
Department of Electrical Engineering and Computer Science
EECS Senior Design 2021

Modular Garden Monitoring System

Team CE12
Sadie Gladden, Eric Krenz, Zuguang Liu, Alan Trester

April 6, 2021

Technical Advisor
Dr. Zachariah Fuchs

University of Cincinnati
College of Engineering and Applied Science
EECE 5031 CompE Senior Design I - 001

Acknowledgements

We would like to sincerely thank the following individuals:

• Dr. Carla Purdy for your continued guidance and wisdom throughout the Senior Design process.

• Dr. Zach Fuchs for supporting, advising, teaching, and dealing with us throughout the creation and
development of this project.

• Hive 13 Makerspace for providing work space and equipment that was vital to the development of
our prototype.

1

Contents

1 Introduction 4
1.1 Problem/Need . 4
1.2 Solution . 4
1.3 Credibility . 5
1.4 Project Goals and Brief Methodology . 6

2 Discussion 7
2.1 Project Concept . 7
2.2 Design Objectives . 8
2.3 Methodology/Technical Approach . 10
2.4 Standards . 12
2.5 Final System Design . 13
2.6 Testing and System Performance . 17
2.7 Budget . 19
2.8 Timeline . 20
2.9 Problems Encountered and Solutions . 21
2.10 Future Recommendations . 22

3 Conclusion 23

4 Appendices 25
4.1 Python Implementation of GUI . 25
4.2 Submodule Main Control Program . 34
4.3 Submodule Libraries . 37

2

Abstract

The MGMS is an IoT solution to help homeowners, garden enthusiasts, and farmers care for their lawns
and gardens in a more informed and effective way while also reducing wasteful water usage. This proof-
of-concept system designed over the 2020/2021 fall and spring semesters utilizes an AVR microcontroller
and IEEE 802.15.4 wireless communication to provide real-time and historical information about outdoor or
indoor environmental conditions while providing customized recommendations for optimal plant care.

3

1 Introduction

The purpose of this report is to divulge in its entirety, the process followed to fulfill all requirements of
EECE5031/5032–Senior Design, at the University of Cincinnati’s College of Engineering and Applied Science.
The culminating project is a proof-of-concept modular garden monitoring system.

1.1 Problem/Need

Lawns and gardens are one of most essential elements for the typical American home. A survey conducted by
National Association of Landscape Professionals in 2019 shows that 79 percent of American families value
lawns when renting or buying a home, and about one in three Americans garden in their yards multiple
times a week[1].

Consequently, there is a constantly high demand of water for use in lawns and gardens. Per the United
States Environmental Protection Agency, about 48 gallons of water is devoted for this use per family per
day. Across America, nearly 1/3 of all residential water is used for landscaping irrigation totaling an es-
timated 9 billion gallons per day[2]. In a world undergoing climate change with consistent annual water
shortages and wildfires in many parts of the world, wasteful water usage is simply irresponsible and unac-
ceptable.

The issue of wasteful irrigation is not being addressed as actively as it deserves to be. Although younger
generations of Americans tend to value lawns and gardens even more than older generations, more than half
of young people failed quizzes on proper landscape care and nearly 7 out of 10 young people wish to see
further improvement in their lawns[3].Uninformed (and in turn, irresponsible) lawn care may significantly
contribute to the amount of wasteful water usage happening every day.
A 21st-century solution is needed to help new homeowners care for their lawns and gardens in a more
informed and effective way while reducing the amount of wasteful water usage that is accounted for by
residential lawn care and irrigation.

1.2 Solution

Originated from the Internet of Things (IoT) concept, the Modular Garden Monitoring System (MGMS) is
a proposed solution that will be able to provide real-time and historical information about environmental
conditions. Simply having detailed information on-hand will allow homeowners to make more informed deci-
sions on the types of plants to keep in their gardens as well as when and how much to water them. Internet
connectivity can take decision making to the next level by being able to crowd-source gardening recom-
mendations and consider local weather predictions for watering. Further system expansions can introduce
features such as automatic watering to take work from homeowner’s shoulders while reducing human error
in the garden care process. Finally, a smart design will allow the system to be flexible and applicable in a
variety of scenarios varying with garden size and irrigation needs and even between residential and industrial
settings. This senior design project will focus on creating a proof-of-concept baseline system to report and
access environmental data. The user interface will be built in such a way that will enable smooth addition
of the smart features discussed above.

4

1.3 Credibility

Alan Trester is an Electrical Engineering student with co-op experience in software, hardware, and man-
ufacturing engineering roles through GE Aviation Systems. He has a strong passion for technology, design,
and ”making”. After graduating he will begin full-time work as an Electrical Engineer with Raytheon Missile
& Defense in Tucson, Arizona.

Eric Krenz is a Computer Engineering student whose past co-op experience was in hardware, software de-
velopment, and cybersecurity. He has a passion for engineering, technology, and making the world a better
place. Post graduation he will begin his career at Epic Systems in Madison, Wisconsin.

Sadie Gladden is a Computer Engineering student with co-op experience in software developement, user
interface creation, game engine developement, computer graphics, and cloud solutions through Siemens PLM
and Siemens Healthcare GmbH. She enjoys exploring the relationship between hardware and software and
exploring the connection and overlap of technology and medicine.

Zuguang Liu is an Electrical Engineering student who has past Co-op experience in industrial system
design, embedded system hardware design, and simple machine learning implementation. After finishing
a Bachelor’s Degree with an Embedded Systems minor, he will continue to pursue a Master’s Degree in
Electrical Engineering.

Team member responsibilities often overlapped during the development of the MGMS. Overall however,
task assignments were chosen based on each members personal engineering strengths and abilities. Figure 1
illustrates each team member’s experience and project focus for the development of the MGMS. This image
was originally presented during the design planning phase of the project.

Figure 1: Team members past experience, specializations, and credibility for this project.

Dr. Zachariah Fuchs (fuchsze@ucmail.uc.edu) is the professor for Introduction to Mechatronics. He has
extensive knowledge on embedded system design, sensor fusion, robotics and control systems. His areas of
expertise make him a good source of advice on anything from the top-level architecture of the system to
individual component choices and design

5

fuchsze@ucmail.uc.edu

1.4 Project Goals and Brief Methodology

Our proposed solution is a modular garden monitoring system that will be able to provide real-time and
historical information about environmental conditions such as soil moisture, temperature, sunlight, humid-
ity, and so on. This is a depth of information that is not necessarily available on existing products; Simply
having this detailed information on-hand will allow homeowners to make more informed decisions on the
types of plants to keep in their gardens as well as when and how much to water them. This removes the need
for a strong knowledge in horticulture for effective results as well as taking water conservation up a notch.
The intended proof-of-concept system will be able to report on and present real-time and historical data
on environmental conditions. Project work will focus on the system’s wireless communications capabilities,
sensor interface, and user interface platform.

The desired characteristics of the MGMS were defined in an attribute table and identified as objectives,
constraints, functions, or means. This is presented in Figure 2. These identified attributes are referenced
throughout the design planning and testing process.

Figure 2: Attribute Table used during the design decision making process.

This kind of system can be made using a simple embedded system architecture. A basic microcontroller (or
family of controllers), which can be chosen to be used throughout the system modules, will be capable of any
combination of reading inputs from sensors, sending information, receiving information, and interacting with
actuators such as solenoid valves to control water flow. The heart of the system lies in the radio modules,
such as Zigbee radios, which allow for full modularity and good wireless range. Finally, the forward-facing
system UI can be hosted on a tiny computer such as a Raspberry Pi.

6

2 Discussion

2.1 Project Concept

A garden monitoring system such as the one we are proposing is not a novel idea: several products already
exist within the consumer and industrial farming markets with similar approaches towards data collection.
The Onset HOBOnet system is a web-enabled data-collection solution for industrial farmers. While these
systems are very popular and provide good results, with accessible user interfaces and informative data visu-
alization, they are too expensive for consideration by homeowners and don’t have the necessary features such
as garden suggestions to be applicable in that market [4]. The Edyn Garden Sensor was a consumer-targeted
system that aimed to tackle the same problems as the MGMS, unfortunately the product was burdened with
limited modularity and expandability as well as a poorly designed app interface [5]. Characteristics of both
products are analyzed and, along with interviews and the team’s own expectations, are used to set a reason-
able objectives baseline for the new system.

A pairwise comparison chart is used to identify priorities among certain attributes that are identified in
Figure 2 above. Again, these attributes are considered throughout the design process and are presented in
Figure 3.

Figure 3: Pairwise Comparison Chart for the design process of our prototype.

7

2.2 Design Objectives

The end-goal of this project is to develop a proof-of-concept marketable product to functionally address the
issues previously discussed in the problem statement: Poor gardening practices and Water conservation. To
aid the project development structure, two objective trees are created, referencing identified attributes and
priorities from before, for the hardware and software components of the system seperately. These charts are
presented in Figures 4 and 5 respectively.

Figure 4: Software Design and Implementation Objective Tree for the design priorities of creating a product
that is Accessible, Customizable, and Helpful for the consumer.

Figure 5: Hardware Design and Implementation Objective Tree for the design properties of being Marketable,
Useful, and Reliable for the consumer.

8

As a consumer-based product, we define a qualitative functionality as the end goal: supporting users to care
for their gardens and reasonably complete automated garden care when enabled. Aside from hardware sen-
sor specifications, quantitative requirements are not realistic for this project, especially considering the time
and resource limitations associated with the 2021 senior capstone framework. For example, assessing the
effectiveness of the MGMS in improving garden yield would require long-term testing in a dedicated space,
which would not be possible to complete following a semester timeline and difficult in a virtual collaborative
environment.

