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Abstract—Increasingly large document collections require
improved information processing methods for searching,
retrieving, and organizing text. Central to these information
processing methods is document classification, which has become
an important application for supervised learning. Recently the
performance of traditional supervised classifiers has degraded as
the number of documents has increased. This is because along
with growth in the number of documents has come an increase
in the number of categories. This paper approaches this problem
differently from current document classification methods that
view the problem as multi-class classification. Instead we
perform hierarchical classification using an approach we call
Hierarchical Deep Learning for Text classification (HDLTex).
HDLTex employs stacks of deep learning architectures to
provide specialized understanding at each level of the document
hierarchy.

Index Terms—Text Mining; Document Classification; Deep
Neural Networks; Hierarchical Learning; Deep Learning

I. INTRODUCTION

Each year scientific researchers produce a massive number

of documents. In 2014 the 28,100 active, scholarly, peer-

reviewed, English-language journals published about 2.5 mil-

lion articles, and there is evidence that the rate of growth in

both new journals and publications is accelerating [1]. The

volume of these documents has made automatic organization

and classification an essential element for the advancement

of basic and applied research. Much of the recent work

on automatic document classification has involved supervised

learning techniques such as classification trees, naı̈ve Bayes,

support vector machines (SVM), neural nets, and ensemble

methods. Classification trees and naı̈ve Bayes approaches

provide good interpretability but tend to be less accurate than

the other methods.

However, automatic classification has become increasingly

challenging over the last several years due to growth in

corpus sizes and the number of fields and sub-fields. Areas

of research that were little known only five years ago have

now become areas of high growth and interest. This growth in

sub-fields has occurred across a range of disciplines including

biology (e.g., CRISPR-CA9), material science (e.g., chemical

programming), and health sciences (e.g., precision medicine).

This growth in sub-fields means that it is important to not just

label a document by specialized area but to also organize it

within its overall field and the accompanying sub-field. This

is hierarchical classification.

Although many existing approaches to document classifica-

tion can quickly identify the overall area of a document, few

of them can rapidly organize documents into the correct sub-

fields or areas of specialization. Further, the combination of

top-level fields and all sub-fields presents current document

classification approaches with a combinatorially increasing

number of class labels that they cannot handle. This paper

presents a new approach to hierarchical document classi-

fication that we call Hierarchical Deep Learning for Text

classification (HDLTex).1 HDLTex combines deep learning

architectures to allow both overall and specialized learning

by level of the document hierarchy. This paper reports our

experiments with HDLTex, which exhibits improved accuracy

over traditional document classification methods.

II. RELATED WORK

Document classification is necessary to organize documents

for retrieval, analysis, curation, and annotation. Researchers

have studied and developed a variety of methods for document

classification. Work in the information retrieval community

has focused on search engine fundamentals such as indexing

and dictionaries that are considered core technologies in this

field [2]. Considerable work has built on these foundational

methods to provide improvements through feedback and query

reformulation [3], [4].

More recent work has employed methods from data mining

and machine learning. Among the most accurate of these

techniques is the support vector machine (SVM) [5]–[7].

SVMs use kernel functions to find separating hyperplanes in

high-dimensional spaces. Other kernel methods used for in-

formation retrieval include string kernels such as the spectrum

kernel [8] and the mismatch kernel [9], which are widely used

with DNA and RNA sequence data.

SVM and related methods are difficult to interpret. For

this reason many information retrieval systems use decision

trees [3] and naı̈ve Bayes [10], [11] methods. These methods

are easier to understand and, as such, can support query

1HDLTex is shared as an open source tool at https://github.com/kk7nc/
HDLTex
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reformulation, but they lack accuracy. Some recent work has

investigated topic modeling to provide similar interpretations

as naı̈ve Bayes methods but with improved accuracy [12].

This paper uses newer methods of machine learning for doc-

ument classification taken from deep learning. Deep learning

is an efficient version of neural networks [13] that can perform

unsupervised, supervised, and semi-supervised learning [14].

