
Arcan
Design and Development

Outline
• Design

• Event Loop

• Frameservers

• Namespaces

• Shmif

• LWA

• Threat Model

• Development

• Event Loop

• Frameservers

• Shmif

• Threat Model

• Principles, Current
State

Design

Scripting

Core

Platform

Lua

Audio

Input

Graphics ShmifEventqueue

Display AGP

Frameserver
Archetypes

Game

AVFeed

Encode Decode Networking

Terminal

OS functions

DB

Hijack Library 3rd party software

Remoting

Appl

SHMIF

A
R
C
A
N

Non-authoritative
connection

Main Loop
<Simplified>

Init
• Sanity check environment
• Setup Platform Layer
• Map Namespaces, Database
• Configure Lua, fallback recovery points, Appl

Loop

• Check timing:
• [~monotonic] update logical data model
• [~heuristic] sample data model, update visual state

• Flush and filter event queues into VM handlers
• Sleep until external triggers or heuristic timeout

• platform input devices, output display synch
• frameserver data

Frameservers
Frameserver
Archetypes

Game

AVFeed

Encode Decode Networking

Terminal

• Separated producer/consumer processes

• Engine can act authoritatively, i.e. kill / control state with minimised risk for
cascade or corruption

• Archetype implies specialised behaviour / response to possible shmif
events

• Sandboxing / Policy behaviour per archetype

• Trivial to swap out the default implementation for one/several archetypes,
with custom set

Remoting

Frameserver
Archetype Decode

• Arbitrary data stream Input as descriptor, uri or
path

• Outputs decoded A/V representation (best
effort)

• Metadata for playback status, alternate
streams, overlays

• Controls for seeking, stream selection

Default dependency: libvlc

Frameserver
Archetype Encode

• Primary segment type: ‘output’ (arcan. → frameserver)

• For streaming/ non-interactive/ lossy output encoding

• Soon: secondary (Fsrv → Arc) segment for lossy
abstract interpretation

• Examples: Voice-Synthesis, OCR

• Slightly abused for remote desktop server behaviour  
(due to the client-interaction / authentication needs)

Default dependency: ffmpeg [optional: tesseract, libvncserver]

Frameserver
Archetype Terminal

• Or ‘rather’ interface to a class of applications
signified by:

• textual input from keyboard devices or streams

• monospaced text output in a strict grid layout

• Dynamic privilege domain (think ‘login/su/sudo’)

Possibly the most useful frameserver right now :-)

Default dependency: libtsm

Frameserver
Archetype Game

• Implements front-end side of libretro API (www.libretro.com)

• Plugs ‘cores’ (primarily retro- style games and emulators)

• Good basis for testing/stressing:

• A/V/input latency tradeoffs

(emulators typically output synthesised audio with weird sampling rates rather
than mixing sample playback and streamed prerecorded output and therefore
harder to “hide” buffering artifacts without latency or skipping)

• State snapshot / Management

• “Quirky” Input devices and dynamic input configuration

• Accelerated buffer passing, High CPU utilisation, …

http://www.libretro.com

Frameserver
Archetype Remoting

Default dependency: libvnclient

• Intended as [client role] access to different
graphical desktop / computing environments

• Requires interactive and event-driven A/V/I/
Clipboard/File translation/packing

• Inherently ‘networked’

• Default implementation lacking  
(poor choice of protocol)

• Likely to be switched to SPICE or RDP

Frameserver
Archetype Networking

• Highly experimental (i.e. useless until ~0.6)

• Primary target: [local] service discovery and
authenticated/encrypted communication across
networked boundaries

• Application area: control-message / state
passing between arcan instances across
networked boundaries

• e.g. live appl- migration, state redundancy

Frameserver
Archetype AVFeed

• “Dumb” / simple A/V provider

• Skeleton, Used for testing

• For quick’n’dirty interface wrapping 3rd party
libraries / devices

• Can (mostly) be ignored

• Integrated VM (stuck at 5.1 / Luajit 2.0)

• Some added restrictions (no string eval or
bytecode, no FFI, default I/O, system etc.
functions dropped)

• Imperative API model, event driven from hooks
(derived from applname_eventname()

