
 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

Pentest-Report Linkerd2 & Linkerd2 Proxy 06.2019
Cure53, Dr.-Ing. M. Heiderich, M. Wege, Prof. N. Kobeissi, N. Hippert, J. Larsson,
BSc. J. Hector, BSc. T.-C. “Filedescriptor” Hong

Index
Introduction

Scope

Test Methodology

Part 1. Manual code auditing

Part 2. Code-assisted penetration testing

Miscellaneous Issues

LNK-01-001 Dashboard: General HTTP security headers missing (Info)

LNK-01-002 Dashboard: Missing DNS Rebinding attack protection (Low)

Conclusions

Introduction
“Linkerd is a service mesh for Kubernetes and other frameworks. It makes running
services easier and safer by giving you runtime debugging, observability, reliability, and
security—all without requiring any changes to your code.”

From https://linkerd.io/2/overview/

This report documents the results of a security assessment targeting the Linkerd
complex. Carried out by Cure53 in June 2019, this project entailed both a penetration
test and a source code audit, which specifically investigated Linkerd, the Linkerd Proxy
and the gRPC API bindings. It should also be noted that this security-centered
examination was requested and sponsored by The Linux Foundation/CNCF.

As for the resources, a total of seven Cure53 testers completed this project by spending
a total of eighteen days on analyzing the scope with a wide range of approaches. The
guiding methodology was, by default, white-box because all sources are available
publicly. Adhering to the well-established standards, Cure53 followed a specific, two-
pronged approach of relying on source code auditing on the one hand, and executing a

Cure53, Berlin · 06/27/19 1/8

https://cure53.de/
https://linkerd.io/2/overview/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

penetration test, on the other. The latter targeted several remote and local instances
where Linkerd is being used in the same way that it would likely be used in production.

To support and facilitate the project, the Linkerd in-house team helped Cure53 with
setting up a cluster in which Linkerd was used as intended by the maintainers. This
handling was very helpful in getting access to (and awareness of) a realistic test-target.
The communications during the test were done in a shared Slack channel, set up by
Cure53 and joined by the Linkerd developers from Buoyant. In addition to that, a scope
document was shared via Google Drive and then used throughout the test in a
collaborative manner. The Linkerd team could add information about areas of interest
“on the go”, which resulted in a better familiarity and clarity about scope details and other
matters. All these actions contributed to the Cure53’s capacity of completing all
objectives on time and to a high standard. With good communications in place, Cure53
was able to reach good coverage over the security relevant areas.

It became clear to Cure53 quite fast that the Linkerd codebase and implementation are
very robust from a security standpoint. The tested item made a very good impression
and very few, rather marginal issues were spotted. Nevertheless, the two spotted flaws
relate to general weaknesses in the web interface, which could be hardened a bit better
in Cure53’s expert opinion.

This report will now describe the scope in more detail and then moves on to a
comprehensive overview of the test methodology and coverage. As not many findings
have been spotted, Cure53 uses this section to help the Linkerd maintainer team
navigate through the approaches and types of tests completed on the scope. Next up,
the two findings will be documented, alongside with recommendations about addressing
them in the best way possible. The report then closes with the usual conclusion in which
Cure53 describes the test as such, as well as reiterates the results and arrives at a final,
broader verdict of this 2019 engagement Conclusions pertinent to the general security
posture of the Linkerd and Linkerd Proxy projects ensue.

Cure53, Berlin · 06/27/19 2/8

https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

Scope
● Linkerd & Linkerd Proxy

○ https://github.com/linkerd/linkerd2
○ https://github.com/linkerd/linkerd2-proxy
○ https://github.com/linkerd/linkerd2-proxy-api

● Documentation
○ https://linkerd.io/2/reference/

● A Scope Document was shared between Linkerd Team and Cure53

Test Methodology
The following paragraphs describe the testing methodology used during the audit of the
Linkerd2 and the related, Linkerd2 Proxy-codebase. The test was divided into two
phases, each fulfilling different goals. In the first phase, the focus was on manual source
code reviews needed to spot insecure code patterns. Usually issues around race
conditions, information leakage or similar flaws can be found in this context. During the
second phase, it was evaluated whether the stated security goals and premise can, in
fact, withstand real-life attack scenarios.

