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A B S T R A C T

Protein structure prediction is a fundamental issue in the field of computationalmolecular biology. In this
paper, the AB off-lattice model is adopted to transform the original protein structure prediction scheme
into a numerical optimization problem. We present a balance-evolution artificial bee colony (BE-ABC)
algorithm to address the problem, with the aim of finding the structure for a given protein sequencewith
the minimal free-energy value. This is achieved through the use of convergence information during the
optimization process to adaptively manipulate the search intensity. Besides that, an overall degradation
procedure is introduced as part of the BE-ABC algorithm to prevent premature convergence.
Comprehensive simulation experiments based on the well-known artificial Fibonacci sequence set
and several real sequences from the database of Protein Data Bank have been carried out to compare the
performance of BE-ABC against other algorithms. Our numerical results show that the BE-ABC algorithm
is able to outperform many state-of-the-art approaches and can be effectively employed for protein
structure optimization.

ã 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Proteins can be regarded as the primary building blocks in all
living organisms (Söding and Lupas, 2003). It is widely acknowl-
edged that the functions of proteins are closely associated with
their structures (Freitas et al., 2010), and therefore, understanding
the structure of proteins is an important research area in biological
sciences (Joshi and Jyothi, 2003; May et al., 2014). In early 2013,
there had been approximately 81,700 protein structures deposited
in the Protein Data Bank (PDB) database (Bagaria et al., 2013). Most
of these protein structures were determined by X-ray diffraction
and nuclear magnetic resonance spectroscopy.

Due to strict laboratory requirements and heavy operation
burdens, however, there is a huge gap between the number of
known amino acid sequences and the deposited structures
(Venkatesan et al., 2013; Sousa et al., 2006). It was reported that
the number of experimentally determined structures is two orders

of magnitude behind the number of protein structures (Poole,
2011). Consequently, many researchers in computational biology
have focused their interests on predicting protein structures
from the given amino acid sequences (Dorn et al., 2014; Kim et al.,
2005). Protein structure prediction refers to the prediction of a
three-dimensional protein structure through its primary structure
information (Zhang et al., 2010). Here, a three-dimensional
configuration is constituted through arranging a sequence of basic
structure elements (i.e., a-helix, b-strand and coil).

The thermodynamic hypothesis, originally proposed by
Anfinsen (1973), states that native structures of proteins
correspond to free-energy minima. Although Anfinsen’s pioneer-
ing work has enabled researchers to pursue the native structures
withminimal free-energy values, solving such a problem is still too
difficult for realistic protein models (Kim et al., 2005). Therefore, a
critical problem in this area is how many trivial details in protein
folding mechanisms can be neglected to establish simplified
models (Bachmann et al., 2005). The HP latticemodel (Dill,1985) is
one such simplifiedmodel, inwhich all the amino acids in a protein
are classified into two categories, namely the hydrophobic and the
hydrophilic. The HP lattice model requires all the amino acids to be
located inside cubic lattices (Huang et al., 2010). An off-lattice
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generalization of the HP lattice model, namely the AB off-lattice
model, was proposed by Stillinger et al. (1993), where all
the “binarized” amino acids are linked up by unbendable but
free-to-rotate chemical bonds. The AB off-lattice model was
first applied in two dimensions and then extended to three
dimensions, partially with modifications taking implicitly into
account additional torsional energy contributions of each bond
(Bachmann et al., 2005).

Considering its advantages in terms of flexibility and accuracy
whenpresenting the underlying locations of amino acids, we adopt
the three-dimensional AB off-lattice model to describe the
mechanisms of protein folding in a relatively precise but nontrivial
manner. In doing so, the original protein structure prediction
scheme is transformed into a numerical optimization problem.
Such an optimization problem has been confirmed to be NP-hard
(Unger andMoult, 1993; Hart and Istrail, 1997; Pierce andWinfree,
2002). As an example, Fig. 1 shows the increase in the number of
local minima versus the protein sequence length (Rossi and
Ferrando, 2009). Some previous research studies have shown
that the number of local minima would increase exponentially
with the number of amino acids in a protein sequence (Stillinger
andWeber, 1984; Stillinger, 1999). This gives rise to a large number
of intelligent or heuristic computational methods for addressing
the problem (Li et al., 2013, 2014; Hsu et al., 2003; Liang, 2004;
Chen and Huang, 2006; Kim et al., 2007; Zhang and Cheng, 2008;
Zhu et al., 2009; Liu et al., 2009, 2013; Chen et al., 2011; Kalegari
and Lopes, 2013).

The artificial bee colony (ABC) algorithm is one such method.
It is a swarm intelligence algorithm inspired by the foraging
behavior of bee swarms (Karaboga and Basturk, 2007). It contains a

two-phase searching framework, i.e., local exploitation and global
exploration, during the optimizationprocess. Various studies using
different numerical benchmark tests have confirmed that the ABC
algorithm possesses competitive advantages compared to other
well-known evolutionary computation methods (Karaboga and
Akay, 2009; Krishnanand et al., 2009; Li et al., 2010). Besides that,

the algorithm framework of ABC is relatively simple, making it
possible to acquire good results at a low computational cost
(Karaboga et al., 2014).

In this paper, we present an improved balance-evolution ABC
(BE-ABC) algorithm to tackle the protein structure optimization
problem based on the three-dimensional AB off-lattice model.
The novelty behind our proposed BE-ABC algorithm is that it
utilizes convergence information during the search process
to strike a balance between local exploitation and global
exploration as well as to manipulate the search intensity in the
exploration/exploitation phases. In addition, an original overall
degradation procedure is introduced as part of the algorithm to
efficiently prevent premature convergence. Apart from comparing
this new algorithm to some competitive algorithms from the
literature (including the conventional ABC algorithm) using
the well-known artificial Fibonacci sequences, we also evaluate
the performance of BE-ABC on several actual protein sequences
listed in the PDB database (http://www.rcsb.org/). Our numerical
results indicate that BE-ABC can outperform the other approaches
in the majority of the cases tested.