• See Developer- intro slides for more information

Lua

• Namespaced collection of related scripts and resources

• layout like: ./ myappl1 / myappl1.lua  
(function myappl1 as entrypoint and event handler prefix)

• Three types: Main (running), Fallback (adopts external connections on fail)  
Monitor (optional, for debugging)

See also: dev. intro slides

Appl

function myappl1()
term = launch_avfeed(“terminal”,
function(src, statustbl) — eventhandler for fsrv -> arcan (see shmif/evmodel slide)
if (statustbl.kind == “resized”) then
resize_image(src, statustbl.width, statustbl.height);

end);
 show_image(term); — starts as invisible
target_displayhint(term, VRESW, VRESH); — tell process about display dimensions

end

function myappl1_input(iotbl)
— iotbl can cover analog / digital / device-plug / device-unplug events
 target_input(term, iotbl);
end

Minimal Terminal example:

Namespaces
• Per Arcan- instance defined search paths

• Restricts / filters search and access for script- resources
and storage locations

• Examples:

• APPLBASE - search space for appl loading and switching

• STATEBASE - target state snapshots

• APPLTEMP - writable, appl- generated content

• (many others for FONTS, LOGGING, …)

• Used for Application whitelist (execution model)

• Target [binary + search path, format, base args, env]

• Config [tied to target, additional base args]

• Includes library overrides (think LD_PRELOAD for shmif inject.)

• Constrains launch_target API calls

• key/value store both for target, target/config and for current appl.

• Will (0.6+) also cover sandboxing policies / state

• External tool (arcan_db) to manage

Database

Shmif

Socket

Audio Buffers
Video Buffers

Synchronization Primitives
In / Out Eventqueues

Metadata
Descriptor passing, event signalling (for I/O multiplex)

shmif-segment

ordered so that the most error prone targets overflows into
something audible or visible

Current dimensions, segment type, relationships
Semaphores for signalling
Main bidirectional data- exchange channel

1 (guaranteed) segment per connection.  
additional ones can be requested or forced

Compile-time color format, padding for alignment

unidirectional (produce or consume)

(not a ‘public’ interface or protocol)

Compile time format, packing, channels and rate

Shmif
• Segment Type dictates assumed use (e.g. HMD, interleave-odd/even,

titlebar, icon, debug, accessibility, clipboard, drag’n’drop, popup, ...)

• Downsides:

• Complex rules for switching between shared-memory and handle-
passing video buffers (shm always available, buffer passing is
privileged, intermittent and volatile)

• Event-queue saturation (“Application Not Responding”)
management is terrible, but fixable

• Tightly coupled with engine internals, no ‘protocol’ - built / updated
in lock-step, shared struct ABI without serialization format.

• Not all events are processed in order, some (e.g. analog axis
motion, multiple displayhints / fonthints may merge)

Shmif Synchronization
• Data transfers are ‘signal’ operations on semaphores

• (SHMIF_SIGVID | SHMIF_SIGAUD).

• “May” use accelerated buffers (zero-copy, …) when available

• But controlled arcan- side and forced fallback to shm- only

• Multiple strategies (to handle latency, blocking and tearing
tradeoffs)

• Semaphores + atomics + socket ‘ping-packet’ for block and I/O
multiplexing

• Resize operation on segment (or subsegment) blocks until
negotiated.

Shmif Event Model
(arcan → frameserver)

TARGET_COMMAND_EXIT - connection terminated

TARGET_COMMAND_FRAMESKIP - switch heuristic for adv. synch

TARGET_COMMAND_STEPFRAME - manual frame control (or CLOCKREQ callback)

TARGET_COMMAND_COREOPT - set initial Key / Value config entry

[d]TARGET_COMMAND_STORE - serialize internal state
[d]TARGET_COMMAND_RESTORE - deseralize internal state

[d]TARGET_COMMAND_BCHUNK_IN - binary data blob in
[d]TARGET_COMMAND_BCHUNK_OUT - binary data blob out

TARGET_COMMAND_RESET - reset to initial state

TARGET_COMMAND_UNPAUSE - follows PAUSE

TARGET_COMMAND_SEEKTIME - seek in datastream

TARGET_COMMAND_SEEKCONTENT - content panning (scrolling)