Initial project requirements will be wholly qualitative outside of hardware requirements and will follow pre-
viously identified objectives. For the intended system demonstration in April 2020, system effectiveness will
not be tested in lieu of testing for intended system functionality and correct hardware performance. With
correct hardware performance, system functionality can be more easily tweaked in software to improve over-
all system performance once that testing occurs. Because of this, the described level of testing is acceptable
for a simple demonstration in April.

Qualitative system attributes such as ”ease of use” will be assessed separately during testing in a variety of
ways. Timeline and resource permitting, surveys and qualitative analysis can be conducted . This testing
will later be defined during the development process.

The intended system functionality is as follows:

a. Promotes green spaces by lowering the learning curve of home lawn or garden care.

• Real-time vital statistics

• User configurable setup

• Modular to mold to a variety of use-cases

b. Solves the common problem of garden over-watering to conserves water

• Control system to keep garden soil moisture at healthy levels

• Predicts weather patterns and only automatically waters when needed

9

2.3 Methodology/Technical Approach

The definition of the product inherently makes the design an embedded system that requires multi-disciplinary
knowledge and skills. Thus, we use the strategy of design decomposition to reduce the complexity of the
problem to match each team member’s expertise. Each hardware device (including sensors, controllers and
actuators) will be set-up and tested individually during design prototyping, then combined into a complete
system and tested afterwards. The UI software does not depend on hardware as much, so the front-end
development is performed separately, while having tasks and deadlines in the same pace as the hardware
development, such that the whole system can be defined and prototyped synchronously.

Using a strategy of design decomposition provides several benefits to the project development efforts, the
biggest of which is acting as a “cushion” for possible issues that may arise during development and prototyp-
ing. Design decomposition means that each system component is evaluated separately, removing dependency
on any one component for the final system function. This way, if an issue arises during development, a com-
ponent or design can be adjusted without affecting the major development of the project as a whole. This is
especially important because of the many different sensors and communication technologies being considered
for the project. It is likely that sensor accuracy or communication performance may arise as an issue for
individual components. Thanks to a design decomposition strategy, these issues will be able to be solved
without much consequence.

A baseline system design is created to satisfy the desired project functionality and attributes. This design is
shown in Figure 6 as a broken down view showing the three system components that were planned to be de-
veloped during the timeline of this project. Figure 7 shows a network topology view of the developed system.

Figure 6: Overall System Design Overview of the prototype.

10

Figure 7: Network Topology view of the Completed System.

The MGMS system utilizes a modular design consisting of a central hub which will wirelessly connect to
multiple sensing and watering modules that can be placed around a garden or house. The hub will host
the central user interface and allow for customizing different garden setups. The hub software will make
decisions based on the user configuration to control connected field modules in order to continuously monitor
and water the garden. The user interface will be able to alert the user to garden events and make sugges-
tions based on information available on the internet. The most important feature of the system should be
modularity in freedom to interface a variety of system components in many different configurations.

To create a system following the presented design, tools such as a pairwise comparison chart, morphological
chart, and decision tables were used to make design decisions in the definition and development phases of
this project. The morphological chart, which was used to identify system components for prototyping and
production is shown in Figure 8 below.

Figure 8: Morph Chart that shows various design decisions that were made throughout the creation of the
MGMS prototype.

11

2.4 Standards

The development of the project conforms to various kinds of professional standards in the embedded system
and IoT industry for the sake of security, readability and compatibility.

The product uses I2C bus and protocol for intra-board communication between devices, and uses Zigbee
as inter-module wireless protocol. I2C (Inter-Integrated Circuit) is a synchronous serial communication bus
invented by Philips Semiconductor (now NXP Semiconductors) [6] and widely used by current IC’s in the
market. Zigbee is a protocol developed by Zigbee Alliance based on IEEE-802.15.4 standard. IEEE-802.15.4
defines a two-layer architecture for low-data-rate wireless personal area networks (WPAN) [7], while Zigbee
enhances it with two software layers [8]. Together they form a mature model to implement IoT concepts.

Additionally, electrical diagrams such as circuit schematic and PCB (printed circuit board) layout will be
documented digitally in CAD (computer-aided design) software with standard rules and symbols built in.
Common circuit diagram and PCB standards are specified in [9] and [10].

Finally, standards used in the software development, such as syntax and architecture, are based on specific
dependencies, and they must be obeyed in order for the source code to successfully build or run. These
standards are flexible in the development phase and will are chosen by the team members during project
development.

12

2.5 Final System Design

Through the development process, a final system prototype and production design were created. The physical
prototype created covered the following system components.

• Central Hub

– Wireless-to-Direct Serial Interface

– Raspberry Pi Platform

• Sensor Hardware Module

– Direct-Wireless Serial Interface

– Arduino Platform (ATMega328p)

– Hardware Sensor Interface

– Embedded C Software Enabling Full Module Functionality

• Wireless Communication Framework

– Serial Communication Datastream Standards

– 802.15.4 Firmware and Standard Configuration

• User Interface

– Python-Programmed Serial Interface for Raspberry Pi Connections

– Python-Programmed Graphical User Interface

– Data Visualizaion

Figure 9 shows a photograph of the completed sensor hardware module prototype. In the photograph, it is
easy to identify the XBee wireless radio interface, soil sensor interface, and power system.

Figure 9: Fully Completed Prototype of the MGMS Hardware Sensor Module.

13

Complimenting the central hub hardware, a graphical user interface and historical data visualization system
were developed. This system allows for user interaction with components interfaced within the wireless
network and was partially used for hardware testing during performance evaluation. Figures 10 and 11 show
the main UI menu and sample data chart respectively.

Figure 10: Initial GUI design

Figure 11: GUI Data Display in Graph Form

14

Once a working prototype was developed, steps were taken to design a preliminary production design for
the MGMS hardware. Due to time and software tool constraints, only production hardware for the MGMS
sensor module was designed. By following the developed prototype and decomposing the open-source ar-
duino uno and XBee platforms, a master hardware schematic was created in Altium Designer and is shown
in Figure 12. This schematic is then used to design a printed circuit board design to support the system
hardware components. This PCB is shown in Figure 13.

Figure 12: Hardware Sensor Module Schematic.

15

Figure 13: Printed Circuit Board Model for the Hardware Sensor Module.

The printed circuit board was designed in such a way that it could snugly fit into a standard transparent
weatherproof container, interfaced with a standard sized solar panel and lithium-ion battery pack. The
system’s sunlight sensor and radio antenna are cleverly positioned as to not be obstructed by other system
components. A final 3d mockup of the entire hardware stack is shown in Figure 14

Figure 14: Stack Mockup for the Hardware Sensor Module.

16

2.6 Testing and System Performance

The process of testing and confirming performance of the system’s hardware components occurred subse-
quently with the prototype development. As each individual sensor was interfaced, calibration and speed
testing occurred so that embedded software could be developed accordingly. Throughout this process, sensor
accuracy and the system response time was confirmed to perform within and exceeding team expectations.
Figures 15, ??, and 17 show data used for confirming system performance of the MGMS sensor hardware
module.

Figure 15: Soil moisture data reported by the VH400 sensor during calibration testing.

Figure 16: Soil temperature data reported by the THERM200 sensor during calibration testing.

17

Figure 17: Air temperature data reported by the SHT35 sensor during calibration testing.

When designing the software and GUI, like the hardware components, a test driven development method
was approached. Tests for the GUI and software were developed and ensured all front-end functionality
would fit software capabilities. Figure 18 illustrates key features whose performance was evaluated during
the front-end development process.

Figure 18: GUI Test Case Chart shows what key features were desired from the software and how those
features were tested and expected to perform.

18

2.7 Budget

The expected project budget changed over time as decisions in design and development processes were made.
A finalized budget is shown below as a Bill of Materials (BoM) for the system prototype in Figure 19. This
bill of materials shows costs for specific prototyping components and not necessarily the tools or work hours
used to create the system. An estimated final system cost is provided based on information available from
the computer aided design software and printed circuit board retailers.

Figure 19: Final prototyping Bill of Materials. Includes an estimated final system production cost

19

2.8 Timeline

TODAY

2020 2021

Aug Sep Oct Nov Dec Jan Feb Mar Apr

100% completeDefinition

100% completeRough system diagram

100% completeFinal preliminary system design

100% completeBill of Material

100% completeDesign

100% completeOrder parts

100% completeFirmware development

100% completeFront end development

100% completeControl system development

100% completeAdditional hardware

100% completeImplementation

100% completeFinalize and order PCB

100% completeSystem Prototype

100% completeSystem assembly

100% completeFinalize UI

100% completeTesting

100% completeTest UI

100% completeTest Hardware

100% completeSystem Testing

100% completeDelivery

100% completePoster

100% completeAbstract

100% completeVideo Presentation

29% completeDesign Expo

Throughout the course of the project, it was estimated that each individual person on the team would work
approximately 7-10 hours per week. Some weeks will be lighter on work (waiting for parts to be shipped),
while others will be more labor intensive (assembly and programming), but overall the estimate of 7-10
hours per week is a fair number. Below is a rough chart documenting the overall time spent working on the
project, which supplements the information shown in the Gantt Chart in the previous section.

Figure 20: Time Chart showing the allocation of past time spent and future time expected on the project.

Just like the Gantt Chart, this table was continually updated as the project progressed.

2.9 Problems Encountered and Solutions

The COVID-19 pandemic in 2020 and 2021 changed many of the ways that world operates. Just as the
global pandemic was unprecedented, many of the changes that students at the University of Cincinnati faced
have also been unprecedented. Many new challenges, on top of the ones that are typically faced arose during
this academic year which changed that way that this senior design project was approached.