The remainder of this paper is organized as follows. Section 2
briefly reviews the three-dimensional AB off-lattice proteinmodel.
Then, in Section 3, we describe the conventional ABC algorithm
and some issues associated with it. The details of BE-ABC are
presented in Section 4, followed by Section 5 where experimental
setups and results obtained through this algorithm to tackle the
protein structure optimization problem are discussed. Finally,
the conclusion is drawn and possibilities for future work are
highlighted in the last section.

2. The three-dimensional AB off-lattice protein model

This section describes how a three-dimensional protein
structure can be determined by a set of bond/torsional angle
parameters and how the corresponding free-energy function value
can be calculated.

According totheABoff-latticemodel, themaindriving forces that
contribute to protein structure formulation are the hydrophobic
interactions (Wang et al., 2013). It assumes that all kinds of amino
acidsinaproteinsequencefall intotwocategories,namely,oneswith
hydrophobic residues (represented by A particles) and the others
with hydrophilic residues (represented by B particles) (Kim et al.,
2005). Particles are linked up sequentially by unit-length chemical
bonds, and then form a chain in the three-dimensional space.
Conformation of sucha chainwithNparticleswill be determined by
(2N�5) angle parameters u1; . . . ; uN�2;b1; . . . ;bN�3

� �
1�ð2N�5Þ

uniquely, which consist of (N�2) bond angles and (N�3) torsional
angles. Locations of amino acids in the three-dimensional space are
determined by Eq. (1):

Here, the first three amino acid particles are defined in the plane of
z = 0 for the convenience of normalization. Then, locations of the
subsequent particles (i.e., when i�4) can be calculated recursively.
Specifically, the location of the ith particle will be based on the
location of the (i�1)th one (i�4). Fig. 2 schematically shows how
the location of a protein sequence “AABA” is determined by the

[(Fig._1)TD$FIG]

Fig. 1. The growth of the number of local minima vs. the increase in the protein
sequence length (redrawn from Rossi and Ferrando, 2009).

xi; yi; zið Þ ¼
ð0;0;0Þ i ¼ 1
ð0;1;0Þ i ¼ 2

cosðu1Þ; sinðu1Þ þ 1;0ð Þ i ¼ 3
xi�1 þ cosðui�2Þ � cosðbi�3Þ; yi�1 þ sinðui�2Þ � cosðbi�3Þ; zi�1 þ sinðbi�3Þ
� �

4 � i � N

:
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>>: (1)
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angle vector [u1,u2; b1], where ffA1A2B3 ¼ 90� þ u1 and
ffA2B3A4 ¼ 180� � u1 � u2.

The free-energy function consists of two parts, one represents
the potential energy of intermolecular interaction among amino
acids while the other represents the potential energy of
intermolecular interaction between the peptide chain and
surrounding solvent molecules. It can be defined as follows:

Energy u1; . . . ; uN�2;b1; . . . ;bN�3
� �� �

¼
XN�2
i¼1

1� cosðuiÞ
4

þ 4
XN�2
i¼1

XN
j¼iþ2
½r�12ij � Cðji; jjÞr�6ij �; (2)

where ji reflects the binary property of the ith particle in the
sequence, rij denotes the distance between particles i and j in the
three-dimensional space, and C(ji, jj) represents the interaction
between those two particles. If particle i is hydrophilic, then ji =1;
otherwise, ji =�1. The definitions of rij and C(ji, jj) are given in Eqs.
(3) and (4), respectively:

rij ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xi � xj
� �2 þ yi � yj

� �2
þ zi � zj
� �2r

: (3)

Cðji; jjÞ ¼
1
8
ð1þ ji þ jj þ 5jijjÞ: (4)

The first sum in Eq. (2) runs over the (N�2) angles
ui 2 ½�180�;180�� of successive bond vectors. This term is the
bending energy and the coupling is ferromagnetic, i.e., it costs
energy to bend the chain. The second term in the equation partially
competes with the bending barrier depending on the distance

between particles being nonadjacent along the chain (Bachmann
et al., 2005). Through these, one angle vector
u1; . . . ; uN�2;b1; . . . ;bN�3
� �

will represent one candidate structure
and Energy u1; . . . ; uN�2;b1; . . . ;bN�3

� �� �
is the corresponding

free-energy value, with ui;bj 2 ½�180�;180�� for any 1� i�N�2,
1� j�N�3.

In this way, the original protein structure prediction scheme is
transformed into a constrained numerical optimization problem.
Therefore, for a given protein sequence, we can find the angle
vector u1; . . . ; uN�2;b1; . . . ;bN�3

� �
that minimizes the free-energy

function Energy(	). In the following sections, wewill first introduce
the conventional ABC algorithm, and then describe the proposed
BE-ABC algorithm, both of which can be used for finding the angle
vector:

u1; . . . ; uN�2;b1; . . . ;bN�3
� �


¼ arg min
�180��ui;bj<180�

Energyð u1; . . . ; uN�2;b1; . . . ;bN�3
� �Þ� � !

;

1 � i � N � 2;1 � j � N � 3:

3. The ABC algorithm

In the preceding section, a description of the three-dimensional
AB off-lattice model has been presented. This section and the next
focus on how to find an optimal vector u1; . . . ; uN�2;b1; . . . ;bN�3

� �

with the minimal free-energy function value. In this section, we
first introduce the basics of ABC. Then, we discuss some underlying
issues associated with it.

