
Raspberry Pi Subway Clock

Alan Light

What is it?

Most subway stations in NYC have digital train arrival clocks which
display the times of the next train arrivals and look like this:

Since I live near a subway station, I wanted one of these for my very own
in my living room. So I made one. Mine looks like this:

1

The upper section shows the arrival times in minutes for uptown trains
at my station and the lower section shows the same for the trains running
downtown.

How it works

It's powered by a Raspberry Pi single-board computer mounted on the
back of a 10 .1" monitor running custom software written by yours truly
which accesses the MTA's train arrival data feeds and displays the result in
a form intended to resemble the signs on the train platforms.

I used a Raspberry Pi Model 3B+ which has 1GB of RAM and a quad-
core CPU running at 1.4Ghz, which is clearly overkill for this project. You
could likely try it and be successful with a lower-end processor, but keep
in mind that even this top-of-the-line Pi only costs $35 at the time of this
writing.

How Can You Make Your Own

Please note that this text is a bit terse and assumes a certain familiarity
with the underlying technologies.

You might need to �ll in some gaps. Google is your friend.

2

This is a description of a project, not instructions for a turnkey product.
You're going to be messing around a little bit with hardware, �ashing an OS,
installing packages, looking up some stu�, creating shell scripts and tweaking
software. Make sure you're up for this before you start spending money on
parts. One thing you can do for free (not counting the value of your own
time) is get the software all up-and-running and con�gured on your own PC
before you even acquire any of the dedicated hardware for this project. How
you speci�cally approach this is of course totally up to you.

I'm also assuming you're starting from scratch. If you already have a
running Raspberry Pi, you can skip many of these steps.

What You'll Need

1. A Raspberry Pi. If you don't want to mess around with adding a wi�
adaptor, get one with on-board wi� like the model 3B or 3B+.

2. A computer of some kind (PC/Mac/Linux). These instructions as-
sume you're using a Windows PC, so if you're using something else,
you'll need to adjust. You'll only be using this computer for the initial
con�guration, once it's setup your device will be free-standing.

3. A Raspberry Pi compatible monitor. In my case I used a 10.1" monitor
(made by SunFounder) that had a built-in mount for the Raspberry Pi
on the back (see pic below). It also has a port and a cable which allows
the Pi to be powered from the monitor. This is pretty much an ideal
setup for this project, but it's not required. If you're going to buy a
monitor for this, don't pay the extra cost for a touch-screen, it's not
necessary for this application.

4. A HDMI cable to connect the Pi to the monitor.

5. A class-10 micro SD card. Any that you have laying around should
probably be large enough, but if you're going to buy one, you might
as well get a 32GB.

6. Either an adapter or card reader to be able to access the micro SD
card from your PC.

7. I recommend that you get a case for the Raspberry Pi, even if your �nal
state consists of mounting your Pi to your monitor like I did. You'll
want a case for the Pi while you're messing around with it and getting
it to work. Get a cheap one.

3

8. A power supply for your Raspberry Pi

Preparing your Raspberry Pi and allowing headless
operation

I recommend you do all the setup work with the Raspberry Pi running
headless and only attach the monitor once you pretty much have everything
working.

You're going to need to download a Raspbian OS-image from the Raspian
o�cial website, https://www.raspberrypi.org/downloads/raspbian/. I
recommend you use the torrent link as the direct download link can be quite
slow. The result will be a ZIP �le, don't unzip it. The utility you're going
to use to �ash the SD card will handle the full ZIP �le just �ne.

Download Etcher from https://www.balena.io/etcher/ which will al-
low you to �ash an OS image directly to your SD card from the downloaded
OS ZIP �le.

Insert your SD card into your PC and run Etcher.

4

https://www.raspberrypi.org/downloads/raspbian/
https://www.balena.io/etcher/

Etcher is about as simple as it could be to use. On the left, select
the downloaded zip �le with the OS image. In the middle, select the drive
location of your SD card and then click the �ash! button on the right. Note:
Obviously everything on your SD card will be deleted by this process.

Once Etcher is done �ashing and validating the OS image, you should
pull out the SD card from your PC and re-insert it. Once your re-insert, you
should see a �lesytem called boot on your PC. This is just one partition on
the SD card, but it's the only one you need for our purposes at the moment.

You're going to create two �les on the root directory of this �lesystem.

