line

Measurement

Type: Select Measurement

Selections: Input, Function, Output, PID

Description: Measurement to display on the line

Max Age

Type: Decimal

Default Value: 360

Description: The maximum age (seconds) of the measurement to use

Measurement Label

Type: Text

Description: Set to overwrite the default measurement label

Measurement Decimal

Type: Integer

Default Value: 1

Description: The number of digits after the decimal

Text

Type: Text

Default Value: Text

Description: Text to display

Display Unit

Type: Boolean

Default Value: True

Description: Display the measurement unit (if available)

COMMANDS

Backlight On

Type: Button

Backlight Off

Type: Button

Display: Grove LCD 16x2 (I2C)

This Function outputs to the Grove 16x2 LCD display via I2C. Since this display can show 2 lines at a time, channels are added in

sets of 2 when Number of Line Sets is modified. Every Period, the LCD will refresh and display the next set of lines. Therefore,

the first 2 lines that are displayed are channels 0 and 1, then 2 and 3, and so on. After all channels have been displayed, it will

cycle back to the beginning.

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

5.4.1 Built-In Functions

- 215/287 - Copyright © 2022

OPTIONS

Period (seconds)

Type: Decimal

Default Value: 10

Description: The duration (seconds) between measurements or actions

I2C Address

Type: Text

Default Value: 0x3e

Description: The I2C address of the device

I2C Bus

Type: Integer

Default Value: 1

Description: The I2C bus the device is connected to

Backlight I2C Address

Type: Text

Default Value: 0x62

Description: I2C address to control the backlight

Number of Line Sets

Type: Integer

Default Value: 1

Description: How many sets of lines to cycle on the LCD

Backlight Red (0 - 255)

Type: Integer

Default Value: 255

Description: Set the red color value of the backlight on startup.

Backlight Green (0 - 255)

Type: Integer

Default Value: 255

Description: Set the green color value of the backlight on startup.

Backlight Blue (0 - 255)

Type: Integer

Default Value: 255

Description: Set the blue color value of the backlight on startup.

CHANNEL OPTIONS

Line Display Type

Type: Select

Description: What to display on the line

Measurement

Type: Select Measurement

Selections: Input, Function, Output, PID

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

5.4.1 Built-In Functions

- 216/287 - Copyright © 2022

Description: Measurement to display on the line

Max Age

Type: Decimal

Default Value: 360

Description: The maximum age (seconds) of the measurement to use

Measurement Label

Type: Text

Description: Set to overwrite the default measurement label

Measurement Decimal

Type: Integer

Default Value: 1

Description: The number of digits after the decimal

Text

Type: Text

Default Value: Text

Description: Text to display

Display Unit

Type: Boolean

Default Value: True

Description: Display the measurement unit (if available)

COMMANDS

Backlight On

Type: Button

Backlight Off

Type: Button

Color (RGB)

Type: Text

Default Value: 255,0,0

Description: Color as R,G,B values (e.g. "255,0,0" without quotes)

Set Backlight Color

Type: Button

Display: SSD1306 OLED 128x32 [2 Lines] (I2C)

Dependencies: libjpeg-dev, Pillow, pyusb, Adafruit-extended-bus, adafruit-circuitpython-framebuf, adafruit-circuitpython-

ssd1306

This Function outputs to a 128x32 SSD1306 OLED display via I2C. This display Function will show 2 lines at a time, so channels

are added in sets of 2 when Number of Line Sets is modified. Every Period, the LCD will refresh and display the next set of lines.

Therefore, the first set of lines that are displayed are channels 0 - 1, then 2 - 3, and so on. After all channels have been displayed,

it will cycle back to the beginning.

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

5.4.1 Built-In Functions

- 217/287 - Copyright © 2022

https://packages.debian.org/buster/libjpeg-dev
https://pypi.org/project/Pillow
https://pypi.org/project/pyusb
https://pypi.org/project/Adafruit-extended-bus
https://pypi.org/project/adafruit-circuitpython-framebuf
https://pypi.org/project/adafruit-circuitpython-ssd1306
https://pypi.org/project/adafruit-circuitpython-ssd1306

OPTIONS

Period (seconds)

Type: Decimal

Default Value: 10

Description: The duration (seconds) between measurements or actions

I2C Address

Type: Text

Default Value: 0x3c

Description: The I2C address of the device

I2C Bus

Type: Integer

Default Value: 1

Description: The I2C bus the device is connected to

Number of Line Sets

Type: Integer

Default Value: 1

Description: How many sets of lines to cycle on the LCD

Reset Pin

Type: Integer

Default Value: 17

Description: The pin (BCM numbering) connected to RST of the display

Characters Per Line

Type: Integer

Default Value: 17

Description: The maximum number of characters to display per line

Use Non-Default Font

Type: Boolean

Description: Don't use the default font. Enable to specify the path to a font to use.

Non-Default Font Path

Type: Text

Default Value: /usr/share/fonts/truetype/dejavu//DejaVuSans.ttf

Description: The path to the non-default font to use

Font Size (pt)

Type: Integer

Default Value: 12

Description: The size of the font, in points

CHANNEL OPTIONS

Line Display Type

Type: Select

Description: What to display on the line

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

5.4.1 Built-In Functions

- 218/287 - Copyright © 2022

Measurement

Type: Select Measurement

Selections: Input, Function, Output, PID

Description: Measurement to display on the line

Max Age

Type: Decimal

Default Value: 360

Description: The maximum age (seconds) of the measurement to use

Measurement Label

Type: Text

Description: Set to overwrite the default measurement label

Measurement Decimal

Type: Integer

Default Value: 1

Description: The number of digits after the decimal

Text

Type: Text

Default Value: Text

Description: Text to display

Display Unit

Type: Boolean

Default Value: True

Description: Display the measurement unit (if available)

Display: SSD1306 OLED 128x32 [2 Lines] (SPI)

Dependencies: libjpeg-dev, Pillow, pyusb, Adafruit-GPIO, Adafruit-extended-bus, adafruit-circuitpython-framebuf, adafruit-

circuitpython-ssd1306

This Function outputs to a 128x32 SSD1306 OLED display via SPI. This display Function will show 2 lines at a time, so channels

are added in sets of 2 when Number of Line Sets is modified. Every Period, the LCD will refresh and display the next set of lines.

Therefore, the first set of lines that are displayed are channels 0 - 1, then 2 - 3, and so on. After all channels have been displayed,

it will cycle back to the beginning.

OPTIONS

Period (seconds)

Type: Decimal

Default Value: 10

Description: The duration (seconds) between measurements or actions

Number of Line Sets

Type: Integer

Default Value: 1

Description: How many sets of lines to cycle on the LCD

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

5.4.1 Built-In Functions

- 219/287 - Copyright © 2022

https://packages.debian.org/buster/libjpeg-dev
https://pypi.org/project/Pillow
https://pypi.org/project/pyusb
https://pypi.org/project/Adafruit-GPIO
https://pypi.org/project/Adafruit-extended-bus
https://pypi.org/project/adafruit-circuitpython-framebuf
https://pypi.org/project/adafruit-circuitpython-ssd1306
https://pypi.org/project/adafruit-circuitpython-ssd1306

SPI Device

Type: Integer

Description: The SPI device

SPI Bus

Type: Integer

Description: The SPI bus

DC Pin

Type: Integer

Default Value: 16

Description: The pin (BCM numbering) connected to DC of the display

Reset Pin

Type: Integer

Default Value: 19

Description: The pin (BCM numbering) connected to RST of the display

CS Pin

Type: Integer

Default Value: 17

Description: The pin (BCM numbering) connected to CS of the display

Characters Per Line

Type: Integer

Default Value: 17

Description: The maximum number of characters to display per line

Use Non-Default Font

Type: Boolean

Description: Don't use the default font. Enable to specify the path to a font to use.

Non-Default Font Path

Type: Text

Default Value: /usr/share/fonts/truetype/dejavu//DejaVuSans.ttf

Description: The path to the non-default font to use

Font Size (pt)

Type: Integer

Default Value: 12

Description: The size of the font, in points

CHANNEL OPTIONS

Line Display Type

Type: Select

Description: What to display on the line

Measurement

Type: Select Measurement

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

5.4.1 Built-In Functions

- 220/287 - Copyright © 2022

Selections: Input, Function, Output, PID

Description: Measurement to display on the line

Max Age

Type: Decimal

Default Value: 360

Description: The maximum age (seconds) of the measurement to use

Measurement Label

Type: Text

Description: Set to overwrite the default measurement label

Measurement Decimal

Type: Integer

Default Value: 1

Description: The number of digits after the decimal

Text

Type: Text

Default Value: Text

Description: Text to display

Display Unit

Type: Boolean

Default Value: True

Description: Display the measurement unit (if available)

Display: SSD1306 OLED 128x32 [4 Lines] (I2C)

Dependencies: libjpeg-dev, Pillow, pyusb, Adafruit-extended-bus, adafruit-circuitpython-framebuf, adafruit-circuitpython-

ssd1306

This Function outputs to a 128x32 SSD1306 OLED display via I2C. This display Function will show 4 lines at a time, so channels

are added in sets of 4 when Number of Line Sets is modified. Every Period, the LCD will refresh and display the next set of lines.

Therefore, the first set of lines that are displayed are channels 0 - 3, then 4 - 7, and so on. After all channels have been displayed,

it will cycle back to the beginning.

OPTIONS

Period (seconds)

Type: Decimal

Default Value: 10

Description: The duration (seconds) between measurements or actions

I2C Address

Type: Text

Default Value: 0x3c

Description: The I2C address of the device

I2C Bus

Type: Integer

Default Value: 1

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

5.4.1 Built-In Functions

- 221/287 - Copyright © 2022

https://packages.debian.org/buster/libjpeg-dev
https://pypi.org/project/Pillow
https://pypi.org/project/pyusb
https://pypi.org/project/Adafruit-extended-bus
https://pypi.org/project/adafruit-circuitpython-framebuf
https://pypi.org/project/adafruit-circuitpython-ssd1306
https://pypi.org/project/adafruit-circuitpython-ssd1306

Description: The I2C bus the device is connected to

Number of Line Sets

Type: Integer

Default Value: 1

Description: How many sets of lines to cycle on the LCD

Reset Pin

Type: Integer

Default Value: 17

Description: The pin (BCM numbering) connected to RST of the display

Characters Per Line

Type: Integer

Default Value: 21

Description: The maximum number of characters to display per line

Use Non-Default Font

Type: Boolean

Description: Don't use the default font. Enable to specify the path to a font to use.

Non-Default Font Path

Type: Text

Default Value: /usr/share/fonts/truetype/dejavu//DejaVuSans.ttf

Description: The path to the non-default font to use

Font Size (pt)

Type: Integer

Default Value: 10

Description: The size of the font, in points

CHANNEL OPTIONS

Line Display Type

Type: Select

Description: What to display on the line

Measurement

Type: Select Measurement

Selections: Input, Function, Output, PID

Description: Measurement to display on the line

Max Age

Type: Decimal

Default Value: 360

Description: The maximum age (seconds) of the measurement to use

Measurement Label

Type: Text

Description: Set to overwrite the default measurement label

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

5.4.1 Built-In Functions

- 222/287 - Copyright © 2022

Measurement Decimal

Type: Integer

Default Value: 1

Description: The number of digits after the decimal

Text

Type: Text

Default Value: Text

Description: Text to display

Display Unit

Type: Boolean

Default Value: True

Description: Display the measurement unit (if available)

Display: SSD1306 OLED 128x32 [4 Lines] (SPI)

Dependencies: libjpeg-dev, Pillow, pyusb, Adafruit-GPIO, Adafruit-extended-bus, adafruit-circuitpython-framebuf, adafruit-

circuitpython-ssd1306

This Function outputs to a 128x32 SSD1306 OLED display via SPI. This display Function will show 4 lines at a time, so channels

are added in sets of 4 when Number of Line Sets is modified. Every Period, the LCD will refresh and display the next set of lines.

Therefore, the first set of lines that are displayed are channels 0 - 3, then 4 - 7, and so on. After all channels have been displayed,

it will cycle back to the beginning.

OPTIONS

Period (seconds)

Type: Decimal

Default Value: 10

Description: The duration (seconds) between measurements or actions

Number of Line Sets

Type: Integer

Default Value: 1

Description: How many sets of lines to cycle on the LCD

SPI Device

Type: Integer

Description: The SPI device

SPI Bus

Type: Integer

Description: The SPI bus

DC Pin

Type: Integer

Default Value: 16

Description: The pin (BCM numbering) connected to DC of the display

Reset Pin

Type: Integer

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

5.4.1 Built-In Functions

- 223/287 - Copyright © 2022

https://packages.debian.org/buster/libjpeg-dev
https://pypi.org/project/Pillow
https://pypi.org/project/pyusb
https://pypi.org/project/Adafruit-GPIO
https://pypi.org/project/Adafruit-extended-bus
https://pypi.org/project/adafruit-circuitpython-framebuf
https://pypi.org/project/adafruit-circuitpython-ssd1306
https://pypi.org/project/adafruit-circuitpython-ssd1306

Default Value: 19

Description: The pin (BCM numbering) connected to RST of the display

CS Pin

Type: Integer

Default Value: 17

Description: The pin (BCM numbering) connected to CS of the display

Characters Per Line

Type: Integer

Default Value: 21

Description: The maximum number of characters to display per line

Use Non-Default Font

Type: Boolean

Description: Don't use the default font. Enable to specify the path to a font to use.

Non-Default Font Path

Type: Text

Default Value: /usr/share/fonts/truetype/dejavu//DejaVuSans.ttf

Description: The path to the non-default font to use

Font Size (pt)

Type: Integer

Default Value: 10

Description: The size of the font, in points

Display Unit

Type: Boolean

Default Value: True

Description: Display the measurement unit (if available)

CHANNEL OPTIONS

Line Display Type

Type: Select

Description: What to display on the line

Measurement

Type: Select Measurement

Selections: Input, Function, Output, PID

Description: Measurement to display on the line

Max Age

Type: Decimal

Default Value: 360

Description: The maximum age (seconds) of the measurement to use

Measurement Label

Type: Text

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

5.4.1 Built-In Functions

- 224/287 - Copyright © 2022

Description: Set to overwrite the default measurement label

Measurement Decimal

Type: Integer

Default Value: 1

Description: The number of digits after the decimal

Text

Type: Text

Default Value: Text

Description: Text to display

Display Unit

Type: Boolean

Default Value: True

Description: Display the measurement unit (if available)

Display: SSD1306 OLED 128x64 [4 Lines] (I2C)

Dependencies: libjpeg-dev, Pillow, pyusb, Adafruit-extended-bus, adafruit-circuitpython-framebuf, adafruit-circuitpython-

ssd1306

This Function outputs to a 128x64 SSD1306 OLED display via I2C. This display Function will show 4 lines at a time, so channels

are added in sets of 4 when Number of Line Sets is modified. Every Period, the LCD will refresh and display the next set of lines.

Therefore, the first set of lines that are displayed are channels 0 - 3, then 4 - 7, and so on. After all channels have been displayed,

it will cycle back to the beginning.

OPTIONS

Period (seconds)

Type: Decimal

Default Value: 10

Description: The duration (seconds) between measurements or actions

I2C Address

Type: Text

Default Value: 0x3c

Description: The I2C address of the device

I2C Bus

Type: Integer

Default Value: 1

Description: The I2C bus the device is connected to

Number of Line Sets

Type: Integer

Default Value: 1

Description: How many sets of lines to cycle on the LCD

Reset Pin

Type: Integer

Default Value: 17

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

5.4.1 Built-In Functions

- 225/287 - Copyright © 2022

https://packages.debian.org/buster/libjpeg-dev
https://pypi.org/project/Pillow
https://pypi.org/project/pyusb
https://pypi.org/project/Adafruit-extended-bus
https://pypi.org/project/adafruit-circuitpython-framebuf
https://pypi.org/project/adafruit-circuitpython-ssd1306
https://pypi.org/project/adafruit-circuitpython-ssd1306

Description: The pin (BCM numbering) connected to RST of the display

Characters Per Line

Type: Integer

Default Value: 17

Description: The maximum number of characters to display per line

Use Non-Default Font

Type: Boolean

Description: Don't use the default font. Enable to specify the path to a font to use.

Non-Default Font Path

Type: Text

Default Value: /usr/share/fonts/truetype/dejavu//DejaVuSans.ttf

Description: The path to the non-default font to use

Font Size (pt)

Type: Integer

Default Value: 12

Description: The size of the font, in points

CHANNEL OPTIONS

Line Display Type

Type: Select

Description: What to display on the line

Measurement

Type: Select Measurement

Selections: Input, Function, Output, PID

Description: Measurement to display on the line

Max Age

Type: Decimal

Default Value: 360

Description: The maximum age (seconds) of the measurement to use

Measurement Label

Type: Text

Description: Set to overwrite the default measurement label

Measurement Decimal

Type: Integer

Default Value: 1

Description: The number of digits after the decimal

Text

Type: Text

Default Value: Text

Description: Text to display

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

5.4.1 Built-In Functions

- 226/287 - Copyright © 2022

Display Unit

Type: Boolean

Default Value: True

Description: Display the measurement unit (if available)

Display: SSD1306 OLED 128x64 [4 Lines] (SPI)

Dependencies: libjpeg-dev, Pillow, pyusb, Adafruit-GPIO, Adafruit-extended-bus, adafruit-circuitpython-framebuf, adafruit-

circuitpython-ssd1306

This Function outputs to a 128x64 SSD1306 OLED display via SPI. This display Function will show 4 lines at a time, so channels

are added in sets of 4 when Number of Line Sets is modified. Every Period, the LCD will refresh and display the next set of lines.

Therefore, the first set of lines that are displayed are channels 0 - 3, then 4 - 7, and so on. After all channels have been displayed,

it will cycle back to the beginning.

OPTIONS

Period (seconds)

Type: Decimal

Default Value: 10

Description: The duration (seconds) between measurements or actions

Number of Line Sets

Type: Integer

Default Value: 1

Description: How many sets of lines to cycle on the LCD

SPI Device

Type: Integer

Description: The SPI device

SPI Bus

Type: Integer

Description: The SPI bus

DC Pin

Type: Integer

Default Value: 16

Description: The pin (BCM numbering) connected to DC of the display

Reset Pin

Type: Integer

Default Value: 19

Description: The pin (BCM numbering) connected to RST of the display

CS Pin

Type: Integer

Default Value: 17

Description: The pin (BCM numbering) connected to CS of the display

Characters Per Line

Type: Integer

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

5.4.1 Built-In Functions

- 227/287 - Copyright © 2022

https://packages.debian.org/buster/libjpeg-dev
https://pypi.org/project/Pillow
https://pypi.org/project/pyusb
https://pypi.org/project/Adafruit-GPIO
https://pypi.org/project/Adafruit-extended-bus
https://pypi.org/project/adafruit-circuitpython-framebuf
https://pypi.org/project/adafruit-circuitpython-ssd1306
https://pypi.org/project/adafruit-circuitpython-ssd1306

Default Value: 17

Description: The maximum number of characters to display per line

Use Non-Default Font

Type: Boolean

Description: Don't use the default font. Enable to specify the path to a font to use.

Non-Default Font Path

Type: Text

Default Value: /usr/share/fonts/truetype/dejavu//DejaVuSans.ttf

Description: The path to the non-default font to use

Font Size (pt)

Type: Integer

Default Value: 12

Description: The size of the font, in points

CHANNEL OPTIONS

Line Display Type

Type: Select

Description: What to display on the line

Measurement

Type: Select Measurement

Selections: Input, Function, Output, PID

Description: Measurement to display on the line

Max Age

Type: Decimal

Default Value: 360

Description: The maximum age (seconds) of the measurement to use

Measurement Label

Type: Text

Description: Set to overwrite the default measurement label

Measurement Decimal

Type: Integer

Default Value: 1

Description: The number of digits after the decimal

Text

Type: Text

Default Value: Text

Description: Text to display

Display Unit

Type: Boolean

Default Value: True

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

5.4.1 Built-In Functions

- 228/287 - Copyright © 2022

Description: Display the measurement unit (if available)

Display: SSD1306 OLED 128x64 [8 Lines] (I2C)

Dependencies: libjpeg-dev, Pillow, pyusb, Adafruit-extended-bus, adafruit-circuitpython-framebuf, adafruit-circuitpython-

ssd1306

This Function outputs to a 128x64 SSD1306 OLED display via I2C. This display Function will show 8 lines at a time, so channels

are added in sets of 8 when Number of Line Sets is modified. Every Period, the LCD will refresh and display the next set of lines.

Therefore, the first set of lines that are displayed are channels 0 - 7, then 8 - 15, and so on. After all channels have been

displayed, it will cycle back to the beginning.

OPTIONS

Period (seconds)

Type: Decimal

Default Value: 10

Description: The duration (seconds) between measurements or actions

I2C Address

Type: Text

Default Value: 0x3c

Description: The I2C address of the device

I2C Bus

Type: Integer

Default Value: 1

Description: The I2C bus the device is connected to

Number of Line Sets

Type: Integer

Default Value: 1

Description: How many sets of lines to cycle on the LCD

Reset Pin

Type: Integer

Default Value: 17

Description: The pin (BCM numbering) connected to RST of the display

Characters Per Line

Type: Integer

Default Value: 21

Description: The maximum number of characters to display per line

Use Non-Default Font

Type: Boolean

Description: Don't use the default font. Enable to specify the path to a font to use.

Non-Default Font Path

Type: Text

Default Value: /usr/share/fonts/truetype/dejavu//DejaVuSans.ttf

Description: The path to the non-default font to use

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

5.4.1 Built-In Functions

- 229/287 - Copyright © 2022

https://packages.debian.org/buster/libjpeg-dev
https://pypi.org/project/Pillow
https://pypi.org/project/pyusb
https://pypi.org/project/Adafruit-extended-bus
https://pypi.org/project/adafruit-circuitpython-framebuf
https://pypi.org/project/adafruit-circuitpython-ssd1306
https://pypi.org/project/adafruit-circuitpython-ssd1306

Font Size (pt)

Type: Integer

Default Value: 10

Description: The size of the font, in points

CHANNEL OPTIONS

Line Display Type

Type: Select

Description: What to display on the line

Measurement

Type: Select Measurement

Selections: Input, Function, Output, PID

Description: Measurement to display on the line

Max Age

Type: Decimal

Default Value: 360

Description: The maximum age (seconds) of the measurement to use

Measurement Label

Type: Text

Description: Set to overwrite the default measurement label

Measurement Decimal

Type: Integer

Default Value: 1

Description: The number of digits after the decimal

Text

Type: Text

Default Value: Text

Description: Text to display

Display Unit

Type: Boolean

Default Value: True

Description: Display the measurement unit (if available)

Display: SSD1306 OLED 128x64 [8 Lines] (SPI)

Dependencies: libjpeg-dev, Pillow, pyusb, Adafruit-GPIO, Adafruit-extended-bus, adafruit-circuitpython-framebuf, adafruit-

circuitpython-ssd1306

This Function outputs to a 128x64 SSD1306 OLED display via SPI. This display Function will show 8 lines at a time, so channels

are added in sets of 8 when Number of Line Sets is modified. Every Period, the LCD will refresh and display the next set of lines.

