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Predicting the secondary structure of protein has been the focus of scientific research for decades, but it
remains to be a challenge in bioinformatics due to the increasing computation complexity. In this paper,
AB off-lattice model is introduced to transforms the prediction task into a numerical optimization
problem. Artificial Bee Colony algorithm (ABC) is an effective swarm intelligence algorithm, which works
well in exploration but poor at exploitation. To improve the convergence performance of ABC, a novel
internal feedback strategy based ABC (IF-ABC) is proposed. In this strategy, internal states are fully used
in each of the iterations to guide subsequent searching process, and to balance local exploration with
global exploitation. We provide the mechanism together with the convergence proof of the modified
algorithm. Simulations are conducted on artificial Fibonacci sequences and real sequences in the
database of Protein Data Bank (PDB). The analysis implies that IF-ABC is more effective to improve
convergence rate than ABC, and can be employed for this specific protein structure prediction issues.

& 2013 Elsevier Ltd. All rights reserved.
1. Introduction

The Central Dogma of genetics demonstrates how genetic
information flows from DNA to mRNA and then to amino acids.
However, the mechanism of direct translation from amino acids to
functional structure has not been thoroughly revealed after
decades of intensive work (Gozuacik and Adi, 2004). On the way
to construct a functional structure, protein secondary structure
folding plays an essential role, which is valuable in determining
sub-cellular locations and improving the sensitivity of fold recog-
nition methods (Montgomerie et al., 2006). Therefore, protein
secondary structure prediction has become a routine part of
protein analyses and annotation in recent years (Pollastri et al.,
2007). X-ray diffraction analysis method and nuclear magnetic
resonance method (NMR) are two widely used methods to obtain
the secondary conformation of protein (Chiu et al., 2005). Most of
the known conformations are obtained by them and stored in the
Protein Data Bank (PDB) database (Murzin et al., 1995). However,
because of the strict experimental condition requirement,
researchers are motivated to shift their interest towards the
establishment of effective models for simulation (Kim et al., 2005).
ll rights reserved.
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There are many models or methods intended for protein
secondary structure prediction. For example, Jpred (Cole et al.,
2008), PSI-PRED (McGuffin et al., 2000), and PHD-PSI (Przybylski
and Rost, 2002) are methods based on neural networks. Context-
based secondary structure potential approach (CSSP) (Li et al.,
2013), and some other statistical classification methods, such as
K-nearest neighbor method (Joo et al., 2004), support vector
machines (SVM) (Zhou et al., 2008), and hidden Markov model
(Malekpour et al., 2009) have been well investigated. Since
Christian Anfinsen proposed that the native states of proteins
reside in the free-energy minima (Anfinsen, 1973), the thermo-
dynamic hypothesis has been widely accepted as a new “Central
Dogma” in the field of protein folding. Stillinger et al. (1993)
established AB off-lattice model, where each amino acid is treated
as a hydrophobic or hydrophilic particle. Particles are linked up by
chemical bonds, which are unbendable but free to rotate. In this
model, particles prefer locations with corresponding potential
energy values as low as possible. In this way, protein secondary
structure folding process is transformed into a numerical optimi-
zation problem. Unfortunately, it is not easy to enumerate global
optimum in this way, especially in terms of high-dimension cases,
which is considered to be a NP-complete problem (Berger and
Leighton, 1998), i.e., unsolvable in polynomial time.

To avoid an inefficient enumerating process, researchers inves-
tigated evolutionary algorithms such as genetic algorithm (GA)
(Holland, 1992), and differential evolution algorithm (DE) (Storn
and Price, 1995). GA was initially proposed to simulate the
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Fig. 1. Schematic diagram of AB off-lattice model on a 2D surface.
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self-adaptation behavior of natural systems. Guided by the selec-
tion and crossover process for self-adaption, GA is capable of
global search and has strong robustness, even without any given
knowledge of the system. The major difference of DE from GA is its
selection operation for crossover and mutation, which contribute
to higher convergence rate and thus improve the poor local
searching ability of GA. Swarm intelligence algorithms are another
focus of research. Ant colony optimization algorithm (ACO) (Clark,
2007), particle swarm optimization algorithm (PSO) (Kennedy
and Eberhart, 1995), and artificial bee colony algorithm (ABC)
(Karaboga, 2005) are three typical examples. Inspired by the social
behavior of bird flocking, PSO gives consideration to both local and
global search abilities and is imperfect in its ability to overcome
premature convergence. ABC is motivated by the foraging behavior
of bee swarms, in which both local exploitation and global
exploration are conducted in iterations. It works well in global
exploration but is poor in the exploitation process. Many improve-
ments have been made for ABC in different ways. Manuel and Elias
(2013) adopt a modified ABC for FIR filter. In Xiang and An (2012),
an efficient and robust ABC (ER-ABC) is proposed. Gao and Liu
(2011) introduce Rosenbrock's rotational direction method to
revise ABC for accurate numerical optimization. Vector-evaluated
strategy is implemented in VE-ABC (Omkar et al., 2011). In Kang
et al. (2013), the initial population of bee swarm is produced
by both chaotic theory and opposition-based learning method.
Viewing all those improvements made for ABC, we find that few
researchers have paid adequate attention to the utilization of
previous convergence states as feedback information to guide
subsequent searching process. Moreover, as stated in our earlier
work (Li and Li, 2012), the balance between local exploitation and
global exploration should not be ignored during the iterations
when using ABC. Therefore, we propose a novel internal feedback
information based artificial bee colony algorithm (IF-ABC) for
better converging performance. Internal feedback strategy (IFS)
mainly works to reflect the states of convergence performance and
then to guide the subsequent searching process. By designing such a
self-adaptive system, fewer user-specified parameters or initial values
are set in IF-ABC compared with other evolutionary algorithms.

