
PRESENTS

Fuzzing integration of Linkerd2-proxy and
dependencies
in collaboration with

Authors
David Korczynski <david@adalogics.com>
Adam Korczynski <adam@adalogics.com>
Date: 22nd April, 2021

This report is licensed under Creative Commons 4.0 (CC BY 4.0)

1

mailto:david@adalogics.com
mailto:adam@adalogics.com


Executive summary
The overall goal of the engagement described in this report was to integrate security and
reliability analysis by way of fuzzing into the Linkerd2-proxy project as well as its
dependencies. This was done in a manner such that vulnerability analysis will happen
continuously (even after the engagement). The source code of Linkerd2-proxy is written in
Rust and this makes it particularly vulnerable to unknown panics.

Scope of engagement
The project ran from 8th of March to and including 16th of April and the entire scope of the
Linkerd2-proxy project was considered.

Methodology
Ada Logic’s researchers performed an initial analysis of Linkerd2-proxy to understand the
potential of integrating fuzzing into the project as well as identify the external dependencies
that are suitable for fuzzing. Following this, Ada Logics entered a phase of developing
fuzzers for Linkerd2-proxy as well as dependencies, and also integrate the various projects
into Google’s OSS-Fuzz service. The effect of this is that the fuzzers run continuously both
during and after this engagement. The results of the engagement can be summarised as
follows:

Results summarised
8 projects integrated into OSS-Fuzz (5 accepted, 2 pending, 1 rejected)

14 fuzzers written in total. 7 fuzzers for Linkerd2-proxy, 7 for external
dependencies.

2 bugs found by linkerd2-proxy fuzzers, and several bugs in external
dependencies.

Code and fixes committed upstream

2



Engagement process and methodology
In this section we discuss the overall process during the engagement.

Integrate fuzzing into Linkerd2-proxy and relevant
dependencies
The first step was to identify projects relevant for fuzzing in the linkerd2-proxy ecosystem.
Given the time constraints of the project, the way we approached this was to identify the
external dependencies of linkerd2-proxy and select projects that were most welcoming to
fuzzing as well as of high usage in the Rust community in general. The result of our efforts
was to integrate fuzzing into the following projects:

● prost: protobuf library for Rust
● Rustls: modern implementation of TLS in Rust
● hyper: A selection of libraries that use http implementations

○ h2
○ http

● html-escape
● unicode-* libraries

○ Unicode segmentation
○ Unicode normalisation

● httparse
● Linkerd2-proxy itself
● base64

In addition to this, some of the fuzzers that we wrote also target code in other projects, such
as trust-dns, as we will see in the results section.

Several tasks were carried out on these projects depending on the state of the project. For
example, some projects already had fuzzers integrated but were not integrated into
OSS-Fuzz, whereas some projects had no no fuzzers in their project. For each project, we,
therefore, performed one or both of the following tasks:

1. Write fuzzers for the project
2. Integrate the project into OSS-Fuzz

Work performed on the projects
The following summarises the tasks for each project and also provide links to various
commits with the work performed:

Prost
● Fuzzer written: No
● OSS-Fuzz integration: Yes

3



● Description of work: The prost repository is a protobuf implementation in Rust. The
project already had fuzzers integrated, so we integrated these fuzzers to be run
continuously.

● Relevant PRs
○ https://github.com/google/oss-fuzz/pull/5404

Rustls
● Fuzzer written: Yes
● OSS-Fuzz integration: Yes
● Description of work: rustls already had fuzzers written. However, one of these were

no longer runnable so we fixed this up and then integrated the project to be run
continuously with OSS-Fuzz.

● Relevant PRs:
○ https://github.com/google/oss-fuzz/pull/5332

Hyperium
● Fuzzer written: Yes
● OSS-Fuzz integration: Yes
● Description of work: Hyperium is a collection of libraries used for creating

network-based applications. They already had some fuzzers implemented, although
these were out-dated. For this project we wrote 3 new fuzzers as well as fixed an
existing fuzzer that were no longer able to run. We integrated two of the projects
related to the hyperium framework into OSS-Fuzz.

● Relevant PRs:
○ https://github.com/google/oss-fuzz/pull/5330
○ https://github.com/hyperium/http/pull/478
○ https://github.com/hyperium/h2/pull/529

Unicode-rs
● Fuzzer written: Yes
● OSS-Fuzz integration: Yes
● Description of work: We integrated two of the projects related to the Unicode-rs

framework into OSS-Fuzz. For one of these projects we wrote fuzzers whereas the
other project already had fuzzers integrated.