Part 1. Manual code auditing

This section lists the steps that were undertaken during the first phase of the audit
against the Linkerd software compound. It describes the key aspects of the manual code
audit. Since no major issues were spotted, the list portrays the thoroughness of the
penetration test and attests the impressively high quality of the project.

• The Linkerd documentation was extensively studied to obtain a solid overview of
the software compound, in particular its architecture. Cure53 sought to get a
grasp on the possibly problematic areas and potential attack surfaces.

• A general audit of the Go codebase for dangerous sinks (such as command
execution functions) with unsanitized input was conducted.

• The HTTP handlers of the dashboard web interface were audited for incorrect
handling of user-input.

• A more in-depth look was taken at the tap interface and how the interaction
between Linkerd and the Proxy takes place.

• The file handling code serving static content was checked for common problems
but found to be properly dealing with the subject.

• The gRPC API client and gRPC request generation were analyzed for common
problems around parameters containing special characters.

• The JSON error handling implementation was audited for typical weaknesses but
is avoiding the general traps.

Cure53, Berlin · 06/27/19 3/8

https://cure53.de/
https://linkerd.io/2/reference/
https://github.com/linkerd/linkerd2-proxy-api
https://github.com/linkerd/linkerd2-proxy
https://github.com/linkerd/linkerd2
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

• General route mappings, the admin server interfaces/mappings and the Grafana
route mappings were extensively checked for edge cases.

• The configuration file download code was evaluated for correct format handling
and appears to be doing an impeccable job.

• The control plane APIs were enumerated, tested for information leakage and
were confirmed to be read-only across the board.

• The general HTTP handling code was analysed for known shortcomings but
none could be pinpointed.

• The HTTP header handling in the Proxy code was verified to function properly
and without falling short across errors.

• The React code of the dashboard was checked for perilous patterns - like
dangerouslySetInnerhtml - that could eventually lead to XSS, along with other
typical client-side issues (e.g. client-side path traversal). No controllable
parameters could be identified.

• Proxy code for handling inbound and outbound connections has been audited for
logical flaws. Special attention was given to header manipulation, which could
lead to unintentional routing, as well as to the protocol detection mechanism.

• The Grafana Proxy logic, together with the API handling logic, were investigated
for allowing path traversal as well as Host header injections.

• The TLS component was audited for correct handling of secure connections, in
particular the parsing and serialising of certificates were scrutinized.

• The Identity component was checked for correct handling of X.509 certificates,
especially as regards the creation of certificates.

• The Healthcheck component was checked for general weaknesses of its
implementation concerning maintenance tests and sanity checks.

• The Transport component of the Proxy code was audited for its application of
TLS towards the handling of network connections.

• The Identity component of the Proxy code was checked for correct handling of
certificates, especially the parsing and serializing of certificates.

• The DNS component of the Proxy code was checked for logic weaknesses in the
relevant aspects resolving domain names.

Part 2. Code-assisted penetration testing

The following list documents the distinguishable steps taken during the second part of
the test. A code-assisted penetration test was executed against the pre-configured
Kubernetes cluster running Linkerd and demo applications provided by the development
team. Since only a few miscellaneous issues were found during the first part of the audit,
this additional approach was used to ensure maximum coverage of the originally defined
attack surface.

Cure53, Berlin · 06/27/19 4/8

https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

• Initially the test infrastructure was examined and tested for proper connectivity as
well as for actually available functionality.

• Open issues and previously found bugs were tracked through the Linkerd
repositories, looking for similar errors being present in the tested version.

• The Kubernetes configuration and integration aspects were analyzed, a search
for common misconfiguration issues pertaining to Linkerd was performed.