3.1. Basics of ABC

The conventional ABC algorithm employs three kinds of “bees”:
scout bees searching for nectar sources randomly, employed bees
associated with specific nectar sources, and onlooker bees that
keep watch on the employed bees. Typically, half of a bee colony
would consist of the employed bees and the other half the onlooker
bees (Karaboga and Basturk, 2008). At an initial stage, the scout
bees are set out to randomly search for nectar sources. Soon
after, they become the employed bees responsible for sharing
information (e.g., nectar source quality and their current locations)
with other employed bees aswell as the onlooker bees bymeans of
“dancing”. The onlooker bees will then randomly select the
locations of the employed bees to exploit. It is worth pointing out
that the locations with relatively higher quality nectar sources are
more likely to be chosen by the onlooker bees for exploitation. The
employed bees, on the other hand, will also randomly share their
locations with others to explore possible new locations. If an
employed bee finds no better nectar source than one that it has
previously discovered within a certain time length, it turns into a
scout bee again. Its position will be a randomly initialized location
in the search space.

A location of a nectar source represents a feasible solution to the
problem, and the nectar quality is reflected by the objective
function value (Karaboga and Akay, 2009). Let X= (X1,X2, . . . ,XD)
represent a solution in the feasible solution space, fun(	) be the
objective function that needs to be minimized, rand(m,n) be
a random number between m and n obeying the uniform
distribution, and SN be the population size of a bee swarm. As
aforementioned, the number of onlooker bees in a bee colony is
SN/2, equaling that of the employed bees. In this work, a
solution X = (X1,X2, . . . ,XD)1�D refers to an angle vector
½u1; . . . ; uN�2;b1; . . . ;bN�3�1�ð2N�5Þ (here D =2N�5) and the
objective function fun(	) is Energy(	). At first, as many as SN/2

[(Fig._2)TD$FIG]

Fig. 2. A schematic diagram of the three-dimensional AB off-lattice protein model
for sequence AABA (N=4): (a) illustration of the effect of u1; u2½ � on the protein
structure while b1 ¼ 0 and (b) illustration of the effect of b1 on the protein
structure while u1 ; u2½ � is temporarily fixed.

B. Li et al. / Computational Biology and Chemistry 54 (2015) 1–12 3



scout bees are randomly initialized in the feasible solution space.
Eq. (5) shows how the jth element of the ith scout bee’s location
Xi is calculated:

Xj
i  Xj

min þ rand 0;1ð Þ � Xj
max � Xj

min

� �
; i ¼ 1;2; . . . ;

SN
2
;

j ¼ 1;2; . . . ;D; (5)

whereXj
min and Xj

max denote the lower and upper boundaries of this
jth element, and D denotes the dimension of a feasible solution.
Thereafter, the SN/2 scout beeswill become the employed bees and
an iterated process begins from here.

In each cycle of iteration, an employed bee will share
information with a randomly chosen companion and change
one randomly chosen element of its location vector from Xj

i to X
ji
using the following equation:

X
ji  Xj
i þ rand �1;1ð Þ � Xj

k � Xj
i

� �
; k 2 1;2; . . . ;

SN
2

	 

;

j 2 1;2; . . . ;Df g; k 6¼ i: (6)

It is necessary to note that j and k are both randomly selected
integers. When all the employed bees arrive at their new nectar
sources X
i ; i ¼ 1;2; . . . ; SN=2

� �
, they evaluate the quality of these

newnectars and then decidewhether to stay at the new location or
the previous one by means of a greedy selection strategy.
Specifically, if the ith employed bee finds that funðX
i Þ < funðXiÞ,
it will go to the new location X
i , i.e., Xi  X
i ; otherwise, it remains
at the previous location Xi.

When all the employed bees have decided on their locations, a
roulette selection strategy will direct the onlooker bees to select
“qualified” employed bees to follow. A probability index P is
calculated according to Eqs. (7) and (8) to reflect the relative
quality of nectar sources at which the employed bees are located.

PðiÞ ¼
Pi

j¼1 fitnessðjÞPSN=2
j¼1 fitnessðjÞ

; i ¼ 1;2; . . . ;
SN
2
; (7)

fitnessðiÞ ¼
1

1þ funðXiÞ
iffunðXiÞ � 0

1þ jfunðXiÞj iffunðXiÞ < 0
:

8<
: (8)

Each onlooker bee will search locally around an employed bee.
For some ith onlooker bee, a comparison is made between
a random number rand(0,1) and P(j). If PðjÞ � randð0;1Þ,
this onlooker bee will search around the jth employed bee;
otherwise, a comparison between rand(0,1) and P(j+1) will be
made. Even if P(SN/2) happened to be smaller than rand(0,1),
such a comparison process is repeated from the first employed
bee’s P(1) until a larger P(j) is found. Then, the corresponding
jth employed bee will be chosen. The following equation
(i.e., Eq. (9)) shows the location of the ith onlooker bee
Yi ¼ X1

j ; . . . ;X
k�1
j ;Yk

i ;X
kþ1
j ; . . . ;XD

j

� �
that searches locally around

the selected jth employed bee.

Yk
i  Xk

j þ rand �1;1ð Þ � Xk
m � Xk

j

� �
;m 2 1;2; . . . ;

SN
2

	 

;

k 2 1;2; . . . ;Df g;m 6¼ j: (9)

Note that in this equation, m and k are randomly selected integers
as well. When all the SN/2 onlooker bees have determined their
locations, a greedy selection strategy is implemented. This time,
however, a comparison is made between fun(Xj) and fun(Yi),
i =1,2, . . . ,SN/2. If fun(Yi) is smaller than fun(Xj), the jth employed

bee will abandon the current location Xj and go to Yi, i.e., Xj  Yi;
otherwise, the jth employed bee remains at Xj.

