
L I G H T F I E L D R E N D E R I N G
TNM089, IMAGING TECHNOLOGY

Linus Mossberg
linmo400@student.liu.se

Thursday 29th October, 2020

Abstract

This project-report presents a method and implementation
to synthesize novel views from a collection of images using
light field rendering. Two light field parameterizations from
previous research is presented, the light slab parameteri-
zation and the dynamic reparameterization. The dynamic
reparameterization is chosen for the implementation, but
an approach to render light slab parameterized light fields
using this method is also derived. The rendering method
is extended to use a more realistic dynamic synthetic aper-
ture based on the thin-lens camera model, and an efficient
hardware-accelerated texture-mapping method utilizing
this dynamic aperture is presented. An autofocus method
is finally presented which utilizes template matching and
projective geometry to instantaneously bring a selected fo-
cus point in the scene to focus.

1 Introduction

Before introducing light field rendering, it is best to start
by briefly introducing the light field. The light field is a
vector function that describes the amount of light that flows
through every point in every direction in space. Using three
spatial coordinates x, y, z and two angular coordinates θ, φ,
this results in a 5-dimensional light field L(x, y, z, θ, φ).

Figure 1: Light field sampled by pinhole camera.

To capture and represent the light field in practice, it is
useful to consider a pinhole camera. As seen in figure 1, a
pinhole camera only samples the light field at a single point
in space located at the pinhole aperture.

It does however sample several summed ranges of direc-
tions from that single point, one for each pixel on the sensor.
The entire range of directions given by the field of view
of the camera can then be approximated by interpolating
the resulting image. To capture larger light fields, more im-
ages may then be captured using several pinhole cameras
located at different positions in space.

For simplicity, this report only considers arrays of cam-
eras located on a camera plane as shown in figure 2. The
normal vector of the camera plane is assumed to be parallel
with the world z-axis, and the data cameras are assumed to
be centered around the world origin.

Figure 2: Pinhole camera-array

The number of sampled positions is also limited in prac-
tice, usually much more so than the number of sampled
directions. Section 2.3 presents a method to similarly utilize
a type of interpolation in the spatial domain to approximate
the whole range of positions covered by the camera array.

Once a light field has been captured, the purpose of light
field rendering is to utilize the light field to synthesize novel
views. This is done by casting rays from the desired camera
and querying the light field to retrieve the corresponding
pixel intensities in the desired image. It is however not
apparent how the 5-dimensional light field representation
efficiently can be queried to retrieve the correct intensity for
a given ray.

To do this, the light field is typically parameterized first
to retrieve a representation that is easier to query. By con-
sidering that light moves in straight lines in free space, the
light field can be parameterized between two surfaces. A
ray may then be represented as a 2D surface-coordinate on
each surface that represents the entrance and exit points of
the ray. This is effectively a reduction to four dimensions,
and querying a ray passing through a light field using this
representation only requires finding two ray-surface inter-
sections. The following two sections introduces two such
parameterisations.

1



1.1 Light Slab Parameterization

The light slab parameterization was first presented by two
independent papers released in 1996, Light Field Rendering
[1] and The Lumigraph [2]. As the name suggests, the later
called this parameterization the lumigraph. This parame-
terization utilizes two parallel planes to represent the light
field.

In this method, images taken by the camera-array must
be pre-processed with a process called rectification. This is
done by locating common points in the scene that lie on
a plane parallel with the camera plane in all images. The
images are then transformed using a planar homography
to align these points. This results in sheared camera projec-
tions which maps points on the chosen plane to common
image coordinate in all the rectified images. The chosen
plane effectively becomes the baked-in focal-plane of the
light slab, whose 2D surface-coordinates has a direct corre-
spondence with image coordinates in the rectified images.

Figure 3: Light slab parameterization.
Blue point: Camera-plane intersection.
Orange point: Focal-plane intersection.