The biggest challenge for the team as a result of the global pandemic was the requirement for virtual collab-
oration as opposed to in-person meetings. Working and collaborating virtually for class sessions as well as
group work often hindered progress and communication since instant feedback was not always available as it
may have been otherwise. Typically, staying updated on class assignments, keeping track of team progress,
and having multiple people collaborate on one project component were uniquely difficult processes. The team
adjusted to the new reality in several ways, the most important of which was perhaps by taking advantage of
new collaboration and planning tools to complete documentation and project tasks. Tools such as Microsoft
Teams, Overleaf, and GIT were leveraged much more heavily than they would have otherwise. Additionally,
as a result of the virtual environment, the team did not have access to EECS collaboration spaces and elec-
tronic labs, instead working from home offices without the tools, equipment, and real-time team input that
otherwise would have been available. Instead, our home offices had to be turned into personal lab spaces
by acquiring equipment such as oscilloscopes, multimeters, and 3D printers to use for project development.
Lastly, project funding, which is typically provided by EECS, was made unavailable, which further hindered
development efforts.

One typical challenge that arose for our team was development with outdated and obsolete technology. Due
to personal budget constraints, several system components were chosen due to their existing availability to
use in project development. In particular, the XBEE S1 Pro radios which were used to build the MGMS’s
wireless communication system used an outdated IEEE 802.15.4 firmware that has been replaced in the
2nd, 3rd, and 4th generation XBEE radios with Zigbee and Digimesh features. Working with an outdated
technology limited certain system functionalities that would have proved useful for system development.
Furthermore, because we are designing the system in such a way that it can be wholly produced, we had to
cleverly develop the system prototype in such a way that functionality would be forward-compatible with
the newer technology that would likely be used.

21

2.10 Future Recommendations

In the future, there are many possibilities and opportunities to improve upon this prototype. Of course, this
is a baseline proof-of-concept system which can be ever-improved with more developed features on top of
the system platforms that have been created. Although the platform was designed in a way that could easily
accommodate these features, time constraints prevented more sophisticated user interaction and internet
connectivity features from being fully realized. Time and equipment constraints also prevented the team
from wholly testing the completed prototype. Although the system functioned as expected, it was impossible
to measure the hardware and software limits to be documented for further development. Had testing been
planned well in advance, this information may have been more attainable and used to create a better final
product. The final system can be expanded to be significantly more impressive through designing simple
components such as solenoid valve units for watering. It is arguable that it would be possible to create a
more well-rounded demonstrable product if less time was spent on the hardware development of the main
sensor module.

22

3 Conclusion

In completing our senior design project we were able to successfully design, prototype, and test the proof-
of-concept garden monitoring system to the expectations laid out in the initial design plans. The presented
MGMS prototype demonstrates the core system functionality: a thoroughly developed and easy to interface
modular wireless communication system, accurate environmental readings, efficient communication, and a
robust user interface platform. The time and effort spent developing our core system components means
that the development of new features and hardware can be streamlined. With time, a full, marketable,
consumer-grade system can be built that effectively promotes green spaces and addresses the water conser-
vation concerns that are brought up at the beginning of this report, filling a very important market space.
Considering the previously discussed challenges, solutions, and proposed improvements, our team has a very
optimistic outlook on the future of the MGMS system if it were to be further developed.

23

References

[1] N. A. of Landscape Professionals, “New research confirms americans still value lawns and green spaces.”
Available at https://www.businesswire.com/news/home/20190401005679/en/New-Research-Confirms-
Americans-Lawns-Green-Spaces.

[2] E. P. Agency, “Outdoor water use in the united states.” Available at
https://19january2017snapshot.epa.gov/www3/watersense/pubs/outdoor.html.

[3] E. P. Agency, “Drought and watersense.” Available at https://www.epa.gov/watersense/drought-
watersense.

[4] Onset, “Field monitoring system onset data loggers.” Available at
https://www.onsetcomp.com/hobonet.

[5] Edyn, “Edyn: Welcome to the connected garden.” Available at
https://www.kickstarter.com/projects/edyn/edyn-welcome-to-the-connected-garden/description.

[6] “UM10204 i2c-bus specification and user manual,” vol. 2014, p. 64.

[7] “IEEE standard for low-rate wireless networks,” pp. 1–709. Conference Name: IEEE Std 802.15.4-2015
(Revision of IEEE Std 802.15.4-2011).

[8] Z. Alliance, “ZigBee specification.”

[9] “IEEE standard american national standard canadian standard graphic symbols for electrical and elec-
tronics diagrams (including reference designation letters),” pp. i–244. Conference Name: IEEE Std
315-1975 (Reaffirmed 1993).

[10] “IEEE approved draft standard for electrical characterization of printed circuit board and related in-
terconnects at frequencies up to 50ghz.,” pp. 1–150. Conference Name: P370/D8, July 2020.

24

4 Appendices

4.1 Python Implementation of GUI

1 #! /usr/bin/env python3
2 # -*- coding: utf -8 -*-
3

4 # mgms.py
5 # Main module for GUI front -end
6 # Sadie Gladden <gladdesm@mail.uc.edu >
7 # Eric Krenz <krenzew@mail.uc.edu >
8

9

10 import time
11 import traceback
12 import threading
13 from pathlib import Path
14 import matplotlib.pyplot as plt
15 import serial
16 import PySimpleGUI as sg
17

18

19

20 RADIO_LIST = []
21 RADIO_DATA_PULL = []
22 PARSED_RADIO_DATA = []
23 SAMPLE_RATE = 120
24

25

26 # TODO: radio struct? updated with get radios that contains radios name ,
27 # location , DH , DL, etc.
28 class Radio:
29 def __init__(self , MY , SH , SL, DB, NI):
30 self.MY = MY
31 self.SH = SH
32 self.SL = SL
33 self.DB = DB
34 self.NI = NI
35 self.filename = str(self.NI , ’UTF -8’)
36

37 def print_data(self):
38 print(
39 "My Radio Info:\nMY: {}\ nSH: {}\ nSL: {}\nDB: {}\nNI: {}\n".format(
40 self.MY , self.SH, self.SL, self.DB , self.NI))
41 return
42

43

44 def compare_radios(a, b):
45 if a.MY == b.MY and a.SH == b.SH and a.SL == b.SL and a.DB == b.DB \
46 and a.NI == b.NI:
47 return 1
48 return 0
49

50

51 def parse_radio_ids(radio_ids):
52 temp_radio_list = []
53 radio_ids = radio_ids.replace(b’OK\r’, b’’)
54 radio_ids = radio_ids.replace(b’EEww\r’, b’’)
55 temp = radio_ids.split(b’\r\r’)
56 for x in range(len(temp) - 1):
57 radio = temp[x].split(b’\r’)
58 if len(radio) == 5:
59 temp_radio = Radio(radio[0], radio [1], radio[2], radio [3],
60 radio [4])
61 temp_radio_list.append(temp_radio)
62 else:
63 msg = ’weird radio data’
64 return temp_radio_list
65

66

67 def get_sample_rate ():
68 return SAMPLE_RATE
69

70

71 def clear_historical_data ():
72 return
73

25

74

75 def compare_radio_list(temp_radio_list):
76 new_radio = 0
77 if len(RADIO_LIST) == 0 or len(RADIO_LIST) > len(temp_radio_list):
78 RADIO_LIST.clear ()
79 for each in temp_radio_list:
80 RADIO_LIST.append(each)
81 new_radio = new_radio + 1
82 else:
83 for each in temp_radio_list:
84 contains = 0
85 for x in range(len(RADIO_LIST)):
86 if compare_radios(each , RADIO_LIST[x]) == 1:
87 contains = contains + 1
88 if contains == 0:
89 RADIO_LIST.append(each)
90 new_radio = new_radio + 1
91 return new_radio
92

93

94 def get_radio_names ():
95 name = []
96 if len(RADIO_LIST) == 0:
97 return name
98 else:
99 for each in RADIO_LIST:

100 name.append(str(each.NI, ’UTF -8’))
101 return name
102

103

104 def set_sampling_freq(input):
105 # TODO: Link these to buttons or something or make GUI to set?
106 SAMPLE_RATE = input
107 return
108

109

110 def scan_for_radios(serial_port):
111 ser = serial.Serial(serial_port , timeout =3)
112

113 ser.write(b’\r’)
114 time.sleep (1.5)
115 # enables command mode (1.5 sec delay is necessary)
116 ser.write(b’+++’)
117 time.sleep (1.5)
118 # print(’Initiate command mode waiting for OK ’)
119 line = ser.read_until(b’\r’, size=None)
120

121 # command mode calls
122 ser.write(b’ATND\r’) # Node Discovery
123 time.sleep (1.5)
124

125 # response
126 # print(’trying to get radio list ’)
127 response = ser.read_until(b’\r\r\r’)
128 #print(’data from radio {}’. format(response))
129 radio_data = response
130

131 # closes command mode
132 ser.write(b’ATCN\r’)
133 time.sleep (1.5)
134 # print(’Command ATCN mode waiting for OK ’)
135 line = ser.read_until(b’\r’, size=None)
136

137 # closes serial port
138 ser.close()
139

140 # return radio data to main function
141 return radio_data
142

143

144 def sample_radios(serial_port):
145 # List for storing radio data (to Return)
146 RADIO_DATA_PULL.clear ()
147 if len(RADIO_LIST) > 1:
148 for each in RADIO_LIST:
149 # opens serial port
150 ser = serial.Serial(serial_port)
151

152 # enables command mode (1.5 sec delay is necessary)
153 ser.write(b’\r\r’)
154 time.sleep (1.5)
155 ser.write(b’+++’)
156 time.sleep (1.5)

26

157 # print(’Initiate command mode waiting for OK ’)
158 line = ser.read_until(b’\r’, size=None)
159 # command mode calls
160 DH = b’ATDH 00’ + each.SH + b’\r’
161 ser.write(DH) # Correct DH testing
162 time.sleep (1.5)
163 # print(’waiting for OK ’)
164 line = ser.read_until(b’\r’, size=None)
165