It is interesting to note that every time the greedy selection is
carried out, it involves one central employed bee. In the ABC
algorithm, besides the probability index P, there is another index
that is associated with each of the employed bees, namely trial,
which memorizes inefficient information that is relevant to the
employed bee. Specifically, trial(i) records the number of times an
inefficient search is performed by the ith employed bee or any
onlooker bee that searches around the ith employed bee. That is,
trial(i) is incremented by one each time when the condition
funðX
i Þ � funðXiÞ or funðYjÞ � funðXiÞ is satisfied. At the beginning,
each trial(i) is set to zero. As the iteration goes on, when trial(i)
reaches a predefined threshold Limit, the ith employed bee will
turn into a scout bee again with a randomly initialized location in
the search space (based on Eq. (5)).

The pseudo-code of the ABC algorithm is given as follows.

[TD$INLINE]
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3.2. Issues with ABC

The ABC algorithm differs from other methods of its type
(e.g., nature-inspired or evolutionary algorithms (Chiong et al.,
2010, 2012; Chiong, 2009)) in that it carries out a two-layer
searching process, executing both the exploration and exploitation
procedures in each cycle of iteration. The algorithm framework of
ABC is relatively simple, making it possible to acquire good
solutions at a low computational cost. However, there are also
several issues or limitations associated with the algorithm.

First, the exploration procedure of the conventional ABC
algorithm is deemed not “global” enough. It is notable that only
the value in one dimension of a solution vector (i.e., Xj

i in Xi for
some specific i 2 1;2; . . . ; SN=2f g) is involved in the operation
described in Eq. (6). When applied to some higher dimension
problems, this exploration procedure will gradually become
inefficient. For example, when the dimension of a problem is 10,
10% of the elements of a candidate solution will be modified
through the operation as per Eq. (6); when the dimension
increases to 100, only 1% will be changed. One may naturally
consider that making the number of elements in a candidate
solution that are involved in the exploration procedure flexible
would overcome the issue. However, we must point out that
increasing the dimensions blindly does not make much sense
because we cannot be sure of which among the changed
dimensions contributes to the change of the objective function
value.

Secondly, the search efficiency in either the exploration or
exploitationphase cannot be guaranteed. In Eq. (6) or (9), a random
number randð�1;1Þ determines how “close” a new position is to
the existing one. During the exploration phase, when we calculate
a newsearch position, if the randomnumber is very close to 0, such
a global search is essentially equivalent to a local search. In other
words, since the generation of a randomnumber randð�1;1Þ obeys
the uniform distribution, the efficiency of exploration/exploitation
thus becomes arbitrary, making the search process uncertain. If the
amplitude of such a random number can vary according to the true
search demand, the whole convergence performance can be
improved.

The third issue concerns the re-initialization phase (i.e., lines
32–37 of Algorithm 1) at the end of each iteration in the
conventional ABC algorithm framework. Having just one scout
bee at most to be generated during the re-initialization phase
limits the exploration/exploitation capability of the algorithm. In
fact, it has been confirmed in some numerical experiments that
directly discarding the scout bees will not necessarily deteriorate
the convergence performance (Karaboga and Basturk, 2008).

Apart from the three issues raised above, we note that most of
the previous studies have focused too much on trying to remedy
the ABC algorithm from an “algorithmic” perspective, thus
overlooking potentially useful convergence information that lies
within the iteration process. If such convergence information can
be effectively utilized as feedback to guide the search intensity, the
convergence performance may be far more efficient. This has been
proven by a number of related recent work (Li et al., 2013, 2014), in
which the authors incorporated such a feedbackmechanism in the
conventional ABC algorithm. According to the roulette selection
procedure of conventional ABC, Pi reflects the ith employed bee’s
relative convergence ability. If Pi is large, the number of onlookers it
would attract is expected to be large too. In other words, the
onlooker bees will know which employed bees are more
“qualified” through the values of P. However, apart from P, the
variable trial (see Algorithm 1) also contains useful convergence
information about the employed bees, and this has been neglected
by most of the aforementioned related work.

4. The BE-ABC algorithm

BE-ABC aims to overcome the issues or limitations associated
with the conventional ABC algorithm. To do so, a number of
improvements have been made in both the exploration and
exploitation procedures.

During the exploration phase, when the ith employed bee
Xi ¼ X1

i ; . . . ;X
2
i ; . . . ;X

D
i

� �
shares information with a randomly

chosen companion Xk, the new search position is calculated by
the following equation:

X
ji  Xj
g þ rand �1;1ð Þ � Xj

k � Xj
i

� �
�mðiÞ; k; g

2 1;2; . . . ;
SN
2

	 

; j 2 1;2; . . . ;Df g; k 6¼ i: (10)

where the value in the jth element Xj
i is changed to X
ji . A novel

multiplier m(i) is introduced, defined as follows:

mðiÞ ¼ trialðiÞ
trialðiÞ þ trialðkÞ: (11)

The operation previously described in Eq. (6) is also modified here
in Eq. (10) by taking another randomly chosen companion Xg into
account.

As in the conventional ABC algorithm, trial(i) of BE-ABC
records the number of times an inefficient search is performed.
However, instead of 0 the lower boundary of trial(i) is set to 1.
The upper boundary of trial, meanwhile, is set to D (i.e.,
Limit=D). Since trialðiÞ 2 1;2; . . . ;Df g, it is now feasible to have as
many as trial(i) (randomly chosen) elements in the vector Xi

changed according to Eq. (10). That is, we randomly choose trial(i)
different integers from 1 to D, and then set each of them to jwhen
performing Eq. (10).

