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Training and computation in a neural net

Computaton in 8 neural nee
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Gradient descent

argmin Z((z,-.f(x,:w)) = L(w)

One iteration of gradient descent:
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Deep Networks: three theory questions

* Approximation Theory: When and why are deep
networks better than shallow networks?




Deep and shallow networks: universality

Theorem Shallow, one-hidden layer networks with a nonlinear &(x) which
is not a polynomial are universal. Arbitrarily deep networks with a nonlinear

o(x) (including polynomials) are universal.
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Curse of dimensionality

W= P N )

Both shallow and deep network can approximate a function of d
variables equally well. The number of parameters in both cases
depends exponentially ond as O(¢™“) . Both suffer from the curse

of dimensionality.

Mhaskar, Poggio, Liao, 2016




A new way to avoid the curse for compositional functions:
deep networks

S, 3% s Xg ) = 8382, (811(X) 3% ), 812 (X5,X, )82 (81 (X5, X6 ), 812 (X5,X5)))
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Theorem, Mhaskar, Poggio, Liao 2016 (informal statement)
Suppose that a function of d variables is hierarchically locally compositional . Both
shallow and deep network can approximate f equally well. The number of parameters of
the shallow network depends exponentially on d as O(e™“) whereas the deep networks

show O(de?) vs O(e™)

Note: Locality, not weight sharing, avoids the curse of dimensionality




Compositional functions

Notes
* Locality, not weight sharing, avoids the curse of dimensionality
* Linear combinations of compositional functions are universal approximators

» Are compositional functions similar to elementary recursive functions in the
theory of computation?




Theory: locality of constituent functions — not weight sharing — is key




Why are compositional
functions important?

Which one of these reasons:
Physics?
Neuroscience? <===
Evolution?

Locality of Computation

What is special about
locality of computation?

Locality in “space™?
Locality in “time"?

Expanded Edition

Perceptrons




Approximation: summary

* Locality, not weight sharing, avoids the curse of dimensionality

* Notice that ConvNets rather than dense nets are the main empirical
success so far

* Why do compositional functions underly image and speech
recognition?




Deep Networks: three theory questions

* Approximation Theory: When and why are deep
networks better than shallow networks?

» Optimization: What is the landscape of the empirical
risk?

* Dynamics of learning: What are the solutions? Are
they stable? Maximum margin?

* Learning Theory: How can deep learning not overfit?




RELU approximation by univariate polynomial
preserves deep nets properties
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Bezout theorem

p(x,)-y, =0 forn=1,...,.N

The set of polynomial equations above with k= degree of p(x) has a number of
distinct zeros (counting points at infinity, using projective space, assigning an
appropriate multiplicity to each intersection point, and excluding degenerate
cases) equal to 7 =kN

the product of the degrees of each of the equations.
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More important: Bezout and local+global critical points

f(x)=y,=0 fori=1,...,n N equations in W unknowns with W >> N

N
Ve Y (f(z) -9)’) =0 W equations in W unknowns
=1

Global minima are degenerate

Other critical points of the gradient are isolated (generically)




Langevin equation

df
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==y VV(f(1))+dB(t) fer1 = fo = WVV(fe, 2¢) + 7 W

with the Boltzmann equation as asymptotic “solution”




SGD

Lwz

feer = fo =% VV (i, z), VV(fe,2e) = ooy Liez, VV(fer 2)

We define a noise “equivalent quantity”

& =VV([fi,z) — Vs, (f:),
and it is clear that E§, = 0.

We write Equation 6 as

fu»l = fr ~— 7t(vl.<,,(ft) +€r)-
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GDL selects larger volume minima

Hatogram of W, for 1 D experiment Hatopram of W for 2 D experiment
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Concentration because of high dimensionality
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SGD behaves as SGDL (or GDL)

SGDL SGD Potential Function
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SGDL and SGD: summary

¢ Overparametrized deep networks have many global minimizers
that are generically degenerate; other critical points of the
gradient are generically isolated.

e SGDL finds with very high probability large volume, zero-
minimizers; empirically SGD behaves in a similar way.

Poggio, Rakhlin, Golovitc, Zhang, Liao, 2017




Deep Networks: three theory questions

* Approximation Theory: When and why are deep
networks better than shallow networks?

» Optimization: What is the landscape of the empirical
risk?

* Dynamical System Approach: Characterizing SGD
solutions: are they stable? control of norm? maximum
margin?

» Learning Theory: How can deep learning not overfit?




GD optimization induces a gradient dynamical system

N
L= Z()'n — f(Wgn WX, ))>  for regression
n

N
L = z e—.\'n./'( Wy ... W3, ) for classification
n
N
Linear one-layer case under square loss L = E (y - W l",xj ))2
we analyze various nonlinear cases: " ] R
n

perhaps in discussion...




GD optimization induces a gradient dynamical system

n

N
L - Z e_.\-”_/‘( Wy v Wiix, ) for classification

n




GD optimization induces a gradient dynamical system

n

N
L - Z e_.\-”_/‘( Wy Wi, ) for classification

n




GD optimization induces a gradient dynamical system

N
L= Z()'n - f(Wy,...,.W;sx ) for regression

N
o 2 e—_\-,,_/‘(WK e o) for classification
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Exponential loss
Deep network with RELUs,
with Halpern term

)= A(t)]




Dynamical Systems approach

What happens in the simple cases, eg linear nets?