TARGET_COMMAND_DISPLAYHINT - segment display properties (dimensions, density)

TARGET_COMMAND_SETIODEV - plug / unplug device mapping

EVENT_EXTERNAL_STREAMSET - switch sub-datastream (decode archetype)

TARGET_COMMAND_ATTENUATE - volume hint (for connections not using audio- part of shmif)

TARGET_COMMAND_AUDDELAY - increment or decrement audio playback timing

TARGET_COMMAND_NEWSEGMENT - connection data for subsegments

TARGET_COMMAND_REQFAIL - previous subsegment request failed / was rejected
TARGET_COMMAND_BUFFER_FAIL - accelerated buffer passing rejected, fallback to shm- render

[d]TARGET_COMMAND_DEVICE_NODE - switch device input / hw render

TARGET_COMMAND_GRAPHMODE - alternate rendering modes (archetype specific)

TARGET_COMMAND_MESSAGE - archetype specific short message (multipart)

[d]TARGET_COMMAND_FONTHINT - transfer fonts and metadata

TARGET_COMMAND_PAUSE - connection / synch suspended

TARGET_COMMAND_GEOHINT - location, orientation, language ...

+ TARGET_IO struct namespace

Shmif Event Model
(frameserver → arcan)

EVENT_EXTERNAL_MESSAGE - Archetype or segment type specific [multipart] short UTF-8 message

EVENT_EXTERNAL_COREOPT - Key/Val configuration option

EVENT_EXTERNAL_IDENT - Content Identification

EVENT_EXTERNAL_FAILURE - State serialization failure

EVENT_EXTERNAL_STREAMINFO - Alternate data stream notification

EVENT_EXTERNAL_STREAMSTATUS - Streaming playback, position

EVENT_EXTERNAL_STATESIZE - Estimate current state block size (0- disabled)

EVENT_EXTERNAL_FLUSHAUD - Request that pending audio buffers be discarded

EVENT_EXTERNAL_SEGREQ - Request additional subsegment

EVENT_EXTERNAL_KEYINPUT - Request limited keyboard input (remoting)

EVENT_EXTERNAL_CURSORINPUT - Request limited mouse cursor input (remoting)

EVENT_EXTERNAL_CURSORHINT - Hint at cursor visual state when on surface

EVENT_EXTERNAL_VIEWPORT - Reduce active surface use or map multiple views on same surface

EVENT_EXTERNAL_CONTENT - State indicator for content (scrollbars)

EVENT_EXTERNAL_LABELHINT - Hint digital or analog input data tag

EVENT_EXTERNAL_REGISTER - [once] specify + sign UUID or hint at archetype

EVENT_EXTERNAL_ALERT - UI Notification hint

EVENT_EXTERNAL_CLOCKREQ - Request a periodic or one-fire timer

(*)EVENT_EXTERNAL_BUFFERSTREAM - Handled internally, used for accelerated buffer status and delivery timing

(*)EVENT_EXTERNAL_FRAMESTATUS

LWA
• Specialized Build that uses shmif as A/V/I/O

Appl1

ARCAN

ARCAN-LWA

external connection

Frameservers (remoting, net, ...)

Platform

Frameservers

Appl2

...

1..n

• But possible latency/... increase with level

Shmif

Security Model
• Appl dynamically define permitted interaction (e.g. target_input(dstid, itbl)). Control

should flow from user to appl to arcan to external. Every step is a possible
reduction of privilege.

• Includes output segments (clipboard-paste, video-recording/screen readers)
using define_recordtarget(dstid, {set of audio sources}, {set of video sources}),
allows fine-grained controlled sharing.

• Frameserver archetype dictates sandboxing model (still in its infancy), “basic”
requirements: CloudABI syscalls + seccmp-bpf/capsicum/obsd-pledge + fuse
profile

• Based on the assumption that any external connection can / should be
contained in Sandbox and/or VM.

• Without sacrificing user-expected features.