As a result, retrieving the intensity of a ray passing
through the light slab can be done by simply finding the
ray-plane intersections with the camera-plane and the focal-
plane. The camera closest to the camera-plane intersection
may then be chosen, and the surface coordinate of the focal-
plane intersection can be used to locate the closest pixel
from the corresponding rectified image.

The rendering methods proposed in [1] and [2] that takes
advantage of this parameterization utilizes the baked-in
focal plane as the focal plane of the desired camera. This is
a big limitation since the focal plane of a dynamic camera
is supposed to move with the camera. There are simple
pixel-shift ”refocusing” methods that can move the plane of
focus back and forth, but using a fully dynamic focus plane
that moves with the desired view requires other methods.

1.2 Dynamic Reparametrization

Dynamic light field reparameterization is a method that allows
the focal plane to be moved around arbitrarily by adding
one additional step. This parameterization was proposed in
the master thesis of Aaron Isaksen [3] as well as the paper
Dynamically Reparameterized Light Fields [4], both released in
2000.

The ray-plane intersections with the camera plane and
focal plane is found as usual in this method, and the data-
camera closest to the camera-plane intersection may be
chosen again. The image coordinate of the corresponding
image can however no longer be retrieved directly from the
focal-plane intersection. Instead, the camera projection of
the data-camera is used to project the intersection point on
the focal plane down to the image plane of the data camera,
where the closest pixel value can be retrieved directly.

Figure 4: Dynamic reparametrization.
Blue point: Camera-plane intersection.
Orange point: Focal-plane intersection.
Green point: Point on focal plane projected to data camera.

Any camera type can be used with this method if the
mapping from world coordinates to image coordinates is
known. This means that the camera images do not have
to be rectified like in the light slab parameterization, it is
possible to use the normal perspective images taken by the
camera array directly. It is however still possible to use
rectified images with this approach by deriving the sheared
projections. Camera projections for both normal perspective
cameras and sheared cameras are presented in section 2.2.

This method is much more flexible than the light slab
parameterization without any real drawbacks. This is there-
fore the chosen parameterization method used for the ren-
derer.

2



2 Background

The following sections presents the chosen light field ren-
dering method and describes the implementation in more
detail.

2.1 Camera Model

It is useful to begin by describing the camera model used in
the following sections, since this is referenced throughout
the report. The camera model is the thin-lens camera model
[5], which can be seen in figure 5.

Figure 5: Top-down view of annotated thin-lens camera model.

The forward vector of the camera f̂ defines the direction
from the center of the sensor plane to the center of the aper-
ture. The vectors r̂ and û = r̂× f̂ (not shown) are the right-
and up-vectors respectively that span the sensor plane of
the camera. These three vectors are orthogonal and consti-
tute a left-handed orthonormal basis for the camera. The
center of the aperture is the eye-coordinate of the camera, e.
The sensor plane is offset relative to e along -f̂ by the image
distance, I. Similarly, the focal plane is offset relative to e
along f̂ by the focus distance, F. The sensor width is given
by sw and the aperture diameter is given by the quotient of
the focal length and the f-stop, f

fstop
.

Equation 1 shows how the image distance I can be de-
rived from the focal length and the focus distance using the
thin-lens equation [5].

1
f
=

1
I
+

1
F
⇐⇒ I =

F · f
F− f

(1)

Using this image distance naturally results in focus breath-
ing1 however, which can be mitigated by instead using the
approximation I = f .

A special case of this model is the pinhole camera model,
in which the f-stop is infinite and the aperture reduces to an
infinitesimal point. As a result, only a single ray from each
visible point in the scene can reach the sensor, regardless of
distance. This model therefore produces images where the
whole scene is in focus.

1Change of field of view as focus distance changes.

2.2 World to Image Space

This section describes how a point p can be transformed
from world to image space using either a perspective cam-
era or a light slab parameterized data camera. Both uses
projective geometry and assumes pinhole apertures. The
images are also assumed to be free of lens-distortion.