166 DL = b’ATDL ’ + each.SL + b’\r’
167 ser.write(DL) # Correct DL testing
168 time.sleep (1.5)
169 # print(’waiting for OK ’)
170 line = ser.read_until(b’\r’, size=None)
171

172 # closes command mode
173 ser.write(b’ATCN\r’)
174 time.sleep (1.5)
175 # print(’Command ATCN mode waiting for OK ’)
176 line = ser.read_until(b’\r’, size=None)
177

178 # requests data
179 ser.write(b’\r\r’)
180 time.sleep (1.5)
181 ser.write(b’Request Info\r’)
182 time.sleep (1.5)
183 # line = ser.readline ()
184 line = ser.read_until(b’\r\r’, size=None)
185 radio_data = line
186 temp_arr = []
187 temp_arr.append(each.NI)
188 temp_arr.append(radio_data)
189 RADIO_DATA_PULL.append(temp_arr)
190

191 # closes serial port
192 ser.close()
193 # return radio data to main function
194 # NEED RADIO WITH DUMMY DATA FROM ALAN
195 else:
196 radio_data = b’No Radios Set Up\r’
197 RADIO_DATA_PULL.append(radio_data)
198 return RADIO_DATA_PULL
199

200

201 def parse_radio_data(data):
202 # return list of parsed data to main function
203 PARSED_RADIO_DATA.clear ()
204 for each in data:
205 temp_arr = []
206 temp_arr.append(str(each[0], ’UTF -8’))
207 temp = each [1]. replace(b’OK\r’, b’’)
208 temp = temp.replace(b’EEww\r’, b’’)
209 temp = temp.replace(b’\r\r’, b’’)
210 value = str(temp , ’UTF -8’)
211 temp_arr.append(value)
212 PARSED_RADIO_DATA.append(temp_arr)
213 return PARSED_RADIO_DATA
214

215

216 def background_collection(delay , stop , task):
217 next_time = time.time() + delay
218 while True:
219 if stop():
220 break
221 time.sleep(max(0, next_time - time.time()))
222 try:
223 task()
224 except Exception:
225 traceback.print_exc ()
226 # in production code you might want to have this instead of course:
227 # logger.exception (" Problem while executing repetitive task .")
228 # skip tasks if we are behind schedule:
229 next_time += (time.time() - next_time) // delay * delay + delay
230

231

232 def test_background ():
233 #todo
234 print("sampling time:", time.asctime(time.localtime(time.time())))
235 data = sample_radios(’COM4’)
236 names = get_radio_names ()
237 parsed_radio_data = parse_radio_data(data)
238 store_parsed_data(parsed_radio_data)
239

27

240

241 def store_parsed_data(data):
242 #TODO
243 return
244

245

246 def clear_radio_list ():
247 RADIO_LIST.clear ()
248 return
249

250

251 def parse_data(sensor_data):
252 # return list of parsed data to main function
253 return sensor_data.split(’,’)
254

255

256 def show_gui(parsed_data , sensor1_data , sensor2_data , thread):
257 # green theme for green project
258 sg.theme(’Green’)
259

260 # Title and description shown at top of GUI
261 description = sg.Column ([[
262 sg.Text(f’My Garden ’,
263 font=(’Arial Rounded MT Bold’, 18),
264 pad =((10 , 0), (10, 0)))
265],
266 [
267 sg.Text(f’Modular Garden Monitoring System ’,
268 font=(’Arial ’, 12),
269 pad =((10 , 10), (0, 10)))
270]],
271 key=’COL1’)
272

273 # Data type labels shown in the Left Body of the GUI
274 data_types = sg.Column(
275 [[sg.Text(f’Soil Moisture:’, font=(’Arial ’, 12))],
276 [sg.Text(f’Soil Temperature:’, font=(’Arial ’, 12))],
277 [sg.Text(f’Air Humidity:’, font=(’Arial’, 12))],
278 [sg.Text(f’Air Temperature:’, font=(’Arial ’, 12))],
279 [sg.Text(f’Sunlight:’, font=(’Arial ’, 12))]],
280 element_justification=’left’,
281 key=’COL2’)
282

283 # Current sensor values shown in the Right Body of the GUI
284 sensor_data = sg.Column(
285 [[sg.Text(f’{parsed_data [0]} %’, font=(’Arial Rounded MT Bold’, 12))],
286 [sg.Text(f’{parsed_data [1]}’+u’\N{DEGREE SIGN}F’, font=(’Arial Rounded MT Bold’, 12))],
287 [sg.Text(f’{parsed_data [2]} %’, font=(’Arial Rounded MT Bold’, 12))],
288 [sg.Text(f’{parsed_data [3]}’+u’\N{DEGREE SIGN}F’, font=(’Arial Rounded MT Bold’, 12))],
289 [sg.Text(f’{parsed_data [4]} %’, font=(’Arial Rounded MT Bold’, 12))]],
290 element_justification=’left’,
291 key=’COL3’)
292

293 # Buttons for pop -up windows that include graphs
294 data_buttons = sg.Column(
295 [[sg.Button(’Graph’, font=(’Arial ’, 8), key=’soil_m ’)],
296 [sg.Button(’Graph’, font=(’Arial’, 8), key=’soil_t ’)],
297 [sg.Button(’Graph’, font=(’Arial’, 8), key=’air_m’)],
298 [sg.Button(’Graph’, font=(’Arial’, 8), key=’air_t’)],
299 [sg.Button(’Graph’, font=(’Arial’, 8), key=’sun’)]],
300 element_justification=’left’,
301 key=’COL4’)
302

303 # Buttons to close out of gui
304 button_ok = sg.Column(
305 [[sg.Button(’Close’, font=(’Arial ’, 12), pad=((0, 20), (0, 10)))]],
306 element_justification=’right ’,
307 key=’COL7’)
308

309 # Button Clears Radios ...
310 button_clear = sg.Column ([[
311 sg.Button(
312 ’Clear’, font=(’Arial’, 12), pad=((0, 0), (10, 10)), key=’clear’)
313]],
314 element_justification=’left’,
315 key=’COL8’)
316

317 # Button to scan for radios
318 button_scan = sg.Column ([[
319 sg.Button(’Scan for Radios ’,
320 font=(’Arial’, 12),
321 pad=((0, 10), (10, 10)),
322 key=’scan’)

28

323]],
324 element_justification=’left’,
325 key=’COL5’)
326

327 # Button to collect data
328 button_collect = sg.Column ([[
329 sg.Button(’Collect Data’,
330 font=(’Arial’, 12),
331 pad=((0, 0), (10, 10)),
332 key=’collect ’)
333]],
334 element_justification=’right ’,
335 key=’COL6’)
336

337 button_setup = sg.Column ([[
338 sg.Button(
339 ’Setup’, font=(’Arial’, 12), pad=((0, 0), (0, 10)), key=’setup ’)
340]],
341 element_justification=’right ’,
342 key=’COL9’)
343

344 button_auto_collect = sg.Column ([[
345 sg.Button(’Auto Collect ’,
346 font=(’Arial’, 12),
347 pad=((0, 0), (0, 10)),
348 key=’auto_collect ’)
349]],
350 element_justification=’right ’,
351 key=’COL10’)
352

353 # everything that shows up in the GUI
354 layout = [[description], [data_types , sensor_data , data_buttons],
355 [button_scan , button_collect],
356 [button_ok , button_setup , button_auto_collect]]
357

358 # create and open window
359 window = sg.Window(layout=layout ,
360 title=’Modular Garden Monitoring System ’,
361 margins =(0, 0),
362 finalize=True ,
363 element_justification=’center ’,
364 no_titlebar=False ,
365 grab_anywhere=True)
366

367 # loop keeps window open , executes events , reads values
368 while True:
369 event , values = window.read()
370

371 # if user closes window or clicks close button
372 if event == sg.WIN_CLOSED or event == ’Close ’:
373 break
374

375 # Popup for scanning for radios
376 if event == ’scan’:
377 prev_num_radios = len(RADIO_LIST)
378 try:
379 test_radio_list = scan_for_radios(
380 ’COM4’) # using windows - /dev/ttyUSB0 for linux
381 radios = parse_radio_ids(
382 test_radio_list
383) # takes scanned radios and creates radio objects
384 num_radios = compare_radio_list(
385 radios
386) # Compares list of radio objects to MASTER RADIO LIST
387 names = get_radio_names ()
388 if len(radios) == 0:
389 sg.Popup(
390 ’Successfully Scanned for Radios.’,
391 f’{len(RADIO_LIST)} Current Radios .\n’
392 ’No New Radios Found’,
393 ’Please Ensure Your Radio Is In Range And Powered On’,
394 title=’Scan for Radios ’)
395 elif prev_num_radios > len(radios):
396 lost_radios = prev_num_radios - num_radios
397 sg.Popup(’Successfully Scanned for Radios.’,
398 f’Found {num_radios} radios.’,
399 f’Number of Radios Lost: ’
400 f’{lost_radios}’,
401 f’Current Radios: {names}’,
402 title=’Scan for Radios ’)
403 elif prev_num_radios < len(radios):
404 total_radios = prev_num_radios + num_radios
405 sg.Popup(’Successfully Scanned for Radios.’,

29

406 f’Found {total_radios} radios.’,
407 f’Number of New Radios: ’
408 f’{num_radios}’,
409 f’Current Radios: {names}’,
410 title=’Scan for Radios ’)
411 else:
412 sg.Popup(
413 ’Successfully Scanned for Radios.’,
414 f’{len(RADIO_LIST)} Current Radios .\n’
415 ’No New Radios Found’,
416 f’Current Radios: {names}’,
417 title=’Scan for Radios ’)
418 except:
419 sg.Popup(’Error No Coordinator Connected ’,
420 title=’Scan for Radios ’)
421