● Relevant PRs:
○ https://github.com/google/oss-fuzz/pull/5413
○ https://github.com/unicode-rs/unicode-segmentation/pull/94

Httparse
● Fuzzer written: No
● OSS-Fuzz integration: Yes
● Description of work: httparse already had three fuzzers written. We integrated the

project into OSS-Fuzz so these fuzzers are written continuously.
● Relevant PRs:

○ https://github.com/google/oss-fuzz/pull/5331
○ https://github.com/seanmonstar/httparse/pull/93

4

https://github.com/google/oss-fuzz/pull/5404
https://github.com/google/oss-fuzz/pull/5332
https://github.com/google/oss-fuzz/pull/5330
https://github.com/hyperium/http/pull/478
https://github.com/hyperium/h2/pull/529
https://github.com/google/oss-fuzz/pull/5413
https://github.com/unicode-rs/unicode-segmentation/pull/94
https://github.com/google/oss-fuzz/pull/5331
https://github.com/seanmonstar/httparse/pull/93


Linkerd2-proxy
● Fuzzer written: Yes
● OSS-Fuzz integration: Yes
● Description of work: Created 7 fuzzers for the Linkerd2-proxy that target various

parts of the proxy. The fuzzers each follow a similar style in terms of set up, which
makes it straightforward to create additional fuzzers by the Linkerd2-proxy team.
Linkerd2-proxy was also integrated into OSS-Fuzz now.

● Relevant PRs:
○ https://github.com/linkerd/linkerd2-proxy/pull/977
○ https://github.com/linkerd/linkerd2-proxy/pull/961
○ https://github.com/linkerd/linkerd2-proxy/pull/978
○ https://github.com/google/oss-fuzz/pull/5547
○ https://github.com/google/oss-fuzz/pull/5625

Base64
● Fuzzer written: Yes
● OSS-Fuzz integration: Yes, but rejected.
● Description of work: Integrated a fuzzer for the Rust base64 implementation.

However, the maintainers of OSS-Fuzz deemed this project too simple for continuous
analysis so it was rejected by the OSS-Fuzz team for integration.

● Relevant PRs:
○ https://github.com/google/oss-fuzz/pull/5412

Html-escape
● Fuzzer written: Yes
● OSS-Fuzz integration: Yes
● Description of work: Fuzzers were written for the encoding and decoding functions

in the html-escape project. However, maintainers of the project are still waiting to
reply.

● Relevant PRs:
○ https://github.com/google/oss-fuzz/pull/5411

Linkerd2-proxy fuzzers
In this section we will go over the fuzzer set up that we created for the Linkerd2-proxy and
some of the external dependencies. We will leave out details of the fuzzers written for
external dependencies in this report. However, the links provided in the above section directs
to the code of the fuzzers if further information is desired. The focus of this section is also to
encapsulate how the Linkerd2-proxy team can progress forward. The code for each of the
fuzzers has already been reviewed thoroughly by the Linkerd2-proxy maintainers so we will
not go into detail with this here.
One important limitation to highlight in writing fuzzers for the Linkerd2-proxy project is that
several crates cannot be compiled with nightly rustc. This is needed in order to compile the
fuzzers. The most important crate is linkerd/app/integration. During the engagement we
were unable to compile this and the details have been discussed with the Linkerd2-proxy

5

https://github.com/linkerd/linkerd2-proxy/pull/977
https://github.com/linkerd/linkerd2-proxy/pull/961
https://github.com/linkerd/linkerd2-proxy/pull/978
https://github.com/google/oss-fuzz/pull/5547
https://github.com/google/oss-fuzz/pull/5625
https://github.com/google/oss-fuzz/pull/5412
https://github.com/google/oss-fuzz/pull/5411


team. Essentially, rustc completely exhausts the memory (the compilation process is killed at
70GB of memory used).

The following fuzzers have been written for Linkerd2-proxy

Target crate Fuzzer name Fuzzer link

transport-header fuzz_target_raw https://github.com/linkerd/lin
kerd2-proxy/blob/b4017463
a04b30aa6a761f4a9ff1ebc0
fded8a42/linkerd/transport-h
eader/fuzz/fuzz_targets/fuzz
_target_raw.rs

transport-header fuzz_target_structured https://github.com/linkerd/lin
kerd2-proxy/blob/b4017463
a04b30aa6a761f4a9ff1ebc0
fded8a42/linkerd/transport-h
eader/fuzz/fuzz_targets/fuzz
_target_structured.rs