Therefore, the first set of lines that are displayed are channels 0 - 7, then 8 - 15, and so on. After all channels have been

displayed, it will cycle back to the beginning.

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

5.4.1 Built-In Functions

- 230/287 - Copyright © 2022

https://packages.debian.org/buster/libjpeg-dev
https://pypi.org/project/Pillow
https://pypi.org/project/pyusb
https://pypi.org/project/Adafruit-GPIO
https://pypi.org/project/Adafruit-extended-bus
https://pypi.org/project/adafruit-circuitpython-framebuf
https://pypi.org/project/adafruit-circuitpython-ssd1306
https://pypi.org/project/adafruit-circuitpython-ssd1306

OPTIONS

Period (seconds)

Type: Decimal

Default Value: 10

Description: The duration (seconds) between measurements or actions

Number of Line Sets

Type: Integer

Default Value: 1

Description: How many sets of lines to cycle on the LCD

SPI Device

Type: Integer

Description: The SPI device

SPI Bus

Type: Integer

Description: The SPI bus

DC Pin

Type: Integer

Default Value: 16

Description: The pin (BCM numbering) connected to DC of the display

Reset Pin

Type: Integer

Default Value: 19

Description: The pin (BCM numbering) connected to RST of the display

CS Pin

Type: Integer

Default Value: 17

Description: The pin (BCM numbering) connected to CS of the display

Characters Per Line

Type: Integer

Default Value: 21

Description: The maximum number of characters to display per line

Use Non-Default Font

Type: Boolean

Description: Don't use the default font. Enable to specify the path to a font to use.

Non-Default Font Path

Type: Text

Default Value: /usr/share/fonts/truetype/dejavu//DejaVuSans.ttf

Description: The path to the non-default font to use

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

5.4.1 Built-In Functions

- 231/287 - Copyright © 2022

Font Size (pt)

Type: Integer

Default Value: 10

Description: The size of the font, in points

CHANNEL OPTIONS

Line Display Type

Type: Select

Description: What to display on the line

Measurement

Type: Select Measurement

Selections: Input, Function, Output, PID

Description: Measurement to display on the line

Max Age

Type: Decimal

Default Value: 360

Description: The maximum age (seconds) of the measurement to use

Measurement Label

Type: Text

Description: Set to overwrite the default measurement label

Measurement Decimal

Type: Integer

Default Value: 1

Description: The number of digits after the decimal

Text

Type: Text

Default Value: Text

Description: Text to display

Display Unit

Type: Boolean

Default Value: True

Description: Display the measurement unit (if available)

Display: SSD1309 OLED 128x64 [8 Lines] (I2C)

Dependencies: pyusb, luma.oled, Pillow, libjpeg-dev, zlib1g-dev, libfreetype6-dev, liblcms2-dev, libopenjp2-7, libtiff5

This Function outputs to a 128x64 SSD1309 OLED display via I2C. This display Function will show 8 lines at a time, so channels

are added in sets of 8 when Number of Line Sets is modified. Every Period, the LCD will refresh and display the next set of lines.

Therefore, the first set of lines that are displayed are channels 0 - 7, then 8 - 15, and so on. After all channels have been

displayed, it will cycle back to the beginning.

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

5.4.1 Built-In Functions

- 232/287 - Copyright © 2022

https://pypi.org/project/pyusb
https://pypi.org/project/luma.oled
https://pypi.org/project/Pillow
https://packages.debian.org/buster/libjpeg-dev
https://packages.debian.org/buster/zlib1g-dev
https://packages.debian.org/buster/libfreetype6-dev
https://packages.debian.org/buster/liblcms2-dev
https://packages.debian.org/buster/libopenjp2-7
https://packages.debian.org/buster/libtiff5

OPTIONS

Period (seconds)

Type: Decimal

Default Value: 10

Description: The duration (seconds) between measurements or actions

I2C Address

Type: Text

Default Value: 0x3c

Description: The I2C address of the device

I2C Bus

Type: Integer

Default Value: 1

Description: The I2C bus the device is connected to

Number of Line Sets

Type: Integer

Default Value: 1

Description: How many sets of lines to cycle on the LCD

Reset Pin

Type: Integer

Default Value: 17

Description: The pin (BCM numbering) connected to RST of the display

CHANNEL OPTIONS

Line Display Type

Type: Select

Description: What to display on the line

Measurement

Type: Select Measurement

Selections: Input, Function, Output, PID

Description: Measurement to display on the line

Max Age

Type: Decimal

Default Value: 360

Description: The maximum age (seconds) of the measurement to use

Measurement Label

Type: Text

Description: Set to overwrite the default measurement label

Measurement Decimal

Type: Integer

Default Value: 1

Description: The number of digits after the decimal

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

5.4.1 Built-In Functions

- 233/287 - Copyright © 2022

Text

Type: Text

Default Value: Text

Description: Text to display

Display Unit

Type: Boolean

Default Value: True

Description: Display the measurement unit (if available)

Equation (Multi-Measure)

This function acquires two measurements and uses them within a user-set equation and stores the resulting value as the selected

measurement and unit.

OPTIONS

Period (seconds)

Type: Decimal

Default Value: 60

Description: The duration (seconds) between measurements or actions

Measurement A

Type: Select Measurement

Selections: Input, Function

Description: Measurement to replace a

Measurement A Max Age

Type: Integer

Default Value: 360

Description: The maximum age (seconds) of the measurement to use

Measurement B

Type: Select Measurement

Selections: Input, Function

Description: Measurement to replace b

Measurement B Max Age

Type: Integer

Default Value: 360

Description: The maximum age (seconds) of the measurement to use

Equation

Type: Text

Default Value: a*(2+b)

Description: Equation using measurements a and b

Equation (Single-Measure)

This function acquires a measurement and uses it within a user-set equation and stores the resulting value as the selected

measurement and unit.

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

5.4.1 Built-In Functions

- 234/287 - Copyright © 2022

OPTIONS

Period (seconds)

Type: Decimal

Default Value: 60

Description: The duration (seconds) between measurements or actions

Measurement

Type: Select Measurement

Selections: Input, Function

Description: Measurement to replace "x" in the equation

Max Age

Type: Integer

Default Value: 360

Description: The maximum age (seconds) of the measurement to use

Equation

Type: Text

Default Value: x*5+2

Description: Equation using the measurement

Humidity (Wet/Dry-Bulb)

This function calculates the humidity based on wet and dry bulb temperature measurements.

OPTIONS

Measurements Enabled

Type: Multi-Select

Description: The measurements to record

Period (seconds)

Type: Decimal

Default Value: 60

Description: The duration (seconds) between measurements or actions

Start Offset

Type: Integer

Default Value: 10

Description: The duration (seconds) to wait before the first operation

Dry Bulb Temperature

Type: Select Measurement

Selections: Input, Function

Description: Dry Bulb temperature measurement

Dry Bulb Max Age

Type: Integer

Default Value: 360

Description: The maximum age (seconds) of the measurement to use

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

5.4.1 Built-In Functions

- 235/287 - Copyright © 2022

Wet Bulb Temperature

Type: Select Measurement

Selections: Input, Function

Description: Wet Bulb temperature measurement

Wet Bulb Max Age

Type: Integer

Default Value: 360

Description: The maximum age (seconds) of the measurement to use

Pressure

Type: Select Measurement

Selections: Input, Function

Description: Pressure measurement

Pressure Max Age

Type: Integer

Default Value: 360

Description: The maximum age (seconds) of the measurement to use

PID Autotune

This function will attempt to perform a PID controller autotune. That is, an output will be powered and the response measured

from a sensor several times to calculate the P, I, and D gains. Updates about the operation will be sent to the Daemon log. If the

autotune successfully completes, a summary will be sent to the Daemon log as well. Currently, only raising a Measurement is

supported, but lowering should be possible with some modification to the function controller code. It is recommended to create a

graph on a dashboard with the Measurement and Output to monitor that the Output is successfully raising the Measurement

beyond the Setpoint. Note: Autotune is an experimental feature, it is not well-developed, and it has a high likelihood of failing to

generate PID gains. Do not rely on it for accurately tuning your PID controller.

OPTIONS

Measurement

Type: Select Measurement

Selections: Input, Function

Description: Select a measurement the selected output will affect

Output

Type: Select Device, Measurement, and Channel

Selections: Output

Description: Select an output to modulate that will affect the measurement

Period

Type: Integer

Default Value: 30

Description: The period between powering the output

Setpoint

Type: Decimal

Default Value: 50

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

5.4.1 Built-In Functions

- 236/287 - Copyright © 2022

Description: A value sufficiently far from the current measured value that the output is capable of pushing the measurement

toward

Noise Band

Type: Decimal

Default Value: 0.5

Description: The amount above the setpoint the measurement must reach

Outstep

Type: Decimal

Default Value: 10

Description: How many seconds the output will turn on every Period

Currently, only autotuning to raise a condition (measurement) is supported.

Direction

Type: Select

Options: [Raise] (Default in bold)

Description: The direction the Output will push the Measurement

Redundancy

This function stores the first available measurement. This is useful if you have multiple sensors that you want to serve as backups

in case one stops working, you can set them up in the order of importance. This function will check if a measurement exits,

starting with the first measurement. If it doesn't, the next is checked, until a measurement is found. Once a measurement is

found, it is stored in the database with the user-set measurement and unit. The output of this function can be used as an input

throughout Mycodo. If you need more than 3 measurements to be checked, you can string multiple Redundancy Functions by

creating a second Function and setting the first Function's output as the second Function's input.

OPTIONS

Period (seconds)

Type: Decimal

Default Value: 60

Description: The duration (seconds) between measurements or actions

Measurement A

Type: Select Measurement

Selections: Input, Function

Description: Measurement to replace a

Measurement A Max Age

Type: Integer

Default Value: 360

Description: The maximum age (seconds) of the measurement to use

Measurement B

Type: Select Measurement

Selections: Input, Function

Description: Measurement to replace b

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

5.4.1 Built-In Functions

- 237/287 - Copyright © 2022

Measurement B Max Age

Type: Integer

Default Value: 360

Description: The maximum age (seconds) of the measurement to use

Measurement C

Type: Select Measurement

Selections: Input, Function

Description: Measurement to replace C

Measurement C Max Age

Type: Integer

Default Value: 360

Description: The maximum age (seconds) of the measurement to use

Spacer

A spacer to organize Functions.

OPTIONS

Color

Type: Text

Default Value: #000000

Description: The color of the name text

Statistics (Last, Multiple)

This function acquires multiple measurements, calculates statistics, and stores the resulting values as the selected unit.

OPTIONS

Measurements Enabled

Type: Multi-Select

Description: The measurements to record

Period (seconds)

Type: Decimal

Default Value: 60

Description: The duration (seconds) between measurements or actions

Max Age

Type: Integer

Default Value: 360

Description: The maximum age (seconds) of the measurement to use

Measurement

Description: Measurements to perform statistics on

Halt on Missing Measurement

Type: Boolean

Description: Don't calculate statistics if >= 1 measurement is not found within Max Age

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

5.4.1 Built-In Functions

- 238/287 - Copyright © 2022

Statistics (Past, Single)

This function acquires multiple values from a single measurement, calculates statistics, and stores the resulting values as the

selected unit.

OPTIONS

Measurements Enabled

Type: Multi-Select

Description: The measurements to record

Period (seconds)

Type: Decimal

Default Value: 60

Description: The duration (seconds) between measurements or actions

Max Age

Type: Integer

Default Value: 360

Description: The maximum age (seconds) of the measurement to use

Measurement

Type: Select Measurement

Selections: Input, Function

Description: Measurement to perform statistics on

Sum (Last, Multiple)

This function acquires the last measurement of those that are selected, sums them, then stores the resulting value as the

selected measurement and unit.

OPTIONS

Period (seconds)

Type: Decimal

Default Value: 60

Description: The duration (seconds) between measurements or actions

Start Offset

Type: Integer

Default Value: 10

Description: The duration (seconds) to wait before the first operation

Max Age

Type: Integer

Default Value: 360

Description: The maximum age (seconds) of the measurement to use

Measurement

Description: Measurement to replace "x" in the equation

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

5.4.1 Built-In Functions

- 239/287 - Copyright © 2022

Sum (Past, Single)

This function acquires the past measurements (within Max Age) for the selected measurement, sums them, then stores the

resulting value as the selected measurement and unit.

OPTIONS

Period (seconds)

Type: Decimal

Default Value: 60

Description: The duration (seconds) between measurements or actions

Start Offset

Type: Integer

Default Value: 10

Description: The duration (seconds) to wait before the first operation

Measurement

Type: Select Measurement

Selections: Input, Function

Description: Measurement to replace "x" in the equation

Max Age

Type: Integer

Default Value: 360

Description: The maximum age (seconds) of the measurement to use

Vapor Pressure Deficit

This function calculates the vapor pressure deficit based on leaf temperature and humidity.

OPTIONS

Period (seconds)

Type: Decimal

Default Value: 60

Description: The duration (seconds) between measurements or actions

Start Offset

Type: Integer

Default Value: 10

Description: The duration (seconds) to wait before the first operation

Temperature

Type: Select Measurement

Selections: Input, Function

Description: Temperature measurement

Temperature Max Age

Type: Integer

Default Value: 360

Description: The maximum age (seconds) of the measurement to use

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

5.4.1 Built-In Functions

- 240/287 - Copyright © 2022

Humidity

Type: Select Measurement

Selections: Input, Function

Description: Humidity measurement

Humidity Max Age

Type: Integer

Default Value: 360

Description: The maximum age (seconds) of the measurement to use

Verification

This function acquires 2 measurements, calculates the difference, and if the difference is not larger than the set threshold, the

Measurement A value is stored. This enables verifying one sensor's measurement with another sensor's measurement. Only when

they are both in agreement is a measurement stored. This stored measurement can be used in functions such as Conditional

Statements that will notify the user if no measurement is avilable to indicate there may be an issue with a sensor.

OPTIONS

Period (seconds)

Type: Decimal

Default Value: 60

Description: The duration (seconds) between measurements or actions

Measurement A

Type: Select Measurement

Selections: Input, Function

Description: Measurement A

Measurement A Max Age

Type: Integer

Default Value: 360

Description: The maximum age (seconds) of the measurement to use

Measurement B

Type: Select Measurement

Selections: Input, Function

Description: Measurement B

Measurement A Max Age

Type: Integer

Default Value: 360

Description: The maximum age (seconds) of the measurement to use

Maximum Difference

Type: Decimal

Default Value: 10.0

Description: The maximum allowed difference between the measurements

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

5.4.1 Built-In Functions

- 241/287 - Copyright © 2022

5.5 Supported Actions

Actions allow certain Functions to influence other parts of Mycodo and the computer system.

Supported Actions are listed below.

5.5.1 Built-In Actions (System)

Actions: Pause

Manufacturer: Mycodo

Works with: Functions

Set a delay between executing Actions when self.run_all_actions() is used.

Usage: Executing self.run_action("{ACTION_ID}") will create a pause for the set duration. When self.run_all_actions() is

executed, this will add a pause in the sequential execution of all actions.

OPTIONS

Duration (seconds)

Type: Decimal

Description: The duration to pause

Camera: Capture Photo

Manufacturer: Mycodo

Works with: Functions

Capture a photo with the selected Camera.

Usage: Executing self.run_action("{ACTION_ID}") will capture a photo with the selected Camera. Executing

self.run_action("{ACTION_ID}", value={"camera_id": "959019d1-c1fa-41fe-a554-7be3366a9c5b"}) will capture a photo

with the Camera with the specified ID.

OPTIONS

Camera

Type: Select Device

Description: Select the Camera to take a photo

Camera: Time-lapse: Pause

Manufacturer: Mycodo

Works with: Functions

Pause a camera time-lapse

Usage: Executing self.run_action("{ACTION_ID}") will pause the selected Camera time-lapse. Executing

self.run_action("{ACTION_ID}", value={"camera_id": "959019d1-c1fa-41fe-a554-7be3366a9c5b"}) will pause the

Camera time-lapse with the specified ID.

OPTIONS

Camera

Type: Select Device

Description: Select the Camera to pause the time-lapse

•

•

•

•

•

•

•

•

•

•

•

•

5.5 Supported Actions

- 242/287 - Copyright © 2022

Camera: Time-lapse: Resume

Manufacturer: Mycodo

Works with: Functions

Resume a camera time-lapse

Usage: Executing self.run_action("{ACTION_ID}") will resume the selected Camera time-lapse. Executing

self.run_action("{ACTION_ID}", value={"camera_id": "959019d1-c1fa-41fe-a554-7be3366a9c5b"}) will resume the

Camera time-lapse with the specified ID.

OPTIONS

Camera

Type: Select Device

Description: Select the Camera to resume the time-lapse

Controller: Activate

Manufacturer: Mycodo

Works with: Functions

Activate a controller.

Usage: Executing self.run_action("{ACTION_ID}") will activate the selected Controller. Executing

self.run_action("{ACTION_ID}", value={"controller_id": "959019d1-c1fa-41fe-a554-7be3366a9c5b"}) will activate the

controller with the specified ID.

OPTIONS

Controller

Type: Select Device

Description: Select the controller to activate

Controller: Deactivate

Manufacturer: Mycodo

Works with: Functions

Deactivate a controller.

Usage: Executing self.run_action("{ACTION_ID}") will deactivate the selected Controller. Executing

self.run_action("{ACTION_ID}", value={"controller_id": "959019d1-c1fa-41fe-a554-7be3366a9c5b"}) will deactivate

the controller with the specified ID.

OPTIONS

Controller

Type: Select Device

Description: Select the controller to deactivate

Create: Note

Manufacturer: Mycodo

Works with: Functions

Create a note with the selected Tag.

•

•

•

•

•

•

•

•

•

•

•

•

•

•

5.5.1 Built-In Actions (System)

- 243/287 - Copyright © 2022

Usage: Executing self.run_action("{ACTION_ID}") will create a note with the selected tag and note. Executing

self.run_action("{ACTION_ID}", value={"tags": ["tag1", "tag2"], "name": "My Note", "note": "this is a message"}) will

execute the action with the specified list of tag(s) and note. If using only one tag, make it the only element of the list (e.g.

["tag1"]). If note is not specified, then the action message will be used as the note.

OPTIONS

Tags

Description: Select one or more tags

Name

Type: Text

Default Value: Name

Description: The name of the note

Note

Type: Text

Default Value: Note

Description: The body of the note

Execute Command: Shell

Manufacturer: Mycodo

Works with: Functions

Execute a Linux bash shell command.

Usage: Executing self.run_action("{ACTION_ID}") will execute the bash command.Executing

self.run_action("{ACTION_ID}", value={"user": "mycodo", "command": "/home/pi/my_script.sh on"}) will execute the

action with the specified command and user.

OPTIONS

User

Type: Text

Default Value: mycodo

Description: The user to execute the command

Command

Type: Text

Default Value: /home/pi/my_script.sh on

Description: Command to execute

Flow Meter: Clear Total Volume

Manufacturer: Mycodo

Works with: Functions

Clear the total volume saved for a flow meter Input. The Input must have the Clear Total Volume option.

Usage: Executing self.run_action("{ACTION_ID}") will clear the total volume for the selected flow meter Input. Executing

self.run_action("{ACTION_ID}", value={"input_id": "959019d1-c1fa-41fe-a554-7be3366a9c5b"}) will clear the total

volume for the flow meter Input with the specified ID.

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

5.5.1 Built-In Actions (System)

- 244/287 - Copyright © 2022

OPTIONS

Controller

Type: Select Device

Description: Select the flow meter Input

Input: Force Measurements

Manufacturer: Mycodo

Works with: Functions

Force measurements to be conducted for an input

Usage: Executing self.run_action("{ACTION_ID}") will force acquiring measurements for the selected Input. Executing

self.run_action("{ACTION_ID}", value={"input_id": "959019d1-c1fa-41fe-a554-7be3366a9c5b"}) will force acquiring

measurements for the Input with the specified ID.

OPTIONS

Input

Type: Select Device

Description: Select an Input

MQTT: Publish

Manufacturer: Mycodo

Works with: Functions

Dependencies: paho-mqtt

Publish to an MQTT server.

Usage: Executing self.run_action("{ACTION_ID}") will publish the saved payload text options to the MQTT server. Executing

self.run_action("{ACTION_ID}", value={"payload": 42}) will publish the specified payload (any type) to the MQTT server.

You can also specify the topic (e.g. value={"topic": "my_topic", "payload": 42}). Warning: If using multiple MQTT Inputs or

Functions, ensure the Client IDs are unique.

OPTIONS

Hostname

Type: Text

Default Value: localhost

Description: The hostname of the MQTT server

Port

Type: Integer

Default Value: 1883

Description: The port of the MQTT server

Topic

Type: Text

Default Value: paho/test/single

Description: The topic to publish with

Payload

Type: Text

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

5.5.1 Built-In Actions (System)

- 245/287 - Copyright © 2022

https://pypi.org/project/paho-mqtt

Description: The payload to publish

Keep Alive

Type: Integer

Default Value: 60

Description: The keepalive timeout value for the client. Set to 0 to disable.

Client ID

Type: Text

Default Value: client_796v1NR4

Description: Unique client ID for connecting to the MQTT server

Use Login

Type: Boolean

Description: Send login credentials

Username

Type: Text

Default Value: user

Description: Username for connecting to the server

Password

Type: Text

Description: Password for connecting to the server

MQTT: Publish: Measurement

Manufacturer: Mycodo

Works with: Inputs

Dependencies: paho-mqtt

Publish an Input measurement to an MQTT server.

OPTIONS

Measurement

Description: Select the measurement to send as the payload

Hostname

Type: Text

Default Value: localhost

Description: The hostname of the MQTT server

Port

Type: Integer

Default Value: 1883

Description: The port of the MQTT server

Topic

Type: Text

Default Value: paho/test/single

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

5.5.1 Built-In Actions (System)

- 246/287 - Copyright © 2022

https://pypi.org/project/paho-mqtt

Description: The topic to publish with

Keep Alive

Type: Integer

Default Value: 60

Description: The keepalive timeout value for the client. Set to 0 to disable.

Client ID

Type: Text

Default Value: client_YeURfmKy

Description: Unique client ID for connecting to the MQTT server

Use Login

Type: Boolean

Description: Send login credentials

Username

Type: Text

Default Value: user

Description: Username for connecting to the server

Password

Type: Text

Description: Password for connecting to the server.

Output: Duty Cycle

Manufacturer: Mycodo

Works with: Functions

Set a PWM Output to set a duty cycle.

Usage: Executing self.run_action("{ACTION_ID}") will set the PWM output duty cycle. Executing

self.run_action("{ACTION_ID}", value={"output_id": "959019d1-c1fa-41fe-a554-7be3366a9c5b", "channel": 0,

"duty_cycle": 42}) will set the duty cycle of the PWM output with the specified ID and channel.