422 # Popup for collect current data
423 if event == ’collect ’:
424 if len(RADIO_LIST) == 0:
425 sg.Popup(’No Connected Radios .\ nPlease Scan for Radios ’,
426 title=’Current Data’)
427 else:
428 data = sample_radios(’COM4’)
429 names = get_radio_names ()
430 parsed_radio_data = parse_radio_data(data)
431 sg.Popup(
432 f’Successfully Collected Current Data From ’
433 f’{len(RADIO_LIST)} Radios.’,
434 f’Radio Names: {names}’,
435 f’Raw Radio Data: {parsed_radio_data}’,
436 title=’Current Data’)
437

438 # Popup for clear radio list internal use only
439 if event == ’clear’:
440 clear_radio_list ()
441

442 # Popup to set collection time
443 if event == ’setup’:
444 sample_freq = sg.popup_get_text(
445 ’Please enter a sampling frequency in minutes ’, title=’Setup’)
446 set_sampling_freq(sample_freq)
447

448 # Sets to start auto collecting data
449 if event == ’auto_collect ’:
450 if len(RADIO_LIST) == 0:
451 sg.Popup(’No Connected Radios .\ nPlease Scan for Radios ’,
452 title=’Auto Collect Data’)
453 else:
454 if not thread.is_alive ():
455 thread.start()
456 sg.Popup(f’Collecting Data Every {SAMPLE_RATE} Seconds ’,
457 title=’Auto Collect Data’)
458 else:
459 sg.Popup(’Auto Collection Error’,
460 title=’Auto Collect Data’)
461

462 # Popup for Soil Moisture
463 if event == ’soil_m ’:
464 plt.close(’all’)
465 plot_sensor1 = []
466 plot_sensor2 = []
467 hours_ago = [
468 -5.00, -4.75, -4.5, -4.25, -4.00, -3.75, -3.5, -3.25, -3.00,
469 -2.75, -2.5, -2.25, -2.00, -1.75, -1.5, -1.25, -1.00, -0.75,
470 -0.5, -0.25
471]
472 for i in range (20):
473 plot_sensor1.append(sensor1_data[i][1])
474 plot_sensor2.append(sensor2_data[i][1])
475 plt.plot(hours_ago , plot_sensor1 , ’g’, label="Sensor 1")
476 plt.plot(hours_ago , plot_sensor2 , ’y’, label="Sensor 2")
477 plt.title(’Soil Moisture Plot - Past 5 Hours ’)
478 plt.xlabel(’Time (Hours Ago)’)
479 plt.ylabel(’Soil Moisture (%)’)
480 plt.xlim([-5, 0])
481 plt.ylim([0, 100])
482 plt.legend ()
483 plt.show(block=False)
484 # popup_text = ’[insert plot w/ matplotlib here]’
485 # TODO add charts to popups in GUI
486 # sg.Popup(’This is a pop -up for Soil Moisture ’,
487 # popup_text , title=’Soil Moisture ’)
488

30

489 # Popup for Soil Temperature
490 if event == ’soil_t ’:
491 plt.close(’all’)
492 plot_sensor1 = []
493 plot_sensor2 = []
494 hours_ago = [
495 -5.00, -4.75, -4.5, -4.25, -4.00, -3.75, -3.5, -3.25, -3.00,
496 -2.75, -2.5, -2.25, -2.00, -1.75, -1.5, -1.25, -1.00, -0.75,
497 -0.5, -0.25
498]
499 for i in range (20):
500 plot_sensor1.append(sensor1_data[i][0])
501 plot_sensor2.append(sensor2_data[i][0])
502 plt.plot(hours_ago , plot_sensor1 , ’g’, label="Sensor 1")
503 plt.plot(hours_ago , plot_sensor2 , ’y’, label="Sensor 2")
504 plt.title(’Soil Temperature Plot - Past 5 Hours’)
505 plt.xlabel(’Time (Hours Ago)’)
506 plt.ylabel(u’Soil Temperature (\N{DEGREE SIGN}F)’)
507 plt.xlim([-5, 0])
508 plt.ylim([0, 100])
509 plt.legend ()
510 plt.show(block=False)
511 # popup_text = ’[insert plot w/ matplotlib here]’
512 # TODO add charts to popups in GUI
513 # sg.Popup(’This is a pop -up for Soil Temperature ’,
514 # popup_text , title=’Soil Temperature ’)
515

516 # Popup for Air Humidity
517 if event == ’air_m’:
518 plt.close(’all’)
519 plot_sensor1 = []
520 plot_sensor2 = []
521 hours_ago = [
522 -5.00, -4.75, -4.5, -4.25, -4.00, -3.75, -3.5, -3.25, -3.00,
523 -2.75, -2.5, -2.25, -2.00, -1.75, -1.5, -1.25, -1.00, -0.75,
524 -0.5, -0.25
525]
526 for i in range (20):
527 plot_sensor1.append(sensor1_data[i][1])
528 plot_sensor2.append(sensor2_data[i][1])
529 plt.plot(hours_ago , plot_sensor1 , ’g’, label="Sensor 1")
530 plt.plot(hours_ago , plot_sensor2 , ’y’, label="Sensor 2")
531 plt.title(’Air Humidity Plot - Past 5 Hours’)
532 plt.xlabel(’Time (Hours Ago)’)
533 plt.ylabel(’Air Humidity (%)’)
534 plt.xlim([-5, 0])
535 plt.ylim([0, 100])
536 plt.legend ()
537 plt.show(block=False)
538 # popup_text = ’[insert plot w/ matplotlib here]’
539 # TODO add charts to popups in GUI
540 # sg.Popup(’This is a pop -up for Air Humidity ’,
541 # popup_text , title=’Air Humidity ’)
542

543 # Popup for Air Temperature
544 if event == ’air_t’:
545 plt.close(’all’)
546 plot_sensor1 = []
547 plot_sensor2 = []
548 hours_ago = [
549 -5.00, -4.75, -4.5, -4.25, -4.00, -3.75, -3.5, -3.25, -3.00,
550 -2.75, -2.5, -2.25, -2.00, -1.75, -1.5, -1.25, -1.00, -0.75,
551 -0.5, -0.25
552]
553 for i in range (20):
554 plot_sensor1.append(sensor1_data[i][2])
555 plot_sensor2.append(sensor2_data[i][2])
556 plt.plot(hours_ago , plot_sensor1 , ’g’, label="Sensor 1")
557 plt.plot(hours_ago , plot_sensor2 , ’y’, label="Sensor 2")
558 plt.title(’Air Temperature Plot - Past 5 Hours’)
559 plt.xlabel(’Time (Hours Ago)’)
560 plt.ylabel(u’Air Temperature (\N{DEGREE SIGN}F)’)
561 plt.xlim([-5, 0])
562 plt.ylim([0, 100])
563 plt.legend ()
564 plt.show(block=False)
565 # popup_text = ’[insert plot w/ matplotlib here]’
566 # TODO add charts to popups in GUI
567 # sg.Popup(’This is a pop -up for Air Temperature ’,
568 # popup_text , title=’Air Temperature ’)
569

570 # Popup for Sunlight
571 if event == ’sun’:

31

572 plt.close(’all’)
573 plot_sensor1 = []
574 plot_sensor2 = []
575 hours_ago = [
576 -5.00, -4.75, -4.5, -4.25, -4.00, -3.75, -3.5, -3.25, -3.00,
577 -2.75, -2.5, -2.25, -2.00, -1.75, -1.5, -1.25, -1.00, -0.75,
578 -0.5, -0.25
579]
580 for i in range (20):
581 plot_sensor1.append(sensor1_data[i][4])
582 plot_sensor2.append(sensor2_data[i][4])
583 plt.plot(hours_ago , plot_sensor1 , ’g’, label="Sensor 1")
584 plt.plot(hours_ago , plot_sensor2 , ’y’, label="Sensor 2")
585 plt.title(’Sunlight Plot - Past 5 Hours’)
586 plt.xlabel(’Time (Hours Ago)’)
587 plt.ylabel(’Sunlight (%)’)
588 plt.xlim([-5, 0])
589 plt.ylim([0, 100])
590 plt.legend ()
591 plt.show()
592 # popup_text = ’[insert plot w/ matplotlib here]’
593 # TODO add charts to popups in GUI
594 # sg.Popup(’This is a pop -up for Sunlight ’,
595 # popup_text , title=’Sunlight ’)
596

597 # closes window
598 window.close()
599

600

601 # Load given TXT file
602 def load_file(filename):
603 # Reads data from .txt file
604 text_file = open(filename , ’r’)
605 lines = text_file.read().splitlines ()
606 text_file.close ()
607

608 # Creates new empty list
609 file_contents = [] # list values in form of: [P, N, Stressed]
610

611 # Saves "Not Stressed" values into "studyResults" List
612 for j in range(0, 20):
613 if ";" in lines[j]:
614 new_line = lines[j].split(’;’)
615 else:
616 new_line = lines[j].split ()
617 file_contents.append(new_line)
618

619 # Converts all string values in "studyResults" to float
620 file_contents = [list(map(float , sublist)) for sublist in file_contents]
621

622 return file_contents
623

624

625 # Main Function - Start Here
626 def main():
627 # Step 1: Collect Sensor Data
628 # TODO RECIEVE AND PARSE DATA
629

630 # Step 2: Parse Collected Data
631 # Alan has data format ready
632 # dummy data since i don’t have the radio
633 # <soil -temp >;<soil -moist >;<air -temp >;<air -hum >;<sunlight > 58;56;69;43;27
634 sensor_data = "56,58,43,69,27"
635 parsed_data = parse_data(sensor_data)
636