addr fuzz_addr https://github.com/linkerd/lin
kerd2-proxy/blob/b4017463
a04b30aa6a761f4a9ff1ebc0
fded8a42/linkerd/addr/fuzz/f
uzz_targets/fuzz_target_1.rs

dns fuzz_dns https://github.com/linkerd/lin
kerd2-proxy/blob/e0c2abaef
9d3743fd4e38e2be8fc8f1ce
8ab9083/linkerd/dns/fuzz/fu
zz_targets/fuzz_target_1.rs

proxy/http fuzz_http https://github.com/linkerd/lin
kerd2-proxy/blob/b4017463
a04b30aa6a761f4a9ff1ebc0
fded8a42/linkerd/proxy/http/f
uzz/fuzz_targets/fuzz_target
_1.rs

tls fuzz_tls https://github.com/linkerd/lin
kerd2-proxy/blob/b4017463
a04b30aa6a761f4a9ff1ebc0
fded8a42/linkerd/tls/fuzz/fuz
z_targets/fuzz_target_1.rs

app/inbound fuzz_inbound https://github.com/linkerd/lin
kerd2-proxy/blob/3a3f25fa2
ebcb4473eb6f21790e7c0e4f
648cf3e/linkerd/app/inbound
/fuzz/fuzz_targets/fuzz_targ
et_1.rs