OPTIONS

Output

Type: Select Channel

Selections: Output_Channels

Description: Select an output to control

Duty Cycle

Type: Decimal

Description: Duty cycle for the PWM (percent, 0.0 - 100.0)

Output: On/Off/Duration

Manufacturer: Mycodo

Works with: Functions

Turn an On/Off Output On, Off, or On for a duration.

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

5.5.1 Built-In Actions (System)

- 247/287 - Copyright © 2022

Usage: Executing self.run_action("{ACTION_ID}") will actuate an output. Executing self.run_action("{ACTION_ID}",

value={"output_id": "959019d1-c1fa-41fe-a554-7be3366a9c5b", "channel": 0, "state": "on", "duration": 300}) will set

the state of the output with the specified ID and channel. If state is on and a duration is set, the output will turn off after the

duration.

OPTIONS

Output

Type: Select Channel

Selections: Output_Channels

Description: Select an output to control

State

Type: Select

Description: Turn the output on or off

Duration (seconds)

Type: Decimal

Description: If On, you can set a duration to turn the output on. 0 stays on.

Output: Ramp Duty Cycle

Manufacturer: Mycodo

Works with: Functions

Ramp a PWM Output from one duty cycle to another duty cycle over a period of time.

Usage: Executing self.run_action("{ACTION_ID}") will ramp the PWM output duty cycle according to the settings. Executing

self.run_action("{ACTION_ID}", value={"output_id": "959019d1-c1fa-41fe-a554-7be3366a9c5b", "channel": 0,

"start": 42, "end": 62, "increment": 1.0, "duration": 600}) will ramp the duty cycle of the PWM output with the specified ID

and channel.

OPTIONS

Output

Type: Select Channel

Selections: Output_Channels

Description: Select an output to control

Duty Cycle: Start

Type: Decimal

Description: Duty cycle for the PWM (percent, 0.0 - 100.0)

Duty Cycle: End

Type: Decimal

Default Value: 50.0

Description: Duty cycle for the PWM (percent, 0.0 - 100.0)

Increment (Duty Cycle)

Type: Decimal

Default Value: 1.0

Description: How much to change the duty cycle every Duration

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

5.5.1 Built-In Actions (System)

- 248/287 - Copyright © 2022

Duration (seconds)

Type: Decimal

Description: How long to ramp from start to finish.

Output: Value

Manufacturer: Mycodo

Works with: Functions

Send a value to the Output.

Usage: Executing self.run_action("{ACTION_ID}") will actuate a value output. Executing self.run_action("{ACTION_ID}",

value={"output_id": "959019d1-c1fa-41fe-a554-7be3366a9c5b", "channel": 0, "value": 42}) will send a value to the

output with the specified ID and channel.

OPTIONS

Output

Type: Select Channel

Selections: Output_Channels

Description: Select an output to control

Value

Type: Decimal

Description: The value to send to the output

Output: Volume

Manufacturer: Mycodo

Works with: Functions

Instruct the Output to dispense a volume.

Usage: Executing self.run_action("{ACTION_ID}") will actuate a volume output. Executing self.run_action("{ACTION_ID}",

value={"output_id": "959019d1-c1fa-41fe-a554-7be3366a9c5b", "channel": 0, "volume": 42}) will send a volume to the

output with the specified ID and channel.

OPTIONS

Output

Type: Select Channel

Selections: Output_Channels

Description: Select an output to control

Volume

Type: Decimal

Description: The volume to send to the output

PID: Lower: Setpoint

Manufacturer: Mycodo

Works with: Functions

Lower the Setpoint of a PID.

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

5.5.1 Built-In Actions (System)

- 249/287 - Copyright © 2022

Usage: Executing self.run_action("{ACTION_ID}") will lower the setpoint of the selected PID Controller. Executing

self.run_action("{ACTION_ID}", value={"pid_id": "959019d1-c1fa-41fe-a554-7be3366a9c5b", "amount": 2}) will lower

the setpoint of the PID with the specified ID.

OPTIONS

Controller

Type: Select Device

Description: Select the PID Controller to lower the setpoint of

Lower Setpoint

Type: Decimal

Description: The amount to lower the PID setpoint by

PID: Pause

Manufacturer: Mycodo

Works with: Functions

Pause a PID.

Usage: Executing self.run_action("{ACTION_ID}") will pause the selected PID Controller. Executing

self.run_action("{ACTION_ID}", value="959019d1-c1fa-41fe-a554-7be3366a9c5b") will pause the PID Controller with the

specified ID.

OPTIONS

Controller

Type: Select Device

Description: Select the PID Controller to pause

PID: Raise: Setpoint

Manufacturer: Mycodo

Works with: Functions

Raise the Setpoint of a PID.

Usage: Executing self.run_action("{ACTION_ID}") will raise the setpoint of the selected PID Controller. Executing

self.run_action("{ACTION_ID}", value={"pid_id": "959019d1-c1fa-41fe-a554-7be3366a9c5b", "amount": 2}) will raise

the setpoint of the PID with the specified ID.

OPTIONS

Controller

Type: Select Device

Description: Select the PID Controller to raise the setpoint of

Raise Setpoint

Type: Decimal

Description: The amount to raise the PID setpoint by

PID: Resume

Manufacturer: Mycodo

Works with: Functions

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

5.5.1 Built-In Actions (System)

- 250/287 - Copyright © 2022

Resume a PID.

Usage: Executing self.run_action("{ACTION_ID}") will resume the selected PID Controller. Executing

self.run_action("{ACTION_ID}", value="959019d1-c1fa-41fe-a554-7be3366a9c5b") will resume the PID Controller with

the specified ID.

OPTIONS

Controller

Type: Select Device

Description: Select the PID Controller to resume

PID: Set Method

Manufacturer: Mycodo

Works with: Functions

Select a method to set the PID to use.

Usage: Executing self.run_action("{ACTION_ID}") will pause the selected PID Controller. Executing

self.run_action("{ACTION_ID}", value={"pid_id": "959019d1-c1fa-41fe-a554-7be3366a9c5b", "method_id":

"fe8b8f41-131b-448d-ba7b-00a044d24075"}) will set a method for the PID Controller with the specified IDs.

OPTIONS

Controller

Type: Select Device

Description: Select the PID Controller to apply the method

Method

Type: Select Device

Description: Select the Method to apply to the PID

PID: Set: Setpoint

Manufacturer: Mycodo

Works with: Functions

Set the Setpoint of a PID.

Usage: Executing self.run_action("{ACTION_ID}") will set the setpoint of the selected PID Controller. Executing

self.run_action("{ACTION_ID}", value={"setpoint": 42}) will set the setpoint of the PID Controller (e.g. 42). You can also

specify the PID ID (e.g. value={"setpoint": 42, "pid_id": "959019d1-c1fa-41fe-a554-7be3366a9c5b"})

OPTIONS

Controller

Type: Select Device

Description: Select the PID Controller to pause

Setpoint

Type: Decimal

Description: The setpoint to set the PID Controller

Send Email

Manufacturer: Mycodo

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

5.5.1 Built-In Actions (System)

- 251/287 - Copyright © 2022

Works with: Functions

Send an email.

Usage: Executing self.run_action("{ACTION_ID}") will email the specified recipient(s) using the SMTP credentials in the

system configuration. Separate multiple recipients with commas. The body of the email will be the self-generated message.

Executing self.run_action("{ACTION_ID}", value={"email_address": ["email1@email.com", "email2@email.com"],

"message": "My message"}) will send an email to the specified recipient(s) with the specified message.

OPTIONS

E-Mail Address

Type: Text

Default Value: email@domain.com

Description: E-mail recipient(s) (separate multiple addresses with commas)

Send Email with Photo

Manufacturer: Mycodo

Works with: Functions

Take a photo and send an email with it attached.

Usage: Executing self.run_action("{ACTION_ID}") will take a photo and email it to the specified recipient(s) using the SMTP

credentials in the system configuration. Separate multiple recipients with commas. The body of the email will be the self-

generated message. Executing self.run_action("{ACTION_ID}", value={"camera_id": "959019d1-c1fa-41fe-

a554-7be3366a9c5b", "email_address": ["email1@email.com", "email2@email.com"], "message": "My message"}) will

capture a photo using the camera with the specified ID and send an email to the specified email(s) with message and attached

photo.

OPTIONS

Camera

Type: Select Device

Description: Select the Camera to take a photo with

E-Mail Address

Type: Text

Default Value: email@domain.com

Description: E-mail recipient(s). Separate multiple with commas.

System: Restart

Manufacturer: Mycodo

Works with: Functions

Restart the System

Usage: Executing self.run_action("{ACTION_ID}") will restart the system in 10 seconds.

System: Shutdown

Manufacturer: Mycodo

Works with: Functions

Shutdown the System

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

5.5.1 Built-In Actions (System)

- 252/287 - Copyright © 2022

Usage: Executing self.run_action("{ACTION_ID}") will shut down the system in 10 seconds.

Webhook

Manufacturer: Mycodo

Works with: Functions

Emits a HTTP request when triggered. The first line contains a HTTP verb (GET, POST, PUT, ...) followed by a space and the URL

to call. Subsequent lines are optional "name: value"-header parameters. After a blank line, the body payload to be sent follows.

{{{message}}} is a placeholder that gets replaced by the message, {{{quoted_message}}} is the message in an URL safe

encoding.

Usage: Executing self.run_action("{ACTION_ID}") will run the Action.

OPTIONS

Webhook Request

Description: HTTP request to execute

5.5.2 Built-In Actions (Devices)

Display: Backlight: Color

Manufacturer: Display

Works with: Functions

Set the display backlight color

Usage: Executing self.run_action("{ACTION_ID}") will change the backlight color on the selected display. Executing

self.run_action("{ACTION_ID}", value={"display_id": "959019d1-c1fa-41fe-a554-7be3366a9c5b", "color": "255,0,0"})

will change the backlight color on the controller with the specified ID and color.

OPTIONS

Display

Type: Select Device

Description: Select the display to set the backlight color

Color (RGB)

Type: Text

Default Value: 255,0,0

Description: Color as R,G,B values (e.g. "255,0,0" without quotes)

Display: Backlight: Off

Manufacturer: Display

Works with: Functions

Turn display backlight off

Usage: Executing self.run_action("{ACTION_ID}") will turn the backlight off for the selected display. Executing

self.run_action("{ACTION_ID}", value={"display_id": "959019d1-c1fa-41fe-a554-7be3366a9c5b"}) will turn the

backlight off for the controller with the specified ID.

OPTIONS

Display

Type: Select Device

•

•

•

•

•

•

•

•

•

•

•

•

•

5.5.2 Built-In Actions (Devices)

- 253/287 - Copyright © 2022

Description: Select the display to turn the backlight off

Display: Backlight: On

Manufacturer: Display

Works with: Functions

Turn display backlight on

Usage: Executing self.run_action("{ACTION_ID}") will turn the backlight on for the selected display. Executing

self.run_action("{ACTION_ID}", value={"display_id": "959019d1-c1fa-41fe-a554-7be3366a9c5b"}) will turn the

backlight on for the controller with the specified ID.

OPTIONS

Display

Type: Select Device

Description: Select the display to turn the backlight on

Display: Flashing: Off

Manufacturer: Display

Works with: Functions

Turn display flashing off

Usage: Executing self.run_action("{ACTION_ID}") will stop the backlight flashing on the selected display. Executing

self.run_action("{ACTION_ID}", value={"display_id": "959019d1-c1fa-41fe-a554-7be3366a9c5b"}) will stop the

backlight flashing on the controller with the specified ID.

OPTIONS

Display

Type: Select Device

Description: Select the display to stop flashing the backlight

Display: Flashing: On

Manufacturer: Display

Works with: Functions

Turn display flashing on

Usage: Executing self.run_action("{ACTION_ID}") will start the backlight flashing on the selected display. Executing

self.run_action("{ACTION_ID}", value={"display_id": "959019d1-c1fa-41fe-a554-7be3366a9c5b"}) will start the

backlight flashing on the controller with the specified ID.

OPTIONS

Display

Type: Select Device

Description: Select the display to start flashing the backlight

•

•

•

•

•

•

•

•

•

•

•

•

•

5.5.2 Built-In Actions (Devices)

- 254/287 - Copyright © 2022

5.6 Supported Widgets

Supported Widget devices are listed below.

5.6.1 Built-In Widgets

Camera

Displays a camera image or stream.

Function Status

Displays the status of a Function (if supported).

Gauge (Angular) [Highcharts]

Libraries: Highcharts

Dependencies: unzip, highstock-9.1.2.js, highcharts-more-9.1.2.js

Displays an angular gauge. Be sure to set the Maximum option to the last Stop High value for the gauge to display properly.

Gauge (Solid) [Highcharts]

Libraries: Highcharts

Dependencies: unzip, highstock-9.1.2.js, highcharts-more-9.1.2.js, solid-gauge-9.1.2.js

Displays a solid gauge. Be sure to set the Maximum option to the last Stop value for the gauge to display properly.

Graph (Synchronous) [Highstock]

Libraries: Highstock

Dependencies: unzip, highstock-9.1.2.js, highcharts-more-9.1.2.js, data-9.1.2.js, exporting-9.1.2.js, export-data-9.1.2.js,

offline-exporting-9.1.2.js

Displays a synchronous graph (all data is downloaded for the selected period on the x-axis).

Indicator

Displays a red or green circular image based on a measurement value. Useful for showing if an Output is on or off.

Measurement

Displays a measurement value and timestamp.

Output (PWM Slider)

Displays and allows control of a PWM output using a slider.

Output Control (Channel)

Displays and allows control of an output channel. All output options and measurements for the selected channel will be

displayed. E.g. pumps will have seconds on and volume as measurements, and can be turned on for a duration (seconds) or

amount (volume). If NO DATA or TOO OLD is displayed, the Max Age is not sufficiently long enough to find a current

measurement.

•

•

•

•

•

•

5.6 Supported Widgets

- 255/287 - Copyright © 2022

https://packages.debian.org/buster/unzip
https://packages.debian.org/buster/unzip
https://packages.debian.org/buster/unzip

PID Controller

Displays and allows control of a PID Controller.

Python Code

Executes Python code and displays the output within the widget.

Spacer

A simple widget to use as a spacer, which includes the ability to set text in its contents.

5.6.1 Built-In Widgets

- 256/287 - Copyright © 2022

5.7 I2C Multiplexers

All devices that connected to the Raspberry Pi by the I2C bus need to have a unique address in order to communicate. Some

inputs may have the same address (such as the AM2315), which prevents more than one from being connected at the same time.

Others may provide the ability to change the address, however the address range may be limited, which limits by how many you

can use at the same time. I2C multiplexers are extremely clever and useful in these scenarios because they allow multiple

sensors with the same I2C address to be connected.

For instance, the TCA9548A/PCA9548A: I2C Multiplexer has 8 selectable addresses, so 8 multiplexers can be connected to one

Raspberry Pi. Each multiplexer has 8 channels, allowing up to 8 devices/sensors with the same address to be connected to each

multiplexer. 8 multiplexers x 8 channels = 64 devices/sensors with the same I2C address.

Multiplexers can be set up by loading a kernel driver to handle the communication, producing a new I2C bus device for each

multiplexer channel. To enable the driver for the TCA9548A/PCA9548A, visit GPIO-pca9548 to get the code and latest install

instructions. If successfully set up, there will be 8 new I2C buses on the [Gear Icon] -> System Information page.

The driver for the TCA9545A can be found at https://github.com/camrex/i2c-mux-pca9545a and other drivers are available

elsewhere. See the manufacturer or user forums for details. Some multiplexers I've tested are below.

TCA9548A/PCA9548A: I2C Multiplexer link (I2C): 8 selectable addresses, 8 channels

TCA9545A: I2C Bus Multiplexer link (I2C): The linked Grove board creates 4 new I2C buses, each with their own selectable

voltage, either 3.3 or 5.0 volts.

•

•

5.7 I2C Multiplexers

- 257/287 - Copyright © 2022

https://github.com/Theoi-Meteoroi/GPIO-pca9548
https://github.com/camrex/i2c-mux-pca9545a
https://learn.adafruit.com/adafruit-tca9548a-1-to-8-i2c-multiplexer-breakout/overview
http://store.switchdoc.com/i2c-4-channel-mux-extender-expander-board-grove-pin-headers-for-arduino-and-raspberry-pi/

5.8 Analog-To-Digital Converters

An analog-to-digital converter (ADC) allows the measurement of an analog voltage.

ADS1x15: Analog-to-digital converter link

ADS1256: Analog-to-digital converter link

MCP3008: Analog-to-digital converter link

MCP342x: Analog-to-digital converter link

A voltage divider may be necessary to convert your source voltage to an acceptable range for the ADC.

Note

•

•

•

•

5.8 Analog-To-Digital Converters

- 258/287 - Copyright © 2022

https://learn.sparkfun.com/tutorials/voltage-dividers
https://www.adafruit.com/product/1085
http://www.ti.com/product/ADS1256
https://www.adafruit.com/product/856
http://www.dfrobot.com/wiki/index.php/MCP3424_18-Bit_ADC-4_Channel_with_Programmable_Gain_Amplifier_(SKU:DFR0316)

5.9 Interfaces

5.9.1 I2C Information

The I2C interface should be enabled with raspi-config or from the [Gear Icon] -> Configure -> Raspberry Pi page.

5.9.2 1-Wire Information

The 1-Wire interface should be enabled with raspi-config or from the [Gear Icon] -> Configure -> Raspberry Pi page.

5.9.3 UART Information

This documentation provides specific installation procedures for configuring UART with the Raspberry Pi version 1 or 2.

Because the UART is handled differently higher after the Raspberry Pi 2 (due to the addition of bluetooth), there are a different

set of instructions. If installing Mycodo on a Raspberry Pi 3 or above, you only need to perform these steps to configure UART:

Run raspi-config

sudo raspi-config

Go to Advanced Options -> Serial and disable. Then edit /boot/config.txt

sudo nano /boot/config.txt

Find the line "enable_uart=0" and change it to "enable_uart=1", then reboot.

5.9 Interfaces

- 259/287 - Copyright © 2022

http://www.co2meters.com/Documentation/AppNotes/AN137-Raspberry-Pi.zip

5.10 Dependencies

Page: [Gear Icon] -> Dependencies

The dependency page allows viewing of dependency information and the ability to initiate their installation. This is not something

you will need to normally do, as dependencies are installed on an as-needed basis. If an Input, Output, Function, or other device

you're adding has unmet dependencies, you will be prompted to install them when you attempt to install that device.

5.10 Dependencies

- 260/287 - Copyright © 2022

5.11 Device Notes

This information may not be current, so always reference and follow manufacturer recommendations for operating their devices.

5.11.1 Edge Detection

The detection of a changing signal, for instance a simple switch completing a circuit, requires the use of edge detection. By

detecting a rising edge (LOW to HIGH), a falling edge (HIGH to LOW), or both, actions or events can be triggered. The GPIO

chosen to detect the signal should be equipped with an appropriate resistor that either pulls the GPIO up [to 5-volts] or down [to

ground]. The option to enable the internal pull-up or pull-down resistors is not available for safety reasons. Use your own resistor

to pull the GPIO high or low.

Examples of devices that can be used with edge detection: simple switches and buttons, PIR motion sensors, reed switches, hall

effect sensors, float switches, and more.

5.11.2 Displays

There are only a few number fo displays that are supported. 16x2 and 20x4 character LCD displays with I2C backpacks and the

128x32 / 128x64 OLED displays are supported. The below image is the type of device with the I2C backpack that should be

compatible. See Supported Functions for more information.

5.11.3 Raspberry Pi

The Raspberry Pi has an integrated temperature sensor on the BCM2835 SoC that measure the temperature of the CPU/GPU.

This is the easiest sensor to set up in Mycodo, as it is immediately available to be used.

5.11 Device Notes

- 261/287 - Copyright © 2022

https://www.adafruit.com/product/931
https://www.adafruit.com/product/931

5.11.4 AM2315

From @Theoi-Meteoroi on GitHub:

I figured out why this [AM2315] sensor is unreliable with Rpi3 hardware I2C. It is among a number of I2C devices that really

hates the BCM2835 clock stretching blunder (hardware bug: raspberrypi/linux#254). The wakeup attempts fail, consistently. I

checked the bitstream with a sniffer, and see that the sensor may respond once out of 20 or so tries (or not at all) but only with a

single byte returned. The solution is to use a software implementation of the I2C bus. You need to add pull-up resistors (4.7k is

dandy) to 3.3v and install the i2c_gpio device overlay. Seems to work fine now, will run for a few days, but the CRC failures are

gone and I get good readings, every time. And no twiddling the power for the sensor is required.

To enable software I2C, add the following line to your /boot/config.txt

dtoverlay=i2c-gpio,i2c_gpio_sda=23,i2c_gpio_scl=24,i2c_gpio_delay_us=4

After rebooting, a new I2C bus at /dev/i2c-3 should exist with SDA on pin 23 (BCM) and SCL on pin 24 (BCM). Make sure you add

the appropriate pull-up resistors before connecting any devices.

5.11.5 K-30

Be very careful when connecting the K-30, as there is no reverse-voltage protection and improper connections could destroy your

sensor.

Wiring instructions for the Raspberry Pi can be found here.

5.11.6 USB Device Persistence Across Reboots

From (#547) Theoi-Meteoroi on Github:

Using USB devices, such as USB-to-serial interfaces (CP210x) to connect a sensor, while convenient, poses an issue if there are

multiple devices when the system reboots. After a reboot, there is no guarantee the device will persist with the same name. For

instance, if Sensor A is /dev/ttyUSB0 and Sensor B is /dev/ttyUSB1, after a reboot Sensor A may be /dev/ttyUSB1 and Sensor B

may be /dev/ttyUSB0. This will cause Mycodo to query the wrong device for a measurement, potentially causing a mis-

measurement, or worse, an incorrect measurement because the response is not from the correct sensor (I've seen my

temperature sensor read 700+ degrees celsius because of this!). Follow the instructions below to alleviate this issue.

I use udev to create a persistent device name ('/dev/dust-sensor') that will be linked to the /dev/ttyUSBn that is chosen at device

arrival in the kernel. The only requirement is some attribute returned from the USB device that is unique. The common

5.11.4 AM2315

- 262/287 - Copyright © 2022

https://github.com/kizniche/Mycodo/issues/315#issuecomment-344798815
https://github.com/raspberrypi/linux/issues/254
https://www.co2meter.com/blogs/news/8307094-using-co2meter-com-sensors-with-raspberry-pi
https://github.com/kizniche/Mycodo/issues/547#issuecomment-428752904

circumstance is that none of the attributes are unique and you get stuck with just VID and PID, which is ok as long as you don't

have any other adapters that report the same VID and PID. If you have multiple adapters with the same VID and PID, then

hopefully they have some unique attribute. This command will walk the attributes. Run on each USB device and then compare

differences to possibly find some attribute to use.

udevadm info --name=/dev/ttyUSB0 --attribute-walk

I ended up using the serial number on the ZH03B to program the USB adapter serial field. This way guarantees unique serial

numbers rather than me trying to remember what was the last serial number I used to increment by 1.