Deep learning has been extensively used for image processing,

but many recent studies have applied deep learning in other

domains such as text and data mining. The basic architecture

in a neural network is a fully connected network of nonlinear

processing nodes organized as layers. The first layer is the in-

put layer, the final layer is the output layer, and all other layers

are hidden. In this paper, we will refer to these fully connected

networks as Deep Neural Networks (DNN). Convolutional

Neural Networks (CNNs) are modeled after the architecture

of the visual cortex where neurons are not fully connected

but are spatially distinct [15]. CNNs provide excellent results

in generalizing the classification of objects in images [16].

More recent work has used CNNs for text mining [17]. In

research closely related to the work in this paper, Zhang et

al. [18] used CNNs for text classification with character-level

features provided by a fully connected DNN. Regardless of

the application, CNNs require large training sets. Another

fundamental deep learning architecture used in this paper is the

Recurrent Neural Network (RNN). RNNs connect the output

of a layer back to its input. This architecture is particularly

important for learning time-dependent structures to include

words or characters in text [19]. Deep learning for hierarchical

classification is not new with this paper, although the specific

architectures, the comparative analyses, and the application

to document classification are new. Salakhutdinov [20], [21]

used deep learning to hierarchically categorize images. At the

top level the images are labeled as animals or vehicles. The

next level then classifies the kind of animal or vehicle. This

paper describes the use of deep learning approaches to create

a hierarchical document classification approach. These deep

learning methods have the promise of providing greater accu-

racy than SVM and related methods. Deep learning methods

also provide flexible architectures that we have used to produce

hierarchical classifications. The hierarchical classification our

methods produce is not only highly accurate but also enables

greater understanding of the resulting classification by showing

where the document sits within a field or area of study.

III. BASELINE TECHNIQUES

This paper compares fifteen methods for performing doc-

ument classification. Six of these methods are baselines

since they are used for traditional, non-hierarchical document

classification. Of the six baseline methods three are widely

used for document classification: term-weighted support vector

machines [22], multi-word support vector machines [23],

and naı̈ve Bayes classification (NBC). The other three are

newer deep learning methods that form the basis for our

implementation of a new approach for hierarchical document

classification. These deep learning methods are described in

Section V.

A. Support Vector Machines (SVMs)

Vapnik and Chervonenkis introduced the SVM in 1963 [24],

[25], and in 1992 Boser et al. introduced a nonlinear version

to address more complex classification problems [26]. The key

idea of the nonlinear SVM is the generating kernel shown in

Equation 1, followed by Equations 2 and 3:

K(x, x′) =< φ(x), φ(x′) > (1)

f(x) =
∑

xi∈training

αiK(x, xi) + b (2)

max
α1,...,αn

n∑
i=1

αi − 1

2

n∑
j=1

n∑
k=1

αjαkyjykK(xj , xk)

∀αi ≥ 0i ∈ 1, .., n.

(3)

Multi-Class SVM: Text classification using string ker-

nels within SVMs has been successful in many research

projects [27]. The original SVM solves a binary classification

problem; however, since document classification often involves

several classes, the binary SVM requires an extension. In

general, the multi-class SVM (MSVM) solves the following

optimization:

min
w1,w2,..,wk,ζ

1

2

∑
k

wT
k wk + C

∑
(xi,yi)∈D

ζi (4)

st. wT
yi
x− wT

k x ≤ i− ζi,

∀(xi, yi) ∈ D, k ∈ {1, 2, ...,K}, k �= yi
(5)

where k indicates number of classes, ζi are slack variables, and

w is the learning parameter. To solve the MSVM we construct

a decision function of all k classes at once [22], [28]. One

approach to MSVM is to use binary SVM to compare each

of the k(k − 1) pairwise classification labels, where k is the

number of labels or classes. Yet another technique for MSVM

is one-versus-all, where the two classes are one of the k labels

versus all of the other k − 1 labels.

Stacking Support Vector Machines (SVM): We use Stacking

SVMs as another baseline method for comparison with HDL-

Tex. The stacking SVM provides an ensemble of individual

SVM classifiers and generally produces more accurate results

than single-SVM models [29], [30].