6

https://github.com/linkerd/linkerd2-proxy/blob/b4017463a04b30aa6a761f4a9ff1ebc0fded8a42/linkerd/transport-header/fuzz/fuzz_targets/fuzz_target_raw.rs
https://github.com/linkerd/linkerd2-proxy/blob/b4017463a04b30aa6a761f4a9ff1ebc0fded8a42/linkerd/transport-header/fuzz/fuzz_targets/fuzz_target_raw.rs
https://github.com/linkerd/linkerd2-proxy/blob/b4017463a04b30aa6a761f4a9ff1ebc0fded8a42/linkerd/transport-header/fuzz/fuzz_targets/fuzz_target_raw.rs
https://github.com/linkerd/linkerd2-proxy/blob/b4017463a04b30aa6a761f4a9ff1ebc0fded8a42/linkerd/transport-header/fuzz/fuzz_targets/fuzz_target_raw.rs
https://github.com/linkerd/linkerd2-proxy/blob/b4017463a04b30aa6a761f4a9ff1ebc0fded8a42/linkerd/transport-header/fuzz/fuzz_targets/fuzz_target_raw.rs
https://github.com/linkerd/linkerd2-proxy/blob/b4017463a04b30aa6a761f4a9ff1ebc0fded8a42/linkerd/transport-header/fuzz/fuzz_targets/fuzz_target_raw.rs
https://github.com/linkerd/linkerd2-proxy/blob/b4017463a04b30aa6a761f4a9ff1ebc0fded8a42/linkerd/transport-header/fuzz/fuzz_targets/fuzz_target_structured.rs
https://github.com/linkerd/linkerd2-proxy/blob/b4017463a04b30aa6a761f4a9ff1ebc0fded8a42/linkerd/transport-header/fuzz/fuzz_targets/fuzz_target_structured.rs
https://github.com/linkerd/linkerd2-proxy/blob/b4017463a04b30aa6a761f4a9ff1ebc0fded8a42/linkerd/transport-header/fuzz/fuzz_targets/fuzz_target_structured.rs
https://github.com/linkerd/linkerd2-proxy/blob/b4017463a04b30aa6a761f4a9ff1ebc0fded8a42/linkerd/transport-header/fuzz/fuzz_targets/fuzz_target_structured.rs
https://github.com/linkerd/linkerd2-proxy/blob/b4017463a04b30aa6a761f4a9ff1ebc0fded8a42/linkerd/transport-header/fuzz/fuzz_targets/fuzz_target_structured.rs
https://github.com/linkerd/linkerd2-proxy/blob/b4017463a04b30aa6a761f4a9ff1ebc0fded8a42/linkerd/transport-header/fuzz/fuzz_targets/fuzz_target_structured.rs
https://github.com/linkerd/linkerd2-proxy/blob/b4017463a04b30aa6a761f4a9ff1ebc0fded8a42/linkerd/addr/fuzz/fuzz_targets/fuzz_target_1.r
https://github.com/linkerd/linkerd2-proxy/blob/b4017463a04b30aa6a761f4a9ff1ebc0fded8a42/linkerd/addr/fuzz/fuzz_targets/fuzz_target_1.r
https://github.com/linkerd/linkerd2-proxy/blob/b4017463a04b30aa6a761f4a9ff1ebc0fded8a42/linkerd/addr/fuzz/fuzz_targets/fuzz_target_1.r
https://github.com/linkerd/linkerd2-proxy/blob/b4017463a04b30aa6a761f4a9ff1ebc0fded8a42/linkerd/addr/fuzz/fuzz_targets/fuzz_target_1.r
https://github.com/linkerd/linkerd2-proxy/blob/b4017463a04b30aa6a761f4a9ff1ebc0fded8a42/linkerd/addr/fuzz/fuzz_targets/fuzz_target_1.r
https://github.com/linkerd/linkerd2-proxy/blob/e0c2abaef9d3743fd4e38e2be8fc8f1ce8ab9083/linkerd/dns/fuzz/fuzz_targets/fuzz_target_1.rs
https://github.com/linkerd/linkerd2-proxy/blob/e0c2abaef9d3743fd4e38e2be8fc8f1ce8ab9083/linkerd/dns/fuzz/fuzz_targets/fuzz_target_1.rs
https://github.com/linkerd/linkerd2-proxy/blob/e0c2abaef9d3743fd4e38e2be8fc8f1ce8ab9083/linkerd/dns/fuzz/fuzz_targets/fuzz_target_1.rs
https://github.com/linkerd/linkerd2-proxy/blob/e0c2abaef9d3743fd4e38e2be8fc8f1ce8ab9083/linkerd/dns/fuzz/fuzz_targets/fuzz_target_1.rs
https://github.com/linkerd/linkerd2-proxy/blob/e0c2abaef9d3743fd4e38e2be8fc8f1ce8ab9083/linkerd/dns/fuzz/fuzz_targets/fuzz_target_1.rs
https://github.com/linkerd/linkerd2-proxy/blob/b4017463a04b30aa6a761f4a9ff1ebc0fded8a42/linkerd/proxy/http/fuzz/fuzz_targets/fuzz_target_1.rs
https://github.com/linkerd/linkerd2-proxy/blob/b4017463a04b30aa6a761f4a9ff1ebc0fded8a42/linkerd/proxy/http/fuzz/fuzz_targets/fuzz_target_1.rs
https://github.com/linkerd/linkerd2-proxy/blob/b4017463a04b30aa6a761f4a9ff1ebc0fded8a42/linkerd/proxy/http/fuzz/fuzz_targets/fuzz_target_1.rs
https://github.com/linkerd/linkerd2-proxy/blob/b4017463a04b30aa6a761f4a9ff1ebc0fded8a42/linkerd/proxy/http/fuzz/fuzz_targets/fuzz_target_1.rs
https://github.com/linkerd/linkerd2-proxy/blob/b4017463a04b30aa6a761f4a9ff1ebc0fded8a42/linkerd/proxy/http/fuzz/fuzz_targets/fuzz_target_1.rs
https://github.com/linkerd/linkerd2-proxy/blob/b4017463a04b30aa6a761f4a9ff1ebc0fded8a42/linkerd/proxy/http/fuzz/fuzz_targets/fuzz_target_1.rs
https://github.com/linkerd/linkerd2-proxy/blob/b4017463a04b30aa6a761f4a9ff1ebc0fded8a42/linkerd/tls/fuzz/fuzz_targets/fuzz_target_1.rs
https://github.com/linkerd/linkerd2-proxy/blob/b4017463a04b30aa6a761f4a9ff1ebc0fded8a42/linkerd/tls/fuzz/fuzz_targets/fuzz_target_1.rs
https://github.com/linkerd/linkerd2-proxy/blob/b4017463a04b30aa6a761f4a9ff1ebc0fded8a42/linkerd/tls/fuzz/fuzz_targets/fuzz_target_1.rs
https://github.com/linkerd/linkerd2-proxy/blob/b4017463a04b30aa6a761f4a9ff1ebc0fded8a42/linkerd/tls/fuzz/fuzz_targets/fuzz_target_1.rs
https://github.com/linkerd/linkerd2-proxy/blob/b4017463a04b30aa6a761f4a9ff1ebc0fded8a42/linkerd/tls/fuzz/fuzz_targets/fuzz_target_1.rs
https://github.com/linkerd/linkerd2-proxy/blob/3a3f25fa2ebcb4473eb6f21790e7c0e4f648cf3e/linkerd/app/inbound/fuzz/fuzz_targets/fuzz_target_1.rs
https://github.com/linkerd/linkerd2-proxy/blob/3a3f25fa2ebcb4473eb6f21790e7c0e4f648cf3e/linkerd/app/inbound/fuzz/fuzz_targets/fuzz_target_1.rs
https://github.com/linkerd/linkerd2-proxy/blob/3a3f25fa2ebcb4473eb6f21790e7c0e4f648cf3e/linkerd/app/inbound/fuzz/fuzz_targets/fuzz_target_1.rs
https://github.com/linkerd/linkerd2-proxy/blob/3a3f25fa2ebcb4473eb6f21790e7c0e4f648cf3e/linkerd/app/inbound/fuzz/fuzz_targets/fuzz_target_1.rs
https://github.com/linkerd/linkerd2-proxy/blob/3a3f25fa2ebcb4473eb6f21790e7c0e4f648cf3e/linkerd/app/inbound/fuzz/fuzz_targets/fuzz_target_1.rs
https://github.com/linkerd/linkerd2-proxy/blob/3a3f25fa2ebcb4473eb6f21790e7c0e4f648cf3e/linkerd/app/inbound/fuzz/fuzz_targets/fuzz_target_1.rs