When you plug a USB device in it can be enumerated to different device names by the operating system. To fix this problem for

this sensor on linux, I changed attributes that make the connection unique.

First - find the VID and PID for the USB device:

In this case the Vendor ID is 10c4 The Product ID is ea60

Since I changed the serial number field - this will be unique.

Now I have an attribute to tell udev what to do. I create a file in /etc/udev/rules.d with a name like "99-dustsensor.rules". In that

file I tell udev what device name to create when it sees this device plugged in:

SUBSYSTEM=="tty", ATTRS{idVendor}=="10c4", ATTRS{idProduct}=="ea60", ATTRS{serial}=="ZH03B180904" SYMLINK+="dust-sensor"

To test the new rule:

Now, every time the dust sensor is plugged in, it shows up at /dev/dust-sensor

pi@raspberry:~ $ lsusb

Bus 001 Device 008: ID 10c4:ea60 Cygnal Integrated Products, Inc. CP210x UART Bridge / myAVR mySmartUSB light

Bus 001 Device 003: ID 0424:ec00 Standard Microsystems Corp. SMSC9512/9514 Fast Ethernet Adapter

Bus 001 Device 002: ID 0424:9514 Standard Microsystems Corp. SMC9514 Hub

Bus 001 Device 001: ID 1d6b:0002 Linux Foundation 2.0 root hub

If you have multiple devices and you find your IDs to be the same, you can change IDs with the Simplicity Studio Xpress Configurator

tool (discussed starting on page 6 of the AN721: USBXpress Device Configuration and Programming Guide).

Note

pi@raspberry:~ $ udevadm info --name=/dev/ttyUSB0 --attribute-walk | grep serial

SUBSYSTEMS=="usb-serial"

ATTRS{serial}=="ZH03B180904"

ATTRS{serial}=="3f980000.usb"

pi@raspberry:/dev $ sudo udevadm trigger

pi@raspberry:/dev $ ls -al dust-sensor

lrwxrwxrwx 1 root root 7 Oct 6 21:04 dust-sensor -> ttyUSB0

5.11.6 USB Device Persistence Across Reboots

- 263/287 - Copyright © 2022

https://www.silabs.com/documents/public/application-notes/AN721.pdf

5.11.7 Diagrams

DHT11 Diagrams

DS18B20 Diagrams

5.11.7 Diagrams

- 264/287 - Copyright © 2022

5.11.7 Diagrams

- 265/287 - Copyright © 2022

Raspberry Pi and Relay Diagrams

RASPBERRY PI, 4 RELAYS, 4 OUTLETS, 1 DS18B20 SENSOR

5.11.7 Diagrams

- 266/287 - Copyright © 2022

RASPBERRY PI, 8 RELAYS, 8 OUTLETS

5.11.7 Diagrams

- 267/287 - Copyright © 2022

6. System

6.1 System Information

Page: [Gear Icon] -> System Information

This page serves to provide information about the Mycodo frontend and backend as well as the linux system it's running on.

Several commands and their output are listed to give the user information about how their system is running.

Command Description

Mycodo

Version

The current version of Mycodo, reported by the configuration file.

Python

Version

The version of python currently running the web user interface.

Database

Version

The current version of the settings database. If the current version is different from what it should be, an

error will appear indicating the issue and a link to find out more information about the issue.

Daemon

Status

This will be a green "Running" or a red "Stopped". Additionally, the Mycodo version and hostname text at the

top-left of the screen May be Green, Yellow, or Red to indicate the status. Green = daemon running, yellow =

unable to connect, and red = daemon not running.

... Several other status indicators and commands are listed to provide information about the health of the

system. Use these in addition to others to investigate software or hardware issues.

6. System

- 268/287 - Copyright © 2022

6.2 System Configuration

Page: [Gear Icon] -> Configure

The settings menu, accessed by selecting the gear icon in the top-right, then the Configure link, is a general area for various

system-wide configuration options.

6.2.1 General Settings

Page: [Gear Icon] -> Configure -> General

6.2.2 Energy Usage Settings

Page: [Gear Icon] -> Configure -> General

In order to calculate accurate energy usage statistics, a few characteristics of your electrical system needs to be know. These

variables should describe the characteristics of the electrical system being used by the relays to operate electrical devices.

Setting Description

Language Set the language that will be displayed in the web user interface.

Force HTTPS Require web browsers to use SSL/HTTPS. Any request to http:// will be redirected to https://.

Hide success

alerts

Hide all success alert boxes that appear at the top of the page.

Hide info

alerts

Hide all info alert boxes that appear at the top of the page.

Hide warning

alerts

Hide all warning alert boxes that appear at the top of the page.

Opt-out of

statistics

Turn off sending anonymous usage statistics. Please consider that this helps the development to leave on.

Check for

Updates

Automatically check for updates every 2 days and notify through the web interface. If there is a new

update, the Configure (Gear Icon) as well as the Upgrade menu will turn the color red.

6.2 System Configuration

- 269/287 - Copyright © 2022

http://
https://

6.2.3 Input Settings

Page: [Gear Icon] -> Configure -> Custom Inputs

Input modules may be imported and used within Mycodo. These modules must follow a specific format. See Custom Inputs for

more details.

6.2.4 Output Settings

Page: [Gear Icon] -> Configure -> Custom Outputs

Output modules may be imported and used within Mycodo. These modules must follow a specific format. See Custom Outputs for

more details.

6.2.5 Function Settings

Page: [Gear Icon] -> Configure -> Custom Functions

Function modules may be imported and used within Mycodo. These modules must follow a specific format. See Custom Functions

for more details.

6.2.6 Action Settings

Page: [Gear Icon] -> Configure -> Custom Actions

If not using a current sensor, proper energy usage calculations will rely on the correct current draw to be set for each output (see

Output Settings).

Note

Setting Description

Max Amps Set the maximum allowed amperage to be switched on at any given time. If a output that's instructed to

turn on will cause the sum of active devices to exceed this amount, the output will not be allowed to turn

on, to prevent any damage that may result from exceeding current limits.

Voltage Alternating current (AC) voltage that is switched by the outputs. This is usually 120 or 240.

Cost per kWh This is how much you pay per kWh.

Currency Unit This is the unit used for the currency that pays for electricity.

Day of Month This is the day of the month (1-30) that the electricity meter is read (which will correspond to the

electrical bill).

Generate

Usage/Cost

Report

These options define when an Energy Usage Report will be generated. Currently, these Only support the

Output Duration calculation method.

Setting Description

Import Input Module Select your input module file, then click this button to begin the import.

Setting Description

Import Output Module Select your output module file, then click this button to begin the import.

Setting Description

Import Function Module Select your function module file, then click this button to begin the import.

6.2.3 Input Settings

- 270/287 - Copyright © 2022

Action modules may be imported and used within Mycodo. These modules must follow a specific format. See Custom Actions for

more details.

6.2.7 Widget Settings

Page: [Gear Icon] -> Configure -> Custom Widgets

Widget modules may be imported and used within Mycodo. These modules must follow a specific format. See Custom Widgets for

more details.

6.2.8 Measurement Settings

Page: [Gear Icon] -> Configure -> Measurements

New measurements, units, and conversions can be created that can extend functionality of Mycodo beyond the built-in types and

equations. Be sure to create units before measurements, as units need to be selected when creating a measurement. A

measurement can be created that already exists, allowing additional units to be added to a pre-existing measurement. For

example, the measurement 'altitude' already exists, however if you wanted to add the unit 'fathom', first create the unit 'fathom',

then create the measurement 'altitude' with the 'fathom' unit selected. It is okay to create a custom measurement for a

measurement that already exist (this is how new units for a currently-installed measurement is added).

6.2.9 Users

Page: [Gear Icon] -> Configure -> Users

Setting Description

Import Action Module Select your action module file, then click this button to begin the import.

Setting Description

Import Widget Module Select your widget module file, then click this button to begin the import.

Setting Description

Measurement

ID

ID for the measurement to use in the measurements_dict of input modules (e.g. "length", "width",

"speed").

Measurement

Name

Common name for the measurement (e.g. "Length", "Weight", "Speed").

Measurement

Units

Select all the units that are associated with the measurement.

Unit ID ID for the unit to use in the measurements_dict of input modules (e.g. "K", "g", "m").

Unit Name Common name for the unit (e.g. "Kilogram", "Meter").

Unit

Abbreviation

Abbreviation for the unit (e.g. "kg", "m").

Convert From

Unit

The unit that will be converted from.

Convert To Unit The unit that will be converted to.

Equation The equation used to convert one unit to another. The lowercase letter "x" must be included in the

equation (e.g. "x/1000+20", "250*(x/3)"). This "x" will be replaced with the actual measurement being

converted.

6.2.7 Widget Settings

- 271/287 - Copyright © 2022

Mycodo requires at least one Admin user for the login system to be enabled. If there isn't an Admin user, the web server will

redirect to an Admin Creation Form. This is the first page you see when starting Mycodo for the first time. After an Admin user

has been created, additional users may be created from the User Settings page.

Roles

Roles define the permissions of each user. There are 4 default roles that determine if a user can view or edit particular areas of

Mycodo. Four roles are provided by default, but custom roles may be created.

The Edit Controllers permission protects the editing of Conditionals, Graphs, LCDs, Methods, PIDs, Outputs, and Inputs.

The View Stats permission protects the viewing of usage statistics and the System Information and Energy Usage pages.

6.2.10 Pi Settings

Page: [Gear Icon] -> Configure -> Raspberry Pi

Pi settings configure parts of the linux system that Mycodo runs on.

pigpiod is required if you wish to use PWM Outputs, as well as PWM, RPM, DHT22, DHT11, HTU21D Inputs.

Setting Description

Username Choose a user name that is between 2 and 64 characters. The user name is case insensitive (all user names

are converted to lower-case).

Email The email associated with the new account.

Password/

Repeat

Choose a password that is between 6 and 64 characters and only contains letters, numbers, and symbols.

Keypad Code Set an optional numeric code that is at least 4 digits for logging in using a keypad.

Role Roles are a way of imposing access restrictions on users, to either allow or deny actions. See the table

below for explanations of the four default Roles.

Theme The web user interface theme to apply, including colors, themes, and other design elements.

Role Admin Editor Monitor Guest

Edit Users X

Edit Controllers X X

Edit Settings X X

View Settings X X X

View Camera X X X

View Stats X X X

View Logs X X X

Setting Description

Enable/

Disable

Feature

These are system interfaces that can be enabled and disabled from the web UI via the raspi-config

command.

pigpiod

Sample Rate

This is the sample rate the pigpiod service will operate at. The lower number enables faster PWM

frequencies, but may significantly increase processor load on the Pi Zeros. pigpiod may als be disabled

completely if it's not required (see note, above).

6.2.10 Pi Settings

- 272/287 - Copyright © 2022

6.2.11 Alert Settings

Page: [Gear Icon] -> Configure -> Alerts

Alert settings set up the credentials for sending email notifications.

6.2.12 Camera Settings

Page: [Gear Icon] -> Configure -> Camera

Many cameras can be used simultaneously with Mycodo. Each camera needs to be set up in the camera settings, then may be

used throughout the software.

Setting Description

SMTP Host The SMTP server to use to send emails from.

SMTP Port Port to communicate with the SMTP server (465 for SSL, 587 for TSL).

Enable SSL Check to enable SSL, uncheck to enable TSL.

SMTP User The user name to send the email from. This can be just a name or the entire email address.

SMTP Password The password for the user.

From Email What the from email address be set as. This should be the actual email address for this user.

Max emails (per

hour)

Set the maximum number of emails that can be sent per hour. If more notifications are triggered within

the hour and this number has been reached, the notifications will be discarded.

Send Test Email Test the email configuration by sending a test email.

Not every option (such as Hue or White Balance) may be able to be used with your particular camera, due to manufacturer

differences in hardware and software.

Note

Setting Description

Type Select whether the camera is a Raspberry Pi Camera or a USB camera.

Library Select which library to use to communicate with the camera. The Raspberry Pi Camera uses picamera, and

USB cameras should be set to fswebcam.

Device The device to use to connect to the camera. fswebcam is the only library that uses this option.

Output This output will turn on during the capture of any still image (which includes timelapses).

Output

Duration

Turn output on for this duration of time before the image is captured.

Rotate Image The number of degrees to rotate the image.

... Image Width, Image Height, Brightness, Contrast, Exposure, Gain, Hue, Saturation, White Balance. These

options are self-explanatory. Not all options will work with all cameras.

Pre Command A command to execute (as user 'root') before a still image is captured.

Post

Command

A command to execute (as user 'root') after a still image is captured.

Flip

horizontally

Flip, or mirror, the image horizontally.

Flip vertically Flip, or mirror, the image vertically.

6.2.11 Alert Settings

- 273/287 - Copyright © 2022

6.2.13 Diagnostic Settings

Page: [Gear Icon] -> Configure -> Diagnostics

Sometimes issues arise in the system as a result of incompatible configurations, either the result of a misconfigured part of the

system (Input, Output, etc.) or an update that didn't properly handle a database upgrade, or other unforeseen issue. Sometimes

it is necessary to perform diagnostic actions that can determine the cause of the issue or fix the issue itself. The options below

are meant to alleviate issues, such as a misconfigured dashboard element causing an error on the Data -> Dashboard page, which

may cause an inability to access the Data -> Dashboard page to correct the issue. Deleting all Dashboard Elements may be the most

economical method to enable access to the Data -> Dashboard page again, at the cost of having to readd all the Dashboard Elements

that were once there.

Setting Description

Delete All Dashboard Elements Delete all saved Dashboard Elements from the Dashboard.

Delete All Notes and Note Tags Delete all notes and note tags.

6.2.13 Diagnostic Settings

- 274/287 - Copyright © 2022

6.3 Upgrade/Backup/Restore

6.3.1 Upgrading

Page: [Gear Icon] -> Upgrade

If you already have Mycodo installed, you can perform an upgrade to the latest Mycodo Release by either using the Upgrade

option in the web interface (recommended) or by issuing the following command in a terminal. A log of the upgrade process is

created at /var/log/mycodo/mycodoupgrade.log and is also available from the [Gear Icon] -> Mycodo Logs page.

6.3.2 Backup-Restore

Page: [Gear Icon] -> Backup Restore

A backup is made to /var/Mycodo-backups when the system is upgraded or instructed to do so from the web interface on the

[Gear Icon] -> Backup Restore page.

If you need to restore a backup, this can be done on the [Gear Icon] -> Backup Restore page (recommended). Find the backup you

would like restored and press the Restore button beside it. If you're unable to access the web interface, a restore can also be

initialized through the command line. Use the following command to initialize a restore. The [backup_location] must be the full

path to the backup to be restored (e.g. "/var/Mycodo-backups/Mycodo-backup-2018-03-11_21-19-15-5.6.4/" without quotes).

sudo mycodo-commands upgrade-mycodo

sudo mycodo-commands backup-restore [backup_location]

6.3 Upgrade/Backup/Restore

- 275/287 - Copyright © 2022

https://github.com/kizniche/Mycodo/releases

6.4 Export/Import

Page: More -> Export Import

Measurements that fall within the selected date/time frame may be exported as CSV with their corresponding timestamps.

Additionally, the entire measurement database (influxdb) may be exported as a ZIP archive backup. This ZIP may be imported

back in any Mycodo system to restore these measurements.

Mycodo settings may be exported as a ZIP file containing the Mycodo settings database (sqlite) and any custom Inputs, Outputs,

Functions, and Widgets. This ZIP file may be used to restore these to another Mycodo install, as long as the Mycodo and

database versions being imported are equal or less than the system you are installing them to. Additionally, you can only import

to a system with the same major version number (the first number in the version format x.x.x). For instance, you can export

settings from Mycodo 8.5.0 and import them into Mycodo 8.8.0, however you can not import them into Mycodo 8.2.0 (earlier

version with same major version number), 7.0.0 (not the same major version number), or 9.0.0 (not the same major version

number).

Measurements are associated with specific IDs that correspond to the Inputs/Outputs/etc. of your specific system. If you import

measurements without also importing the associated Inputs/Outputs/etc., you will not see these measurements (e.g. on Dashboard

Graphs). Therefore, it is recommended to export both Measurements and Settings at the same time so when you import them at a

later time, you will have the devices associated with the measurements available on the system you're importing to.

Note

Importing measurement data will not destroy old data and will be added to the current measurement data.

Note

An import will override the current settings and custom controller data (i.e. destroying it). It is advised to make a Mycodo backup

prior to attempting an import.

Warning

6.4 Export/Import

- 276/287 - Copyright © 2022

6.5 Error Codes

6.5.1 Error Codes

Mycodo can return a number of different errors. Below are a few of the numbered errors that you may receive and information

about how to diagnose the issue.

Error 100

Cannot set a value of 'X' of type Y. Must be a float or string representing a float.

Examples:

Cannot set a value of '1.33.4' of type str.

Cannot set a value of 'Output: 1.2' of type str.

Cannot set a value of '[1.3, 2.4]' of type list.

Cannot set a value of '{"output": 1.99}' of type dict.

Cannot set a value of 'None' of type Nonetype.

This error occurs because the value provided to be stored in the influxdb time-series database is not a numerical value (integer

or decimal/float) or it is not a string that represents a float (e.g. "5", "3.14"). There are a number of reasons why this error

occurs, but the most common reason is the sensor being ready by an Input did not return a measurement when queried, or it

returned something other than something that represents a numerical value, indicating the sensor is not working. This could be

from a number of reasons, including but not limited to, faulty wiring, faulty/insufficient power supply, defective sensor, I2C bus

hasn't been enabled, misconfigured settings, etc. Often, a sensor can fail or not get set up correctly during Input initialization

when the daemon starts, leading to this error every measurement period. You will need to review the Daemon Log ([Gear Icon] ->

Mycodo Logs) all the way back to when the daemon started (since this is when the Input started and potentially failed with an initial

error that may be more informative). Enabling Log Level: Debug in the Controller setting can also be useful by providing

debugging log lines (when available) in addition to the info and error log lines.

Error 101

X not set up properly

Examples

Device not set up

Output channel Y not set up

This error occurs when the Controller (Input/Output/Function/etc.) could not properly initialize the device or channel when it

started and is now trying to access an uninitialized device or channel. For Inputs, this could be loading the 3rd party library used

to communicate with the sensor. If there was an error loading the library, then the library cannot be used to communicate with

the sensor. You will often need to review the Daemon Log ([Gear Icon] -> Mycodo Logs) for any relevant errors that occurred when the

Controller was initially activated to determine the issue setting up the device. Try deactivating, then activating the device, to see

the initialization error again. Enabling Log Level: Debug in the Controller setting can also be useful by providing debugging log

lines (when available) in addition to the info and error log lines.

•

•

•

•

•

•

•

•

•

6.5 Error Codes

- 277/287 - Copyright © 2022

6.6 Mycodo Client

The Mycodo client is a command-line tool used to communicate with the daemon.

pi@raspberry:~ $ mycodo-client --help

usage: mycodo-client [-h] [-c] [--activatecontroller CONTROLLER ID]

 [--deactivatecontroller CONTROLLER ID] [--ramuse] [-t]

 [--trigger_action ACTIONID]

 [--trigger_all_actions FUNCTIONID]

 [--input_force_measurements INPUTID]

 [--backlight_on DEVID] [--backlight_off DEVID]

 [--lcd_reset DEVID] [--get_measurement ID UNIT CHANNEL]

 [--output_state OUTPUTID]

 [--output_currently_on OUTPUTID] [--outputoff OUTPUTID]

 [--outputon OUTPUTID] [--duration SECONDS]

 [--dutycycle DUTYCYCLE] [--pid_pause ID] [--pid_hold ID]

 [--pid_resume ID] [--pid_get_setpoint ID]

 [--pid_get_error ID] [--pid_get_integrator ID]

 [--pid_get_derivator ID] [--pid_get_kp ID]

 [--pid_get_ki ID] [--pid_get_kd ID]

 [--pid_set_setpoint ID SETPOINT]

 [--pid_set_integrator ID INTEGRATOR]

 [--pid_set_derivator ID DERIVATOR] [--pid_set_kp ID KP]

 [--pid_set_ki ID KI] [--pid_set_kd ID KD]

Client for Mycodo daemon.

optional arguments:

 -h, --help show this help message and exit

 -c, --checkdaemon Check if all active daemon controllers are running

 --activatecontroller CONTROLLER ID

 Activate controller. Options: Conditional,

 PID, Input

 --deactivatecontroller CONTROLLER ID

 Deactivate controller. Options: Conditional,

 PID, Input

 --ramuse Return the amount of ram used by the Mycodo daemon

 -t, --terminate Terminate the daemon

 --trigger_action ACTIONID

 Trigger action with Action ID

 --trigger_all_actions FUNCTIONID

 Trigger all actions belonging to Function with ID

 --input_force_measurements INPUTID

 Force acquiring measurements for Input ID

 --backlight_on DEVID

 Turn on display backlight with device ID

 --backlight_off DEVID

 Turn off display backlight with device ID

 --lcd_reset DEVID Reset display with device ID

 --get_measurement ID UNIT CHANNEL

 Get the last measurement

 --output_state OUTPUTID

 State of output with output ID

 --output_currently_on OUTPUTID

 How many seconds an output has currently been active

 for

 --outputoff OUTPUTID Turn off output with output ID

 --outputon OUTPUTID Turn on output with output ID

 --duration SECONDS Turn on output for a duration of time (seconds)

 --dutycycle DUTYCYCLE

 Turn on PWM output for a duty cycle (%)

 --pid_pause ID Pause PID controller.

 --pid_hold ID Hold PID controller.

 --pid_resume ID Resume PID controller.

 --pid_get_setpoint ID

 Get the setpoint value of the PID controller.

 --pid_get_error ID Get the error value of the PID controller.

 --pid_get_integrator ID

 Get the integrator value of the PID controller.

 --pid_get_derivator ID

 Get the derivator value of the PID controller.

 --pid_get_kp ID Get the Kp gain of the PID controller.

 --pid_get_ki ID Get the Ki gain of the PID controller.

 --pid_get_kd ID Get the Kd gain of the PID controller.

 --pid_set_setpoint ID SETPOINT

 Set the setpoint value of the PID controller.

 --pid_set_integrator ID INTEGRATOR

 Set the integrator value of the PID controller.

 --pid_set_derivator ID DERIVATOR

 Set the derivator value of the PID controller.

 --pid_set_kp ID KP Set the Kp gain of the PID controller.

 --pid_set_ki ID KI Set the Ki gain of the PID controller.

 --pid_set_kd ID KD Set the Kd gain of the PID controller.

6.6 Mycodo Client

- 278/287 - Copyright © 2022

6.7 API

6.7.1 REST API

As of version 8, Mycodo has a REST API (See API Endpoint Documentation).

An API is an application programming interface - in short, it’s a set of rules that lets programs talk to each other, exposing data

and functionality across the internet in a consistent format.