B. Naı̈ve Bayes classification

Naı̈ve Bayes is a simple supervised learning technique

often used for information retrieval due to its speed and

interpretability [2], [31]. Suppose the number of documents

is n and each document has the label c, c ∈ {c1, c2, ..., ck},
where k is the number of labels. Naı̈ve Bayes calculates

P (c | d) = P (d | c)P (c)

P (d)
(6)
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Fig. 1: HDLTex: Hierarchical Deep Learning for Text Classification. This is our Deep Neural Network (DNN) approach for

text classification. The left figure depicts the parent-level of our model, and the right figure depicts child-level models defined

by Ψi as input documents in the parent level.

where d is the document, resulting in

CMAP = argmax
c∈C

P (d | c)P (c)

= argmax
c∈C

P (x1, x2, ..., xn | c)P (c).
(7)

The naı̈ve Bayes document classifier used for this study uses

word-level classification [11]. Let θ̂j be the parameter for word

j, then

P (cj | di; θ̂) = P (cj | θ̂)P (di | cj ; θ̂j)
P (di | θ̂)

. (8)

IV. FEATURE EXTRACTION

Documents enter our hierarchical models via features ex-

tracted from the text. We employed different feature extraction

approaches for the deep learning architectures we built. For

CNN and RNN, we used the text vector-space models using

100 dimensions as described in Glove [32]. A vector-space

model is a mathematical mapping of the word space, defined

as

dj = (w1,j , w2,j , ..., wi,j ..., wlj ,j) (9)

where lj is the length of the document j, and wi,j is the Glove

word embedding vectorization of word i in document j.

For DNN, we used count-based and term frequency–inverse

document frequency (tf-idf) for feature extraction. This ap-

proach uses counts for N -grams, which are sequences of N
words [33], [34]. For example, the text “In this paper we

introduced this technique” is composed of the following N-

grams:

• Feature count (1): { (In, 1) , (this, 2), (paper, 1), (we, 1),

(introduced, 1), (technique, 1) }
• Feature count (2): { (In, 1) , (this, 2), (paper, 1), (we, 1),

(introduced, 1), (technique, 1), (In this, 1), (This paper, 1),

(paper we, 1),...}

Where the counts are indexed by the maximum N -grams. So

Feature count (2) includes both 1-grams and 2-grams. The

resulting DNN feature space is

fj,n =[x(j,0), ..., x(j,k−1), xj,{0,1}, ...,
xj,{k−2,k−1}, ..., xj,{k−n,...,k−1}]

(10)

where f is the feature space of document j for n-grams of

size n, n ∈ {0, 1, ..., N}, and x is determined by word or n-

gram counts. Our algorithm is able to use N-grams for features

within deep learning models [35].

V. DEEP LEARNING NEURAL NETWORKS

The methods used in this paper extend the concepts of

deep learning neural networks to the hierarchical document

classification problem. Deep learning neural networks provide

efficient computational models using combinations of non-

linear processing elements organized in layers. This organi-

zation of simple elements allows the total network to gen-

eralize (i.e., predict correctly on new data) [36]. In the re-

search described here, we used several different deep learning

techniques and combinations of these techniques to create

hierarchical document classifiers. The following subsections

provide an overview of the three deep learning architectures

we used: Deep Neural Networks (DNN), Recurrent Neural

Networks(RNN), and Convolutional Neural Networks (CNN).

A. Deep Neural Networks (DNN)

In the DNN architecture each layer only receives input from

the previous layer and outputs to the next layer. The layers are

fully connected. The input layer consists of the text features

(see IV) and the output layer has a node for each classification

label or only one node if it is a binary classification. This

architecture is the baseline DNN. Additional details on this

architecture can be found in [37].
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Fig. 2: HDLTex: Hierarchical Deep Learning for Text Classification. This is our structure of recurrent neural networks (RNN)

for text classification. The left figure is the parent level of our text leaning model. The right figure depicts child-level learning

models defined by Ψi as input documents in the parent levels.

This paper extends this baseline architecture to allow hier-

archical classification. Figure 1 shows this new architecture.