The resulting image-space coordinate pimage is trans-
formed to the range [(0, 0)T , (1, 1)T ] for points visible by
the camera, where (0, 0)T maps to the lower-left edge of the
image and (1, 1)T to the upper-right edge.

2.2.1 Perspective Camera

Equation 2 shows how a world-coordinate p may be trans-
formed to the 2D image-coordinate pimage of a perspective
camera [6]:

pclip = P ·V · (px, py, pz, 1)T

pdevice =
pclip

pclip,w

pimage =
pdevice,xy + 1

2

(2)

The view-matrix V is given by equation 3, while the projec-
tion-matrix P is given by equation 4.

V =


r̂x r̂y r̂z −r̂ • e
ûx ûy ûz −û • e
−f̂x −f̂y −f̂z f̂ • e

0 0 0 1

 (3)

P =


2·I
sw

0 0 0
0 2·I·W

sw ·H 0 0
0 0 0 0
0 0 −1 0

 (4)

The new variables W and H in (4) are the pixel width and
height respectively of the camera image. Note that this
projection-matrix omits the near and far clipping planes.

2.2.2 Light Slab Parameterized Data Camera

The equivalent transformation for a sheared data camera
from a light slab parameterized light field is given in equa-
tion 5. Note that this presupposes that the data cameras are
centered at the origin, and that the camera plane normal is
parallel with the z-axis.

v̂ =
ed − p
‖ed − p‖

pimage =
1
2
+

ed,xy + v̂xy · −FLS
v̂z

SLS

(5)

FLS is the distance between the camera plane and the light
slab focal plane, SLS is the 2D-dimensions of the light slab
focal plane and ed is the eye of the data camera. Note that
SLS has the same aspect ratio as the corresponding data
image.

3



2.3 Aperture

Selecting the closest pixel from the closest camera when
producing a pixel in the desired camera is analogous to
nearest neighbor interpolation in 4D ray-space. This is also
analogous to the pinhole camera model, where the whole
synthesized view is in focus. Both the camera array and
data camera images have limited resolution in practice,
which results in unpleasant aliasing and flickering if this
method is used. [1]

The first and simplest step to mitigate this is to use bi-
linear interpolation when retrieving pixel values from data
cameras. [1][2] The second step is to use more than one
data camera for each pixel by considering the aperture of
the thin-lens camera model. This is visualized in figure 6.

Figure 6: Synthetic aperture. The dots on the camera plane rep-
resents individual data cameras. The colored dots represents the
data cameras that should be considered when producing the cor-
responding pixel value on the sensor.

This method is similar to the synthetic aperture filtering
method presented in [4], but the aperture is now attached
to the desired camera rather than being symmetrically cen-
tered at each data camera on the camera plane with a fixed
size. This method should produce more realistic results
where the depth of field changes dynamically with the de-
sired camera and the chosen focus distance.

Using a naive per-pixel ray-tracing approach, this method
would result in the following basic procedure to render the
desired view: For each pixel in the desired camera, locate
the focal plane intersection and all the data cameras that is
contained within the cone that results from projecting the
aperture to the focal plane intersection. Then, project the
point on the focal plane to each of these data cameras to re-
trieve their image coordinates and corresponding bilinearly
interpolated pixel values. Finally, produce an average of
these values.

The texture-mapping method presented in [4] is however
much more efficient, so we can do better by deriving the
equivalent method using the new dynamic aperture. To do
this, we consider one data camera at a time and wish to find
the image region in the data camera that will contribute to
an image region in the desired image.

This can be thought of as sweeping through all pixels on
the sensor to find out for which pixels the given data camera
is contained within the projected aperture cone. This is
visualized in figure 7. The aperture is now represented as a
polygon with vertices ai attached to the desired camera.

Figure 7: Visualization of the contribution of a single data camera
to the desired image.