REST stands for Representational State Transfer. This is an architectural pattern that describes how distributed systems can

expose a consistent interface. When people use the term ‘REST API,’ they are generally referring to an API accessed via HTTP

protocol at a predefined set of URLs. These URLs represent various resources - any information or content accessed at that

location, which can be returned as JSON, HTML, audio files, or images. Often, resources have one or more methods that can be

performed on them over HTTP, like GET, POST, PUT and DELETE.

Authentication

An API Key can be generated from the User Settings page ([Gear Icon] -> Configure -> Users). This is stored as a 128-bit bytes object

in the database, but will be presented to the user as a base64-encoded string. This can be used to access HTTPS endpoints.

Mycodo supports several authentication methods. All API requests must be made over HTTPS. Calls made over plain HTTP will

fail. API requests without authentication will fail.

Bash Examples

curl can be used, but you must either use -k to allow the use of an unsigned SSL certificate, or use your own certificate and

domain.

Python Example (GET)

Python Example (POST)

curl -k -v -X GET "https://127.0.0.1/api/settings/users" -H "authorization: Basic 0scjVcxRGi0XczregANBRXG3VMMro+oolPYdauadLblaNThd79bzFPITJjYneU1yK/

Ikc9ahHXmll9JiKZO9+hogKoIp2Q8a2cMFBGevgJSd5jYVYz5D83dFE5+OBvvKKaN1U5TvPOXXcj3lkjvPzgxOnEF0CZUsKfU3MA3cFEs=" -H "accept: application/vnd.mycodo.v1+json"

curl -k -v -x GET "https://127.0.0.1/api/settings/users -H "X-API-KEY: 0scjVcxRGi0XczregANBRXG3VMMro+oolPYdauadLblaNThd79bzFPITJjYneU1yK/

Ikc9ahHXmll9JiKZO9+hogKoIp2Q8a2cMFBGevgJSd5jYVYz5D83dFE5+OBvvKKaN1U5TvPOXXcj3lkjvPzgxOnEF0CZUsKfU3MA3cFEs=" -H "accept: application/vnd.mycodo.v1+json"

curl -k -v -x GET "https://127.0.0.1/api/settings/users?api_key=0scjVcxRGi0XczregANBRXG3VMMro+oolPYdauadLblaNThd79bzFPITJjYneU1yK/

Ikc9ahHXmll9JiKZO9+hogKoIp2Q8a2cMFBGevgJSd5jYVYz5D83dFE5+OBvvKKaN1U5TvPOXXcj3lkjvPzgxOnEF0CZUsKfU3MA3cFEs=" -H "accept: application/vnd.mycodo.v1+json"

import json

import requests

ip_address = '127.0.0.1'

api_key = 'YOUR_API_KEY'

endpoint = 'settings/inputs'

url = 'https://{ip}/api/{ep}'.format(ip=ip_address, ep=endpoint)

headers = {'Accept': 'application/vnd.mycodo.v1+json',

 'X-API-KEY': api_key}

response = requests.get(url, headers=headers, verify=False)

print("Response Status: {}".format(response.status_code))

print("Response Headers: {}".format(response.headers))

response_dict = json.loads(response.text)

print("Response Dictionary: {}".format(response_dict))

import json

import requests

import urllib3

urllib3.disable_warnings(urllib3.exceptions.InsecureRequestWarning)

ip_address = '127.0.0.1'

api_key = 'YOUR_API_KEY'

endpoint = 'outputs/3f5a4806-c830-432d-b329-7821da8336e4'

url = 'https://{ip}/api/{ep}'.format(ip=ip_address, ep=endpoint)

data = {"state": True} # Turn Output On

6.7 API

- 279/287 - Copyright © 2022

https://kizniche.github.io/Mycodo/mycodo-api.html

Errors

Mycodo uses conventional HTTP response codes to indicate the success or failure of an API request. In general: Codes in the 2xx

range indicate success. Codes in the 4xx range indicate an error that failed given the information provided (e.g., a required

parameter was omitted, a charge failed, etc.). Codes in the 5xx range indicate an error with Mycodo's servers (these are rare).

Some 4xx errors that could be handled programmatically (e.g., a card is declined) include an error code that briefly explains the

error reported.

Endpoints

A vendor-specific content type header must be included to determine which API version to use. For version 1, this is "application/

vnd.mycodo.v1+json", as can be seen in the examples, above.

Visit https://{RASPBERRY_PI_IP_ADDRESS}/api for documentation of the current API endpoints of your Mycodo install.

Documentation for the latest API version is also available in HTML format: Mycodo API Docs <https://kizniche.github.io/Mycodo/mycodo-

api.html> __

6.7.2 Daemon Control Object

DaemonControl()

class mycodo_client.DaemonControl (pyro_uri='PYRO:mycodo.pyro_server@127.0.0.1:9080', pyro_timeout=None)

The mycodo client object implements a way to communicate with a mycodo daemon and query information from the influxdb

database.

Example usage:

Parameters:

pyro_uri - the Pyro5 uri to use to connect to the daemon.

pyro_timeout - the Pyro5 timeout period.

controller_activate()

controller_activate (controller_id)

Activates a controller.

Parameters:

controller_type - the type of controller being activated. Options are: "Function", "Input", "Output", "PID", "Trigger", or

"Function".

controller_id - the unique ID of the controller to activate.

controller_deactivate()

controller_deactivate (controller_id)

headers = {'Accept': 'application/vnd.mycodo.v1+json',

 'X-API-KEY': api_key}

response = requests.post(url, json=data, headers=headers, verify=False)

print("Response Status: {}".format(response.status_code))

print("Response Headers: {}".format(response.headers))

response_dict = json.loads(response.text)

print("Response Dictionary: {}".format(response_dict))

from mycodo.mycodo_client import DaemonControl

control = DaemonControl()

control.terminate_daemon()

•

•

•

•

6.7.2 Daemon Control Object

- 280/287 - Copyright © 2022

Deactivates a controller.

Parameters:

controller_type - the type of controller being deactivated. Options are: "Conditional", "Input", "Output", "PID", "Trigger", or

"Function".

controller_id - the unique ID of the controller to deactivate.

get_condition_measurement()

get_condition_measurement (condition_id)

Gets the measurement from a Condition of a Conditional Controller.

Parameters:

condition_id - The unique ID of the controller.

get_condition_measurement_dict()

get_condition_measurement_dict (condition_id)

Gets the measurement dictionary from a Condition of a Conditional Controller.

Parameters:

condition_id - The unique ID of the controller.

input_force_measurements()

input_force_measurements (input_id)

Induce an Input to conduct a measurement.

Parameters:

input_id - The unique ID of the controller.

lcd_backlight()

lcd_backlight (lcd_id, state)

Turn the backlight of an LCD on or off, if the LCD supports that functionality.

Parameters:

lcd_id - The unique ID of the controller.

state - The state of the LCD backlight. Options are: False for off, True for on.

lcd_flash()

lcd_flash (lcd_id, state)

Cause the LCD backlight to start or stop flashing, if the LCD supports that functionality.

Parameters:

lcd_id - The unique ID of the controller.

state - The state of the LCD flashing. Options are: False for off, True for on.

•

•

•

•

•

•

•

•

•

6.7.2 Daemon Control Object

- 281/287 - Copyright © 2022

lcd_reset()

lcd_reset (lcd_id)

Reset an LCD to its default startup state. This can be used to clear the screen, fix display issues, or turn off flashing.

Parameters:

lcd_id - The unique ID of the controller.

output_off()

output_off (output_id, trigger_conditionals=True)

Turn an Output off.

Parameters:

output_id - The unique ID of the Output.

trigger_conditionals - Whether to trigger controllers that may be monitoring Outputs for state changes.

output_on()

output_on (output_id, output_type='sec', amount=0.0, min_off=0.0, trigger_conditionals=True)

Turn an Output on.

Parameters:

output_id - The unique ID of the Output.

output_type - The type of output to send to the output module (e.g. "sec", "pwm", "vol").

amount - The amount to send to the output module.

min_off - How long to keep the Output off after turning on, if on for a duration.

trigger_conditionals - Whether to trigger controllers that may be monitoring Outputs for state changes.

output_on_off()

output_on_off (output_id, state, output_type='sec', amount=0.0,)

Turn an Output on or off.

Parameters:

output_id - The unique ID of the Output.

state - The state to turn the Output. Options are: "on", "off"

output_type - The type of output to send to the output module (e.g. "sec", "pwm", "vol").

amount - The amount to send to the output module.

output_sec_currently_on()

output_sec_currently_on (output_id)

Get how many seconds an Output has been on.

Parameters:

output_id - The unique ID of the Output.

•

•

•

•

•

•

•

•

•

•

•

•

•

6.7.2 Daemon Control Object

- 282/287 - Copyright © 2022

output_setup()

output_setup (action, output_id)

Set up an Output (i.e. load/reload settings from database, initialize any pins/classes, etc.).

Parameters:

action - What action to instruct for the Output. Options are: "Add", "Delete", or "Modify".

output_id - The unique ID of the Output.

output_state()

output_state (output_id)

Gets the state of an Output. Returns "on" or "off" or duty cycle value.

Parameters:

output_id - The unique ID of the Output.

pid_get()

pid_get (pid_id, setting)

Get a parameter of a PID controller.

Parameters:

pid_id - The unique ID of the controller.

setting - Which option to get. Options are: "setpoint", "error", "integrator", "derivator", "kp", "ki", or "kd".

pid_hold()

pid_hold (pid_id)

Set a PID Controller to Hold.

Parameters:

pid_id - The unique ID of the controller.

pid_mod()

pid_mod (pid_id)

Refresh/Initialize the variables of a running PID controller.

Parameters:

pid_id - The unique ID of the controller.

pid_pause()

pid_pause (pid_id)

Set a PID Controller to Pause.

Parameters:

pid_id - The unique ID of the controller.

•

•

•

•

•

•

•

•

6.7.2 Daemon Control Object

- 283/287 - Copyright © 2022

pid_resume()

pid_resume (pid_id)

Set a PID Controller to Resume.

Parameters:

pid_id - The unique ID of the controller.

pid_set()

pid_set (pid_id, setting, value)

Set a parameter of a running PID controller.

Parameters:

pid_id - The unique ID of the controller.

setting - Which option to set. Options are: "setpoint", "method", "integrator", "derivator", "kp", "ki", or "kd".

value - The value to set.

refresh_daemon_camera_settings()

refresh_daemon_camera_settings ()

Refresh the camera settings stored in the running daemon from the database values.

refresh_daemon_conditional_settings()

refresh_daemon_conditional_settings (unique_id)

Refresh the Conditional Controller settings of a running Conditional Controller.

Parameters:

unique_id - The unique ID of the controller.

refresh_daemon_misc_settings()

refresh_daemon_misc_settings ()

Refresh the miscellaneous settings stored in the running daemon from the database values.

refresh_daemon_trigger_settings()

refresh_daemon_trigger_settings (unique_id)

Refresh the Trigger Controller settings of a running Trigger Controller.

Parameters:

unique_id - The unique ID of the controller.

send_email()

send_email (recipients, message, subject)

Send an email with the credentials configured for alert notifications.

•

•

•

•

•

•

6.7.2 Daemon Control Object

- 284/287 - Copyright © 2022

Parameters:

recipients - The email address (string) or addresses (list of strings) to send the email.

message - The body of the email.

subject - The subject of the email.

terminate_daemon()

terminate_daemon ()

Instruct the daemon to shut down.

trigger_action()

trigger_action (action_id, message='', single_action=True, debug=False)

Instruct a Function Action to be executed.

Parameters:

action_id - The unique ID of the Function Action.

message - A message to send with the action that may be used by the action.

single_action - True if only executing a single action.

debug - Whether to show debug logging messages.

trigger_all_actions()

trigger_all_actions (function_id, message='', debug=False)

Instruct all Function Actions of a Function Controller to be executed sequentially.

Parameters:

function_id - The unique ID of the controller.

message - A message to send with the action that may be used by the action.

debug - Whether to show debug logging messages.

•

•

•

•

•

•

•

•

•

•

6.7.2 Daemon Control Object

- 285/287 - Copyright © 2022

7. Troubleshooting

7.1 Daemon Not Running

Check the Logs: From the [Gear Icon] -> Mycodo Logs page, check the Daemon Log for any errors. If the issue began after an

upgrade, also check the Upgrade Log for indications of an issue.

Determine if the Daemon is Running: Execute ps aux | grep '/var/mycodo-root/env/bin/python /var/mycodo-root/mycodo/mycodo_daemon.py' in

a terminal and look for an entry to be returned. If nothing is returned, the daemon is not running.

Daemon Lock File: If the daemon is not running, make sure the daemon lock file is deleted at /var/lock/mycodo.pid . The daemon

cannot start if the lock file is present.

If a solution could not be found after investigating the above suggestions, submit a New Mycodo Issue on github.

7.2 Incorrect Database Version

Check the [Gear Icon] -> System Information page or select the mycodo logo in the top-left.

An incorrect database version error means the version stored in the Mycodo settings database (~/Mycodo/databases/mycodo.db) is

not correct for the latest version of Mycodo, determined in the Mycodo config file (~/Mycodo/mycodo/config.py).

This can be caused by an error in the upgrade process from an older database version to a newer version, or from a

database that did not upgrade during the Mycodo upgrade process.

Check the Upgrade Log for any issues that may have occurred. The log is located at /var/log/mycodo/mycodoupgrade.log but may

also be accessed from the web UI (if you're able to): select [Gear Icon] -> Mycodo Logs -> Upgrade Log .

Sometimes issues may not immediately present themselves. It is not uncommon to be experiencing a database issue that

was actually introduced several Mycodo versions ago, before the latest upgrade.

Because of the nature of how many versions the database can be in, correcting a database issue may be very difficult. It may

be much easier to delete your database and let Mycodo generate a new one.

Use the following commands to rename your database and restart the web UI. If both commands are successful, refresh

your web UI page in your browser in order to generate a new database and create a new Admin user.

7.3 More

Check out the Diagnosing Mycodo Issues Wiki Page on github for more information about diagnosing issues.

•

•

•

•

•

•

•

•

•

•

•

mv ~/Mycodo/databases/mycodo.db ~/Mycodo/databases/mycodo.db.backup

sudo service mycodoflask restart

7. Troubleshooting

- 286/287 - Copyright © 2022

https://github.com/kizniche/Mycodo/issues/new
https://github.com/kizniche/Mycodo/wiki/Diagnosing-Issues

8. Translations

Mycodo has been translated to several languages. By default, the language of the browser will determine which language is

used, but may be overridden in the General Settings, on the [Gear Icon] -> Configure -> General page. If you find an issue and would

like to correct a translation or would like to add another language, this can be done at https://translate.kylegabriel.com.

Also check out the Translations section of the Wiki for details on working with translation files manually.

8. Translations

- 287/287 - Copyright © 2022

http://translate.kylegabriel.com:8080/engage/mycodo/
https://github.com/kizniche/Mycodo/wiki/Translations

	Mycodo
	1. Home
	1.1 Mycodo Environmental Monitoring and Regulation System
	1.1.1 Information
	1.1.2 Prerequisites
	1.1.3 Install
	1.1.4 Support
	1.1.5 Donate

	2. About
	2.1 Web User Interface
	2.2 Languages

	3. Frequently Asked Questions
	4. Usage
	4.1 Data Viewing
	4.1.1 Live Measurements
	4.1.2 Asynchronous Graphs
	4.1.3 Dashboard
	4.1.4 Widgets
	Custom Widgets

	4.2 Inputs
	Custom Inputs
	Input Commands
	Input Actions
	Input Options
	The Things Network

	4.3 Outputs
	4.3.1 Custom Outputs
	4.3.2 Output Options
	4.3.3 On/Off (GPIO)
	4.3.4 Pulse-Width Modulation (PWM)
	4.3.5 Pulse-Width Modulation (PWM) Options
	Non-hardware PWM Pins
	Hardware PWM Pins
	Schematics for DC Fan Control
	Schematics for AC Modulation

	4.3.6 Peristaltic Pump
	Generic Peristaltic Pump
	Atlas Scientific Peristaltic Pump
	Peristaltic Pump Options

	4.3.7 Wireless 315/433 MHz
	4.3.8 Linux Command
	4.3.9 Python Command
	4.3.10 Output Notes

	4.4 Functions
	4.4.1 Custom Functions
	4.4.2 PID Controller
	PID Controller Options
	PID Output Calculation
	PID Tuning
	PID TUNING RESOURCES
	PID CONTROL THEORY
	QUICK SETUP EXAMPLES
	EXACT TEMPERATURE REGULATION
	HIGH TEMPERATURE REGULATION

	4.4.3 PID Autotune
	4.4.4 Conditional
	Conditional Options
	Conditional Setup Guide

	4.4.5 Trigger
	Output (On/Off) Options
	Output (PWM) Options
	Edge Options
	Run PWM Method Options
	Sunrise/Sunset Options
	Timer (Duration) Options
	Timer (Daily Time Point) Options
	Timer (Daily Time Span) Options

	4.5 Actions
	4.5.1 Custom Actions

	4.6 Calibration
	4.7 Methods
	4.7.1 Method Options
	4.7.2 Time/Date Method
	4.7.3 Duration Method
	4.7.4 Daily (Time-Based) Method
	4.7.5 Daily (Sine Wave) Method
	4.7.6 Daily (Bezier Curve) Method
	4.7.7 Cascade Method

	4.8 Alerts
	4.9 Notes
	4.9.1 Tag Options
	4.9.2 Note Options

	4.10 Camera
	4.11 Energy Usage
	4.12 Python Code
	4.12.1 Outputs
	PWM Fan with a Minimum Duty Cycle to Spin

	5. Supported Devices
	5.1 Inputs Sorted by Measurement
	5.1.1 Acceleration
	Ruuvi: RuuviTag

	5.1.2 Acceleration (X)
	Analog Devices: ADXL34x (343, 344, 345, 346)
	Raspberry Pi Foundation: Sense HAT
	Ruuvi: RuuviTag

	5.1.3 Acceleration (Y)
	Analog Devices: ADXL34x (343, 344, 345, 346)
	Raspberry Pi Foundation: Sense HAT
	Ruuvi: RuuviTag

	5.1.4 Acceleration (Z)
	Analog Devices: ADXL34x (343, 344, 345, 346)
	Raspberry Pi Foundation: Sense HAT
	Ruuvi: RuuviTag

	5.1.5 ADC
	AMS: AS7262

	5.1.6 Altitude
	BOSCH: BME280
	BOSCH: BME280
	BOSCH: BME280
	BOSCH: BME680
	BOSCH: BME680
	BOSCH: BMP180
	BOSCH: BMP280
	BOSCH: BMP280

	5.1.7 Angle
	Raspberry Pi Foundation: Sense HAT

	5.1.8 Battery
	Ruuvi: RuuviTag
	Sensorion: SHT31 Smart Gadget
	Xiaomi: Miflora
	Xiaomi: Mijia LYWSD03MMC (ATC and non-ATC modes)

	5.1.9 Boolean
	Mycodo: Server Ping
	Mycodo: Server Port Open

	5.1.10 CO2
	AMS: CCS811 (with Temperature)
	AMS: CCS811 (without Temperature)
	Atlas Scientific: Atlas CO2
	CO2Meter: K30
	Cozir: Cozir CO2
	Sensirion: SCD-4x (SCD-40, SCD-41)
	Sensirion: SCD30
	Sensirion: SCD30
	Winsen: MH-Z16
	Winsen: MH-Z19
	Winsen: MH-Z19B

	5.1.11 Color (Y)
	Atlas Scientific: Atlas Color

	5.1.12 Color (Blue)
	Atlas Scientific: Atlas Color

	5.1.13 Color (Green)
	Atlas Scientific: Atlas Color

	5.1.14 Color (Red)
	Atlas Scientific: Atlas Color

	5.1.15 Color (x)
	Atlas Scientific: Atlas Color

	5.1.16 Color (y)
	Atlas Scientific: Atlas Color

	5.1.17 CPU Load (15 min)
	Mycodo: CPU Load

	5.1.18 CPU Load (1 min)
	Mycodo: CPU Load

	5.1.19 CPU Load (5 min)
	Mycodo: CPU Load

	5.1.20 Dewpoint
	AOSONG: AM2315/AM2320
	AOSONG: DHT11
	AOSONG: DHT22
	Atlas Scientific: Atlas Humidity
	BOSCH: BME280
	BOSCH: BME280
	BOSCH: BME280
	BOSCH: BME680
	BOSCH: BME680
	Cozir: Cozir CO2
	Ruuvi: RuuviTag
	Seeedstudio: DHT11/22
	Sensirion: SCD-4x (SCD-40, SCD-41)
	Sensirion: SCD30
	Sensirion: SCD30
	Sensirion: SHT1x/7x
	Sensirion: SHT2x
	Sensirion: SHT2x
	Sensirion: SHT31-D
	Sensirion: SHT3x (30, 31, 35)
	Sensirion: SHT4X
	Sensirion: SHTC3
	Sensorion: SHT31 Smart Gadget
	Silicon Labs: Si7021
	Sonoff: TH16/10 (Tasmota firmware) with AM2301/Si7021
	Sonoff: TH16/10 (Tasmota firmware) with AM2301
	TE Connectivity: HTU21D
	TE Connectivity: HTU21D
	Texas Instruments: HDC1000
	Weather: OpenWeatherMap (City, Current)
	Weather: OpenWeatherMap (Lat/Lon, Current/Future)

	5.1.21 Direction
	Raspberry Pi Foundation: Sense HAT
	Weather: OpenWeatherMap (City, Current)
	Weather: OpenWeatherMap (Lat/Lon, Current/Future)

	5.1.22 Disk
	Mycodo: Free Space
	Mycodo: Mycodo RAM

	5.1.23 Dissolved Oxygen
	Atlas Scientific: Atlas DO

	5.1.24 Duration
	Weather: OpenWeatherMap (Lat/Lon, Current/Future)

	5.1.25 Duty Cycle
	Raspberry Pi: Signal (PWM)

	5.1.26 GPIO Edge
	Raspberry Pi: Edge Detection

	5.1.27 Electrical Conductivity
	AnyLeaf: AnyLeaf EC
	Atlas Scientific: Atlas EC
	Texas Instruments: ADS1115: Generic Analog pH/EC
	Texas Instruments: ADS1256: Generic Analog pH/EC
	Xiaomi: Miflora

	5.1.28 Electrical Current
	Tasmota: Tasmota Outlet Energy Monitor (HTTP)
	Texas Instruments: INA219x

	5.1.29 Electrical Potential
	Microchip: MCP3008
	Microchip: MCP342x (x=2,3,4,6,7,8)
	Tasmota: Tasmota Outlet Energy Monitor (HTTP)
	Texas Instruments: ADS1015
	Texas Instruments: ADS1115
	Texas Instruments: ADS1256: Generic Analog pH/EC
	Texas Instruments: ADS1256
	Texas Instruments: ADS1x15
	Texas Instruments: INA219x