In the exploitation phase, we add a multiplier m(i) in a similar
way as per the exploration phase. Specifically, the position of the
ith onlooker bee Yi ¼ X1

j ; . . . ;X
k�1
j ;Yk

i ;X
kþ1
j ; . . . ;XD

j

� �
is calculated

by the following equationwhen it chooses the jth employed bee Xj

to follow:

Yk
i  Xk

j þ rand �1;1ð Þ � Xk
m � Xk

j

� �
�mðjÞ;m

2 1;2; . . . ;
SN
2

	 

; k 2 1;2; . . . ;Df g;m 6¼ j: (12)

where m and k are randomly selected integers, and m(j) is defined
as follows:

mðjÞ ¼ trialðjÞ
trialðjÞ þ trialðmÞ: (13)

During the re-initialization phase at the end of each
iteration, any trial(i) that has exceeded Limit =D will be reset
to D (rather than 0). Before proceeding to the next iteration, the
average value of trial (i.e., 2

SN

PSN=2
i¼1 trialðiÞ) is compared to

aodr � D, where aodr 2 0;1ð Þ is a user-specified scalar. If aodr � D
is smaller than 2

SN

PSN=2
i¼1 trialðiÞ, the whole swarm is considered to

be not working efficiently to a degree of aodr . Then, as many as
round aodr � SN=2ð Þ (randomly selected) employed bees will be
re-initialized according to Eq. (5). At the same time, their
corresponding trial indices should be reset to 1. If
2
SN

PSN=2
i¼1 trialðiÞ is smaller, the current iteration is terminated

directly and a new iteration will begin. In this enhanced
re-initialization procedure, we do not limit it to just a single scout
bee at each iteration. Instead, we accumulate the necessary
convergence information and make the required change at once.
We call this the overall degradation strategy.
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The pseudo-code of the BE-ABC algorithm is given as follows. 5. Experimental results and discussion

We have systematically conducted a series of simulation
experiments, first on a set of artificial Fibonacci sequences (which
have been widely used as benchmarks in this field) and then on
several actual amino acid sequences. All the simulations were
carried out in a Matlab R2013a environment and executed on a
6-core Intel Xeon CPU with 64 GB RAM running at 6�3.06GHz
under Mac OS X 10.9 Mavericks.

In the first set of experiments, we investigated the
convergence performance of our proposed BE-ABC algorithm
and compared it to that of the conventional ABC algorithm. In the
first part of the first set of experiments, we focused on the
evaluation of the initial convergence rates of the ABC and BE-ABC
algorithms. We used four artificial Fibonacci sequences (see
Table 1) for this evaluation. In each of the four cases, we repeated
the simulations for as many as 30 times to ensure that the results
are statistically relevant. As already mentioned at the end of
Section 2, the two bonds of each candidate solution should be
Xmin ¼ ð�180�;�180�; :::;�180�Þ and Xmax ¼ ð180�;180�; :::;180�Þ.
User-specific parameterswere set as SN=40 and Limit ¼ D� 1 (the
latter is only for the ABC algorithm).

Figs. 3–6 show the initial convergence performances of
conventional ABC and different versions of BE-ABC (with aodr

equals 0.3, 0.5 and 0.9, respectively) based on the four benchmark
cases. From the figures, we see that the convergence rates of the
ABC algorithm gradually decrease as the number of iterations
increases. BE-ABC, on the other hand, is able to further improve its
performance when the number of iterations is higher. It is notable
that the improved performances of BE-ABC can be observed as
early as 100–200 iterations in Cases 1 and 2, while it is taking a
longer amount of time to pull away in Cases 3 and 4. This is
understandable as the dimension of the optimization problem D
increases with the length of the to-be-folded sequence N. The
overall degradation procedure of BE-ABC, which overcomes
premature convergence, therefore needs more time to take effect.

Detailed numerical results of the same comparisons can be seen
in Table 2, where “Best” denotes the lowest free-energy value
found within the given iterations, and S.D. is the standard
deviation. From the table, we observe that the best-ever results
obtained by the ABC algorithm are even worse than the average
values obtained by the three versions of BE-ABC in Cases 3 and 4. It
is interesting to note that the best results for the four cases are
always found by the BE-ABC version with aodr ¼ 0:9. Meanwhile,
the other two versions of BE-ABC have better average values. A
possible reason for thismay be that, whenaodr is set to be relatively
large, the trial values will be large too, leading to an increased
number of dimensions for the algorithm to deal with. Besides that,
m will approach 0.5 on average. Under that condition, each
employed bee would not “trust” the companions sufficiently.
When this is the case, they would more often search in a
near-random manner. Even though this adds “diversity” to the
swarm (and therefore good results can still be obtained), the
overall convergence performance may be affected.

Besides the overall degradation strategy we introduced in the
BE-ABC algorithm, some other improvements may also have
contributed to the better results obtained. For the exploration
phase, the companion g does not necessarily equal to i as in
Eq. (10), which promotes the global search capability of the bee
swarm. More importantly, we have increased the dimensions
involved in Eq. (10) according to the index of trial. The rationale is
that, we will gradually put less “trust” in some ith employed bee’s
original location Xi as trial(i) increases. For those locations, we are
more interested in finding better solutions around them than
knowing which change of the dimensions makes sense.

[TD$INLINE]
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Moreover, it is notable that mðiÞ 2 1=ðDþ 1Þ;½
D=ðDþ 1Þ� � 0;1ð Þ. When a trial(i) value becomes larger in
Eq. (11), m(i) also gets larger, which implies that we do not expect
a better location near the original location Xi to be found, as we
have already tried trialðiÞ � 1ð Þ timeswithout success aroundXi. By
having such a convergence multiplier, we are able to adjust the
global exploration efficiency in an adaptive manner. The scenarios
for the exploitation phase will be quite similar to the exploration
phase and therefore we will not discuss them here.