To find these image regions, we first find the vertices bi
at the focal plane intersection with the ray that starts at the
aperture vertex ai and passes through the data camera eye
ed as shown in equation 6.

bi = ai +
(ed − ai) · F
(ed − ai) • f̂

(6)

Note that bi ends up on the opposite side of ed relative
to the desired camera. Next, the polygon spanned by the
vertices bi is projected to the data camera to find the image
region spanned by the polygon with vertices oi. Similarly,
the polygon spanned by the vertices bi is projected to the
desired camera to find the image region spanned by the
polygon with vertices ci in the desired image. The image
region in the data image is then simply mapped to the
image region in the desired image. This is visualized in
figure 8.

Figure 8: Focal plane polygon to image regions.

This procedure is then repeated for each data camera and
their contributions are accumulated in the desired image.

4



Each pixel value is then divided by the total contribution
for each pixel to produce an average. To simulate vignetting
and to smooth out the transition between different images,
each contribution may also be filtered using a radial aper-
ture filter. [4] This filter weights the contribution of pixels
at the center of the aperture more heavily than the ones at
the edges.

2.3.1 Implementation

In practice, a circular aperture polygon that consists of N + 1
vertices ai paired with texture coordinates ti is used. These
are given by equation (7).

i = {0, ..., N}

ti =


(

1
2 , 1

2

)T
if i = 0

1
2 + 1

2

(
cos

(
(i-1)·2π

N

)
, sin

(
(i-1)·2π

N

))T
otherwise

ai = e +
f

fstop
·
((

ti,x − 1
2

)
· r̂ +

(
ti,y − 1

2

)
· û
)

(7)
These vertices form N triangles Tj given by equation (8).
The resulting aperture polygon is visualized in figure 9.

j = {1, ..., N}

Tj =

{
4a0aNa1 if j = N

4a0aja(j+1) otherwise

(8)

Figure 9: Aperture polygon for N = 6. The color corresponds to
the interpolated texture coordinate ti, where red has been mapped
to the x-component and green to the y-component.

Each aperture vertex is then processed individually in
an OpenGL vertex shader program. The vertex is first pro-
jected to the focal plane using (6) to retrieve the focal plane
vertex bi. This focal plane vertex is then projected to the
data camera to retrieve the data image coordinate oi using
either (2) or (5) depending on the light field type. The data
image coordinate oi along with the aperture texture coordi-
nate ti are then set as output variables of the vertex shader
program.

The focal plane vertex bi is finally projected to the clip-
space of the desired camera using the first equation in (2),
which is set as the final output position of the vertex shader
program.

OpenGL then automatically transforms this clip-space
coordinate to the image space of the desired camera [6] to
retrieve the image coordinate ci. Once this has been per-
formed for all vertices, the resulting triangles are rasterized
to pixels in the desired image [6]. In this rasterization pro-
cess, the output variables oi and ti are interpolated for each
pixel k using barycentric interpolation [6] across the screen
triangles to form ok and tk. The result is then passed along
to the fragment shader program, where each pixel value Pk
in the desired image is set individually using equation (9).

Pk,a =
(

1− 2 ·
∥∥∥tk − 1

2

∥∥∥)λ

Pk,rgb = D(ok) · pk,a

(9)

D(o) in (9) is the function to sample the bilinearly interpo-
lated intensity of image coordinate o from the data image
texture, while λ is a coefficient that controls the radial falloff
of the aperture filter. Pk,a is the alpha-channel value of pixel
k, which is used to store the aperture filter value.

This shader program is then used to iteratively render
each data camera to the same framebuffer-object using ad-
ditive blending [6]. The resulting framebuffer is then set
as input texture to another shader program used to nor-
malize the filter weights. This is simply done by dividing
each pixel value by the accumulated aperture filter weight,
i.e. the alpha-channel value. The result can then finally be
displayed on screen.