The DNN for the first level of classification (on the left side in

Figure 1) is the same as the baseline DNN. The second level

classification in the hierarchy consists of a DNN trained for the

domain output in the first hierarchical level. Each second level

in the DNN is connected to the output of the first level. For

example, if the output of the first model is labeled computer
science then the DNN in the next hierarchical level (e.g., Ψ1 in

Figure 1) is trained only with all computer science documents.

So while the first hierarchical level DNN is trained with all

documents, each DNN in the next level of the document

hierarchy is trained only with the documents for the specified

domain.

The DNNs in this study are trained with the standard back-

propagation algorithm using both sigmoid (Equation 11) and

ReLU (Equation 12) as activation functions. The output layer

uses softmax (Equation 13).

f(x) =
1

1 + e−x
∈ (0, 1), (11)

f(x) =max(0, x), (12)

σ(z)j =
ezj∑K
k=1 e

zk
, (13)

∀ j ∈ {1, . . . ,K}

Given a set of example pairs (x, y), x ∈ X, y ∈ Y the goal is

to learn from the input and target spaces using hidden layers.

In text classification, the input is generated by vectorization

of text (see Section IV).

B. Recurrent Neural Networks (RNN)

The second deep learning neural network architecture we

use is RNN. In RNN the output from a layer of nodes can

reenter as input to that layer. This approach has advantages for

text processing [38]. The general RNN formulation is given

in Equation 14 where xt is the state at time t and ut refers

to the input at step t.

xt = F (xt−1,ut, θ) (14)

We use weights to reformulate Equation 14 as shown in

Equation 15 below:

xt = Wrecσ(xt−1) +Winut + b. (15)

In Equation 15, Wrec is the recurrent matrix weight, Win

are the input weights, b is the bias, and σ is an element-wise

function. Again we have modified the basic architecture for

use in hierarchical classification. Figure 2 shows this extended

RNN architecture.

Several problems (e.g., vanishing and exploding gradients)

arise in RNNs when the error of the gradient descent algorithm

is back-propagated through the network [39]. To deal with

these problems, long short-term memory (LSTM) is a special

type of RNN that preserves long-term dependencies in a

more effective way compared with the basic RNN. This
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is particularly effective at mitigating the vanishing gradient

problem [40].
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Fig. 3: The top sub-figure is a cell of GRU, and the bottom

Figure is a cell of LSTM.

Figure 3 shows the basic cell of an LSTM model. Although

LSTM has a chain-like structure similar to RNN, LSTM uses

multiple gates to regulate the amount of information allowed

into each node state. A step-by-step explanation the LSTM

cell and its gates is provided below:

1) Input Gate:

it = σ(Wi[xt, ht−1] + bi), (16)

2) Candid Memory Cell Value:

C̃t = tanh(Wc[xt, ht−1] + bc), (17)

3) Forget Gate Activation:

ft = σ(Wf [xt, ht−1] + bf ), (18)

4) New Memory Cell Value:

Ct = it ∗ C̃t + ftCt−1, (19)

5) Output Gate Values:

ot =σ(Wo[xt, ht−1] + bo),

ht =ot tanh(Ct),
(20)

In the above description, b is a bias vector, W is a weight

matrix, and xt is the input to the memory cell at time t.
The i, c, f and o indices refer to input, cell memory, forget

and output gates, respectively. Figure 3 shows the structure of

these gates with a graphical representation.

An RNN can be biased when later words are more influen-

tial than the earlier ones. To overcome this bias convolutional

neural network (CNN) models (discussed in Section V-C) in-

clude a max-pooling layer to determine discriminative phrases

in text [41]. A gated recurrent unit (GRU) is a gating mech-

anism for RNNs that was introduced in 2014 [42]. GRU is

a simplified variant of the LSTM architecture, but there are

differences as follows: GRUs contain two gates, they do not

possess internal memory (the Ct−1 in Figure 3), and a second

non-linearity is not applied (tanh in Figure 3).