Many algorithms have been applied on AB off-lattice model for
the specific protein secondary structure optimization problems
(Hsu et al., 2003; Kim et al., 2005; Shmygelska and Hoos, 2005;
Zhang and Lin, 2006; Liu et al., 2005, 2010; Wang and Zhang,
2009; Cutello et al., 2007; Lin and Zhu, 2008). However, previous
work has seldom rigorously considered the accuracy of this off-
lattice model and the effectiveness of the optimization results.
In other words, it is still not clear if the reported “optimal” structures
are indeed the ground states in the seemingly complicated energy
landscape. Therefore, we conduct simulations and compare the result
of IF-ABC with those of some other algorithms. And some in-depth
analyses are also made regarding the similarity of such optimized
conformations and real structures in the PDB database.

The remainder of this paper is organized as follows. In Sections
2 and 3, basic principle of AB off-lattice model and artificial bee
colony algorithm are given. Section 4 is an introduction to the
mechanism of IF-ABC. In Section 5, we conduct simulations and
release the optimal results. In this section, comparisons are made
on both artificial Fibonacci sequences and real sequences.
In Section 6, we make a generalization of the performance of
IF-ABC. The complete convergence proof of the algorithm is
provided in Appendix.
2. Principle of AB off-lattice model

AB off-lattice model, also known as toy model in bioinfor-
matics, has been widely used to describe the protein secondary
structure folding process for decades (Stillinger et al., 1993). It is
based upon the viewpoint that the native structure of a protein
corresponds to the very structure among possible ones with the
lowest free energy value. This energy consists of two parts, one is
the intermolecular interaction among protein atoms, and the other
is the intermolecular interaction between proteins and surrounding
solvent molecules (Anfinsen, 1973).

In this model, 20 kinds of amino acids (basic building blocks of
proteins) are classified into two categories, named hydrophobic
residues and hydrophilic residues. Fig. 1 shows the schematic
diagram of this model in 2D surface, where hydrophobic residues
and hydrophilic residues are represented by A and B particles,
respectively. Particles are linked up by chemical bonds and thus
form a non-directional chain. The conformation of any chain with
n particles is specified by the (n�2) bend angles ½θ2; θ3;…; θ7� as
shown in Fig. 1. It is arbitrarily set that θi∈½�180∘;180∘Þ for each
bend angle in this model. Obviously, θi∈½�180∘;0∘Þ means a
counterclockwise rotation trend in the chain, and θi∈ð0∘;180∘Þ
indicates a clockwise rotation trend.

The free-energy function Energy of a sequence of amino acids is
defined by

Energy¼ ∑
n�1

i ¼ 2

1� cos θi
4

þ 4 ∑
n�2

i ¼ 1
∑
n

j ¼ iþ2
½rij�12�Cðξi; ξjÞrij�6�: ð1Þ

The property of the ith individual particle is reflected by ξi.
If residue i is hydrophilic, then ξi¼1; otherwise, ξi¼�1. rij denotes
the distance between particles i and j in the chain

rij ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ∑

j�1

k ¼ iþ1
cos ∑

k

l ¼ iþ1
θl

 !" #2
þ ∑

j�1

k ¼ iþ1
sin ∑

k

l ¼ iþ1
θl

 !" #2vuut ð2Þ

Cðξi; ξjÞ represents the interaction between two particles:

Cðξi; ξjÞ ¼ 1
8ð1þ ξi þ ξj þ 5ξiξjÞ: ð3Þ

It is easy to show that, coefficient Cðξi; ξjÞ equals to 1 for AA
pairs, 0.5 for BB pairs, and �0.5 for AB or BA pairs. It is based on
the assumption that correlations between AA particles should be
strongly enhanced, while BB particles are weakly encouraged;
otherwise it results in a weak repulsion.