• e.g. “Skype” should have transparent/user-regulated(overridable) access to A/V
feeds, but not be able to discern, grasp or request /dev/video0 vs. goatse.mkv

Hijack Library 3rd party software

Threat Model

Scripting

Core

Platform

Lua

Audio

Input

Graphics ShmifEventqueue

Display AGP

Frameserver
Archetype

Game

AVFeed

Encode Decode Networking

Terminal

OS functions

User-appl, “trusted” (for now)

To sandbox and control aggressively

DBModel/Image parsers a risk

Biggest Risk

Whitelist input devices

Remoting

Governing Principles
• No-surprises

• Safe, Passive, Defaults

• Running appl dictates behaviour

• And user specifies appl

• All external connections are explicit

• Don’t try to be clever, provide mechanisms for the
user, make them obvious and accessible - not
automated ‘default’ policies

Governing Principles
• Be Untrusting

• Compartmentation - sensitive actions get their own processes with restricted
capabilities - monitor and kill if suspect

• 3rd Party Applications are not to be trusted

• Legacy (times change), Ignorance (didn’t care about your case) or Personal
Agendas (drm, stealing data, protecting business interests, building empires...)

• Any interface that provides a perceivable truth should also be able to provide
corresponding lies and half-truths - this is the virtualization ideal

• Application should not be able to (or, if possible, only at considerable cost) tell
truth from lies

• Communication is a privilege - not a right (cp command does not need network
access, firefox does not need .bashrc access)

• User- placed trust in an application is a dynamic (context-sensitive) property,
sandboxing controls should reflect this.

Governing Principles
• Be Conservative

• “Modern” is appeal-to-authority nonsense

• Comes at the cost of exclusion of those that reject the “authority”

• Define the features needed, articulate well in advance, then commit to them

• Feature/scope creep leads to ‘solving’ general problems that does not fit the
problem space of any single stakeholder

• The Web-browser is the final stage of feature creep and feature creeps
(“wouldn’t it be cool and funny to put this in a browser lol?”)*

• Interfaces you export are interfaces you commit to

• i.e. “we do not break userspace”

• Steer away from Funky IPC and Turing Complete or Context Sensitive Parsers

• but - pragmatism, not ideology
* shoot to kill

Governing Principles
• Stay Pragmatic

• Minimize dependencies, ‘Done’ when no more lines of code can be removed

• CM work grow with dependency-set, you replace ‘bugs you are guilty of’ with
‘bugs other people decide’

• Never rely so hard on an external solution that you can’t pack your bags and
leave

• Stay portable -- commit to the chosen standards, avoid fancy in-house features

• Lets other systems question the validity of your own

• Ignore Appeal to Performance

• Hard Evidence - Data from specific test cases, not ‘benchmarks’

• Ability to debug drives tradeoff selections in both design and implementation

Technical Points and
Tradeoffs

• Core: 100% C (ISO 8998:2011) style, due to the requirement of
minimising runtime and dependencies. This is a simplicity versus
performance tradeoff.

• Primarily single-threaded with domain specific or process
separated concurrency. This is a debugability versus performance
tradeoff.

• Engine configuration is build-time static with embedded tag
(platform, git revision etc.). This is a simplicity versus flexibility
tradeoff.

• Lua VM configuration is rather restrictive to avoid dependency
creep. Extend for individual use-cases with system_load and .so:s

Debugging / Stability
• Scripting layer: fail early, often and hard.

• data model snapshot as .lua script stored in debug
data namespace (see system_snapshot call)

• possible cause in stdout output (and in dump)

• Monitor : periodic snapshot serialization to another arcan
instance over a pipe that the _appl can access and draw.

• Fall-back appl: “on crash, rebuild env, keep external
connections and expose to new appl in _adopt callback”

Test / Doc Setup
lua bindings

support scripts [s]
scrape doc/*.lua

[manually maintained] [s]

manpages

[s] :- docgen.rb, atests.rb

[s]

#define MAIN, ERRORn
c- preprocessor

test-appls (pass)

+ handwritten: tests/  
(interactive, benchmark, regression, security, exercises)

atests.rb also generates build permutations etc.

Current State
• Detail on individual components / platforms,

“components and status” @ wiki

• See Roadmap on Overview slides

• Default archetype implementations are very
‘barebone’

• Lots of work left in completing and automating
test setup, contributions page @ wiki is up to
date.

#arcan irc.freenode.net

http://irc.freenode.net