2.4 Autofocus

The multiple perspectives of the data cameras can also be
utilized to find the focal plane required to bring a point in
the desired image to focus. This can be done by individually
rendering two selected data cameras with the rendering
method described previously. The aperture should however
be ignored to project the views to the maximum area of the
desired image. The rendered images are also converted
from sRGB to luminance to reduce each pixel to a single
value. This is visualized in figure 10.

Figure 10: Disparity between two data cameras rendered to the
desired view. The two images have been overlayed by mixing the
color channels in the image to the right to visualize their disparity

5



In this example, the focal plane is located at the figure in
the middle since the two images are aligned at this point.
To align the images at a different focus point in the desired
image, we can begin by finding the pixel disparity between
corresponding points in the images at this point.

Template matching [5] is a simple method to find this dis-
parity at a chosen focus point. This is performed by select-
ing one of the images as template-image, denoted T(xT , yT),
and the other as search-image, denoted S(xS, yS). The tem-
plate image is cropped to a smaller square centered at the
desired focus point, while the search image can remain at its
original size. To reduce the search space, the search-image
may however also be cropped to a square centered at the
focus point, provided that this square is large enough to
encompass the disparity. The problem is then to find the
position p in the search-image where the template-image
differs the least. This is visualized in figure 11, with the
hand of the figure to the right in figure 10 chosen as focus
point.

Figure 11: Template Matching.
Left: Template Image T(xT , yT)
Right: Search Image S(xS, yS)

The sum of the squared differences [5] measure was chosen
for this purpose, denoted R(xS, yS). The coordinate p may
then be found as the coordinate that minimizes R(xS, yS)
over the search domain as shown in equation (10).

R(xS, yS) =
Tcols

∑
xT

Trows

∑
yT

(T(xT , yT)− S(xS + xT , yS + yT))
2

p = arg min
(xS ,yS)T

R(xS, yS)

(10)
This measure effectively works by placing the origin of the
template image at the coordinate (xS, yS)

T in the search
image. The squared difference between each pixel in the
template image and the underlying search image is then
accumulated, and the resulting sum is the difference value
for that coordinate. This is then repeated for all pixel-
coordinates in the search image, and the coordinate p with
the smallest difference represents the best match. This type
of template matching is sensitive to scale and rotational
changes [5], but this is not a big issue here since the images
are mapped to a common view first.

Next, two pixel coordinates in the desired view may be
derived from the template matching result using equation
(11). These coordinates represent corresponding points in
the two images.

pT := Focus Point

pS = pT + p +
(Tcols − Scols, Trows − Srows)T

2

(11)

pT in equation (11) belongs to the data camera chosen for
the template image, and pS to the data camera chosen for
the search image. Getting these points to align in the de-
sired view requires finding the focal plane where the data
cameras sees their respective coordinate at a common point
on the focal plane, b′. This is visualized in figure 12.

Figure 12: New focal plane from pixel disparity

This new focal plane can be found by first projecting these
two pixel-coordinates back to the current focal plane using
equation (12)

bT = e +
v(pT) · F
v(pT) • f̂

bS = e +
v(pS) · F
v(pS) • f̂

(12)

where the world-space direction-vector v(x) of a pixel-
coordinate x in the desired camera is given by equation
(13).

v(x) =
sw · (xx − W

2 )

W
· r̂ +

sw · (xy − H
2 )

W
· û + I · f̂ (13)

Note that v(x) is not normalized since it does not need to
be in equation (12). The new focal plane is then located at
the intersection between the rays~rT(t) and~rS(s) that are
given by equation (14).

~rT(t) = eT +
bT − eT

‖bT − eT‖
· t = eT + d̂T · t

~rS(s) = eS +
bS − eS

‖bS − eS‖
· s = eS + d̂S · s

(14)

This intersection may however not exist since rays rarely
intersect in three dimensions.