In this way, the protein secondary structure prediction task is
transformed into a numerical optimization problem through AB
off-lattice model. Fig. 2 sketchily depicts a wireframe parametric
surface as well as the corresponding contour plot for a sequence of
ABBA. Note that the ground state is approximately �0.036, and
the corresponding global optimal solution ½�86:22;�85:40� is
located in a narrow “valley”, which is not easy to be obtained.
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Fig. 2. Mesh plot of potential energy values for sequence ABBA in AB off-
lattice model.
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Fig. 3. Mean of best free-energy values for sequence ABAAB (N ¼ 5).
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3. Principle of artificial bee colony algorithm

The algorithm of ABC implements a process of iterative opti-
mization, during which the bee colony consists of three groups:
employed bees, onlooker bees, and scout bees (Karaboga, 2005).
Let Xi ¼ ðX1

i ;X
2
i ;…;XD

i Þ ði¼ 1;…; SNÞ represent a position in the
food source searched by the ith employed bee or its corresponding
onlooker bee. Here, a position implies a possible solution to the
optimization problem and obviously, the number of employed
bees is SN. Onlooker bees work to search locally around their
corresponding employed bees, which means that the number of
onlookers is also SN. Any employed bee and its corresponding
onlooker bee who cannot find any better position in a certain
number of iterations will be replaced by a scout bee.

At first, all the employed bees set out to explore randomly in
the searching space (i.e., the feasible solution space). Particularly,
the process to initialize the jth element of the ith solution Xi is
described as below

Xj
i←Xj

min þ randð0;1ÞðXj
max�Xj

minÞ; j¼ 1;2; :::;D; ð4Þ

where Xj
min and Xj

max denote the lower and upper boundaries of
this jth element, and D denotes the dimension of any Xi.

In each of the iterations, an employed bee executes a crossover
and mutation process to share information with one randomly
chosen companion and search in the new position as follows:

Xj
i←Xj

i þ randð0;1ÞðXj
k�Xj

iÞ ð5Þ

In this equation, the ith employed bee exchanges information
with the kth one in its jth element. It is noted that only one
element is changed for each of the employed bees during this
process. Afterwards, greedy selection strategy is implemented.
If the refreshed position is better (i.e. the corresponding free-
energy value is lower), the previous position is abandoned;
otherwise, the employed bee remains at its previous position
and the crossover process mentioned above is of no avail.

Then, each of the onlookers randomly chooses to exploit or not
around its corresponding employed bee's position with probability
defined as follows:

Pi¼ objðXiÞ
∑SN

j ¼ 1objðXjÞ
; ð6Þ

where objð⋅Þ denotes the objective function value. It is obvious that
higher objðXiÞ enjoys higher probability of being selected by the
corresponding onlooker bee. Such approach is known as the
famous roulette selection strategy.
These onlooker bees search around corresponding employed
bees by Eq. (5) again. Here, kth companion is still randomly
selected. Afterwards, greedy selection strategy is applied on
onlooker bees in a similar way.

For each of the employed bees, together with the correspond-
ing onlooker bee, we let the parameter trial represent the number
of inefficient searching iterations before better position is derived.
If the ith employed bee or the ith onlooker bee finds a better
position, trialðiÞ is set to zero; otherwise, it is added by one for the
next iteration. A prior parameter limit is arbitrarily set as a
threshold. If trialðiÞ≥limit, the current ith position for the ith
employed bee to explore or the ith onlooker bee to exploit should
be abandoned. Meanwhile, a scout bee takes this place with
randomly initialized position by Eq. (4).

The pseudo-code of ABC for constrained optimization problems
is given below. Note that MCN refers to the maximum iteration
number.
1
 Initialize solution population using Eq. (4)

2
 Set iter¼ 1

3
 repeat

4
 while iter≤MCN, do

5
 generate positions for employed bees by Eq. (5)

6
 evaluate and greedily select employed bees

7
 if position is improved, do

8
 trialðiÞ←0

9
 end if
10
 calculate Pi by Eq. (6)

11
 if Pi4randð0;1Þ, do

12
 generate positions for onlooker bees by Eq. (5)

13
 evaluate and greedily select onlookers

14
 if position is improved, do

15
 trialðiÞ←0

16
 else

17
 trialðiÞ←trialðiÞ þ 1

18
 end if

19
 end if

20
 if trialðiÞ≥limit, do

21
 initialize the position by Eq. (4)