637 # Step 3: Visualize Data
638 # TODO make charts with matplotlib
639 # Read contents of ’HW2_data.txt’
640 sensor1 = load_file(str(Path(__file__).resolve ().parent / ’sensor1.txt’))
641 sensor2 = load_file(str(Path(__file__).resolve ().parent / ’sensor2.txt’))
642 # print(len(sensor1))
643 # print(len(sensor2))
644

645 # Step 4: GUI
646 stop_threads = False
647 th = threading.Thread(
648 target =(lambda x, y, z: background_collection(x, y, z)),
649 args=(SAMPLE_RATE , lambda: stop_threads , test_background))
650 show_gui(parsed_data , sensor1 , sensor2 , th)
651 time.sleep (1)
652 stop_threads = True
653 if th.is_alive ():
654 print(’where all threads go to die’)

32

655 th.join()
656

657

658 if __name__ == ’__main__ ’:
659 main()

33

4.2 Submodule Main Control Program

1 // //
2 // MGMS Sensor Module main.cpp
3 // Alan Trester <tresteat@mail.uc.edu > ; Zuguang Liu <liu2z2@mail.uc.edu >
4 // March 14, 2021
5 // //
6

7 #include <avr/io.h>
8 #include <avr/interrupt.h>
9 #include <stdlib.h> // qsort

10 #include <stdio.h> // USART
11 #include <string.h>
12 #include <util/delay.h>
13 #include "AnalogSensors.h"
14 #include "SHT35.h"
15

16 // //
17 // UART Functions & Vars
18

19 volatile char RXBuffer [30] ;
20 // Populated as new data is received in the RXC ISR. Checked in main()
21 volatile uint8_t RXByteCount = 0 ;
22 // Position of next byte to populate in RXBuffer. Used in RXC ISR.
23

24 char TXBuffer [30] ;
25 // Used to transmit data in TX ISR. Set in FullReport ()
26 volatile uint8_t TXByteCount = 1 ;
27 // Position of next byte to transmit. Used in TX ISR
28

29 void memset_volatile(volatile void *s, char c, size_t n) ;
30 // memset that accepts volatile variables - Needed to reset volatile buffers
31

32 // Data Collection Functions & Vars
33 float SoilTemp ; // Soil Temperature.
34 char SoilTempASCII [7] ;
35

36 float SoilMoist ; // Soil Moisture.
37 char SoilMoistASCII [7] ;
38

39 float AirTemp ; // Air Temperature.
40 char AirTempASCII [7] ;
41

42 float Humidity ; // Humidity.
43 char HumidityASCII [7] ;
44

45 void FullReport () ; // Concatenated with all above
46 char FullReportASCII [28] ; // 14th byte reserved for \0
47

48 // ///
49 // memset_volatile - memset function implementation that accept volatile
50 // variables as inputs. Found on stackoverflow This is required to be above main
51 // since it accepts volatile inputs
52 void memset_volatile(volatile char *s, char c, size_t n)
53 {
54 volatile char *p = s ;
55 while (n-- > 0)
56 {
57 *p++ = c ;
58 }
59 }
60

61 // ///
62 // Main Function - Conrol Register Config; Scan RX buffer and react to the
63 // correct message.
64 int main(void)
65 {
66 ADC_init () ;
67 SHT_init () ;
68

69 // Configure USART
70 uint16_t baud = 103 ; // 9600 bps (@16MHz)
71 UCSR0B = (1<<TXCIE0) | (1<<RXCIE0) |(1<<TXEN0) | (1<<RXEN0) ;
72 // Enable transmitter/receiver/Enable TX/RX Interrupts
73 UCSR0C = 0x06 ; // Frame format = 8 data + 1 stop bit
74 UBRR0H = (baud >>8) ; // Configure baud rate
75 UBRR0L = (baud) ;
76

77 // Enable all Interrupts
78 sei() ;
79

34

80 // Main Program
81 char RXBufferCpy [30] ; // Copy stores contents of RXBuffer
82 uint8_t RXByteCountCpy ; // Copy stores contents of RXByteCount
83 bool CheckFlag = false ; // Double checked flag for strings
84

85 while (1)
86 {
87 strcpy(RXBufferCpy , const_cast <char*>(RXBuffer)) ;
88 // Copies the contents of the RXBuffer into a non -volatile copy
89 RXByteCountCpy = RXByteCount ;
90

91 if (strcmp(RXBufferCpy , "Request Info") == 0)
92 {
93 UpdateSoilTemp (&SoilTemp , SoilTempASCII) ;
94 UpdateSoilMoist (&SoilMoist , SoilMoistASCII) ;
95 UpdateTempHumid (&AirTemp , AirTempASCII , &Humidity ,
96 HumidityASCII);
97

98 memset_volatile(RXBuffer , 0, 30) ; // Reset buffer
99 CheckFlag = false ; // Reset flag

100 FullReport () ;
101 }
102 else if (RXByteCountCpy == 0 && strcmp(RXBufferCpy , "") != 0)
103 // If the last character was a \r but its the wrong message
104 {
105 if (CheckFlag)
106 {
107 memset_volatile(RXBuffer , 0, 30); // Reset the buffer
108 CheckFlag = false ;
109 }
110 else
111 {
112 CheckFlag = true ;
113 }
114

115 }
116 }
117 }
118

119 // ///
120 // FullReport - Builds the information string to send and begins TX process
121 void FullReport ()
122 {
123 memset(FullReportASCII , 0, 28) ; // Reset the string
124

125 strcpy(FullReportASCII , SoilTempASCII) ;
126 strcat(FullReportASCII , ";") ;
127 strcat(FullReportASCII , SoilMoistASCII) ;
128 strcat(FullReportASCII , ";") ;
129 strcat(FullReportASCII , AirTempASCII) ;
130 strcat(FullReportASCII , ";") ;
131 strcat(FullReportASCII , HumidityASCII) ;
132

133 strcpy(TXBuffer , FullReportASCII) ;
134 UDR0 = TXBuffer [0] ; // Transmit the first byte of data
135 }
136

137 // ///
138 // USART_RX_vect - Triggers whenever the UART module indicates that it has
139 // received a new byte of data Saves latest byte onto the end of the RXBuffer.
140 // Changes carriage returns to terminator characters
141 ISR(USART_RX_vect)
142 {
143 RXBuffer[RXByteCount] = UDR0 ; // Retrieve the Received Byte
144

145 if(RXBuffer[RXByteCount] == ’\r’)
146 {
147 RXBuffer[RXByteCount] = ’\0’ ; // Termination character
148 RXByteCount = 0 ; // Reset the Byte Counter
149 //The actual word gets reset in main()
150 }
151 else if(RXByteCount == 29) // At the end of our buffer
152 {
153 memset_volatile(RXBuffer , 0, 30) ; // Reset the RXBuffer
154 RXByteCount = 0 ; // Reset the Byte Counter
155 }
156 else
157 {
158 RXByteCount ++ ;
159 }
160 }
161

162 // ///

35

163 // USART_TX_vect - Triggers whenever the UART module indicates that an outgoing
164 // transfer has been completed Transmits the next byte of the TXBuffer
165 ISR(USART_TX_vect)
166 {
167 if (TXBuffer[TXByteCount] != ’\0’) // Not yet at end of the buffer
168 {
169 UDR0 = TXBuffer[TXByteCount] ; // Send the next Byte
170 TXByteCount ++ ;
171 }
172 else
173 {
174 TXByteCount = 1 ;
175 }
176 }

36

4.3 Submodule Libraries

1 /*
2 * SHT35.h
3 * Custom Library Supporting SHT35 Sensor - Adapted from Adafruit Library
4 * Zuguang Liu <liu2z2@mail.uc.edu > ; Alan Trester <tresteat@mail.uc.edu >
5 */
6

7

8 #ifndef SHT35_H_
9 #define SHT35_H_

10

11 #include <avr/io.h>
12 #include <util/delay.h>
13 #include <stdlib.h>
14 #include "twi_lib.h"
15

16 #define SHT_ADDR 0x45
17 #define NACK_ON_ADDR 2
18

19

20 #define CLK_STRETCH_ENABLED 0
21 #define CLK_STRETCH_DISABLED 3
22

23 #define MODE_MPS_05 6
24 #define MODE_MPS_1 9
25 #define MODE_MPS_2 12
26 #define MODE_MPS_4 15
27 #define MODE_MPS_10 18
28

29 #define REPEAT_HIGH 0
30 #define REPEAT_MED 1
31 #define REPEAT_LOW 2
32

33 #define CMD_BREAK 0x3093
34 #define CMD_SOFT_RST 0x30A2
35 #define CMD_READ_SREG 0xF32D
36 #define CMD_CLEAR_SREG 0x3041
37 #define CMD_FETCH_DATA 0xE000
38 #define CMD_READ_SERIAL 0x3780
39

40 #define CMD_READ_HIGH_ALERT_LIMIT_SET_VALUE 0XE11F
41 #define CMD_READ_HIGH_ALERT_LIMIT_CLEAR_VALUE 0XE114
42 #define CMD_READ_LOW_ALERT_LIMIT_SET_VALUE 0XE102
43 #define CMD_READ_LOW_ALERT_LIMIT_CLEAR_VALUE 0XE109
44

45 #define CMD_WRITE_HIGH_ALERT_LIMIT_SET_VALUE 0X611D
46 #define CMD_WRITE_HIGH_ALERT_LIMIT_CLEAR_VALUE 0X6116
47 #define CMD_WRITE_LOW_ALERT_LIMIT_SET_VALUE 0X6100
48 #define CMD_WRITE_LOW_ALERT_LIMIT_CLEAR_VALUE 0X610B
49