	5.1.30 Energy
	Tasmota: Tasmota Outlet Energy Monitor (HTTP)

	5.1.31 Frequency
	Raspberry Pi: Signal (PWM)

	5.1.32 GPIO State
	Raspberry Pi: GPIO State

	5.1.33 Humidity
	AOSONG: AM2315/AM2320
	AOSONG: DHT11
	AOSONG: DHT22
	ASAIR: AHTx0
	Atlas Scientific: Atlas Humidity
	BOSCH: BME280
	BOSCH: BME280
	BOSCH: BME280
	BOSCH: BME680
	BOSCH: BME680
	Cozir: Cozir CO2
	Raspberry Pi Foundation: Sense HAT
	Ruuvi: RuuviTag
	Seeedstudio: DHT11/22
	Sensirion: SCD-4x (SCD-40, SCD-41)
	Sensirion: SCD30
	Sensirion: SCD30
	Sensirion: SHT1x/7x
	Sensirion: SHT2x
	Sensirion: SHT2x
	Sensirion: SHT31-D
	Sensirion: SHT3x (30, 31, 35)
	Sensirion: SHT4X
	Sensirion: SHTC3
	Sensorion: SHT31 Smart Gadget
	Silicon Labs: Si7021
	Sonoff: TH16/10 (Tasmota firmware) with AM2301/Si7021
	Sonoff: TH16/10 (Tasmota firmware) with AM2301
	TE Connectivity: HTU21D
	TE Connectivity: HTU21D
	Texas Instruments: HDC1000
	Weather: OpenWeatherMap (City, Current)
	Weather: OpenWeatherMap (Lat/Lon, Current/Future)
	Xiaomi: Mijia LYWSD03MMC (ATC and non-ATC modes)

	5.1.34 Ion Concentration
	AnyLeaf: AnyLeaf pH
	Atlas Scientific: Atlas pH
	Texas Instruments: ADS1115: Generic Analog pH/EC
	Texas Instruments: ADS1256: Generic Analog pH/EC

	5.1.35 Length
	Atlas Scientific: Atlas Color
	Multiple Manufacturers: HC-SR04
	STMicroelectronics: VL53L0X
	STMicroelectronics: VL53L1X
	Silicon Labs: SI1145

	5.1.36 Light
	AMS: TSL2561
	AMS: TSL2591
	Atlas Scientific: Atlas Color
	Catnip Electronics: Chirp
	ROHM: BH1750
	Silicon Labs: SI1145
	Xiaomi: Miflora

	5.1.37 Magnetic Flux Density
	Melexis: MLX90393
	Raspberry Pi Foundation: Sense HAT

	5.1.38 Moisture
	Adafruit: I2C Capacitive Moisture Sensor
	Catnip Electronics: Chirp
	Xiaomi: Miflora

	5.1.39 Oxidation Reduction Potential
	AnyLeaf: AnyLeaf ORP
	Atlas Scientific: Atlas ORP

	5.1.40 PM10
	Winsen: ZH03B

	5.1.41 PM1
	Winsen: ZH03B

	5.1.42 PM2.5
	Winsen: ZH03B

	5.1.43 Power
	Tasmota: Tasmota Outlet Energy Monitor (HTTP)

	5.1.44 Apparent Power
	Tasmota: Tasmota Outlet Energy Monitor (HTTP)

	5.1.45 Power Factor
	Tasmota: Tasmota Outlet Energy Monitor (HTTP)

	5.1.46 Reactive Power
	Tasmota: Tasmota Outlet Energy Monitor (HTTP)

	5.1.47 Pressure
	Atlas Scientific: Atlas Pressure
	BOSCH: BME280
	BOSCH: BME280
	BOSCH: BME280
	BOSCH: BME680
	BOSCH: BME680
	BOSCH: BMP180
	BOSCH: BMP280
	BOSCH: BMP280
	Infineon: DPS310
	Raspberry Pi Foundation: Sense HAT
	Ruuvi: RuuviTag
	Weather: OpenWeatherMap (City, Current)
	Weather: OpenWeatherMap (Lat/Lon, Current/Future)

	5.1.48 Pulse Width
	Raspberry Pi: Signal (PWM)

	5.1.49 Volume Flow Rate
	Atlas Scientific: Atlas Flow Meter
	Generic: Hall Flow Meter

	5.1.50 Resistance
	BOSCH: BME680
	BOSCH: BME680

	5.1.51 Revolutions
	Raspberry Pi: Signal (Revolutions)

	5.1.52 Salinity
	Atlas Scientific: Atlas EC

	5.1.53 Specific Gravity
	Atlas Scientific: Atlas EC

	5.1.54 Speed
	Weather: OpenWeatherMap (City, Current)
	Weather: OpenWeatherMap (Lat/Lon, Current/Future)

	5.1.55 Temperature
	AMS: CCS811 (with Temperature)
	AOSONG: AM2315/AM2320
	AOSONG: DHT11
	AOSONG: DHT22
	ASAIR: AHTx0
	Adafruit: I2C Capacitive Moisture Sensor
	Analog Devices: ADT7410
	Atlas Scientific: Atlas Humidity
	Atlas Scientific: Atlas PT-1000
	BOSCH: BME280
	BOSCH: BME280
	BOSCH: BME280
	BOSCH: BME680
	BOSCH: BME680
	BOSCH: BMP180
	BOSCH: BMP280
	BOSCH: BMP280
	Catnip Electronics: Chirp
	Cozir: Cozir CO2
	Infineon: DPS310
	MAXIM: DS1822
	MAXIM: DS1825
	MAXIM: DS18B20
	MAXIM: DS18B20
	MAXIM: DS18S20
	MAXIM: DS28EA00
	MAXIM: MAX31850K
	MAXIM: MAX31855
	MAXIM: MAX31856
	MAXIM: MAX31865
	MAXIM: MAX31865
	Melexis: MLX90614
	Microchip: MCP9808
	Panasonic: AMG8833
	Raspberry Pi Foundation: Sense HAT
	Raspberry Pi: CPU/GPU Temperature
	Ruuvi: RuuviTag
	Seeedstudio: DHT11/22
	Sensirion: SCD-4x (SCD-40, SCD-41)
	Sensirion: SCD30
	Sensirion: SCD30
	Sensirion: SHT1x/7x
	Sensirion: SHT2x
	Sensirion: SHT2x
	Sensirion: SHT31-D
	Sensirion: SHT3x (30, 31, 35)
	Sensirion: SHT4X
	Sensirion: SHTC3
	Sensorion: SHT31 Smart Gadget
	Silicon Labs: Si7021
	Sonoff: TH16/10 (Tasmota firmware) with AM2301/Si7021
	Sonoff: TH16/10 (Tasmota firmware) with AM2301
	Sonoff: TH16/10 (Tasmota firmware) with DS18B20
	TE Connectivity: HTU21D
	TE Connectivity: HTU21D
	Texas Instruments: HDC1000
	Texas Instruments: TMP006
	Weather: OpenWeatherMap (City, Current)
	Weather: OpenWeatherMap (Lat/Lon, Current/Future)
	Xiaomi: Miflora
	Xiaomi: Mijia LYWSD03MMC (ATC and non-ATC modes)

	5.1.56 Total Dissolved Solids
	Atlas Scientific: Atlas EC

	5.1.57 Vapor Pressure Deficit
	AOSONG: AM2315/AM2320
	AOSONG: DHT11
	AOSONG: DHT22
	BOSCH: BME280
	BOSCH: BME280
	BOSCH: BME280
	BOSCH: BME680
	BOSCH: BME680
	Ruuvi: RuuviTag
	Seeedstudio: DHT11/22
	Sensirion: SCD-4x (SCD-40, SCD-41)
	Sensirion: SCD30
	Sensirion: SCD30
	Sensirion: SHT1x/7x
	Sensirion: SHT2x
	Sensirion: SHT2x
	Sensirion: SHT31-D
	Sensirion: SHT3x (30, 31, 35)
	Sensirion: SHT4X
	Sensirion: SHTC3
	Sensorion: SHT31 Smart Gadget
	Silicon Labs: Si7021
	Sonoff: TH16/10 (Tasmota firmware) with AM2301/Si7021
	Sonoff: TH16/10 (Tasmota firmware) with AM2301
	TE Connectivity: HTU21D
	TE Connectivity: HTU21D
	Texas Instruments: HDC1000

	5.1.58 Version
	Mycodo: Mycodo Version

	5.1.59 VOC
	AMS: CCS811 (with Temperature)
	AMS: CCS811 (without Temperature)

	5.1.60 Volume
	Atlas Scientific: Atlas Flow Meter
	Generic: Hall Flow Meter

	5.2 Supported Inputs
	5.2.1 Built-In Inputs (System)
	Linux: Bash Command
	OPTIONS
	Period (seconds)
	Pre Output
	Pre Out Duration
	Pre During Measure
	Command Timeout
	User
	Current Working Directory

	Linux: Python 3 Code
	OPTIONS
	Measurements Enabled
	Period (seconds)
	Pre Output
	Pre Out Duration
	Pre During Measure

	Mycodo: CPU Load
	OPTIONS
	Measurements Enabled
	Period (seconds)

	Mycodo: Free Space
	OPTIONS
	Period (seconds)

	Mycodo: Mycodo RAM
	OPTIONS
	Period (seconds)

	Mycodo: Mycodo Version
	OPTIONS
	Measurements Enabled
	Period (seconds)

	Mycodo: Server Ping
	OPTIONS
	Period (seconds)
	Pre Output
	Pre Out Duration
	Pre During Measure

	Mycodo: Server Port Open
	OPTIONS
	Period (seconds)
	Pre Output
	Pre Out Duration
	Pre During Measure

	Mycodo: Spacer
	OPTIONS
	Color

	Raspberry Pi: CPU/GPU Temperature
	OPTIONS
	Measurements Enabled
	Period (seconds)
	Path for CPU Temperature
	Path to vcgencmd

	Raspberry Pi: Edge Detection
	OPTIONS
	Pre Output
	Pre Out Duration
	Pre During Measure
	Pin Mode

	Raspberry Pi: GPIO State
	OPTIONS
	Period (seconds)
	Pre Output
	Pre Out Duration
	Pre During Measure
	Pin Mode

	Raspberry Pi: Signal (PWM)
	OPTIONS
	Measurements Enabled
	Period (seconds)
	Pre Output
	Pre Out Duration
	Pre During Measure

	Raspberry Pi: Signal (Revolutions)
	OPTIONS
	Period (seconds)
	Pre Output
	Pre Out Duration
	Pre During Measure

	5.2.2 Built-In Inputs (Devices)
	AMS: AS7262
	OPTIONS
	Period (seconds)
	Pre Output
	Pre Out Duration
	Pre During Measure
	Gain
	Illumination LED Current
	Illumination LED Mode
	Indicator LED Current
	Indicator LED Mode
	Integration Time

	AMS: CCS811 (with Temperature)
	OPTIONS
	I2C Address
	I2C Bus
	Measurements Enabled
	Period (seconds)
	Pre Output
	Pre Out Duration
	Pre During Measure

	AMS: CCS811 (without Temperature)
	OPTIONS
	I2C Address
	I2C Bus
	Measurements Enabled
	Period (seconds)
	Pre Output
	Pre Out Duration
	Pre During Measure

	AMS: TSL2561
	OPTIONS
	I2C Address
	I2C Bus
	Measurements Enabled
	Period (seconds)
	Pre Output
	Pre Out Duration
	Pre During Measure

	AMS: TSL2591
	OPTIONS
	I2C Address
	I2C Bus
	Measurements Enabled
	Period (seconds)
	Pre Output
	Pre Out Duration
	Pre During Measure

	AOSONG: AM2315/AM2320
	OPTIONS
	Measurements Enabled
	Period (seconds)
	Pre Output
	Pre Out Duration
	Pre During Measure

	AOSONG: DHT11
	OPTIONS
	Measurements Enabled
	Period (seconds)
	Pre Output
	Pre Out Duration
	Pre During Measure

	AOSONG: DHT22
	OPTIONS
	Measurements Enabled
	Period (seconds)
	Pre Output
	Pre Out Duration
	Pre During Measure

	ASAIR: AHTx0
	OPTIONS
	I2C Address
	I2C Bus
	Period (seconds)
	Pre Output
	Pre Out Duration
	Pre During Measure

	Adafruit: I2C Capacitive Moisture Sensor
	OPTIONS
	I2C Address
	I2C Bus
	Measurements Enabled
	Period (seconds)
	Pre Output
	Pre Out Duration
	Pre During Measure

	Analog Devices: ADT7410
	OPTIONS
	I2C Address
	I2C Bus
	Measurements Enabled
	Period (seconds)
	Pre Output
	Pre Out Duration
	Pre During Measure

	Analog Devices: ADXL34x (343, 344, 345, 346)
	OPTIONS
	I2C Address
	I2C Bus
	Measurements Enabled
	Period (seconds)
	Pre Output
	Pre Out Duration
	Pre During Measure
	Range

	AnyLeaf: AnyLeaf EC
	OPTIONS
	UART Device
	Period (seconds)
	Conductivity Constant

	AnyLeaf: AnyLeaf ORP
	OPTIONS
	I2C Address
	I2C Bus
	Period (seconds)
	Calibrate: Voltage (Internal)
	Calibrate: ORP (Internal)

	COMMANDS
	Calibrate: Buffer ORP (mV)
	Calibrate
	Clear Calibration Slots

	AnyLeaf: AnyLeaf pH
	OPTIONS
	I2C Address
	I2C Bus
	Period (seconds)
	Temperature Compensation: Measurement
	Temperature Compensation: Max Age
	Cal data: V1 (internal)
	Cal data: pH1 (internal)
	Cal data: T1 (internal)
	Cal data: V2 (internal)
	Cal data: pH2 (internal)
	Cal data: T2 (internal)
	Cal data: V3 (internal)
	Cal data: pH3 (internal)
	Cal data: T3 (internal)

	COMMANDS
	Calibration buffer pH
	Calibrate, slot 1
	Calibrate, slot 2
	Calibrate, slot 3
	Clear Calibration Slots

	Atlas Scientific: Atlas CO2
	OPTIONS
	I2C Address
	I2C Bus
	FTDI Device
	UART Device
	Period (seconds)
	Pre Output
	Pre Out Duration
	Pre During Measure

	COMMANDS
	A one- or two-point calibration can be performed. After exposing the probe to a concentration of CO2 between 3,000 and 5,000 ppmv until readings stabilize, press Calibrate (High). You can place the probe in a 0 CO2 environment until readings stabilize, then press Calibrate (Zero). You can also clear the currently-saved calibration by pressing Clear Calibration, returning to the factory-set calibration. Status messages will be set to the Daemon Log, accessible from Config -> Mycodo Logs -> Daemon Log.
	High Point CO2
	Calibrate (High)
	Calibrate (Zero)
	Clear Calibration
	The I2C address can be changed. Enter a new address in the 0xYY format (e.g. 0x22, 0x50), then press Set I2C Address. Remember to deactivate and change the I2C address option after setting the new address.
	New I2C Address
	Set I2C Address

	Atlas Scientific: Atlas Color
	OPTIONS
	I2C Address
	I2C Bus
	FTDI Device
	UART Device
	Measurements Enabled
	Period (seconds)
	Pre Output
	Pre Out Duration
	Pre During Measure
	LED Only For Measure
	LED Percentage
	Gamma Correction

	COMMANDS
	The EZO-RGB color sensor is designed to be calibrated to a white object at the maximum brightness the object will be viewed under. In order to get the best results, Atlas Scientific strongly recommends that the sensor is mounted into a fixed location. Holding the sensor in your hand during calibration will decrease performance.1. Embed the EZO-RGB color sensor into its intended use location.2. Set LED brightness to the desired level.3. Place a white object in front of the target object and press the Calibration button.4. A single color reading will be taken and the device will be fully calibrated.
	Calibrate
	The I2C address can be changed. Enter a new address in the 0xYY format (e.g. 0x22, 0x50), then press Set I2C Address. Remember to deactivate and change the I2C address option after setting the new address.
	New I2C Address
	Set I2C Address

	Atlas Scientific: Atlas DO
	OPTIONS
	I2C Address
	I2C Bus
	FTDI Device
	UART Device
	Period (seconds)
	Pre Output
	Pre Out Duration
	Pre During Measure
	Temperature Compensation: Measurement
	Temperature Compensation: Max Age

	COMMANDS
	A one- or two-point calibration can be performed. After exposing the probe to air for 30 seconds until readings stabilize, press Calibrate (Air). If you require accuracy below 1.0 mg/L, you can place the probe in a 0 mg/L solution for 30 to 90 seconds until readings stabilize, then press Calibrate (0 mg/L). You can also clear the currently-saved calibration by pressing Clear Calibration. Status messages will be set to the Daemon Log, accessible from Config -> Mycodo Logs -> Daemon Log.
	Calibrate (Air)
	Calibrate (0 mg/L)
	Clear Calibration
	The I2C address can be changed. Enter a new address in the 0xYY format (e.g. 0x22, 0x50), then press Set I2C Address. Remember to deactivate and change the I2C address option after setting the new address.
	New I2C Address
	Set I2C Address

	Atlas Scientific: Atlas EC
	OPTIONS
	I2C Address
	I2C Bus
	FTDI Device
	UART Device
	Measurements Enabled
	Period (seconds)
	Pre Output
	Pre Out Duration
	Pre During Measure
	Temperature Compensation: Measurement
	Temperature Compensation: Max Age

	COMMANDS
	Calibration: a one- or two-point calibration can be performed. It's a good idea to clear the calibration before calibrating. Always perform a dry calibration with the probe in the air (not in any fluid). Then perform either a one- or two-point calibration with calibrated solutions. If performing a one-point calibration, use the Single Point Calibration field and button. If performing a two-point calibration, use the Low and High Point Calibration fields and buttons. Allow a minute or two after submerging your probe in a calibration solution for the measurements to equilibrate before calibrating to that solution. The EZO EC circuit default temperature compensation is set to 25 °C. If the temperature of the calibration solution is +/- 2 °C from 25 °C, consider setting the temperature compensation first. Note that at no point should you change the temperature compensation value during calibration. Therefore, if you have previously enabled temperature compensation, allow at least one measurement to occur (to set the compensation value), then disable the temperature compensation measurement while you calibrate. Status messages will be set to the Daemon Log, accessible from Config -> Mycodo Logs -> Daemon Log.
	Clear Calibration
	Calibrate Dry
	Single Point EC (µS)
	Calibrate Single Point
	Low Point EC (µS)
	Calibrate Low Point
	High Point EC (µS)
	Calibrate High Point
	The I2C address can be changed. Enter a new address in the 0xYY format (e.g. 0x22, 0x50), then press Set I2C Address. Remember to deactivate and change the I2C address option after setting the new address.
	New I2C Address
	Set I2C Address

	Atlas Scientific: Atlas Flow Meter
	OPTIONS
	I2C Address
	I2C Bus
	FTDI Device
	UART Device
	Measurements Enabled
	Period (seconds)
	Pre Output
	Pre Out Duration
	Pre During Measure
	Flow Meter Type
	Atlas Meter Time Base
	Internal Resistor
	Custom K Value(s)
	K Value Time Base

	COMMANDS
	The total volume can be cleared with the following button or with the Clear Total Volume Function Action.
	Clear Total Volume
	The I2C address can be changed. Enter a new address in the 0xYY format (e.g. 0x22, 0x50), then press Set I2C Address. Remember to deactivate and change the I2C address option after setting the new address.
	New I2C Address
	Set I2C Address

	Atlas Scientific: Atlas Humidity
	OPTIONS
	I2C Address
	I2C Bus
	FTDI Device
	UART Device
	Measurements Enabled
	Period (seconds)
	Pre Output
	Pre Out Duration
	Pre During Measure
	LED Mode

	COMMANDS
	New I2C Address
	Set I2C Address

	Atlas Scientific: Atlas ORP
	OPTIONS
	I2C Address
	I2C Bus
	FTDI Device
	UART Device
	Period (seconds)
	Pre Output
	Pre Out Duration
	Pre During Measure
	Temperature Compensation: Measurement
	Temperature Compensation: Max Age

	COMMANDS
	A one-point calibration can be performed. Enter the solution's mV, set the probe in the solution, then press Calibrate. You can also clear the currently-saved calibration by pressing Clear Calibration. Status messages will be set to the Daemon Log, accessible from Config -> Mycodo Logs -> Daemon Log.
	Calibration Solution mV
	Calibrate
	Clear Calibration
	The I2C address can be changed. Enter a new address in the 0xYY format (e.g. 0x22, 0x50), then press Set I2C Address. Remember to deactivate and change the I2C address option after setting the new address.
	New I2C Address
	Set I2C Address

	Atlas Scientific: Atlas PT-1000
	OPTIONS
	I2C Address
	I2C Bus
	FTDI Device
	UART Device
	Period (seconds)
	Pre Output
	Pre Out Duration
	Pre During Measure

	COMMANDS
	New I2C Address
	Set I2C Address

	Atlas Scientific: Atlas Pressure
	OPTIONS
	I2C Address
	I2C Bus
	FTDI Device
	UART Device
	Period (seconds)
	Pre Output
	Pre Out Duration
	Pre During Measure
	LED Mode

	COMMANDS
	New I2C Address
	Set I2C Address

	Atlas Scientific: Atlas pH
	OPTIONS
	I2C Address
	I2C Bus
	FTDI Device
	UART Device
	Period (seconds)
	Pre Output
	Pre Out Duration
	Pre During Measure
	Temperature Compensation: Measurement
	Temperature Compensation: Max Age

	COMMANDS
	Calibration: a one-, two- or three-point calibration can be performed. It's a good idea to clear the calibration before calibrating. The first calibration must be the Mid point. The second must be the Low point. And the third must be the High point. You can perform a one-, two- or three-point calibration, but they must be performed in this order. Allow a minute or two after submerging your probe in a calibration solution for the measurements to equilibrate before calibrating to that solution. The EZO pH circuit default temperature compensation is set to 25 °C. If the temperature of the calibration solution is +/- 2 °C from 25 °C, consider setting the temperature compensation first. Note that if you have a Temperature Compensation Measurement selected from the Options, this will overwrite the manual Temperature Compensation set here, so be sure to disable this option if you would like to specify the temperature to compensate with. Status messages will be set to the Daemon Log, accessible from Config -> Mycodo Logs -> Daemon Log.
	Compensation Temperature (°C)
	Set Temperature Compensation
	Clear Calibration
	Mid Point pH
	Calibrate Mid
	Low Point pH
	Calibrate Low
	High Point pH
	Calibrate High
	Calibration Export/Import: Export calibration to a series of strings. These can later be imported to restore the calibration. Watch the Daemon Log for the output.
	Export Calibration
	Calibration String
	Import Calibration
	The I2C address can be changed. Enter a new address in the 0xYY format (e.g. 0x22, 0x50), then press Set I2C Address. Remember to deactivate and change the I2C address option after setting the new address.
	New I2C Address
	Set I2C Address

	BOSCH: BME280
	OPTIONS
	I2C Address
	I2C Bus
	Measurements Enabled
	Period (seconds)
	Pre Output
	Pre Out Duration
	Pre During Measure