22
 end if

23
 record current best solution

24
 iter←iter þ 1

25
 end while

26
 end repeat

27
 output global optimum
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4. Principle of internal feedback based artificial bee
colony algorithm

The algorithm of IF-ABC mainly differs from original ABC in the
utility of internal feedback information trialðiÞ and in the removal
of roulette selection strategy.
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Fig. 4. Mean of best free-energy values for sequence ABBBB (N ¼ 5).
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Fig. 5. Mean of best free-energy for sequence AABABB (N¼ 6).
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Fig. 6. Mean of best free-energy values for sequence AAABAA (N¼ 6).
Notice that the adoption of roulette selection strategy and the
employment of scout bees are the two primary factors to affect
the convergence performance (Li and Li, 2012) of ABC. Scout bees
are employed to avoid getting trapped in local optimums by the
initialization of their positions, which is not adequately efficient
for convergence performance in subsequent iterations. Roulette
selection strategy works to evaluate current corresponding posi-
tions of employed bees (see Eq. (6)). This strategy will greatly
guide the subsequence convergence performance and thus is
crucial. In fact, for some engineering optimization problems, it is
inevitable to be trapped in local optimums. The situation could be
even worse if the local optimum found is significantly superior,
which is often regarded as “super individual” in a swarm. Under
such circumstances, Pi of any other employed bee is much lower,
which prevents the corresponding onlooker bee to follow it.

However, the searching competence of an employed bee should
not be evaluated by the quality of its current position (i.e. the
objective function value), but by the efficiency of current search,
i.e., by trial. Although roulette selection strategy significantly
contributes to improve the convergence speed, it should be noted
that the primary concern is to avoid prematurely trapped in local
optimums for some long-term numerical optimizations. In con-
clusion, we replace roulette selection strategy by the parameter
trial to reveal internal convergence states so as to avoid premature
convergence.
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Fig. 7. Mean of best free-energy values for sequence ABBABBABABBAB (N ¼ 13).
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In the crossover and mutation process of IF-ABC, the number of
coordinates to change in Xi is considered to be a variable, but not
fixed to be 1. Eq. (5) is implemented on employed bees for trialðiÞ
times, where 1≤trialðiÞ≤D is an integer. Same as ABC, for the ith
employed bee and its corresponding onlooker, if neither of them
finds a better solution, then trialðiÞ is added by 1; otherwise, trialðiÞ
is reset to be 1 (but not 0). If trialðiÞ is greater than D, then the
current ith position Xi should be initialized by Eq. (4).

For each of the onlooker bees, only one coordinate should be
changed during the exploitation process, because multi-crossover
process contributes little to local searching ability. The exploitation
ability for onlooker bees can be enhanced by introducing a
convergence factor γ in the crossover process,

Xj
i←Xj

i þ γðiÞrandð0;1ÞðXj
k�Xj

iÞ; ð7Þ
where

γðiÞ ¼ exp � trialðiÞ�1
� � ln 10

D�1

� �
ð8Þ

As shown in Eq. (8), γðiÞ decreases exponentially to 0.1 as
trialðiÞ approaches D. Remark that this boundary can be chosen as
any real number if we modify Eq. (8). But for the onlooker bee
with large trialðiÞ, it is assumed that the locally exploitation
process should be intensified for improvement. In particular, when
trialðiÞ ¼ 1, we have γðiÞ ¼ 1, as is the case in original ABC.

To briefly conclude, trial in IF-ABC works to manipulate the
scales of local exploitation accuracy and to guide crossover and
mutation behavior in global exploration process.

The pseudo-code of IF-ABC for numerical optimization is given
below. Again, let MCN represent the maximum iteration number.
Table 1
Mean free-en

Artificial Se

A

A
A

ABBA
BABABBAB

Table 2
Minimal ener
Swarm Optim

Artificial Se

ABBABBAB
BABABBAB
ABBABBAB
1.
 Initialize solution population by Eq. (4)

2.
 Set any trialðiÞ ¼ 1, and iter¼ 1

3.
 repeat

4.
 while iter ≤MCN, do

5.
 for k¼ 1 : trialðiÞ, do

6.
 crossover and mutate by Eq. (5) for Xj

i

7.
 end for

8.
 generate position for each employed bee

9.
 evaluate fitness values and adopt greedy selection
10.
 if ith position is improved, do

Fig. 9. The best optimized conformations for Fibonacci sequence (N ¼ 13) obtained
11.
 trialðiÞ←1

by IF-ABC. The optimal solution X is {85.4499, 85.9482, �49.7703, 84.7718,
12.
 end if
ergy values of artificial sequences calculated by ABC and IF-ABC.