In the second part of the first set of experiments, we focused on
the final results of the same four artificial Fibonacci cases
mentioned above. Figs. 7–10 show the best structures obtained
for the four cases using BE-ABC, together with their corresponding
solution vectors. From the figures, we observe that the hydropho-
bic amino acids (i.e., the light-colored particles) tend to gather to
form a single hydrophobic core, which is regarded as an intrinsic
characteristic in an actual protein conformation (Kim et al., 2005;
Hansmann and Wille, 2002). The structures observed in Figs. 7–9

[(Fig._3)TD$FIG]

Fig. 3. Results (convergence curves) of the ABC and BE-ABC algorithms for Case 1,
when N ¼ 13 and MCN ¼ 1000.

[(Fig._4)TD$FIG]

Fig. 4. Results (convergence curves) of the ABC and BE-ABC algorithms for Case 2,
when N ¼ 21 and MCN ¼ 1000.

[(Fig._6)TD$FIG]

Fig. 6. Results (convergence curves) of the ABC and BE-ABC algorithms for Case 4,
when N ¼ 55 and MCN ¼ 5000.

Table 1
Details of the four Fibonacci benchmark sequences.

Cases Artificial Fibonacci sequencesa Lengths

1 ABBABBABABBAB 13
2 BABABBABABBABBABABBAB 21
3 ABBABBABABBABBABABBABABBABBABABBAB 34
4 BABABBABABBABBABABBABABBABBABABBABBABABBABABBABBABABBAB 55

a An “A” in these sequences denotes a hydrophobic amino acid and a “B” denotes a hydrophilic amino acid.

[(Fig._5)TD$FIG]

Fig. 5. Results (convergence curves) of the ABC and BE-ABC algorithms for Case 3,
when N ¼ 34 and MCN ¼ 3000.
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each represents a typical, if not perfect, hydrophobic core. In
Fig. 10, however, the hydrophobic amino acids have formed more
than one hydrophobic core. Particularly, there is a single
hydrophobic amino acid located on the edge of the whole
conformation, which indicates that there is still room for
improvement in the optimization approach we have adopted here.

In Table 3, we show the best results obtained for the four cases
by BE-ABC as well as other state-of-the-art approaches from the
literature. As can be seen, apart fromCase 1 the results produced by
the BE-ABC algorithm are, as far as we know, currently the best. In
other words, BE-ABC has achieved the best results in the literature
for three of the four Fibonacci sequences.

Having confirmed the competitiveness of BE-ABC using
benchmark cases, in the second set of experiments we used it
to optimize the structures of three amino acid sequences taken
from the real world PDB database. The detailed sequence
information is given in Table 4, where I, V, L, P, C, M, A, and G
are classified as hydrophobic particles “A” and amino acids D, E, F,
H, K, N, Q, R, S, T, W, and Y are hydrophilic particles “B”. Table 5
shows the results (i.e., the minimal free-energy values) obtained
by BE-ABC as well as other competitive algorithms from the
literature that have also been used to solve the same instances.
The optimized structures of these instances together with the
corresponding reference structures from the PDB database are
shown in Figs. 11–13.

From the figures, we can see that the directional trends
and helical characteristics in the actual structures are partly

[(Fig._8)TD$FIG]

Fig. 8. The best optimized conformation of Case 2 (N ¼ 21) produced by BE-ABC.
The corresponding solution vector obtained is {�12.2079, �79.0870, 3.1155,
�3.1035, 12.9805, 91.2166, 50.1726, �40.6936, 51.0603, �48.1108, 26.8601,
0.0720, 27.8137, �37.4555, 35.1826, �4.6902, �50.3810, �7.2643, �41.1901,
183.2030, 38.2823, 124.4475, �151.2753, �6.8236, �129.3518, 160.3034,
150.0074, -15.7557, 182.8329, �89.7776, -4.8738, -134.5553, 14.0737,
�86.5181, 4.0449, 83.9872, �20.3759}.

[(Fig._9)TD$FIG]

Fig. 9. The best optimized conformation of Case 3 (N ¼ 34) produced by BE-ABC.
The corresponding solution vector obtained is {12.5027, �83.8041, 12.2647,
�103.3954, 7.8085, �89.8157, �18.7880, 94.4761, 10.2527, 90.9340, �21.9311,
�64.2902, �17.6012, 67.2503, 9.0795, 75.4116, �2.9877, �99.5518, �19.9625,
37.5414, �38.6394, 8.7659, �22.6722, �55.7635, �5.7866, �53.6480, �2.1783,
59.9339, 141.2267, �7.8860, �41.9082, 41.3595, �14.9951, 27.7694, 48.3497,
�163.7672, 15.6816, �156.6267, �167.6175, �34.4729, �5.0923, �50.2454,
�142.5524, 141.2369, �148.9240, 102.5462, �165.9768, 141.5774, 164.2744,
�129.0713, 2.1854, �167.5684, 105.9443, 22.3075, 134.2885, 34.6981,
�36.5549, 60.0071, �169.9597, 44.4379, �142.2840, �50.4247, 166.9028}.

Table 2
Results (best, average and standard deviations) based on the free-energy values optimized byABC and BE-ABC. The bold values denote the best results obtained for each of the
four cases.