1. An empty �le called ssh with no su�x. This will enable SSH access
to your Raspberry Pi which is normally disabled by default.

2. A �le which will setup wi� access. This �le should be called wpa_supplicant.conf
and have the following contents:

ctrl_interface=/var/run/wpa_supplicant

update_config=1

country=US

network={

ssid="YOUR_NETWORK_NAME"

psk="YOUR_WIFI_PASSWORD"

}

Where YOUR_NETWORK_NAME is the name of your wi� network and YOUR_WIFI_PASSWORD
is your wi� password (remember that both network names and wi� pass-
words are case-sensitive). Also if you're not in the US, set country to the
two-character country code for your country. But if you're not in the US,
I'm not sure why NYC subway arrival times would interest you. :)

5

Also, you're going to need to save this �le using Unix-style line termina-
tors, so use an editor like Notepad++ or Emacs which will allow you to set
this.

When you're done, dismount the SD card from your PC, insert it into
your Raspberry Pi and power it up. You should now be able to access it
from your PC via wi�.

Accessing your Raspberry Pi from your PC

You'll need to install two applications on your PC.

1. A SSH client such as Putty or Bitvise (Putty is simpler and good
enough if you're only going to use it occasionally, Bitvise is more full-
featured. Both are free). In either case, enable the X11 Forwarding

option.

2. An X11 server for Windows such as Xming.

See if you can ping your Pi from your PC using the hostname raspberrypi
which will be your Pi's default hostname. If that doesn't work, log into your
wi� router and look at the client table and �nd the ip address of your Pi and
you should be able to ping the ip address.

If you can't see the Pi listed in your router's client table, then it's ei-
ther not running or not connected to wi�. Re-do and re-check the steps
above. If you remount the SD card in your PC and you see the ssh and
wpa_supplicant.conf �les you created are gone, you at least know that the
system is booting and the problem is likely somewhere in your wpa_supplicant.conf
�le. Unfortunately, to repeat the process, you'll need to re-�ash the SD card
from the beginning.

Once you can ping your Pi, Fire up your X11 server, �re up your SSH
client and connect. Login using the user name pi and the password raspberry.

Once you're successfully logged on, change your password from the de-
fault using the passwd command.

Setting the Time Zone

You'll need to set the Raspberry Pi to the correct time zone. Type sudo
tzselect and follow the prompts.

6

Updating your software

Make sure your Pi has all its software up-to-date by entering the following
two commands:

sudo apt-get update

sudo apt-get upgrade

This could take a few minutes to update all your packages.

Making sure X11 is working and displaying back to
your PC

Try running x-terminal-emulator and see if a new terminal window for
your Pi opens on your PC, if it doesn't either xMing is not running and/or
your SSH client is not set for X11 forwarding.

Changing Your Hostname

You Pi will come with a hostname of raspberrypi by default. You'll
likely want to change this. Do so by running

sudo raspi-config

You will be able to change the host name under Network Options.

Installing the necessary Python packages

There are a few Python packages that you are going to need to install.
Since we will be using Python 3.x, you can use pip3 to install them all.

pip3 install gtfs_realtime_bindings

pip3 install protobuf3_to_dict

Create a directory on your Raspberry Pi for the Sub-
way Clock Software

Create a directory called subway to hold your software and a subdirectory
to hold the artwork:

mkdir subway

mkdir subway/icons

The resulting directories should be /home/pi/subway and /home/pi/subway/icons.

7

Get your MTA API Key

You'll need your own MTA developer's API key in order to access realtime
MTA data. You can request one here: http://mtadatamine.s3-website-us-east-1.
amazonaws.com/#/AccessKey. Once you get your key, put it in a �le called
/home/pi/subway/apikey.txt.

Setup your Subway Software

Copy the �les subway.py and mta.py to your /home/pi/subway directory.
You can use SFTP from your PC to do this either from the PC's command
line or using a client like Filezilla.

Make subway.py and mta.py executable.

Test your connection to the MTA API and con�gure
for Your Station

Run the following:

cd /home/pi/subway

./mta.py

You should see output which looks something like the following:

(['Q', 'Q', 'Q', 'Q', 'Q'], [2, 10, 22, 32, 40], ['Q', 'Q', 'Q', 'Q'], [5, 13, 21, 29])

If you get any errors, you'll need to address them.
The output above is the uptown and downtown arrival trains and times

at the 72nd St. and 2nd Ave station. You will need to con�gure and test for
your particular station.