• The running services and their individual configurations, in particular the
interfaces, were checked for proper compartmentalization. It was discovered that
Linkerd is located in its own namespace but has cluster-wide access.

• A customized fuzzing map was created to verify the general robustness of the
services. General as well as specific payloads were created, based on the
previously observed Linkerd requests. The payloads yielded a noticeable
increase in latency but did not have implications on availability or security.

• Linkerd-cli was analyzed to determine its scope of functionality. Cure53
attempted to use it as a source of compromise. Since a corresponding
kubectl.yaml file is used to connect to the cluster and subsequently install its own
control plane API, dependencies and tap interfaces, this approach was quickly
abandoned.

• Linkerd-web was audited for flaws by manipulating requests for certain
applications/namespaces. This was done through the addition of malformed
headers.

• Linkerd-proxy-injector and proxy-auto-inject were tested by trying to inject bogus
and slightly malformed requests into pre-routing.

• Linkerd-tap was probed by triggering logical flaws via targeted header
manipulation and attempted request breakouts.

• The dashboard web interface has been tested in a black-box fashion by
manipulating parameter values to contain special characters. Cure53 wanted to
see if this approach can cause any unintended behaviors.

• Header manipulation has been tested by altering existing headers and adding
headers in requests to the demo application. It was hoped that unintentional
routing can be triggered.

Cure53, Berlin · 06/27/19 5/8

https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

Miscellaneous Issues
This section covers those noteworthy findings that did not lead to an exploit but might aid
an attacker in achieving their malicious goals in the future. Most of these results are
vulnerable code snippets that did not provide an easy way to be called. Conclusively,
while a vulnerability is present, an exploit might not always be possible.

LNK-01-001 Dashboard: General HTTP security headers missing (Info)

It was found that the Linkerd dashboard is missing certain HTTP security headers in
HTTP responses. This does not directly lead to a security issue, yet it might aid
attackers in their efforts to exploit other problems. The following list enumerates the
headers that need to be reviewed to prevent flaws that can be attributed to mishandled
or misconfigured headers.

● X-Frame-Options: This header specifies whether the web page is allowed to be
framed. Although this header is known to prevent Clickjacking attacks, there are
many other attacks which can be achieved when a web page is frameable1. It is
recommended to set the value to either SAMEORIGIN or DENY.

● X-Content-Type-Options: This header determines whether the browser should
perform MIME Sniffing on the resource. The most common attack abusing the
lack of this header is tricking the browser to render a resource as an HTML
document, effectively leading to Cross-Site-Scripting (XSS).

● X-XSS-Protection: This header specifies if the browser’s built-in XSS auditors
should be activated (enabled by default). Not only does setting this header
prevent Reflected XSS, but also helps to avoid the attacks abusing the issues on
the XSS auditor itself with false-positives, e.g. Universal XSS2 and similar. It is
recommended to set the value to either 0 or 1; mode=block.

Overall, missing security headers is a bad practice that should be avoided. It is
recommended to add the following headers to every server response, including error
responses like 4xx items.

More broadly, it is recommended to reiterate the importance of having all HTTP headers
set at a specific, shared and central place rather than setting them randomly. This
should either be handled by a load balancing server or a similar infrastructure. If the
latter is not possible, mitigation can be achieved by using the web server configuration
and a matching module.

1 https://cure53.de/xfo-clickjacking.pdf
2 http://www.slideshare.net/masatokinugawa/xxn-en

Cure53, Berlin · 06/27/19 6/8

https://cure53.de/
http://www.slideshare.net/masatokinugawa/xxn-en
https://cure53.de/xfo-clickjacking.pdf
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

LNK-01-002 Dashboard: Missing DNS Rebinding attack protection (Low)

It was found that the Linkerd dashboard service, as well as the Grafana dashboard, are
vulnerable to a DNS Rebinding attack. This allows an attacker to have a victim visiting
an attacker-controlled website. The attacker will then be able to perform requests and
retrieve responses on the victim’s behalf.

