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Background

If you can’t measure it, you can’t improve it. - Peter Drucker
Image quality assessment (IQA) is a critical precondi-
tion for providing a satisfying end-user experience.
Subjective IQA is reliable, but it is often cumbersome, ex-
pensive and hard to carry out in reality.
Objective IQA: full-reference IQA (FR-IQA), reduced-
reference IQA (RR-IQA) and no-reference IQA (NR-IQA).
NR-IQA is preferable but also more challenging in most prac-
tical applications.
Image blur is one of the most common distortions in practice,
which relates to image quality.

Figure 1: Typical causes of image blur in practice.

Motivation

Traditional blur-specific NR-IQA methods are mainly based on
the assumptions that blur leads to the spread of edges (e.g.,
MDWE [1]), the smoothing effect (e.g., ARISM [2]), the re-
duction of high-frequency energy (e.g., FISH [3]) or the loss of
local phase coherence (e.g., LPC [4]).

Which has better visual quality?

Figure 2: The clear blue sky or a blurry mouse?

The above low-level features based methods may contravene
human perception on predicting the relative quality of im-
age pairs with various image content. To tackle this issue,
we resort to the high-level semantics, which is derived from
a pre-trained deep convolutional neural network model.

The Proposed Semantic Feature Aggregation (SFA) based Method
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Figure 3: The overall framework of the proposed method, mainly includes four steps: image representation, feature extraction,
feature aggregation, and quality prediction. The choices in all steps are determined by the performance on validation data of BID.

How to represent an image?
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Figure 4: Comparison among different image representations.

Which layer to extract features?

conv
1

conv
2

conv
3

conv
4

conv
5

fc
6

fc
7

fc
8

0

0.2

0.4

0.6

0.8

SR
O

C
C

0.2

0.4

0.6

0.8

1

PL
C

C

0.511
0.571 0.626 0.647 0.660 0.696 0.686 0.680

0.463
0.551

0.615 0.632 0.635 0.680 0.682 0.672

Low-level High-level

Figure 5: Comparison among different layers in AlexNet.

Which pre-trained model to
extract features?
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Figure 6: Comparison among different pre-trained models.

How to aggregate the features?

Aggregated Feature SROCC PLCC RMSE
mean (fmean) 0.7577 0.7673 0.8283
mean&std (f1) 0.8022 0.8174 0.7333
quantile (f2) 0.8109 0.8254 0.7135
moment (f3) 0.8100 0.8254 0.7171
average-quality (f1, f2, f3) 0.8154 0.8305 0.7055

Table 1: Comparison among different aggregation structures.

Experiments

Method BID CLIVE TID2008 LIVE
MDWE [1] 0.3067 0.4313 0.8556 0.9188
FISH [3] 0.4736 0.4865 0.8737 0.9008
ARISM [2] 0.0151 0.2427 0.8851 0.9585
LPC [4] 0.3150 0.1483 0.8805 0.9469
Proposed 0.8269 0.8130 0.9098 0.9523

Table 2: Performance comparison (in terms of SROCC) on
four databases. In each column, the best performance value
is marked in boldface and the second best performance value is
underlined.

Train → Test SROCC
BID → CLIVE 0.5729
CLIVE → BID 0.6838

TID2008 → LIVE 0.9166
LIVE → TID2008 0.9243

Table 3: SROCC values of the proposed method in cross dataset
evaluation.

Conclusion

•A novel NR-IQA framework is proposed based on
high-level semantic feature aggregation, whose
superiority and generalization capability are
verified on four popular image blur databases.

•High-level semantic information is experimentally
verified to be crucial in quality estimation among
various image content.
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