6



Instead, we can find the point on each ray that is clos-
est to the other ray, and use the midpoint between these
two points as an approximation of the intersection using
equation (15) [7].

k0 = d̂T • d̂T , k1 = d̂T • d̂S, k2 = d̂S • d̂S

k3 = d̂T • (eT − eS), k4 = d̂S • (eT − eS)

b′ =
1
2
·
(
~rT

(
k1k4 − k2k3

k0k2 − k2
1

)
+~rS

(
k0k4 − k1k3

k0k2 − k2
1

)) (15)

The new focus distance F′ that places the focal plane at this
point is finally found using equation (16).

F′ = (b′ − e) • f̂ (16)

3 Results

The source code for the renderer and animated results can
be found on github:

github.com/linusmossberg/light-field-renderer

The renderer is implemented in C++ and uses OpenGL
for hardware acceleration. It is possible to interactively
navigate the scene by changing the position and rotation of
the camera using the mouse and keyboard. The program
has a graphical user interface that allows all aspects of the
desired camera to be changed, such as focal length, focus
distance, f-stop etc. The focus distance can be changed
interactively using autofocus by clicking at a point in the
scene. A screenshot of the renderer is shown in figure 13.

Figure 13: Screenshot of the renderer.

The renderer is capable of rendering rectified light fields
from the Stanford Lego Gantry [8]. These light fields consists
of 17× 17 images that were captured by a Canon Digital
Rebel XTi camera. The rectified and cropped Lego Knights
light field used here has a resolution of 1024× 1024 pixels.
The scale of these light fields are unknown, but the SLS and
LLS variables in equation (5) can be changed interactively
until the result seems reasonable. Figure 14 shows an exam-
ple of the rendered Lego Knights light field using various
focal plane positions in the scene.

Figure 14: Variable focus distance with the Lego Knights light field.
The focus distance was changed using autofocus by selecting the
figure to the left, the figure in the middle and the back-wall. The
focus distances from left to right are roughly: 1.2 meters, 1.4 meters
and 1.6 meters.

The renderer is also able to render non-rectified light
fields taken by normal perspective cameras. The Junk Shop
[9] light field used here was captured in Blender [10] using
a python script. The light field consists of 27× 27 images
with a resolution of 1440× 960 pixels. The extent of this
light field is 0.8 × 0.8 meters, and each data camera has
a sensor width of 36 millimeters and a focal length of 30
millimeters. Figure 15 shows an example of this light field
where the z-position and focal length of the desired camera
is changed to get a ”dolly zoom” effect. This is most apparent
by looking at the background and the metallic sphere in the
lower right in the foreground.

Figure 15: ”Dolly zoom” using variable z-position and focal length
with the Junk Shop light field. The intensity in the shadows of
the image has been raised to easier see background. A negative
z-position means that the desired camera is in front of the camera
plane, while a positive value means that it is behind it.
Left: z-position: -0.9 meter, focal length: 43.09 millimeter.
Right: z-position: 1.1 meter, focal length: 55.9 millimeter.

This project is inherently interactive however which
makes it difficult to convey most aspects in this format.
I would therefore suggest compiling and running the pro-
gram for more representative results.

3.1 Performance

All of the light fields presented can be rendered at in-
teractive framerates on a system with a NVIDIA GTX
1070 graphics card. The largest bottleneck appears to
be the video memory, the Junk Shop light field require
27× 27× 1440× 960× 3 bytes ≈ 3 gigabytes for instance.

7

https://github.com/linusmossberg/light-field-renderer


A resampled 960× 640 pixel version of the Junk Shop
light field can be rendered using a much more modest sys-
tem using the integrated graphics of an Intel Core m3-6Y30
processor. This system starts getting problems for larger
apertures however since this reduces the number of pixels
that can be discarded for each data camera.

4 Future Work

The most pressing thing that I have not had the time to
try is using light fields with unstructured data cameras
rather than confining them to a plane. Since the dynamic
aperture in my method is no longer confined to the camera
plane, this should already be possible with some minimal
modifications to the program. This would allow the light
fields to be captured directly by moving and taking pictures
with a hand-held camera such as a smartphone.