50 #define HI_REP_WI_STRCH 0x2C06
51 #define MD_REP_WI_STRCH 0x2C0D
52 #define LO_REP_WI_STRCH 0x2C10
53 #define HI_REP_WO_STRCH 0x2400
54 #define MD_REP_WO_STRCH 0x240B
55 #define LO_REP_WO_STRCH 0x2416
56

57 #define CMD_HEATER_ON 0x306D
58 #define CMD_HEATER_OFF 0x3066
59

60 ret_code_t SHT_init () ;
61 // ret_code_t SHT_measure(uint16_t* temp , uint16_t* hum) ;
62 // ret_code_t SHT_check(uint16_t* status) ;
63 void UpdateTempHumid(float* RealTemp , char* TempASCII , float* RealHumid ,
64 char* HumidASCII) ;
65

66 #endif /* SHT35_H_ */

1 /*
2 * SHT35.cpp
3 * Custom Library Supporting SHT35 Sensor - Adapted from Adafruit Library
4 * Zuguang Liu <liu2z2@mail.uc.edu > ; Alan Trester <tresteat@mail.uc.edu >
5 */
6

7 #include "SHT35.h"
8

9 static ret_code_t SHT_send_cmd(uint16_t cmd){
10 uint8_t data [2] = {cmd >> 8, cmd & 0xFF};
11 return tw_master_transmit(SHT_ADDR , data , 2, false);
12 }

37

13

14

15 static float get_temp(uint16_t temp) {
16 return (temp / 65535.00) * 175 - 45;
17 }
18

19 static float get_hum(uint16_t hum) {
20 return (hum / 65535.0) * 100.0;
21 }
22

23 static ret_code_t SHT_measure(uint16_t* temp , uint16_t* hum){
24 ret_code_t error_code = SUCCESS;
25 uint8_t data [6];
26

27 error_code = SHT_send_cmd(HI_REP_WI_STRCH);
28 if (error_code != SUCCESS) return error_code;
29

30 _delay_ms (1);
31

32 error_code = tw_master_receive(SHT_ADDR , data , sizeof(data));
33 if (error_code != SUCCESS) return error_code;
34

35 *temp = (uint16_t) data [0] << 8 | data [1];
36 *hum = (uint16_t) data [3] << 8 | data [4];
37

38 return error_code;
39 }
40

41 static ret_code_t SHT_check(uint16_t* status){
42 ret_code_t error_code = SUCCESS;
43 uint8_t data [3] = {0};
44

45 error_code = SHT_send_cmd(CMD_SOFT_RST);
46 if (error_code != SUCCESS) return error_code;
47

48 error_code = SHT_send_cmd(CMD_READ_SREG);
49 if (error_code != SUCCESS) return error_code;
50

51 _delay_ms (20);
52

53 error_code = tw_master_receive(SHT_ADDR , data , sizeof(data));
54 if (error_code != SUCCESS) return error_code;
55

56 *status = data [0] << 8 | data [1] ;
57

58 return error_code;
59 }
60

61 ret_code_t SHT_init (){
62 ret_code_t error_code = SUCCESS;
63 tw_init(TW_FREQ_250K , true); // set I2C Frequency , enable internal pull -up
64

65 error_code = SHT_send_cmd(CMD_SOFT_RST);
66 if (error_code != SUCCESS) return error_code;
67

68 // error_code = SHT_send_cmd(CMD_CLEAR_SREG);
69 //if (error_code != SUCCESS) return error_code;
70

71 return error_code;
72 }
73

74 void UpdateTempHumid(float* RealTemp , char* TempASCII , float* RealHumid ,
75 char* HumidASCII)
76 {
77 uint16_t RawTemp ;
78 uint16_t RawHumid ;
79

80 SHT_measure (&RawTemp , &RawHumid) ;
81

82 *RealTemp = get_temp(RawTemp) ;
83 *RealHumid = get_hum(RawHumid) ;
84

85 dtostrf(*RealTemp , 6, 2, TempASCII) ;
86 dtostrf(*RealHumid , 6, 2, HumidASCII) ;
87 }

38

1 /*
2 * SHT35.h
3 * Custom Library Supporting I2C for MGMS - Adapted from TEP SOVICHEA
4 * Zuguang Liu <liu2z2@mail.uc.edu > ; Alan Trester <tresteat@mail.uc.edu >
5 */
6

7

8

9 #ifndef TWI_LIB_H_
10 #define TWI_LIB_H_
11

12 #include <avr/io.h>
13 #include <util/twi.h>
14 #include <stdbool.h>
15

16 #define SUCCESS 0
17

18 #define TW_SCL_PIN PORTC5
19 #define TW_SDA_PIN PORTC4
20

21 #define TW_SLA_W(ADDR) ((ADDR << 1) | TW_WRITE)
22 #define TW_SLA_R(ADDR) ((ADDR << 1) | TW_READ)
23 #define TW_READ_ACK 1
24 #define TW_READ_NACK 0
25

26 typedef uint16_t ret_code_t;
27

28 typedef enum {
29 TW_FREQ_100K ,
30 TW_FREQ_250K ,
31 TW_FREQ_400K
32 } twi_freq_mode_t;
33

34 void tw_init(twi_freq_mode_t twi_freq_mode , bool pullup_en) ;
35 ret_code_t tw_master_transmit(uint8_t slave_addr , uint8_t* p_data , uint8_t len ,
36 bool repeat_start) ;
37 ret_code_t tw_master_receive(uint8_t slave_addr , uint8_t* p_data , uint8_t len) ;
38

39 #endif /* TWI_LIB_H_ */

1 /*
2 * SHT35.cpp
3 * Custom Library Supporting I2C for MGMS - Adapted from TEP SOVICHEA
4 * Zuguang Liu <liu2z2@mail.uc.edu > ; Alan Trester <tresteat@mail.uc.edu >
5 */
6

7 #include "twi_lib.h"
8

9 static ret_code_t tw_start(void)
10 {
11 /* Send START condition */
12 TWCR = (1 << TWINT) | (1 << TWEN) | (1 << TWSTA);
13

14 /* Wait for TWINT flag to set */
15 while (!(TWCR & (1 << TWINT)));
16

17 /* Check error */
18 if (TW_STATUS != TW_START && TW_STATUS != TW_REP_START)
19 {
20 return TW_STATUS;
21 }
22

23 return SUCCESS;
24 }
25

26

27 static void tw_stop(void)
28 {
29 /* Send STOP condition */
30 TWCR = (1 << TWINT) | (1 << TWEN) | (1 << TWSTO);
31 }
32

33

34 static ret_code_t tw_write_sla(uint8_t sla)
35 {
36 /* Transmit slave address with read/write flag */
37 TWDR = sla;
38 TWCR = (1 << TWINT) | (1 << TWEN);
39

40 /* Wait for TWINT flag to set */
41 while (!(TWCR & (1 << TWINT)));
42 if (TW_STATUS != TW_MT_SLA_ACK && TW_STATUS != TW_MR_SLA_ACK)
43 {

39

44 return TW_STATUS;
45 }
46

47 return SUCCESS;
48 }
49

50

51 static ret_code_t tw_write(uint8_t data)
52 {
53 /* Transmit 1 byte*/
54 TWDR = data;
55 TWCR = (1 << TWINT) | (1 << TWEN);
56

57 /* Wait for TWINT flag to set */
58 while (!(TWCR & (1 << TWINT)));
59 if (TW_STATUS != TW_MT_DATA_ACK)
60 {
61 return TW_STATUS;
62 }
63

64 return SUCCESS;
65 }
66

67

68 static uint8_t tw_read(bool read_ack)
69 {
70 if (read_ack)
71 {
72 TWCR = (1 << TWINT) | (1 << TWEN) | (1 << TWEA);
73 while (!(TWCR & (1 << TWINT)));
74 if (TW_STATUS != TW_MR_DATA_ACK)
75 {
76 return TW_STATUS;
77 }
78 }
79 else
80 {
81 TWCR = (1 << TWINT) | (1 << TWEN);
82 while (!(TWCR & (1 << TWINT)));
83 if (TW_STATUS != TW_MR_DATA_NACK)
84 {
85 return TW_STATUS;
86 }
87 }
88 uint8_t data = TWDR;
89 return data;
90 }
91

92

93 void tw_init(twi_freq_mode_t twi_freq_mode , bool pullup_en)
94 {
95 DDRC |= (1 << TW_SDA_PIN) | (1 << TW_SCL_PIN);
96 if (pullup_en)
97 {
98 PORTC |= (1 << TW_SDA_PIN) | (1 << TW_SCL_PIN);
99 }

100 else
101 {
102 PORTC &= ~((1 << TW_SDA_PIN) | (1 << TW_SCL_PIN));
103 }
104 DDRC &= ~((1 << TW_SDA_PIN) | (1 << TW_SCL_PIN));
105

106 switch (twi_freq_mode)
107 {
108 case TW_FREQ_100K:
109 /* Set bit rate register 72 and prescaler to 1 resulting in
110 SCL_freq = 16MHz /(16 + 2*72*1) = 100KHz */
111 TWBR = 72;
112 break;
113

114 case TW_FREQ_250K:
115 /* Set bit rate register 24 and prescaler to 1 resulting in
116 SCL_freq = 16MHz /(16 + 2*24*1) = 250KHz */
117 TWBR = 24;
118 break;
119

120 case TW_FREQ_400K:
121 /* Set bit rate register 12 and prescaler to 1 resulting in
122 SCL_freq = 16MHz /(16 + 2*12*1) = 400KHz */
123 TWBR = 12;
124 break;
125

126 default: break;