Check this list of stations here: http://web.mta.info/developers/

data/nyct/subway/Stations.csv and �nd yours.
You're going to need the value of GTFS Stop ID column (third column)

for your station. For example, if your station is the one at Lexington Av and
86 St, you'll see that the stop ID for this station is 626.

Note: For a given station, there are actually two IDs (one for the trains
running in each direction). Take the base ID (e.g. "626" and add an "N"
and an "S" to get the two actual ids to use (i.e. "626N" and "626S"). The
MTA uses "N" and "S" (north and south) as directions regardless of which
actual compass directions the trains are traveling.

Now, test the API with your station by specifying the stop IDs on the
command line to mta.py, for example:

8

http://mtadatamine.s3-website-us-east-1.amazonaws.com/#/AccessKey
http://mtadatamine.s3-website-us-east-1.amazonaws.com/#/AccessKey
http://web.mta.info/developers/data/nyct/subway/Stations.csv
http://web.mta.info/developers/data/nyct/subway/Stations.csv

./mta.py 626N 626S

Get Your Artwork

The graphics that represent the subway lines are copyrighted and I can't
re-distribute them. You should be able to �nd versions on your own or make
them yourself. To get the best possible look, you should start with vec-
tor images and scale them to bitmaps (using Inkscape, Cairosvg or similar
software) which are sized correctly for your display. For the 1280x800 mon-
itor that I used, 300x300 PNG images worked the best. The images must
be square and ideally 37.5% of the vertical resolution of your display. If
they are not the optimal size, the software will scale them (provided they
are still square), but the results will not be great. Put your images in the
/home/pi/subway/icons directory with names such as R.png for theR train,
Q.png for the Q train, etc. This is all case-sensitive, so make sure the train
names are upper-case and .png is lower-case. You will also need an image
called unknown.png for the edge case where an unknown train comes up.

Test the Software

From the /home/pi/subway directory, run subway.py and make sure ev-
erything is working before plugging in your monitor.

Connect Your Monitor

Once you pretty much have it all working, it's time to connect your
monitor (to the HDMI port on the Pi). Reboot and do a test to make sure
that everything displays ok on the monitor:

export DISPLAY=:0

/home/pi/subway/subway.py -f

This tries and runs the app in full-screen mode on the attached monitor.

Setup Subway Clock to run on Booting

Create a �le called /etc/xdg/autostart/subway.desktop which con-
tains:

9

[Desktop Entry]

Type=Application

Name=Subway

Comment=Subway Clock

NoDisplay=false

Exec=/usr/bin/lxterminal -e /home/pi/subway/startsubway.sh

NotShowIn=GNOME;KDE;XFCE;

Then create /home/pi/subway/startsubway.sh which contains:

#!/bin/bash

cd /home/pi/subway

sleep 15

xset s 0 0

xset s noblank

xset s noexpose

while true; do

/usr/bin/python3 subway.py -f -u Q03N -d Q03S -U "Uptown to 96th St." -D "Downtown and Brooklyn"

done

This disables the screensaver and runs the subway clock (and will re-start
it should it ever crash).

You should replace the Q03N and the Q03S with the IDs for your station
as well as replace the station descriptions with your own.

You'll also need to make this �le executable with a

chmod a+x /home/pi/subway/startsubway.sh

Reboot the Pi with sudo reboot and make sure that it launches the
subway clock upon rebooting.

Hiding the Mouse Cursor

We're not going to want to see a mouse cursor on the screen, so install
the Unclutter package:

sudo apt-get install unclutter

Then edit /home/pi/.config/lxsession/LXDE-pi/autostart and add
the line:

@unclutter -idle 0

10

Turning the display on/o� at night

If you want to turn the display o� during "o� hours," Create a script in
/home/pi/subway called displayoff.sh which contains the following:

#!/bin/bash

vcgencmd display_power 0

Similarly, create a �le called displayon.sh with the following contents:

#!/bin/bash

vcgencmd display_power 1

Don't forget to make both these scripts executable. You can now create
crontab entries (using crontab -e) to call these scripts to enable/disable the
display whenever you like. For example, if you want the display to turn o�
at midnight every night, and back on at 5:30am, your crontab entries would
look like:

30 5 * * * /home/pi/subway/displayon.sh

0 0 * * * /home/pi/subway/displayoff.sh

11

