Indexed Tensor Template Library

Indexed Tensor Template Library is driven by indices and based on BLAS. It works at compile time.

Examples:
M(I,I)=1;			// Set diagonal elements of matrix M to 1
A(I,J)=B(I,K)*C(K,J);		// Matrix multiplication. A=BC
a(I)=b(I)*c(I);		// Element-wise vector multiplication
a(I).asum(M(I,J));		// Store sum of absolute values of each row of M in a
tr=M(I,I).sum();		// Trace of matrix

	Indexed Tensor Template Library (iTTL) is designed for C++ developers who implements heavy optimizations including statistical models, data mining, big data analysis. Power of BLAS libraries gives a possibility to process high-dimension data. Power of C++ gives a possibility to create fast non-trivial algorithms. Power of iTTL makes code readable and decreases development time.
	iTTL works at compile time. It chooses a proper BLAS subroutine and joins loops if possible. Suppose you have a matrix M of 1000000 rows and 2 columns. Assignment M=0 is translated by iTTL into two steps. In the first step the total size of M is calculated. The second step is a call to dcopy subroutine of BLAS.

Index concept

Purpose of Index
· linking dimensions of tensors in expressions
· choosing elements of dimension for processing
· optionally defining the order of element processing

	Index types
	Affected elements
	Optimization
	Processing order

	defaultIndex
	All
	Maximum
	Undefined

	segmentIndex
	Specified number of elements successively from the specified position
	Partial
	Undefined

	simpleIndex
	All
	No
	Ascending

	forwardIndex
	Specified number of elements successively from the specified position
	No
	Ascending

	reverseIndex
	Specified number of elements successively from the specified position
	No
	Descending

	container-based indices
	Elements of container
	No
	According to iterator

Valence
	Valence is an integer property of the index. If valences of indices are equal then the corresponding dimensions are linked. They are iterated together during processing.
	Normally each index has its own unique valence. It is assigned automatically when you declare an index. You can create a new index using the valence of the existing index using iTTL::index_creator<desired_index_type>::create(base_index...). You can use operators +/- to create a new index with the valence of the base index.

	Index types
	Result of operator-()
	operator+(size_t)
operator-(size_t)

	defaultIndex
	
	

	segmentIndex
	reverseIndex
	Shifted elements

	simpleIndex
	
	

	forwardIndex
	reverseIndex
	Shifted elements

	reverseIndex
	forwardIndex
	Shifted elements

	container-based indices
	
	Shifted elements

Example:
DECLARE_reverseIndex(R,5,0);
v(R+1)=v(R); // copy elements 0..4 of vector v to 1..5

	You can apply ordinary numbers (size_t) to dimensions also. Example: v5=v(5);
	The result of application of indices to a tensor is a new tensor referring the subset of data of the initial tensor. No memory allocation is occurred. The newly created tensor can be re-indexed again if needed.
Example:
auto diag=M(I,I); // No memory allocation. diag is logically an alias of M(I,I). diag(K) is ok.

BLAS usage and limitations
	BLAS is Basic Linear Algebra Subprograms. Some of BLAS libraries like OpenBLAS are extremely fast. Unfortunately, BLAS subroutines are not convenient, especially in C++. BLAS was initially implemented in Fortran. There are many implementations of BLAS. Most of them support Fortran-like interface and can be linked with iTTL. Since BLAS libraries are often multi-threaded, the order of processing of dimensions elements is not always defined. So, all the above mentioned index types with the defined processing order cannot be used with BLAS libraries.
	Besides, the fortran integer type is not the same as size_t. So, when your BLAS library is using 32-bit integer for matrix dimensions, your dimension sizes for BLAS are limited to 231-1. Please choose the proper BLAS_INTEGER type in blas_tmpl.h header. The default is int.
	Matrices in BLAS should have one continuous dimension. So, if T is a 3d tensor, T(I,J,1) is not a matrix in terms of BLAS even if I and J are indices of defaultIndex type.
	Always use indices of defaultIndex type when possible. When not possible, the segmentIndex type is preferable. It will allow to use BLAS efficiently.
Linking BLAS
· You should set the proper BLAS_INTEGER type in blas_tmpl.h
· You should comment BLAS_NEEDBUNDERSCORE defined in blas_tmpl.h if your BLAS implementation does not contain ‘_’ at the beginning of subroutine names