The attack exploits the fact that the dashboard does not restrict the Host header for
incoming requests. By setting up a script on a domain with a very low TTL value and
then quickly rebinding its IP address of localhost, the script will then “bypass” the
restrictions normally set by SOP on the browser.

Steps to Reproduce:
• Run Linkerd dashboard service with port 3000

(linkerd dashboard --port 3000)
• Go to http://rebind.it:8080/manager.html and change the target port to 3000.
• Click on “Start Attack” and wait for a minute.
• The response from the dashboard will be returned, indicating success of a DNS

Rebinding attack

It is recommended to provide an option to fixate the dashboard domain. Grafana, for
example, provides an enforce_domain option to ensure that redirection to the correct
domain3 happens consistently.

3 https://grafana.com/docs/v3.1/installation/configuration/#enforce_domain

Cure53, Berlin · 06/27/19 7/8

https://cure53.de/
https://grafana.com/docs/v3.1/installation/configuration/#enforce_domain
http://rebind.it:8080/manager.html
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

Conclusions
Judging by the lack of discovered relevant vulnerabilities and only a few miscellaneous
issues, Cure53 has gained a rarely observed and very good impression of the examined
Linkerd software complex and its surroundings. This June 2019 Cure53 project clearly
demonstrates that the Linkerd product is fully capable of preventing major attacks and
should be considered strong against the majority of malicious attempts at a compromise.

To give some context, this security investigation of the Linkerd system was generously
funded by The Linux Foundation / Cloud Native Computing Foundation, which allowed a
team of seven Cure53 testers to audit the software system for a total of eighteen days.
As a result of this wide-scoping and well-planned investigation, a good coverage of the
Linkerd components was achieved. Cure53 is happy to report that no real vulnerabilities
could be identified on the Linkerd scope. For the sake of completeness, the testing team
should mention that there were several general security-relevant shortcomings.
However, the development team was already well-aware of the issues raised by Cure53,
i.e. as regards the necessary accessibility of the control plane from within all other
containers linked to the data plane, which could, arguably, be abused by an untrusted
application in the same space. Most importantly, work is already under way as far as
tackling this is concerned. The Linkerd will handle the problem by introducing RBAC
logic with the next major release. Another security-relevant aspect entails the component
dependencies which have not been properly audited. Especially the currently used TLS
library has not been examined at all and this should be rectified as a matter of urgency,
especially since it is related to a particularly precarious area.

The general indicators of security found on the Linkerd project during this June 2019
assessment are all very good. Cure53 needs to mention the atypically excellent code
readability, careful choice of implementation languages, as well as the clearly written
and well-maintained documentation for all attributes. These aspects contribute to the
body of evidence about the overall exceptional quality of the project in terms of security.
The involved development team was highly engaged, starting from the preparation of
this audit, to the deployment of the test cluster, and, finally, to quick reaction times as
regards questions posed by the testers. The overall state of the Linkerd project - from a
technical perspective and the in-house team’s great awareness of security-relevant
practices and aspect, solidly places the Linkerd complex on a very good level.

Cure53 would like to thank Oliver Gould and William Morgan from the Linkerd
development team, as well as Chris Aniszczyk of The Linux Foundation, for their
excellent project coordination, support and assistance, both before and during this
assignment. Special gratitude also needs to be extended to The Linux Foundation for
sponsoring this project.

Cure53, Berlin · 06/27/19 8/8

https://cure53.de/
mailto:mario@cure53.de

	Pentest-Report Linkerd2 & Linkerd2 Proxy 06.2019
	Index
	Introduction
	Scope
	Test Methodology
	Part 1. Manual code auditing
	Part 2. Code-assisted penetration testing

	Miscellaneous Issues
	LNK-01-001 Dashboard: General HTTP security headers missing (Info)
	LNK-01-002 Dashboard: Missing DNS Rebinding attack protection (Low)

	Conclusions