C. Convolutional Neural Networks (CNN)

The final deep learning approach we developed for hierar-

chical document classification is the convolutional neural net-

work (CNN). Although originally built for image processing,

as discussed in Section II, CNNs have also been effectively

used for text classification [15]. The basic convolutional layer

in a CNN connects to a small subset of the inputs usually of

size 3 × 3. Similarly the next convolutional layer connects

to only a subset of its preceding layer. In this way these

convolution layers, called feature maps, can be stacked to

provide multiple filters on the input. To reduce computational

complexity, CNNs use pooling to reduce the size of the output

from one stack of layers to the next in the network. Different

pooling techniques are used to reduce outputs while preserving

important features [43]. The most common pooling method

is max-pooling where the maximum element is selected in

the pooling window. In order to feed the pooled output from

stacked featured maps to the next layer, the maps are flattened

into one column. The final layers in a CNN are typically fully

connected. In general during the back-propagation step of a

CNN not only the weights are adjusted but also the feature

detector filters. A potential problem of CNNs used for text

is the number of channels or size of the feature space. This

might be very large (e.g., 50K words) for text, but for images

this is less of a problem (e.g., only 3 channels of RGB) [14].

D. Hierarchical Deep Learning

The primary contribution of this research is hierarchical

classification of documents. A traditional multi-class classi-

fication technique can work well for a limited number classes,

but performance drops with increasing number of classes,

as is present in hierarchically organized documents. In our

hierarchical deep learning model we solve this problem by

creating architectures that specialize deep learning approaches

for their level of the document hierarchy (e.g., see Figure 1).

The structure of our Hierarchical Deep Learning for Text

(HDLTex) architecture for each deep learning model is as

follows:

DNN: 8 hidden layers with 1024 cells in each hidden layer.

RNN: GRU and LSTM are used in this implementation, 100
cells with GRU with two hidden layers.

CNN: Filter sizes of {3, 4, 5, 6, 7} and max-pool of 5, layer

sizes of {128, 128, 128} with max pooling of {5, 5, 35},
the CNN contains 8 hidden layers.

All models used the following parameters: Batch Size = 128,

learning parameters = 0.001, β1=0.9, β2=0.999, ε = 1e08,
decay = 0.0, Dropout=0.5 (DNN) and Dropout=0.25 (CNN
and RNN).
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E. Evaluation

We used the following cost function for the deep learning

models:

Acc(X) =
∑
�

[
Acc(XΨ�

)

k� − 1

∑
Ψ∈{Ψ1,..Ψk}

Acc(XΨi).nΨk

] (21)

where 	 is the number of levels, k indicates number of classes

for each level, and Ψ refers to the number of classes in the

child’s level of the hierarchical model.

F. Optimization

We used two types of stochastic gradient optimization for

the deep learning models in this paper: RMSProp and Adam.

These are described below.

RMSProp Optimizer: The basic stochastic gradient de-

scent (SGD) is shown below:

θ ← θ − α∇θJ(θ, xi, yi) (22)

θ ← θ − (
γθ + α∇θJ(θ, xi, yi)

)
(23)

For these equations, θ is the learning parameter, α is the

learning rate, and J(θ, xi, yi) is the objective or cost func-

tion. The history of updates is defined by γ ∈ (0, 1). To

update parameters, SGD uses a momentum term on a rescaled

gradient, which is shown in Equation (23). This approach to

the optimization does not perform bias correction, which is a

problem for a sparse gradient.

Adam Optimizer: Adam is another stochastic gradient opti-

mizer, which averages over only the first two moments of the

gradient, v and m, as shown below:

θ ←θ − α√
v̂ + ε

m̂ (24)

where

gi,t = ∇θJ(θi, xi, yi) (25)

mt = β1mt−1 + (1− β1)gi,t (26)

mt = β2vt−1 + (1− β2)g
2
i,t (27)

In these equations, mt and vt are the first and second moments,

respectively. Both are estimated as m̂t =
mt

1−βt
1

and v̂t =
vt

1−βt
2

.

This approach can handle the non-stationarity of the objective

function as can RMSProp, but Adam can also overcome the

sparse gradient issue that is a drawback in RMSProp [44].