Basic functionality
	Basic functionality has no restrictions on index type. All index types can be used. defaultIndex is the fastest since it allows BLAS usage. The gem_logic.cpp illustrates the logic of General Tensor Multiplication (gem) and compares performance in different cases.
· Creating a tensor.
	Examples:
iTTL::TENSOR<3> T3({3,4,5});
iTTL::MATRIX<> M({5000,5000});
size_t dimensions[2]={300,400};
iTTL::TENSOR M_300x400(dimensions);
iTTL::MATRIX<> M_2x2({{0.0, -1.0}, {1.0, 0.0}});
double *data=new double[6];
iTTL::MATRIX<> M_2x3(data, {2,3}); // don’t forget to deallocate data with delete[] data;
· Accessing elements
	Examples:
M(2,3)=5;
double d=M(2,3);
· Initializing data with initialization list
Example:
iTTL::TENSOR<4> t({2,2,2,2});
t(I,1,J,K)={{{1,2},{3,4}},{{5,6},{7,8}}};
This possibility exists just for convenience. It is not fast. If depth of nested initialization lists does not correspond the dimension of the tensor, compilation fails. If there are extra initialization parameters, the outOfBounds exception is thrown. If there is no initialization value for some element of the tensor being initialized, zero value is used.
· Memory access control
Incorrect application of indices leads to exceptions. Verification of indices occurs before processing of expressions.
· Aliasing
	Example:
auto diag=M(I,I);
· Aliasing with index order changing
Example:
auto MT=M.template order_indices<first_desired_valence, second_desired_valence>();
[bookmark: __DdeLink__546_24670815]Note: The desired valence list should be a permutation of an existing valences of the original tensor. This possibility may be useful in a development of libraries.
· Removing dimensions by valences
	Example:
size_t offsets[2]={offset_for_first_valence, offset_for_second_valence};
auto V=T3.remove_valences<first_valence_to_remove, second_valence_to_remove>(offsets);
This possibility may be useful in a development of libraries.
· Re-dimension
	Examples:
iTTL::TENSOR<3> T;
T.redim(2,3,4);
· Re-shape
Examples:
iTTL::VECTOR<> V({17});
auto M=V.reshape(3,5); // M is a matrix 3x5 of first 15 elements of V. No memory allocation.
· Direct data access
Example:
double *M_Data=M.data_ptr();
Note: data_ptr() member function is available only if data of underlying tensor is continuous
· Copying with optional sum
Examples:
V(I)=M(I,I); // copy diagonal elements
V(I)=M(I,K); // for each row sum through columns and copy
M(I,J)=V(I); // for each row of M copy V(row_number) to all columns of M.
· Copying with type conversion without sum
Example:
iTTL::MATRIX<float> MF({2,2}); 			// uninitialized matrix 2x2 of float values
iTTL::MATRIX<double> MD({{1.0,2.0},{3.0,4.0}}); 	// initialized matrix 2x2 of double values
MF(I,J)=MD(J,I); 					// copy with transposition
· Multiplication
Examples:
sc=A(I).dot(B(I)); // scalar multiplication
sc2=A(I).dot(M(I,J)); // sumj (sumi(Ai*Mij))
R(I).gem(A(I,J),V(J)); // matrix-vector multiplication
R(I).gem(A(I),B(I)); // element-wise multiplication
R(I,J).gem(A(I,K),B(J,K),2,3); // R = 3*R + 2*A*BT
· Scaling
Examples:
M(I,2).scal(3); // multiply column #2 by 3;
M(I,J).scal(V(I)); // multiply each row of M by the corresponding element of V
· Division
Example:
M(I,J).div(V(J)); // divide each column of M by the corresponding element of V
· Adding
Y(I).axpy(X(I),3); // Y = Y + 3*X
· Shifting
Example:
V(I).shift(1); // V = V + 1
· Sum of elements
	Example:
tr=M(I,I).sum(); // trace of M
· Absolute sum of elements
[bookmark: __DdeLink__1105_3376015134]a=V(I).asum(); // a=sum(abs(Vi));
V(I).asum(M(I,J)); // Vi=sumj(abs(Mij))
· Sign
V(I).sign(X(I)); // Vi=sing(Xi)
· Get shape of tensor
size_t shape[2];
M.get_shape(shape);
· Get size of tensor
size=M.size(); // size is a product of the previously shape elements
· Releasing data
Example:
A.free();
	free() method releases data of tensor. If there is no more tensors referring to data, data frees.
· Check if tensor refers to data
Example:
A.is_allocated();
· Allocating memory for a copy of tensor
Example:
auto M=T(I,0,J).empty_like();
	This creates a new 2d tensor (matrix) M. Memory is allocated for the new matrix but not initialized. The new matrix M is indexed by I,J.
· Simple expressions
Examples:
R(I,J)+=A(J,I)/3;
R(I,J)+=2*A(I,K)*B(K,J)-V(J);
	Note: complicated expressions are not supported. All supported expressions never allocate temporary data implicitly. However some expressions which can work without memory allocation are not supported. For example D=A*(B+C) is not supported. If you don’t need to keep B unchanged, use two steps: B+=C; D=A*B. If both B and C should remain unchanged, for fast computation, allocate temporary tensor for (B+C) explicitly. If you need to avoid extra memory allocation and you need to keep B and C unchanged, use D=A*B+A*C.