quences N
Energy derived by ABC
(value of SN/number of iterations)

20/1000 40/1000

BAAB 5 �1.3666 �1.3752
ABBBB 5 �0.0610 �0.0643
ABABB 6 �1.2991 �1.3176
AABAA 6 �3.5287 �3.4779
BBABABBAB 13 �1.3135 �1.4620
ABBABBABABBAB 21 �2.3600 �2.4369

gy values of artificial sequences obtained by algorithms Pruned Enriched Rose
ization (E-PSO), improved Tabu Search Algorithm (I-TS) and IF-ABC.

quences N PERM

ABBAB 13 �3.2167
ABBABBABABBAB 21 �5.7501
ABBABBABABBABABBABBABABBAB 34 �9.2195

8

13.
60/10

�1.37
�0.06
�1.33
�3.56
�1.49
�2.57

nbluth Met

GAA

�3.29
�6.18

�10.59

7.0443, �83
generate positions for onlooker bees by Eq. (5)

14
 evaluate and greedily select onlookers

15
 if position is improved, do

16
 trialðiÞ←1

17
 else

18
 trialðiÞ←trialðiÞ þ 1

19
 end if

20
 end if

21
 if trialðiÞ4D, do

22
 initialize ith position by Eq. (4)

23
 end if

24
 memorize current best solution

25
 iter←iter þ 1

26
 end while

27
 end repeat

28
 output global optimum
The convergence proof of IF-ABC is given in Appendix.
Energy derived by IF-ABC
(value of SN/number of iterations)

00 20/1000 40/1000 60/1000

62 �1.3746 �1.3763 �1.3765
51 �0.0639 �0.0652 �0.0654
32 �1.3134 �1.3298 �1.3473
21 �3.4610 �3.5455 �3.6230
42 �1.4200 �1.6735 �1.7570
23 �2.5723 �2.6946 �2.8991

hod (PERM), Genetic-Annealing Algorithm (GAA), Evalutionary Particle

E-PSO I-TS IF-ABC

40 �3.2941 �3.2941 �3.2941
38 �6.1980 �6.1953 �6.1980
92 �9.8341 �10.7070 �10.8060

.9978, 111.9129, �83.0073, 86.8928, 84.9553, �59.6743}.



Fig. 11. The best optimized conformations for Fibonacci sequence (N ¼ 34)
obtained by IF-ABC. The optimal solution X is {�20.3009, 32.7677, �99.1187,
8.9153, �25.6173, 23.3967, �111.4206, 95.4252, 6.6239, �54.4829, �103.5475,
�17.8249, �20.5841, 25.7852, �111.2621, 99.8364, 60.9015, 22.8205, 35.5087,
�112.0200, 94.7888, 6.6231, �53.2306, �103.5627, �18.3558, �22.9026,
91.2604, �111.9488, 29.3274, �25.5453, 19.4017, 100.9575}.

Table 3
Minimal energies of real sequences obtained by different algorithms.

ID in PDB N Current best Energy Energy by IF-ABC

1AGT 38 �19.6169 (Liu et al., 2005) �21.4242
1AHO 64 �21.0853 (Zhou and Han,2010) �21.1740
2EWH 98 �71.2849 (Pu, 2011) �71.4336
2YUX 120 �44.3218 (Pu, 2011) �44.4124

Fig. 10. The best optimized conformations for Fibonacci sequence (N ¼ 21)
obtained by IF-ABC. The optimal solution X is {�29.4339, 111.0289, �26.9311,
20.8178, �10.7849, �95.0706, 111.3693, �25.7034, 20.7508, 17.5707, 103.5723,
54.6928, �6.8404, �95.3601, 111.3307, �25.0472, 19.8815, �12.8529, �73.1896}.
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5. Experimental results and discussions

In this section, artificial Fibonacci sequences and natural
sequences are optimized to evaluate the performance of IF-ABC.
All simulations are implemented in MATLAB R2010a and executed
on an Intel Core 2 Due CPU with 2 GB RAM running at 2.53 GHz.
Each of these independent experiments is repeated 30 times with
randomly initialized condition.
Fig. 12. The best optimized conformations for real sequence 1AGT (N ¼ 38)
obtained by IF�ABC. The optimal solution X is {10.0916, �54.5696, �59.6367,
�111.9667, 96.8956, �111.0667, 102.3737, �111.3657, 51.4997, �111.6428, 52.0523,
�110.4207, �4.3237, 58.2475, 113.2335, �10.6438, 32.4196, �27.0605, �48.9497,
�37.1731, �13.6479, �17.7006, �21.9329, 50.3850, 27.5618, �111.5683,
�59.7295, �23.1472, �30.4261, �35.7326, 18.5813, 40.6059, 107.2235, 26.4475,
�112.5491, 98.7160}.