VI. RESULTS

A. Data

Our document collection had 134 labels as shown in Ta-

ble I.2 The target value has two levels, k0 ∈ {1, .., 7}
which are k0 ∈ { Computer Science, Electrical Engineering,

Psychology, Mechanical Engineering, Civil Engineering, Med-

ical Science, biochemistry} and children levels of the labels,

2WOS dataset is shared at http://archive.ics.uci.edu/index.php

k�, which contain {17, 16, 19, 9, 11, 53, 9} specific topics be-

longing to k0, respectively. To train and test the baseline

methods described in Section III and the new hierarchical

document classification methods described in Section V, we

collected data and meta-data on 46, 985 published papers

available from the Web Of Science [45], [46]. To automate

collection we used Selenium [47] with ChoromeDriver [48]

for the Chrome web browser. To extract the data from the

site we used Beautiful Soup [49]. We specifically extracted

the abstract, domain, and keywords of this set of published

papers. The text in the abstract is the input for classification

while the domain name provides the label for the top level

of the hierarchy. The keywords provide the descriptors for

the next level in the classification hierarchy. Table I shows

statistics for this collection. For example, Medical Sciences

is one of the top-level domain classifications and there are 53

sub-classifications within this domain. There are also over 14k

articles or documents within the domain of health sciences in

this data set.

TABLE I: Details of the document set used in this paper.

Domain
Number of
Document

Number of
Area

Biochemistry 5,687 9
Civil Engineering 4,237 11
Computer Science 6,514 17

Electrical Engineering 5,483 16
Medical Sciences 14,625 53

Mechanical Engineering 3,297 9
Psychology 7,142 19

Total 46,985 134

We divided the data set into three parts as shown in Table II.

Data set WOS − 46985 is the full data set with 46,985

documents, and data sets WOS−11967 and WOS−5736 are

subsets of this full data set with the number of training and

testing documents shown as well as the number of labels or

classes in each of the two levels. For dataset WOS − 11967,

each of the seven level-1 classes has five sub-classes. For data

set WOS − 5736, two of the three higher-level classes have

four sub-classes and the last high-level class has three sub-

classes. We removed all special characters from all three data

sets before training and testing.

TABLE II: Details of three data sets used in this paper.

Data Set Training Testing Level 1 Level 2
WOS-11967 8018 3949 7 35
WOS-46985 31479 15506 7 134
WOS-5736 4588 1148 3 11

B. Hardware and Implementation
The following results were obtained using a combi-

nation of central processing units (CPUs) and graphical

processing units (GPUs). The processing was done on a

Xeon E5 − 2640 (2.6GHz) with 32 cores and 64GB
memory, and the GPU cards were Nvidia Quadro K620
and Nvidia Tesla K20c. We implemented our approaches

in Python using the Compute Unified Device Architec-

ture (CUDA), which is a parallel computing platform and
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TABLE III: HDLTex and Baseline Accuracy of three WOS datasets

WOS-11967 WOS-46985 WOS-5736
Methods Accuracy Methods Accuracy Methods Accuracy

Baseline

DNN 80.02 DNN 66.95 DNN 86.15
CNN (Yang el. et. 2016) 83.29 CNN (Yang el. et. 2016) 70.46 CNN (Yang el. et. 20016) 88.68
RNN (Yang el. et. 2016) 83.96 RNN (Yang el. et. 2016) 72.12 RNN (Yang el. et. 2016) 89.46

NBC 68.8 NBC 46.2 NBC 78.14
SVM (Zhang el. et. 2008) 80.65 SVM (Zhang el. et. 2008) 67.56 SVM (Zhang el. et. 2008) 85.54
SVM (Chen el et. 2016) 83.16 SVM (Chen el et. 2016) 70.22 SVM (Chen el et. 2016) 88.24