Lengths MCN ABC BE-ABC (aodr= 0.3) BE-ABC (aodr =0.5) BE-ABC (aodr= 0.9)

Best Average S.D Best Average S.D Best Average S.D Best Average S.D

13 1000 �2.9877 �2.03978 0.435489 �3.16699 �2.38128 0.328201 �3.33875 �2.78384 0.298254 �3.3945 �2.81963 0.382691
21 1000 �5.83668 �4.44233 0.70463 �6.18966 �5.26473 0.586174 �6.12403 �5.58228 0.466589 �6.90646 �5.26744 0.760577
34 3000 �7.67871 �6.8345 0.689111 �9.9171 �8.19061 1.305533 �9.9458 �8.72258 0.893539 �10.4224 �8.32391 0.922269
55 5000 �13.9295 �12.175 1.064592 �16.9947 �14.6346 1.214869 �17.8619 �14.061 1.38714 �18.8385 �14.4556 1.559396

[(Fig._7)TD$FIG]

Fig. 7. The best optimized conformation of Case 1 (N ¼ 13) produced by BE-ABC.
The corresponding solution vector obtained is {7.6668, �83.4462, 13.1048,
0.5444, 29.1685, �47.9089, 2.7660, �31.0285, �31.2991, �46.3870, 0.2775,
9.0373, �29.5798, �116.2101, 160.5060, 0.8725, 129.3670, 24.4896, 113.3636,
�161.6900, 98.6878}.

8 B. Li et al. / Computational Biology and Chemistry 54 (2015) 1–12



revealed in the conformations optimized by BE-ABC. Specifically,
thea-helices at the bottom of the structurewe optimized in Fig.12
match the actual ones on the right of the same figure. As
aforementioned, hydrophobic residues (see the light-colored
particles in Figs. 11–13) tend to form a core with a minimum
surface area that encounters water molecules. Therefore, such a
hydrophobic core is often surrounded by hydrophilic residues.
This can be easily observed in the structures we optimized using
BE-ABC.

Despite the similarities, we notice that there are also
some variations between the optimized structures and their
corresponding references. Two possible reasons would be: (1) due
to the complexity of the optimization model, there are difficulties
in finding the “true” global optimum; or (2) the AB off-lattice
model we adopted in this work does not fully reflect the
characteristics of the amino acids in a sequence. Nevertheless,
the results in Table 5 indicate that BE-ABC is the best performing
algorithm in the literature based on the instances considered. This
points to the likelihood that the simplified AB off-lattice model
might not be up to the task for real protein structure optimization.
According to the AB off-lattice model, all the amino acid residues
are simply classified into the hydrophilic and hydrophobic groups.
This could potentially neglect the underlying differences within
either of the two groups.

6. Conclusion and future work

In this paper, we have applied the BE-ABC algorithm to optimize
the structures of protein in a three-dimensional space based on the
AB off-lattice model. Our simulation results clearly demonstrated
that BE-ABC can outperform other state-of-the-art approaches
from the literature. It is therefore an effective and viable option for
the protein structure optimization problem.

Despite the positive results, we hope to further enhance the
performance of our approach on sequences withmore amino acids
(e.g., >100). Our future work will therefore examine real-world
cases with longer sequences from the PDB database. Besides that,
wewill also investigate how the folding path of a protein sequence
can be identified on the basis of the AB off-lattice model.

Table 3
Results of the lowest free-energy values for the four Fibonacci sequences based on the AB off-lattice model achieved by conformational space annealing (CSA) (Kim et al.,
2005), improved tabu search (I-TS) (Zhang and Cheng, 2008), genetic algorithm-based tabu search (GATS) (Zhang et al., 2010), energy lanscape paving (ELP) (Hansmann and
Wille, 2002), a heuristic algorithm (HA) proposed in Chen and Huang (2006), the pruned-enriched rosenbluth method (PERM) (Hsu et al., 2003), multicanonical (MUCA)
sampling (Bachmann et al., 2005), statistical temperature molecular dynamics (STMD) simulation (Kim et al., 2007), chaotic artificial bee colony (C-ABC) (Wang et al., 2013),
and our BE-ABC. The bold values denote the best results obtained for each of the cases.

Lengths CSA I-TS GATS ELP HA PERM MUCA STMD C-ABC BE-ABC

13 �4.9746 �6.5687 �6.9539 �4.9670 �4.9746 �4.9616 �4.9670 �4.9667 �7.0025 �6.99612
21 �12.3266 �13.4151 �14.7974 �12.3160 �12.0617 �11.5238 �12.2960 �12.3176 �14.9570 �15.6258
34 �25.5113 �27.9903 �27.9897 �25.4760 �23.0441 �21.5678 �25.3210 �25.4932 �28.0055 �28.0516
55 �42.3418 �41.5098 �42.4746 �42.4280 �38.1977 �32.8843 �41.5020 �42.4503 �42.2769 �42.5814

[(Fig._10)TD$FIG]

Fig.10. The best optimized conformation of Case 4 (N ¼ 55) produced by BE-ABC.
The corresponding solution vector obtained is {32.9181, �29.7317, �93.7656,
14.6841, 74.8821, 51.6619, 2.2924, 34.3283, 11.9352, 146.1874, 28.0960, 3.7023,
30.0023, 43.9485, �161.3024, �10.9323, �50.8058, 31.5991, 15.2312, �16.9526,
�24.1137, �46.1494, 6.1394, �12.6895, 73.3660, �22.3698, 18.2513, �39.8827,
�24.5777, �8.1067, �21.4569, �2.4041, �9.5265, �31.4732, 1.6096, �50.7624,
�12.8856, �12.3743, 3.6093, �51.7533, �19.3243, 28.2684, 74.8874, 0.9731,
�39.1818, 11.0230, �2.2760, 84.4138, 22.8209, �36.5379, �2.7165, �38.9390,
�45.4530, �143.6594, 131.0488, 158.0694, �132.9086, �153.4302, �20.5606,
�129.2831, �78.4770, �26.5944, 124.1287, �148.7223, �61.3618, �159.9567,
�138.5644, �146.9238, 144.6585, 28.5928, �72.7670, 39.4824, �63.6328,
19.6244, 119.3114, 13.1794, 22.0522, �165.3591, �56.1132, 173.1622,
�101.1326, �102.2982, �162.3636, 94.3930, 103.8587, 47.7445, 113.9849,
�10.7027, 95.6131, 50.7044, 24.3676, �74.7677, 34.8914, �62.5905, 20.6457,
129.5437, �132.0079, �156.8942, �101.8609, 12.3561, �112.4338, �114.3754,
�24.9036, 56.3568, �46.5996}.