Other functionality
	There are a lot of useful subroutines in BLAS. Most of them are not implemented in iTTL yet. Most of BLAS subroutines have hard restrictions in terms of iTTL and thus their usage is limited.
· Linear solving
	Examples:
M(I,J).gesv(V(I));
	This calculates M-1*V and stores the result in V. The matrix M is overwritten after execution.
	Note: last dimensions of M and V should be continuous and it should be derivable from the indices applied.

M(I,J).gesv(V(K,J));
	This calculates (M-1)T*Vk and stores the result in Vk. The matrix M is overwritten after execution.
	Note: last dimensions of M and V should be continuous and it should be derivable from the indices applied.

auto lu=M(I,J).lu(); // create LU factorization object for M(I,J). Memory allocation occurs.
lu.solve(V(I));
	This calculates M-1*V and stores the result in V. Neither M nor lu are overwritten. If V is continuous the processing is faster. Elements of V may correspond to high dimension of some plain tensor, for example: V(J)=T(J,2,3). In this case the processing is not fast.

auto lu=M(I,J).lu(); // create LU factorization object for M(I,J). Memory allocation occurs.
lu.solve(V(J));
	This calculates (M-1)T*V and stores the result in V. Neither M nor lu are overwritten. If V is continuous the processing is faster.
auto lu=M(I,J).lu(); // create LU factorization object for M(I,J). Memory allocation occurs.
lu.solve(V(K,J));
	This calculates (M-1)T*Vk and stores the result in Vk. Neither M nor lu are overwritten. If J-valence of V is continuous the processing is faster. If V is a plain matrix the processing is even more fast.
auto lu=M(I,J).lu(); // create LU factorization object for M(I,J). Memory allocation occurs.
lu.solve(V(J,K));
	This calculates (M-1)T*Vk and stores the result in Vk. Neither M nor lu are overwritten. In this case J-valence of V is not continuous. The processing is not fast.
	There is no hard restrictions exist for lu.solve() method.
[bookmark: _GoBack]	Note: gesv and solve methods return BLAS_INTEGER. If the result is not 0, an error happens. An error may occur if the initial matrix has zero determinant. The result of lu() method can be verified using lu.info() method.

C++ Usage Example
	The file l1_procs.h contains an example of optimization procedure template based on iTTL. The BR_solve_one procedure template optimizes

When iTTL is linked with OpenBLAS this optimization solves problem with in 2 minutes on Intel Core i7 with 6 cores.
Note: the procedure template temporary allocates data. If ridge is 0 the procedure template is just a robust regression.

Python 2.7 Usage Example
	The procedure template from the above topic can be used in Python. l1_procs_module.cpp file is the python wrapper for the l1_procs.h. To install this extension in Linux/python2.7 you need to
· set the path to iTTL headers in iTTL_path variable of setup.py
· set the correct path to l1_procs_module.cpp in setup.py
· set the name of installed BLAS library in setup.py to be linked to (some libraries don’t support dgetrs/dgetrf, their usage is impossible)
· run installation 	
sudo python setup.py install
· update library attributes
sudo chmod 755 /usr/local/lib/python2.7/dist-packages/l1_procs.so

	The test.py example shows the usage of BR_solve in python2.7.

Environment
[bookmark: __DdeLink__427_3376015134]	The library was tested only in Linux/gcc environment. The library requires at least C++11.

Bug report
	Please report bugs to tpptensor@mail.ru