Fig. 13. The best optimized conformations for real sequence 1AHO (N¼ 64)
obtained by IF-ABC. The optimal solution X is {�21.0738, 17.9175, �6.8557,
109.7314, 62.0309, 1.4798, 2.0054, 21.2303, �36.3457, �110.2031, �27.3009,
�26.2134, 5.5253, �27.2675, 17.2650, �13.6752, �28.5866, �4.5926, �0.1481,
111.5534, �102.9188, �51.2313, 2.4086, �59.1483, �101.7800, 44.5400, 18.0381,
3.7084, 2.6881, 17.6246, �20.3906, 17.1810, �16.1615, 110.6479, �85.1611,
�23.5123, �29.4387, �33.9626, 111.1790, �102.2394, 111.1252, 7.8818, 112.0743,
�0.3863, �34.4345, �19.0841, 95.4516, �34.3965, 31.0946, 15.3522, �36.6374,
�81.8591, �87.7486, 48.4378, �48.5791, �16.1868, 16.7805, �21.4148, 111.3969,
�60.0425, �111.9448, 98.2322}.
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For artificial Fibonacci sequences, we let N be the number of
amino acids in the secondary structure, and run experiments for
the case N¼ 5, N¼ 6, N¼ 13, and N¼ 21. Obviously, the dimen-
sion D¼N�2 for these experiments. We compare the convergence
curves between IF-ABC and ABC under the condition that SN¼ 15
(see Figs. 3–8). Moreover, we also calculate the mean energy
values of those sequences with SN¼ 10, 20 and 30 respectively.
The results derived by ABC and IF-ABC are listed in Table 1 for
comparison.

Figs. 3 and 4 show that convergence curves of IF-ABC only
differ from those by ABC slightly. However, the convergence
accuracy and efficiency of ABC become lower as N increases.
It indicates that the advantages of IF-ABC in convergence accuracy
gradually emerge as dimensions of sequences increase. By Table 1,
we observe that our algorithm has better performance than the
original ABC. Larger swarm population results in better conver-
gence performance in most cases listed in the above table, but this
is not the fact in the case when N¼ 21 and IF-ABC is applied.
Therefore, the mechanism that how the swarm population num-
ber affects the whole convergence calls for further investigation.

We also run simulations for artificial sequences with 13, 21, and
34 acids. Table 2 compares the free-energy values obtained by
nPERM, GAA, E-PSO, I-TS and IF-ABC. It should be noted that
Fig. 14. The best optimized conformations for real sequence 2EWH (N ¼ 96)
obtained by IF-ABC. The optimal solution X is {�2.2870, �112.7048, 47.1714,
�113.3001, �59.1516, 58.7639, 114.9493, 3.3382, �114.6324, �59.3279, 82.9046,
�41.4610, �106.5662, �32.6711, 88.5591, �108.2538, 51.0054, �56.8081,
107.3040, 18.6292, 105.0950, 2.9405, �59.9144, �111.9729, 1.2215, �10.0178,
38.2268, 20.0198, 27.4458, 0.6474, �111.5571, 43.9059, �111.9751, �59.8120,
59.4857, �19.9613, �28.1983, 30.9527, 1.8522, �25.7076, 111.1265, 57.1171,
�106.6800, �6.6804, 9.3760, 113.6060, 55.4277, �113.4627, �28.7289,
�88.6120, 3.1544, �19.0457, �3.4243, 16.6604, �108.5572, �37.8622,
�14.1464, 31.0008, 113.1213, 15.3665, 16.3385, 55.8288, 0.3285, �63.5454,
�110.2642, �5.0153, 35.4399, �5.4439, 9.8425, �12.4439, 2.3918, 109.8925,
9.0032, 113.2387, �111.8636, 114.0736, �56.2978, �113.4833, �9.4907, 110.3288,
34.2770, 12.4126, �18.4526, �4.9863, �68.2139, �46.2448, �53.1639, �15.0586,
16.0062, �38.9422, 0.6528, 59.2314, 112.7280, 7.0463, �52.5257, 112.0106}.
longer sequences require a considerable amount of time to
optimize. It is obvious that IF-ABC is superior than other algo-
rithms. Figs. 9–11 depict the conformations optimized by IF-ABC,
where the black dots represent the hydrophobic A monomers, and
the white dots denote hydrophobic B monomers. In Fig. 9, the
conformation contains a single hydrophobic core, which reveals
the essential characteristic of true protein conformation. When the
dimension increases, as in Figs. 10 and 11, although more than one
cluster of particles is observed, hydrophobic monomers do show
the tendency to converge.

