

Generic 8-bit VHDL Processor

Introduction

This document lists out the details of a generic processor design implemented in

VHDL as part of coursework on Digital Electronics Design. Consider this as a

readme file for anyone trying to make sense of the design of the processor as well

as its working and the associated VHDL code. In particular the following aspects

of the processor are covered in this document:

• Instruction Set

• Modular Components

• Design Methods

• Block Diagrams

• Instruction encoding

• References

Instruction Set

The following table lists the set of instructions that can be interpreted on our basic

processor:

Code & List of Parameters

Operation

(ASSIGN_VALUE, k, A) Xk <= A

(DATA_INPUT, k, j) Xk <= INj

(DATA_OUTPUT, i, j) OUTi <= Xj

(OUTPUT_VALUE, i, A) OUTi <= A

(OPERATION, i, j, k, f) Xk <= f(Xi, Xj)

(JUMP, N) go to N

(JUMP_POS, i, N) if Xi > 0 go to N

(JUMP_NEG, i, N) if Xi < 0 go to N

Comments:

1. Xn indicates the nth location in the register bank

2. INn indicates the nth input port

3. OUTn indicates the nth output port

4. Only 2 operations are possible through f: add/sub

Modular Components

Our processor is built with the following modules:

1. Input Selection

Based on the instruction received, it decides from which input port data

should be read from. There are 8 input ports from IN0 through IN7. Each

port can read 8 bits of data and send it downstream to a specified register

memory cell. It can also read input from the output of the computational

resources block to store it in the register

2. Output Selection

Selects the output port, has a similar configuration to the input ports. The

outputs are registered and as such, their values remain in memory unless

changed by some operation.

3. Register Bank

The register bank stores data from the input and from the computation

block before sending it to the output selection. It consists of 16 registers,

X0 to X15 each capable of storing 8-bit data.

4. Computation Resources

This is the Arithmetic unit of the processor that performs the operations

described by the instruction “f”. It consists of 8 bit adder/subtractor that

computes the result of “f” and sends it to the input selection to store in the

register.

5. Go To

Based on the instruction received, this block can either unconditionally

move to a particular instruction no. in the program memory or do a

conditional jump depending on the value of a register cell.

Design Methods

In designing the processor, we can either choose to have a behavioural description

of each module and accordingly code it in VHDL in the form of a Finite State

Machine. The VHDL compiler can then automatically synthesise the necessary

digital logic components to implement our behavioural model. This approach

though simple to design and code, uses significantly less flip-flops at the cost of

using more Dual Port RAMs.

Another approach for designing involves developing a structural design of each of

the modules described above and then tying together those structures to make

the final processor. This approach uses more flip-flops and LUTs than a

behavioural design primarily because of the not-so-efficient implementation of the

Register Bank.

An optimum design is achieved by having a structural description for all the

components except the Register Bank. A behavioural description of the Register

bank automatically creates Dual Port RAMs during synthesis and this ensures we

use the lowest amount of resources for our processor.

Block Diagram

Figure 1: Block Diagram for Data Flow Graph in Generic 8-bit Processor

The above diagram lists all the components as described earlier and also shows

the various input parameters that stimulate the corresponding processes for the

components. The outputs and connections between various components are also

indicated. An extra component not mentioned earlier is the Program Memory. This

basically stores the set of instructions for performing any of the tasks that our

basic processor can be programmed to perform, e.g., the chronometer program

has a particular set of instructions and these are stored in the Program Memory

for the processor to load the instructions through the Go To block and execute

them as required.

Instruction Encoding

The program memory stores the set of instructions encoded as 16-bit vectors.

Each bit in the vector is used to encode a part of the particular instruction along

with the various accompanying parameters. The meaning of the bits and

assignment of parameters in the 16-bit vectors (C15 down to C0) is enlisted

below:

Instruction

C15 – 13 C12 C11 – 8 C7 – 4 C3 – 0 Operation

ASSIGN_VALUE 000 0 A7-4 A3-0 k Xk <= A

DATA_INPUT 001 0 - j k Xk <= INj

DATA_OUTPUT 101 0 I j - OUTi <= Xj

OUTPUT_VALUE 100 0 I A7-4 A3-0 OUTi <= A

OPERATION 010 +0/-1 I j k Xk <= f(Xi, Xj)

JUMP 111 0 - N7-4 N3-0 go to N

JUMP_POS 110 0 I N7-4 N3-0 if Xi > 0 go to N

JUMP_NEG 110 1 I N7-4 N3-0 if Xi < 0 go to N

References:

Digital Systems: From Logic Gates to Processors

By Universitat Autònoma de Barcelona on Coursera

https://www.coursera.org/learn/digital-systems

	Introduction
	Instruction Set
	Modular Components
	Design Methods
	Block Diagram
	Instruction Encoding
	References:

