

Toolsuite for real-time visualization
● Personal Sandbox for ideas and experiments since ~2003
● Open Source since dec-jan 2012 (integration, refactoring, documentation)
● High-level APIs for 2D/3D video, audio, networking, database, device input
● Key goal: balancing security, performance and debugging
● For FreeBSD/Linux/Windows

Arcan

User-script (refered to as 'theme')

3D

2D

Audio

Input

Scheduling

DB

External API

Frameservers

Process / Privilege Barrier

Shared Memory + Sockets for FD transfers (Audio, Video + Event Queue)

Vid.Dec

Vid.Enc

Net-Cl, Net-Srv

Libretro (gaming)

Core engine (“trusted”)

3rd Party
Software

Hijack Lib

One role per process, user-script explicitly controls
Lifecycle, inputs and outputs

LUA

Untrusted (subject to sandboxing)

Example Theme
AWB (Reasonably competent desktop environment)

Video Encoding / Streaming

Webcam Capture FeedLibretro Emulator Core

Webcam feed mapped
To 3D model

Format String- Based Allocator

Scripting Model
Why LUA?
• Easy and cheap to embed
• Strong separation between framework and language
• Good dynamic sandboxing opportunities
• No Forced OO, Execution-flow more important than Data-model!
• Single Threaded (which is a good thing!)
• Above points combined, ideal for debugging

Approach
• Event driven (key events: clock_pulse, device_input, video frame-delivered

+ asynchronous event-handlers connected to video objects)
• Two-tiered resource name-space (theme-specific (R/W) shared (RO)

function demo()
a = render_text(”\\ffonts/default.ttf,18 Hello \\#00ff00\\b World!”);
blend_image(a, 1.0, 20);
end

Theme-named entrypoint

Transformation Function

Life-cycle

Allocator functions:
null_surface
fill_surface
color_surface
load_image
load_image_asynch
render_text
launch_target
load_movie

VID

BADID

Key Attributes:
Opacity (0..1), def: 0
Position
Size
Orientation

C
ost (cheap →

 expensive)

Transformation functions:
move_image(x, y, *dt)
show_image(*dt)
hide_image(*dt)
nudge_image(dx, dy, *dt)
scale_image(dfw, dfh, *dt)
resize_image(w, h, *dt)
blend_image(opa, *dt)
rotate_image(ang, *dt)

Every transformation group can be chained (multiple calls stack):

*dt : deadline – transformation will be scheduled and stretched across
(dt) engine-logical time steps, engine interpolates!

function demo()
a = load_image("images/icons/ok.png");
show_image(a);
resize_image(a, 1, 1);
move_image(100, 100, 80);
move_image(0, 0, 80);
rotate_image(120, 160);
resize_image(128, 128, 160);

end

These chains can be copied, transformed, translated, reset etc.
Also used for collision/Intersection detection e.g. “in n steps, will a intersect b”?

1. All visual entities implicitly inherit properties from WORLDID
2. Transformation chains are defined in local space and then resolved into world space.
3. Entities and their respective chains can be linked into more advanced hierarchies.

A B

function demo()
b = fill_surface(64, 64, 255, 0, 0);
a = fill_surface(64, 64, 0, 0, 255);
show_image({a, b});
move_image(b, 128, 0);
move_image(WORLDID, 80, 0);

end

A B

link_image(a, b);
2.

C D 3.
c = instance_image(a);
d = instance_image(a);

1. Clones are lightweight objects explicitly tied to a parent
(particle systems etc.) where only a subset of attributes can be
overridden (e.g. active shader)

1. Linked objects gets hierarchically defined properties (with
associated cost in rendering etc.)

2. Inherited properties can be controlled fine-grained through
masking (e.g. inherit position but not orientation)

Slightly more advanced:

Even more advanced:

1. Contexts
The current rendering context is part of a stack.
This means that all visible objects can be pushed (stored for
later reconstriction) or poped (for mass-deallocation)
This can be used for memory management, optimizing subsets,
rendering target), sandboxing, ...

Special case: launch_target(id, LAUNCH_EXTERNAL)
1. current context gets pushed
2. engine subsystems deallocated, external program launched
3. external program termination, everything reallocated

Context Stack

A1

Framesets

B C D

2. Entities can be set to share storage, for the primary frame or compose a set
of frames using several other entities (framesets).
This is useful for:
animation (auto-cycling every n frames or n ticks)
History-frames (where you want access to several frames from a frameserver)
Multitexturing (for 3d objects and for advanced shaders when combined with
history frames).

Rendertargets 3. Rendertargets is a separate renderpath in the active context (there's a standard
out and a fixed number of others) where the output is saved in the storage of
another entity (commonly called RTT, render to texture).
This is useful for:
1. Multipass rendering effects (blurs, stereoscopic rendering, shadows, reflection)
2. When combined with readbacks; video streaming, recording etc.

B C D

Details
● 170+ functions (documentation, examples and testcase coverage project

underway, soon to be completed).
● Monitoring Mode:

Arcan

Theme
Arcan

(monitor + script)

Example> ./arcan -M 100 -O awbmon/awbmon.lua awb

State snapshot
Every -M pulses

Also works for crash dump analysis!

Exercise

function demo()
local source = "demo.avi";
local camsource = "capture:device=0:width=320:height=240";
local vid, aid = load_movie(source, FRAMESERVER_NOLOOP,

function(source, status)
play_movie(source);
resize_image(source, 320, 480);

end);
show_image(vid);
local bw = instance_image(vid);
local shid = build_shader(nil, bwshader, "bwshader");
image_shader(bw, shid);
resize_image(bw, 320, 480);
move_image(bw, 320, 0);
local dst = fill_surface(640, 480, 0, 0, 0, 640, 480);
show_image({bw, dst});
define_recordtarget(dst, "testout.mkv",
"container=mkv:vcodec=H264:fps=30:vpreset=8:noaudio",
{bw, vid}, {}, RENDERTARGET_DETACH,
RENDERTARGET_NOSCALE, -2);

end

local bwshader = [[
varying vec2 texco;
uniform sampler2D map_diffuse;
void main()
{

vec4 col = texture2D(map_diffuse, texco);
float f = (col.r + col.g + col.b) / 3.0;
gl_FragColor = vec4(f, f, f, 1.0);

}
]];

“Take a video capture device, scale to half display and draw a copy with a black/white shader. Combine
these into a render target that reads back every two videoframes (60fps input => 30fps output), into
a encoding frameserver and record as h264 @ 30fps in a MKV container”

Solution:

On the Horizon...

● Better Hijack libraries (xlib emulation)
● Sandboxing FUSE driver (target → chroot,

dynamic map/unmap/simulate* resources)
● 3D pipeline improvements (rather basic atm.)

Focus on stereoscopic rendering (HMDs etc.)
● Stand-alone (theme :- window manager,

console + rdesktop/vnc implementation as
frameservers, hijack libs for rest).

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 8
	Slide 9