In the deep case, usually degenerate equilibria,
degenerate Hessian, no direct norm control!

What can we say?




Deep RELU networks: definitions and homogeneity

We define a deep K-layer network with the usual RELU function o
f(W;x):R' >R, f(Wy,..,.W;x)=W,o(W,_,..c(Wx)..)

There are no biases. The top layer matrix is actually a vector.

For RELUs o0(z) =z aa—(f and homogeneity holds

~

f(W;x)= Hp‘j'(V;x) where p, v\’ =w!’, pi = Z(“’ZJ)Z
ij




Generalization bounds for regression: minimize empirical loss with minimum norm
(a) For deep RELU networks R , (F) = p, ...pA.IR\.(f*‘)

(b) Classical bounds: with probability = (1-6)
|

In

- R (F)+4—9%
|L(f)- Ly(f) < 2R, (F)+ o

The norm dependency of Rademacher complexity (a) together with the bound (b)
implies that we should minimize the empirical error and select the minimum norm
minimizer if the minimum is degenerate (which is the case in deep networks).




A parenthesis on regression and generalization




The magic of layer-wise normalization
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Generalization in regression (not classification)

Consider typical generalization bounds for regression: they have the following form:

|
In-
With probability = (1-8)  |L(f)= L,(f) S 2R . (F)+ 7,3

RN (F) = p1--- px R (F).

Then, for the unnormalized cross-entropy loss the bound gives

. . In(3
L(f) < [T aRu(F) + caf k)

-) 4 ’
k=1 2N

since L(f) ~ 0, whereas for the normalized cross-entropy loss it yields

= 0,3 - 1
\L(f) — L(f)| < Rn(F) + 2\




Closing parenthesis on regression and generalization




Generalization bounds for classification: maximize margin at unit norm

(a) For deep RELU networks R ,(F)= p,...0, R , (F)

(b) Classical bounds: with probability = (1-8)

|
In

)
E(L,(f)SL (f)+’179i(f)+ =0

cap

2N

: — 1
Thus the goal is to minimize L2 L ==
n wf f

that is to maximize the margin of f on the support vectors, while controlling the norm

Al




A unified view...
Lagrange multiplers, weight normalization, batch normalization,
are all trying to do GD with unit norm constraints:
Halpern iterations

A unifying view of weight normalization techniques - such as the Lagrange multiplier approach
of section 5.1, the weight normalization algorithms as well as batch normalization - is to regard
them as instances of Halpern iterations. Appendix 9 describes the technique. The gradient
flow corresponds to an operator T which is non-expansive. The fixed points are degenerate.
Minimization with a regularization term in the weights that vanishes at the appropriate rate
(Halpern iterations) converges to the minimum norm minimizer associated to the local minimum.




Maximize margin of normalized network

We define the loss

N K
L=Y e ?/(@m 5" 2\ |Vil (11)
n=1 k=0
where the Lagrange multipliers A\;. are chosen to satisfy ||Vi|| = 1 at convergence or when the
algorithm is stopped (the constraint can also be enforced at each iteration, see later).
We perform gradient descent on L with respect to p, Vi.. We obtain for k=1,--- | K

plt+1) = p(t) = 3 p(t)e PO f(z,),

and for each layer k

IR (C)

Vi (£) — 2 (2)Vi(2). (13)

Vi ms Vit + 1) = Vi(t) = p(t) 3

n
The sequence Ai(t) must satisfy lim, o ||Vi|| = 1.
Proposition 3

The GD equations 12 and 13 converge to maximum margin solutions with fized complexity

Ry.




Deep Networks: three theory questions

» Approximation Theory: When and why are deep
networks better than shallow networks?

» Optimization: What is the landscape of the empirical
risk?

» Dynamical System Approach: Characterizing SGD
solutions. Are they stable? Control of norm? Maximum
margin?

» Learning Theory: Generalization and non-overfitting




The key (equivalent to implicit regularization)
is optimization of normalized network

~

i

Weight normalization and batch normalization are two of the
(at least four) techniques
to do gradient descent under unit norm constraint




Error on CIFAR-10

Deep nets “puzzle” explained:

Training data size: 50000
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General musings

The evolution of computer science

» there were programmers
» there are now labelers

« there may be schools for bots...




Today’s science, tomorrow’s engineering:
learn like children learn

The first phase (and successes) of ML:

supervised learning, big data: n — oo
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The next phase of ML: implicitly supervised learning,
learning like children do, small data: n — 1

from programmers...
...1o labelers...
...to computers that learn like children...




Musings on Near Future Breakthroughs

» new architectures/class of applications from basic DCN block
(example GAN + RL/DL + ...)

Hipgaee

« Implicit labeling: evolution is opportunistic...few bits...face area...motion
machinery...bootstrapping...predicting next “frame”...

* Learning and representing symbols...with networks of neurons ...abstract
concepts, relations, routines...new circuit motif in addition to DCN?

?

* New learning algorithm — more biologically plausible than SGD ...