Table 4
Details of the three actual amino-acid sequences taken from the PDB database.

IDs in the PDB Lengths Amino acid sequences

2KPA 26 VSVDPFYEMLAARKKRISVKKKQEQP
1AGT 38 GVPINVSCTGSPQCIKPCKDQGMRFGK

CMNRKCHCTPK
1AHO 64 VKDGYIVDDVNCTYFCGRNAYCNEEC

TKLKGESGYCQWASPYGNACYCYKLP
DHVRTKGPGRCH

Table 5
Results of the lowest free-energy values for the three actual sequences based on the
AB off-lattice model achieved by tabu search (TS) (Cheng, 2009), improved particle
swarm optimization (I-PSO) (Chen et al., 2011), genetic and tabu algorithmbased on
matrix coding (GTAMC) (Mansour, 2011), GATS (Zhang et al., 2010;Wang and Zhang,
2011), and our BE-ABC. The bold values denote the best results obtained for each of
the instances.

IDs in the PDB TS I-PSO GTAMC GATS BE-ABC

2KPA – �15.9988 – �25.10033 �25.2558
1AGT �44.2656 – �46.0002 �46.0842 �46.0852
1AHO – – – �69.02568 �69.0329
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Fig. 12. The best optimized conformation of sequence 1AGT (N ¼ 38) produced by BE-ABC. The corresponding solution vector obtained is {�159.1757, �123.8889,
49.0744, �54.2900, 96.1417, �168.8232, 28.1643, 136.8395, 35.0971, �37.9098, 56.3939, 6.5575, �1.6387, �67.0057, 52.1627, 172.8442, �30.4241, 80.6226, �12.2057,
�45.4716, 90.0747, �22.6611, 33.8601, �54.7977, 31.5047, 6.2813, �26.5577, 25.6926, �15.4802, �32.1315, 79.7941, 31.6565, �10.4112, 33.3439, 109.0533, �22.4204,
�119.8427, �134.5288, 46.8502, �142.5502, 146.0435, �15.5690, 12.3793, �19.1374, 155.3489, 36.2184, 167.5879, �113.8370, �161.8680, 103.6337, 41.4397, 124.8985,
26.1120, �12.9655, �59.2186, 168.0462, 105.4386, 178.5692, �72.8980, �117.6981, 0.1203, 56.9996, 77.5705, 122.9126, 18.5409, 178.3979, �76.4148, �104.2565,
156.6988, �22.4605, 102.0713}.

[(Fig._11)TD$FIG]

Fig. 11. The best optimized conformation of sequence 2KPA (N ¼ 26) produced by BE-ABC. The corresponding solution vector obtained is {�22.7424, �80.0902,
76.3534, 4.8892, �86.1070, 24.4349, 21.9903, 30.0801, �88.8698, 59.6314, �7.9971, �15.6746, 25.0499, 38.1891, 64.2999, �59.3833, 23.9920, 18.6899, 8.7974,
25.4071, �22.0356, 17.0545, 19.6467, 4.6467, �115.0161, �177.9393, �110.7985, �24.6290, 122.7183, 64.5351, 28.3843, 6.1887, 54.9119, 78.6892, 116.9885, �147.4637,
�120.5322, �47.2029, 131.3740, �25.9105, 79.7791, 138.4228, 33.6498, 19.7552, �77.7034, �78.3150, �112.8933}.
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19.3226, 86.4712, �37.0268, 24.5166, �121.9576, 13.1408, �77.5472, 4.1816,
�69.8191, 47.4154, �33.5796, �61.4344, 25.1123, �75.5757, 55.3962, �64.1814,
�35.8398, �71.0221, 18.2894, 6.3650, �17.9972, 35.4234, 0.9697, 15.3320,
�87.0670, �161.7148, �89.1391, �5.9163, �65.6728, 21.2678, �41.5493,
80.0509, 29.4580, 56.9595, 10.4166, 59.7078, �0.4628, 0.1780, �6.9465,
148.6903, �4.3582, �43.8475, �1.0512, 49.2617, �39.3322, �36.3753,
�31.9670, 5.5391, 120.4185, �44.8485, �43.1804, �17.0773, �26.8270,
�101.7561, 167.2774, 130.2361, �29.4028, �26.9830, 39.3165, �157.0969,
91.0763, 51.6501, 34.4031, �125.1931, �142.0274, 33.5263, 60.1433, 173.7315,
�129.8505, 145.2256, 178.7261, 52.7165, 7.7540, �131.9938, �126.9691,
�162.3023, �44.5222, 9.3497, 118.9008, �25.3225, 73.8177, �8.8686,
�103.5647, �76.7712, 169.9265, �119.2092, �26.4241, 47.3956, �176.2411,
42.6991, �170.0001, �18.0115, 115.4736, �7.1148, �65.1082, �53.0003, 51.3744,
�17.0817, 70.2470, 153.5602, 38.3858, 102.2225, 147.2370, 109.4134, �152.9103,
�20.3817, �121.5138, �60.8179, �50.2070, 131.9375, �9.4940, �123.9506,
�19.6806}.
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