Results
In this section we will go over the results of the fuzzers so far.

Bugs found
The fuzzers have so far have found two bugs.

The first bug was due to a panic when domain search causes names to exceed 255 bytes.
Dpcumentation on the issue is found here https://github.com/bluejekyll/trust-dns/issues/1447
and a fixed for the issue was created here https://github.com/bluejekyll/trust-dns/pull/1448

The second bug was a panic thrown in the Addr crate. The issue is discussed in detail here
https://github.com/linkerd/linkerd2-proxy/pull/976 with a fix included.

Several bugs have been reported in the Hyperium projects, however, we will refrain from
disclosing these bugs as the maintainers of Hyperium are not involved in this project. The
bugs have been communicated with the Linkerd2-proxy maintainers who have also received
access to the project on oss-fuzz.

No bugs were found in httparse and rustls.

Coverage of Linkerd2-proxy
The following table shows the coverage after running each fuzzer for 20 minutes:

7

https://github.com/bluejekyll/trust-dns/issues/1447
https://github.com/bluejekyll/trust-dns/pull/1448
https://github.com/linkerd/linkerd2-proxy/pull/976


Finally, the coverage of external dependencies by way of the Linkerd2-proxy fuzzers are as
follows (projects not shown have 0% coverage):

8



9



Advice following engagement
This work performs a significant first step in integrating fuzzers into the ecosystem of
Linkerd2-proxy. However, linkerd2-proxy is a complex system itself and has a large set of
dependencies. In this section we will outline the advice we have on how the linkerd2-proxy
developers can continue to progress with fuzzer integrations.

Short-term advice
1. Ensure that integration tests can be compiled with cargo fuzz. Then more end-to-end

fuzzers (similar to fuzz_inbound) should be created based on the integration tests.
2. Linkerd2-proxy is part of a larger infrastructure involving Linkerd2. Linkerd2 should

also be covered in fuzzers. We draw a reference here to the Envoy-proxy which has
a total of 51 fuzzers integrated as a means of comparison.

Long-term advice
1. Our long-term advice it to continuously iterate the process

a. Assess which parts of the code is missing fuzzing coverage by looking at
code coverage output.

b. Create fuzzers that have potential to reach this code.
c. Let the new fuzzers run on OSS-Fuzz for a while.
d. If bugs occur fix these.

2. We advise the Linkerd2-proxy team to monitor coverage in external dependencies as
well. Fuzzing of Rust projects is still a relatively young activity, which means that a lot
of projects have not been analysed yet and thus it is reasonable to expect some bugs
to exist in these projects.

Conclusions and future work
In this project we integrated fuzzing into Linkerd2-proxy and several of its dependencies.
During the engagement a total of 14 fuzzers were written and 8 projects were integrated into
the OSS-Fuzz infrastructure (1 rejected, 4 pending, 3 accepted). A total of 2 bugs were
found by the Linkerd2-proxy fuzzers, and several bugs were also found for external
dependencies. The maintainers of Linkerd2-proxy as well as the maintainers of the external
dependencies are aware of the bugs.

The current set up of the fuzzers is straightforward to extend on, however, it is indeed
imperative to follow up on these efforts. The fuzzing set up created in this project makes for
a good foundation and has shown to be fruitful. We estimate the short-term advice on
fuzzing Linkerd2-proxy to be achievable within a few months by dedicating a few hours of
work each week, and the long-term goals achievable within half a year. We highlight here the
importance of doing this work in iterations, namely integrating new fuzzers and letting them
run for a while, assess results and then repeating the process.

10