Stacking SVM 79.45 Stacking SVM 71.81 Stacking SVM 85.68

HDLTex

DNN DNN
83.73

DNN DNN
70.10

DNN DNN
88.37

91.43 91.58 87.31 80.29 97.97 90.21
DNN CNN

83.32
DNN CNN

71.90
DNN CNN

90.47
91.43 91.12 87.31 82.35 97.97 92.34
DNN RNN

81.58
DNN RNN

73.92
DNN RNN

88.42
91.43 89.23 87.31 84.66 97.97 90.25
CNN DNN

85.65
CNN DNN

71.20
CNN DNN

88.83
93.52 91.58 88.67 80.29 98.47 90.21
CNN CNN

85.23
CNN CNN

73.02
CNN CNN 90.93

93.52 91.12 88.67 82.35 98.47 92.34
CNN RNN

83.45
CNN RNN

75.07
CNN RNN

88.87
93.52 89.23 88.67 84.66 98.47 90.25
RNN DNN 86.07 RNN DNN

72.62
RNN DNN

88.25
93.98 91.58 90.45 80.29 97.82 90.21
RNN CNN

85.63
RNN CNN

74.46
RNN CNN

90.33
93.98 91.12 90.45 82.35 97.82 92.34
RNN RNN

83.85
RNN RNN 76.58 RNN RNN

88.28
93.98 89.23 90.45 84.66 97.82 90.25

Application Programming Interface (API) model created by

Nvidia. We also used Keras and TensorFlow libraries for

creating the neural networks [50], [51].

C. Empirical Results

Table III shows the results from our experiments. The base-

line tests compare three conventional document classification

approaches (naı̈ve Bayes and two versions of SVM) and

stacking SVM with three deep learning approaches (DNN,

RNN, and CNN). In this set of tests the RNN outperforms the

others for all three WOS data sets. CNN performs second-

best for three data sets. SVM with term weighting [22] is third

for the first two sets while the multi-word approach of [23]

is in third place for the third data set. The third data set is

the smallest of the three and has the fewest labels so the

differences among the three best performers are not large.

These results show that overall performance improvement

for general document classification is obtainable with deep

learning approaches compared to traditional methods. Overall,

naı̈ve Bayes does much worse than the other methods through-

out these tests. As for the tests of classifying these documents

within a hierarchy, the HDLTex approaches with stacked, deep

learning architectures clearly provide superior performance.

For data set WOS − 11967, the best accuracy is obtained

by the combination RNN for the first level of classification

and DNN for the second level. This gives accuracies of 94%

for the first level, 92% for the second level and 86% overall.

This is significantly better than all of the others except for the

combination of CNN and DNN. For data set WOS − 46985
the best scores are again achieved by RNN for level one but

this time with RNN for level 2. The closest scores to this are

obtained by CNN and RNN in levels 1 and 2, respectively.

Finally the simpler data set WOS − 5736 has a winner in

CNN at level 1 and CNN at level 2, but there is little difference

between these scores and those obtained by two other HDLTex

architectures: DNN with CNN and RNN with CNN.

VII. CONCLUSIONS AND FUTURE WORK

Document classification is an important problem to ad-

dress, given the growing size of scientific literature and other

document sets. When documents are organized hierarchically,

multi-class approaches are difficult to apply using traditional

supervised learning methods. This paper introduces a new

approach to hierarchical document classification, HDLTex,

that combines multiple deep learning approaches to produce

hierarchical classifications. Testing on a data set of documents

obtained from the Web of Science shows that combinations of

RNN at the higher level and DNN or CNN at the lower level

produced accuracies consistently higher than those obtainable

by conventional approaches using naı̈ve Bayes or SVM. These

results show that deep learning methods can provide im-

provements for document classification and that they provide

flexibility to classify documents within a hierarchy. Hence,

they provide extensions over current methods for document

classification that only consider the multi-class problem.

The methods described here can improved in multiple ways.

Additional training and testing with other hierarchically struc-

tured document data sets will continue to identify architectures

that work best for these problems. Also, it is possible to extend

the hierarchy to more than two levels to capture more of the

complexity in the hierarchical classification. For example, if

keywords are treated as ordered then the hierarchy continues

down multiple levels. HDLTex can also be applied to unlabeled

documents, such as those found in news or other media outlets.
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Scoring here could be performed on small sets using human

judges.
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