As for real sequences, their dimensions are even larger. We
conduct simulations on the sequences named 1AGT, 1AHO, 2EWH,
Fig. 15. The best optimized conformations for real sequence 2YUX (N¼ 118)
obtained by IF-ABC. The optimal solution X is {�12.1885, �29.0418, �103.2927,
�44.8289, 0.1699, �20.6497, 0.4718, �110.9185, 26.4634, 110.1594, �102.3148,
112.2704, 58.4454, 16.9682, �81.8569, �90.0882, �26.6978, 0.2354, 50.4080,
61.1890, 110.1547, �39.4753, �54.9153, �112.8911, 30.6620, �32.4480, 7.3701,
13.5311, �110.8765, 11.2035, 2.8914, �11.7612, �8.8640, �110.2987, 30.6126,
38.1505, 27.0944, 27.6734, �70.3021, 19.3139, 47.1667, 98.4274, 45.1976,
�84.8263, 111.5884, �80.5106, 91.2663, 48.1103, �112.4206, �57.3296, �1.8639,
�112.1757, 104.3520, 12.3912, �18.8735, 105.2388, 43.2676, 24.6232, �3.3290,
�8.9063, �105.6909, �59.7953, �5.7724, 3.3887, 18.6702, 5.0219, 0.5422,
14.3978, �16.7167, �104.1545, �57.3927, 100.5543, �98.1572, 59.2683,
103.3772, �107.7848, �41.9981, �27.8649, �57.8695, 12.3373, 61.5242, 111.0124,
�30.1124, �53.1460, 16.3327, 19.0595, 29.8188, 87.0224, 84.0159, �46.6717,
�9.3582, �40.5922, 0.2572, 27.7654, 22.4121, �110.2285, �61.0410, 42.3490,
8.1843, �39.0598, �21.9064, 37.6060, �111.4066, 87.8032, �19.6168, �77.9707,
�83.3925, �10.0607, �25.0223, 110.6321, 61.3093, �4.2647, �0.9471, 26.8395,
�21.1663, 111.6304, 59.9060, 18.6659}.

Fig. 16. Comparison between secondary conformation and final functional struc-
ture for 1AGT.
and 2YUX in the PDB database. Table 3 lists the optimal values of
those sequences derived from previous literatures, together with
the free-energy values obtained by IF-ABC. By comparing those



Fig. 19. Comparison between secondary conformation and final functional struc-
ture for 2YUX.

B. Li et al. / Engineering Applications of Artificial Intelligence 27 (2014) 70–79 77
results, we can see that IF-ABC obtains lower free-energy values
than other approaches. Conformational structures are presented in
Figs. 12–15 respectively.

Besides some optimized secondary conformations, their corre-
sponding real structures are also shown in Figs. 16–19, where the
amino acid residues are plotted in larger scales to conform to
reality. Viewing the real structures of 1AGT and 1AHO, we find that
the directional trends and helical characteristics are partly
revealed in the optimized secondary conformations. However,
for the other two longer sequences, the secondary conformations
show fewer visual similarities to their natural structures. A few
potential reasons may account for this. It might stem from the
complexity of the process to form a functional and real structure,
or the deviation of the derived function values from the ground
truths. Or, the reason might be that AB off-lattice model does not
properly reflect the true characteristics of protein structures, since
the AB off-lattice model is simplified by classifying the hydrophilic
and hydrophobic residues primarily for effectiveness, but it
neglects differences inside either of the two classified groups
mentioned above. In fact, hydrophobic residues tend to form a
core of minimum surface area that encounters water molecules
and should be surrounded by hydrophilic residues.
Fig. 17. Comparison between secondary conformation and final functional struc-
ture for 1AHO.

Fig. 18. Comparison between secondary conformation and final functional struc-
ture for 2EWH.
6. Conclusion

In this paper, an improved ABC revised by internal feedback
strategy is introduced to optimize protein secondary structures in
AB off-lattice model. Experimental results confirm that IF-ABC is
significantly more effective to improve converging rate than ABC,
and is competent for the specific secondary structure prediction
problems. It should be noted that our research merely concen-
trates on sequences with less than 200 amino acids. Optimizations
for more natural sequences and investigations on the selection
rule of the convergence factor will be our future work.
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Appendix A

In this section, we provide an analytical proof for the conver-
gence of IF-ABC.

For the constrained optimization problem in this paper, it can
be considered as a Markov chain model, the state space S is all the
possible solutions fXig, the dimension of S is M. Note that M can be
either infinite or finite, which will be discussed later.