Another thing I would like to try is to compare a syn-
thesized view with a reference image captured using the
same camera settings. This would be possible to do in a
controlled way using Blender for example, and the images
could be compared using quality metrics such as SSIM and
S-CIELAB.

Lastly, I have not had the time to try using light fields
with larger extents. This allows very large apertures to be
simulated, which enables the possibility to effectively look
through large objects.

5 Conclusion

The presented light field rendering method is able to effi-
ciently synthesize novel views from a collection of images in
a way that closely resembles physical cameras. This method
may be used to for example experience a captured scene
using a VR-headset, or to capture a image after the fact to
more carefully compose it and select optical settings. The
presented autofocus method can be used to focus at a point
in the scene very quickly and accurately, and it appears to
work flawlessly in most situations. This method could also
easily be extended to use color information and more than
two cameras for example.

References

[1] Marc Levoy and Pat Hanrahan. Light field rendering.
In Proceedings of the 23rd Annual Conference on Com-
puter Graphics and Interactive Techniques, SIGGRAPH
’96, page 31–42, New York, NY, USA, 1996. Association
for Computing Machinery.

[2] Steven J. Gortler, Radek Grzeszczuk, Richard Szeliski,
and Michael F. Cohen. The lumigraph. In Proceed-
ings of the 23rd Annual Conference on Computer Graphics
and Interactive Techniques, SIGGRAPH ’96, page 43–54,
New York, NY, USA, 1996. Association for Computing
Machinery.

[3] Aaron Isaksen. Dynamically reparameterized light
fields, 2000.

[4] Aaron Isaksen, Leonard McMillan, and Steven J.
Gortler. Dynamically reparameterized light fields.
In Proceedings of the 27th Annual Conference on Com-
puter Graphics and Interactive Techniques, SIGGRAPH
’00, page 297–306, USA, 2000. ACM Press/Addison-
Wesley Publishing Co.

[5] Richard Szeliski. Computer Vision:Algorithms and Appli-
cations. Springer, 2010. [September 3, 2010 draft].

[6] John F. Hughes, Andries van Dam, Morgan McGuire,
David F. Sklar, James D. Foley, Steven Feiner, and
Kurt Akeley. Computer Graphics: Principles and Practice.
Addison-Wesley, Upper Saddle River, NJ, 3rd edition,
2013.

[7] Bit Barrel Media. 3d Math functions. http:
//wiki.unity3d.com/index.php/3d Math functions,
2018. [Online; accessed 2020-10-25].

[8] Vaibhav Vaish and Andrew Adams. The (new) stan-
ford light field archive. http://lightfield.stanford.
edu/lfs.html, 2008. [Online; accessed 2020-10-25].

[9] Alex Treviño and Anaı̈s Maamar. The junk
shop blender scene. https://cloud.blender.org/p/
gallery/5dd6d7044441651fa3decb56, 2019. [Online;
accessed 2020-10-25].

[10] Blender Foundation. Blender. https://www.blender.
org/, 2020. [Online; accessed 2020-10-25].

8

http://wiki.unity3d.com/index.php/3d_Math_functions
http://wiki.unity3d.com/index.php/3d_Math_functions
http://lightfield.stanford.edu/lfs.html
http://lightfield.stanford.edu/lfs.html
https://cloud.blender.org/p/gallery/5dd6d7044441651fa3decb56
https://cloud.blender.org/p/gallery/5dd6d7044441651fa3decb56
https://www.blender.org/
https://www.blender.org/

	Introduction
	Light Slab Parameterization
	Dynamic Reparametrization

	Background
	Camera Model
	World to Image Space
	Perspective Camera
	Light Slab Parameterized Data Camera

	Aperture
	Implementation

	Autofocus

	Results
	Performance

	Future Work
	Conclusion