40

127 }
128 }
129

130

131 ret_code_t tw_master_transmit(uint8_t slave_addr , uint8_t* p_data , uint8_t len ,
132 bool repeat_start)
133 {
134 ret_code_t error_code;
135

136 /* Send START condition */
137 error_code = tw_start ();
138 if (error_code != SUCCESS)
139 {
140 return error_code;
141 }
142

143 /* Send slave address with WRITE flag */
144 error_code = tw_write_sla(TW_SLA_W(slave_addr));
145 if (error_code != SUCCESS)
146 {
147 return error_code;
148 }
149

150 /* Send data byte in single or burst mode */
151 for (int i = 0; i < len; ++i)
152 {
153 error_code = tw_write(p_data[i]);
154 if (error_code != SUCCESS)
155 {
156 return error_code;
157 }
158 }
159

160 if (! repeat_start)
161 {
162 /* Send STOP condition */
163 tw_stop ();
164 }
165

166 return SUCCESS;
167 }
168

169

170 ret_code_t tw_master_receive(uint8_t slave_addr , uint8_t* p_data , uint8_t len)
171 {
172 ret_code_t error_code;
173

174 /* Send START condition */
175 error_code = tw_start ();
176 if (error_code != SUCCESS)
177 {
178 return error_code;
179 }
180 // return error_code;
181

182 /* Write slave address with READ flag */
183 error_code = tw_write_sla(TW_SLA_R(slave_addr));
184 if (error_code != SUCCESS)
185 {
186 return error_code;
187 }
188

189 /* Read single or multiple data byte and send ack */
190 for (int i = 0; i < len -1; ++i)
191 {
192 p_data[i] = tw_read(TW_READ_ACK);
193 }
194 p_data[len -1] = tw_read(TW_READ_NACK);
195

196 /* Send STOP condition */
197 tw_stop ();
198

199 return SUCCESS;
200 }

41

1 /*
2 * AnalogSensors.h
3 * Custom Library Supporting ADC Reads for Soil Temp , Soil Moisture , Sunlight
4 * Alan Trester <tresteat@mail.uc.edu > ; Zuguang Liu <liu2z2@mail.uc.edu >
5 * 3/14/2021
6 */
7

8

9 #ifndef ANALOGSENSORS_H_
10 #define ANALOGSENSORS_H_
11

12 #include <avr/io.h>
13 #include <stdlib.h>
14

15 void ADC_init () ;
16 // Initializes the analog pins to correctly do measurements
17 void UpdateSoilTemp(float* TempMode , char* ASCII) ;
18 // Reads Soil Temp values from ADC , finds the most likely temperature
19 void UpdateSoilMoist(float* MoistMode , char* ASCII) ;
20 // Reads Soil Moisture values from ADC , finds the most likely moisture
21

22 #endif /* ANALOGSENSORS_H_ */

1 /*
2 * AnalogSensors.cpp
3 * Custom Library Supporting ADC Reads for Soil Temp , Soil Moisture , Sunlight
4 * Alan Trester <tresteat@mail.uc.edu > ; Zuguang Liu <liu2z2@mail.uc.edu >
5 * 3/14/2021
6 */
7

8 #include "AnalogSensors.h"
9

10 // ///
11 // Necessary for qsort to work. Compares the values for 2 float values
12 static int CompareFloat(const void* a, const void* b)
13 {
14 if (*(float*)a < *(float*)b) return -1 ;
15 if (*(float*)a == *(float*)b) return 0 ;
16 if (*(float*)a > *(float*)b) return 1 ;
17 }
18

19 // ///
20 // Initializes the analog pins to correctly do measurements
21 void ADC_init ()
22 {
23 ADMUX = (0<<REFS1)|(1<<REFS0)|(0<<ADLAR)|(0<<MUX3)|(0<<MUX2)|(0<<MUX1)|
24 (0<<MUX0);
25 // Select Analog Port 0 and Internal Reference Voltage;
26 ADCSRA = (1<<ADEN)|(1<<ADIE)|(1<<ADPS2)|(0<<ADPS1)|(0<<ADPS0);
27 // Enable A/D, Enable Interrupt , Set A/D Prescalar
28 DIDR0 = (1<<ADC0D) | (1<<ADC1D);
29 // Disable Input Buffers
30 }
31

32 // ///
33 // Reads Soil Temp values from ADC , reports the most likely temperature
34 void UpdateSoilTemp(float* TempMode , char* ASCII)
35 {
36 ADMUX = (0<<REFS1)|(1<<REFS0)|(0<<ADLAR)|(0<<MUX3)|(0<<MUX2)|(0<<MUX1)|
37 (0<<MUX0); // Select Analog Port 0 and Internal Reference Voltage
38

39 uint8_t i ; // for loop counter
40 uint16_t DataH ; // ADC High Bits
41 uint16_t DataL ; // ADC Low Bits
42 float DataFloat ; // Needed for int -> float cast
43 float RawValues [10] ; // Samples for mode function
44

45 uint8_t Counts [10] ; // Occurrence of each value in RawData
46 uint8_t MaxCount ; // Array location of the highest count
47

48 // Take 10 measurements
49 for (i = 0 ; i<10 ; i++)
50 {
51 ADCSRA |= (1<<ADSC) ; // Begin ADC conversion on Channel 0
52 while(ADCSRA & (1<<ADSC)) ; // Wait for ADC conversion to complete
53

54 DataL = ADCL ;
55 DataH = ADCH << 8 ;
56 DataH = DataH + DataL ;
57

58 DataFloat = DataH ; // Cast to Float
59 RawValues[i] = (((DataFloat / 1024) *5) * 75.006) - 40 ;
60 // Equation from THERM200 Datasheet

42

61 }
62

63 // Begin finding mode of the measured data
64

65 qsort(RawValues , 10, sizeof(float), CompareFloat) ; // Ascending sort
66 // Count occurrence of each value
67 Counts [0] = 1 ; // Count the first value
68 for (i = 1 ; i<10 ; i++) // Count the rest
69 {
70 if (RawValues[i] == RawValues[i-1])
71 {
72 Counts[i] = Counts[i-1] + 1 ;
73 }
74 else
75 {
76 Counts[i] = 1 ; // restart the count
77 }
78 }
79

80 // Finds the largest count
81 MaxCount = 0 ; // Count the first value
82 for (i = 1 ; i<10 ; i++) // Count the rest
83 {
84 if (Counts[i] > Counts[MaxCount]) MaxCount = i ;
85 // Update the MaxCount as necessary
86 }
87

88 *TempMode = RawValues[MaxCount] ;
89 dtostrf(RawValues[MaxCount], 6, 2, ASCII) ;
90 }
91

92 // ///
93 // Reads Soil Moisture values from ADC , reports the most likely moisture
94 void UpdateSoilMoist(float* MoistMode , char* ASCII)
95 {
96 ADMUX = (0<<REFS1)|(1<<REFS0)|(0<<ADLAR)|(0<<MUX3)|(0<<MUX2)|(0<<MUX1)|
97 (1<<MUX0) ;
98 // Select Analog Port 1 and Internal Reference Voltage;
99

100 uint8_t i ;
101 uint16_t DataH ;
102 uint16_t DataL ;
103 float Voltage ; // Voltage for piecewise approximation
104 float RawValues [10] ; // Samples for mode function
105

106 uint8_t Counts [10] ; // Occurrence of each value in RawData
107 uint8_t MaxCount ; // Address of the highest count
108

109 // Take 10 measurements
110 for (i = 0 ; i<10 ; i++)
111 {
112 ADCSRA |= (1<<ADSC) ; // Begin ADC conversion on Channel 0
113 while(ADCSRA & (1<<ADSC)) ; // Wait for ADC conversion to complete
114

115 DataL = ADCL ;
116 DataH = ADCH << 8 ;
117 DataH = DataH + DataL ;
118

119 Voltage = DataH ; // Cast to Float
120 Voltage = (Voltage / 1024) * 5 ; // Convert to Voltage
121

122 // Piecewise approximation for Voltage -> VWC from VH400 Datasheet
123 if (Voltage < 1.1) RawValues[i] = (10 * Voltage) - 1 ;
124 else if (Voltage < 1.3) RawValues[i] = (25 * Voltage) - 17.5 ;
125 else if (Voltage < 1.8) RawValues[i] = (48.08 * Voltage) - 47.5 ;
126 else if (Voltage < 2.2) RawValues[i] = (26.32 * Voltage) - 7.89 ;
127 else RawValues[i] = (62.5 * Voltage) - 7.89 ;
128 }
129

130 // Begin finding mode of the measured data
131

132 qsort(RawValues , 10, sizeof(float), CompareFloat) ;// Sorts ascendingly
133

134 // Count occurrence of each value
135 Counts [0] = 1 ;
136 for (i = 1 ; i<10 ; i++)
137 {
138 if (RawValues[i] == RawValues[i-1])
139 {
140 Counts[i] = Counts[i-1] + 1 ;
141 }
142 else
143 {

43

144 Counts[i] = 1 ;
145 }
146 }
147

148 // Finds the largest count
149 MaxCount = 0 ;
150 for (i = 1 ; i<10 ; i++)
151 {
152 if (Counts[i] > Counts[MaxCount]) MaxCount = i ;
153 }
154

155 *MoistMode = RawValues[MaxCount] ;
156 dtostrf(RawValues[MaxCount], 6, 2, ASCII) ;
157 }

44

	Introduction
	Problem/Need
	Solution
	Credibility
	Project Goals and Brief Methodology

	Discussion
	Project Concept
	Design Objectives
	Methodology/Technical Approach
	Standards
	Final System Design
	Testing and System Performance
	Budget
	Timeline
	Problems Encountered and Solutions
	Future Recommendations

	Conclusion
	Appendices
	Python Implementation of GUI
	Submodule Main Control Program
	Submodule Libraries