There is no harm to assume that elements in fXig ði¼ 1;2;…;MÞ
are ranked in descending order by their objective functional
values. The probability transition matrix TP of the problem can
be written as

tp11 ⋯ tp1M
tp21 ⋯ tp2M
⋮ ⋱ ⋮

tpM1 ⋯ tpMM

0
BBBB@

1
CCCCA; ðA:1Þ

where tpijrefers to the probability of transition from the current
best solution Xi to Xj.

Lemma 1. The greedy selection process in IF-ABC is a stochastic
process.
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Proof. In IF-ABC, only the greedy selection process causes transi-
tion of optimal solutions. The corresponding transition matrix TP
at step t is defined in Eq. (A.1).

It is obvious that each transition probability tpij≥0. For each
temporarily fixed Xi at step t, the possibilities to Xj; j¼ 1;2;…;M in
the next step turn out to be an inevitable event, i.e.,

∑
M

j ¼ 1
tpij ¼ 1 ði¼ 1;2;…;MÞ:

Therefore, TP is a stochastic matrix, and the transition process
of optimal solutions in IF-ABC is a stochastic process. □

Lemma 2. The transition process of optimal solutions in IF-ABC is a
finite homogeneous Markov process.

Proof. It is clear that the dimension of the state space S is finite, so
the Markov chain is finite. By employing Eqs. (4) and (5) in the
process, we observe that the selection process in the next step
only depends on the current state, and is independent from the
step t. It follows that the process is homogeneous. &

Lemma 3. Let TPðtÞ be the transition matrix at step t, TPðkÞTP
ðkþ 1Þ ¼ TPðkþ 2Þ.

Proof. Denote entries in TPðt þ kÞ by tpkij, k≥0 ði; j¼ 1;2;…;MÞ.
By Lemma 2, any pair of probabilities from different steps is
independent.

The entry located in the ith row and jth column of TPðkÞTPðkþ 1Þ
is

∑
M

m ¼ 1
tpkimtp

kþ1
mj :

Recall that tpkimtp
kþ1
mj denotes the probability of the two-step

transition process from Xi to Xm and then to Xj. All such processes
sum up to be an inevitable event, which can be considered as a
one-step process from Xi directly to Xj. Therefore, the transition
probability equals to tpkþ2

ij , i.e., TPðkÞTPðkþ 1Þ ¼ TPðkþ 2Þ. □
The conclusion can be extended to

TPðkÞ ¼ ∏
k

i ¼ 1
TPðiÞ:

Lemma 4. (Rudolph, 1994). Let W be a reducible stochastic matrix,
i.e., it can be brought into the form (with square matrices C and T)
C 0
R T

� �

by applying the same permutations to rows and columns. If C is a
primitive stochastic matrix and R; T≠0, then

lim
k-1

Wk ¼ lim
k-1

Ck 0

∑
k�1

i ¼ 0
TiRCk�i Tk

0
B@

1
CA¼

C1 0
R1 0

 !

is a stable stochastic matrix.
For engineering problems running on computers, continuous

domains are discretized due to finite word lengths in computer.
Therefore, the corresponding M is finite.

Theorem. The process of IF-ABC converges to the global optimum in
a discrete domain.
Proof. Recall that the greedy selection strategy implies that
tpmn ¼ 0 for any m4n. Hence, at step t, the transition matrix of
optimal solutions TPðtÞ is

TPðtÞ ¼

1 0 ⋯ 0
tp21 tp22 ⋯ 0
⋮ ⋮ ⋱ ⋮

tpM1 tpM2 ⋯ tpMM

0
BBBB@

1
CCCCA:

This matrix is reducible, since it can be expressed as a lower
triangle matrix

1 0
RðM�1Þ�1 T ðM�1Þ�ðM�1Þ

 !
:

Besides, it follows from Lemma 2 that the process is a finite
homogeneous Markov process regardless of step t. Thus, by
applying Lemma 3, we get

lim
k-1

TPðkÞ ¼ lim
k-1

∏
k�1

i ¼ 1
TPðiÞ:

Moreover, since TPðtÞ is stochastic, then Lemma 4 yields that

lim
k-1

TPðkÞ ¼
1 0
R1 0

 !

is also a stochastic matrix. It follows that each row of the above
matrix sums up to 1.Hence,

R1 ¼
tp21
⋮

tpN1

2
64

3
75¼

1
⋮
1

2
64

3
75:

Consequently, each possible solution as a current best solution
will approach towards the global optimum with probability 1 as
the step t-1. In other words, when t is large enough, it is certain
for the searching process to help to find the global optimum at the
ðt þ 1Þth step. □
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