	BOSCH: BME280
	OPTIONS
	I2C Address
	I2C Bus
	Measurements Enabled
	Period (seconds)
	Pre Output
	Pre Out Duration
	Pre During Measure

	BOSCH: BME280
	OPTIONS
	I2C Address
	I2C Bus
	Measurements Enabled
	Period (seconds)
	Pre Output
	Pre Out Duration
	Pre During Measure

	BOSCH: BME680
	OPTIONS
	I2C Address
	I2C Bus
	Measurements Enabled
	Period (seconds)
	Pre Output
	Pre Out Duration
	Pre During Measure
	Humidity Oversampling
	Temperature Oversampling
	Pressure Oversampling
	IIR Filter Size
	Temperature Offset
	Sea Level Pressure (ha)

	BOSCH: BME680
	OPTIONS
	I2C Address
	I2C Bus
	Measurements Enabled
	Period (seconds)
	Pre Output
	Pre Out Duration
	Pre During Measure
	Humidity Oversampling
	Temperature Oversampling
	Pressure Oversampling
	IIR Filter Size
	Gas Heater Temperature (°C)
	Gas Heater Duration (ms)
	Gas Heater Profile
	Temperature Offset

	BOSCH: BMP180
	OPTIONS
	Measurements Enabled
	Period (seconds)
	Pre Output
	Pre Out Duration
	Pre During Measure

	BOSCH: BMP280
	OPTIONS
	I2C Address
	I2C Bus
	Measurements Enabled
	Period (seconds)
	Pre Output
	Pre Out Duration
	Pre During Measure

	BOSCH: BMP280
	OPTIONS
	I2C Address
	I2C Bus
	Measurements Enabled
	Period (seconds)
	Pre Output
	Pre Out Duration
	Pre During Measure
	Enable Forced Mode

	CO2Meter: K30
	OPTIONS
	UART Device
	Period (seconds)
	Pre Output
	Pre Out Duration
	Pre During Measure

	Catnip Electronics: Chirp
	OPTIONS
	I2C Address
	I2C Bus
	Measurements Enabled
	Period (seconds)
	Pre Output
	Pre Out Duration
	Pre During Measure

	Cozir: Cozir CO2
	OPTIONS
	UART Device
	Measurements Enabled
	Period (seconds)
	Pre Output
	Pre Out Duration
	Pre During Measure

	Generic: Hall Flow Meter
	OPTIONS
	Period (seconds)
	Pre Output
	Pre Out Duration
	Pre During Measure
	Pulses per Liter

	COMMANDS
	Clear Total Volume

	Infineon: DPS310
	OPTIONS
	I2C Address
	I2C Bus
	Period (seconds)
	Pre Output
	Pre Out Duration
	Pre During Measure

	MAXIM: DS1822
	OPTIONS
	Period (seconds)
	Pre Output
	Pre Out Duration
	Pre During Measure

	COMMANDS
	Set the resolution, precision, and response time for the sensor. This setting will be written to the EEPROM to allow persistence after power loss. The EEPROM has a limited amount of writes (>50k).
	Resolution
	Set Resolution

	MAXIM: DS1825
	OPTIONS
	Period (seconds)
	Pre Output
	Pre Out Duration
	Pre During Measure

	COMMANDS
	Set the resolution, precision, and response time for the sensor. This setting will be written to the EEPROM to allow persistence after power loss. The EEPROM has a limited amount of writes (>50k).
	Resolution
	Set Resolution

	MAXIM: DS18B20
	OPTIONS
	Period (seconds)
	Pre Output
	Pre Out Duration
	Pre During Measure

	MAXIM: DS18B20
	OPTIONS
	Period (seconds)
	Pre Output
	Pre Out Duration
	Pre During Measure

	COMMANDS
	Set the resolution, precision, and response time for the sensor. This setting will be written to the EEPROM to allow persistence after power loss. The EEPROM has a limited amount of writes (>50k).
	Resolution
	Set Resolution

	MAXIM: DS18S20
	OPTIONS
	Period (seconds)
	Pre Output
	Pre Out Duration
	Pre During Measure

	COMMANDS
	Set the resolution, precision, and response time for the sensor. This setting will be written to the EEPROM to allow persistence after power loss. The EEPROM has a limited amount of writes (>50k).
	Resolution
	Set Resolution

	MAXIM: DS28EA00
	OPTIONS
	Period (seconds)
	Pre Output
	Pre Out Duration
	Pre During Measure

	COMMANDS
	Set the resolution, precision, and response time for the sensor. This setting will be written to the EEPROM to allow persistence after power loss. The EEPROM has a limited amount of writes (>50k).
	Resolution
	Set Resolution

	MAXIM: MAX31850K
	OPTIONS
	Period (seconds)
	Pre Output
	Pre Out Duration
	Pre During Measure

	COMMANDS
	Set the resolution, precision, and response time for the sensor. This setting will be written to the EEPROM to allow persistence after power loss. The EEPROM has a limited amount of writes (>50k).
	Resolution
	Set Resolution

	MAXIM: MAX31855
	OPTIONS
	CS Pin
	Measurements Enabled
	Period (seconds)
	Pre Output
	Pre Out Duration
	Pre During Measure

	MAXIM: MAX31856
	OPTIONS
	CS Pin
	Measurements Enabled
	Period (seconds)
	Pre Output
	Pre Out Duration
	Pre During Measure

	MAXIM: MAX31865
	OPTIONS
	Period (seconds)
	Pre Output
	Pre Out Duration
	Pre During Measure
	Chip Select Pin
	Number of wires

	MAXIM: MAX31865
	OPTIONS
	CS Pin
	Period (seconds)
	Pre Output
	Pre Out Duration
	Pre During Measure

	MQTT: MQTT Subscribe (JSON payload)
	OPTIONS
	Measurements Enabled
	Host
	Port
	Topic
	Keep Alive
	Client ID
	Use Login
	Use TLS
	Username
	Password

	CHANNEL OPTIONS
	Name
	JSON Key

	MQTT: MQTT Subscribe (Value payload)
	OPTIONS
	Measurements Enabled
	Host
	Port
	Keep Alive
	Client ID
	Use Login
	Use TLS
	Username
	Password

	CHANNEL OPTIONS
	Name
	Subscription Topic

	Melexis: MLX90393
	OPTIONS
	I2C Address
	I2C Bus
	Period (seconds)
	Pre Output
	Pre Out Duration
	Pre During Measure

	Melexis: MLX90614
	OPTIONS
	I2C Address
	I2C Bus
	Measurements Enabled
	Period (seconds)
	Pre Output
	Pre Out Duration
	Pre During Measure

	Microchip: MCP3008
	OPTIONS
	CS Pin
	Measurements Enabled
	Period (seconds)
	Pre Output
	Pre Out Duration
	Pre During Measure
	VREF (volts)

	Microchip: MCP342x (x=2,3,4,6,7,8)
	OPTIONS
	I2C Address
	I2C Bus
	Measurements Enabled
	Period (seconds)
	Pre Output
	Pre Out Duration
	Pre During Measure

	Microchip: MCP9808
	OPTIONS
	I2C Address
	I2C Bus
	Period (seconds)
	Pre Output
	Pre Out Duration
	Pre During Measure

	Multiple Manufacturers: HC-SR04
	OPTIONS
	Period (seconds)
	Pre Output
	Pre Out Duration
	Pre During Measure
	Trigger Pin
	Echo Pin

	Panasonic: AMG8833
	OPTIONS
	I2C Address
	I2C Bus
	Measurements Enabled
	Period (seconds)
	Pre Output
	Pre Out Duration
	Pre During Measure

	ROHM: BH1750
	OPTIONS
	I2C Address
	I2C Bus
	Period (seconds)
	Pre Output
	Pre Out Duration
	Pre During Measure

	Raspberry Pi Foundation: Sense HAT
	OPTIONS
	Measurements Enabled
	Period (seconds)
	Pre Output
	Pre Out Duration
	Pre During Measure

	Ruuvi: RuuviTag
	OPTIONS
	MAC (XX:XX:XX:XX:XX:XX)
	BT Adapter (hci[X])
	Measurements Enabled
	Period (seconds)
	Pre Output
	Pre Out Duration
	Pre During Measure

	STMicroelectronics: VL53L0X
	OPTIONS
	I2C Address
	I2C Bus
	Measurements Enabled
	Period (seconds)
	Pre Output
	Pre Out Duration
	Pre During Measure
	Accuracy

	COMMANDS
	New I2C Address
	Set I2C Address

	STMicroelectronics: VL53L1X
	OPTIONS
	I2C Address
	I2C Bus
	Measurements Enabled
	Period (seconds)
	Pre Output
	Pre Out Duration
	Pre During Measure
	Range
	Timing Budget (microseconds)
	Inter Measurement Period (milliseconds)

	Seeedstudio: DHT11/22
	OPTIONS
	Measurements Enabled
	Period (seconds)
	Sensor Type

	Sensirion: SCD-4x (SCD-40, SCD-41)
	OPTIONS
	I2C Address
	I2C Bus
	Measurements Enabled
	Period (seconds)
	Pre Output
	Pre Out Duration
	Pre During Measure
	Temperature Offset
	Altitude (m)
	Automatic Self-Calibration
	Persist Settings

	COMMANDS
	You can force the CO2 calibration for a specific CO2 concentration value (in ppmv).
	CO2 Concentration (ppmv)
	Calibrate CO2

	Sensirion: SCD30
	OPTIONS
	I2C Address
	I2C Bus
	Measurements Enabled
	Period (seconds)
	Pre Output
	Pre Out Duration
	Pre During Measure
	I2C Frequency: The SCD-30 has temperamental I2C with clock stretching. The datasheet recommends starting at 50,000 Hz.
	I2C Frequency (Hz)
	Automatic Self Ccalibration (ASC): To work correctly, the sensor must be on and active for 7 days after enabling ASC, and exposed to fresh air for at least 1 hour per day. Consult the manufacturer’s documentation for more information.
	Enable Automatic Self Calibration
	Temperature Offset: Specifies the offset to be added to the reported measurements to account for a bias in the measured signal. Value is in degrees Celsius with a resolution of 0.01 degrees and a maximum value of 655.35 C.
	Temperature Offset
	Ambient Air Pressure (mBar): Specify the ambient air pressure at the measurement location in mBar. Setting this value adjusts the CO2 measurement calculations to account for the air pressure’s effect on readings. Values must be in mBar, from 700 to 1200 mBar.
	Ambient Air Pressure (mBar)
	Altitude: Specifies the altitude at the measurement location in meters above sea level. Setting this value adjusts the CO2 measurement calculations to account for the air pressure’s effect on readings.
	Altitude (m)

	COMMANDS
	A soft reset restores factory default values.
	Soft Reset
	Forced Re-Calibration: The SCD-30 is placed in an environment with a known CO2 concentration, this concentration value is entered in the CO2 Concentration (ppmv) field, then the Foce Calibration button is pressed. But how do you come up with that known value? That is a caveat of this approach and Sensirion suggests three approaches: 1. Using a separate secondary calibrated CO2 sensor to provide the value. 2. Exposing the SCD-30 to a controlled environment with a known value. 3. Exposing the SCD-30 to fresh outside air and using a value of 400 ppm.
	CO2 Concentration (ppmv)
	Force Recalibration

	Sensirion: SCD30
	OPTIONS
	I2C Address
	I2C Bus
	Measurements Enabled
	Period (seconds)
	Pre Output
	Pre Out Duration
	Pre During Measure
	Automatic Self Ccalibration (ASC): To work correctly, the sensor must be on and active for 7 days after enabling ASC, and exposed to fresh air for at least 1 hour per day. Consult the manufacturer’s documentation for more information.
	Enable Automatic Self Calibration

	COMMANDS
	A soft reset restores factory default values.
	Soft Reset

	Sensirion: SHT1x/7x
	OPTIONS
	Measurements Enabled
	Period (seconds)
	Pre Output
	Pre Out Duration
	Pre During Measure

	Sensirion: SHT2x
	OPTIONS
	Measurements Enabled
	Period (seconds)
	Pre Output
	Pre Out Duration
	Pre During Measure
	Temperature Resolution

	Sensirion: SHT2x
	OPTIONS
	Measurements Enabled
	Period (seconds)
	Pre Output
	Pre Out Duration
	Pre During Measure

	Sensirion: SHT31-D
	OPTIONS
	I2C Address
	I2C Bus
	Measurements Enabled
	Period (seconds)
	Pre Output
	Pre Out Duration
	Pre During Measure

	Sensirion: SHT3x (30, 31, 35)
	OPTIONS
	I2C Address
	I2C Bus
	Measurements Enabled
	Period (seconds)
	Pre Output
	Pre Out Duration
	Pre During Measure
	Enable Heater
	Heater On Seconds
	Heater On Period

	Sensirion: SHT4X
	OPTIONS
	I2C Address
	I2C Bus
	Measurements Enabled
	Period (seconds)
	Pre Output
	Pre Out Duration
	Pre During Measure

	Sensirion: SHTC3
	OPTIONS
	I2C Address
	I2C Bus
	Measurements Enabled
	Period (seconds)
	Pre Output
	Pre Out Duration
	Pre During Measure

	Sensorion: SHT31 Smart Gadget
	OPTIONS
	MAC (XX:XX:XX:XX:XX:XX)
	BT Adapter (hci[X])
	Measurements Enabled
	Period (seconds)
	Pre Output
	Pre Out Duration
	Pre During Measure
	Download Stored Data
	Set Logging Interval

	Silicon Labs: SI1145
	OPTIONS
	I2C Address
	I2C Bus
	Measurements Enabled
	Period (seconds)
	Pre Output
	Pre Out Duration
	Pre During Measure

	Silicon Labs: Si7021
	OPTIONS
	I2C Address
	I2C Bus
	Period (seconds)
	Pre Output
	Pre Out Duration
	Pre During Measure

	Sonoff: TH16/10 (Tasmota firmware) with AM2301/Si7021
	OPTIONS
	Measurements Enabled
	Period (seconds)
	Pre Output
	Pre Out Duration
	Pre During Measure
	IP Address
	Sensor Name

	Sonoff: TH16/10 (Tasmota firmware) with AM2301
	OPTIONS
	Measurements Enabled
	Period (seconds)
	Pre Output
	Pre Out Duration
	Pre During Measure
	IP Address

	Sonoff: TH16/10 (Tasmota firmware) with DS18B20
	OPTIONS
	Measurements Enabled
	Period (seconds)
	Pre Output
	Pre Out Duration
	Pre During Measure
	IP Address

	TE Connectivity: HTU21D
	OPTIONS
	I2C Address
	I2C Bus
	Measurements Enabled
	Period (seconds)
	Pre Output
	Pre Out Duration
	Pre During Measure

	TE Connectivity: HTU21D
	OPTIONS
	I2C Address
	I2C Bus
	Measurements Enabled
	Period (seconds)
	Pre Output
	Pre Out Duration
	Pre During Measure

	Tasmota: Tasmota Outlet Energy Monitor (HTTP)
	OPTIONS
	Measurements Enabled
	Period (seconds)
	Pre Output
	Pre Out Duration
	Pre During Measure
	Host

	Texas Instruments: ADS1015
	OPTIONS
	I2C Address
	I2C Bus
	Measurements Enabled
	Period (seconds)
	Pre Output
	Pre Out Duration
	Pre During Measure
	Measurements to Average

	Texas Instruments: ADS1115: Generic Analog pH/EC
	OPTIONS
	I2C Address
	I2C Bus
	Measurements Enabled
	Period (seconds)
	Pre Output
	Pre Out Duration
	Pre During Measure
	ADC Channel: pH
	ADC Channel: EC
	Temperature Compensation
	Temperature Compensation: Measurement
	Temperature Compensation: Max Age
	pH Calibration Data
	Cal data: V1 (internal)
	Cal data: pH1 (internal)
	Cal data: T1 (internal)
	Cal data: V2 (internal)
	Cal data: pH2 (internal)
	Cal data: T2 (internal)
	EC Calibration Data
	EC cal data: V1 (internal)
	EC cal data: EC1 (internal)
	EC cal data: T1 (internal)
	EC cal data: V2 (internal)
	EC cal data: EC2 (internal)
	EC cal data: T2 (internal)

	COMMANDS
	pH Calibration Actions: Place your probe in a solution of known pH.
	Calibration buffer pH
	Calibrate pH, slot 1
	Calibrate pH, slot 2
	Clear pH Calibration Slots
	EC Calibration Actions: Place your probe in a solution of known EC.
	Calibration standard EC
	Calibrate EC, slot 1
	Calibrate EC, slot 2
	Clear EC Calibration Slots

	Texas Instruments: ADS1115
	OPTIONS
	I2C Address
	I2C Bus
	Measurements Enabled
	Period (seconds)
	Pre Output
	Pre Out Duration
	Pre During Measure
	Measurements to Average

	Texas Instruments: ADS1256: Generic Analog pH/EC
	OPTIONS
	Measurements Enabled
	Period (seconds)
	Pre Output
	Pre Out Duration
	Pre During Measure
	ADC Channel: pH
	ADC Channel: EC
	Temperature Compensation
	Temperature Compensation: Measurement
	Temperature Compensation: Max Age
	pH Calibration Data
	Cal data: V1 (internal)
	Cal data: pH1 (internal)
	Cal data: T1 (internal)
	Cal data: V2 (internal)
	Cal data: pH2 (internal)
	Cal data: T2 (internal)
	EC Calibration Data
	EC cal data: V1 (internal)
	EC cal data: EC1 (internal)
	EC cal data: T1 (internal)
	EC cal data: V2 (internal)
	EC cal data: EC2 (internal)
	EC cal data: T2 (internal)
	Calibration

	COMMANDS
	pH Calibration Actions: Place your probe in a solution of known pH.
	Calibration buffer pH
	Calibrate pH, slot 1
	Calibrate pH, slot 2
	Clear pH Calibration Slots
	EC Calibration Actions: Place your probe in a solution of known EC.
	Calibration standard EC
	Calibrate EC, slot 1
	Calibrate EC, slot 2
	Clear EC Calibration Slots

	Texas Instruments: ADS1256
	OPTIONS
	Measurements Enabled
	Period (seconds)
	Pre Output
	Pre Out Duration
	Pre During Measure
	Calibration

	Texas Instruments: ADS1x15
	OPTIONS
	I2C Address
	I2C Bus
	Measurements Enabled
	Period (seconds)
	Pre Output
	Pre Out Duration
	Pre During Measure
	Measurements to Average

	Texas Instruments: HDC1000
	OPTIONS
	I2C Address
	I2C Bus
	Measurements Enabled
	Period (seconds)
	Pre Output
	Pre Out Duration
	Pre During Measure

	Texas Instruments: INA219x
	OPTIONS
	I2C Address
	I2C Bus
	Measurements Enabled
	Period (seconds)
	Pre Output
	Pre Out Duration
	Pre During Measure
	Measurements to Average
	Calibration Range
	Bus Voltage Range
	Bus ADC Resolution
	Shunt ADC Resolution

	Texas Instruments: TMP006
	OPTIONS
	I2C Address
	I2C Bus
	Measurements Enabled
	Period (seconds)
	Pre Output
	Pre Out Duration
	Pre During Measure

	The Things Network: TTN Integration: Data Storage (TTN v2)
	OPTIONS
	Measurements Enabled
	Period (seconds)
	Start Offset (seconds)
	Pre Output
	Pre Out Duration
	Pre During Measure
	Application ID
	App API Key
	Device ID

	CHANNEL OPTIONS
	Name
	Variable Name

	The Things Network: TTN Integration: Data Storage (TTN v3, Payload Key)
	OPTIONS
	Measurements Enabled
	Period (seconds)
	Start Offset (seconds)
	Pre Output
	Pre Out Duration
	Pre During Measure
	Application ID
	App API Key
	Device ID

	CHANNEL OPTIONS
	Name
	Variable Name

	The Things Network: TTN Integration: Data Storage (TTN v3, Payload jmespath Expression)
	OPTIONS
	Measurements Enabled
	Period (seconds)
	Start Offset (seconds)
	Pre Output
	Pre Out Duration
	Pre During Measure
	Application ID
	App API Key
	Device ID

	CHANNEL OPTIONS
	Name
	Payload jmespath Expression

	Weather: OpenWeatherMap (City, Current)
	OPTIONS
	Measurements Enabled
	Period (seconds)
	Pre Output
	Pre Out Duration
	Pre During Measure
	API Key
	City

	Weather: OpenWeatherMap (Lat/Lon, Current/Future)
	OPTIONS
	Measurements Enabled
	Period (seconds)
	Pre Output
	Pre Out Duration
	Pre During Measure
	API Key
	Latitude (decimal)
	Longitude (decimal)
	Time

	Winsen: MH-Z16
	OPTIONS
	I2C Address
	I2C Bus
	UART Device
	Period (seconds)
	Pre Output
	Pre Out Duration
	Pre During Measure

	Winsen: MH-Z19
	OPTIONS
	UART Device
	Period (seconds)
	Pre Output
	Pre Out Duration
	Pre During Measure
	Measurement Range

	COMMANDS
	Calibrate Zero Point
	Span Point (ppmv)
	Calibrate Span Point

	Winsen: MH-Z19B
	OPTIONS
	UART Device
	Period (seconds)
	Pre Output
	Pre Out Duration
	Pre During Measure
	Automatic Baseline Correction
	Measurement Range

	COMMANDS
	Calibrate Zero Point
	Span Point (ppmv)
	Calibrate Span Point

	Winsen: ZH03B
	OPTIONS
	UART Device
	Measurements Enabled
	Period (seconds)
	Pre Output
	Pre Out Duration
	Pre During Measure
	Fan Off After Measure
	Fan On Duration
	Number of Measurements

	Xiaomi: Miflora
	OPTIONS
	MAC (XX:XX:XX:XX:XX:XX)
	BT Adapter (hci[X])
	Measurements Enabled
	Period (seconds)
	Pre Output
	Pre Out Duration
	Pre During Measure

	Xiaomi: Mijia LYWSD03MMC (ATC and non-ATC modes)
	OPTIONS
	MAC (XX:XX:XX:XX:XX:XX)
	BT Adapter (hci[X])
	Measurements Enabled
	Period (seconds)
	Pre Output
	Pre Out Duration
	Pre During Measure
	Enable ATC Mode

	5.3 Supported Outputs
	5.3.1 Built-In Outputs (System)
	On/Off: MQTT Publish
	OPTIONS
	CHANNEL OPTIONS
	Hostname
	Port
	Topic
	Keep Alive
	Client ID
	On Payload
	Off Payload
	Startup State
	Shutdown State
	Force Command
	Current (Amps)
	Use Login
	Username
	Password

	Value: MQTT Publish
	OPTIONS
	CHANNEL OPTIONS
	Hostname
	Port
	Topic
	Keep Alive
	Client ID
	Off Value
	Use Login
	Username
	Password

	5.3.2 Built-In Outputs (Devices)
	Digital Potentiometer: DS3502
	OPTIONS
	I2C Address
	I2C Bus
	Round Step

	Digital-to-Analog Converter: MCP4728
	OPTIONS
	I2C Address
	I2C Bus
	VREF (volts)

	CHANNEL OPTIONS
	Name
	VREF
	Gain
	Start State
	Start Value (volts)
	Shutdown State
	Shutdown Value (volts)

	Motor: Grove I2C Motor Driver (Board v1.3)
	OPTIONS
	I2C Address
	I2C Bus

	CHANNEL OPTIONS
	Name
	Motor Speed (0 - 100)
	Flow Rate Method
	Desired Flow Rate (ml/min)
	Fastest Rate (ml/min)

	Motor: Grove I2C Motor Driver (TB6612FNG, Board v1.0)
	OPTIONS
	I2C Address
	I2C Bus

	CHANNEL OPTIONS
	Name
	Motor Speed (0 - 255)
	Flow Rate Method
	Desired Flow Rate (ml/min)
	Fastest Rate (ml/min)
	Minimum On (sec/min)

	COMMANDS
	New I2C Address
	Set I2C Address

	Motor: L298N DC Motor Controller
	OPTIONS
	CHANNEL OPTIONS
	Name
	Input Pin 1
	Input Pin 2
	Use Enable Pin
	Enable Pin
	Enable Pin Duty Cycle
	Direction
	Volume Rate (ml/min)

	Motor: Stepper Motor, Bipolar (Generic)
	OPTIONS
	CHANNEL OPTIONS
	If the Direction or Enable pins are not used, make sure you pull the appropriate pins on your driver high or low to set the proper direction and enable the stepper motor to be energized. Note: For Enable Mode, always having the motor energized will use more energy and produce more heat.
	Step Pin
	Full Step Delay
	Direction Pin
	Enable Pin
	Enable Mode
	Enable at Shutdown
	If using a Step Resolution other than Full, and all three Mode Pins are set, they will be set high (1) or how (0) according to the values in parentheses to the right of the selected Step Resolution, e.g. (Mode Pin 1, Mode Pin 2, Mode Pin 3).
	Step Resolution
	Mode Pin 1
	Mode Pin 2
	Mode Pin 3

	Motor: ULN2003 Stepper Motor, Unipolar
	OPTIONS
	CHANNEL OPTIONS
	Notes about connecting the ULN2003...
	Pin IN1
	Pin IN2
	Pin IN3
	Pin IN4
	Step Delay
	Notes about step resolution...
	Step Resolution

	On/Off: GPIO
	OPTIONS
	CHANNEL OPTIONS
	GPIO Pin (BCM)
	Startup State
	Shutdown State
	On State
	Trigger Functions at Startup
	Current (Amps)

	On/Off: Grove Multichannel Relay (4- or 8-Channel board)
	OPTIONS
	I2C Address
	I2C Bus

	CHANNEL OPTIONS
	Name
	Startup State
	Shutdown State
	On State
	Trigger Functions at Startup
	Current (Amps)

	On/Off: HS300 Kasa Smart WiFi Power Strip
	OPTIONS
	Host
	Status Update (Sec)

	CHANNEL OPTIONS
	Name
	Startup State
	Shutdown State
	Trigger Functions at Startup
	Force Command
	Current (Amps)

	On/Off: KP303 Kasa Smart WiFi Power Strip
	OPTIONS
	Host
	Status Update (Sec)

	CHANNEL OPTIONS
	Name
	Startup State
	Shutdown State
	Trigger Functions at Startup
	Force Command
	Current (Amps)

	On/Off: MCP23017 16-Channel I/O Expander
	OPTIONS
	I2C Address
	I2C Bus

	CHANNEL OPTIONS
	Name
	Startup State
	Shutdown State
	On State
	Trigger Functions at Startup
	Current (Amps)

	On/Off: PCF8574 8-Channel {lazy_gettext('I/O Expander')}
	OPTIONS
	I2C Address
	I2C Bus

	CHANNEL OPTIONS
	Name
	Startup State
	Shutdown State
	On State
	Trigger Functions at Startup
	Current (Amps)

	On/Off: Python Code
	OPTIONS
	CHANNEL OPTIONS
	On Command
	Off Command
	Startup State
	Shutdown State
	Trigger Functions at Startup
	Force Command
	Current (Amps)

	On/Off: Shell Script
	OPTIONS
	CHANNEL OPTIONS
	On Command
	Off Command
	User
	Startup State
	Shutdown State
	Trigger Functions at Startup
	Force Command
	Current (Amps)

	On/Off: Wireless 315/433 MHz
	OPTIONS
	CHANNEL OPTIONS
	GPIO Pin (BCM)
	On Command
	Off Command
	Protocol
	Pulse Length
	Startup State
	Shutdown State
	Trigger Functions at Startup
	Force Command
	Current (Amps)

	PWM: GPIO
	CHANNEL OPTIONS
	GPIO Pin (BCM)
	Startup State
	Startup Value
	Shutdown State
	Shutdown Value
	Library
	Frequency (Hertz)
	Invert Signal
	Invert Stored Signal
	Trigger Functions at Startup
	Current (Amps)

	COMMANDS
	Set the Duty Cycle.
	Duty Cycle
	Set Duty Cycle

	PWM: PCA9685 16-Channel LED Controller
	OPTIONS
	I2C Address
	I2C Bus
	Frequency (Hertz)

	CHANNEL OPTIONS
	Name
	Startup State
	Startup Value
	Shutdown State
	Shutdown Value
	Invert Signal
	Invert Stored Signal
	Trigger Functions at Startup
	Current (Amps)

	PWM: Python 3 Code
	CHANNEL OPTIONS
	Python 3 Code
	User
	Startup State
	Startup Value
	Shutdown State
	Shutdown Value
	Invert Signal
	Invert Stored Signal
	Trigger Functions at Startup
	Force Command
	Current (Amps)

	COMMANDS
	Set the Duty Cycle.
	Duty Cycle
	Set Duty Cycle

	PWM: Shell Script
	OPTIONS
	CHANNEL OPTIONS
	Bash Command
	User
	Startup State
	Startup Value
	Shutdown State
	Shutdown Value
	Invert Signal
	Invert Stored Signal
	Trigger Functions at Startup
	Force Command
	Current (Amps)

	Peristaltic Pump: Atlas Scientific
	OPTIONS
	I2C Address
	I2C Bus
	FTDI Device
	UART Device

	CHANNEL OPTIONS
	Flow Rate Method
	Desired Flow Rate (ml/min)
	Current (Amps)

	COMMANDS
	Calibration: a calibration can be performed to increase the accuracy of the pump. It's a good idea to clear the calibration before calibrating. First, remove all air from the line by pumping the fluid you would like to calibrate to through the pump hose. Next, press Dispense Amount and the pump will be instructed to dispense 10 ml (unless you changed the default value). Measure how much fluid was actually dispensed, enter this value in the Actual Volume Dispensed (ml) field, and press Calibrate to Dispensed Amount. Now any further pump volumes dispensed should be accurate.
	Clear Calibration
	Volume to Dispense (ml)
	Dispense Amount
	Actual Volume Dispensed (ml)
	Calibrate to Dispensed Amount
	The I2C address can be changed. Enter a new address in the 0xYY format (e.g. 0x22, 0x50), then press Set I2C Address. Remember to deactivate and change the I2C address option after setting the new address.
	New I2C Address
	Set I2C Address

	Peristaltic Pump: GPIO
	OPTIONS
	CHANNEL OPTIONS
	GPIO Pin (BCM)
	On State
	Fastest Rate (ml/min)
	Minimum On (sec/min)
	Flow Rate Method
	Desired Flow Rate (ml/min)
	Current (Amps)

	Peristaltic Pump: MCP23017 16-Channel I/O Expander
	OPTIONS
	I2C Address
	I2C Bus

	CHANNEL OPTIONS
	On State
	Fastest Rate (ml/min)
	Minimum On (sec/min)
	Flow Rate Method
	Desired Flow Rate (ml/min)
	Current (Amps)

	Peristaltic Pump: PCF8574 8-Channel I/O Expander
	OPTIONS
	I2C Address
	I2C Bus

	CHANNEL OPTIONS
	On State
	Fastest Rate (ml/min)
	Minimum On (sec/min)
	Flow Rate Method
	Desired Flow Rate (ml/min)
	Current (Amps)

	Spacer
	OPTIONS
	Color

	5.4 Supported Functions
	5.4.1 Built-In Functions
	Average (Last, Multiple)
	OPTIONS
	Period (seconds)
	Start Offset
	Max Age
	Measurement

	Average (Past, Single)
	OPTIONS
	Period (seconds)
	Start Offset
	Measurement
	Max Age

	Backup to Remote Host (rsync)
	OPTIONS
	Period (seconds)
	Start Offset
	Local User
	Remote User
	Remote Host
	Remote Backup Path
	Rsync Timeout
	Backup Settings Export File
	Remove Local Settings Backups
	Backup Measurements
	Remove Local Measurements Backups
	Backup Camera Directories
	Remove Local Camera Images
	SSH Port

	COMMANDS
	Backup of settings are only created if the Mycodo version or database versions change. This is due to this Function running periodically- if it created a new backup every Period, there would soon be many identical backups. Therefore, if you want to induce the backup of settings, measurements, or camera directories and sync them to your remote system, use the buttons below.
	Backup Settings Now
	Backup Measurements Now
	Backup Camera Directories Now

	Bang-Bang Hysteretic (On/Off) (Raise/Lower)
	OPTIONS
	Measurement
	Output
	Setpoint
	Hysteresis
	Direction
	Period (seconds)

	Bang-Bang Hysteretic (On/Off) (Raise/Lower/Both)
	OPTIONS
	Measurement
	Output (Raise)
	Output (Lower)
	Setpoint
	Hysteresis
	Direction
	Period (seconds)

	Bang-Bang Hysteretic (PWM) (Raise/Lower/Both)
	OPTIONS
	Measurement
	Output
	Setpoint
	Hysteresis
	Direction
	Period (seconds)
	Duty Cycle (increase)
	Duty Cycle (maintain)
	Duty Cycle (decrease)
	Duty Cycle (shutdown)

	Difference
	OPTIONS
	Period (seconds)
	Measurement A
	Measurement A Max Age
	Measurement B
	Measurement B Max Age
	Reverse Order
	Absolute Difference

	Display: Generic LCD 16x2 (I2C)
	OPTIONS
	Period (seconds)
	I2C Address
	I2C Bus
	Number of Line Sets

	CHANNEL OPTIONS
	Line Display Type
	Measurement
	Measurement Max Age
	Measurement Label
	Measurement Decimal
	Text
	Display Unit

	COMMANDS
	Backlight On
	Backlight Off
	Backlight Flashing On
	Backlight Flashing Off

	Display: Generic LCD 20x4 (I2C)
	OPTIONS
	Period (seconds)
	I2C Address
	I2C Bus
	Number of Line Sets

	CHANNEL OPTIONS
	Line Display Type
	Measurement
	Max Age
	Measurement Label
	Measurement Decimal
	Text
	Display Unit

	COMMANDS
	Backlight On
	Backlight Off

	Display: Grove LCD 16x2 (I2C)
	OPTIONS
	Period (seconds)
	I2C Address
	I2C Bus
	Backlight I2C Address
	Number of Line Sets
	Backlight Red (0 - 255)
	Backlight Green (0 - 255)
	Backlight Blue (0 - 255)

	CHANNEL OPTIONS
	Line Display Type
	Measurement
	Max Age
	Measurement Label
	Measurement Decimal
	Text
	Display Unit

	COMMANDS
	Backlight On
	Backlight Off
	Color (RGB)
	Set Backlight Color

	Display: SSD1306 OLED 128x32 [2 Lines] (I2C)
	OPTIONS
	Period (seconds)
	I2C Address
	I2C Bus
	Number of Line Sets
	Reset Pin
	Characters Per Line
	Use Non-Default Font
	Non-Default Font Path
	Font Size (pt)

	CHANNEL OPTIONS
	Line Display Type
	Measurement
	Max Age
	Measurement Label
	Measurement Decimal
	Text
	Display Unit

	Display: SSD1306 OLED 128x32 [2 Lines] (SPI)
	OPTIONS
	Period (seconds)
	Number of Line Sets
	SPI Device
	SPI Bus
	DC Pin
	Reset Pin
	CS Pin
	Characters Per Line
	Use Non-Default Font
	Non-Default Font Path
	Font Size (pt)

	CHANNEL OPTIONS
	Line Display Type
	Measurement
	Max Age
	Measurement Label
	Measurement Decimal
	Text
	Display Unit

	Display: SSD1306 OLED 128x32 [4 Lines] (I2C)
	OPTIONS
	Period (seconds)
	I2C Address
	I2C Bus
	Number of Line Sets
	Reset Pin
	Characters Per Line
	Use Non-Default Font
	Non-Default Font Path
	Font Size (pt)

	CHANNEL OPTIONS
	Line Display Type
	Measurement
	Max Age
	Measurement Label
	Measurement Decimal
	Text
	Display Unit

	Display: SSD1306 OLED 128x32 [4 Lines] (SPI)
	OPTIONS
	Period (seconds)
	Number of Line Sets
	SPI Device
	SPI Bus
	DC Pin
	Reset Pin
	CS Pin
	Characters Per Line
	Use Non-Default Font
	Non-Default Font Path
	Font Size (pt)
	Display Unit

	CHANNEL OPTIONS
	Line Display Type
	Measurement
	Max Age
	Measurement Label
	Measurement Decimal
	Text
	Display Unit

	Display: SSD1306 OLED 128x64 [4 Lines] (I2C)
	OPTIONS
	Period (seconds)
	I2C Address
	I2C Bus
	Number of Line Sets
	Reset Pin
	Characters Per Line
	Use Non-Default Font
	Non-Default Font Path
	Font Size (pt)

	CHANNEL OPTIONS
	Line Display Type
	Measurement
	Max Age
	Measurement Label
	Measurement Decimal
	Text
	Display Unit

	Display: SSD1306 OLED 128x64 [4 Lines] (SPI)
	OPTIONS
	Period (seconds)
	Number of Line Sets
	SPI Device
	SPI Bus
	DC Pin
	Reset Pin
	CS Pin
	Characters Per Line
	Use Non-Default Font
	Non-Default Font Path
	Font Size (pt)

	CHANNEL OPTIONS
	Line Display Type
	Measurement
	Max Age
	Measurement Label
	Measurement Decimal
	Text
	Display Unit

	Display: SSD1306 OLED 128x64 [8 Lines] (I2C)
	OPTIONS
	Period (seconds)
	I2C Address
	I2C Bus
	Number of Line Sets
	Reset Pin
	Characters Per Line
	Use Non-Default Font
	Non-Default Font Path
	Font Size (pt)

	CHANNEL OPTIONS
	Line Display Type
	Measurement
	Max Age
	Measurement Label
	Measurement Decimal
	Text
	Display Unit

	Display: SSD1306 OLED 128x64 [8 Lines] (SPI)
	OPTIONS
	Period (seconds)
	Number of Line Sets
	SPI Device
	SPI Bus
	DC Pin
	Reset Pin
	CS Pin
	Characters Per Line
	Use Non-Default Font
	Non-Default Font Path
	Font Size (pt)

	CHANNEL OPTIONS
	Line Display Type
	Measurement
	Max Age
	Measurement Label
	Measurement Decimal
	Text
	Display Unit

	Display: SSD1309 OLED 128x64 [8 Lines] (I2C)
	OPTIONS
	Period (seconds)
	I2C Address
	I2C Bus
	Number of Line Sets
	Reset Pin

	CHANNEL OPTIONS
	Line Display Type
	Measurement
	Max Age
	Measurement Label
	Measurement Decimal
	Text
	Display Unit

	Equation (Multi-Measure)
	OPTIONS
	Period (seconds)
	Measurement A
	Measurement A Max Age
	Measurement B
	Measurement B Max Age
	Equation

	Equation (Single-Measure)
	OPTIONS
	Period (seconds)
	Measurement
	Max Age
	Equation

	Humidity (Wet/Dry-Bulb)
	OPTIONS
	Measurements Enabled
	Period (seconds)
	Start Offset
	Dry Bulb Temperature
	Dry Bulb Max Age
	Wet Bulb Temperature
	Wet Bulb Max Age
	Pressure
	Pressure Max Age

	PID Autotune
	OPTIONS
	Measurement
	Output
	Period
	Setpoint
	Noise Band
	Outstep
	Currently, only autotuning to raise a condition (measurement) is supported.
	Direction

	Redundancy
	OPTIONS
	Period (seconds)
	Measurement A
	Measurement A Max Age
	Measurement B
	Measurement B Max Age
	Measurement C
	Measurement C Max Age

	Spacer
	OPTIONS
	Color

	Statistics (Last, Multiple)
	OPTIONS
	Measurements Enabled
	Period (seconds)
	Max Age
	Measurement
	Halt on Missing Measurement

	Statistics (Past, Single)
	OPTIONS
	Measurements Enabled
	Period (seconds)
	Max Age
	Measurement

	Sum (Last, Multiple)
	OPTIONS
	Period (seconds)
	Start Offset
	Max Age
	Measurement

	Sum (Past, Single)
	OPTIONS
	Period (seconds)
	Start Offset
	Measurement
	Max Age

	Vapor Pressure Deficit
	OPTIONS
	Period (seconds)
	Start Offset
	Temperature
	Temperature Max Age
	Humidity
	Humidity Max Age

	Verification
	OPTIONS
	Period (seconds)
	Measurement A
	Measurement A Max Age
	Measurement B
	Measurement A Max Age
	Maximum Difference

	5.5 Supported Actions
	5.5.1 Built-In Actions (System)
	Actions: Pause
	OPTIONS
	Duration (seconds)

	Camera: Capture Photo
	OPTIONS
	Camera

	Camera: Time-lapse: Pause
	OPTIONS
	Camera

	Camera: Time-lapse: Resume
	OPTIONS
	Camera

	Controller: Activate
	OPTIONS
	Controller

	Controller: Deactivate
	OPTIONS
	Controller

	Create: Note
	OPTIONS
	Tags
	Name
	Note

	Execute Command: Shell
	OPTIONS
	User
	Command

	Flow Meter: Clear Total Volume
	OPTIONS
	Controller

	Input: Force Measurements
	OPTIONS
	Input

	MQTT: Publish
	OPTIONS
	Hostname
	Port
	Topic
	Payload
	Keep Alive
	Client ID
	Use Login
	Username
	Password

	MQTT: Publish: Measurement
	OPTIONS
	Measurement
	Hostname
	Port
	Topic
	Keep Alive
	Client ID
	Use Login
	Username
	Password

	Output: Duty Cycle
	OPTIONS
	Output
	Duty Cycle

	Output: On/Off/Duration
	OPTIONS
	Output
	State
	Duration (seconds)

	Output: Ramp Duty Cycle
	OPTIONS
	Output
	Duty Cycle: Start
	Duty Cycle: End
	Increment (Duty Cycle)
	Duration (seconds)

	Output: Value
	OPTIONS
	Output
	Value

	Output: Volume
	OPTIONS
	Output
	Volume

	PID: Lower: Setpoint
	OPTIONS
	Controller
	Lower Setpoint

	PID: Pause
	OPTIONS
	Controller

	PID: Raise: Setpoint
	OPTIONS
	Controller
	Raise Setpoint

	PID: Resume
	OPTIONS
	Controller

	PID: Set Method
	OPTIONS
	Controller
	Method

	PID: Set: Setpoint
	OPTIONS
	Controller
	Setpoint

	Send Email
	OPTIONS
	E-Mail Address

	Send Email with Photo
	OPTIONS
	Camera
	E-Mail Address

	System: Restart
	System: Shutdown
	Webhook
	OPTIONS
	Webhook Request

	5.5.2 Built-In Actions (Devices)
	Display: Backlight: Color
	OPTIONS
	Display
	Color (RGB)

	Display: Backlight: Off
	OPTIONS
	Display

	Display: Backlight: On
	OPTIONS
	Display

	Display: Flashing: Off
	OPTIONS
	Display

	Display: Flashing: On
	OPTIONS
	Display

	5.6 Supported Widgets
	5.6.1 Built-In Widgets
	Camera
	Function Status
	Gauge (Angular) [Highcharts]
	Gauge (Solid) [Highcharts]
	Graph (Synchronous) [Highstock]
	Indicator
	Measurement
	Output (PWM Slider)
	Output Control (Channel)
	PID Controller
	Python Code
	Spacer

	5.7 I2C Multiplexers
	5.8 Analog-To-Digital Converters
	5.9 Interfaces
	5.9.1 I2C Information
	5.9.2 1-Wire Information
	5.9.3 UART Information

	5.10 Dependencies
	5.11 Device Notes
	5.11.1 Edge Detection
	5.11.2 Displays
	5.11.3 Raspberry Pi
	5.11.4 AM2315
	5.11.5 K-30
	5.11.6 USB Device Persistence Across Reboots
	5.11.7 Diagrams
	DHT11 Diagrams
	DS18B20 Diagrams
	Raspberry Pi and Relay Diagrams
	RASPBERRY PI, 4 RELAYS, 4 OUTLETS, 1 DS18B20 SENSOR
	RASPBERRY PI, 8 RELAYS, 8 OUTLETS

	6. System
	6.1 System Information
	6.2 System Configuration
	6.2.1 General Settings
	6.2.2 Energy Usage Settings
	6.2.3 Input Settings
	6.2.4 Output Settings
	6.2.5 Function Settings
	6.2.6 Action Settings
	6.2.7 Widget Settings
	6.2.8 Measurement Settings
	6.2.9 Users
	Roles

	6.2.10 Pi Settings
	6.2.11 Alert Settings
	6.2.12 Camera Settings
	6.2.13 Diagnostic Settings

	6.3 Upgrade/Backup/Restore
	6.3.1 Upgrading
	6.3.2 Backup-Restore

	6.4 Export/Import
	6.5 Error Codes
	6.5.1 Error Codes
	Error 100
	Error 101

	6.6 Mycodo Client
	6.7 API
	6.7.1 REST API
	Authentication
	Bash Examples
	Python Example (GET)
	Python Example (POST)
	Errors
	Endpoints

	6.7.2 Daemon Control Object
	DaemonControl()
	controller_activate()
	controller_deactivate()
	get_condition_measurement()
	get_condition_measurement_dict()
	input_force_measurements()
	lcd_backlight()
	lcd_flash()
	lcd_reset()
	output_off()
	output_on()
	output_on_off()
	output_sec_currently_on()
	output_setup()
	output_state()
	pid_get()
	pid_hold()
	pid_mod()
	pid_pause()
	pid_resume()
	pid_set()
	refresh_daemon_camera_settings()
	refresh_daemon_conditional_settings()
	refresh_daemon_misc_settings()
	refresh_daemon_trigger_settings()
	send_email()
	terminate_daemon()
	trigger_action()
	trigger_all_actions()

	7. Troubleshooting
	7.1 Daemon Not Running
	7.2 Incorrect Database Version
	7.3 More

	8. Translations

